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Preface

The response of students and teachers to the first five editions of Linear Algebra and Its
Applications has been most gratifying. This Sixth Edition provides substantial support
both for teaching and for using technology in the course. As before, the text provides
a modern elementary introduction to linear algebra and a broad selection of interesting
classical and leading-edge applications. The material is accessible to students with the
maturity that should come from successful completion of two semesters of college-level
mathematics, usually calculus.

The main goal of the text is to help students master the basic concepts and skills they
will use later in their careers. The topics here follow the recommendations of the original
Linear Algebra Curriculum Study Group (LACSG), which were based on a careful
investigation of the real needs of the students and a consensus among professionals in
many disciplines that use linear algebra. Ideas being discussed by the second Linear
Algebra Curriculum Study Group (LACSG 2.0) have also been included. We hope this
course will be one of the most useful and interesting mathematics classes taken by
undergraduates.

What’s New in This Edition
The Sixth Edition has exciting new material, examples, and online resources. After talk-
ing with high-tech industry researchers and colleagues in applied areas, we added new
topics, vignettes, and applications with the intention of highlighting for students and
faculty the linear algebraic foundational material for machine learning, artificial intelli-
gence, data science, and digital signal processing.

Content Changes
• Since matrix multiplication is a highly useful skill, we added new examples in Chap-
ter 2 to show how matrix multiplication is used to identify patterns and scrub data.
Corresponding exercises have been created to allow students to explore using matrix
multiplication in various ways.

• In our conversations with colleagues in industry and electrical engineering, we heard
repeatedly how important understanding abstract vector spaces is to their work. After
reading the reviewers’ comments for Chapter 4, we reorganized the chapter, condens-
ing some of the material on column, row, and null spaces; moving Markov chains to
the end of Chapter 5; and creating a new section on signal processing.We view signals
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Preface 13

as an infinite dimensional vector space and illustrate the usefulness of linear trans-
formations to filter out unwanted “vectors” (a.k.a. noise), analyze data, and enhance
signals.

• By moving Markov chains to the end of Chapter 5, we can now discuss the steady
state vector as an eigenvector. We also reorganized some of the summary material on
determinants and change of basis to be more specific to the way they are used in this
chapter.

• In Chapter 6, we present pattern recognition as an application of orthogonality, and
the section on linear models now illustrates how machine learning relates to curve
fitting.

• Chapter 9 on optimization was previously available only as an online file. It has now
been moved into the regular textbook where it is more readily available to faculty and
students. After an opening section on finding optimal strategies to two-person zero-
sum games, the rest of the chapter presents an introduction to linear programming—
from two-dimensional problems that can be solved geometrically to higher dimen-
sional problems that are solved using the Simplex Method.

Other Changes
• In the high-tech industry, where most computations are done on computers, judging
the validity of information and computations is an important step in preparing and
analyzing data. In this edition, students are encouraged to learn to analyze their own
computations to see if they are consistent with the data at hand and the questions being
asked. For this reason, we have added “Reasonable Answers” advice and exercises to
guide students.

• We have added a list of projects to the end of each chapter (available online and in
MyLab Math). Some of these projects were previously available online and have a
wide range of themes from using linear transformations to create art to exploring
additional ideas in mathematics. They can be used for group work or to enhance the
learning of individual students.

• PowerPoint lecture slides have been updated to cover all sections of the text and cover
them more thoroughly.

Distinctive Features

Early Introduction of Key Concepts
Many fundamental ideas of linear algebra are introduced within the first seven lectures,
in the concrete setting ofRn, and then gradually examined from different points of view.
Later generalizations of these concepts appear as natural extensions of familiar ideas,
visualized through the geometric intuition developed in Chapter 1. A major achievement
of this text is that the level of difficulty is fairly even throughout the course.

A Modern View of Matrix Multiplication
Good notation is crucial, and the text reflects the way scientists and engineers actually
use linear algebra in practice. The definitions and proofs focus on the columns of amatrix
rather than on the matrix entries. A central theme is to view a matrix–vector product Ax
as a linear combination of the columns of A. This modern approach simplifies many
arguments, and it ties vector space ideas into the study of linear systems.
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Linear Transformations
Linear transformations form a “thread” that is woven into the fabric of the text. Their
use enhances the geometric flavor of the text. In Chapter 1, for instance, linear transfor-
mations provide a dynamic and graphical view of matrix–vector multiplication.

Eigenvalues and Dynamical Systems
Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material is
spread over several weeks, students havemore time than usual to absorb and review these
critical concepts. Eigenvalues are motivated by and applied to discrete and continuous
dynamical systems, which appear in Sections 1.10, 4.8, and 5.9, and in five sections of
Chapter 5. Some courses reach Chapter 5 after about five weeks by covering Sections
2.8 and 2.9 instead of Chapter 4. These two optional sections present all the vector space
concepts from Chapter 4 needed for Chapter 5.

Orthogonality and Least-Squares Problems
These topics receive a more comprehensive treatment than is commonly found in be-
ginning texts. The original Linear Algebra Curriculum Study Group has emphasized
the need for a substantial unit on orthogonality and least-squares problems, because
orthogonality plays such an important role in computer calculations and numerical linear
algebra and because inconsistent linear systems arise so often in practical work.

Pedagogical Features

Applications
A broad selection of applications illustrates the power of linear algebra to explain
fundamental principles and simplify calculations in engineering, computer science,
mathematics, physics, biology, economics, and statistics. Some applications appear
in separate sections; others are treated in examples and exercises. In addition, each
chapter opens with an introductory vignette that sets the stage for some application
of linear algebra and provides a motivation for developing the mathematics that
follows.

A Strong Geometric Emphasis
Every major concept in the course is given a geometric interpretation, because many stu-
dents learn better when they can visualize an idea. There are substantially more drawings
here than usual, and some of the figures have never before appeared in a linear algebra
text. Interactive versions of many of these figures appear in MyLab Math.

Examples
This text devotes a larger proportion of its expository material to examples than do most
linear algebra texts. There are more examples than an instructor would ordinarily present
in class. But because the examples are written carefully, with lots of detail, students can
read them on their own.
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Theorems and Proofs
Important results are stated as theorems. Other useful facts are displayed in tinted boxes,
for easy reference. Most of the theorems have formal proofs, written with the beginner
student in mind. In a few cases, the essential calculations of a proof are exhibited in a
carefully chosen example. Some routine verifications are saved for exercises, when they
will benefit students.

Practice Problems
A few carefully selected Practice Problems appear just before each exercise set. Com-
plete solutions follow the exercise set. These problems either focus on potential trouble
spots in the exercise set or provide a “warm-up” for the exercises, and the solutions often
contain helpful hints or warnings about the homework.

Exercises
The abundant supply of exercises ranges from routine computations to conceptual ques-
tions that require more thought. A good number of innovative questions pinpoint con-
ceptual difficulties that we have found on student papers over the years. Each exercise
set is carefully arranged in the same general order as the text; homework assignments
are readily available when only part of a section is discussed. A notable feature of the
exercises is their numerical simplicity. Problems “unfold” quickly, so students spend
little time on numerical calculations. The exercises concentrate on teaching understand-
ing rather than mechanical calculations. The exercises in the Sixth Edition maintain the
integrity of the exercises from previous editions, while providing fresh problems for
students and instructors.

Exercises marked with the symbol T are designed to be worked with the aid of
a “matrix program” (a computer program, such as MATLAB, Maple, Mathematica,
MathCad, or Derive, or a programmable calculator withmatrix capabilities, such as those
manufactured by Texas Instruments).

True/False Questions
To encourage students to read all of the text and to think critically, we have developed
over 300 simple true/false questions that appear throughout the text, just after the com-
putational problems. They can be answered directly from the text, and they prepare
students for the conceptual problems that follow. Students appreciate these questions-
after they get used to the importance of reading the text carefully. Based on class testing
and discussions with students, we decided not to put the answers in the text. (The Study
Guide, in MyLabMath, tells the students where to find the answers to the odd-numbered
questions.) An additional 150 true/false questions (mostly at the ends of chapters) test
understanding of the material. The text does provide simple T/F answers to most of these
supplementary exercises, but it omits the justifications for the answers (which usually
require some thought).

Writing Exercises
An ability to write coherent mathematical statements in English is essential for all stu-
dents of linear algebra, not just those who may go to graduate school in mathematics.
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The text includes many exercises for which a written justification is part of the answer.
Conceptual exercises that require a short proof usually contain hints that help a student
get started. For all odd-numbered writing exercises, either a solution is included at the
back of the text or a hint is provided and the solution is given in the Study Guide.

Projects
A list of projects (available online) have been identified at the end of each chapter. They
can be used by individual students or in groups. These projects provide the opportunity
for students to explore fundamental concepts and applications in more detail. Two of the
projects even encourage students to engage their creative side and use linear transforma-
tions to build artwork.

Reasonable Answers
Many of our students will enter a workforce where important decisions are being made
based on answers provided by computers and other machines. The Reasonable Answers
boxes and exercises help students develop an awareness of the need to analyze their
answers for correctness and accuracy.

Computational Topics
The text stresses the impact of the computer on both the development and practice of
linear algebra in science and engineering. Frequent Numerical Notes draw attention
to issues in computing and distinguish between theoretical concepts, such as matrix
inversion, and computer implementations, such as LU factorizations.
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A Note to Students

This course is potentially the most interesting and worthwhile undergraduate mathe-
matics course you will complete. In fact, some students have written or spoken to us
after graduation and said that they still use this text occasionally as a reference in their
careers at major corporations and engineering graduate schools. The following remarks
offer some practical advice and information to help you master the material and enjoy
the course.

In linear algebra, the concepts are as important as the computations. The simple
numerical exercises that begin each exercise set only help you check your understanding
of basic procedures. Later in your career, computers will do the calculations, but you
will have to choose the calculations, know how to interpret the results, analyze whether
the results are reasonable, then explain the results to other people. For this reason, many
exercises in the text ask you to explain or justify your calculations. A written explanation
is often required as part of the answer. If you are working on questions in MyLab Math,
keep a notebook for calculations and notes on what you are learning. For odd-numbered
exercises in the textbook, you will find either the desired explanation or at least a good
hint. Youmust avoid the temptation to look at such answers before you have tried to write
out the solution yourself. Otherwise, you are likely to think you understand something
when in fact you do not.

To master the concepts of linear algebra, you will have to read and reread the text
carefully. New terms are in boldface type, sometimes enclosed in a definition box.
A glossary of terms is included at the end of the text. Important facts are stated as
theorems or are enclosed in tinted boxes, for easy reference. We encourage you to read
the Preface to learn more about the structure of this text. This will give you a framework
for understanding how the course may proceed.

In a practical sense, linear algebra is a language. You must learn this language the
same way you would a foreign language—with daily work. Material presented in one
section is not easily understood unless you have thoroughly studied the text and worked
the exercises for the preceding sections. Keeping up with the course will save you lots
of time and distress!

Numerical Notes
Wehope you read the Numerical Notes in the text, even if you are not using a computer or
graphing calculator with the text. In real life, most applications of linear algebra involve
numerical computations that are subject to some numerical error, even though that error
may be extremely small. The Numerical Notes will warn you of potential difficulties in

22



A Note to Students 23

using linear algebra later in your career, and if you study the notes now, you are more
likely to remember them later.

If you enjoy reading the Numerical Notes, you may want to take a course later in
numerical linear algebra. Because of the high demand for increased computing power,
computer scientists and mathematicians work in numerical linear algebra to develop
faster and more reliable algorithms for computations, and electrical engineers design
faster and smaller computers to run the algorithms. This is an exciting field, and your
first course in linear algebra will help you prepare for it.

Study Guide
To help you succeed in this course, we suggest that you use the Study Guide available in
MyLab Math. Not only will it help you learn linear algebra, it also will show you how
to study mathematics. At strategic points in your textbook, marginal notes will remind
you to check that section of the Study Guide for special subsections entitled “Mastering
Linear Algebra Concepts.” There you will find suggestions for constructing effective
review sheets of key concepts. The act of preparing the sheets is one of the secrets to
success in the course, because you will construct links between ideas. These links are
the “glue” that enables you to build a solid foundation for learning and remembering the
main concepts in the course.

The Study Guide contains a detailed solution to more than a third of the odd-
numbered exercises, plus solutions to all odd-numbered writing exercises for which
only a hint is given in the Answers section of this book. The Guide is separate from
the text because you must learn to write solutions by yourself, without much help. (We
know from years of experience that easy access to solutions in the back of the text slows
the mathematical development of most students.) The Guide also provides warnings of
common errors and helpful hints that call attention to key exercises and potential exam
questions.

If you have access to technology—MATLAB, Octave, Maple, Mathematica, or a TI
graphing calculator—you can save many hours of homework time. The Study Guide is
your “lab manual” that explains how to use each of these matrix utilities. It introduces
new commands when they are needed. You will also find that most software commands
you might use are easily found using an online search engine. Special matrix commands
will perform the computations for you!

What you do in your first few weeks of studying this course will set your pattern
for the term and determine how well you finish the course. Please read “How to Study
Linear Algebra” in the Study Guide as soon as possible. Many students have found the
strategies there very helpful, and we hope you will, too.
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1 Linear Equations in
Linear Algebra

Introductory Example

LINEAR MODELS IN ECONOMICS
AND ENGINEERING
It was late summer in 1949. Harvard Professor Wassily
Leontief was carefully feeding the last of his punched cards
into the university’s Mark II computer. The cards contained
information about the U.S. economy and represented a
summary of more than 250,000 pieces of information
produced by the U.S. Bureau of Labor Statistics after two
years of intensive work. Leontief had divided the U.S.
economy into 500 “sectors,” such as the coal industry,
the automotive industry, communications, and so on.
For each sector, he had written a linear equation that
described how the sector distributed its output to the other
sectors of the economy. Because the Mark II, one of the
largest computers of its day, could not handle the resulting
system of 500 equations in 500 unknowns, Leontief had
distilled the problem into a system of 42 equations in
42 unknowns.

Programming the Mark II computer for Leontief’s
42 equations had required several months of effort, and he
was anxious to see how long the computer would take to
solve the problem. The Mark II hummed and blinked for
56 hours before finally producing a solution. We will
discuss the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize
in Economic Science, opened the door to a new era
in mathematical modeling in economics. His efforts at
Harvard in 1949 marked one of the first significant uses
of computers to analyze what was then a large-scale

mathematical model. Since that time, researchers in
many other fields have employed computers to analyze
mathematical models. Because of the massive amounts of
data involved, the models are usually linear; that is, they
are described by systems of linear equations.

The importance of linear algebra for applications has
risen in direct proportion to the increase in computing
power, with each new generation of hardware and software
triggering a demand for even greater capabilities. Computer
science is thus intricately linked with linear algebra through
the explosive growth of parallel processing and large-scale
computations.

Scientists and engineers now work on problems far
more complex than even dreamed possible a few decades
ago. Today, linear algebra has more potential value for
students in many scientific and business fields than any
other undergraduate mathematics subject! The material in
this text provides the foundation for further work in many
interesting areas. Here are a few possibilities; others will
be described later.

� Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day.
The seismic data for the equations are obtained
from underwater shock waves created by explosions
from air guns. The waves bounce off subsurface
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26 CHAPTER 1 Linear Equations in Linear Algebra

rocks and are measured by geophones attached to
mile-long cables behind the ship.

� Linear programming.Many important management
decisions today are made on the basis of linear
programming models that use hundreds of
variables. The airline industry, for instance, employs
linear programs that schedule flight crews, monitor
the locations of aircraft, or plan the varied schedules
of support services such as maintenance and
terminal operations.

� Electrical networks. Engineers use simulation
software to design electrical circuits and microchips
involving millions of transistors. Such software

relies on linear algebra techniques and systems of
linear equations.

� Artificial intelligence. Linear algebra plays a key
role in everything from scrubbing data to facial
recognition.

� Signals and signal processing. From a digital
photograph to the daily price of a stock, important
information is recorded as a signal and processed
using linear transformations.

� Machine learning. Machines (specifically comput-
ers) use linear algebra to learn about anything from
online shopping preferences to speech recognition.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them
to introduce some of the central concepts of linear algebra in a simple and concrete
setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear
equations. This algorithmwill be used for computations throughout the text. Sections 1.3
and 1.4 show how a system of linear equations is equivalent to a vector equation and to
amatrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

1.1 Systems of Linear Equations
A linear equation in the variables x1; : : : ; xn is an equation that can be written in the
form

a1x1 C a2x2 C � � � C anxn D b (1)

where b and the coefficients a1; : : : ; an are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.

The equations

4x1 � 5x2 C 2 D x1 and x2 D 2
�p

6 � x1

�
C x3

are both linear because they can be rearranged algebraically as in equation (1):

3x1 � 5x2 D �2 and 2x1 C x2 � x3 D 2
p

6

The equations

4x1 � 5x2 D x1x2 and x2 D 2
p

x1 � 6

are not linear because of the presence of x1x2 in the first equation and
p

x1 in the second.
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A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, x1; : : : ; xn. An example is

2x1 � x2 C 1:5x3 D 8

x1 � 4x3 D �7
(2)

A solution of the system is a list .s1; s2; : : : ; sn/ of numbers that makes each equation a
true statement when the values s1; : : : ; sn are substituted for x1; : : : ; xn, respectively. For
instance, .5; 6:5; 3/ is a solution of system (2) because, when these values are substituted
in (2) for x1; x2; x3, respectively, the equations simplify to 8 D 8 and �7 D �7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

x1 � 2x2 D �1

�x1 C 3x2 D 3

The graphs of these equations are lines, which we denote by `1 and `2. A pair of numbers
.x1; x2/ satisfies both equations in the system if and only if the point .x1; x2/ lies on both
`1 and `2. In the system above, the solution is the single point .3; 2/, as you can easily
verify. See Figure 1.

2

3
/

/

x2

x1

1

2

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(a) x1 � 2x2 D �1

�x1 C 2x2 D 3

(b) x1 � 2x2 D �1

�x1 C 2x2 D 1

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.

1
2

2

3

x2

x1

(a)

/
/ 1

2

3

x2

x1

(b)

/

FIGURE 2 (a) No solution. (b) Infinitely many solutions.
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A system of linear equations has

1. no solution, or

2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation
The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

(3)

with the coefficients of each variable aligned in columns, the matrix24 1 �2 1

0 2 �8

5 0 �5

35
is called the coefficient matrix (or matrix of coefficients) of the system (3), and the
matrix 24 1 �2 1 0

0 2 �8 8

5 0 �5 10

35 (4)

is called the augmented matrix of the system. (The second row here contains a zero
because the second equation could be written as 0 � x1 C 2x2 � 8x3 D 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the respective right sides of the equations.

The size of a matrix tells howmany rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 � 4 (read “3 by 4”) matrix. Ifm and
n are positive integers, an m � n matrix is a rectangular array of numbers with m rows
and n columns. (The number of rows always comes first.) Matrix notation will simplify
the calculations in the examples that follow.

Solving a Linear System
This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(that is one with the same solution set) that is easier to solve.

Roughly speaking, use the x1 term in the first equation of a system to eliminate the
x1 terms in the other equations. Then use the x2 term in the second equation to eliminate
the x2 terms in the other equations, and so on, until you finally obtain a very simple
equivalent system of equations.
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Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.

EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix nota-
tion, and the results are placed side by side for comparison:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

24 1 �2 1 0

0 2 �8 8

5 0 �5 10

35
Keep x1 in the first equation and eliminate it from the other equations. To do so, add �5

times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

�5 � Œequation 1�

C Œequation 3�

Œnew equation 3�

�5x1 C 10x2 � 5x3 D 0

5x1 � 5x3 D 10

10x2 � 10x3 D 10

The result of this calculation is written in place of the original third equation:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

10x2 � 10x3 D 10

24 1 �2 1 0

0 2 �8 8

0 10 �10 10

35
Now, multiply equation 2 by 1

2
in order to obtain 1 as the coefficient for x2. (This

calculation will simplify the arithmetic in the next step.)

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

10x2 � 10x3 D 10

24 1 �2 1 0

0 1 �4 4

0 10 �10 10

35
Use the x2 in equation 2 to eliminate the 10x2 in equation 3. The “mental’’ computation
is

�10 � Œequation 2�

C Œequation 3�

Œnew equation 3�

�10x2 C 40x3 D �40

10x2 � 10x3 D 10

30x3 D �30

The result of this calculation is written in place of the previous third equation (row):

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

30x3 D �30

24 1 �2 1 0

0 1 �4 4

0 0 30 �30

35
Now, multiply equation 3 by 1

30
in order to obtain 1 as the coefficient for x3. (This

calculation will simplify the arithmetic in the next step.)

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
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The new system has a triangular form (the intuitive term triangular will be replaced by
a precise term in the next section):

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
Eventually, you want to eliminate the �2x2 term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the �4x3 and Cx3 terms in equations 2
and 1. The two “mental” calculations are

4 � Œequation 3�

C Œequation 2�

Œnew equation 2�

4x3 D �4

x2 � 4x3 D 4

x2 D 0

�1 � Œequation 3�

C Œequation 1�

Œnew equation 1�

� x3 D 1

x1 � 2x2 C x3 D 0

x1 � 2x2 D 1

It is convenient to combine the results of these two operations:

x1 � 2x2 D 1

x2 D 0

x3 D �1

24 1 �2 0 1

0 1 0 0

0 0 1 �1

35
Now, having cleaned out the column above the x3 in equation 3, move back to the x2 in
equation 2 and use it to eliminate the �2x2 above it. Because of the previous work with
x3, there is now no arithmetic involving x3 terms. Add 2 times equation 2 to equation 1
and obtain the system:

x1 D 1

x2 D 0

x3 D �1

24 1 0 0 1

0 1 0 0

0 0 1 �1

35
The work is essentially done. It shows that the only solution of the original system is

x2

x3

(1, 0, 21)

x1

Each of the original equations
determines a plane in
three-dimensional space. The point
.1; 0;�1/ lies in all three planes.

.1; 0;�1/. However, since there are so many calculations involved, it is a good practice
to check the work. To verify that .1; 0;�1/ is a solution, substitute these values into the
left side of the original system, and compute:

1.1/ � 2.0/ C 1.�1/ D 1 � 0 � 1 D 0

2.0/ � 8.�1/ D 0 C 8 D 8

5.1/ � 5.�1/ D 5 C 5 D 10

The results agree with the right side of the original system, so .1; 0;�1/ is a solution of
the system.

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.1

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

1A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there is
a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a
row is scaled by a nonzero constant c, then multiplying the new row by 1=c produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that c times row 1 is added to row 2 to produce a new row 2.
To “reverse” this operation, add �c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 39–42 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row operations.
By considering each type of row operation, you can see that any solution of the original
system remains a solution of the new system. Conversely, since the original system can
be produced via row operations on the new system, each solution of the new system is
also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy
to perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions
Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on
the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10
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SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x2 and hence could determine x1 from equation 1. So a solution exists;
the system is consistent. (In fact, x2 is uniquely determined by equation 2 since x3 has
only one possible value, and x1 is therefore uniquely determined by equation 1. So the
solution is unique.)

EXAMPLE 3 Determine if the following system is consistent:

x2 � 4x3 D 8

2x1 � 3x2 C 2x3 D 1

4x1 � 8x2 C 12x3 D 1

(5)

SOLUTION The augmented matrix is24 0 1 �4 8

2 �3 2 1

4 �8 12 1

35
To obtain an x1 in the first equation, interchange rows 1 and 2:24 2 �3 2 1

0 1 �4 8

4 �8 12 1

35
To eliminate the 4x1 term in the third equation, add �2 times row 1 to row 3:24 2 �3 2 1

0 1 �4 8

0 �2 8 �1

35 (6)

Next, use the x2 term in the second equation to eliminate the �2x2 term from the third
equation. Add 2 times row 2 to row 3:24 2 �3 2 1

0 1 �4 8

0 0 0 15

35 (7)

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:

2x1 � 3x2 C 2x3 D 1

x2 � 4x3 D 8

0 D 15

(8)

The equation 0 D 15 is a short form of 0x1 C 0x2 C 0x3 D 15. This system in trian-
gular form obviously has a built-in contradiction. There are no values of x1; x2; x3 that
satisfy (8) because the equation 0 D 15 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (it has no solution).

x2
x1

x3

The system is inconsistent because
there is no point that lies on all
three planes.

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.



1.1 Systems of Linear Equations 33

Reasonable Answers

Once you have one or more solutions to a system of equations, remember to check
your answer by substituting the solution you found back into the original equation.
For example, if you found .2; 1;�1/ was a solution to the system of equations

x1 � 2x2 C x3 D 2

x1 � 2x3 D �2

x2 C x3 D 3

you could substitute your solution into the original equations to get

2 � 2.1/ C .�1/ D �1 ¤ 2

2 � 2.�1/ D 4 ¤ �2

1 C .�1/ D 0 ¤ 3

It is now clear that there must have been an error in your original calculations. If
upon rechecking your arithmetic, you find the answer .2; 1; 2/, you can see that

2 � 2.1/ C .2/ D 2 D 2

2 � 2.2/ D �2 D �2

1 C 2 D 3 D 3

and you can now be confident you have a correct solution to the given system of
equations.

Numerical Note

In real-world problems, systems of linear equations are solved by a computer.
For a square coefficient matrix, computer programs nearly always use the elim-
ination algorithm given here and in Section 1.2, modified slightly for improved
accuracy.

The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals˙:d1 � � � dp � 10r , where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated) to
the number of digits stored. “Roundoff error” is also introduced when a number
such as 1=3 is entered into the computer, since its decimal representation must
be approximated by a finite number of digits. Fortunately, inaccuracies in floating
point arithmetic seldom cause problems. The numerical notes in this book will
occasionally warn of issues that you may need to consider later in your career.

Practice Problems

Throughout the text, practice problems should be attempted before working the exer-
cises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the
system in order to solve it. [More than one answer is possible in (a).]
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Practice Problems (Continued)

a. x1 C 4x2 � 2x3 C 8x4 D 12

x2 � 7x3 C 2x4 D �4

5x3 � x4 D 7

x3 C 3x4 D �5

b. x1 � 3x2 C 5x3 � 2x4 D 0

x2 C 8x3 D �4

2x3 D 3

x4 D 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.24 1 5 2 �6

0 4 �7 2

0 0 5 0

35
3. Is .3; 4;�2/ a solution of the following system?

5x1 � x2 C 2x3 D 7

�2x1 C 6x2 C 9x3 D 0

�7x1 C 5x2 � 3x3 D �7

4. For what values of h and k is the following system consistent?

2x1 � x2 D h

�6x1 C 3x2 D k

1.1 Exercises
Solve each system in Exercises 1–4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. x1 C 5x2 D 7

�2x1 � 7x2 D �5

2. 2x1 C 4x2 D �4

5x1 C 7x2 D 11

3. Find the point .x1; x2/ that lies on the line x1 C 5x2 D 7 and
on the line x1 � 2x2 D �2. See the figure.

x2

x1

x1 1 5x2 5 7
x1 2 2x2 5 22

4. Find the point of intersection of the lines x1 � 5x2 D 1 and
3x1 � 7x2 D 5.

Consider eachmatrix in Exercises 5 and 6 as the augmentedmatrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

5.

2664
1 3 �4 0 9

1 1 5 0 �8

0 0 1 0 7

0 0 0 1 �6

3775

6.

2664
1 �6 4 0 �1

0 2 �7 0 4

0 0 1 2 �3

0 0 3 1 6

3775
In Exercises 7–10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

7.

2664
1 7 3 �4

0 1 �1 3

0 0 0 1

0 0 1 �2

3775 8.

24 1 1 5 0

0 1 9 0

0 0 7 �7

35

9.

2664
1 �1 0 0 �4

0 1 �3 0 �7

0 0 1 �3 �1

0 0 0 0 4

3775
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10.

2664
1 �2 0 3 0

0 1 0 �4 0

0 0 1 0 0

0 0 0 1 0

3775
Solve the systems in Exercises 11–14.

11. x2 C 4x3 D �4

x1 C 3x2 C 3x3 D �2

3x1 C 7x2 C 5x3 D 6

12. x1 � 3x2 C 4x3 D �4

3x1 � 7x2 C 7x3 D �8

�4x1 C 6x2 C 2x3 D 4

13. x1 � 3x3 D 8

2x1 C 2x2 C 9x3 D 7

x2 C 5x3 D �2

14. x1 � 3x2 D 5

�x1 C x2 C 5x3 D 2

x2 C x3 D 0

15. Verify that the solution you found to Exercise 11 is correct
by substituting the values you obtained back into the original
equations.

16. Verify that the solution you found to Exercise 12 is correct
by substituting the values you obtained back into the original
equations.

17. Verify that the solution you found to Exercise 13 is correct
by substituting the values you obtained back into the original
equations.

18. Verify that the solution you found to Exercise 14 is correct
by substituting the values you obtained back into the original
equations.

Determine if the systems in Exercises 19 and 20 are consistent. Do
not completely solve the systems.

19. x1 C 3x3 D 2

x2 � 3x4 D 3

� 2x2 C 3x3 C 2x4 D 1

3x1 C 7x4 D �5

20. x1 � 2x4 D �3

2x2 C 2x3 D 0

x3 C 3x4 D 1

�2x1 C 3x2 C 2x3 C x4 D 5

21. Do the three lines x1 � 4x2 D 1, 2x1 � x2 D �3, and
�x1 � 3x2 D 4 have a common point of intersection?
Explain.

22. Do the three planes x1 C 2x2 C x3 D 4, x2 � x3 D 1, and
x1 C 3x2 D 0 have at least one common point of intersec-
tion? Explain.

In Exercises 23–26, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

23.
�

1 h 4

3 6 8

�
24.

�
1 h �3

�2 4 6

�
25.

�
1 3 �2

�4 h 8

�
26.

�
3 �4 h

�6 8 9

�
In Exercises 27–34, key statements from this section are either
quoted directly, restated slightly (but still true), or altered in some
way that makes them false in some cases. Mark each statement
True or False, and justify your answer. (If true, give the approx-
imate location where a similar statement appears, or refer to a
definition or theorem. If false, give the location of a statement that
has been quoted or used incorrectly, or cite an example that shows
the statement is not true in all cases.) Similar true/false questions
will appear in many sections of the text and will be flagged with a
(T/F) at the beginning of the question.

27. (T/F) Every elementary row operation is reversible.

28. (T/F) Elementary row operations on an augmented matrix
never change the solution set of the associated linear system.

29. (T/F) A 5 � 6 matrix has six rows.

30. (T/F) Two matrices are row equivalent if they have the same
number of rows.

31. (T/F) The solution set of a linear system involving variables
x1; : : : ; xn is a list of numbers .s1; : : : ; sn/ that makes each
equation in the system a true statement when the values
s1; : : : ; sn are substituted for x1; : : : ; xn, respectively.

32. (T/F) An inconsistent system has more than one solution.

33. (T/F) Two fundamental questions about a linear system in-
volve existence and uniqueness.

34. (T/F) Two linear systems are equivalent if they have the same
solution set.

35. Find an equation involving g, h, and k that makes this aug-
mented matrix correspond to a consistent system:24 1 �3 5 g

0 2 �3 h

�3 5 �9 k

35
36. Construct three different augmented matrices for linear sys-

tems whose solution set is x1 D �2, x2 D 1, x3 D 0.

37. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients c and d?
Justify your answer.

x1 C 5x2 D f

cx1 C dx2 D g
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38. Suppose a, b, c, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, c, and d?
Justify your answer.

ax1 C bx2 D f

cx1 C dx2 D g

In Exercises 39–42, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

39.

24 0 �2 5

1 4 �7

3 �1 6

35 ;

24 1 4 �7

0 �2 5

3 �1 6

35
40.

24 1 3 �4

0 �2 6

0 �5 9

35 ;

24 1 3 �4

0 1 �3

0 �5 9

35
41.

24 1 �3 2 0

0 4 �5 6

5 �7 8 �9

35 ;

24 1 �3 2 0

0 4 �5 6

0 8 �2 �9

35
42.

24 1 2 �5 0

0 1 �3 �2

0 �3 9 5

35 ;

24 1 2 �5 0

0 1 �3 �2

0 0 0 �1

35
An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the

temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of ametal beam, with
negligible heat flow in the direction perpendicular to the plate. Let
T1; : : : ; T4 denote the temperatures at the four interior nodes of
the mesh in the figure. The temperature at a node is approximately
equal to the average of the four nearest nodes—to the left, above,
to the right, and below.2 For instance,

T1 D .10C 20C T2 C T4/=4; or 4T1 � T2 � T4 D 30

108

108

408

408

208 208

308 308

1 2

4 3

43. Write a system of four equations whose solution gives esti-
mates for the temperatures T1; : : : ; T4.

44. Solve the system of equations from Exercise 43. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

2 See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145–149.

Solutions to Practice Problems

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1=5. Or, replace equation 4 by
its sum with �1=5 times row 3. (In any case, do not use the x2 in equation 2 to
eliminate the 4x2 in equation 1. Wait until a triangular form has been reached
and the x3 terms and x4 terms have been eliminated from the first two equations.)

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
step now is to add 2 times equation 4 to equation 1. (After that, move to equation
3, multiply it by 1=2, and then use the equation to eliminate the x3 terms
above it.)

2. The system corresponding to the augmented matrix is

x1 C 5x2 C 2x3 D �6

4x2 � 7x3 D 2

5x3 D 0

The third equation makes x3 D 0, which is certainly an allowable value for x3. After
eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique
values for x2 and x1. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.
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3. It is easy to check if a specific list of numbers is a solution. Set x1 D 3, x2 D 4, and
x3 D �2, and find that

5.3/ � .4/ C 2.�2/ D 15 � 4 � 4 D 7

�2.3/ C 6.4/ C 9.�2/ D �6 C 24 � 18 D 0

�7.3/ C 5.4/ � 3.�2/ D �21 C 20 C 6 D 5

Although the first two equations are satisfied, the third is not, so .3; 4;�2/ is not a
solution of the system. Notice the use of parentheses whenmaking the substitutions.
They are strongly recommended as a guard against arithmetic errors.

x3

x2

x1

(3, 4, 22)

Since .3; 4;�2/ satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since .3; 4;�2/ does not
satisfy all three equations, it does
not lie on all three planes.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2x1 � x2 D h

0 D k C 3h

If k C 3h is nonzero, the system has no solution. The system is consistent for any
values of h and k that make k C 3h D 0.

1.2 Row Reduction and Echelon Forms
This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.1 By using only the first part of the
algorithm, wewill be able to answer the fundamental existence and uniqueness questions
posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an aug-
mented matrix for a linear system. So the first part of this section concerns an arbitrary
rectangular matrix and begins by introducing two important classes of matrices that
include the “triangular” matrices of Section 1.1. In the definitions that follow, a nonzero
row or column in a matrix means a row or column that contains at least one nonzero
entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).

DEFINITION A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

1 The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination
method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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An echelonmatrix (respectively, reduced echelonmatrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as24 2 �3 2 1

0 1 �4 8

0 0 0 5=2

35 and

24 1 0 0 29

0 1 0 16

0 0 1 3

35
are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries ( )
may have any nonzero value; the starred entries (�) may have any value (including zero).

2664
� � �

0 � �

0 0 0 0

0 0 0 0

3775;

266664
0 � � � � � � � �

0 0 0 � � � � � �

0 0 0 0 � � � � �

0 0 0 0 0 � � � �

0 0 0 0 0 0 0 0 �

377775
The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.2664

1 0 � �

0 1 � �

0 0 0 0

0 0 0 0

3775;

266664
0 1 � 0 0 0 � � 0 �

0 0 0 1 0 0 � � 0 �

0 0 0 0 1 0 � � 0 �

0 0 0 0 0 1 � � 0 �

0 0 0 0 0 0 0 0 1 �

377775

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique. The
following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.

If a matrix A is row equivalent to an echelon matrix U , we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities use
the abbreviation RREF for reduced (row) echelon form. Some use REF for (row) echelon
form.]

Pivot Positions
When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
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in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.

DEFINITION A pivot position in a matrix A is a location in A that corresponds to a leading 1 in
the reduced echelon form of A. A pivot column is a column of A that contains a
pivot position.

In Example 1, the squares ( ) identify the pivot positions. Many fundamental con-
cepts in the first four chapters will be connected in one way or another with pivot posi-
tions in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot
columns of A.

A D

2664
0 �3 �6 4 9

�1 �2 �1 3 1

�2 �3 0 3 �1

1 4 5 �9 �7

3775
SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost
nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed in this
position. A good choice is to interchange rows 1 and 4 (because the mental computations
in the next step will not involve fractions).

2664
1 �

Pivot

4 5 �9 �7

�1 �2 �1 3 1

�2 �3 0 3 �1

0

6 Pivot column

�3 �6 4 9

3775

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left as
possible—namely in the second column. Choose the 2 in this position as the next pivot.2664

1 4 5 �9 �7

0 2 �

Pivot

4 �6 �6

0 5 10 �15 �15

0 �3

6 Next pivot column

�6 4 9

3775 (1)

Add �5=2 times row 2 to row 3, and add 3=2 times row 2 to row 4.2664
1 4 5 �9 �7

0 2 4 �6 �6

0 0 0 0 0

0 0 0 �5 0

3775 (2)

The matrix in (2) is different from any encountered in Section 1.1. There is no way to
create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would
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destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.

2664
1 4 5 �9 �7

0 2 4 �6 �6

0 0 0 �5�

Pivot

0

0

6 6 6 Pivot columns

0 0 0 0

3775 General form:

2664
� � � �

0 � � �

0 0 0 �

0 0 0 0 0

3775

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot
columns.

A D

2664
0�

�
�

Pivot positions

�3 �6 4 9

�1 �2 �1 3 1

�2 �3 0 3 �1

1

6 6 6 Pivot columns

4 5 �9 �7

3775 (3)

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and �5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm
The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form.We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix
first into echelon form and then into reduced echelon form:24 0 3 �6 6 4 �5

3 �7 8 �5 8 9

3 �9 12 �9 6 15

35
SOLUTION

Step 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

24 0 3 �6 6 4 �5

3 �7 8 �5 8 9

3

6 Pivot column

�9 12 �9 6 15

35
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Step 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

24 3�
Pivot

�9 12 �9 6 15

3 �7 8 �5 8 9

0 3 �6 6 4 �5

35

Step 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add �1 times row 1 to row 2.

24 3�
Pivot

�9 12 �9 6 15

0 2 �4 4 2 �6

0 3 �6 6 4 �5

35

Step 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1–3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
select as a pivot the “top” entry in that column.

24 3 �9 12 �9 6 15

0 2 �

Pivot

�4 4 2 �6

0 3

6 New pivot column

�6 6 4 �5

35

For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add �3=2 times the “top” row to the row below. This produces

24 3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 4

35
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When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:24 3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 �

Pivot

4

35
Steps 1–3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

Step 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3 to rows 2 and 1.24 3 �9 12 �9 0 �9

0 2 �4 4 0 �14

0 0 0 0 1 4

35 � Row 1C .�6/ � row 3
� Row 2C .�2/ � row 3

The next pivot is in row 2. Scale this row, dividing by the pivot.24 3 �9 12 �9 0 �9

0 1 �2 2 0 �7

0 0 0 0 1 4

35 � Row scaled by 1
2

Create a zero in column 2 by adding 9 times row 2 to row 1.24 3 0 �6 9 0 �72

0 1 �2 2 0 �7

0 0 0 0 1 4

35 � Row 1C .9/ � row 2

Finally, scale row 1, dividing by the pivot, 3.24 1 0 �2 3 0 �24

0 1 �2 2 0 �7

0 0 0 0 1 4

35 � Row scaled by 1
3

This is the reduced echelon form of the original matrix.

The combination of steps 1–4 is called the forward phase of the row reduction algo-
rithm. Step 5, which produces the unique reduced echelon form, is called the backward
phase.

Numerical Note

In step 2 on page 41, a computer program usually selects as a pivot the entry in a
column having the largest absolute value. This strategy, called partial pivoting,
is used because it reduces roundoff errors in the calculations.
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Solutions of Linear Systems
The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form24 1 0 �5 1

0 1 1 4

0 0 0 0

35
There are three variables because the augmented matrix has four columns. The

associated system of equations is

x1 � 5x3 D 1

x2 C x3 D 4

0 D 0

(4)

The variables x1 and x2 corresponding to pivot columns in the matrix are called basic
variables.2 The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described
explicitly by solving the reduced system of equations for the basic variables in terms
of the free variables. This operation is possible because the reduced echelon form places
each basic variable in one and only one equation. In (4), solve the first equation for x1

and the second for x2. (Ignore the third equation; it offers no restriction on the variables.)8̂<̂
:

x1 D 1C 5x3

x2 D 4 � x3

x3 is free

(5)

The statement “x3 is free” means that you are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x1 and x2. For instance, when
x3 D 0, the solution is .1; 4; 0/; when x3 D 1, the solution is .6; 3; 1/. Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

EXAMPLE 4 Find the general solution of the linear systemwhose augmentedmatrix
has been reduced to 24 1 6 2 �5 �2 �4

0 0 2 �8 �1 3

0 0 0 0 1 7

35
SOLUTION The matrix is in echelon form, but we want the reduced echelon form
before solving for the basic variables. The row reduction is completed next. The symbol
� before a matrix indicates that the matrix is row equivalent to the preceding matrix.24 1 6 2 �5 �2 �4

0 0 2 �8 �1 3

0 0 0 0 1 7

35 � 24 1 6 2 �5 0 10

0 0 2 �8 0 10

0 0 0 0 1 7

35
�

24 1 6 2 �5 0 10

0 0 1 �4 0 5

0 0 0 0 1 7

35 � 24 1 6 0 3 0 0

0 0 1 �4 0 5

0 0 0 0 1 7

35
2 Some texts use the term leading variables because they correspond to the columns containing leading
entries.
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There are five variables because the augmented matrix has six columns. The associated
system now is

x1 C 6x2 C 3x4 D 0

x3 � 4x4 D 5

x5 D 7

(6)

The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x1, x3, and x5.
The remaining variables, x2 and x4, must be free. Solve for the basic variables to obtain
the general solution: 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

x1 D �6x2 � 3x4

x2 is free

x3 D 5C 4x4

x4 is free

x5 D 7

(7)

Note that the value of x5 is already fixed by the third equation in system (6).

Parametric Descriptions of Solution Sets
The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

x1 C 5x2 D 21

x2 C x3 D 4

We could treat x2 as a parameter and solve for x1 and x3 in terms of x2, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution
Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

x1 � 7x2 C 2x3 � 5x4 C 8x5 D 10

x2 � 3x3 C 3x4 C x5 D �5

x4 � x5 D 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x2,
and then substitute the expressions for x2 and x4 into equation 1 and solve for x1.

Our matrix format for the backward phase of row reduction, which produces the re-
duced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors
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during hand computations. The best strategy is to use only the reduced echelon form
to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

Numerical Note

In general, the forward phase of row reduction takes much longer than the
backward phase. An algorithm for solving a system is usually measured in flops
(or floating point operations). A flop is one arithmetic operation (C;�;�; = )
on two real floating point numbers.3 For an n � .nC 1/ matrix, the reduction
to echelon form can take 2n3=3C n2=2 � 7n=6 flops (which is approximately
2n3=3 flops when n is moderately large—say, n � 30/. In contrast, further
reduction to reduced echelon form needs at most n2 flops.

Existence and Uniqueness Questions
Although a nonreduced echelon form is a poor tool for solving a system, this form is
just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3x2 � 6x3 C 6x4 C 4x5 D �5

3x1 � 7x2 C 8x3 � 5x4 C 8x5 D 9

3x1 � 9x2 C 12x3 � 9x4 C 6x5 D 15

SOLUTION The augmented matrix of this system was row reduced in Example 3 to24 3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 4

35 (8)

The basic variables are x1, x2, and x5; the free variables are x3 and x4. There is no
equation such as 0 D 1 that would indicate an inconsistent system, so we could use back-
substitution to find a solution. But the existence of a solution is already clear in (8). Also,
the solution is not unique because there are free variables. Each different choice of x3

and x4 determines a different solution. Thus the system has infinitely many solutions.

When a system is in echelon form and contains no equation of the form 0 D b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

3 Traditionally, a flop was only a multiplication or division because addition and subtraction took much less
time and could be ignored. The definition of flop given here is preferred now, as a result of advances in
computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore: The Johns
Hopkins Press, 1989), pp. 19–20.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

Œ 0 � � � 0 b � with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM

1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

Reasonable Answers

Remember that each augmented matrix corresponds to a system of equations. If

you row reduce the augmented matrix

24 1 �2 1 2

1 �1 2 5

0 1 1 3

35 to get the matrix24 1 0 3 8

0 1 1 3

0 0 0 0

35, the solution set is
8̂<̂
:

x1 D 8 � 3x3

x2 D 3 � x3

x3 is free

The system of equations corresponding to the original augmented matrix is

x1 � 2x2 C x3 D 2

x1 � x2 C 2x3 D 5

x2 C x3 D 3

You can now check whether your solution is correct by substituting it into the
original equations. Notice that you can just leave the free variables in the solution.
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.8 � 3x3/ � 2.3 � x3/ C .x3/ D 8 � 3x3 � 6C 2x3 C x3 D 2

.8 � 3x3/ � .3 � x3/ C 2.x3/ D 8 � 3x3 � 3C x3 C 2x3 D 5

.3 � x3/ C .x3/ D 3 � x3 C x3 D 3

You can now be confident you have a correct solution to the system of equations
represented by the augmented matrix.

Practice Problems

1. Find the general solution of the linear system whose augmented matrix is�
1 �3 �5 0

0 1 �1 �1

�
2. Find the general solution of the system

x1 � 2x2 � x3 C 3x4 D 0

�2x1 C 4x2 C 5x3 � 5x4 D 3

3x1 � 6x2 � 6x3 C 8x4 D 2

3. Suppose a 4 � 7 coefficient matrix for a system of equations has 4 pivots. Is the
system consistent? If the system is consistent, how many solutions are there?

1.2 Exercises
In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

1. a.

24 1 0 0 0

0 1 0 0

0 0 1 1

35 b.

24 1 0 1 0

0 0 1 0

0 0 0 1

35

c.

2664
1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

3775 d.

2664
1 1 0 1 1

0 2 0 2 2

0 0 0 3 3

0 0 0 0 4

3775

2. a.

24 1 1 0 1

0 0 1 1

0 0 0 0

35 b.

24 1 0 0 0

0 1 0 0

0 0 1 1

35

c.

2664
1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

3775 d.

2664
0 1 1 1 1

0 0 2 2 2

0 0 0 0 3

0 0 0 0 0

3775
Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

3.

24 1 2 3 4

4 5 6 7

6 7 8 9

35 4.

24 1 3 5 7

3 5 7 9

5 7 9 1

35
5. Describe the possible echelon forms of a nonzero 2 � 2

matrix. Use the symbols , �, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 � 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7–14.

7.
�

1 2 3 4

4 8 9 4

�
8.

�
1 4 0 7

2 7 0 11

�
9.

�
0 1 �6 5

1 �2 7 �4

�
10.

�
1 �2 �1 3

3 �6 �2 2

�

11.

24 3 �4 2 0

�9 12 �6 0

�6 8 �4 0

35 12.

24 1 �7 0 6 5

0 0 1 �2 �3

�1 7 �4 2 7

35

13.

2664
1 �3 0 �1 0 �2

0 1 0 0 �4 1

0 0 0 1 9 �4

0 0 0 0 0 0

3775
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14.

2664
1 2 �5 �4 0 �5

0 1 �6 �4 0 2

0 0 0 0 1 0

0 0 0 0 0 0

3775
You may find it helpful to review the information in the Reason-
able Answers box from this section before answering Exercises
15–18.

15. Write down the equations corresponding to the augmented
matrix in Exercise 9 and verify your answer to Exercise 9 is
correct by substituting the solutions you obtained back into
the original equations.

16. Write down the equations corresponding to the augmented
matrix in Exercise 10 and verify your answer to Exercise 10
is correct by substituting the solutions you obtained back into
the original equations.

17. Write down the equations corresponding to the augmented
matrix in Exercise 11 and verify your answer to Exercise 11
is correct by substituting the solutions you obtained back into
the original equations.

18. Write down the equations corresponding to the augmented
matrix in Exercise 12 and verify your answer to Exercise 12
is correct by substituting the solutions you obtained back into
the original equations.

Exercises 19 and 20 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

19. a.

24 � � �

0 � �

0 0 0

35
b.

24 0 � � �

0 0 � �

0 0 0 0

35
20. a.

24 � �

0 �

0 0 0

35
b.

24 � � � �

0 0 � �

0 0 0 �

35
In Exercises 21 and 22, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

21.
�

2 3 h

4 6 7

�
22.

�
1 �4 �3

6 h �9

�
In Exercises 23 and 24, choose h and k such that the system has
(a) no solution, (b) a unique solution, and (c) many solutions. Give
separate answers for each part.

23. x1 C hx2 D 2

4x1 C 8x2 D k

24. x1 C 4x2 D 5

2x1 C hx2 D k

In Exercises 25–34, mark each statement True or False (T/F).
Justify each answer.4

25. (T/F) In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different
sequences of row operations.

26. (T/F) The echelon form of a matrix is unique.

27. (T/F)The row reduction algorithm applies only to augmented
matrices for a linear system.

28. (T/F) The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

29. (T/F) A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

30. (T/F)Reducing amatrix to echelon form is called the forward
phase of the row reduction process.

31. (T/F) Finding a parametric description of the solution set of
a linear system is the same as solving the system.

32. (T/F)Whenever a system has free variables, the solution set
contains a unique solution.

33. (T/F) If one row in an echelon form of an augmented matrix
is Œ0 0 0 0 5�, then the associated linear system is
inconsistent.

34. (T/F)A general solution of a system is an explicit description
of all solutions of the system.

35. Suppose a 3 � 5 coefficientmatrix for a system has three pivot
columns. Is the system consistent? Why or why not?

36. Suppose a system of linear equations has a 3 � 5 augmented
matrix whose fifth column is a pivot column. Is the system
consistent? Why (or why not)?

37. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

38. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot in each column.
Explain why the system has a unique solution.

39. Restate the last sentence in Theorem 2 using the concept
of pivot columns: “If a linear system is consistent, then the
solution is unique if and only if .”

40. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

41. A system of linear equations with fewer equations than un-
knowns is sometimes called an underdetermined system.

4 True/false questions of this type will appear in many sections. Methods
for justifying your answers were described before the True or False
exercises in Section 1.1.
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Suppose that such a system happens to be consistent. Explain
why there must be an infinite number of solutions.

42. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

43. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

44. Suppose an n � .nC 1/ matrix is row reduced to reduced
echelon form. Approximately what fraction of the total num-
ber of operations (flops) is involved in the backward phase of
the reduction when n D 30? when n D 300?

Suppose experimental data are represented by a set of points
in the plane. An interpolating polynomial for the data is a
polynomial whose graph passes through every point. In scientific
work, such a polynomial can be used, for example, to estimate
values between the known data points. Another use is to create
curves for graphical images on a computer screen. One method for
finding an interpolating polynomial is to solve a system of linear
equations.

45. Find the interpolating polynomial p.t/ D a0 C a1t C a2t2

for the data .1; 11/, .2; 16/, .3; 19/. That is, find a0, a1, and
a2 such that

a0 C a1.1/ C a2.1/2 D 11

a0 C a1.2/ C a2.2/2 D 16

a0 C a1.3/ C a2.3/2 D 19

T 46. In a wind tunnel experiment, the force on a projectile due to
air resistance was measured at different velocities:

Velocity (100 ft/sec) 0 2 4 6 8 10
Force (100 lb) 0 2.90 14.8 39.6 74.3 119

Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is travel-
ing at 750 ft/sec. Usep.t/ D a0 C a1t C a2t2 C a3t3 C a4t4

C a5t5.What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)5

5 Exercises marked with the symbol T are designed to be worked
with the aid of a “ Matrix program” (a computer program, such as
MATLAB, Maple, Mathematica, MathCad, Octave, or Derive, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

Solutions to Practice Problems

1. The reduced echelon form of the augmented matrix and the corresponding system
x3

x1
x2

The general solution of the system
of equations is the line of
intersection of the two planes.

are �
1 0 �8 �3

0 1 �1 �1

�
and

x1 � 8x3 D �3

x2 � x3 D �1

The basic variables are x1 and x2, and the general solution is8̂<̂
:

x1 D �3C 8x3

x2 D �1C x3

x3 is free

Note: It is essential that the general solution describe each variable, with any pa-
rameters clearly identified. The following statement does not describe the solution:8̂<̂

:
x1 D �3C 8x3

x2 D �1C x3

x3 D 1C x2 Incorrect solution

This description implies that x2 and x3 are both free, which certainly is not the case.

2. Row reduce the system’s augmented matrix:24 1 �2 �1 3 0

�2 4 5 �5 3

3 �6 �6 8 2

35 � 24 1 �2 �1 3 0

0 0 3 1 3

0 0 �3 �1 2

35
�

24 1 �2 �1 3 0

0 0 3 1 3

0 0 0 0 5

35
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Solutions to Practice Problems (Continued)

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

3. Since the coefficient matrix has four pivots, there is a pivot in every row of the
coefficient matrix. This means that when the coefficient matrix is row reduced, it
will not have a row of zeros, thus the corresponding row reduced augmented matrix
can never have a row of the form [0 0 � � � 0 b], where b is a nonzero number. By
Theorem 2, the system is consistent. Moreover, since there are seven columns in
the coefficient matrix and only four pivot columns, there will be three free variables
resulting in infinitely many solutions.

1.3 Vector Equations
Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R2

Amatrix with only one column is called a column vector or simply a vector. Examples
of vectors with two entries are

u D
�

3

�1

�
; v D

�
:2

:3

�
; w D

�
w1

w2

�
where w1 and w2 are any real numbers. The set of all vectors with two entries is denoted
by R2 (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.1

Two vectors inR2 are equal if and only if their corresponding entries are equal. Thus�
4

7

�
and

�
7

4

�
are not equal, because vectors in R2 are ordered pairs of real numbers.

Given two vectors u and v in R2, their sum is the vector uC v obtained by adding
corresponding entries of u and v. For example,�

1

�2

�
C

�
2

5

�
D

�
1C 2

�2C 5

�
D

�
3

3

�
Given a vector u and a real number c, the scalar multiple of u by c is the vector cu
obtained by multiplying each entry in u by c. For instance,

if u D
�

3

�1

�
and c D 5; then cu D 5

�
3

�1

�
D

�
15

�5

�
1Most of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1–5, and in most of the rest of the text, remain valid if the entries are complex numbers.
Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.
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The number c in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Given u D
�

1

�2

�
and v D

�
2

�5

�
, find 4u, .�3/v, and 4uC .�3/v.

SOLUTION

4u D
�

4

�8

�
; .�3/v D

�
�6

15

�
and

4uC .�3/v D
�

4

�8

�
C

�
�6

15

�
D

�
�2

7

�
Sometimes, for convenience (and also to save space), this text may write a column

vector such as
�

3

�1

�
in the form .3;�1/. In this case, the parentheses and the comma

distinguish the vector .3;�1/ from the 1 � 2 row matrix
�

3 �1
�
, written with brackets

and no comma. Thus �
3

�1

�
¤
�

3 �1
�

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of R2

Consider a rectangular coordinate system in the plane. Because each point in the plane
is determined by an ordered pair of numbers, we can identify a geometric point .a; b/

with the column vector
�

a

b

�
. So we may regard R2 as the set of all points in the plane.

See Figure 1.

x2

x1

(2, 2)

(3, 21)(22, 21)

FIGURE 1 Vectors as points.

x2

x1

(2, 2)

(3, 21)(22, 21)

FIGURE 2 Vectors with arrows.

The geometric visualization of a vector such as
�

3

�1

�
is often aided by including an

arrow (directed line segment) from the origin .0; 0/ to the point .3;�1/, as in Figure 2.
In this case, the individual points along the arrow itself have no special significance.2

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

2 In physics, arrows can represent forces and usually are free to move about in space. This interpretation of
vectors will be discussed in Section 4.1.
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Parallelogram Rule for Addition

If u and v in R2 are represented as points in the plane, then uC v corresponds to
the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Figure 3.

x2

x1

u

v

u 1 v

0

FIGURE 3 The parallelogram rule.

EXAMPLE 2 The vectors u D
�

2

2

�
, v D

�
�6

1

�
, and uC v D

�
�4

3

�
are displayed

in Figure 4.
x2

x1

u

v

u 1 v

226

3

FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, .0; 0/.

EXAMPLE 3 Let u D
�

3

�1

�
. Display the vectors u, 2u, and � 2

3
u on a graph.

SOLUTION See Figure 5, where u, 2u D
�

6

�2

�
, and � 2

3
u D

�
�2

2=3

�
are displayed.

The arrow for 2u is twice as long as the arrow for u, and the arrows point in the same
direction. The arrow for � 2

3
u is two-thirds the length of the arrow for u, and the arrows

point in opposite directions. In general, the length of the arrow for cu is jcj times the
length of the arrow for u. [Recall that the length of the line segment from .0; 0/ to .a; b/

is
p

a2 C b2.

x2

x1

u

x2

x1

u

0u

2u

u

The set of all multiples of uTypical multiples of u

2
3
–2

FIGURE 5
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Vectors in R3

Vectors inR3 are 3 � 1 columnmatrices with three entries. They are represented geomet-
rically by points in a three-dimensional coordinate space, with arrows from the origin

2a

a

x2x1

x3

FIGURE 6

Scalar multiples.

sometimes included for visual clarity. The vectors a D

24 2

3

4

35 and 2a are displayed in

Figure 6.

Vectors in Rn

If n is a positive integer, Rn (read “r-n”) denotes the collection of all lists (or ordered
n-tuples) of n real numbers, usually written as n � 1 column matrices, such as

u D

26664
u1

u2

:::

un

37775
The vector whose entries are all zero is called the zero vector and is denoted by 0.

(The number of entries in 0 will be clear from the context.)
Equality of vectors in Rn and the operations of scalar multiplication and vector

addition in Rn are defined entry by entry just as in R2. These operations on vectors
have the following properties, which can be verified directly from the corresponding
properties for real numbers. See Practice Problem 1 and Exercises 41 and 42 at the end
of this section.

Algebraic Properties of Rn

For all u; v;w in Rn and all scalars c and d :

(i) uC v D vC u (v) c.uC v/ D cuC cv

(ii) .uC v/C w D uC .vC w/ (vi) .c C d/u D cuC du

(iii) uC 0 D 0C u D u (vii) c.du/ D .cd/u

(iv) uC .�u/ D �uC u D 0, (viii) 1u D u
where �u denotes .�1/u

For simplicity of notation, a vector such as uC .�1/v is often written as u � v.
Figure 7 shows u � v as the sum of u and �v.

x1

x2

v

u

v

u    v

2

2

FIGURE 7

Vector subtraction.

Linear Combinations
Given vectors v1; v2; : : : ; vp in Rn and given scalars c1; c2; : : : ; cp , the vector y defined
by

y D c1v1 C � � � C cpvp

is called a linear combination of v1; : : : ; vp with weights c1; : : : ; cp . Algebraic Prop-
erty (ii) above permits us to omit parentheses when forming such a linear combination.
The weights in a linear combination can be any real numbers, including zero. For exam-
ple, some linear combinations of vectors v1 and v2 are

p
3 v1 C v2; 1

2
v1 .D 1

2
v1 C 0v2/; and 0 .D 0v1 C 0v2/
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EXAMPLE 4 Figure 8 identifies selected linear combinations of v1 D

�
�1

1

�
and

v2 D

�
2

1

�
. (Note that sets of parallel grid lines are drawn through integer multiples

of v1 and v2.) Estimate the linear combinations of v1 and v2 that generate the vectors u
and w.

2v22v1

22v122v2

v1 2 v2 22v1 1 v2

3v1

v1

2v12v2

w
u

v2

v1 1 v2 3v2

3
2
–

0

FIGURE 8 Linear combinations of v1 and v2.

SOLUTION The parallelogram rule shows that u is the sum of 3v1 and �2v2; that is,

u D 3v1 � 2v2

This expression for u can be interpreted as instructions for traveling from the origin to u
along two straight paths. First, travel 3 units in the v1 direction to 3v1, and then travel�2
units in the v2 direction (parallel to the line through v2 and 0). Next, although the vector
w is not on a grid line, w appears to be about halfway between two pairs of grid lines,
at the vertex of a parallelogram determined by .5=2/v1 and .�1=2/v2. (See Figure 9.)
Thus a reasonable estimate for w is

v1

w

2v2

2v1

3v1

0

FIGURE 9 w D 5
2
v1 �

1
2
v2

The next example connects a problem about linear combinations to the fundamental
existence question studied in Sections 1.1 and 1.2.

EXAMPLE 5 Let a1 D

24 1

�2

�5

35, a2 D

24 2

5

6

35, and b D 24 7

4

�3

35. Determine whether
b can be generated (or written) as a linear combination of a1 and a2. That is, determine
whether weights x1 and x2 exist such that

x1a1 C x2a2 D b (1)

If vector equation (1) has a solution, find it.

SOLUTION Use the definitions of scalar multiplication and vector addition to rewrite
the vector equation

x1

24 1

�2

�5

35
6
a1

C x2

24 2

5

6

35
6
a2

D

24 7

4

�3

35
6
b
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which is the same as 24 x1

�2x1

�5x1

35C 24 2x2

5x2

6x2

35 D 24 7

4

�3

35
and 24 x1 C 2x2

�2x1 C 5x2

�5x1 C 6x2

35 D 24 7

4

�3

35 (2)

The vectors on the left and right sides of (2) are equal if and only if their corresponding
entries are both equal. That is, x1 and x2 make the vector equation (1) true if and only if
x1 and x2 satisfy the system

x1 C 2x2 D 7

�2x1 C 5x2 D 4

�5x1 C 6x2 D �3

(3)

To solve this system, row reduce the augmented matrix of the system as follows:324 1 2 7

�2 5 4

�5 6 �3

35 � 24 1 2 7

0 9 18

0 16 32

35 � 24 1 2 7

0 1 2

0 16 32

35 � 24 1 0 3

0 1 2

0 0 0

35
The solution of (3) is x1 D 3 and x2 D 2. Hence b is a linear combination of a1 and a2,
with weights x1 D 3 and x2 D 2. That is,

3

24 1

�2

�5

35C 2

24 2

5

6

35 D 24 7

4

�3

35
Observe in Example 5 that the original vectors a1, a2, and b are the columns of the

augmented matrix that we row reduced:24 1 2 7

�2 5 4

�5

6 6 6
a1 a2 b

6 �3

35

For brevity, write this matrix in a way that identifies its columns—namely

Œ a1 a2 b � (4)

It is clear how to write this augmented matrix immediately from vector equation (1),
without going through the intermediate steps of Example 5. Take the vectors in the order
in which they appear in (1) and put them into the columns of a matrix as in (4).

The discussion above is easily modified to establish the following fundamental fact.

3 The symbol� between matrices denotes row equivalence (Section 1.2).
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A vector equation
x1a1 C x2a2 C � � � C xnan D b

has the same solution set as the linear system whose augmented matrix is�
a1 a2 � � � an b

�
(5)

In particular, b can be generated by a linear combination of a1; : : : ; an if and only
if there exists a solution to the linear system corresponding to the matrix (5).

One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set fv1; : : : ; vpg of vectors.

DEFINITION If v1; : : : ; vp are in Rn, then the set of all linear combinations of v1; : : : ; vp is de-
noted by Span fv1; : : : ; vpg and is called the subset of Rn spanned (or generated)
by v1; : : : ; vp . That is, Span fv1; : : : ; vpg is the collection of all vectors that can be
written in the form

c1v1 C c2v2 C � � � C cpvp

with c1; : : : ; cp scalars.

Asking whether a vector b is in Span fv1; : : : ; vpg amounts to asking whether the
vector equation

x1v1 C x2v2 C � � � C xpvp D b

has a solution, or, equivalently, asking whether the linear system with augmented matrix
Œ v1 � � � vp b � has a solution.

Note that Span fv1; : : : ; vpg contains every scalar multiple of v1 (for exam-
ple), since cv1 D cv1 C 0v2 C � � � C 0vp . In particular, the zero vector must be in
Span fv1; : : : ; vpg.

A Geometric Description of Spanfvg and Spanfu, vg
Let v be a nonzero vector in R3. Then Span fvg is the set of all scalar multiples of v,
which is the set of points on the line in R3 through v and 0. See Figure 10.

If u and v are nonzero vectors in R3, with v not a multiple of u, then Span fu; vg is
the plane in R3 that contains u, v, and 0. In particular, Span fu; vg contains the line in
R3 through u and 0 and the line through v and 0. See Figure 11.

Span{v}

x3

x2

x1

v

FIGURE 10 Span fvg as a
line through the origin.

Span{u, v}

v

u

u 1 v

x2

x3

x1

FIGURE 11 Span fu; vg as a
plane through the origin.
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EXAMPLE 6 Let a1 D

24 1

�2

3

35, a2 D

24 5

�13

�3

35, and b D

24�3

8

1

35. Then

Span fa1; a2g is a plane through the origin in R3. Is b in that plane?

SOLUTION Does the equation x1a1 C x2a2 D b have a solution? To answer this, row
reduce the augmented matrix Œ a1 a2 b �:24 1 5 �3

�2 �13 8

3 �3 1

35 � 24 1 5 �3

0 �3 2

0 �18 10

35 � 24 1 5 �3

0 �3 2

0 0 �2

35
The third equation is 0 D �2, which shows that the system has no solution. The vector
equation x1a1 C x2a2 D b has no solution, and so b is not in Span fa1; a2g.

Linear Combinations in Applications
The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per
unit is known: �

number
of units

�
�

�
cost

per unit

�
D

�
total
cost

�
EXAMPLE 7 A company manufactures two products. For $1.00 worth of product B,
the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For $1.00
worth of product C, the company spends $.40 on materials, $.30 on labor, and $.15 on
overhead. Let

b D

24 :45

:25

:15

35 and c D

24 :40

:30

:15

35
Then b and c represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x1 dollars worth of product B and x2

dollars worth of product C. Give a vector that describes the various costs the company
will have (for materials, labor, and overhead).

SOLUTION

a. Compute

100b D 100

24 :45

:25

:15

35 D 24 45

25

15

35
The vector 100b lists the various costs for producing $100 worth of product
B—namely $45 for materials, $25 for labor, and $15 for overhead.

b. The costs of manufacturing x1 dollars worth of B are given by the vector x1b, and
the costs of manufacturing x2 dollars worth of C are given by x2c. Hence the total
costs for both products are given by the vector x1bC x2c.
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Practice Problems

1. Prove that uC v D vC u for any u and v in Rn.

2. For what value(s) of h will y be in Spanfv1; v2; v3g if

v1 D

24 1

�1

�2

35; v2 D

24 5

�4

�7

35; v3 D

24�3

1

0

35; and y D

24�4

3

h

35
3. Let w1, w2, w3, u, and v be vectors in Rn. Suppose the vectors u and v are in Span
fw1, w2, w3g. Show that uC v is also in Span fw1, w2, w3g. [Hint: The solution
requires the use of the definition of the span of a set of vectors. It is useful to review
this definition before starting this exercise.]

1.3 Exercises
In Exercises 1 and 2, compute uC v and u � 2v.

1. u D
�
�1

2

�
; v D

�
�3

3

�
2. u D

�
3

2

�
; v D

�
2

3

�
In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, �v, �2v, uC v, u � v, and u � 2v. Notice
that u � v is the vertex of a parallelogram whose other vertices are
u, 0, and �v.

3. u and v as in Exercise 1 4. u and v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent
to the given vector equation.

5. x1

24 4

�3

2

35C x2

24 �8

7

0

35 D 24 9

�6

�5

35
6. x1

�
�2

3

�
C x2

�
8

5

�
C x3

�
1

�6

�
D

�
0

0

�
Use the accompanying figure to write each vector listed in Exer-
cises 7 and 8 as a linear combination of u and v. Is every vector in
R2 a linear combination of u and v?

w

x

v

u

a
c

d

2v
b

z

y
22v

2u

2v
0

7. Vectors a, b, c, and d

8. Vectors w, x, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to
the given system of equations.

9. x2 C 5x3 D 0

4x1 C 6x2 � x3 D 0

�x1 C 3x2 � 8x3 D 0

10. 4x1 C x2 C 3x3 D 9

x1 � 7x2 � 2x3 D 2

8x1 C 6x2 � 5x3 D 15

In Exercises 11 and 12, determine if b is a linear combination of
a1, a2, and a3.

11. a1 D

24 1

�2

0

35 ; a2 D

24 0

1

2

35 ; a3 D

24 5

�6

8

35 ; b D

24 2

�1

6

35

12. a1 D

24 1

�2

2

35 ; a2 D

24 0

5

5

35 ; a3 D

24 2

0

8

35 ; b D

24 �5

11

�7

35
In Exercises 13 and 14, determine if b is a linear combination of
the vectors formed from the columns of the matrix A.

13. A D

24 1 �4 2

0 3 5

�2 8 �4

35 ; b D

24 3

�7

�3

35

14. A D

24 1 �2 �6

0 3 7

1 �2 5

35 ; b D

24 11

�5

9

35
In Exercises 15 and 16, list five vectors in Span fv1; v2g. For each
vector, show the weights on v1 and v2 used to generate the vector
and list the three entries of the vector. Do not make a sketch.

15. v1 D

24 7

1

�6

35 ; v2 D

24 �5

3

0

35

16. v1 D

24 3

0

2

35 ; v2 D

24 �2

0

3

35
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17. Let a1 D

24 1

4

�2

35, a2 D

24 �2

�3

7

35, and b D 24 4

1

h

35. For what
value(s) of h is b in the plane spanned by a1 and a2?

18. Let v1 D

24 1

0

�4

35, v2 D

24 �5

1

7

35, and y D 24 h

�1

�5

35. For what
value(s) of h is y in the plane generated by v1 and v2?

19. Give a geometric description of Span fv1; v2g for the vectors

v1 D

24 8

2

�6

35 and v2 D

24 12

3

�9

35.
20. Give a geometric description of Span fv1; v2g for the vectors

in Exercise 16.

21. Let u D
�

2

�1

�
and v D

�
2

1

�
. Show that

�
h

k

�
is in

Span fu; vg for all h and k.

22. Construct a 3 � 3matrixA, with nonzero entries, and a vector
b in R3 such that b is not in the set spanned by the columns
of A.

In Exercises 23–32, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) Another notation for the vector
�
�4

3

�
is Œ�4 3�.

24. (T/F) Any list of five real numbers is a vector in R5.

25. (T/F) The points in the plane corresponding to
�
�2

5

�
and�

�5

2

�
lie on a line through the origin.

26. (T/F) The vector u results when a vector u � v is added to the
vector v.

27. (T/F) An example of a linear combination of vectors v1 and
v2 is the vector 1

2
v1.

28. (T/F) The weights c1; : : : ; cp in a linear combination c1v1 C

� � � C cpvp cannot all be zero.

29. (T/F) The solution set of the linear system whose augmented
matrix is Œ a1 a2 a3 b � is the same as the solution set of
the equation x1a1 C x2a2 C x3a3 D b.

30. (T/F)When u and v are nonzero vectors, Span fu; vg contains
the line through u and the origin.

31. (T/F) The set Span fu; vg is always visualized as a plane
through the origin.

32. (T/F) Asking whether the linear system corresponding to an
augmented matrix Œ a1 a2 a3 b � has a solution amounts to
asking whether b is in Span fa1; a2; a3g.

33. Let A D

24 1 0 �4

0 3 �2

�2 6 3

35 and b D

24 4

1

�4

35. Denote the

columns of A by a1, a2, a3, and let W D Span fa1; a2; a3g.

a. Is b in fa1; a2; a3g? How many vectors are in fa1; a2; a3g?

b. Is b in W ? How many vectors are in W ?

c. Show that a1 is in W . [Hint: Row operations are unneces-
sary.]

34. Let A D

24 2 0 6

�1 8 5

1 �2 1

35, let b D 24 10

3

3

35, and let W be

the set of all linear combinations of the columns of A.

a. Is b in W ?

b. Show that the third column of A is in W.

35. A mining company has two mines. One day’s operation at
mine 1 produces ore that contains 20 metric tons of copper
and 550 kilograms of silver, while one day’s operation at mine
2 produces ore that contains 30 metric tons of copper and

500 kilograms of silver. Let v1 D

�
20

550

�
and v2 D

�
30

500

�
.

Then v1 and v2 represent the “output per day” of mine 1 and
mine 2, respectively.

a. What physical interpretation can be given to the vector
5v1?

b. Suppose the company operates mine 1 for x1 days and
mine 2 for x2 days.Write a vector equationwhose solution
gives the number of days each mine should operate in
order to produce 150 tons of copper and 2825 kilograms
of silver. Do not solve the equation.

T c. Solve the equation in (b).

36. A steam plant burns two types of coal: anthracite (A) and
bituminous (B). For each ton of A burned, the plant produces
27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide,
and 250 g of particulate matter (solid-particle pollutants). For
each ton of B burned, the plant produces 30.2 million Btu,
6400 g of sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it
burns x1 tons of A and x2 tons of B?

b. Suppose the output of the steam plant is described by
a vector that lists the amounts of heat, sulfur dioxide,
and particulate matter. Express this output as a linear
combination of two vectors, assuming that the plant burns
x1 tons of A and x2 tons of B.

T c. Over a certain time period, the steam plant produced 162
million Btu of heat, 23,610 g of sulfur dioxide, and 1623
g of particulate matter. Determine how many tons of each
type of coal the steam plant must have burned. Include a
vector equation as part of your solution.
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37. Let v1; : : : ; vk be points in R3 and suppose that for
j D 1; : : : ; k an object with mass mj is located at point vj .
Physicists call such objects point masses. The total mass of
the system of point masses is

m D m1 C � � � Cmk

The center of mass (or center of gravity) of the system is

v D
1

m
Œm1v1 C � � � Cmkvk �

Compute the center of gravity of the system consisting of the
following point masses (see the figure):

Point Mass

v1 D .5;�4; 3/ 2 g
v2 D .4; 3;�2/ 5 g
v3 D .�4;�3;�1/ 2 g
v4 D .�9; 8; 6/ 1 g

x3
v4

x2

v2

v3x1

v1

38. Let v be the center ofmass of a system of point masses located
at v1; : : : ; vk as in Exercise 37. Is v in Span fv1; : : : ; vkg?
Explain.

39. A thin triangular plate of uniform density and thickness has
vertices at v1 D .0; 1/, v2 D .8; 1/, and v3 D .2; 4/, as in the
figure below, and the mass of the plate is 3 g.

v2

v3

v1

x1

4

8

x2

a. Find the .x; y/-coordinates of the center of mass of the
plate. This “balance point” of the plate coincides with
the center of mass of a system consisting of three 1-gram
point masses located at the vertices of the plate.

b. Determine how to distribute an additional mass of 6 g
at the three vertices of the plate to move the balance
point of the plate to .2; 2/. [Hint: Let w1, w2, and w3

denote the masses added at the three vertices, so that
w1 C w2 C w3 D 6.]

40. Consider the vectors v1, v2, v3, and b in R2, shown in the
figure. Does the equation x1v1 C x2v2 C x3v3 D b have a
solution? Is the solution unique? Use the figure to explain
your answers.

0
v1

v2

v3

b

41. Use the vectors u D .u1; : : : ; un/, v D .v1; : : : ; vn/, and
w D .w1; : : : ; wn/ to verify the following algebraic proper-
ties of Rn.

a. .uC v/C w D uC .vC w/

b. c.uC v/ D cuC cv for each scalar c

42. Use the vector u D .u1; : : : ; un/ to verify the following alge-
braic properties of Rn.

a. uC .�u/ D .�u/C u D 0

b. c.du/ D .cd/u for all scalars c and d

Solutions to Practice Problems

1. Take arbitrary vectors u D .u1; : : : ; un/ and v D .v1; : : : ; vn/ in Rn, and compute

h 5 1

h 5 5
v3

v1

v2

The points

intersects the plane when h 5 5.

24
3
h

lie on a line that

h 5 9

Span {v1, v2, v3}

uC v D .u1 C v1; : : : ; un C vn/ Definition of vector addition

D .v1 C u1; : : : ; vn C un/ Commutativity of addition in R

D vC u Definition of vector addition

2. The vector y belongs to Span fv1; v2; v3g if and only if there exist scalars x1; x2; x3

such that

x1

24 1

�1

�2

35C x2

24 5

�4

�7

35C x3

24�3

1

0

35 D 24�4

3

h

35
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This vector equation is equivalent to a system of three linear equations in three
unknowns. If you row reduce the augmented matrix for this system, you find that24 1 5 �3 �4

�1 �4 1 3

�2 �7 0 h

35 � 24 1 5 �3 �4

0 1 �2 �1

0 3 �6 h � 8

35 � 24 1 5 �3 �4

0 1 �2 �1

0 0 0 h � 5

35
The system is consistent if and only if there is no pivot in the fourth column. That
is, h � 5 must be 0. So y is in Span fv1; v2; v3g if and only if h D 5.

Remember: The presence of a free variable in a system does not guarantee that
the system is consistent.

3. Since the vectors u and v are in Span fw1;w2;w3g, there exist scalars c1, c2, c3 and
d1, d2, d3 such that

u D c1 w1 C c2 w2 C c3 w3 and v D d1 w1 C d2 w2 C d3 w3:

Notice
uC v D c1w1 C c2w2 C c3w3 C d1w1 C d2w2 C d3w3

D .c1 C d1/w1 C .c2 C d2/w2 C .c3 C d3/w3

Since c1 C d1; c2 C d2, and c3 C d3 are also scalars, the vector uC v is in Span
fw1;w2;w3g.

1.4 The Matrix Equation Ax=b
A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.

DEFINITION IfA is anm � nmatrix, with columns a1; : : : ; an, and if x is inRn, then the product
of A and x, denoted by Ax, is the linear combination of the columns of A using
the corresponding entries in x as weights; that is,

Ax D
�
a1 a2 � � � an

�264 x1

:::

xn

375 D x1a1 C x2a2 C � � � C xnan

Note that Ax is defined only if the number of columns of A equals the number of entries
in x.

EXAMPLE 1

a.
�

1 2 �1

0 �5 3

�24 4

3

7

35 D 4

�
1

0

�
C 3

�
2

�5

�
C 7

�
�1

3

�
D

�
4

0

�
C

�
6

�15

�
C

�
�7

21

�
D

�
3

6

�

b.

24 2 �3

8 0

�5 2

35� 4

7

�
D 4

24 2

8

�5

35C 7

24�3

0

2

35 D 24 8

32

�20

35C 24�21

0

14

35 D 24�13

32

�6

35
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EXAMPLE 2 For v1; v2; v3 in Rm, write the linear combination 3v1 � 5v2 C 7v3 as
a matrix times a vector.

SOLUTION Place v1; v2; v3 into the columns of a matrix A and place the weights 3,
�5, and 7 into a vector x. That is,

3v1 � 5v2 C 7v3 D
�
v1 v2 v3

�24 3

�5

7

35 D Ax

Section 1.3 showed how to write a system of linear equations as a vector equation
involving a linear combination of vectors. For example, the system

x1 C 2x2 � x3 D 4

�5x2 C 3x3 D 1
(1)

is equivalent to

x1

�
1

0

�
C x2

�
2

�5

�
C x3

�
�1

3

�
D

�
4

1

�
(2)

As in Example 2, the linear combination on the left side is a matrix times a vector, so
that (2) becomes �

1 2 �1

0 �5 3

�24 x1

x2

x3

35 D � 4

1

�
(3)

Equation (3) has the form Ax D b. Such an equation is called a matrix equation,
to distinguish it from a vector equation such as is shown in (2).

Notice how the matrix in (3) is just the matrix of coefficients of the system (1).
Similar calculations show that any system of linear equations, or any vector equation
such as (2), can be written as an equivalent matrix equation in the form Ax D b. This
simple observation will be used repeatedly throughout the text.

Here is the formal result.

THEOREM 3 If A is an m � n matrix, with columns a1; : : : ; an, and if b is in Rm, the matrix
equation

Ax D b (4)

has the same solution set as the vector equation

x1a1 C x2a2 C � � � C xnan D b (5)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is �

a1 a2 � � � an b
�

(6)

Theorem 3 provides a powerful tool for gaining insight into problems in linear
algebra, because a system of linear equations may now be viewed in three different but
equivalent ways: as a matrix equation, as a vector equation, or as a system of linear
equations. Whenever you construct a mathematical model of a problem in real life, you
are free to choose whichever viewpoint is most natural. Then you may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation (4), the vector equation (5), and the system of equations are all solved in the
same way—by row reducing the augmented matrix (6). Other methods of solution will
be discussed later.



1.4 The Matrix Equation Ax=b 63

Existence of Solutions
The definition of Ax leads directly to the following useful fact.

The equation Ax D b has a solution if and only if b is a linear combination of the
columns of A.

Section 1.3 considered the existence question, “Is b in Span fa1; : : : ; ang?” Equiva-
lently, “Is Ax D b consistent?” A harder existence problem is to determine whether the
equation Ax D b is consistent for all possible b.

EXAMPLE 3 Let A D

24 1 3 4

�4 2 �6

�3 �2 �7

35 and b D

24 b1

b2

b3

35. Is the equation Ax D b

consistent for all possible b1; b2; b3?

SOLUTION Row reduce the augmented matrix for Ax D b:24 1 3 4 b1

�4 2 �6 b2

�3 �2 �7 b3

35 � 24 1 3 4 b1

0 14 10 b2 C 4b1

0 7 5 b3 C 3b1

35
�

24 1 3 4 b1

0 14 10 b2 C 4b1

0 0 0 b3 C 3b1 �
1
2
.b2 C 4b1/

35
The third entry in column 4 equals b1 �

1
2
b2 C b3. The equationAx D b is not consistent

for every b because some choices of b can make b1 �
1
2
b2 C b3 nonzero.

The reduced matrix in Example 3 provides a description of all b for which the
equation Ax D b is consistent: The entries in b must satisfy

b1 �
1
2
b2 C b3 D 0

This is the equation of a plane through the origin in R3. The plane is the set of all linear
combinations of the three columns of A. See Figure 1.

The equation Ax D b in Example 3 fails to be consistent for all b because the
echelon form of A has a row of zeros. If A had a pivot in all three rows, we would
not care about the calculations in the augmented column because in this case an echelon
form of the augmented matrix could not have a row such as Œ 0 0 0 1 �.

In the next theorem, the sentence “The columns of A span Rm” means that every

Span{a1, a2, a3}

x2

x1

x3

FIGURE 1

The columns of
A D Œ a1 a2 a3 � span a plane
through 0.

b in Rm is a linear combination of the columns of A. In general, a set of vectors
fv1; : : : ; vpg inRm spans (or generates)Rm if every vector inRm is a linear combination
of v1; : : : ; vp—that is, if Span fv1; : : : ; vpg D Rm.

THEOREM 4 Let A be an m � n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false.

a. For each b in Rm, the equation Ax D b has a solution.

b. Each b in Rm is a linear combination of the columns of A.

c. The columns of A span Rm.

d. A has a pivot position in every row.
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Theorem 4 is one of themost useful theorems in this chapter. Statements (a), (b), and
(c) are equivalent because of the definition of Ax and what it means for a set of vectors
to span Rm. The discussion after Example 3 suggests why (a) and (d) are equivalent;
a proof is given at the end of the section. The exercises will provide examples of how
Theorem 4 is used.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix Œ A b � has a pivot position in every row, then the equation Ax D b
may or may not be consistent.

Computation of Ax
The calculations in Example 1 were based on the definition of the product of a matrix A

and a vector x. The following simple example will lead to a more efficient method for
calculating the entries in Ax when working problems by hand.

EXAMPLE 4 Compute Ax, where A D

24 2 3 4

�1 5 �3

6 �2 8

35 and x D

24 x1

x2

x3

35.
SOLUTION From the definition,24 2 3 4

�1 5 �3

6 �2 8

3524 x1

x2

x3

35 D x1

24 2

�1

6

35C x2

24 3

5

�2

35C x3

24 4

�3

8

35
D

24 2x1

�x1

6x1

35C 24 3x2

5x2

�2x2

35C 24 4x3

�3x3

8x3

35 (7)

D

24 2x1 C 3x2 C 4x3

�x1 C 5x2 � 3x3

6x1 � 2x2 C 8x3

35
The first entry in the product Ax is a sum of products (sometimes called a dot product),
using the first row of A and the entries in x. That is,24 2 3 4

3524 x1

x2

x3

35 D 24 2x1 C 3x2 C 4x3

35
This matrix shows how to compute the first entry in Ax directly, without writing down
all the calculations shown in (7). Similarly, the second entry in Ax can be calculated at
once by multiplying the entries in the second row of A by the corresponding entries in
x and then summing the resulting products:24�1 5 �3

3524 x1

x2

x3

35 D 24�x1 C 5x2 � 3x3

35
Likewise, the third entry in Ax can be calculated from the third row of A and the entries
in x.

Row–Vector Rule for Computing Ax
If the product Ax is defined, then the i th entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.
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EXAMPLE 5

a.
�

1 2 �1

0 �5 3

�24 4

3

7

35 D � 1 � 4C 2 � 3C .�1/ � 7

0 � 4C .�5/ � 3C 3 � 7

�
D

�
3

6

�

b.

24 2 �3

8 0

�5 2

35� 4

7

�
D

24 2 � 4C .�3/ � 7

8 � 4C 0 � 7

.�5/ � 4C 2 � 7

35 D 24�13

32

�6

35
c.

24 1 0 0

0 1 0

0 0 1

3524 r

s

t

35 D 24 1 � r C 0 � s C 0 � t

0 � r C 1 � s C 0 � t

0 � r C 0 � s C 1 � t

35 D 24 r

s

t

35
By definition, the matrix in Example 5(c) with 1’s on the diagonal and 0’s elsewhere

is called an identity matrix and is denoted by I . The calculation in part (c) shows that
Ix D x for every x inR3. There is an analogous n � n identitymatrix, sometimes written
as In. As in part (c), Inx D x for every x in Rn.

Properties of the Matrix–Vector Product Ax
The facts in the next theorem are important and will be used throughout the text. The
proof relies on the definition of Ax and the algebraic properties of Rn.

THEOREM 5 If A is an m � n matrix, u and v are vectors in Rn, and c is a scalar, then:

a. A.uC v/ D AuC Av;

b. A.cu/ D c.Au/.

PROOF For simplicity, take n D 3, A D Œ a1 a2 a3 �, and u, v in R3. (The proof of
the general case is similar.) For i D 1; 2; 3, let ui and vi be the i th entries in u and v,
respectively. To prove statement (a), compute A.uC v/ as a linear combination of the
columns of A using the entries in uC v as weights.

A.uC v/ D Œ a1 a2 a3 �

24 u1 C v1

u2 C v2

u3 C v3

35
# # #

Entries in uC v

D .u1 C v1/a1 C .u2 C v2/a2 C .u3 C v3/a3

" " " Columns of A

D .u1a1 C u2a2 C u3a3/C .v1a1 C v2a2 C v3a3/

D AuC Av

To prove statement (b), compute A.cu/ as a linear combination of the columns of A

using the entries in cu as weights.

A.cu/ D Œ a1 a2 a3 �

24 cu1

cu2

cu3

35 D .cu1/a1 C .cu2/a2 C .cu3/a3

D c.u1a1/C c.u2a2/C c.u3a3/

D c.u1a1 C u2a2 C u3a3/

D c.Au/
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Numerical Note

To optimize a computer algorithm to compute Ax, the sequence of calculations
should involve data stored in contiguous memory locations. The most widely
used professional algorithms for matrix computations are written in Fortran, a
language that stores a matrix as a set of columns. Such algorithms compute Ax as
a linear combination of the columns of A. In contrast, if a program is written in
the popular language C, which stores matrices by rows, Ax should be computed
via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and
(c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a)
and (d) are either both true or both false. This will tie all four statements together.

Let U be an echelon form of A. Given b in Rm, we can row reduce the augmented
matrix Œ A b � to an augmented matrix Œ U d � for some d in Rm:

Œ A b � � � � � � Œ U d �

If statement (d) is true, then each row of U contains a pivot position and there can be no
pivot in the augmented column. SoAx D b has a solution for any b, and (a) is true. If (d)
is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry. Then
Œ U d � represents an inconsistent system. Since row operations are reversible, Œ U d �

can be transformed into the form Œ A b �. The new system Ax D b is also inconsistent,
and (a) is false.

Practice Problems

1. Let A D

24 1 5 �2 0

�3 1 9 �5

4 �8 �1 7

35, p D
2664

3

�2

0

�4

3775, and b D
24�7

9

0

35. It can be shown
that p is a solution of Ax D b. Use this fact to exhibit b as a specific linear
combination of the columns of A.

2. Let A D

�
2 5

3 1

�
, u D

�
4

�1

�
, and v D

�
�3

5

�
. Verify Theorem 5(a) in this case

by computing A.uC v/ and AuC Av.

3. Construct a 3 � 3 matrix A and vectors b and c in R3 so that Ax D b has a solution,
but Ax D c does not.

1.4 Exercises
Compute the products in Exercises 1–4 using (a) the definition, as
in Example 1, and (b) the row–vector rule for computing Ax. If a
product is undefined, explain why.

1.

24�4 2

1 6

0 1

3524 3

1

7

35 2.

24 2

6

�1

35� 1

�1

�

3.

24 6 5

�4 �3

7 6

35� 1

�3

�
4.

�
8 3 1

5 1 2

�24 1

1

1

35

In Exercises 5–8, use the definition of Ax to write the matrix
equation as a vector equation, or vice versa.

5.
�

7 2 �9 3

�4 �5 7 �2

�2664
6

�9

1

�8

3775 D � �9

44

�

6.

2664
7 �3

2 1

9 �6

�3 2

3775� �2

�5

�
D

2664
1

�9

12

�4

3775
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7. x1

2664
4

�1

7

�4

3775C x2

2664
�5

3

�5

1

3775C x3

2664
7

�8

0

2

3775 D
2664

6

�8

0

�7

3775
8. ´1

�
4

�2

�
C ´2

�
�4

5

�
C ´3

�
�5

4

�
C ´4

�
3

0

�
D

�
4

13

�
In Exercises 9 and 10, write the system first as a vector equation
and then as a matrix equation.

9. 4x1 C x2 � 7x3 D 8

x2 C 6x3 D 0

10. 8x1 � x2 D 4

5x1 C 4x2 D 1

x1 � 3x2 D 2

Given A and b in Exercises 11 and 12, write the augmented
matrix for the linear system that corresponds to thematrix equation
Ax D b. Then solve the system and write the solution as a vector.

11. A D

24 1 2 4

0 1 5

�2 �4 �3

35, b D 24 �2

2

9

35
12. A D

24 1 2 1

�3 �1 2

0 5 3

35, b D 24 0

1

�1

35

13. Let u D

24 0

4

4

35 andA D

24 3 �5

�2 6

1 1

35. Is u in the plane inR3

spanned by the columns of A? (See the figure.) Why or why
not?

u?

u?

Plane spanned by
the columns of A

Where are u?

14. Let u D

24 2

�3

2

35 andA D

24 5 8 7

0 1 �1

1 3 0

35. Is u in the subset
of R3 spanned by the columns of A? Why or why not?

15. LetA D
�

3 �4

�6 8

�
and b D

�
b1

b2

�
. Show that the equation

Ax D b does not have a solution for all possible b, and
describe the set of all b for which Ax D b does have a
solution.

16. Repeat Exercise 15: A D

24 1 �3 �4

�3 2 6

5 �1 �8

35, b D 24 b1

b2

b3

35.
Exercises 17–20 refer to the matrices A and B below. Make
appropriate calculations that justify your answers and mention an
appropriate theorem.

A D

2664
1 3 0 3

�1 �1 �1 1

0 �4 2 �8

2 0 3 �1

3775 B D

2664
1 3 �2 2

0 1 1 �5

1 2 �3 7

�2 �8 2 �1

3775
17. How many rows of A contain a pivot position? Does the

equation Ax D b have a solution for each b in R4?

18. Do the columns of B span R4? Does the equation Bx D y
have a solution for each y in R4?

19. Can each vector in R4 be written as a linear combination of
the columns of the matrix A above? Do the columns of A

span R4?

20. Can every vector in R4 be written as a linear combination of
the columns of the matrix B above? Do the columns of B

span R3?

21. Let v1 D

2664
1

0

�1

0

3775, v2 D

2664
0

�1

0

1

3775, v3 D

2664
1

0

0

�1

3775.
Does fv1; v2; v3g span R4? Why or why not?

22. Let v1 D

24 0

0

�2

35, v2 D

24 0

�3

8

35, v3 D

24 4

�1

�5

35.
Does fv1; v2; v3g span R3? Why or why not?

In Exercises 23–34, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) The equation Ax D b is referred to as a vector
equation.

24. (T/F) Every matrix equation Ax D b corresponds to a vector
equation with the same solution set.

25. (T/F) If the equation Ax D b is inconsistent, then b is not in
the set spanned by the columns of A.

26. (T/F) A vector b is a linear combination of the columns of a
matrix A if and only if the equation Ax D b has at least one
solution.

27. (T/F) The equation Ax D b is consistent if the augmented
matrix Œ A b � has a pivot position in every row.

28. (T/F) IfA is anm � nmatrix whose columns do not spanRm,
then the equation Ax D b is inconsistent for some b in Rm.

29. (T/F) The first entry in the product Ax is a sum of products.

30. (T/F) Any linear combination vectors can always be written
in the form Ax for a suitable matrix A and vector x.

31. (T/F) If the columns of an m � n matrix A span Rm, then the
equation Ax D b is consistent for each b in Rm.

32. (T/F) The solution set of a linear system whose augmented
matrix is Œ a1 a2 a3 b � is the same as the solution set of
Ax D b, if A D Œ a1 a2 a3 �.
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33. (T/F) If A is an m � n matrix and if the equation Ax D b is
inconsistent for some b in Rm, then A cannot have a pivot
position in every row.

34. (T/F) If the augmented matrix Œ A b � has a pivot position
in every row, then the equation Ax D b is inconsistent.

35. Note that

24 3 �4 2

6 �3 4

�8 9 �5

3524 �4

�1

3

35 D 24 �2

�9

8

35. Use this fact
(and no row operations) to find scalars c1, c2, c3 such that24 �2

�9

8

35 D c1

24 3

6

�8

35C c2

24 �4

�3

9

35C c3

24 2

4

�5

35.
36. Let u D

24 7

2

5

35, v D 24 3

1

3

35, and w D 24 6

1

0

35.
It can be shown that 3u � 5v � w D 0. Use this fact (and
no row operations) to find x1 and x2 that satisfy the equation24 7 3

2 1

5 3

35� x1

x2

�
D

24 6

1

0

35.
37. Let q1, q2, q3, and v represent vectors in R5, and let x1, x2,

and x3 denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

x1q1 C x2q2 C x3q3 D v

38. Rewrite the (numerical) matrix equation below in symbolic
form as a vector equation, using symbols v1; v2; : : : for the
vectors and c1; c2; : : : for scalars. Define what each symbol
represents, using the data given in the matrix equation.

�
�3 5 �4 9 7

5 8 1 �2 �4

�266664
�3

2

4

�1

2

377775 D
�

8

�1

�

39. Construct a 3 � 3matrix, not in echelon form, whose columns
span R3. Show that the matrix you construct has the desired
property.

40. Construct a 3 � 3matrix, not in echelon form, whose columns
do not span R3. Show that the matrix you construct has the
desired property.

41. Let A be a 3 � 2 matrix. Explain why the equation Ax D b
cannot be consistent for all b inR3. Generalize your argument
to the case of an arbitrary A with more rows than columns.

42. Could a set of three vectors in R4 span all of R4? Explain.
What about n vectors in Rm when n is less than m?

43. Suppose A is a 4 � 3 matrix and b is a vector in R4 with the
property thatAx D b has a unique solution.What can you say
about the reduced echelon form of A? Justify your answer.

44. Suppose A is a 3 � 3 matrix and b is a vector in R3 with the
property that Ax D b has a unique solution. Explain why the
columns of A must span R3.

45. Let A be a 3 � 4 matrix, let y1 and y2 be vectors in R3, and
let w D y1 C y2. Suppose y1 D Ax1 and y2 D Ax2 for some
vectors x1 and x2 in R4. What fact allows you to conclude
that the systemAx D w is consistent? (Note: x1 and x2 denote
vectors, not scalar entries in vectors.)

46. Let A be a 5 � 3 matrix, let y be a vector in R3, and let z
be a vector in R5. Suppose Ay D z. What fact allows you to
conclude that the system Ax D 4z is consistent?

T In Exercises 47–50, determine if the columns of the matrix
span R4.

47.

2664
7 2 �5 8

�5 �3 4 �9

6 10 �2 7

�7 9 2 15

3775 48.

2664
5 �7 �4 9

6 �8 �7 5

4 �4 �9 �9

�9 11 16 7

3775

49.

2664
12 �7 11 �9 5

�9 4 �8 7 �3

�6 11 �7 3 �9

4 �6 10 �5 12

3775

50.

2664
8 11 �6 �7 13

�7 �8 5 6 �9

11 7 �7 �9 �6

�3 4 1 8 7

3775
T 51. Find a column of the matrix in Exercise 49 that can be deleted

and yet have the remaining matrix columns still span R4.

T 52. Find a column of the matrix in Exercise 50 that can be deleted
and yet have the remaining matrix columns still spanR4. Can
you delete more than one column?

STUDY GUIDE offers additional
resources for mastering the
concept of span.

Solutions to Practice Problems

1. The matrix equation24 1 5 �2 0

�3 1 9 �5

4 �8 �1 7

35
2664

3

�2

0

�4

3775 D
24�7

9

0

35
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is equivalent to the vector equation

3

24 1

�3

4

35 � 2

24 5

1

�8

35C 0

24�2

9

�1

35 � 4

24 0

�5

7

35 D 24�7

9

0

35;

which expresses b as a linear combination of the columns of A.

2. uC v D
�

4

�1

�
C

�
�3

5

�
D

�
1

4

�
A.uC v/ D

�
2 5

3 1

��
1

4

�
D

�
2C 20

3C 4

�
D

�
22

7

�
AuC Av D

�
2 5

3 1

��
4

�1

�
C

�
2 5

3 1

��
�3

5

�
D

�
3

11

�
C

�
19

�4

�
D

�
22

7

�
Remark: There are, in fact, infinitely many correct solutions to Practice Problem 3.
When creating matrices to satisfy specified criteria, it is often useful to create
matrices that are straightforward, such as those already in reduced echelon form.
Here is one possible solution:

3. Let

A D

241 0 1

0 1 1

0 0 0

35 ; b D

243

2

0

35 ; and c D

243

2

1

35 :

Notice the reduced echelon form of the augmented matrix corresponding toAx D b
is 241 0 1 3

0 1 1 2

0 0 0 0

35 ;

which corresponds to a consistent system, and hence Ax D b has solutions. The
reduced echelon form of the augmented matrix corresponding to Ax D c is241 0 1 3

0 1 1 2

0 0 0 1

35 ;

which corresponds to an inconsistent system, and hence Ax D c does not have any
solutions.

1.5 Solution Sets of Linear Systems
Solution sets of linear systems are important objects of study in linear algebra. They
will appear later in several different contexts. This section uses vector notation to give
explicit and geometric descriptions of such solution sets.
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Homogeneous Linear Systems
A system of linear equations is said to be homogeneous if it can be written in the form
Ax D 0, where A is an m � n matrix and 0 is the zero vector in Rm. Such a system
Ax D 0 always has at least one solution, namely x D 0 (the zero vector inRn/. This zero
solution is usually called the trivial solution. For a given equationAx D 0; the important
question is whether there exists a nontrivial solution, that is, a nonzero vector x that
satisfies Ax D 0: The Existence and Uniqueness Theorem in Section 1.2 (Theorem 2)
leads immediately to the following fact.

The homogeneous equation Ax D 0 has a nontrivial solution if and only if the
equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial
solution. Then describe the solution set.

3x1 C 5x2 � 4x3 D 0

�3x1 � 2x2 C 4x3 D 0

6x1 C x2 � 8x3 D 0

SOLUTION Let A be the matrix of coefficients of the system and row reduce the
augmented matrix Œ A 0 � to echelon form:24 3 5 �4 0

�3 �2 4 0

6 1 �8 0

35 � 24 3 5 �4 0

0 3 0 0

0 �9 0 0

35 � 24 3 5 �4 0

0 3 0 0

0 0 0 0

35
Since x3 is a free variable, Ax D 0 has nontrivial solutions (one for each nonzero choice
of x3). To describe the solution set, continue the row reduction of Œ A 0 � to reduced
echelon form: 24 1 0 � 4

3
0

0 1 0 0

0 0 0 0

35 x1 �
4
3
x3 D 0

x2 D 0

0 D 0

Solve for the basic variables x1 and x2 and obtain x1 D
4
3
x3, x2 D 0, with x3 free. As a

vector, the general solution of Ax D 0 has the form

x D

264 x1

x2

x3

375 D
264 4

3
x3

0

x3

375 D x3

264 4
3

0

1

375 D x3v; where v D

264 4
3

0

1

375
Here x3 is factored out of the expression for the general solution vector. This shows that
every solution of Ax D 0 in this case is a scalar multiple of v. The trivial solution is
obtained by choosing x3 D 0: Geometrically, the solution set is a line through 0 in R3.
See Figure 1.

0

v

x3

x1

Span{v}

x2

FIGURE 1

Notice that a nontrivial solution x can have some zero entries so long as not all of
its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of
equations. Describe all solutions of the homogeneous “system”

10x1 � 3x2 � 2x3 D 0 (1)
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SOLUTION There is no need for matrix notation. Solve for the basic variable x1 in
terms of the free variables. The general solution is x1 D :3x2 C :2x3, with x2 and x3

free. As a vector, the general solution is

x D

24 x1

x2

x3

35 D 24 :3x2 C :2x3

x2

x3

35 D 24 :3x2

x2

0

35C 24 :2x3

0

x3

35
D x2

24 :3

1

0

35
6
u

C x3

24 :2

0

1

35
6
v

(with x2, x3 free) (2)

This calculation shows that every solution of (1) is a linear combination of the vectors u
and v, shown in (2). That is, the solution set is Span fu; vg. Since neither u nor v is a scalar
multiple of the other, the solution set is a plane through the origin. See Figure 2.

u

v

x1
x3

x2

FIGURE 2

Examples 1 and 2, alongwith the exercises, illustrate the fact that the solution set of a
homogeneous equation Ax D 0 can always be expressed explicitly as Span fv1; : : : ; vpg

for suitable vectors v1; : : : ; vp . If the only solution is the zero vector, then the solution
set is Span f0g. If the equation Ax D 0 has only one free variable, the solution set is
a line through the origin, as in Figure 1. A plane through the origin, as in Figure 2,
provides a good mental image for the solution set ofAx D 0when there are two or more
free variables. Note, however, that a similar figure can be used to visualize Span fu; vg
even when u and v do not arise as solutions of Ax D 0: See Figure 11 in Section 1.3.

Parametric Vector Form
The original equation (1) for the plane in Example 2 is an implicit description of the
plane. Solving this equation amounts to finding an explicit description of the plane as
the set spanned by u and v. Equation (2) is called a parametric vector equation of the
plane. Sometimes such an equation is written as

x D suC tv .s; t in R/

to emphasize that the parameters vary over all real numbers. In Example 1, the equation
x D x3v (with x3 free), or x D tv (with t in R), is a parametric vector equation of a line.
Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we
say that the solution is in parametric vector form.

Solutions of Nonhomogeneous Systems
When a nonhomogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

EXAMPLE 3 Describe all solutions of Ax D b, where

A D

24 3 5 �4

�3 �2 4

6 1 �8

35 and b D

24 7

�1

�4

35
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SOLUTION Here A is the matrix of coefficients from Example 1. Row operations on
Œ A b � produce24 3 5 �4 7

�3 �2 4 �1

6 1 �8 �4

35 � 24 1 0 � 4
3
�1

0 1 0 2

0 0 0 0

35;
x1 �

4
3
x3 D �1

x2 D 2

0 D 0

Thus x1 D �1C 4
3
x3, x2 D 2, and x3 is free. As a vector, the general solution ofAx D b

has the form

x D

264 x1

x2

x3

375 D
264�1C 4

3
x3

2

x3

375 D
264�1

2

0

375C
264 4

3
x3

0

x3

375 D
264�1

2

0

375
6
p

C x3

264 4
3

0

1

375
6
v

The equation x D pC x3v, or, writing t as a general parameter,

x D pC tv (t in R) (3)

describes the solution set of Ax D b in parametric vector form. Recall from Example 1
that the solution set of Ax D 0 has the parametric vector equation

x D tv (t in R) (4)

[with the same v that appears in (3)]. Thus the solutions of Ax D b are obtained by
adding the vector p to the solutions of Ax D 0. The vector p itself is just one particular
solution of Ax D b [corresponding to t D 0 in (3)].

p

v

v 1 p

FIGURE 3

Adding p to v translates v to vC p.

To describe the solution set ofAx D b geometrically, we can think of vector addition
as a translation. Given v and p in R2 or R3, the effect of adding p to v is to move v in a
direction parallel to the line through p and 0. We say that v is translated by p to vC p.L 1 p

L

FIGURE 4

Translated line.

See Figure 3. If each point on a line L in R2 or R3 is translated by a vector p, the result
is a line parallel to L. See Figure 4.

Suppose L is the line through 0 and v, described by equation (4). Adding p to each
point on L produces the translated line described by equation (3). Note that p is on the
line in equation (3). We call (3) the equation of the line through p parallel to v. Thus
the solution set of Ax D b is a line through p parallel to the solution set of Ax D 0.
Figure 5 illustrates this case.

p

v tv

p 1 tv

Ax 5 b

Ax 5 0

FIGURE 5 Parallel solution sets of Ax D b and
Ax D 0.

The relation between the solution sets of Ax D b and Ax D 0 shown in Figure 5
generalizes to any consistent equation Ax D b, although the solution set will be larger
than a line when there are several free variables. The following theorem gives the precise
statement. See Exercise 37 at the end of this section for a proof.
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THEOREM 6 Suppose the equation Ax D b is consistent for some given b, and let p be a
solution. Then the solution set of Ax D b is the set of all vectors of the form
w D pC vh, where vh is any solution of the homogeneous equation Ax D 0.

Theorem 6 says that if Ax D b has a solution, then the solution set is obtained by
translating the solution set of Ax D 0, using any particular solution p of Ax D b for the
translation. Figure 6 illustrates the case in which there are two free variables. Even when
n > 3, our mental image of the solution set of a consistent system Ax D b (with b ¤ 0)
is either a single nonzero point or a line or plane not passing through the origin.

p

x3

x2x1

Ax 5 b

Ax 5 0

FIGURE 6 Parallel solution sets of
Ax D b and Ax D 0.

Warning: Theorem 6 and Figure 6 apply only to an equation Ax D b that has at least
one nonzero solution p. When Ax D b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM)
IN PARAMETRIC VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

Reasonable Answers

To verify that the solutions you found are indeed solutions to the homogeneous
equation Ax D 0, simply multiply the matrix by each vector in your
solution and check that the result is the zero vector. For example, if

A D

24 1 �2 1 2

1 �1 2 5

0 1 1 3

35, and you found the homogeneous solutions to
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Reasonable Answers (Continued)

be x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775, check
24 1 �2 1 2

1 �1 2 5

0 1 1 3

35
2664
�3

�1

1

0

3775 D
24 0

0

0

35 and

24 1 �2 1 2

1 �1 2 5

0 1 1 3

35
2664
�8

�3

0

1

3775 D
24 0

0

0

35. Then A

0BB@x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775
1CCA

D x3A

2664
�3

�1

1

0

3775C x4A

2664
�8

�3

0

1

3775, which is equal to x3

24 0

0

0

35C x4

24 0

0

0

35 D 24 0

0

0

35,
as desired.

If you are solving Ax D b, then you can again verify that you have correct
solutions by multiplying the matrix by each vector in your solutions. The product
of A with the first vector (the one that is not part of the solution to the homo-
geneous equation) should be b. The product of A with the remaining vectors
(the ones that are part of the solution to the homogeneous equation) should of
course be 0.

For example, to verify that

2664
2

1

1

2

3775C x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775 are solutions to

Ax D

24 5

13

8

35, check 24 1 �2 1 2

1 �1 2 5

0 1 1 3

35
2664

2

1

1

2

3775 D
24 5

13

8

35, and use the

calculations from above. Notice A

0BB@
2664

2

1

1

2

3775C x3

2664
�3

�1

1

0

3775C x4

2664
�8

�3

0

1

3775
1CCA

D A

2664
2

1

1

2

3775C x3A

2664
�3

�1

1

0

3775C x4A

2664
�8

�3

0

1

3775, which is equal to
24 5

13

8

35C x3

24 0

0

0

35

Cx4

24 0

0

0

35 D 24 5

13

8

35, as desired.
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Practice Problems

1. Each of the following equations determines a plane in R3. Do the two planes
intersect? If so, describe their intersection.

x1 C 4x2 � 5x3 D 0

2x1 � x2 C 8x3 D 9

2. Write the general solution of 10x1 � 3x2 � 2x3 D 7 in parametric vector form, and
relate the solution set to the one found in Example 2.

3. Prove the first part of Theorem 6: Suppose that p is a solution of Ax D b, so that
Ap D b. Let vh be any solution to the homogeneous equation Ax D 0, and let
w D pC vh. Show that w is a solution to Ax D b.

1.5 Exercises
In Exercises 1–4, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.

1. 2x1 � 5x2 C 8x3 D 0

�2x1 � 7x2 C x3 D 0

4x1 C 2x2 C 7x3 D 0

2. x1 � 3x2 C 7x3 D 0

�2x1 C x2 � 4x3 D 0

x1 C 2x2 C 9x3 D 0

3. �3x1 C 5x2 � 7x3 D 0

�6x1 C 7x2 C x3 D 0

4. �5x1 C 7x2 C 9x3 D 0

x1 � 2x2 C 6x3 D 0

In Exercises 5 and 6, follow the method of Examples 1 and 2
to write the solution set of the given homogeneous system in
parametric vector form.

5. x1 C 3x2 C x3 D 0

�4x1 � 9x2 C 2x3 D 0

� 3x2 � 6x3 D 0

6. x1 C 3x2 � 5x3 D 0

x1 C 4x2 � 8x3 D 0

�3x1 � 7x2 C 9x3 D 0

In Exercises 7–12, describe all solutions of Ax D 0 in parametric
vector form, where A is row equivalent to the given matrix.

7.
�

1 3 �3 7

0 1 �4 5

�
8.

�
1 �2 �9 5

0 1 2 �6

�
9.

�
2 �8 6

�1 4 �3

�
10.

�
1 3 0 �4

2 6 0 �8

�

11.

2664
1 �4 �2 0 3 �5

0 0 1 0 0 �1

0 0 0 0 1 �4

0 0 0 0 0 0

3775

12.

2664
1 5 2 �6 9 0

0 0 1 �7 4 �8

0 0 0 0 0 1

0 0 0 0 0 0

3775
You may find it helpful to review the information in the Reason-
able Answers box from this section before answering Exercises
13–16.

13. Verify that the solutions you found to Exercise 9 are indeed
homogeneous solutions.

14. Verify that the solutions you found to Exercise 10 are indeed
homogeneous solutions.

15. Verify that the solutions you found to Exercise 11 are indeed
homogeneous solutions.

16. Verify that the solutions you found to Exercise 12 are indeed
homogeneous solutions.

17. Suppose the solution set of a certain system of linear equa-
tions can be described as x1 D 5C 4x3, x2 D �2 � 7x3,
with x3 free. Use vectors to describe this set as a line in R3.

18. Suppose the solution set of a certain system of linear
equations can be described as x1 D 3x4, x2 D 8C x4,
x3 D 2 � 5x4, with x4 free. Use vectors to describe this set
as a line in R4.

19. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

x1 C 3x2 C x3 D 1

�4x1 � 9x2 C 2x3 D �1

� 3x2 � 6x3 D �3

20. As in Exercise 19, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

x1 C 3x2 � 5x3 D 4

x1 C 4x2 � 8x3 D 7

�3x1 � 7x2 C 9x3 D�6

21. Describe and compare the solution sets of x1 C 9x2 � 4x3 D 0

and x1 C 9x2 � 4x3 D �2.

22. Describe and compare the solution sets of x1 � 3x2 C 5x3 D 0

and x1 � 3x2 C 5x3 D 4.
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In Exercises 23 and 24, find the parametric equation of the line
through a parallel to b.

23. a D
�
�2

0

�
, b D

�
�5

3

�
24. a D

�
5

�2

�
, b D

�
�4

9

�
In Exercises 25 and 26, find a parametric equation of the line M

through p and q. [Hint: M is parallel to the vector q � p. See the
figure below.]

25. p D
�

2

�5

�
, q D

�
�3

1

�
26. p D

�
�6

3

�
, q D

�
0

�4

�

x1

x2

M
q    p

pq

p

The line through p and q.

2
2

In Exercises 27–36, mark each statement True or False (T/F).
Justify each answer.

27. (T/F) A homogeneous equation is always consistent.

28. (T/F) If x is a nontrivial solution of Ax D 0, then every entry
in x is nonzero.

29. (T/F) The equation Ax D 0 gives an explicit description of
its solution set.

30. (T/F) The equation x D x2uC x3v, with x2 and x3 free (and
neither u nor v a multiple of the other), describes a plane
through the origin.

31. (T/F) The homogeneous equation Ax D 0 has the trivial so-
lution if and only if the equation has at least one free variable.

32. (T/F)The equationAx D b is homogeneous if the zero vector
is a solution.

33. (T/F) The equation x D pC tv describes a line through v
parallel to p.

34. (T/F) The effect of adding p to a vector is to move the vector
in a direction parallel to p.

35. (T/F) The solution set of Ax D b is the set of all vectors of
the formw D pC vh, where vh is any solution of the equation
Ax D 0.

36. (T/F) The solution set of Ax D b is obtained by translating
the solution set of Ax D 0.

37. Prove the second part of Theorem 6: Let w be any solution of
Ax D b, and define vh D w � p. Show that vh is a solution
of Ax D 0. This shows that every solution of Ax D b has the
formw D pC vh, with p a particular solution ofAx D b and
vh a solution of Ax D 0.

38. Suppose Ax D b has a solution. Explain why the solution is
unique precisely when Ax D 0 has only the trivial solution.

39. Suppose A is the 3 � 3 zero matrix (with all zero entries).
Describe the solution set of the equation Ax D 0.

40. If b ¤ 0, can the solution set of Ax D b be a plane through
the origin? Explain.

In Exercises 41–44, (a) does the equationAx D 0 have a nontrivial
solution and (b) does the equation Ax D b have at least one
solution for every possible b?

41. A is a 3 � 3 matrix with three pivot positions.

42. A is a 3 � 3 matrix with two pivot positions.

43. A is a 3 � 2 matrix with two pivot positions.

44. A is a 2 � 4 matrix with two pivot positions.

45. Given A D

24 �2 �6

7 21

�3 �9

35, find one nontrivial solution of

Ax D 0 by inspection. [Hint: Think of the equation Ax D 0
written as a vector equation.]

46. Given A D

24 4 �6

�8 12

6 �9

35, find one nontrivial solution of

Ax D 0 by inspection.

47. Construct a 3 � 3 nonzeromatrixA such that the vector

24 1

1

1

35
is a solution of Ax D 0.

48. Construct a 3 � 3 nonzero matrix A such that the vector24 1

�2

1

35 is a solution of Ax D 0.

49. Construct a 2 � 2 matrix A such that the solution set of the
equation Ax D 0 is the line in R2 through .4; 1/ and the
origin. Then, find a vector b in R2 such that the solution set
of Ax D b is not a line in R2 parallel to the solution set of
Ax D 0. Why does this not contradict Theorem 6?

50. Suppose A is a 3 � 3 matrix and y is a vector in R3 such that
the equation Ax D y does not have a solution. Does there
exist a vector z in R3 such that the equation Ax D z has a
unique solution? Discuss.

51. LetA be anm � nmatrix and let u be a vector inRn that satis-
fies the equation Ax D 0. Show that for any scalar c, the vec-
tor cu also satisfies Ax D 0. [That is, show that A.cu/ D 0.]

52. Let A be an m � n matrix, and let u and v be vectors in Rn

with the property that Au D 0 and Av D 0. Explain why
A.uC v/ must be the zero vector. Then explain why
A.cuC dv/ D 0 for each pair of scalars c and d .
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Solutions to Practice Problems

1. Row reduce the augmented matrix:�
1 4 �5 0

2 �1 8 9

�
�

�
1 4 �5 0

0 �9 18 9

�
�

�
1 0 3 4

0 1 �2 �1

�
x1 C 3x3 D 4

x2 � 2x3 D �1

Thus x1 D 4 � 3x3; x2 D �1C 2x3, with x3 free. The general solution in paramet-
ric vector form is24 x1

x2

x3

35 D 24 4 � 3x3

�1C 2x3

x3

35 D 24 4

�1

0

35
6
p

C x3

24�3

2

1

35
6
v

The intersection of the two planes is the line through p in the direction of v.
2. The augmented matrix

�
10 �3 �2 7

�
is row equivalent to�

1 �:3 �:2 :7
�
, and the general solution is x1 D :7C :3x2 C :2x3, with

x2 and x3 free. That is,

x D

24 x1

x2

x3

35 D 24 :7C :3x2 C :2x3

x2

x3

35 D 24 :7

0

0

35 C x2

24 :3

1

0

35 C x3

24 :2

0

1

35
D p C x2u C x3v

The solution set of the nonhomogeneous equation Ax D b is the translated plane
pC Span fu; vg, which passes through p and is parallel to the solution set of the
homogeneous equation in Example 2.

3. Using Theorem 5 from Section 1.4, notice

A.pC vh/ D ApC Avh D bC 0 D b;

hence pC vh is a solution to Ax D b.

1.6 Applications of Linear Systems
You might expect that a real-life problem involving linear algebra would have only one
solution, or perhaps no solution. The purpose of this section is to show how linear
systems with many solutions can arise naturally. The applications here come from
economics, chemistry, and network flow.

A Homogeneous System in Economics
The system of 500 equations in 500 variables, mentioned in this chapter’s introduction,
is now known as a Leontief “input–output” (or “production”) model.1 Section 2.6 will
examine this model in more detail, when more theory and better notation are available.
For now, we look at a simpler “exchange model,” also due to Leontief.

1 See Wassily W. Leontief, “Input–Output Economics,” Scientific American, October 1951, pp. 15–21.
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Suppose a nation’s economy is divided into many sectors, such as various manufac-
turing, communication, entertainment, and service industries. Suppose that for each sec-
tor we know its total output for one year and we know exactly how this output is divided
or “exchanged” among the other sectors of the economy. Let the total dollar value of a
sector’s output be called the price of that output. Leontief proved the following result.

There exist equilibrium prices that can be assigned to the total outputs of the
various sectors in such a way that the income of each sector exactly balances its
expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel
sectors, and the output of each sector is distributed among the various sectors as shown
in Table 1, where the entries in a column represent the fractional parts of a sector’s total
output.

The second column of Table 1, for instance, says that the total output of the Electric
sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to
Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.)
Since all output must be taken into account, the decimal fractions in each column must
sum to 1.

Denote the prices (in dollar values) of the total annual outputs of the Coal, Electric,
and Steel sectors by pC, pE, and pS, respectively. If possible, find equilibrium prices
that make each sector’s income match its expenditures.

.1

.2

.2 .5

.4

.4

.6

.6

Steel

Coal

Electric

TABLE 1 A Simple Economy

Distribution of Output from

Coal Electric Steel Purchased by

.0 .4 .6 Coal

.6 .1 .2 Electric

.4 .5 .2 Steel

SOLUTION A sector looks down a column to see where its output goes, and it looks
across a row to see what it needs as inputs. For instance, the first row of Table 1 says
that Coal receives (and pays for) 40% of the Electric output and 60% of the Steel
output. Since the respective values of the total outputs are pE and pS, Coal must spend
:4pE dollars for its share of Electric’s output and :6pS for its share of Steel’s output.
Thus Coal’s total expenses are :4pE C :6pS. To make Coal’s income, pC, equal to its
expenses, we want

pC D :4pE C :6pS (1)

The second row of the exchange table shows that the Electric sector spends :6pC

for coal, :1pE for electricity, and :2pS for steel. Hence the income/expense requirement
for Electric is

pE D :6pC C :1pE C :2pS (2)
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Finally, the third row of the exchange table leads to the final requirement:

pS D :4pC C :5pE C :2pS (3)

To solve the system of equations (1), (2), and (3), move all the unknowns to the left
sides of the equations and combine like terms. [For instance, on the left side of (2),
write pE � :1pE as :9pE.]

pC � :4pE � :6pS D 0

�:6pC C :9pE � :2pS D 0

�:4pC � :5pE C :8pS D 0

Row reduction is next. For simplicity here, decimals are rounded to two places.24 1 �:4 �:6 0

�:6 :9 �:2 0

�:4 �:5 :8 0

35 � 24 1 �:4 �:6 0

0 :66 �:56 0

0 �:66 :56 0

35 � 24 1 �:4 �:6 0

0 :66 �:56 0

0 0 0 0

35
�

24 1 �:4 �:6 0

0 1 �:85 0

0 0 0 0

35 � 24 1 0 �:94 0

0 1 �:85 0

0 0 0 0

35
The general solution is pC D :94pS, pE D :85pS, and pS is free. The equilibrium price
vector for the economy has the form

p D

24pC

pE

pS

35 D 24 :94pS

:85pS

pS

35 D pS

24 :94

:85

1

35
Any (nonnegative) choice for pS results in a choice of equilibrium prices. For instance,
if we take pS to be 100 (or $100 million), then pC D 94 and pE D 85. The incomes and
expenditures of each sector will be equal if the output of Coal is priced at $94 million,
that of Electric at $85 million, and that of Steel at $100 million.

Balancing Chemical Equations
Chemical equations describe the quantities of substances consumed and produced by
chemical reactions. For instance, when propane gas burns, the propane (C3H8) combines
with oxygen (O2) to form carbon dioxide (CO2) and water (H2O), according to an
equation of the form

.x1/C3H8 C .x2/O2 ! .x3/CO2 C .x4/H2O (4)

To “balance” this equation, a chemist must find whole numbers x1; : : : ; x4 such that the
total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the
corresponding numbers of atoms on the right (because atoms are neither destroyed nor
created in the reaction).

A systematic method for balancing chemical equations is to set up a vector equation
that describes the numbers of atoms of each type present in a reaction. Since equation
(4) involves three types of atoms (carbon, hydrogen, and oxygen), construct a vector in
R3 for each reactant and product in (4) that lists the numbers of “atoms per molecule,”
as follows:

C3H8W

24 3

8

0

35; O2W

24 0

0

2

35; CO2W

24 1

0

2

35; H2OW

24 0

2

1

35� Carbon
� Hydrogen
� Oxygen
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To balance equation (4), the coefficients x1; : : : ; x4 must satisfy

x1

24 3

8

0

35C x2

24 0

0

2

35 D x3

24 1

0

2

35C x4

24 0

2

1

35
To solve, move all the terms to the left (changing the signs in the third and fourth
vectors):

x1

24 3

8

0

35C x2

24 0

0

2

35C x3

24�1

0

�2

35C x4

24 0

�2

�1

35 D 24 0

0

0

35
Row reduction of the augmented matrix for this equation leads to the general solution

x1 D
1
4
x4; x2 D

5
4
x4; x3 D

3
4
x4; with x4 free

Since the coefficients in a chemical equation must be integers, take x4 D 4, in which
case x1 D 1, x2 D 5, and x3 D 3. The balanced equation is

C3H8 C 5O2 ! 3CO2 C 4H2O

The equation would also be balanced if, for example, each coefficient were doubled. For
most purposes, however, chemists prefer to use a balanced equation whose coefficients
are the smallest possible whole numbers.

Network Flow
Systems of linear equations arise naturally when scientists, engineers, or economists
study the flow of some quantity through a network. For instance, urban planners and
traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical
engineers calculate current flow through electrical circuits. Economists analyze the dis-
tribution of products frommanufacturers to consumers through a network of wholesalers
and retailers. For many networks, the systems of equations involve hundreds or even
thousands of variables and equations.

A network consists of a set of points called junctions, or nodes, with lines or arcs
called branches connecting some or all of the junctions. The direction of flow in each
branch is indicated, and the flow amount (or rate) is either shown or is denoted by a
variable.

The basic assumption of network flow is that the total flow into the network equals
the total flow out of the network and that the total flow into a junction equals the
total flow out of the junction. For example, Figure 1 shows 30 units flowing into a
junction through one branch, with x1 and x2 denoting the flows out of the junction
through other branches. Since the flow is “conserved” at each junction, we must
have x1 C x2 D 30. In a similar fashion, the flow at each junction is described by
a linear equation. The problem of network analysis is to determine the flow in each
branch when partial information (such as the flow into and out of the network) is

30

x1

x2

FIGURE 1

A junction or node.
known.

EXAMPLE 2 The network in Figure 2 shows the traffic flow (in vehicles per hour)
over several one-way streets in downtown Baltimore during a typical early afternoon.
Determine the general flow pattern for the network.
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300

300

400

600

500

Inner Harbor

A

B

D

C

x1

x4

x2 x5

x3 100

Calvert St. South St.

Lombard St.

Pratt St.

N

FIGURE 2 Baltimore streets.

SOLUTION Write equations that describe the flow, and then find the general solution
of the system. Label the street intersections (junctions) and the unknown flows in the
branches, as shown in Figure 2. At each intersection, set the flow in equal to the flow out.

Intersection Flow in Flow out

A 300C 500 D x1 C x2

B x2 C x4 D 300C x3

C 100C 400 D x4 C x5

D x1 C x5 D 600

Also, the total flow into the network .500C 300C 100C 400/ equals the total flow
out of the network .300C x3 C 600/, which simplifies to x3 D 400. Combine this
equation with a rearrangement of the first four equations to obtain the following system
of equations:

x1 C x2 D 800

x2 � x3 C x4 D 300

x4 C x5 D 500

x1 C x5 D 600

x3 D 400

Row reduction of the associated augmented matrix leads to

x1 C x5 D 600

x2 � x5 D 200

x3 D 400

x4 C x5 D 500

The general flow pattern for the network is described by8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

x1 D 600 � x5

x2 D 200C x5

x3 D 400

x4 D 500 � x5

x5 is free



82 CHAPTER 1 Linear Equations in Linear Algebra

A negative flow in a network branch corresponds to flow in the direction opposite
to that shown on the model. Since the streets in this problem are one way, none of the
variables here can be negative. This fact leads to certain limitations on the possible
values of the variables. For instance, x5 � 500 because x4 cannot be negative. Other
constraints on the variables are considered in Practice Problem 2.

Practice Problems

1. Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing.
Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains
the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing,
and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to
Mining, and retains the rest. Determine the exchange table for this economy, where
the columns describe how the output of each sector is exchanged among the three
sectors.

2. Consider the network flow studied in Example 2. Determine the possible range of
values of x1 and x2. [Hint: The example showed that x5 � 500. What does this
imply about x1 and x2? Also, use the fact that x5 � 0.]

1.6 Exercises
1. Suppose an economy has only two sectors, Goods and Ser-

vices. Each year, Goods sells 80% of its output to Services
and keeps the rest, while Services sells 70% of its output to
Goods and retains the rest. Find equilibrium prices for the
annual outputs of the Goods and Services sectors that make
each sector’s income match its expenditures.

.7

.8

.2 .3

Goods Services

2. Find another set of equilibrium prices for the economy in
Example 1. Suppose the same economy used Japanese yen
instead of dollars to measure the value of the various sec-
tors’ outputs. Would this change the problem in any way?
Discuss.

3. Consider an economy with three sectors, Chemicals & Met-
als, Fuels & Power, and Machinery. Chemicals sells 30% of
its output to Fuels and 50% to Machinery and retains the
rest. Fuels sells 80% of its output to Chemicals and 10%
to Machinery and retains the rest. Machinery sells 40% to
Chemicals and 40% to Fuels and retains the rest.

a. Construct the exchange table for this economy.

b. Develop a system of equations that leads to prices at which
each sector’s income matches its expenses. Then write the
augmented matrix that can be row reduced to find these
prices.

T c. Find a set of equilibrium prices when the price for the
Machinery output is 100 units.

4. Suppose an economy has four sectors, Agriculture (A), En-
ergy (E), Manufacturing (M), and Transportation (T). Sector
A sells 10% of its output to E and 25% to M and retains the
rest. Sector E sells 30% of its output to A, 35% toM, and 25%
to T and retains the rest. Sector M sells 30% of its output to
A, 15% to E, and 40% to T and retains the rest. Sector T sells
20% of its output to A, 10% to E, and 30% to M and retains
the rest.

a. Construct the exchange table for this economy.

T b. Find a set of equilibrium prices for the economy.

Balance the chemical equations in Exercises 5–10 using the vector
equation approach discussed in this section.

5. Boron sulfide reacts violently with water to form boric acid
and hydrogen sulfide gas (the smell of rotten eggs). The
unbalanced equation is

B2S3 C H2O! H3BO3 C H2S

[For each compound, construct a vector that lists the numbers
of atoms of boron, sulfur, hydrogen, and oxygen.]

6. When solutions of sodium phosphate and barium nitrate are
mixed, the result is barium phosphate (as a precipitate) and
sodium nitrate. The unbalanced equation is

Na3PO4 C Ba(NO3/2 ! Ba3.PO4/2 C NaNO3

[For each compound, construct a vector that lists the num-
bers of atoms of sodium (Na), phosphorus, oxygen, barium,
and nitrogen. For instance, barium nitrate corresponds to
.0; 0; 6; 1; 2/.]
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7. Alka-Seltzer contains sodium bicarbonate (NaHCO3) and
citric acid (H3C6H5O7). When a tablet is dissolved in water,
the following reaction produces sodium citrate, water, and
carbon dioxide (gas):

NaHCO3 C H3C6H5O7 ! Na3C6H5O7 C H2OC CO2

8. The following reaction between potassium permanganate
(KMnO4) and manganese sulfate in water produces man-
ganese dioxide, potassium sulfate, and sulfuric acid:

KMnO4 CMnSO4 C H2O! MnO2 C K2SO4 C H2SO4

[For each compound, construct a vector that lists the numbers
of atoms of potassium (K), manganese, oxygen, sulfur, and
hydrogen.]

T 9. If possible, use exact arithmetic or rational format for calcu-
lations in balancing the following chemical reaction:

PbN6 C CrMn2O8 ! Pb3O4 C Cr2O3 CMnO2 C NO

T 10. The chemical reaction below can be used in some industrial
processes, such as the production of arsene (AsH3). Use exact
arithmetic or rational format for calculations to balance this
equation.

MnSC As2Cr10O35 C H2SO4

! HMnO4 C AsH3 C CrS3O12 C H2O

11. Find the general flow pattern of the network shown in the
figure. Assuming that the flows are all nonnegative, what is
the largest possible value for x3?

20

80

x1

x2

x3

x4

A

C

B

12. a. Find the general traffic pattern in the freeway network
shown in the figure. (Flow rates are in cars/minute.)

b. Describe the general traffic pattern when the road whose
flow is x4 is closed.

c. When x4 D 0, what is the minimum value of x1?

40

x1 x2

x3

200

100

60

x4 x5

A

B

C

D

13. a. Find the general flow pattern in the network shown in the
figure.

b. Assuming that the flowmust be in the directions indicated,
find the minimum flows in the branches denoted by x2, x3,
x4, and x5.

60

80

90

100
x1 x6

x2

x3

x5

x4

20 40

30 40

A

E

C

D

B

14. Intersections in England are often constructed as one-way
“roundabouts,” such as the one shown in the figure. Assume
that traffic must travel in the directions shown. Find the gen-
eral solution of the network flow. Find the smallest possible
value for x6.

100

50

x3

80

100

120 150

x2

x1

x6

x5
x4

A

B E

F

C D

Solutions to Practice Problems

1. Write the percentages as decimals. Since all output must be taken into account, each
column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from

Agriculture Mining Manufacturing Purchased by

.65 .20 .20 Agriculture

.05 .10 .30 Mining

.30 .70 .50 Manufacturing
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Solutions to Practice Problems (Continued)

2. Since x5 � 500, the equations D and A for x1 and x2 imply that x1 � 100

and x2 � 700. The fact that x5 � 0 implies that x1 � 600 and x2 � 200. So,
100 � x1 � 600, and 200 � x2 � 700.

1.7 Linear Independence
The homogeneous equations in Section 1.5 can be studied from a different perspective
by writing them as vector equations. In this way, the focus shifts from the unknown
solutions of Ax D 0 to the vectors that appear in the vector equations.

For instance, consider the equation

x1

24 1

2

3

35C x2

24 4

5

6

35C x3

24 2

1

0

35 D 24 0

0

0

35 (1)

This equation has a trivial solution, of course, where x1 D x2 D x3 D 0. As in Sec-
tion 1.5, the main issue is whether the trivial solution is the only one.

DEFINITION An indexed set of vectors fv1; : : : ; vpg in Rn is said to be linearly independent if
the vector equation

x1v1 C x2v2 C � � � C xpvp D 0

has only the trivial solution. The set fv1; : : : ; vpg is said to be linearly dependent
if there exist weights c1; : : : ; cp , not all zero, such that

c1v1 C c2v2 C � � � C cpvp D 0 (2)

Equation (2) is called a linear dependence relation among v1; : : : ; vp when the
weights are not all zero. An indexed set is linearly dependent if and only if it is not linearly
independent. For brevity, we may say that v1; : : : ; vp are linearly dependent when we
mean that fv1; : : : ; vpg is a linearly dependent set. We use analogous terminology for
linearly independent sets.

EXAMPLE 1 Let v1 D

24 1

2

3

35, v2 D

24 4

5

6

35, and v3 D

24 2

1

0

35.
a. Determine if the set fv1; v2; v3g is linearly independent.

b. If possible, find a linear dependence relation among v1, v2, and v3.

SOLUTION

a. We must determine if there is a nontrivial solution of equation (1) above. Row oper-
ations on the associated augmented matrix show that24 1 4 2 0

2 5 1 0

3 6 0 0

35 � 24 1 4 2 0

0 �3 �3 0

0 0 0 0

35
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Clearly, x1 and x2 are basic variables, and x3 is free. Each nonzero value of x3

determines a nontrivial solution of (1). Hence v1; v2; v3 are linearly dependent (and
not linearly independent).

b. To find a linear dependence relation among v1, v2, and v3, completely row reduce the
augmented matrix and write the new system:24 1 0 �2 0

0 1 1 0

0 0 0 0

35 x1 � 2x3 D 0

x2 C x3 D 0

0 D 0

Thus x1 D 2x3, x2 D �x3, and x3 is free. Choose any nonzero value for x3—say,
x3 D 5. Then x1 D 10 and x2 D �5. Substitute these values into equation (1) and
obtain

10v1 � 5v2 C 5v3 D 0

This is one (out of infinitely many) possible linear dependence relations among v1,
v2, and v3.

Linear Independence of Matrix Columns
Suppose that we begin with a matrix A D Œ a1 � � � an � instead of a set of vectors. The
matrix equation Ax D 0 can be written as

x1a1 C x2a2 C � � � C xnan D 0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax D 0. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation
Ax D 0 has only the trivial solution. (3)

EXAMPLE 2 Determine if the columns of the matrix A D

24 0 1 4

1 2 �1

5 8 0

35 are

linearly independent.

SOLUTION To study Ax D 0, row reduce the augmented matrix:24 0 1 4 0

1 2 �1 0

5 8 0 0

35 � 24 1 2 �1 0

0 1 4 0

0 �2 5 0

35 � 24 1 2 �1 0

0 1 4 0

0 0 13 0

35
At this point, it is clear that there are three basic variables and no free variables. So
the equation Ax D 0 has only the trivial solution, and the columns of A are linearly
independent.

Sets of One or Two Vectors
A set containing only one vector—say, v—is linearly independent if and only if v is not
the zero vector. This is because the vector equation x1v D 0 has only the trivial solution
when v ¤ 0. The zero vector is linearly dependent because x10 D 0 has many nontrivial
solutions.

The next example will explain the nature of a linearly dependent set of two vectors.
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EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

a. v1 D

�
3

1

�
, v2 D

�
6

2

�
b. v1 D

�
3

2

�
, v2 D

�
6

2

�
SOLUTION

a. Notice that v2 is a multiple of v1, namely v2 D 2v1. Hence �2v1 C v2 D 0, which
shows that fv1; v2g is linearly dependent.

b. The vectors v1 and v2 are certainly not multiples of one another. Could they be
linearly dependent? Suppose c and d satisfy

cv1 C dv2 D 0

If c ¤ 0, then we can solve for v1 in terms of v2, namely v1 D .�d=c/v2. This result
is impossible because v1 is not a multiple of v2. So c must be zero. Similarly, d must
also be zero. Thus fv1; v2g is a linearly independent set.

The arguments in Example 3 show that you can always decide by inspectionwhen a

x1

x2

Linearly dependent

(3, 1)

(6, 2)

x1

x2

Linearly independent

(3, 2) (6, 2)

FIGURE 1

set of two vectors is linearly dependent. Row operations are unnecessary. Simply check
whether at least one of the vectors is a scalar times the other. (The test applies only to
sets of two vectors.)

A set of two vectors fv1; v2g is linearly dependent if at least one of the vectors is
a multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the
same line through the origin. Figure 1 shows the vectors from Example 3.

Sets of Two or More Vectors
The proof of the next theorem is similar to the solution of Example 3. Details are given
at the end of this section.

THEOREM 7 Characterization of Linearly Dependent Sets

An indexed set S D fv1; : : : ; vpg of two or more vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of the others. In
fact, if S is linearly dependent and v1 ¤ 0, then some vj (with j > 1) is a linear
combination of the preceding vectors, v1; : : : ; vj�1.

Warning: Theorem 7 does not say that every vector in a linearly dependent set is a
linear combination of the preceding vectors. A vector in a linearly dependent set may
fail to be a linear combination of the other vectors. See Practice Problem 1(c).

EXAMPLE 4 Let u D

24 3

1

0

35 and v D

24 1

6

0

35. Describe the set spanned by u and v,

and explain why a vectorw is in Span fu; vg if and only if fu; v;wg is linearly dependent.
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SOLUTION The vectors u and v are linearly independent because neither vector is
a multiple of the other, and so they span a plane in R3. (See Section 1.3.) In fact,
Span fu; vg is the x1x2-plane (with x3 D 0/. If w is a linear combination of u and v,
then fu; v;wg is linearly dependent, by Theorem 7. Conversely, suppose that fu; v;wg
is linearly dependent. By Theorem 7, some vector in fu; v;wg is a linear combination of
the preceding vectors (since u ¤ 0/. That vector must be w, since v is not a multiple of
u. So w is in Span fu; vg. See Figure 2.

v
wu

Linearly dependent,
w in Span{u, v}

Linearly independent,
w not in Span{u, v}

w

x3

x2

x1

vu

x3

x2

x1

FIGURE 2 Linear dependence in R3.

Example 4 generalizes to any set fu; v;wg in R3 with u and v linearly independent.
The set fu; v;wg will be linearly dependent if and only if w is in the plane spanned by u
and v.

The next two theorems describe special cases in which the linear dependence of a
set is automatic. Moreover, Theorem 8 will be a key result for work in later chapters.

THEOREM 8 If a set contains more vectors than there are entries in each vector, then the set
is linearly dependent. That is, any set fv1; : : : ; vpg in Rn is linearly dependent if
p > n.

PROOF Let A D Œ v1 � � � vp �. Then A is n � p, and the equation Ax D 0 corre-
sponds to a system of n equations in p unknowns. If p > n, there are more variables
than equations, so there must be a free variable. Hence Ax D 0 has a nontrivial solution,

*
*
*

*
*
*

*
p

n *
*

*
*
*

*
*
*

FIGURE 3

If p > n, the columns are linearly
dependent.

and the columns of A are linearly dependent. See Figure 3 for a matrix version of this
theorem.

Warning: Theorem 8 says nothing about the case in which the number of vectors in
the set does not exceed the number of entries in each vector.

EXAMPLE 5 The vectors
�

2

1

�
,
�

4

�1

�
,
�
�2

2

�
are linearly dependent by Theorem

8, because there are three vectors in the set and there are only two entries in each vector.
Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Figure 4.

x1

x2

(2, 1)

(4, 21)

( 2, 2)2

FIGURE 4

A linearly dependent set in R2.

THEOREM 9 If a set S D fv1; : : : ; vpg in Rn contains the zero vector, then the set is linearly
dependent.
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PROOF By renumbering the vectors, we may suppose v1 D 0. Then the equation
1v1 C 0v2 C � � � C 0vp D 0 shows that S is linearly dependent.

EXAMPLE 6 Determine by inspection if the given set is linearly dependent.

a.

24 1

7

6

35, 24 2

0

9

35, 24 3

1

5

35, 24 4

1

8

35 b.

24 2

3

5

35, 24 0

0

0

35, 24 1

1

8

35 c.

2664
�2

4

6

10

3775,
2664

3

�6

�9

15

3775
SOLUTION

a. The set contains four vectors, each of which has only three entries. So the set is
linearly dependent by Theorem 8.

b. Theorem 8 does not apply here because the number of vectors does not exceed the
number of entries in each vector. Since the zero vector is in the set, the set is linearly
dependent by Theorem 9.

c. Compare the corresponding entries of the two vectors. The second vector seems to
be �3=2 times the first vector. This relation holds for the first three pairs of entries,
but fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent.

In general, you should read a section thoroughly several times to absorb an impor-
tant concept such as linear independence. The notes in the Study Guide for this section
will help you learn to form mental images of key ideas in linear algebra. For instance,
the following proof is worth reading carefully because it shows how the definition of
linear independence can be used.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets)
If some vj in S equals a linear combination of the other vectors, then vj can be
subtracted from both sides of the equation, producing a linear dependence relation with
a nonzero weight .�1/ on vj . [For instance, if v1 D c2v2 C c3v3, then 0 D .�1/v1 C

c2v2 C c3v3 C 0v4 C � � � C 0vp .] Thus S is linearly dependent.
Conversely, suppose S is linearly dependent. If v1 is zero, then it is a (trivial)

linear combination of the other vectors in S . Otherwise, v1 ¤ 0, and there exist weights
c1; : : : ; cp , not all zero, such that

c1v1 C c2v2 C � � � C cpvp D 0

Let j be the largest subscript for which cj ¤ 0. If j D 1, then c1v1 D 0, which is
impossible because v1 ¤ 0. So j > 1, and

c1v1 C � � � C cj vj C 0vjC1 C � � � C 0vp D 0

cj vj D �c1v1 � � � � � cj�1vj�1

vj D

�
�

c1

cj

�
v1 C � � � C

�
�

cj�1

cj

�
vj�1

Practice Problems

1. Let u D

24 3

2

�4

35, v D 24�6

1

7

35, w D 24 0

�5

2

35, and z D 24 3

7

�5

35.
a. Are the sets fu; vg; fu;wg; fu; zg; fv;wg; fv; zg, and fw; zg each linearly inde-

pendent? Why or why not?
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b. Does the answer to Part (a) imply that fu; v;w; zg is linearly independent?

c. To determine if fu; v;w; zg is linearly dependent, is it wise to check if, say, w is
a linear combination of u, v, and z?

d. Is fu; v;w; zg linearly dependent?

2. Suppose that fv1; v2; v3g is a linearly dependent set of vectors in Rn and v4 is a
vector in Rn. Show that fv1; v2; v3; v4g is also a linearly dependent set.

1.7 Exercises
In Exercises 1–4, determine if the vectors are linearly independent.
Justify each answer.

1.

24 5

1

0

35, 24 7

2

�6

35, 24�2

�1

6

35 2.

24 0

0

2

35, 24 0

5

�8

35, 24�3

4

1

35
3.

�
1

�3

�
,
�
�3

6

�
4.

�
�1

4

�
,
�
�2

8

�
In Exercises 5–8, determine if the columns of the matrix form a
linearly independent set. Justify each answer.

5.

2664
0 �8 5

3 �7 4

�1 5 �4

1 �3 2

3775 6.

2664
�4 �3 0

0 �1 4

1 0 3

5 4 6

3775

7.

24 1 4 �3 0

�2 �7 5 1

�4 �5 7 5

35 8.

24 1 �3 3 �2

�3 7 �1 2

0 1 �4 3

35
In Exercises 9 and 10, (a) for what values of h is v3 in
Span fv1; v2g, and (b) for what values of h is fv1; v2; v3g linearly
dependent? Justify each answer.

9. v1 D

24 1

�3

2

35, v2 D

24 �3

10

�6

35, v3 D

24 2

�7

h

35

10. v1 D

24 1

�5

�3

35, v2 D

24 �2

10

6

35, v3 D

24 2

�10

h

35
In Exercises 11–14, find the value(s) of h for which the vectors are
linearly dependent. Justify each answer.

11.

24 1

�1

4

35, 24 3

�5

7

35, 24�1

5

h

35 12.

24 2

�4

1

35, 24�6

7

�3

35, 24 8

h

4

35

13.

24 1

5

�3

35, 24�2

�9

6

35, 24 3

h

�9

35 14.

24 1

�3

4

35, 24�6

8

7

35, 24 4

�2

h

35
Determine by inspection whether the vectors in Exercises 15–20
are linearly independent. Justify each answer.

15.
�

5

1

�
,
�

2

8

�
,
�

1

3

�
,
�
�1

7

�
16.

24 4

�2

6

35, 24 6

�3

9

35
17.

24 3

5

�1

35, 24 0

0

0

35, 24�6

5

4

35 18.
�

4

4

�
,
�
�1

3

�
,
�

2

5

�
,
�

8

1

�

19.

24�8

12

�4

35, 24 2

�3

�1

35 20.

24 1

4

�7

35, 24�2

5

3

35, 24 0

0

0

35
In Exercises 21–28, mark each statement True or False (T/F).
Justify each answer on the basis of a careful reading of the text.

21. (T/F) The columns of a matrix A are linearly independent if
the equation Ax = 0 has the trivial solution.

22. (T/F) Two vectors are linearly dependent if and only if they
lie on a line through the origin.

23. (T/F) If S is a linearly dependent set, then each vector is a
linear combination of the other vectors in S .

24. (T/F) If a set contains fewer vectors than there are entries in
the vectors, then the set is linearly independent.

25. (T/F) The columns of any 4 � 5 matrix are linearly
dependent.

26. (T/F) If x and y are linearly independent, and if z is in Span
fx; yg, then fx; y; zg is linearly dependent.

27. (T/F) If x and y are linearly independent, and if fx; y; zg is
linearly dependent, then z is in Span fx; yg.

28. (T/F) If a set inRn is linearly dependent, then the set contains
more vectors than there are entries in each vector.

In Exercises 29–32, describe the possible echelon forms of the
matrix. Use the notation of Example 1 in Section 1.2.

29. A is a 3 � 3 matrix with linearly independent columns.

30. A is a 2 � 2 matrix with linearly dependent columns.

31. A is a 4 � 2 matrix, A D Œa1 a2�, and a2 is not a multiple
of a1.

32. A is a 4 � 3 matrix, A D Œa1 a2 a3�, such that fa1; a2g is
linearly independent and a3 is not in Span fa1; a2g.
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33. How many pivot columns must a 7 � 5 matrix have if its
columns are linearly independent? Why?

34. How many pivot columns must a 5 � 7 matrix have if its
columns span R5? Why?

35. Construct 3 � 2 matrices A and B such that Ax D 0 has only
the trivial solution and Bx D 0 has a nontrivial solution.

36. a. Fill in the blank in the following statement: “If A is
an m � n matrix, then the columns of A are linearly
independent if and only if A has pivot columns.”

b. Explain why the statement in (a) is true.

Exercises 37 and 38 should be solved without performing row
operations. [Hint:Write Ax D 0 as a vector equation.]

37. GivenA D

2664
2 3 5

�5 1 �4

�3 �1 �4

1 0 1

3775, observe that the third column
is the sum of the first two columns. Find a nontrivial solution
of Ax D 0.

38. Given A D

24 5 1 8

�9 5 6

6 �5 �9

35, observe that the first col-
umn plus three times the second column equals the third
column. Find a nontrivial solution of Ax D 0.

Each statement in Exercises 39–44 is either true (in all cases)
or false (for at least one example). If false, construct a specific
example to show that the statement is not always true. Such an
example is called a counterexample to the statement. If a statement
is true, give a justification. (One specific example cannot explain
why a statement is always true. You will have to do more work
here than in Exercises 21–28.)

39. (T/F-C) If v1; : : : ; v4 are in R4 and v3 D 2v1 C v2, then
fv1; v2; v3; v4g is linearly dependent.

40. (T/F-C) If v1; : : : ; v4 are in R4 and v3 D 0, then
fv1; v2; v3; v4g is linearly dependent.

41. (T/F-C) If v1 and v2 are in R4 and v2 is not a scalar multiple
of v1, then fv1; v2g is linearly independent.

42. (T/F-C) If v1; : : : ; v4 are inR4 and v3 is not a linear combina-
tion of v1; v2; v4, then fv1; v2; v3; v4g is linearly independent.

43. (T/F-C) If v1; : : : ; v4 are in R4 and fv1; v2; v3g is linearly
dependent, then fv1; v2; v3; v4g is also linearly dependent.

44. (T/F-C) If v1; : : : ; v4 are linearly independent vectors in R4,
then fv1; v2; v3g is also linearly independent. [Hint: Think
about x1v1 C x2v2 C x3v3 C 0 � v4 D 0.]

45. Suppose A is an m � n matrix with the property that for all b
in Rm the equation Ax D b has at most one solution. Use the
definition of linear independence to explain why the columns
of A must be linearly independent.

46. Suppose an m � n matrix A has n pivot columns. Explain
why for each b in Rm the equation Ax D b has at most one
solution. [Hint: Explain why Ax D b cannot have infinitely
many solutions.]

T In Exercises 47 and 48, use as many columns ofA as possible to
construct a matrix B with the property that the equation Bx D 0
has only the trivial solution. Solve Bx D 0 to verify your work.

47. A D

2664
8 �3 0 �7 2

�9 4 5 11 �7

6 �2 2 �4 4

5 �1 7 0 10

3775

48. A D

266664
12 10 �6 �3 7 10

�7 �6 4 7 �9 5

9 9 �9 �5 5 �1

�4 �3 1 6 �8 9

8 7 �5 �9 11 �8

377775
T 49. With A and B as in Exercise 47 select a column v of A that

was not used in the construction of B and determine if v
is in the set spanned by the columns of B . (Describe your
calculations.)

T 50. Repeat Exercise 49 with the matrices A and B from Exercise
48. Then give an explanation for what you discover, assuming
that B was constructed as specified.

STUDY GUIDE offers additional
resources for mastering the
concept of linear independence. Solutions to Practice Problems

1. a. Yes. In each case, neither vector is amultiple of the other. Thus each set is linearly
independent.

b. No. The observation in Part (a), by itself, says nothing about the linear indepen-
dence of fu; v;w; zg.

c. No. When testing for linear independence, it is usually a poor idea to check if
one selected vector is a linear combination of the others. It may happen that
the selected vector is not a linear combination of the others and yet the whole
set of vectors is linearly dependent. In this practice problem, w is not a linear
combination of u, v, and z.Span{u, v, z}

w

x3

x2

x1
d. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.
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2. Applying the definition of linearly dependent to fv1; v2; v3g implies that there exist
scalars c1; c2, and c3, not all zero, such that

c1v1 C c2v2 C c3v3 D 0:

Adding 0 v4 D 0 to both sides of this equation results in

c1v1 C c2v2 C c3v3 C 0 v4 D 0:

Since c1; c2; c3 and 0 are not all zero, the set fv1; v2; v3; v4g satisfies the definition
of a linearly dependent set.

1.8 Introduction to Linear Transformations
The difference between a matrix equation Ax D b and the associated vector equation
x1a1 C � � � C xnan D b is merely a matter of notation. However, a matrix equation
Ax D b can arise in linear algebra (and in applications such as computer graphics and
signal processing) in a way that is not directly connected with linear combinations of
vectors. This happens when we think of the matrix A as an object that “acts” on a vector
x by multiplication to produce a new vector called Ax.

For instance, the equations

�
4 �3 1 3

2 0 5 1

�2664
1

1

1

1

3775 D � 5

8

�
and

�
4 �3 1 3

2 0 5 1

�2664
1

4

�1

3

3775 D � 0

0

�
6 6 6 6 6 6

A x b A u 0

say that multiplication by A transforms x into b and transforms u into the zero vector.
See Figure 1.

multiplication

by Ax

0

u 0

b

4 2

multiplication

by A

FIGURE 1 Transforming vectors via matrix
multiplication.

From this new point of view, solving the equation Ax D b amounts to finding
all vectors x in R4 that are transformed into the vector b in R2 under the “action” of
multiplication by A.

The correspondence from x to Ax is a function from one set of vectors to another.
This concept generalizes the common notion of a function as a rule that transforms one
real number into another.

A transformation (or function ormapping) T fromRn toRm is a rule that assigns
to each vector x inRn a vector T .x/ inRm. The setRn is called the domain of T , andRm
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is called the codomain of T . The notation T W Rn ! Rm indicates that the domain of T

isRn and the codomain isRm. For x inRn, the vector T .x/ inRm is called the image of x
(under the action of T ). The set of all images T .x/ is called the range of T . See Figure 2.

m

Range

T(x)

CodomainDomain

x

T

n

FIGURE 2 Domain, codomain, and range of
T W Rn ! Rm.

The new terminology in this section is important because a dynamic view of
matrix–vector multiplication is the key to understanding several ideas in linear algebra
and to building mathematical models of physical systems that evolve over time. Such
dynamical systems will be discussed in Sections 1.10, 4.8, and throughout Chapter 5.

Matrix Transformations
The rest of this section focuses on mappings associated with matrix multiplication. For
each x in Rn, T .x/ is computed as Ax, where A is an m � n matrix. For simplicity, we
sometimes denote such a matrix transformation by x 7!Ax. Observe that the domain of
T is Rn when A has n columns and the codomain of T is Rm when each column of A

has m entries. The range of T is the set of all linear combinations of the columns of A,
because each image T .x/ is of the form Ax.

EXAMPLE 1 Let A D

24 1 �3

3 5

�1 7

35, u D � 2

�1

�
, b D

24 3

2

�5

35, c D 24 3

2

5

35, and
define a transformation T W R2 ! R3 by T .x/ D Ax, so that

T .x/ D Ax D

24 1 �3

3 5

�1 7

35� x1

x2

�
D

24 x1 � 3x2

3x1 C 5x2

�x1 C 7x2

35
a. Find T .u/, the image of u under the transformation T .

b. Find an x in R2 whose image under T is b.

c. Is there more than one x whose image under T is b?

d. Determine if c is in the range of the transformation T .

SOLUTION

a. Compute

T .u/ D Au D

24 1 �3

3 5

�1 7

35� 2

�1

�
D

24 5

1

�9

35

T

x2

u 5 2
21

5
1T(u) 5

29

x1

x3

x1

x2

b. Solve T .x/ D b for x. That is, solve Ax D b, or24 1 �3

3 5

�1 7

35� x1

x2

�
D

24 3

2

�5

35 (1)
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Using the method discussed in Section 1.4, row reduce the augmented matrix:24 1 �3 3

3 5 2

�1 7 �5

35 � 24 1 �3 3

0 14 �7

0 4 �2

35 � 24 1 �3 3

0 1 �:5

0 0 0

35 � 24 1 0 1:5

0 1 �:5

0 0 0

35 (2)

Hence x1 D 1:5, x2 D �:5, and x D
�

1:5

�:5

�
. The image of this x under T is the given

vector b.

c. Any x whose image under T is b must satisfy equation (1). From (2), it is clear that
equation (1) has a unique solution. So there is exactly one x whose image is b.

d. The vector c is in the range of T if c is the image of some x in R2, that is, if c D T .x/

for some x. This is just another way of asking if the system Ax D c is consistent. To
find the answer, row reduce the augmented matrix:24 1 �3 3

3 5 2

�1 7 5

35 � 24 1 �3 3

0 14 �7

0 4 8

35 � 24 1 �3 3

0 1 2

0 14 �7

35 � 24 1 �3 3

0 1 2

0 0 �35

35
The third equation, 0 D �35, shows that the system is inconsistent. So c is not in the
range of T .

The question in Example 1(c) is a uniqueness problem for a system of linear
equations, translated here into the language of matrix transformations: Is b the image
of a unique x in Rn? Similarly, Example 1(d) is an existence problem: Does there exist
an x whose image is c?

The next two matrix transformations can be viewed geometrically. They reinforce
the dynamic view of a matrix as something that transforms vectors into other vectors.
Section 2.7 contains other interesting examples connected with computer graphics.

EXAMPLE 2 If A D

24 1 0 0

0 1 0

0 0 0

35, then the transformation x 7!Ax projects

points in R3 onto the x1x2-plane because24 x1

x2

x3

35 7! 24 1 0 0

0 1 0

0 0 0

3524 x1

x2

x3

35 D 24 x1

x2

0

35
See Figure 3.

x3

0

x1

x2

FIGURE 3

A projection transformation.

EXAMPLE 3 Let A D

�
1 2

0 1

�
. The transformation T W R2 ! R2 defined by

T .x/ D Ax is called a shear transformation. It can be shown that if T acts on each
point in the 2 � 2 square shown in Figure 4, then the set of images forms the sheared
parallelogram. The key idea is to show that T maps line segments onto line segments
(as shown in Exercise 35) and then to check that the corners of the square map onto

the vertices of the parallelogram. For instance, the image of the point u D
�

0

2

�
is

sheep

sheared sheep

T .u/ D

�
1 2

0 1

��
0

2

�
D

�
4

2

�
, and the image of

�
2

2

�
is
�

1 2

0 1

��
2

2

�
D

�
6

2

�
. T

deforms the square as if the top of the square were pushed to the right while the base is
held fixed. Shear transformations appear in physics, geology, and crystallography.
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T

2

x2

x1
2

2

x2

6
x1

2

FIGURE 4 A shear transformation.

Linear Transformations
Theorem 5 in Section 1.4 shows that if A is m � n, then the transformation x 7! Ax has
the properties

A.uC v/ D AuC Av and A.cu/ D cAu

for all u; v inRn and all scalars c. These properties, written in function notation, identify
the most important class of transformations in linear algebra.

DEFINITION A transformation (or mapping) T is linear if

(i) T .uC v/ D T .u/C T .v/ for all u; v in the domain of T ;

(ii) T .cu/ D cT .u/ for all scalars c and all u in the domain of T .

Everymatrix transformation is a linear transformation. Important examples of linear
transformations that are not matrix transformations will be discussed in Chapters 4 and 5.

Linear transformations preserve the operations of vector addition and scalar mul-
tiplication. Property (i) says that the result T .uC v/ of first adding u and v in Rn and
then applying T is the same as first applying T to u and to v and then adding T .u/ and
T .v/ in Rm. These two properties lead easily to the following useful facts.

If T is a linear transformation, then

T .0/ D 0 (3)

and
T .cuC dv/ D cT .u/C dT .v/ (4)

for all vectors u, v in the domain of T and all scalars c; d .

Property (3) follows from condition (ii) in the definition, because T .0/ D T .0u/ D

0T .u/ D 0. Property (4) requires both (i) and (ii):

T .cuC dv/ D T .cu/C T .dv/ D cT .u/C dT .v/

Observe that if a transformation satisfies (4) for all u, v and c; d, it must be linear.
(Set c D d D 1 for preservation of addition, and set d D 0 for preservation of scalar
multiplication.) Repeated application of (4) produces a useful generalization:

T .c1v1 C � � � C cpvp/ D c1T .v1/C � � � C cpT .vp/ (5)



1.8 Introduction to Linear Transformations 95

In engineering and physics, (5) is referred to as a superposition principle. Think of
v1; : : : ; vp as signals that go into a system and T .v1/; : : : ; T .vp/ as the responses of that
system to the signals. The system satisfies the superposition principle if whenever an
input is expressed as a linear combination of such signals, the system’s response is the
same linear combination of the responses to the individual signals. We will return to this
idea in Chapter 4.

EXAMPLE 4 Given a scalar r , define T W R2 ! R2 by T .x/ D rx. T is called a
contraction when 0 � r � 1 and a dilation when r > 1. Let r D 3, and show that T is
a linear transformation.

SOLUTION Let u, v be in R2 and let c; d be scalars. Then

T .cuC dv/ D 3.cuC dv/ Definition of T

D 3cuC 3dv

D c.3u/C d.3v/

)
Vector arithmetic

D cT .u/C dT .v/

Thus T is a linear transformation because it satisfies (4). See Figure 5.

T(u)

x1

x2

x1

T

u

x2

FIGURE 5 A dilation transformation.

EXAMPLE 5 Define a linear transformation T W R2 ! R2 by

T .x/ D

�
0 �1

1 0

��
x1

x2

�
D

�
�x2

x1

�
Find the images under T of u D

�
4

1

�
, v D

�
2

3

�
, and uC v D

�
6

4

�
.

SOLUTION

T .u/ D

�
0 �1

1 0

��
4

1

�
D

�
�1

4

�
; T .v/ D

�
0 �1

1 0

��
2

3

�
D

�
�3

2

�
;

T .uC v/ D

�
0 �1

1 0

��
6

4

�
D

�
�4

6

�
Note that T .uC v/ is obviously equal to T .u/C T .v/. It appears from Figure 6 that
T rotates u, v, and uC v counterclockwise about the origin through 90ı. In fact, T

transforms the entire parallelogram determined by u and v into the one determined by
T .u/ and T .v/. (See Exercise 36.)
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T

x1

x2

v

u

T(u 1 v)

T(u)

T(v)

u 1 v

FIGURE 6 A rotation transformation.

The final example is not geometrical; instead, it shows how a linear mapping can
transform one type of data into another.

EXAMPLE 6 A company manufactures two products, B and C. Using data from
Example 7 in Section 1.3, we construct a “unit cost” matrix, U D Œ b c �, whose
columns describe the “costs per dollar of output” for the products:

U D

Product
B C24 :45 :40

:25 :30

:15 :15

35 Materials
Labor
Overhead

Let x D .x1; x2/ be a “production” vector, corresponding to x1 dollars of product B and
x2 dollars of product C, and define T W R2 ! R3 by

T .x/ D U x D x1

24 :45

:25

:15

35C x2

24 :40

:30

:15

35 D 24 Total cost of materials
Total cost of labor
Total cost of overhead

35
The mapping T transforms a list of production quantities (measured in dollars) into a
list of total costs. The linearity of this mapping is reflected in two ways:

1. If production is increased by a factor of, say, 4, from x to 4x, then the costs will
increase by the same factor, from T .x/ to 4T .x/.

2. If x and y are production vectors, then the total cost vector associated with the
combined production xC y is precisely the sum of the cost vectors T .x/ and
T .y/.

Practice Problems

1. Suppose T W R5 ! R2 and T .x/ D Ax for some matrix A and for each x in R5.
How many rows and columns does A have?

2. Let A D

�
1 0

0 �1

�
. Give a geometric description of the transformation x 7! Ax.

3. The line segment from 0 to a vector u is the set of points of the form tu, where
0 � t � 1. Show that a linear transformation T maps this segment into the segment
between 0 and T .u/.
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1.8 Exercises

1. LetA D
�

2 0

0 2

�
, and defineT W R2 ! R2 byT .x/ D Ax.

Find the images under T of u D
�

1

�3

�
and v D

�
a

b

�
.

2. Let A D

24 :5 0 0

0 :5 0

0 0 :5

35, u D 24 1

0

�4

35, and v D

24 a

b

c

35.
Define T W R3 ! R3 by T .x/ D Ax. Find T .u/ and T .v/.

In Exercises 3–6, with T defined by T .x/ D Ax, find a vector x
whose image under T is b, and determine whether x is unique.

3. A D

24 1 0 �2

�2 1 6

3 �2 �5

35, bD 24 �1

7

�3

35
4. A D

24 1 �3 2

0 1 �4

3 �5 �9

35, bD 24 6

�7

�9

35
5. A D

�
1 �5 �7

�3 7 5

�
, bD

�
�2

�2

�

6. A D

2664
1 �2 1

3 �4 5

0 1 1

�3 5 �4

3775, b D
2664

1

9

3

�6

3775
7. Let A be a 4 � 6 matrix. What must a and b be in order to

define T W Ra ! Rb by T .x/ D Ax?

8. How many rows and columns must a matrix A have in order
to define a mapping from R3 into R6 by the rule T .x/ D Ax?

For Exercises 9 and 10, find all x in R4 that are mapped into the
zero vector by the transformation x 7!Ax for the given matrix A.

9. A D

24 1 �4 7 �5

0 1 �4 3

2 �6 6 �4

35

10. A D

2664
1 3 9 2

1 0 3 �4

0 1 2 3

�2 3 0 5

3775
11. Let b D

24 �1

1

0

35, and letA be the matrix in Exercise 9. Is b in

the range of the linear transformation x 7!Ax? Why or why
not?

12. Let b D

2664
�1

3

�1

4

3775, and let A be the matrix in Exercise 10. Is

b in the range of the linear transformation x 7!Ax? Why or
why not?

In Exercises 13–16, use a rectangular coordinate system to plot

u D
�

5

2

�
, v D

�
�2

4

�
, and their images under the given transfor-

mation T . (Make a separate and reasonably large sketch for each
exercise.) Describe geometrically what T does to each vector x
in R2.

13. T .x/ D

�
�1 0

0 �1

� �
x1

x2

�

14. T .x/ D

�
:5 0

0 :5

� �
x1

x2

�

15. T .x/ D

�
0 0

0 1

� �
x1

x2

�

16. T .x/ D

�
0 1

1 0

� �
x1

x2

�
17. Let T W R2 ! R2 be a linear transformation that maps

u D
�

2

1

�
into

�
3

4

�
and maps v D

�
1

2

�
into

�
1

�5

�
. Use the

fact that T is linear to find the images under T of 5u, 4v, and
5uC 4v.

18. The figure shows vectors u, v, and w, along with the images
T .u/ and T .v/ under the action of a linear transformation
T W R2 ! R2. Copy this figure carefully, and draw the image
T .w/ as accurately as possible. [Hint: First, writew as a linear
combination of u and v.]

uw

v

T(v)

T(u)

x2 x2

x1x1

19. Let e1 D

�
1

0

�
, e2 D

�
0

1

�
, y1 D

�
2

5

�
, and y2 D

�
�1

6

�
, and

let T W R2 ! R2 be a linear transformation that maps e1

into y1 and maps e2 into y2. Find the images of
�

5

�3

�
and�

x1

x2

�
.

20. Let x D
�

x1

x2

�
, v1 D

�
�3

5

�
, and v1 D

�
2

�9

�
, and let

T W R2 ! R2 be a linear transformation that maps x into
x1v1 C x2v2. Find a matrix A such that T .x/ is Ax for
each x.
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In Exercises 21–30, mark each statement True or False (T/F).
Justify each answer.

21. (T/F) A linear transformation is a special type of function.

22. (T/F) Every matrix transformation is a linear transformation.

23. (T/F) If A is a 3 � 5 matrix and T is a transformation defined
by T .x/ D Ax, then the domain of T is R3.

24. (T/F) The codomain of the transformation x 7! Ax is the set
of all linear combinations of the columns of A.

25. (T/F) If A is an m � n matrix, then the range of the transfor-
mation x 7! Ax is Rm.

26. (T/F) If T W Rn ! Rm is a linear transformation and if c is in
Rm, then a uniqueness question is “Is c in the range of T ?”

27. (T/F) Every linear transformation is a matrix transformation.

28. (T/F) A linear transformation preserves the operations of
vector addition and scalar multiplication.

29. (T/F) A transformation T is linear if and only if T .c1v1 C

c2v2/ D c1T .v1/C c2T .v2/ for all v1 and v2 in the domain
of T and for all scalars c1 and c2.

30. (T/F) The superposition principle is a physical description of
a linear transformation.

31. Let T W R2 ! R2 be the linear transformation that reflects
each point through the x1-axis. (See Practice Problem 2.)
Make two sketches similar to Figure 6 that illustrate prop-
erties (i) and (ii) of a linear transformation.

32. Suppose vectors v1; : : : ; vp spanRn, and let T W Rn ! Rn be
a linear transformation. Suppose T .vi / D 0 for i D 1; : : : ; p.
Show that T is the zero transformation. That is, show that if
x is any vector in Rn, then T .x/ D 0.

33. Given v ¤ 0 and p inRn, the line through p in the direction of
v has the parametric equation x D pC tv. Show that a linear
transformation T W Rn ! Rn maps this line onto another line
or onto a single point (a degenerate line).

34. Let u and v be linearly independent vectors in R3, and let P

be the plane through u, v, and 0. The parametric equation
of P is x D suC tv (with s; t in R). Show that a linear
transformation T W R3 ! R3 maps P onto a plane through
0, or onto a line through 0, or onto just the origin in R3. What
must be true about T .u/ and T .v/ in order for the image of
the plane P to be a plane?

35. a. Show that the line through vectors p and q in Rn may be
written in the parametric form x D .1 � t /pC tq. (Refer
to the figure with Exercises 25 and 26 in Section 1.5.)

b. The line segment from p to q is the set of points of the
form .1 � t/pC tq for 0 � t � 1 (as shown in the figure

below). Show that a linear transformation T maps this line
segment onto a line segment or onto a single point.

(t 5 1)  q (12 t)p 1 tq
x

(t 5 0) p

36. Let u and v be vectors inRn. It can be shown that the setP of
all points in the parallelogram determined by u and v has the
form auC bv, for 0 � a � 1, 0 � b � 1. Let T W Rn ! Rm

be a linear transformation. Explain why the image of a point
in P under the transformation T lies in the parallelogram
determined by T .u/ and T .v/.

37. Define f W R! R by f .x/ D mx C b.

a. Show that f is a linear transformation when b D 0.

b. Find a property of a linear transformation that is violated
when b ¤ 0.

c. Why is f called a linear function?

38. An affine transformation T W Rn ! Rm has the form
T .x/ DAxC b, withA anm � nmatrix and b inRm. Show
that T is not a linear transformation when b ¤ 0. (Affine
transformations are important in computer graphics.)

39. Let T W Rn ! Rm be a linear transformation, and let
fv1; v2; v3g be a linearly dependent set in Rn. Explain why
the set fT .v1/; T .v2/; T .v3/g is linearly dependent.

In Exercises 40–44, column vectors are written as rows, such as
x D .x1; x2/, and T .x/ is written as T .x1; x2/.

40. Show that the transformation T defined by T .x1; x2/ D

.4x1 � 2x2; 3jx2j/ is not linear.

41. Show that the transformation T defined by T .x1; x2/ D

.2x1 � 3x2; x1 C 4; 5x2/ is not linear.

42. Let T W Rn ! Rm be a linear transformation. Show that if
T maps two linearly independent vectors onto a linearly
dependent set, then the equation T .x/ D 0 has a nontrivial
solution. [Hint: Suppose u and v in Rn are linearly inde-
pendent and yet T .u/ and T .v/ are linearly dependent. Then
c1T .u/C c2T .v/ D 0 for some weights c1 and c2, not both
zero. Use this equation.]

43. LetT W R3 ! R3 be the transformation that reflects each vec-
tor x D .x1; x2; x3/ through the plane x3 D 0 onto T .x/ D

.x1; x2;�x3/. Show that T is a linear transformation. [See
Example 4 for ideas.]

44. Let T W R3 ! R3 be the transformation that projects each
vector x D .x1; x2; x3/ onto the plane x2 D 0, so T .x/ D

.x1; 0; x3/. Show that T is a linear transformation.
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T In Exercises 45 and 46, the given matrix determines a linear
transformation T . Find all x such that T .x/ D 0.

45.

2664
4 �2 5 �5

�9 7 �8 0

�6 4 5 3

5 �3 8 �4

3775 46.

2664
�9 �4 �9 4

5 �8 �7 6

7 11 16 �9

9 �7 �4 5

3775

T 47. Let b D

2664
7

5

9

7

3775 and let A be the matrix in Exercise 45. Is b

in the range of the transformation x 7!Ax? If so, find an x
whose image under the transformation is b.

T 48. Let b D

2664
�7

�7

13

�5

3775 and let A be the matrix in Exercise 46. Is b

in the range of the transformation x 7!Ax? If so, find an x
whose image under the transformation is b.

STUDY GUIDE offers additional
resources for mastering linear
transformations.

Solutions to Practice Problems

1. A must have five columns for Ax to be defined. A must have two rows for the

Au

u

x2

x1

A

The transformation x      Ax.

v

v

Ax

x

codomain of T to be R2.

2. Plot some random points (vectors) on graph paper to see what happens. A point such
as .4; 1/ maps into .4;�1/. The transformation x 7!Ax reflects points through the
x-axis (or x1-axis).

3. Let x D tu for some t such that 0 � t � 1. Since T is linear, T .tu/ D t T .u/, which
is a point on the line segment between 0 and T .u/.

1.9 The Matrix of a Linear Transformation
Whenever a linear transformation T arises geometrically or is described in words, we
usually want a “formula” for T .x/. The discussion that follows shows that every linear
transformation from Rn to Rm is actually a matrix transformation x 7!Ax and that
important properties of T are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the columns
of the n � n identity matrix In.

EXAMPLE 1 The columns of I2 D

�
1 0

0 1

�
are e1 D

�
1

0

�
and e2 D

�
0

1

�
.

Suppose T is a linear transformation from R2 into R3 such that

T .e1/ D

24 5

�7

2

35 and T .e2/ D

24�3

8

0

35
With no additional information, find a formula for the image of an arbitrary x in R2.

x1

x2

e2 5

5

0
1

e1
1
0

SOLUTION Write

x D
�

x1

x2

�
D x1

�
1

0

�
C x2

�
0

1

�
D x1e1 C x2e2 (1)

Since T is a linear transformation,

T .x/ D x1T .e1/C x2T .e2/ (2)

D x1

24 5

�7

2

35C x2

24�3

8

0

35 D 24 5x1 � 3x2

�7x1 C 8x2

2x1 C 0

35
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The step from equation (1) to equation (2) explains why knowledge of T .e1/ and
T .e2/ is sufficient to determine T .x/ for any x. Moreover, since (2) expresses T .x/ as a
linear combination of vectors, we can put these vectors into the columns of a matrix A

and write (2) as

T .x/ D
�

T .e1/ T .e2/
� � x1

x2

�
D Ax

THEOREM 10 Let T W Rn ! Rm be a linear transformation. Then there exists a unique matrix A

such that
T .x/ D Ax for all x in Rn

In fact, A is the m � n matrix whose j th column is the vector T .ej /, where ej is
the j th column of the identity matrix in Rn:

A D
�

T .e1/ � � � T .en/
�

(3)

PROOF Write x D Inx D Œ e1 � � � en �x D x1e1 C � � � C xnen, and use the linearity
of T to compute

T .x/ D T .x1e1 C � � � C xnen/ D x1T .e1/C � � � C xnT .en/

D
�

T .e1/ � � � T .en/
�264 x1

:::

xn

375 D Ax

The uniqueness of A is treated in Exercise 41.

The matrix A in (3) is called the standard matrix for the linear transforma-
tion T .

We know now that every linear transformation from Rn to Rm can be viewed as
a matrix transformation, and vice versa. The term linear transformation focuses on a
property of a mapping, while matrix transformation describes how such a mapping is
implemented, as Examples 2 and 3 illustrate.

EXAMPLE 2 Find the standard matrix A for the dilation transformation T .x/ D 3x,
for x in R2.

SOLUTION Write

T .e1/ D 3e1 D

�
3

0

�
and T .e2/ D 3e2 D

�
0

3

�
? ?

A D

�
3 0

0 3

�
EXAMPLE 3 Let T W R2 ! R2 be the transformation that rotates each point in R2

about the origin through an angle ', with counterclockwise rotation for a positive angle.
We could show geometrically that such a transformation is linear. (See Figure 6 in
Section 1.8.) Find the standard matrix A of this transformation.
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SOLUTION
�

1

0

�
rotates into

�
cos'

sin'

�
, and

�
0

1

�
rotates into

�
� sin'

cos'

�
. See Figure 1.

By Theorem 10,

A D

�
cos' � sin'

sin' cos'

�
Example 5 in Section 1.8 is a special case of this transformation, with ' D �=2.

(2sin w, cos w) 

(cos w, sin w)

(1, 0)

(0, 1)

w

w x1

x2

FIGURE 1 A rotation transformation.

Geometric Linear Transformations of R2

Examples 2 and 3 illustrate linear transformations that are described geometrically.
Tables 1–4 illustrate other common geometric linear transformations of the plane.
Because the transformations are linear, they are determined completely by what they
do to the columns of I2. Instead of showing only the images of e1 and e2, the tables
show what a transformation does to the unit square (Figure 2).

Other transformations can be constructed from those listed in Tables 1–4 by
applying one transformation after another. For instance, a horizontal shear could be
followed by a reflection in the x2-axis. Section 2.1 will show that such a composition of
linear transformations is linear. (Also, see Exercise 44.)

x1

x2

1
0

0
1

FIGURE 2

The unit square.

Existence and Uniqueness Questions
The concept of a linear transformation provides a new way to understand the existence
and uniqueness questions asked earlier. The next two definitions give the appropriate
terminology for transformations.

DEFINITION A mapping T W Rn ! Rm is said to be onto Rm if each b in Rm is the image of at
least one x in Rn.

Equivalently, T is onto Rm when the range of T is all of the codomain Rm. That is,
T maps Rn onto Rm if, for each b in the codomain Rm, there exists at least one solution
of T .x/ D b. “Does T map Rn onto Rm?” is an existence question. The mapping T is
not onto when there is some b in Rm for which the equation T .x/ D b has no solution.
See Figure 3.

m

T is onto m

n

Domain Range

T is not onto m

T

n

Domain Range

m

T

FIGURE 3 Is the range of T all of Rm?
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TABLE 1 Reflections

Transformation Image of the Unit Square Standard Matrix

Reflection through
the x1-axis 

01
210

210
021

021
10

021
210

10
01

Reflection through
the x2-axis

Reflection through
the line x2 5 x1

x2 5 2x1

Reflection through
the line x2 5 2x1

21
0

21
0

0
21

0
21

x1

x2

Reflection through
the origin

x1

x2

x1

x2

1
0

0
21

x1

x2

0
1

21
0

x1

x2

1
0

0
1

x2 5 x1
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TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matrix

Horizontal
contraction
and expansion

Vertical
contraction
and expansion

0k
10

01
k0

0 , k , 1

0 , k , 1 k . 1

k . 1

0
1

1
0

1
0

0
k

0
1

0
k

k
0

k
0

x1

x2

x2

x1

x2

x1

x2

x1

TABLE 3 Shears

Transformation Image of the Unit Square Standard Matrix

Horizontal shear k1
10

01
1k

k , 0 k . 0

0
1

0
1

1
0

k
1

k
1

1
k

1
k

Vertical shear

k , 0 k . 0

x2

k k 1
0

k

k

x2

x1

x2

x1

x2

x1x1
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TABLE 4 Projections

Transformation Image of the Unit Square Standard Matrix

01
00

00
10

1
0

0
0

0
1

Projection onto
the x1-axis

Projection onto
the x2-axis

x1

x2

0
0

x1

x2

DEFINITION A mapping T W Rn ! Rm is said to be one-to-one if each b in Rm is the image of
at most one x in Rn.

Equivalently,T is one-to-one if, for each b inRm, the equationT .x/ D b has either a
unique solution or none at all. “Is T one-to-one?” is a uniqueness question. The mapping
T is not one-to-one when some b in Rm is the image of more than one vector in Rn. If
there is no such b, then T is one-to-one. See Figure 4.

m

T is not one-to-one T is one-to-one

TT

m
n n

0 000

RangeRangeDomain Domain

FIGURE 4 Is every b the image of at most one vector?

The projection transformations shown in Table 4 are not one-to-one and do notmap
R2 onto R2. The transformations in Tables 1, 2, and 3 are one-to-one and do map R2

onto R2. Other possibilities are shown in the two examples below.
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Example 4 and the theorems that follow show how the function properties of being
one-to-one and mapping onto are related to important concepts studied earlier in this
chapter.

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

A D

24 1 �4 8 1

0 2 �1 3

0 0 0 5

35
Does T map R4 onto R3? Is T a one-to-one mapping?

SOLUTION Since A happens to be in echelon form, we can see at once that A has a
pivot position in each row. By Theorem 4 in Section 1.4, for each b in R3, the equation
Ax D b is consistent. In other words, the linear transformation T maps R4 (its domain)
onto R3. However, since the equation Ax D b has a free variable (because there are four
variables and only three basic variables), each b is the image of more than one x. That
is, T is not one-to-one.

THEOREM 11 Let T W Rn ! Rm be a linear transformation. Then T is one-to-one if and only if
the equation T .x/ D 0 has only the trivial solution.

Remark: To prove a theorem that says “statement P is true if and only if statement Q is
true,” one must establish two things: (1) If P is true, then Q is true and (2) If Q is true,
then P is true. The second requirement can also be established by showing (2a): If P is
false, then Q is false. (This is called contrapositive reasoning.) This proof uses (1) and
(2a) to show that P and Q are either both true or both false.

PROOF Since T is linear, T .0/ D 0. If T is one-to-one, then the equation T .x/ D 0
has at most one solution and hence only the trivial solution. If T is not one-to-one, then
there is a b that is the image of at least two different vectors in Rn—say, u and v. That
is, T .u/ D b and T .v/ D b. But then, since T is linear,

T .u � v/ D T .u/ � T .v/ D b � b D 0

The vector u � v is not zero, since u ¤ v. Hence the equation T .x/ D 0 has more than
one solution. So, either the two conditions in the theorem are both true or they are both
false.

THEOREM 12 Let T W Rn ! Rm be a linear transformation, and let A be the standard matrix for
T . Then:

a. T maps Rn onto Rm if and only if the columns of A span Rm;

b. T is one-to-one if and only if the columns of A are linearly independent.

Remark: “If and only if” statements can be linked together. For example if “P if and
only if Q” is known and “Q if and only if R” is known, then one can conclude “P if
and only if R.” This strategy is used repeatedly in this proof.
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PROOF

a. By Theorem 4 in Section 1.4, the columns of A span Rm if and only if for each b in
Rm the equation Ax D b is consistent—in other words, if and only if for every b, the
equation T .x/ D b has at least one solution. This is true if and only if T maps Rn

onto Rm.

b. The equations T .x/ D 0 and Ax D 0 are the same except for notation. So, by
Theorem 11, T is one-to-one if and only if Ax D 0 has only the trivial solution.
This happens if and only if the columns ofA are linearly independent, as was already
noted in the boxed statement (3) in Section 1.7.

Statement (a) in Theorem 12 is equivalent to the statement “T maps Rn onto Rm if
and only if every vector inRm is a linear combination of the columns ofA.” See Theorem
4 in Section 1.4.

In the next example and in some exercises that follow, column vectors are written in
rows, such as x D .x1; x2/, and T .x/ is written as T .x1; x2/ instead of the more formal
T ..x1; x2//.

EXAMPLE 5 Let T .x1; x2/ D .3x1 C x2, 5x1 C 7x2, x1 C 3x2/. Show that T is a
one-to-one linear transformation. Does T map R2 onto R3?

SOLUTION When x and T .x/ are written as column vectors, you can determine the
standard matrix of T by inspection, visualizing the row–vector computation of each
entry in Ax.

T .x/ D

24 3x1 C x2

5x1 C 7x2

x1 C 3x2

35 D 24 ? ?
? ?
? ?

35� x1

x2

�
D

24 3 1

5 7

1 3

35� x1

x2

�
(4)

A

So T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns ofA are linearly independent because they are notmultiples. By Theorem 12(b),
T is one-to-one. To decide if T is onto R3, examine the span of the columns of A. Since
A is 3 � 2, the columns of A span R3 if and only if A has 3 pivot positions, by Theorem
4. This is impossible, since A has only 2 columns. So the columns of A do not span R3,
and the associated linear transformation is not onto R3.

x2

The transformation T is not
onto     .3

e2

e1
x1

x2

T

T

x3

x1

Span{a1, a2}

a1

a2

Practice Problems

1. Let T W R2 ! R2 be the transformation that first performs a horizontal shear that
maps e2 into e2 � :5e1 (but leaves e1 unchanged) and then reflects the result through
the x2-axis. Assuming that T is linear, find its standard matrix. [Hint:Determine the
final location of the images of e1 and e2.]

2. SupposeA is a 7 � 5matrix with 5 pivots. Let T .x/ D Ax be a linear transformation
from R5 into R7. Is T a one-to-one linear transformation? Is T onto R7?

1.9 Exercises
In Exercises 1–10, assume that T is a linear transformation. Find
the standard matrix of T .

1. T W R2 ! R4,T .e1/ D .2; 1; 2; 1/ andT .e2/ D .�5; 2; 0; 0/,
where e1 D .1; 0/ and e2 D .0; 1/.

2. T W R3 ! R2, T .e1/ D .1; 3/, T .e2/ D .4; 2/, and T .e3/ D

.�5; 4/, where e1, e2, e3 are the columns of the 3 � 3 identity
matrix.

3. T W R2 ! R2 rotates points (about the origin) through 3�=2

radians (in the counterclockwise direction).
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4. T W R2 ! R2 rotates points (about the origin) through ��=4

radians (since the number is negative, the actual rotation is
clockwise). [Hint: T .e1/ D .1=

p
2;�1=

p
2/.]

5. T W R2 ! R2 is a vertical shear transformation that maps e1

into e1 � 2e2 but leaves the vector e2 unchanged.

6. T W R2 ! R2 is a horizontal shear transformation that leaves
e1 unchanged and maps e2 into e2 C 5e1.

7. T W R2 ! R2 first rotates points through �3�=4 radians
(since the number is negative, the actual rotation is clockwise)
and then reflects points through the horizontal x1-axis. [Hint:
T .e1/ D .�1=

p
2; 1=
p

2/.]

8. T W R2 ! R2 first reflects points through the vertical x2-axis
and then reflects points through the line x2 D x1.

9. T W R2 ! R2 first performs a horizontal shear that trans-
forms e2 into e2 � 3e1 (leaving e1 unchanged) and then re-
flects points through the line x2 D �x1.

10. T W R2 ! R2 first reflects points through the vertical x2-axis
and then rotates points 3�=2 radians.

11. A linear transformation T W R2 ! R2 first reflects points
through the x1-axis and then reflects points through the x2-
axis. Show that T can also be described as a linear transfor-
mation that rotates points about the origin. What is the angle
of that rotation?

12. Show that the transformation in Exercise 8 is merely a rota-
tion about the origin. What is the angle of the rotation?

13. LetT W R2 ! R2 be the linear transformation such thatT .e1/

and T .e2/ are the vectors shown in the figure. Using the
figure, sketch the vector T .2; 1/.

T(e1) T(e2)

x1

x2

14. Let T W R2 ! R2 be a linear transformation with standard
matrix A D Œa1 a2�, where a1 and a2 are shown in the

figure. Using the figure, draw the image of
�
�1

3

�
under the

transformation T .

x1

x2

a2

a1

In Exercises 15 and 16, fill in the missing entries of the matrix,
assuming that the equation holds for all values of the variables.

15.

24 ‹ ‹ ‹

‹ ‹ ‹

‹ ‹ ‹

3524 x1

x2

x3

35 D 24 2x1 � 3x3

4x1

x1 � x2 C x3

35
16.

24 ‹ ‹

‹ ‹

‹ ‹

35� x1

x2

�
D

24 x1 � 3x2

�2x1 C x2

x1

35
In Exercises 17–20, show that T is a linear transformation by
finding a matrix that implements the mapping. Note that x1; x2; : : :

are not vectors but are entries in vectors.

17. T .x1; x2; x3; x4/ D .0; x1 C x2; x2 C x3; x3 C x4/

18. T .x1; x2/ D .2x2 � 3x1; x1 � 4x2; 0; x2/

19. T .x1; x2; x3/ D .x1 � 5x2 C 4x3; x2 � 6x3/

20. T .x1; x2; x3; x4/ D 2x1 C 3x3 � 4x4 .T W R4 ! R/

21. Let T W R2 ! R2 be a linear transformation such that
T .x1; x2/ D .x1 C x2; 4x1 C 5x2/. Find x such that T .x/ D

.3; 8/.

22. Let T W R2 ! R3 be a linear transformation such that
T .x1; x2/ D .x1 � 2x2;�x1 C 3x2; 3x1 � 2x2/. Find x such
that T .x/ D .�1; 4; 9/.

In Exercises 23–32, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) A linear transformation T W Rn ! Rm is completely
determined by its effect on the columns of the n � n identity
matrix.

24. (T/F) A mapping T W Rn ! Rm is one-to-one if each vector
in Rn maps onto a unique vector in Rm.

25. (T/F) If T W R2 ! R2 rotates vectors about the origin
through an angle �, then T is a linear transformation.

26. (T/F) The columns of the standard matrix for a linear trans-
formation from Rn to Rm are the images of the columns of
the n � n identity matrix.

27. (T/F) When two linear transformations are performed one
after another, the combined effect may not always be a linear
transformation.

28. (T/F) Not every linear transformation from Rn to Rm is a
matrix transformation.

29. (T/F) A mapping T W Rn ! Rm is onto Rm if every vector x
in Rn maps onto some vector in Rm.

30. (T/F) The standard matrix of a linear transformation from
R2 to R2 that reflects points through the horizontal axis, the

vertical axis, or the origin has the form
�

a 0

0 d

�
, where a

and d are˙1.
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31. (T/F) A is a 3 � 2 matrix, then the transformation x 7! Ax
cannot be one-to-one.

32. (T/F) A is a 3 � 2 matrix, then the transformation x 7! Ax
cannot map R2 onto R3.

In Exercises 33–36, determine if the specified linear transforma-
tion is (a) one-to-one and (b) onto. Justify each answer.

33. The transformation in Exercise 17

34. The transformation in Exercise 2

35. The transformation in Exercise 19

36. The transformation in Exercise 14

In Exercises 37 and 38, describe the possible echelon forms of the
standard matrix for a linear transformation T . Use the notation of
Example 1 in Section 1.2.

37. T W R3 ! R4 is one-to-one.

38. T W R4 ! R3 is onto.

39. Let T W Rn ! Rm be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “T is one-to-one if and only if A has pivot
columns.” Explain why the statement is true. [Hint: Look in
the exercises for Section 1.7.]

40. Let T W Rn ! Rm be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “T maps Rn onto Rm if and only if A has pivot
columns.” Find some theorems that explainwhy the statement
is true.

41. Verify the uniqueness ofA in Theorem 10. Let T W Rn ! Rm

be a linear transformation such that T .x/ D Bx for some

m � n matrix B . Show that if A is the standard matrix for
T , then A D B . [Hint: Show that A and B have the same
columns.]

42. Why is the question “Is the linear transformation T onto?”
an existence question?

43. If a linear transformation T W Rn ! Rm maps Rn onto Rm,
can you give a relation between m and n? If T is one-to-one,
what can you say about m and n?

44. Let S W Rp ! Rn and T W Rn ! Rm be linear transforma-
tions. Show that the mapping x 7! T .S.x// is a linear trans-
formation (fromRp toRm). [Hint: Compute T .S.cuC dv//

for u; v in Rp and scalars c and d . Justify each step of the
computation, and explain why this computation gives the
desired conclusion.]

T In Exercises 45–48, let T be the linear transformation whose
standard matrix is given. In Exercises 45 and 46, decide if T is a
one-to-one mapping. In Exercises 47 and 48, decide if T maps R5

onto R5. Justify your answers.

45.

2664
�5 10 �5 4

8 3 �4 7

4 �9 5 �3

�3 �2 5 4

3775 46.

2664
7 5 4 �9

10 6 16 �4

12 8 12 7

�8 �6 �2 5

3775

47.

266664
4 �7 3 7 5

6 �8 5 12 �8

�7 10 �8 �9 14

3 �5 4 2 �6

�5 6 �6 �7 3

377775

48.

266664
9 13 5 6 �1

14 15 �7 �6 4

�8 �9 12 �5 �9

�5 �6 �8 9 8

13 14 15 2 11

377775
STUDY GUIDE offers additional
resources for mastering existence
and uniqueness.

Solution to Practice Problems

1. Follow what happens to e1 and e2. See Figure 5. First, e1 is unaffected by the shear
and then is reflected into �e1. So T .e1/ D �e1. Second, e2 goes to e2 � :5e1 by the
shear transformation. Since reflection through the x2-axis changes e1 into �e1 and
leaves e2 unchanged, the vector e2 � :5e1 goes to e2 C :5e1. So T .e2/ D e2 C :5e1.

1
0

1
0 0

21

Shear transformation Reflection through the x2-axis

x2

0
1

2.5
1

.5
1

x1

x2 x2

x1 x1

FIGURE 5 The composition of two transformations.
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Thus the standard matrix of T is�
T .e1/ T .e2/

�
D
�
�e1 e2 C :5e1

�
D

�
�1 :5

0 1

�
2. The standard matrix representation of T is the matrixA. SinceA has 5 columns and

5 pivots, there is a pivot in every column so the columns are linearly independent.
By Theorem 12, T is one-to-one. Since A has 7 rows and only 5 pivots, there is not
a pivot in every row hence the columns of A do not span R7. By Theorem 12, and
T is not onto.

1.10 Linear Models in Business, Science, and Engineering
The mathematical models in this section are all linear; that is, each describes a
problem by means of a linear equation, usually in vector or matrix form. The first
model concerns nutrition but actually is representative of a general technique in linear
programming problems. The second model comes from electrical engineering. The third
model introduces the concept of a linear difference equation, a powerful mathematical
tool for studying dynamic processes in a wide variety of fields such as engineering,
ecology, economics, telecommunications, and the management sciences. Linear models
are important because natural phenomena are often linear or nearly linear when the
variables involved are held within reasonable bounds. Also, linear models are more
easily adapted for computer calculation than are complex nonlinear models.

As you read about each model, pay attention to how its linearity reflects some
property of the system being modeled.

Constructing a Nutritious Weight-Loss Diet
The formula for the Cambridge Diet, a popular diet in the 1980s, was based on years
of research. A team of scientists headed by Dr. Alan H. Howard developed this diet at
Cambridge University after more than eight years of clinical work with obese patients.1

The very low-calorie powdered formula diet combines a precise balance of carbohydrate,
high-quality protein, and fat, together with vitamins, minerals, trace elements, and
electrolytes. Millions of persons have used the diet to achieve rapid and substantial
weight loss.

To achieve the desired amounts and proportions of nutrients, Dr. Howard had to
incorporate a large variety of foodstuffs in the diet. Each foodstuff supplied several of
the required ingredients, but not in the correct proportions. For instance, nonfat milk was
a major source of protein but contained too much calcium. So soy flour was used for
part of the protein because soy flour contains little calcium. However, soy flour contains
proportionally too much fat, so whey was added since it supplies less fat in relation to
calcium. Unfortunately, whey contains too much carbohydrate: : : :

The following example illustrates the problem on a small scale. Listed in Table 1
are three of the ingredients in the diet, together with the amounts of certain nutrients
supplied by 100 grams (g) of each ingredient.2

1 The first announcement of this rapid weight-loss regimen was given in the International Journal of Obesity
(1978) 2, 321–332.
2 Ingredients in the diet as of 1984; nutrient data for ingredients adapted from USDA Agricultural
Handbooks No. 8-1 and 8-6, 1976.
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TABLE 1 The Cambridge Diet

Amounts (g) Supplied per 100 g of Ingredient

Nutrient Nonfat milk Soy flour Whey
Amounts (g) Supplied by

Cambridge Diet in One Day

Protein 36 51 13 33

Carbohydrate 52 34 74 45

Fat 0 7 1.1 3

EXAMPLE 1 If possible, find some combination of nonfat milk, soy flour, and whey
to provide the exact amounts of protein, carbohydrate, and fat supplied by the diet in one
day (Table 1).

SOLUTION Let x1, x2, and x3, respectively, denote the number of units (100 g) of
these foodstuffs. One approach to the problem is to derive equations for each nutrient
separately. For instance, the product�

x1 units of
nonfat milk

�
�

�
protein per unit
of nonfat milk

�
gives the amount of protein supplied by x1 units of nonfat milk. To this amount, we
would then add similar products for soy flour and whey and set the resulting sum equal
to the amount of protein we need. Analogous calculations would have to be made for
each nutrient.

A more efficient method, and one that is conceptually simpler, is to consider a
“nutrient vector” for each foodstuff and build just one vector equation. The amount of
nutrients supplied by x1 units of nonfat milk is the scalar multiple

Scalar Vector�
x1 units of
nonfat milk

�
�

�
nutrients per unit
of nonfat milk

�
D x1a1 (1)

where a1 is the first column in Table 1. Let a2 and a3 be the corresponding vectors for soy
flour and whey, respectively, and let b be the vector that lists the total nutrients required
(the last column of the table). Then x2a2 and x3a3 give the nutrients supplied by x2 units
of soy flour and x3 units of whey, respectively. So the relevant equation is

x1a1 C x2a2 C x3a3 D b (2)

Row reduction of the augmentedmatrix for the corresponding system of equations shows
that 24 36 51 13 33

52 34 74 45

0 7 1.1 3

35 � � � � � 24 1 0 0 :277

0 1 0 :392

0 0 1 :233

35
To three significant digits, the diet requires .277 units of nonfat milk, .392 units of
soy flour, and .233 units of whey in order to provide the desired amounts of protein,
carbohydrate, and fat.

It is important that the values of x1, x2, and x3 found above are nonnegative. This is
necessary for the solution to be physically feasible. (How could you use �:233 units of
whey, for instance?) With a large number of nutrient requirements, it may be necessary
to use a larger number of foodstuffs in order to produce a system of equations with a
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“nonnegative” solution. Thusmany, many different combinations of foodstuffsmay need
to be examined in order to find a system of equations with such a solution. In fact, the
manufacturer of the Cambridge Diet was able to supply 31 nutrients in precise amounts
using only 33 ingredients.

The diet construction problem leads to the linear equation (2) because the amount
of nutrients supplied by each foodstuff can be written as a scalar multiple of a vector, as
in (1). That is, the nutrients supplied by a foodstuff are proportional to the amount of
the foodstuff added to the diet mixture. Also, each nutrient in the mixture is the sum of
the amounts from the various foodstuffs.

Problems of formulating specialized diets for humans and livestock occur fre-
quently. Usually they are treated by linear programming techniques. Our method of
constructing vector equations often simplifies the task of formulating such problems.

Linear Equations and Electrical Networks
Current flow in a simple electrical network can be described by a system of linear
equations. A voltage source such as a battery forces a current of electrons to flow through
the network. When the current passes through a resistor (such as a lightbulb or motor),
some of the voltage is “used up”; by Ohm’s law, this “voltage drop” across a resistor is
given by

V D RI

where the voltage V is measured in volts, the resistance R in ohms (denoted by �), and
the current flow I in amperes (amps, for short).

The network in Figure 1 contains three closed loops. The currents flowing in loops
1, 2, and 3 are denoted by I1; I2, and I3, respectively. The designated directions of such
loop currents are arbitrary. If a current turns out to be negative, then the actual direction
of current flow is opposite to that chosen in the figure. If the current direction shown is
away from the positive (longer) side of a battery ( ) around to the negative (shorter)
side, the voltage is positive; otherwise, the voltage is negative.

Current flow in a loop is governed by the following rule.

KIRCHHOFF’S VOLTAGE LAW

The algebraic sum of the RI voltage drops in one direction around a loop equals
the algebraic sum of the voltage sources in the same direction around the loop.

EXAMPLE 2 Determine the loop currents in the network in Figure 1.

1 V1 V

1 V1 V

4 V4 V

DC

BA

1 V

3 V

5 volts

20 volts

30 volts

I2

I1

I3

FIGURE 1

SOLUTION For loop 1, the current I1 flows through three resistors, and the sum of the
RI voltage drops is

4I1 C 4I1 C 3I1 D .4C 4C 3/I1 D 11I1

Current from loop 2 also flows in part of loop 1, through the short branch between A

and B . The associated RI drop there is 3I2 volts. However, the current direction for the
branch AB in loop 1 is opposite to that chosen for the flow in loop 2, so the algebraic
sum of all RI drops for loop 1 is 11I1 � 3I2. Since the voltage in loop 1 is C30 volts,
Kirchhoff’s voltage law implies that

11I1 � 3I2 D 30
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The equation for loop 2 is

�3I1 C 6I2 � I3 D 5

The term �3I1 comes from the flow of the loop 1 current through the branch AB (with
a negative voltage drop because the current flow there is opposite to the flow in loop 2).
The term 6I2 is the sum of all resistances in loop 2, multiplied by the loop current. The
term �I3 D �1 � I3 comes from the loop 3 current flowing through the 1-ohm resistor
in branch CD, in the direction opposite to the flow in loop 2. The loop 3 equation is

�I2 C 3I3 D �25

Note that the 5-volt battery in branch CD is counted as part of both loop 2 and loop 3,
but it is�5 volts for loop 3 because of the direction chosen for the current in loop 3. The
20-volt battery is negative for the same reason.

The loop currents are found by solving the system

11I1 � 3I2 D 30

�3I1 C 6I2 � I3 D 5

� I2 C 3I3 D �25

(3)

Row operations on the augmentedmatrix lead to the solution: I1 D 3 amps, I2 D 1 amp,
and I3 D �8 amps. The negative value of I3 indicates that the actual current in loop 3
flows in the direction opposite to that shown in Figure 1.

It is instructive to look at system (3) as a vector equation:

I1

24 11

�3

0

35
6
r1

C I2

24�3

6

�1

35
6
r2

C I3

24 0

�1

3

35
6
r3

D

24 30

5

�25

35
6
v

(4)

The first entry of each vector concerns the first loop, and similarly for the second and
third entries. The first resistor vector r1 lists the resistance in the various loops through
which current I1 flows. A resistance is written negatively when I1 flows against the flow
direction in another loop. Examine Figure 1 and see how to compute the entries in r1;
then do the same for r2 and r3. The matrix form of equation (4),

Ri D v; where R D Œ r1 r2 r3 � and i D

24 I1

I2

I3

35
provides a matrix version of Ohm’s law. If all loop currents are chosen in the same direc-
tion (say, counterclockwise), then all entries off the main diagonal of R will be negative.

The matrix equation Ri D v makes the linearity of this model easy to see at a
glance. For instance, if the voltage vector is doubled, then the current vector must
double. Also, a superposition principle holds. That is, the solution of equation (4) is the
sum of the solutions of the equations

Ri D

24 30

0

0

35; Ri D

24 0

5

0

35; and Ri D

24 0

0

�25

35
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Each equation here corresponds to the circuit with only one voltage source (the other
sources being replaced by wires that close each loop). The model for current flow is
linear precisely because Ohm’s law and Kirchhoff’s law are linear: The voltage drop
across a resistor is proportional to the current flowing through it (Ohm), and the sum of
the voltage drops in a loop equals the sum of the voltage sources in the loop (Kirchhoff).

Loop currents in a network can be used to determine the current in any branch of
the network. If only one loop current passes through a branch, such as from B to D

in Figure 1, the branch current equals the loop current. If more than one loop current
passes through a branch, such as from A to B , the branch current is the algebraic sum
of the loop currents in the branch (Kirchhoff’s current law). For instance, the current in
branch AB is I1 � I2 D 3 � 1 D 2 amps, in the direction of I1. The current in branch
CD is I2 � I3 D 9 amps.

Difference Equations
In many fields, such as ecology, economics, and engineering, a need arises to model
mathematically a dynamic system that changes over time. Several features of the system
are each measured at discrete time intervals, producing a sequence of vectors x0, x1,
x2; : : : : The entries in xk provide information about the state of the system at the time
of the kth measurement.

If there is a matrix A such that x1 D Ax0, x2 D Ax1, and, in general,

xkC1 D Axk for k D 0; 1; 2; : : : (5)

then (5) is called a linear difference equation (or recurrence relation). Given such
an equation, one can compute x1, x2, and so on, provided x0 is known. Sections 4.8
and several sections in Chapter 5 will develop formulas for xk and describe what can
happen to xk as k increases indefinitely. The discussion below illustrates how a difference
equation might arise.

A subject of interest to demographers is the movement of populations or groups of
people from one region to another. The simple model here considers the changes in the
population of a certain city and its surrounding suburbs over a period of years.

Fix an initial year—say, 2020—and denote the populations of the city and suburbs
that year by r0 and s0, respectively. Let x0 be the population vector

x0 D

�
r0

s0

�
City population, 2020
Suburban population, 2020

For 2021 and subsequent years, denote the populations of the city and suburbs by the
vectors

x1 D

�
r1

s1

�
; x2 D

�
r2

s2

�
; x3 D

�
r3

s3

�
; : : :

Our goal is to describe mathematically how these vectors might be related.
Suppose demographic studies show that each year about 5% of the city’s population

moves to the suburbs (and 95% remains in the city), while 3% of the suburban population
moves to the city (and 97% remains in the suburbs). See Figure 2.

After 1 year, the original r0 persons in the city are now distributed between city and
suburbs as �

:95r0

:05r0

�
D r0

�
:95

:05

�
Remain in city
Move to suburbs

(6)

The s0 persons in the suburbs in 2020 are distributed 1 year later as

s0

�
:03

:97

�
Move to city
Remain in suburbs

(7)
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.03

.05

.95 .97

City Suburbs

FIGURE 2 Annual percentage migration between city and suburbs.

The vectors in (6) and (7) account for all of the population in 2021.3 Thus�
r1

s1

�
D r0

�
:95

:05

�
C s0

�
:03

:97

�
D

�
:95 :03

:05 :97

��
r0

s0

�
That is,

x1 DMx0 (8)

where M is the migration matrix determined by the following table:

From:
City Suburbs To:�
:95

:05

:03

:97

�
City
Suburbs

Equation (8) describes how the population changes from 2020 to 2021. If the migration
percentages remain constant, then the change from 2021 to 2022 is given by

x2 DMx1

and similarly for 2022 to 2023 and subsequent years. In general,

xkC1 DMxk for k D 0; 1; 2; : : : (9)

The sequence of vectors fx0; x1; x2; : : :g describes the population of the city/suburban
region over a period of years.

EXAMPLE 3 Compute the population of the region just described for the years 2021
and 2022, given that the population in 2020 was 600,000 in the city and 400,000 in the
suburbs.

SOLUTION The initial population in 2020 is x0 D

�
600;000

400;000

�
. For 2021,

x1 D

�
:95 :03

:05 :97

��
600;000

400;000

�
D

�
582;000

418;000

�
For 2022,

x2 DMx1 D

�
:95 :03

:05 :97

��
582;000

418;000

�
D

�
565;440

434;560

�
3 For simplicity, we ignore other influences on the population such as births, deaths, and migration into and
out of the city/suburban region.
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The model for population movement in (9) is linear because the correspondence
xk 7! xkC1 is a linear transformation. The linearity depends on two facts: the number
of people who chose to move from one area to another is proportional to the number of
people in that area, as shown in (6) and (7), and the cumulative effect of these choices is
found by adding the movement of people from the different areas.

Practice Problem

Find a matrix A and vectors x and b such that the problem in Example 1 amounts to
solving the equation Ax D b.

1.10 Exercises
1. The container of a breakfast cereal usually lists the number

of calories and the amounts of protein, carbohydrate, and
fat contained in one serving of the cereal. The amounts for
two common cereals are given below. Suppose a mixture of
these two cereals is to be prepared that contains exactly 295
calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.

a. Set up a vector equation for this problem. Include a state-
ment of what the variables in your equation represent.

b. Write an equivalent matrix equation, and then determine
if the desired mixture of the two cereals can be prepared.

Nutrition Information per Serving

General Mills Quaker®
Nutrient Cheerios® 100% Natural Cereal

Calories 110 130
Protein (g) 4 3
Carbohydrate (g) 20 18
Fat (g) 2 5

2. One serving of Post Shredded Wheat® supplies 160 calories,
5 g of protein, 6 g of fiber, and 1 g of fat. One serving of
Crispix® supplies 110 calories, 2 g of protein, .1 g of fiber,
and .4 g of fat.

a. Set up a matrix B and a vector u such that Bu gives the
amounts of calories, protein, fiber, and fat contained in
a mixture of three servings of Shredded Wheat and two
servings of Crispix.

T b. Suppose that you want a cereal with more fiber than
Crispix but fewer calories than Shredded Wheat. Is it
possible for a mixture of the two cereals to supply 130
calories, 3.20 g of protein, 2.46 g of fiber, and .64 g of
fat? If so, what is the mixture?

3. After taking a nutrition class, a big Annie’s®Mac and Cheese
fan decides to improve the levels of protein and fiber in her
favorite lunch by adding broccoli and canned chicken. The
nutritional information for the foods referred to in this are
given in the table.

Nutrition Information per Serving

Nutrient Mac and Cheese Broccoli Chicken Shells

Calories 270 51 70 260
Protein (g) 10 5.4 15 9
Fiber (g) 2 5.2 0 5

T a. If she wants to limit her lunch to 400 calories but get 30 g
of protein and 10 g of fiber, what proportions of servings
of Mac and Cheese, broccoli, and chicken should she use?

T b. She found that there was too much broccoli in the propor-
tions from part (a), so she decided to switch from classical
Mac and Cheese to Annie’s® Whole Wheat Shells and
White Cheddar. What proportions of servings of each
food should she use to meet the same goals as in part (a)?

4. The Cambridge Diet supplies .8 g of calcium per day, in
addition to the nutrients listed in Table 1 for Example 1.
The amounts of calcium per unit (100 g) supplied by the
three ingredients in the Cambridge Diet are as follows: 1.26 g
from nonfat milk, .19 g from soy flour, and .8 g from whey.
Another ingredient in the diet mixture is isolated soy protein,
which provides the following nutrients in each unit: 80 g
of protein, 0 g of carbohydrate, 3.4 g of fat, and .18 g of
calcium.

a. Set up a matrix equation whose solution determines the
amounts of nonfat milk, soy flour, whey, and isolated
soy protein necessary to supply the precise amounts
of protein, carbohydrate, fat, and calcium in the Cam-
bridge Diet. State what the variables in the equation
represent.

T b. Solve the equation in (a) and discuss your answer.

T In Exercises 5–8, write a matrix equation that determines the
loop currents. If MATLAB or another matrix program is available,
solve the system for the loop currents.
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20 V

40 V

10 V

30 V

3 V 
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4 V 
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3 V 
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10 VI4I1

I3I2
3 V

5 V

1 V

7 V

6 V

2 V 20 V

40 V

30 V

4 V

4 V

8.

I1 I4

I2 I3

I5

2 V 

1 V 

2 V 

1 V 

1 V 

3 V 

50 V 40 V

20 V30 V

1 V 3 V 

4 V 

3 V 

2 V 

3 V 

9. In a certain region, about 7% of a city’s population moves
to the surrounding suburbs each year, and about 5% of the
suburban population moves into the city. In 2020, there were
800,000 residents in the city and 500,000 in the suburbs.
Set up a difference equation that describes this situation,
where x0 is the initial population in 2020. Then estimate

the populations in the city and in the suburbs two years
later, in 2022. (Ignore other factors that might influence the
population sizes.)

10. In a certain region, about 6% of a city’s population moves
to the surrounding suburbs each year, and about 4% of the
suburban population moves into the city. In 2020, there were
10,000,000 residents in the city and 800,000 in the suburbs.
Set up a difference equation that describes this situation,
where x0 is the initial population in 2020. Then estimate the
populations in the city and in the suburbs two years later, in
2022.

T 11. College Moving Truck Rental has a fleet of 20, 100, and 200
trucks in Pullman, Spokane, and Seattle, respectively. A truck
rented at one location may be returned to any of the three
locations. The various fractions of trucks returned to the three
locations each month are shown in the matrix below. What
will be the approximate distribution of the trucks after three
months?

Trucks Rented From:
Pullman Spokane Seattle Returned To:24:30

:30

:40

:15

:70

:15

:05

:05

:90

35 Airport
East
West

T 12. Budget® Rent a Car in Wichita, Kansas, has a fleet of about
500 cars, at three locations. A car rented at one location
may be returned to any of the three locations. The various
fractions of cars returned to the three locations are shown in
the matrix below. Suppose that on Monday there are 295 cars
at the airport (or rented from there), 55 cars at the east side
office, and 150 cars at the west side office. What will be the
approximate distribution of cars on Wednesday?

Cars Rented From:
Airport East West Returned To:24:97

:00

:03

:05

:90

:05

:10

:05

:85

35 Airport
East
West

T 13. Let M and x0 be as in Example 3.

a. Compute the population vectors xk for k D 1; : : : ; 20.
Discuss what you find.

b. Repeat part (a) with an initial population of 350,000 in the
city and 650,000 in the suburbs. What do you find?

T 14. Study how changes in boundary temperatures on a steel plate
affect the temperatures at interior points on the plate.

a. Begin by estimating the temperatures T1, T2, T3, T4 at
each of the sets of four points on the steel plate shown in
the figure. In each case, the value of Tk is approximated by
the average of the temperatures at the four closest points.
See Exercises 43 and 44 in Section 1.1, where the values
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(in degrees) turn out to be .20; 27:5; 30; 22:5/. How is this
list of values related to your results for the points in set (a)
and set (b)?

b. Without making any computations, guess the interior tem-
peratures in (a) when the boundary temperatures are all
multiplied by 3. Check your guess.

c. Finally, make a general conjecture about the correspon-
dence from the list of eight boundary temperatures to the
list of four interior temperatures.

08

08

08

08

208 208

208 208

1 2

4 3

(a)

Plate A

108

108

408

408

08 08

108 108

1 2

4 3

(b)

Plate B

Solution to Practice Problem

A D

24 36 51 13

52 34 74

0 7 1:1

35; x D

24 x1

x2

x3

35; b D

24 33

45

3

35

CHAPTER 1 PROJECTS
Chapter 1 projects are available online.

A. Interpolating Polynomials: This project shows how to use a
system of linear equations to fit a polynomial through a set of
points.

B. Splines: This project also shows how to use a system of linear
equations to fit a piecewise polynomial curve through a set of
points.

C. Network Flows: The purpose of this project is to show how
systems of linear equations may be used to model flow
through a network.

D. The Art of Linear Transformations: In this project, it is illus-
trated how to graph a polygon and then use linear transforma-
tions to change its shape and create a design.

E. Loop Currents: The purpose of this project is to provide more
and larger examples of loop currents.

F. Diet: The purpose of this project is to provide examples of
vector equations that result from balancing nutrients in a diet.

CHAPTER 1 SUPPLEMENTARY EXERCISES
Mark each statement True or False (T/ F). Justify each answer. (If
true, cite appropriate facts or theorems. If false, explain why or
give a counterexample that shows why the statement is not true in
every case.

1. (T/F) Every matrix is row equivalent to a unique matrix in
echelon form.

2. (T/F) Any system of n linear equations in n variables has at
most n solutions.

3. (T/F) If a system of linear equations has two different solu-
tions, it must have infinitely many solutions.

4. (T/F) If a system of linear equations has no free variables,
then it has a unique solution.

5. (T/F) If an augmented matrix Œ A b � is transformed into
Œ C d � by elementary row operations, then the equations
Ax D b and Cx D d have exactly the same solution sets.

6. (T/F) If a systemAx D b has more than one solution, then so
does the system Ax D 0.

7. (T/F) If A is an m � n matrix and the equation Ax D b is
consistent for some b, then the columns of A span Rm.

8. (T/F) If an augmented matrix Œ A b � can be transformed by
elementary row operations into reduced echelon form, then
the equation Ax D b is consistent.

9. (T/F) If matrices A and B are row equivalent, they have the
same reduced echelon form.

10. (T/F) The equationAx D 0 has the trivial solution if and only
if there are no free variables.

11. (T/F) If A is an m � n matrix and the equation Ax D b is
consistent for every b in Rm, then A has m pivot columns.
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12. (T/F) If an m � n matrix A has a pivot position in every row,
then the equation Ax D b has a unique solution for each b in
Rm.

13. (T/F) If an n � n matrix A has n pivot positions, then the
reduced echelon form of A is the n � n identity matrix.

14. (T/F) If 3 � 3 matrices A and B each have three pivot posi-
tions, then A can be transformed into B by elementary row
operations.

15. (T/F) If A is an m � n matrix, if the equation Ax D b has
at least two different solutions, and if the equation Ax D c is
consistent, then the equation Ax D c has many solutions.

16. (T/F) If A and B are row equivalent m � n matrices and if
the columns of A span Rm, then so do the columns of B .

17. (T/F) If none of the vectors in the set S D fv1; v2; v3g in R3

is a multiple of one of the other vectors, then S is linearly
independent.

18. (T/F) If fu; v;wg is linearly independent, then u, v, andw are
not in R2.

19. (T/F) In some cases, it is possible for four vectors to spanR5.

20. (T/F) If u and v are in Rm, then �u is in Spanfu; vg.

21. (T/F) If u, v, and w are nonzero vectors in R2, then w is a
linear combination of u and v.

22. (T/F) If w is a linear combination of u and v in Rn, then u is
a linear combination of v and w.

23. (T/F) Suppose that v1, v2, and v3 are inR5, v2 is not amultiple
of v1, and v3 is not a linear combination of v1 and v2. Then
fv1; v2; v3g is linearly independent.

24. (T/F) A linear transformation is a function.

25. (T/F) IfA is a 6 � 5matrix, the linear transformation x 7! Ax
cannot map R5 onto R6.

26. Let a and b represent real numbers. Describe the possible
solution sets of the (linear) equation ax D b. [Hint: The
number of solutions depends upon a and b.]

27. The solutions .x; y; ´/ of a single linear equation

ax C by C c´ D d

form a plane inR3 when a, b, and c are not all zero. Construct
sets of three linear equations whose graphs (a) intersect in
a single line, (b) intersect in a single point, and (c) have

no points in common. Typical graphs are illustrated in the
figure.

Three planes intersecting
in a line

Three planes intersecting
in a point

Three planes with no
intersection

Three planes with no
intersection

(a) (b)

(c) (c')

28. Suppose the coefficient matrix of a linear system of
three equations in three variables has a pivot position
in each column. Explain why the system has a unique
solution.

29. Determine h and k such that the solution set of the system
(i) is empty, (ii) contains a unique solution, and (iii) contains
infinitely many solutions.

a. x1 C 3x2 D k

4x1 C hx2 D 8

b. �2x1 C hx2 D 1

6x1 C kx2 D �2

30. Consider the problem of determining whether the following
system of equations is consistent:

4x1 � 2x2 C 7x3 D �5

8x1 � 3x2 C 10x3 D �3

a. Define appropriate vectors, and restate the problem in
terms of linear combinations. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of A.”

c. Define an appropriate linear transformation T using the
matrix in (b), and restate the problem in terms of T .

31. Consider the problem of determining whether the following
system of equations is consistent for all b1, b2, b3:

2x1 � 4x2 � 2x3 D b1

�5x1 C x2 C x3 D b2

7x1 � 5x2 � 3x3 D b3

a. Define appropriate vectors, and restate the problem in
terms of Span fv1; v2; v3g. Then solve that problem.
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b. Define an appropriate matrix, and restate the problem
using the phrase “columns of A.”

c. Define an appropriate linear transformation T using the
matrix in (b), and restate the problem in terms of T .

32. Describe the possible echelon forms of the matrix A. Use the
notation of Example 1 in Section 1.2.

a. A is a 2 � 3 matrix whose columns span R2.

b. A is a 3 � 3 matrix whose columns span R3.

33. Write the vector
�

5

6

�
as the sum of two vectors,

one on the line f.x; y/ W y D 2xg and one on the line
f.x; y/ W y D x=2g.

34. Let a1; a2, and b be the vectors in R2 shown in the figure, and
letA D Œa1 a2�. Does the equationAx D b have a solution?
If so, is the solution unique? Explain.

a2

a1

b

x1

x2

35. Construct a 2 � 3matrixA, not in echelon form, such that the
solution of Ax D 0 is a line in R3.

36. Construct a 2 � 3matrixA, not in echelon form, such that the
solution of Ax D 0 is a plane in R3.

37. Write the reduced echelon form of a 3 � 3 matrix A such
that the first two columns of A are pivot columns and

A

24 3

�2

1

35 D 24 0

0

0

35.
38. Determine the value(s) of a such that

��
1

a

�
;

�
aC 2

aC 6

��
is

linearly independent.

39. In (a) and (b), suppose the vectors are linearly independent.
What can you say about the numbers a; : : : ; f ? Justify your
answers. [Hint: Use a theorem for (b).]

a.

24 a

0

0

35, 24 b

c

0

35, 24 d

e

f

35 b.

2664
a

1

0

0

3775,
2664

b

c

1

0

3775,
2664

d

e

f

1

3775
40. Use Theorem 7 in Section 1.7 to explain why the columns of

the matrix A are linearly independent.

A D

2664
1 0 0 0

2 5 0 0

3 6 8 0

4 7 9 10

3775

41. Explain why a set fv1; v2; v3; v4g in R5 must be linearly
independent when fv1; v2; v3g is linearly independent and v4

is not in Span fv1; v2; v3g.

42. Suppose fv1; v2g is a linearly independent set in Rn. Show
that fv1 C v2; v1 � v2g is also linearly independent.

43. Suppose v1; v2; v3 are distinct points on one line in R3. The
line need not pass through the origin. Show that fv1; v2; v3g

is linearly dependent.

44. Let T W Rn ! Rm be a linear transformation, and suppose
T .u/ D v. Show that T .�u/ D �v.

45. Let T W R3 ! R3 be the linear transformation that re-
flects each vector through the plane x2 D 0. That is,
T .x1; x2; x3/ D .x1;�x2; x3/. Find the standard matrix of T .

46. Let A be a 3 � 3 matrix with the property that the linear
transformation x 7! Ax maps R3 onto R3. Explain why the
transformation must be one-to-one.

47. A Givens rotation is a linear transformation from Rn to Rn

used in computer programs to create a zero entry in a vector
(usually a column of a matrix). The standard matrix of a
Givens rotation in R2 has the form�

a �b

b a

�
; a2

C b2
D 1

Find a and b such that
�

10

24

�
is rotated into

�
26

0

�
.

x1

x2

(10, 24)

(26, 0)

A Givens rotation in R2.

48. The following equation describes a Givens rotation in R3.
Find a and b.

24 1 0 0

0 a �b

0 b a

3524 2

3

4

35 D 24 2

5

0

35 ; a2
C b2

D 1

49. A large apartment building is to be built using modular
construction techniques. The arrangement of apartments on
any particular floor is to be chosen from one of three ba-
sic floor plans. Plan A has 18 apartments on one floor, in-
cluding 3 three-bedroom units, 7 two-bedroom units, and 8
one-bedroom units. Each floor of plan B includes 4 three-
bedroom units, 4 two-bedroom units, and 8 one-bedroom
units. Each floor of plan C includes 5 three-bedroom units,
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3 two-bedroom units, and 9 one-bedroom units. Suppose the
building contains a total of x1 floors of plan A, x2 floors of
plan B, and x3 floors of plan C.

a. What interpretation can be given to the vector x1

24 3

7

8

35?

b. Write a formal linear combination of vectors that
expresses the total numbers of three-, two-, and one-
bedroom apartments contained in the building.

T c. Is it possible to design the building with exactly 66
three-bedroom units, 74 two-bedroom units, and 136 one-
bedroom units? If so, is there more than one way to do it?
Explain your answer.



2 Matrix Algebra

Introductory Example

COMPUTER MODELS IN AIRCRAFT DESIGN
To design the next generation of commercial and military
aircraft, engineers at Boeing’s Phantom Works use 3D
modeling and computational fluid dynamics (CFD). They
study the airflow around a virtual airplane to answer
important design questions before physical models are
created. This has drastically reduced design cycle times
and cost—and linear algebra plays a crucial role in the
process.

The virtual airplane begins as a mathematical “wire-
frame” model that exists only in computer memory and
on graphics display terminals. (Model of a Boeing 747 is
shown.) This mathematical model organizes and influences
each step of the design and manufacture of the airplane—
both the exterior and interior. The CFD analysis concerns
the exterior surface.

Although the finished skin of a plane may seem
smooth, the geometry of the surface is complicated. In
addition to wings and a fuselage, an aircraft has nacelles,
stabilizers, slats, flaps, and ailerons. The way air flows
around these structures determines how the plane moves
through the sky. Equations that describe the airflow are
complicated, and they must account for engine intake,
engine exhaust, and the wakes left by the wings of the
plane. To study the airflow, engineers need a highly refined
description of the plane’s surface.

A computer creates a model of the surface by first
superimposing a three-dimensional grid of “boxes” on the

original wire-frame model. Boxes in this grid lie either
completely inside or completely outside the plane, or they
intersect the surface of the plane. The computer selects
the boxes that intersect the surface and subdivides them,
retaining only the smaller boxes that still intersect the
surface. The subdividing process is repeated until the grid
is extremely fine. A typical grid can include more than
400,000 boxes.

The process for finding the airflow around the plane
involves repeatedly solving a system of linear equations
Ax D b that may involve up to 2 million equations and
variables. The vector b changes each time, based on data
from the grid and solutions of previous equations. Using
the fastest computers available commercially, a Phantom
Works team can spend from a few hours to several days
setting up and solving a single airflow problem. After the
team analyzes the solution, they may make small changes
to the airplane surface and begin the whole process again.
Thousands of CFD runs may be required.

This chapter presents two important concepts that
assist in the solution of such massive systems of equations:

� Partitioned matrices: A typical CFD system of
equations has a “sparse” coefficient matrix with
mostly zero entries. Grouping the variables correctly
leads to a partitioned matrix with many zero blocks.
Section 2.4 introduces such matrices and describes
some of their applications.

121
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� Matrix factorizations: Even when written with
partitioned matrices, the system of equations is
complicated. To further simplify the computations,
the CFD software at Boeing uses what is called
an LU factorization of the coefficient matrix.
Section 2.5 discusses LU and other useful matrix
factorizations. Further details about factorizations
appear at several points later in the text.

To analyze a solution of an airflow system, engineers
want to visualize the airflow over the surface of the plane.
They use computer graphics, and linear algebra provides
the engine for the graphics. The wire-frame model of the
plane’s surface is stored as data in many matrices. Once the
image has been rendered on a computer screen, engineers
can change its scale, zoom in or out of small regions, and
rotate the image to see parts that may be hidden from view.

TU-Delft and Air France-KLM are investigating a flying V
aircraft design because of its potential for significantly better fuel
economy.

Each of these operations is accomplished by appropriate
matrix multiplications. Section 2.7 explains the basic
ideas.

Our ability to analyze and solve equations will be greatly enhancedwhenwe can perform
algebraic operations with matrices. Furthermore, the definitions and theorems in this
chapter provide some basic tools for handling the many applications of linear algebra
that involve two or more matrices. For n � n matrices, the Invertible Matrix Theorem
in Section 2.3 ties together most of the concepts treated earlier in the text. Sections 2.4
and 2.5 examine partitioned matrices and matrix factorizations, which appear in most
modern uses of linear algebra. Sections 2.6 and 2.7 describe two interesting applications
of matrix algebra: to economics and to computer graphics. Sections 2.8 and 2.9 provide
readers enough information about subspaces to move directly into Chapters 5, 6, and
7, without covering Chapter 4. You may want to omit these two sections if you plan to
cover Chapter 4 before moving to Chapter 5.

2.1 Matrix Operations
If A is an m � n matrix—that is, a matrix with m rows and n columns—then the scalar
entry in the i th row and j th column ofA is denoted by aij and is called the .i; j /-entry of
A. See Figure 1. For instance, the .3; 2/-entry is the number a32 in the third row, second
column. Each column of A is a list of m real numbers, which identifies a vector in Rm.
Often, these columns are denoted by a1; : : : ; an, and the matrix A is written as

A D
�
a1 a2 � � � an

�
Observe that the number aij is the i th entry (from the top) of the j th column vector aj .

The diagonal entries in an m � n matrix A D Œ aij � are a11; a22; a33; : : : ; and they
form the main diagonal of A. A diagonal matrix is a square n � n matrix whose
nondiagonal entries are zero. An example is the n � n identity matrix, In. An m � n

matrix whose entries are all zero is a zero matrix and is written as 0. The size of a zero
matrix is usually clear from the context.
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a11

am1

a1n

amn

ai1 ain

a1 j

Column
j

am j

a1 a na j

ai jRow i 5 A

FIGURE 1 Matrix notation.

Sums and Scalar Multiples
The arithmetic for vectors described earlier has a natural extension to matrices. We say
that two matrices are equal if they have the same size (i.e., the same number of rows
and the same number of columns) and if their corresponding columns are equal, which
amounts to saying that their corresponding entries are equal. If A and B are m � n

matrices, then the sum AC B is the m � n matrix whose columns are the sums of
the corresponding columns in A and B . Since vector addition of the columns is done
entrywise, each entry in AC B is the sum of the corresponding entries in A and B . The
sum AC B is defined only when A and B are the same size.

EXAMPLE 1 Let

A D

�
4 0 5

�1 3 2

�
; B D

�
1 1 1

3 5 7

�
; C D

�
2 �3

0 1

�
Then

AC B D

�
5 1 6

2 8 9

�
but AC C is not defined because A and C have different sizes.

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose
columns are r times the corresponding columns in A. As with vectors, �A stands for
.�1/A, and A � B is the same as AC .�1/B .

EXAMPLE 2 If A and B are the matrices in Example 1, then

2B D 2

�
1 1 1

3 5 7

�
D

�
2 2 2

6 10 14

�
A � 2B D

�
4 0 5

�1 3 2

�
�

�
2 2 2

6 10 14

�
D

�
2 �2 3

�7 �7 �12

�

It was unnecessary in Example 2 to compute A � 2B as AC .�1/2B because the
usual rules of algebra apply to sums and scalar multiples of matrices, as the following
theorem shows.

THEOREM 1 Let A; B , and C be matrices of the same size, and let r and s be scalars.

a. AC B D B C A

b. .AC B/C C D AC .B C C /

c. AC 0 D A

d. r.AC B/ D rAC rB

e. .r C s/A D rAC sA

f. r.sA/ D .rs/A
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Each equality in Theorem 1 is verified by showing that the matrix on the left side has
the same size as the matrix on the right and that corresponding columns are equal. Size
is no problem because A, B , and C are equal in size. The equality of columns follows
immediately from analogous properties of vectors. For instance, if the j th columns of
A, B , and C are aj , bj , and cj , respectively, then the j th columns of .AC B/C C and
AC .B C C / are

.aj C bj /C cj and aj C .bj C cj /

respectively. Since these two vector sums are equal for each j , property (b) is verified.
Because of the associative property of addition, we can simply write AC B C C

for the sum, which can be computed either as .AC B/C C or as AC .B C C /. The
same applies to sums of four or more matrices.

Matrix Multiplication
When a matrix B multiplies a vector x, it transforms x into the vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A.Bx/. See Figure 2.

x

Multiplication

by B

Bx

Multiplication

by A

A(Bx)

FIGURE 2 Multiplication by B and then A.

Thus A.Bx/ is produced from x by a composition of mappings—the linear transfor-
mations studied in Section 1.8. Our goal is to represent this composite mapping as
multiplication by a single matrix, denoted by AB, so that

A.Bx/ D .AB/x (1)

See Figure 3.

Multiplication

by AB

Bx

Multiplication

by B
x

Multiplication

by A
A(Bx)

FIGURE 3 Multiplication by AB.

If A is m � n, B is n � p, and x is in Rp , denote the columns of B by b1; : : : ; bp

and the entries in x by x1; : : : ; xp . Then

Bx D x1b1 C � � � C xpbp

By the linearity of multiplication by A,

A.Bx/ D A.x1b1/C � � � C A.xpbp/

D x1Ab1 C � � � C xpAbp
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The vectorA.Bx/ is a linear combination of the vectorsAb1; : : : ; Abp , using the entries
in x as weights. In matrix notation, this linear combination is written as

A.Bx/ D Œ Ab1 Ab2 � � � Abp �x

Thus multiplication by Œ Ab1 Ab2 � � � Abp � transforms x into A.Bx/. We have
found the matrix we sought!

DEFINITION If A is an m � n matrix, and if B is an n � p matrix with columns b1; : : : ; bp , then
the product AB is the m � p matrix whose columns are Ab1; : : : ; Abp . That is,

AB D A
�
b1 b2 � � � bp

�
D
�
Ab1 Ab2 � � � Abp

�
This definition makes equation (1) true for all x in Rp . Equation (1) proves that the

composite mapping in Figure 3 is a linear transformation and that its standard matrix is
AB . Multiplication of matrices corresponds to composition of linear transformations.

EXAMPLE 3 Compute AB , where A D

�
2 3

1 �5

�
and B D

�
4 3 6

1 �2 3

�
.

SOLUTION Write B D Œ b1 b2 b3 �, and compute:

Ab1 D

�
2 3

1 �5

��
4

1

�
; Ab2 D

�
2 3

1 �5

��
3

�2

�
; Ab3 D

�
2 3

1 �5

��
6

3

�
D

�
11

�1

�
D

�
0

13

�
D

�
21

�9

�
? ??Then

AB D AŒ b1 b2 b3 � D

�
11 0 21

�1 13 �9

�
6 6 6

Ab1 Ab2 Ab3

Notice that since the first column of AB is Ab1; this column is a linear combination
of the columns of A using the entries in b1 as weights. A similar statement is true for
each column of AB:

Each column ofAB is a linear combination of the columns ofA using weights from
the corresponding column of B .

Obviously, the number of columns of A must match the number of rows in B in
order for a linear combination such as Ab1 to be defined. Also, the definition of AB

shows that AB has the same number of rows as A and the same number of columns
as B.

EXAMPLE 4 If A is a 3 � 5 matrix and B is a 5 � 2 matrix, what are the sizes of
AB and BA, if they are defined?
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SOLUTION Since A has 5 columns and B has 5 rows, the product AB is defined and
is a 3 � 2 matrix:

A B AB24� � � � �� � � � �

� � � � �

35266664
� �

� �

� �

� �

� �

377775
D

24� �� �
� �

35
3 � 5 5 � 2 3 � 2

6 66 6Match

Size of AB

The product BA is not defined because the 2 columns of B do not match the 3 rows
of A.

The definition of AB is important for theoretical work and applications, but the
following rule provides a more efficient method for calculating the individual entries in
AB when working small problems by hand.

ROW–COLUMN RULE FOR COMPUTING AB
If the product AB is defined, then the entry in row i and column j of AB is the
sum of the products of corresponding entries from row i of A and column j of
B . If .AB/ij denotes the .i; j /-entry in AB , and if A is an m � n matrix, then

.AB/ij D ai1b1j C ai2b2j C � � � C ainbnj

To verify this rule, let B D Œ b1 � � � bp �. Column j of AB is Abj , and we can
compute Abj by the row–vector rule for computing Ax from Section 1.4. The i th entry
in Abj is the sum of the products of corresponding entries from row i of A and the
vector bj , which is precisely the computation described in the rule for computing the
.i; j /-entry of AB .

EXAMPLE 5 Use the row–column rule to compute two of the entries in AB for the
matrices in Example 3. An inspection of the numbers involved will make it clear how
the two methods for calculating AB produce the same matrix.

SOLUTION To find the entry in row 1 and column 3 of AB , consider row 1 of A and
column 3 of B . Multiply corresponding entries and add the results, as shown below:

AB D
-
�

2 3

1 �5

��
4 3

?
6

1 �2 3

�
D

�
� � 2.6/C 3.3/

� � �

�
D

�
� � 21

� � �

�
For the entry in row 2 and column 2 of AB , use row 2 of A and column 2 of B:

-

�
2 3

1 �5

��
4

?
3 6

1 �2 3

�
D

�
� � 21

� 1.3/C�5.�2/ �

�
D

�
� � 21

� 13 �

�
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EXAMPLE 6 Find the entries in the second row of AB , where

A D

2664
2 �5 0

�1 3 �4

6 �8 �7

�3 0 9

3775; B D

24 4 �6

7 1

3 2

35
SOLUTION By the row–column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

-

2664
2 �5 0

�1 3 �4

6 �8 �7

�3 0 9

3775
24

?
4

?
� 6

7 1

3 2

35

D

2664
� �

� 4C 21 � 12 6C 3 � 8

� �
� �

3775 D
2664

� �
5 1

� �
� �

3775
Notice that since Example 6 requested only the second row of AB , we could have

written just the second row of A to the left of B and computed

�
�1 3 �4

�24 4 �6

7 1

3 2

35 D � 5 1
�

This observation about rows of AB is true in general and follows from the row–column
rule. Let rowi .A/ denote the i th row of a matrix A. Then

rowi .AB/ D rowi .A/ � B (2)

Properties of Matrix Multiplication
The following theorem lists the standard properties of matrix multiplication. Recall that
Im represents the m �m identity matrix and Imx D x for all x in Rm.

THEOREM 2 Let A be an m � n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

a. A.BC / D .AB/C (associative law of multiplication)

b. A.B C C / D AB C AC (left distributive law)

c. .B C C /A D BAC CA (right distributive law)

d. r.AB/ D .rA/B D A.rB/

for any scalar r

e. ImA D A D AIn (identity for matrix multiplication)

PROOF Properties (b)–(e) are considered in the exercises. Property (a) follows from
the fact that matrix multiplication corresponds to composition of linear transformations
(which are functions), and it is known (or easy to check) that the composition of functions
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is associative. Here is another proof of (a) that rests on the “column definition” of the
product of two matrices. Let

C D Œ c1 � � � cp �

By the definition of matrix multiplication,

BC D Œ Bc1 � � � Bcp �

A.BC / D Œ A.Bc1/ � � � A.Bcp/ �

Recall from equation (1) that the definition of AB makes A.Bx/ D .AB/x for all x, so

A.BC / D Œ .AB/c1 � � � .AB/cp � D .AB/C

The associative and distributive laws in Theorems 1 and 2 say essentially that pairs
of parentheses in matrix expressions can be inserted and deleted in the sameway as in the
algebra of real numbers. In particular, we can write ABC for the product, which can be
computed either as A.BC / or as .AB/C .1 Similarly, a product ABCD of four matrices
can be computed as A.BCD/ or .ABC /D or A.BC /D, and so on. It does not matter
howwe group thematrices when computing the product, so long as the left-to-right order
of the matrices is preserved.

The left-to-right order in products is critical because AB and BA are usually not
the same. This is not surprising, because the columns of AB are linear combinations of
the columns of A, whereas the columns of BA are constructed from the columns of B .
The position of the factors in the product AB is emphasized by saying that A is right-
multiplied by B or that B is left-multiplied by A. If AB D BA, we say that A and B

commute with one another.

EXAMPLE 7 Let A D

�
5 1

3 �2

�
and B D

�
2 0

4 3

�
. Show that these matrices do

not commute. That is, verify that AB ¤ BA.

SOLUTION

AB D

�
5 1

3 �2

��
2 0

4 3

�
D

�
14 3

�2 �6

�
BA D

�
2 0

4 3

��
5 1

3 �2

�
D

�
10 2

29 �2

�
Example 7 illustrates the first of the following list of important differences between

matrix algebra and the ordinary algebra of real numbers. See Exercises 9–12 for exam-
ples of these situations.

Warnings:

1. In general, AB ¤ BA.

2. The cancellation laws do not hold for matrix multiplication. That is, if
AB D AC , then it is not true in general that B D C . (See Exercise 10.)

3. If a product AB is the zero matrix, you cannot conclude in general that either
A D 0 or B D 0. (See Exercise 12.)

1When B is square and C has fewer columns than A has rows, it is more efficient to compute A.BC / than
.AB/C .
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Powers of a Matrix
If A is an n � n matrix and if k is a positive integer, then Ak denotes the product of k

copies of A:

Ak D A � � �A„ƒ‚…
k

If A is nonzero and if x is in Rn; then Akx is the result of left-multiplying x by A

repeatedly k times. If k D 0; then A0x should be x itself. Thus A0 is interpreted as
the identity matrix. Matrix powers are useful in both theory and applications (Sections
2.6, 5.9, and later in the text).

The Transpose of a Matrix
Given anm � nmatrixA, the transpose ofA is the n �mmatrix, denoted byAT , whose
columns are formed from the corresponding rows of A.

EXAMPLE 8 Let

A D

�
a b

c d

�
; B D

24�5 2

1 �3

0 4

35; C D

�
1 1 1 1

�3 5 �2 7

�
Then

AT
D

�
a c

b d

�
; BT

D

�
�5 1 0

2 �3 4

�
; C T

D

2664
1 �3

1 5

1 �2

1 7

3775

THEOREM 3 Let A and B denote matrices whose sizes are appropriate for the following sums
and products.

a. .AT /T D A

b. .AC B/T D AT C BT

c. For any scalar r , .rA/T D rAT

d. .AB/T D BTAT

Proofs of (a)–(c) are straightforward and are omitted. For (d), see Exercise 41.
Usually, .AB/T is not equal to ATBT, even when A and B have sizes such that the
product ATBT is defined.

The generalization of Theorem 3(d) to products of more than two factors can be
stated in words as follows:

The transpose of a product of matrices equals the product of their transposes in the
reverse order.

The exercises contain numerical examples that illustrate properties of transposes.



130 CHAPTER 2 Matrix Algebra

Artificial intelligence (AI) involves having a computer learn to recognize important
information about anything that can be presented in a digitized format. One important
area of AI is identifying whether the object in a picture matches a chosen object such as
a number, fingerprint, or face.

In the next example, matrix transposition and matrix multiplication are used to tell
whether or not a 2 � 2 block of colored squares matches the chosen checkerboard pattern
in Figure 4.

EXAMPLE 9 In order to feed a 2 � 2 colored block into the computer, it first gets
converted into a 4 � 1 vector by assigning a 1 to each block that is blue and a 0 to each
block that is white. Then, the computer converts the block of numbers into a vector by
placing the numbers in each column below the numbers in the column to its left.

v 5

1
0
0
1

01

10

FIGURE 4

Let M D

2664
1 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 1

3775.
Notice that vT Mv D

�
1 0 0 1

�2664
1 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 1

3775
2664

1

0

0

1

3775 D 0,

and wT Mw D
�

0 0 0 0
�2664

1 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 1

3775
2664

0

0

0

0

3775 D 0, where w is the

vector generated by a 2 � 2 block of all white squares. It can be verified that for any
other vector x generated from a 2 � 2 block of white and blue squares, if x is not v or
w, then the product xT Mx is nonzero. Thus, if a computer checks the value of xT Mx
and finds it is nonzero, the computer knows that the pattern corresponding to x is not the
checkerboard with a blue square in the top left corner.

x 5

1
1
0
1

xT Mx 5 1 and xT x 5 3

This pattern is not the checkerboard pattern since xT Mx Þ 0.

x 5

1
0
0
1

xT Mx 5 0 and xT x 5 2

This pattern is the checkerboard pattern since xT Mx 5 0, but xT x Þ 0.

FIGURE 5
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However, if the computer finds that xT Mx D 0, then x could be either v or w. To
distinguish between the two, the computer can calculate the product xT x, for xT x is zero
if and only if x is w.2 Thus, to conclude that x is equal to v, the computer must have
xT Mx D 0 and xT x ¤ 0.

Example 5 of Section 6.3 illustrates one way to choose a matrix M so that matrix
multiplication and transposition can be used to identify a particular pattern of colored
squares.

Another important aspect of AI starts even before the data is fed to the machine.
In Section 1.9, it is illustrated how matrix multiplication can be used to move vectors
around in space. In the next example, matrix multiplication is used to scrub data and
prepare it for processing.

EXAMPLE 10 The dates of ground crew accidents for January and February of 2020
are listed in the columns of matrix T for Toronto Pearson Airport and matrix C for
Chicago O’Hare Airport:

Toronto: T D

�
1 12 14 15 21 22 23 1 2 3 12 15 17 19 26

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

�
Chicago: C D

�
1 1 1 1 1 2 2 2 2 2

1 11 22 23 24 1 2 5 20 21

�
Clearly the data is listed differently in the two matrices. Canada and the United states
have different traditions for whether the month or day comes first when writing a date.
For matrix T , the day is listed in the first row and the month is listed in the second row.
For matrix C , the month is listed in the first row and the day is listed in the second
row. In order to use this data, the first and second rows need to be swapped in one of
the matrices. Reviewing the effects of matrix multiplication in Table 1 of Section 1.9,

notice that the matrix A D

�
0 1

1 0

�
switches the x1 and x2 coordinates of any vector

x D

�
x1

x2

�
it is applied to and indeed

AT D

�
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 12 14 15 21 22 23 1 2 3 12 15 17 19 26

�
has the data listed in the same order as it is listed in matrix C . The matrices AT and C

can now be fed into the same machine.

In Exercises 51 and 52 you will be asked to scrub further data for this project.3

2 To see why xT x is zero if and only if x is w, let xT D Œx1 x2 x3 x4�. Then xT x D x2
1 C x2

2 C x2
3 C x2

4 and
this sum is zero if and only if the coordinates of x are all zero. That is, if and only if x D w.
3Although the data in this example and the corresponding exercises are fictitious, Data Analytics students at
Washington State University identified scrubbing the data they received as an important first step in their
actual analysis of ground crew accidents at three major airports in the United States.
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Numerical Notes

1. The fastest way to obtain AB on a computer depends on the way in which
the computer stores matrices in its memory. The standard high-performance
algorithms, such as in LAPACK, calculateAB by columns, as in our definition
of the product. (A version of LAPACKwritten in C++ calculatesAB by rows.)

2. The definition ofAB lends itself well to parallel processing on a computer. The
columns of B are assigned individually or in groups to different processors,
which independently and hence simultaneously compute the corresponding
columns of AB .

Practice Problems

1. Since vectors in Rn may be regarded as n � 1 matrices, the properties of transposes
in Theorem 3 apply to vectors, too. Let

A D

�
1 �3

�2 4

�
and x D

�
5

3

�
Compute .Ax/T , xTAT , xxT , and xTx. Is ATxT defined?

2. Let A be a 4 � 4 matrix and let x be a vector in R4. What is the fastest way to
compute A2x? Count the multiplications.

3. Suppose A is an m � n matrix, all of whose rows are identical. Suppose B is
an n � p matrix, all of whose columns are identical. What can be said about the
entries in AB?

2.1 Exercises
In Exercises l and 2, compute each matrix sum or product if it is
defined. If an expression is undefined, explain why. Let

A D

�
2 0 �1

4 �3 2

�
; B D

�
7 �5 1

1 �4 �3

�
;

C D

�
1 2

�2 1

�
; D D

�
3 5

�1 4

�
; E D

�
�5

3

�
1. �2A, B � 2A, AC , CD

2. AC 2B , 3C �E, CB , EB

In the rest of this exercise set and in those to follow, you should
assume that each matrix expression is defined. That is, the sizes of
the matrices (and vectors) involved “match” appropriately.

3. Let A D

�
4 �1

5 �2

�
. Compute 3I2 � A and .3I2/A.

4. Compute A � 5I3 and .5I3/A, when

A D

24 9 �1 3

�8 7 �3

�4 1 8

35:

In Exercises 5 and 6, compute the product AB in two ways: (a) by
the definition, where Ab1 and Ab2 are computed separately, and
(b) by the row–column rule for computing AB.

5. A D

24�1 2

5 4

2 �3

35; B D

�
3 �4

�2 1

�

6. A D

24 4 �2

�3 0

3 5

35; B D

�
1 3

4 �1

�
7. If a matrix A is 5 � 3 and the product AB is 5 � 7, what is the

size of B?

8. How many rows does B have if BC is a 3 � 4 matrix?

9. Let A D

�
3 4

�2 1

�
and B D

�
5 �6

3 k

�
: What value(s) of

k, if any, will make AB D BA?

10. Let A D

�
3 �6

�4 8

�
; B D

�
8 6

5 7

�
; C D

�
6 �2

4 3

�
:

Verify that AB D AC and yet B ¤ C:

11. Let A D

24 1 1 1

1 2 3

1 4 5

35 and D D

24 2 0 0

0 3 0

0 0 5

35: Com-

pute AD and DA. Explain how the columns or rows of A
change when A is multiplied by D on the right or on the left.
Find a 3 � 3 matrix B, not the identity matrix or the zero
matrix, such that AB D BA:
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12. Let A D

�
2 �8

�1 4

�
: Construct a 2 � 2 matrix B such that

AB is the zero matrix. Use two different nonzero columns
for B.

13. Let r1; : : : ; rp be vectors inRn, and letQ be anm � nmatrix.
Write the matrix Œ Qr1 � � �Qrp � as a product of two matrices
(neither of which is an identity matrix).

14. Let U be the 3 � 2 cost matrix described in Example 6 of
Section 1.8. The first column of U lists the costs per dollar of
output for manufacturing product B, and the second column
lists the costs per dollar of output for product C. (The costs
are categorized as materials, labor, and overhead.) Let q1be
a vector in R2 that lists the output (measured in dollars) of
products B and C manufactured during the first quarter of
the year, and let q2; q3; and q4 be the analogous vectors
that list the amounts of products B and C manufactured in
the second, third, and fourth quarters, respectively. Give an
economic description of the data in the matrix UQ, where
Q D Œq1 q2 q3 q4�:

Exercises 15–24 concern arbitrary matricesA; B , andC for which
the indicated sums and products are defined. Mark each statement
True or False (T/F). Justify each answer.

15. (T/F) If A and B are 2 � 2 with columns a1; a2, and b1; b2,
respectively, then AB D Œa1b1 a2b2�.

16. (T/F) If A and B are 3 � 3 and B D Œb1 b2 b3�, then
AB D ŒAb1 C Ab2 C Ab3�.

17. (T/F) Each column of AB is a linear combination of the
columns of B using weights from the corresponding column
of A.

18. (T/F) The second row of AB is the second row of A multi-
plied on the right by B .

19. (T/F) AB C AC D A.B C C /

20. (T/F) AT C BT D .AC B/T

21. (T/F) .AB/C D .AC /B

22. (T/F) .AB/T D AT BT

23. (T/F) The transpose of a product of matrices equals the
product of their transposes in the same order.

24. (T/F) The transpose of a sum of matrices equals the sum of
their transposes.

25. IfA D

�
1 �3

�3 8

�
andAB D

�
�1 3 �2

1 �7 3

�
; determine

the first and second columns of B.

26. Suppose the first two columns, b1 and b2, ofB are equal.What
can you say about the columns ofAB (ifAB is defined)?Why?

27. Suppose the third column of B is the sum of the first two
columns. What can you say about the third column of AB?
Why?

28. Suppose the second column of B is all zeros. What can you
say about the second column of AB?

29. Suppose the last column of AB is all zeros, but B itself has
no column of zeros. What can you say about the columns
of A?

30. Show that if the columns of B are linearly dependent, then so
are the columns of AB.

31. Suppose CA D In (the n � n identity matrix). Show that the
equation Ax D 0 has only the trivial solution. Explain why A
cannot have more columns than rows.

32. Suppose AD D Im (the m �m identity matrix). Show that
for any b in Rm, the equation Ax D b has a solution. [Hint:
Think about the equation ADb D b:] Explain why A cannot
have more rows than columns.

33. Suppose A is an m � n matrix and there exist n �m matrices
C andD such thatCA D In andAD D Im: Prove thatm D n

and C D D: [Hint: Think about the product CAD.]

34. Suppose A is a 3 � nmatrix whose columns spanR3. Explain
how to construct an n � 3 matrix D such that AD D I3:

In Exercises 35 and 36, view vectors in Rn as n � 1 matrices. For
u and v in Rn, the matrix product uT v is a 1 � 1 matrix, called the
scalar product, or inner product, of u and v. It is usually written
as a single real number without brackets. The matrix product uvT

is an n � n matrix, called the outer product of u and v. The
products uT v and uvT will appear later in the text.

35. Let u =

24�2

3

�4

35 and v D

24 a

b

c

35: Compute uT v; vT u; uvT ;

and vuT :

36. If u and v are in Rn, how are uT v and vT u related? How are
uvT and vuT related?

37. Prove Theorem 2(b) and 2(c). Use the row–column rule. The
(i, j)-entry in A.B C C / can be written as

ai1.b1j C c1j /C � � � C ain.bnj C cnj / or
nX

kD1

aik.bkj C ckj /

38. Prove Theorem 2(d). [Hint: The (i, j)-entry in (rA)B is
.rai1/b1j C � � � C .rain/bnj :�

39. Show that ImA D A when A is an m � n matrix. You can
assume Imx D x for all x in Rm.

40. Show that AIn D A when A is an m � n matrix. [Hint: Use
the (column) definition of AIn:�

41. Prove Theorem 3(d). [Hint: Consider the jth row of .AB/T :�

42. Give a formula for .ABx/T ; where x is a vector and A and B
are matrices of appropriate sizes.

T 43. Use a web search engine such as Google to find documenta-
tion for your matrix program, and write the commands that
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will produce the following matrices (without keying in each
entry of the matrix).

a. A 5 � 6 matrix of zeros

b. A 3 � 5 matrix of ones

c. The 6 � 6 identity matrix

d. A 5 � 5 diagonal matrix, with diagonal entries 3, 5, 7, 2, 4

A useful way to test new ideas in matrix algebra, or to make
conjectures, is to make calculations with matrices selected at
random. Checking a property for a few matrices does not prove
that the property holds in general, but it makes the property more
believable. Also, if the property is actually false, you may discover
this when you make a few calculations.

T 44. Write the command(s) that will create a 6 � 4 matrix with
random entries. In what range of numbers do the entries lie?
Tell how to create a 3 � 3 matrix with random integer entries
between �9 and 9. [Hint: If x is a random number such that
0 < x < 1; then �9:5 < 19.x � :5/ < 9:5:�

T 45. Construct a random 4 � 4 matrix A and test whether .AC I /

.A � I / D A2 � I: The best way to do this is to compute

.AC I /.A � I / � .A2 � I / and verify that this difference is
the zero matrix. Do this for three random matrices. Then test
.AC B/.A � B/ D A2 � B2 the same way for three pairs of
random 4 � 4 matrices. Report your conclusions.

T 46. Use at least three pairs of random 4 � 4 matrices A and B
to test the equalities .AC B/T D AT C BT and .AB/T D

AT BT : (See Exercise 45.) Report your conclusions. [Note:
Most matrix programs use A0 for AT :�

T 47. Let

S D

266664
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

377775
Compute Sk for k D 2; : : : ; 6:

T 48. Describe in words what happens when you compute A5,
A10; A20; and A30 for

A D

24 1=6 1=2 1=3

1=2 1=4 1=4

1=3 1=4 5=12

35
T 49. The matrix M can detect a particular 2 � 2 colored pattern

like in Example 9. Create a nonzero 4 � 1 vector x by choos-
ing each entry to be a zero or one. Test to see if x corresponds

to the right pattern by calculating xT Mx. If xT Mx D 0,
then x is the pattern identified by M . If xT Mx ¤ 0, try a
different nonzero vector of zeros and ones. You may want
to be systematic in the way that you choose each x in order to
avoid testing the same vector twice. You are using “guess and
check” to determine which pattern of 2 � 2 colored squares
the matrix M detects.

M D

2664
1 0 �1 0

0 1 0 0

�1 0 1 0

0 0 0 1

3775
T 50. Repeat Exercise 49 with the matrix

M D

2664
1 0 0 �1

0 1 0 �1

0 0 1 0

�1 �1 0 2

3775
T 51. Use the matrix A D

�
0 1

1 0

�
to switch the first and second

rows of the matrix M containing dates of accidents at the
Montreal Trudeau Airport.

Montreal:

M D

"
2 3 16 24 25 26 6 7 19 26

1 1 1 1 1 1 2 2 2 2

#

This data in matrix M has been scrubbed in matrix AM and
can be fed into the same machine as the other data from
Example 10.

T 52. Use the matrix B D

�
1 0 0

0 1 0

�
to remove the last row

from the matrix N containing dates of accidents at the New
York JFK Airport.

New York:

N D

264 1 1 1 1 2 2 2

1 12 21 22 3 20 21

2020 2020 2020 2020 2020 2020 2020

375
The data in matrix N has been scrubbed in matrix BN and
can be fed into the same machine as the other data from
Example 10.

Solutions to Practice Problems

1. Ax D
�

1 �3

�2 4

��
5

3

�
D

�
�4

2

�
. So .Ax/T D

�
�4 2

�
. Also,

xTAT
D
�

5 3
�� 1 �2

�3 4

�
D
�
�4 2

�
:
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The quantities .Ax/T and xTAT are equal, by Theorem 3(d). Next,

xxT
D

�
5

3

��
5 3

�
D

�
25 15

15 9

�
xTx D

�
5 3

�� 5

3

�
D Œ 25C 9 � D 34

A 1 � 1 matrix such as xTx is usually written without the brackets. Finally, ATxT is
not defined, because xT does not have two rows to match the two columns of AT .

2. The fastest way to compute A2x is to compute A.Ax/. The product Ax requires
16 multiplications, 4 for each entry, and A.Ax/ requires 16 more. In contrast, the
productA2 requires 64 multiplications, 4 for each of the 16 entries inA2. After that,
A2x takes 16 more multiplications, for a total of 80.

3. First observe that by the definition of matrix multiplication,

AB D ŒAb1 Ab2 � � � Abn� D ŒAb1 Ab1 � � � Ab1�;

so the columns of AB are identical. Next, recall that rowi .AB/ D rowi .A/ � B:

Since all the rows of A are identical, all the rows of AB are identical. Putting this
information about the rows and columns together, it follows that all the entries in
AB are the same.

2.2 The Inverse of a Matrix
Matrix algebra provides tools for manipulating matrix equations and creating various
useful formulas in ways similar to doing ordinary algebra with real numbers. This section
investigates the matrix analogue of the reciprocal, or multiplicative inverse, of a nonzero
number.

Recall that themultiplicative inverse of a number such as 5 is 1/5 or 5�1. This inverse
satisfies the equations

5�1.5/ D 1 and 5.5�1/ D 1

The matrix generalization requires both equations and avoids the slanted-line notation
(for division) because matrix multiplication is not commutative. Furthermore, a full
generalization is possible only if the matrices involved are square.1

An n � n matrix A is said to be invertible if there is an n � n matrix C such that

CA D I and AC D I

where I D In; the n � n identity matrix. In this case, C is an inverse of A. In fact, C

is uniquely determined by A, because if B were another inverse of A, then B D BI D

B.AC / D .BA/C D IC D C: This unique inverse is denoted by A�1, so that

A�1A D I and AA�1 D I

A matrix that is not invertible is sometimes called a singular matrix, and an invertible
matrix is called a nonsingular matrix.

1One could say that an m� n matrix A is invertible if there exist n�m matrices C and D such that
CA D In and AD D Im: However, these equations imply that A is square and C D D: Thus, A is invertible
as defined above. See Exercises 31–33 in Section 2.1.
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EXAMPLE 1 If A D

�
2 5

�3 �7

�
and C D

�
�7 �5

3 2

�
, then

AC D

�
2 5

�3 �7

��
�7 �5

3 2

�
D

�
1 0

0 1

�
and

CA D

�
�7 �5

3 2

��
2 5

�3 �7

�
D

�
1 0

0 1

�
Thus C D A�1.

Here is a simple formula for the inverse of a 2 � 2 matrix, along with a test to tell if
the inverse exists.

THEOREM 4 Let A D

�
a b

c d

�
. If ad � bc ¤ 0, then A is invertible and

A�1
D

1

ad � bc

�
d �b

�c a

�
If ad � bc D 0, then A is not invertible.

The simple proof of Theorem 4 is outlined in Exercises 35 and 36. The quantity
ad � bc is called the determinant of A, and we write

detA D ad � bc

Theorem 4 says that a 2 � 2 matrix A is invertible if and only if detA ¤ 0.

EXAMPLE 2 Find the inverse of A D

�
3 4

5 6

�
.

SOLUTION Since detA D 3.6/ � 4.5/ D �2 ¤ 0, A is invertible, and

A�1
D

1

�2

�
6 �4

�5 3

�
D

�
6=.�2/ �4=.�2/

�5=.�2/ 3=.�2/

�
D

�
�3 2

5=2 �3=2

�
Invertible matrices are indispensable in linear algebra—mainly for algebraic calcu-

lations and formula derivations, as in the next theorem. There are also occasions when
an inverse matrix provides insight into a mathematical model of a real-life situation, as
in Example 3.

THEOREM 5 If A is an invertible n � n matrix, then for each b in Rn, the equation Ax D b has
the unique solution x D A�1b.

PROOF Take any b in Rn. A solution exists because if A�1b is substituted for x,
then Ax D A.A�1b/ D .AA�1/b D Ib D b. So A�1b is a solution. To prove that the
solution is unique, show that if u is any solution, then u; in fact, must be A�1b. Indeed,
if Au D b, we can multiply both sides by A�1 and obtain

A�1Au D A�1b; Iu D A�1b; and u D A�1b
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EXAMPLE 3 A horizontal elastic beam is supported at each end and is subjected to
forces at points 1, 2, and 3, as shown in Figure 1. Let f in R3 list the forces at these
points, and let y in R3 list the amounts of deflection (that is, movement) of the beam at
the three points. Using Hooke’s law from physics, it can be shown that

y D Df

where D is a flexibility matrix. Its inverse is called the stiffness matrix. Describe the
physical significance of the columns of D and D�1.













#1 # 2 # 3

y1 y2
y3

f3f2
f1

FIGURE 1 Deflection of an elastic beam.

SOLUTION Write I3 D Œ e1 e2 e3 � and observe that

D D DI3 D Œ De1 De2 De3 �

Interpret the vector e1 D .1; 0; 0/ as a unit force applied downward at point 1 on the
beam (with zero force at the other two points). Then De1; the first column of D; lists the
beam deflections due to a unit force at point 1. Similar descriptions apply to the second
and third columns of D:

To study the stiffness matrix D�1, observe that the equation f D D�1y computes a
force vector f when a deflection vector y is given. Write

D�1
D D�1I3 D Œ D�1e1 D�1e2 D�1e3 �

Now interpret e1 as a deflection vector. Then D�1e1 lists the forces that create the
deflection. That is, the first column of D�1 lists the forces that must be applied at the
three points to produce a unit deflection at point 1 and zero deflections at the other points.
Similarly, columns 2 and 3 of D�1 list the forces required to produce unit deflections at
points 2 and 3, respectively. In each column, one or two of the forces must be negative
(point upward) to produce a unit deflection at the desired point and zero deflections at
the other two points. If the flexibility is measured, for example, in inches of deflection
per pound of load, then the stiffness matrix entries are given in pounds of load per inch
of deflection.

The formula in Theorem 5 is seldom used to solve an equation Ax D b numerically
because row reduction of Œ A b � is nearly always faster. (Row reduction is usually
more accurate, too, when computations involve rounding off numbers.) One possible
exception is the 2 � 2 case. In this case, mental computations to solve Ax D b are
sometimes easier using the formula for A�1, as in the next example.

EXAMPLE 4 Use the inverse of the matrix A in Example 2 to solve the system

3x1 C 4x2 D 3

5x1 C 6x2 D 7

SOLUTION This system is equivalent to Ax D b, so

x D A�1b D
�
�3 2

5=2 �3=2

� �
3

7

�
D

�
5

�3

�
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The next theorem provides three useful facts about invertible matrices.

THEOREM 6 a. If A is an invertible matrix, then A�1 is invertible and

.A�1/�1
D A

b. If A and B are n � n invertible matrices, then so is AB , and the inverse of AB

is the product of the inverses of A and B in the reverse order. That is,

.AB/�1
D B�1A�1

c. IfA is an invertible matrix, then so isAT , and the inverse ofAT is the transpose
of A�1. That is,

.AT /�1
D .A�1/T

PROOF To verify statement (a), find a matrix C such that

A�1C D I and CA�1
D I

In fact, these equations are satisfied with A in place of C . Hence A�1 is invertible, and
A is its inverse. Next, to prove statement (b), compute:

.AB/.B�1A�1/ D A.BB�1/A�1
D AIA�1

D AA�1
D I

A similar calculation shows that .B�1A�1/.AB/ D I . For statement (c), use The-
orem 3(d), read from right to left, .A�1/T AT D .AA�1/T D I T D I . Similarly,
AT .A�1/T D I T D I . Hence AT is invertible, and its inverse is .A�1/T .

Remark: Part (b) illustrates the important role that definitions play in proofs. The theorem
claims that B�1A�1 is the inverse of AB . The proof establishes this by showing that
B�1A�1 satisfies the definition of what it means to be the inverse of AB . Now, the
inverse of AB is a matrix that when multiplied on the left (or right) by AB , the product
is the identity matrix I . So the proof consists of showing that B�1A�1 has this property.

The following generalization of Theorem 6(b) is needed later.

The product of n � n invertible matrices is invertible, and the inverse is the product
of their inverses in the reverse order.

There is an important connection between invertible matrices and row operations
that leads to a method for computing inverses. As we shall see, an invertible matrix A is
row equivalent to an identity matrix, and we can findA�1 by watching the row reduction
of A to I.

Elementary Matrices
An elementarymatrix is one that is obtained by performing a single elementary row op-
eration on an identity matrix. The next example illustrates the three kinds of elementary
matrices.
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EXAMPLE 5 Let

E1 D

24 1 0 0

0 1 0

�4 0 1

35; E2 D

24 0 1 0

1 0 0

0 0 1

35; E3 D

24 1 0 0

0 1 0

0 0 5

35;

A D

24 a b c

d e f

g h i

35
Compute E1A, E2A, and E3A, and describe how these products can be obtained by
elementary row operations on A.

SOLUTION Verify that

E1A D

24 a b c

d e f

g � 4a h � 4b i � 4c

35 ; E2A D

24 d e f

a b c

g h i

35;

E3A D

24 a b c

d e f

5g 5h 5i

35 :

Addition of �4 times row 1 of A to row 3 produces E1A. (This is a row replacement
operation.) An interchange of rows 1 and 2 of A produces E2A, and multiplication of
row 3 of A by 5 produces E3A.

Left-multiplication (that is, multiplication on the left) by E1 in Example 5 has the
same effect on any 3 � n matrix. It adds �4 times row 1 to row 3. In particular, since
E1 � I D E1, we see thatE1 itself is produced by this same row operation on the identity.
Thus Example 5 illustrates the following general fact about elementary matrices. See
Exercises 37 and 38.

If an elementary row operation is performed on an m � n matrix A, the resulting
matrix can be written as EA, where the m �m matrix E is created by performing
the same row operation on Im.

Since row operations are reversible, as shown in Section 1.1, elementary matrices
are invertible, for if E is produced by a row operation on I, then there is another row op-
eration of the same type that changesE back into I. Hence there is an elementary matrix
F such that FE D I. Since E and F correspond to reverse operations, EF D I, too.

Each elementary matrix E is invertible. The inverse of E is the elementary matrix
of the same type that transforms E back into I.

EXAMPLE 6 Find the inverse of E1 D

24 1 0 0

0 1 0

�4 0 1

35.
SOLUTION To transform E1 into I, add C4 times row 1 to row 3. The elementary
matrix that does this is

E�1
1 D

24 1 0 0

0 1 0

C4 0 1

35
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The following theorem provides the best way to “visualize” an invertible matrix,
and the theorem leads immediately to a method for finding the inverse of a matrix.

THEOREM 7 An n � n matrix A is invertible if and only if A is row equivalent to In, and in
this case, any sequence of elementary row operations that reduces A to In also
transforms In into A�1.

Remark: The comment on the proof of Theorem 11 in Chapter 1 noted that “P if and
only if Q” is equivalent to two statements: (1) “If P then Q” and (2) “If Q then P .”
The second statement is called the converse of the first and explains the use of the word
conversely in the second paragraph of this proof.

PROOF Suppose that A is invertible. Then, since the equation Ax D b has a solution
for each b (Theorem 5), A has a pivot position in every row (Theorem 4 in Section 1.4).
Because A is square, the n pivot positions must be on the diagonal, which implies that
the reduced echelon form of A is In. That is, A � In.

Now suppose, conversely, that A � In. Then, since each step of the row reduction
of A corresponds to left-multiplication by an elementary matrix, there exist elementary
matrices E1; : : : ; Ep such that

A � E1A � E2.E1A/ � � � � � Ep.Ep�1 � � �E1A/ D In

That is,
Ep � � �E1A D In (1)

Since the product Ep � � �E1 of invertible matrices is invertible, (1) leads to

.Ep � � �E1/�1.Ep � � �E1/A D .Ep � � �E1/�1In

A D .Ep � � �E1/�1

Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,

A�1
D Œ .Ep � � �E1/�1 �

�1
D Ep � � �E1

Then A�1 D Ep � � �E1In, which says that A�1 results from applying E1; : : : ; Ep suc-
cessively to In. This is the same sequence in (1) that reduced A to In.

An Algorithm for Finding A –1

If we place A and I side by side to form an augmented matrix Œ A I �, then row
operations on this matrix produce identical operations on A and on I. By Theorem 7,
either there are row operations that transform A to In and In to A�1 or else A is not
invertible.

ALGORITHM FOR FINDING A–1

Row reduce the augmented matrix Œ A I �. If A is row equivalent to I, then
Œ A I � is row equivalent to Œ I A�1 �. Otherwise, A does not have an inverse.
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EXAMPLE 7 Find the inverse of the matrix A D

24 0 1 2

1 0 3

4 �3 8

35, if it exists.
SOLUTION

Œ A I � D

24 0 1 2 1 0 0

1 0 3 0 1 0

4 �3 8 0 0 1

35 � 24 1 0 3 0 1 0

0 1 2 1 0 0

4 �3 8 0 0 1

35
�

24 1 0 3 0 1 0

0 1 2 1 0 0

0 �3 �4 0 �4 1

35 � 24 1 0 3 0 1 0

0 1 2 1 0 0

0 0 2 3 �4 1

35
�

24 1 0 3 0 1 0

0 1 2 1 0 0

0 0 1 3=2 �2 1=2

35
�

24 1 0 0 �9=2 7 �3=2

0 1 0 �2 4 �1

0 0 1 3=2 �2 1=2

35
Theorem 7 shows, since A � I, that A is invertible, and

A�1
D

24�9=2 7 �3=2

�2 4 �1

3=2 �2 1=2

35

Reasonable Answers

Once you have found a candidate for the inverse of a matrix, you can check that
your answer is correct by finding the product ofAwithA�1. For the inverse found
for matrix A in Example 7, notice

AA�1
D

24 0 1 2

1 0 3

4 �3 8

35 24�9=2 7 �3=2

�2 4 �1

3=2 �2 1=2

35 D 24 1 0 0

0 1 0

0 0 1

35
confirming that answer is correct. It is not necessary to check that A�1A D I

since A is invertible.

Another View of Matrix Inversion
Denote the columns of In by e1; : : : ; en. Then row reduction of Œ A I � to Œ I A�1 �

can be viewed as the simultaneous solution of the n systems

Ax D e1; Ax D e2; : : : ; Ax D en (2)

where the “augmented columns” of these systems have all been placed next toA to form
Œ A e1 e2 � � � en � D Œ A I �. The equationAA�1 D I and the definition of matrix
multiplication show that the columns ofA�1 are precisely the solutions of the systems in
(2). This observation is useful because some applied problems may require finding only
one or two columns of A�1. In this case, only the corresponding systems in (2) need to
be solved.
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Numerical Note

In practical work, A�1 is seldom computed, unless the entries of A�1 are needed.
Computing both A�1 and A�1b takes about three times as many arithmetic
operations as solving Ax D b by row reduction, and row reduction may be more
accurate.

Practice Problems

1. Use determinants to determine which of the following matrices are invertible.

a.
�

3 �9

2 6

�
b.
�

4 �9

0 5

�
c.
�

6 �9

�4 6

�
2. Find the inverse of the matrix A D

24 1 �2 �1

�1 5 6

5 �4 5

35, if it exists.
3. If A is an invertible matrix, prove that 5A is an invertible matrix.

2.2 Exercises
Find the inverses of the matrices in Exercises 1–4.

1.
�

8 3

5 2

�
2.

�
5 4

9 7

�
3.

�
8 3

�7 �3

�
4.

�
3 �2

7 �4

�
5. Verify that the inverse you found in Exercise 1 is correct.

6. Verify that the inverse you found in Exercise 2 is correct.

7. Use the inverse found in Exercise 1 to solve the system

8x1 C 3x2 D 2

5x1 C 2x2 D �1

8. Use the inverse found in Exercise 2 to solve the system

5x1 C 4x2 D �3

9x1 C 7x2 D �5

9. Let A D

�
1 2

5 12

�
; b1 D

�
�1

3

�
; b2 D

�
1

�5

�
;

b3 D

�
2

6

�
, and b4 D

�
3

5

�
.

a. Find A�1, and use it to solve the four equations Ax D
b1; Ax D b2; Ax D b3; Ax D b4

b. The four equations in part (a) can be solved by the
same set of row operations, since the coefficient ma-
trix is the same in each case. Solve the four equa-
tions in part (a) by row reducing the augmented matrix�

A b1 b2 b3 b4

�
10. Use matrix algebra to show that if A is invertible and D

satisfies AD D I , then D D A�1.

In Exercises 11–20, mark each statement True or False (T/F).
Justify each answer.

11. (T/F) In order for a matrix B to be the inverse of A, both
equations AB D I and BA D I must be true.

12. (T/F)A product of invertible n � nmatrices is invertible, and
the inverse of the product is the product of their inverses in
the same order.

13. (T/F) If A and B are n � n and invertible, then A�1B�1 is
the inverse of AB .

14. (T/F) If A is invertible, then the inverse of A�1 is A itself.

15. (T/F) If A D

�
a b

c d

�
and ab � cd ¤ 0, then A is

invertible.

16. (T/F) If A D

�
a b

c d

�
and ad D bc, then A is not

invertible.

17. (T/F) If A is an invertible n � n matrix, then the equation
Ax D b is consistent for each b in Rn.

18. (T/F) If A can be row reduced to the identity matrix, then A

must be invertible.

19. (T/F) Each elementary matrix is invertible.

20. (T/F) If A is invertible, then the elementary row operations
that reduce A to the identity In also reduce A�1 to In.

21. Let A be an invertible n � n matrix, and let B be an n � p

matrix. Show that the equation AX D B has a unique solu-
tion A�1B:
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22. Let A be an invertible n � nmatrix, and let B be an n � p ma-
trix. Explain why A�1B can be computed by row reduction:

If ŒA B� � � � � � ŒI X�; then X D A�1B:

If A is larger than 2 � 2, then row reduction of ŒA B� is much
faster than computing both A�1 and A�1B:

23. SupposeAB D AC;where B andC are n � p matrices and A
is invertible. Show that B D C . Is this true, in general, when
A is not invertible?

24. Suppose .B � C /D D 0, where B and C are m � n matrices
and D is invertible. Show that B D C:

25. Suppose A, B, and C are invertible n � n matrices. Show that
ABC is also invertible by producing a matrix D such that
.ABC / D D I and D .ABC / D I:

26. Suppose A and B are n � n; B is invertible, and AB is invert-
ible. Show that A is invertible. [Hint: Let C D AB; and solve
this equation for A.]

27. Solve the equation AB D BC for A, assuming that A, B, and
C are square and B is invertible.

28. Suppose P is invertible and A D PBP�1: Solve for B in
terms of A.

29. If A, B, and C are n � n invertible matrices, does the equation
C�1.ACX/B�1 D In have a solution, X? If so, find it.

30. Suppose A, B, and X are n � n matrices with A, X, and
A � AX invertible, and suppose

.A � AX/�1 D X�1B .3/

a. Explain why B is invertible.

b. Solve (3) for X. If you need to invert a matrix, explain why
that matrix is invertible.

31. Explain why the columns of an n � n matrix A are linearly
independent when A is invertible.

32. Explain why the columns of an n � nmatrix A spanRn when
A is invertible. [Hint: Review Theorem 4 in Section 1.4.]

33. Suppose A is n � n and the equation Ax D 0 has only the
trivial solution. Explain why A has n pivot columns and A is
row equivalent to In: By Theorem 7, this shows that A must
be invertible. (This exercise and Exercise 34 will be cited in
Section 2.3.)

34. Suppose A is n � n and the equation Ax D b has a solution
for each b in Rn. Explain why A must be invertible. [Hint: Is
A row equivalent to In?]

Exercises 35 and 36 prove Theorem 4 for A D

�
a b

c d

�
:

35. Show that if ad � bc D 0; then the equation Ax D 0 has
more than one solution. Why does this imply that A is not
invertible? [Hint: First, consider a D b D 0: Then, if a and b

are not both zero, consider the vector x D
�
�b

a

�
:�

36. Show that if ad � bc ¤ 0; the formula for A�1 works.

Exercises 37 and 38 prove special cases of the facts about elemen-
tary matrices stated in the box following Example 5. Here A is a
3 � 3 matrix and I D I3: (A general proof would require slightly
more notation.)

37. a. Use equation (1) from Section 2.1 to show that
rowi .A/ D rowi .I / � A; for i D 1; 2; 3:

b. Show that if rows l and 2 of A are interchanged, then the
result may be written as EA, where E is an elementary
matrix formed by interchanging rows 1 and 2 of I.

c. Show that if row 3 of A is multiplied by 5, then the result
may be written as EA, where E is formed by multiplying
row 3 of I by 5.

38. Show that if row 3 of A is replaced by row3.A/ � 4row1.A/;

the result is EA, where E is formed from I by replacing
row3.I / by row3.I / � 4row1.I /:

Find the inverses of the matrices in Exercises 39–42, if they exist.
Use the algorithm introduced in this section.

39.
�

1 2

4 7

�
40.

�
9 7

8 6

�

41.

24 1 0 �2

�3 1 4

2 �3 4

35 42.

24 1 �2 1

4 �7 3

�2 6 �4

35
43. Use the algorithm from this section to find the inverses of24 1 0 0

1 1 0

1 1 1

35 and

2664
1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

3775:

Let A be the corresponding n � n matrix, and let B be its
inverse. Guess the form of B , and then prove that AB D I

and BA D I:

44. Repeat the strategy of Exercise 43 to guess the inverse of

A D

2666664
1 0 0 � � � 0

1 2 0 0

1 2 3 0
:::

: : :
:::

1 2 3 � � � n

3777775: Prove that your guess is

correct.

45. Let A D

24�2 �7 �9

2 5 6

1 3 4

35: Find the third column of A�1

without computing the other columns.

T 46. Let A D

24�25 �9 �27

546 180 537

154 50 149

35: Find the second and third

columns of A�1 without computing the first column.
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47. LetA D

24 1 2

1 3

1 5

35:Construct a 2 � 3matrixC (by trial and

error) using only l, �1, and 0 as entries, such that CA D I2:

Compute AC and note that AC ¤ I3:

48. Let A D

�
1 1 1 0

0 1 1 1

�
: Construct a 4 � 2 matrix D

using only 1 and 0 as entries, such thatAD D I2: Is it possible
that CA D I4 for some 4 � 2 matrix C? Why or why not?

49. Let D D

24 :005 :002 :001

:002 :004 :002

:001 :002 :005

35 be a flexibility matrix,

with flexibility measured in inches per pound. Suppose
that forces of 30, 50, and 20 lb are applied at points 1,
2, and 3, respectively, in Figure 1 of Example 3. Find the
corresponding deflections.

T 50. Compute the stiffness matrix D�1 for D in Exercise 49. List
the forces needed to produce a deflection of .04 in. at point
3, with zero deflections at the other points.

T 51. Let D D

2664
:0040 :0030 :0010 :0005

:0030 :0050 :0030 :0010

:0010 :0030 :0050 :0030

:0005 :0010 :0030 :0040

3775 be a

flexibility matrix for an elastic beam with four points at
which force is applied. Units are centimeters per newton
of force. Measurements at the four points show deflections
of .08, .12, .16, and .12 cm. Determine the forces at the four
points.

f3

#1 #2 #3 #4

f1 f2
f4

.08 .12 .16 .12

Deflection of elastic beam in Exercises 51 and 52.

T 52. With D as in Exercise 51, determine the forces that produce
a deflection of .24 cm at the second point on the beam, with
zero deflections at the other three points. How is the answer
related to the entries inD�1‹ [Hint: First answer the question
when the deflection is 1 cm at the second point.]

Solutions to Practice Problems

1. a. det
�

3 �9

2 6

�
D 3 � 6 � .�9/ � 2 D 18C 18 D 36. The determinant is nonzero,

so the matrix is invertible.

b. det
�

4 �9

0 5

�
D 4 � 5 � .�9/ � 0 D 20 ¤ 0. The matrix is invertible.

c. det
�

6 �9

�4 6

�
D 6 � 6 � .�9/.�4/ D 36 � 36 D 0. Thematrix is not invertible.

2. Œ A I � �

24 1 �2 �1 1 0 0

�1 5 6 0 1 0

5 �4 5 0 0 1

35
�

24 1 �2 �1 1 0 0

0 3 5 1 1 0

0 6 10 �5 0 1

35
�

24 1 �2 �1 1 0 0

0 3 5 1 1 0

0 0 0 �7 �2 1

35
So Œ A I � is row equivalent to a matrix of the form Œ B D �, where B is square
and has a row of zeros. Further row operations will not transform B into I, so we
stop. A does not have an inverse.

3. Since A is an invertible matrix, there exists a matrix C such that AC D I D CA.
The goal is to find a matrix D so that (5A)D D I D D(5A). Set D D 1=5 C .
Applying Theorem 2 from Section 2.1 establishes that (5A)(1=5 C )D (5)(1/5)(AC )
D 1 I D I , and (1/5C )(5A) D (1/5)(5)(CA) = 1 I D I . Thus 1/5 C is indeed the
inverse of A, proving that A is invertible.
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2.3 Characterizations of Invertible Matrices
This section provides a review ofmost of the concepts introduced in Chapter 1, in relation
to systems of n linear equations in n unknowns and to square matrices. The main result
is Theorem 8.

THEOREM 8 The Invertible Matrix Theorem

LetA be a square n � nmatrix. Then the following statements are equivalent. That
is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to the n � n identity matrix.

c. A has n pivot positions.

d. The equation Ax D 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x 7! Ax is one-to-one.

g. The equation Ax D b has at least one solution for each b in Rn.

h. The columns of A span Rn.

i. The linear transformation x 7! Ax maps Rn onto Rn.

j. There is an n � n matrix C such that CA D I .

k. There is an n � n matrix D such that AD D I .

l. AT is an invertible matrix.

First, we need some notation. If the truth of statement (a) always implies that state-

(c) (d)

( j)

(a)

(b)

FIGURE 1

ment (j) is true, we say that (a) implies (j) and write (a)) (j). The proof will establish
the “circle” of implications shown in Figure 1. If any one of these five statements is
true, then so are the others. Finally, the proof will link the remaining statements of the
theorem to the statements in this circle.

PROOF If statement (a) is true, then A�1 works for C in (j), so (a)) (j). Next,
(j)) (d) by Exercise 31 in Section 2.1. (Turn back and read the exercise.) Also,
(d)) (c) by Exercise 33 in Section 2.2. If A is square and has n pivot positions, then
the pivots must lie on the main diagonal, in which case the reduced echelon form of A

is In: Thus (c)) (b). Also, (b)) (a) by Theorem 7 in Section 2.2. This completes the
circle in Figure 1.

Next, (a)) (k) because A�1 works for D. Also, (k)) (g) by Exercise 32 in
Section 2.1, and (g)) (a) by Exercise 34 in Section 2.2. So (k) and (g) are linked
to the circle. Further, (g), (h), and (i) are equivalent for any matrix, by Theorem 4 in
Section 1.4 and Theorem 12(a) in Section 1.9. Thus, (h) and (i) are linked through (g) to
the circle.

Since (d) is linked to the circle, so are (e) and (f), because (d), (e), and (f) are
all equivalent for any matrix A. (See Section 1.7 and Theorem 12(b) in Section 1.9.)
Finally, (a)) (l) by Theorem 6(c) in Section 2.2, and (l)) (a) by the same theorem
with A and AT interchanged. This completes the proof.

(g)

(k)

(h)

(a)

(l)(a)

(i)(g)

(e) (f )(d)

Because of Theorem 5 in Section 2.2, statement (g) in Theorem 8 could also be
written as “The equationAx D b has a unique solution for each b inRn.” This statement
certainly implies (b) and hence implies that A is invertible.
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The next fact follows from Theorem 8 and Exercise 10 in Section 2.2.

Let A and B be square matrices. If AB D I , then A and B are both invertible, with
B D A�1 and A D B�1.

The Invertible Matrix Theorem divides the set of all n � nmatrices into two disjoint
classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
Each statement in the theorem describes a property of every n � n invertible matrix.
The negation of a statement in the theorem describes a property of every n � n singular
matrix. For instance, an n � n singular matrix is not row equivalent to In, does not have
n pivot positions, and has linearly dependent columns. Negations of other statements are
considered in the exercises.

EXAMPLE 1 Use the Invertible Matrix Theorem to decide if A is invertible:

A D

24 1 0 �2

3 1 �2

�5 �1 9

35
SOLUTION

A �

24 1 0 �2

0 1 4

0 �1 �1

35 � 24 1 0 �2

0 1 4

0 0 3

35
SoA has three pivot positions and hence is invertible, by the Invertible Matrix Theorem,
statement (c).

The power of the Invertible Matrix Theorem lies in the connections it providesSTUDY GUIDE offers an expanded
table for the Invertible Matrix
Theorem.

among so many important concepts, such as linear independence of columns of a matrix
A and the existence of solutions to equations of the form Ax D b. It should be empha-
sized, however, that the Invertible Matrix Theorem applies only to square matrices. For
example, if the columns of a 4 � 3 matrix are linearly independent, we cannot use the
Invertible Matrix Theorem to conclude anything about the existence or nonexistence of
solutions to equations of the form Ax D b.

Invertible Linear Transformations
Recall from Section 2.1 that matrix multiplication corresponds to composition of linear
transformations. When a matrix A is invertible, the equation A�1Ax D x can be viewed
as a statement about linear transformations. See Figure 2.

Multiplication

by A

Multiplication

by A21

Axx

FIGURE 2 A�1 transforms Ax back to x.

A linear transformation T W Rn ! Rn is said to be invertible if there exists a func-
tion S W Rn ! Rn such that

S.T .x// D x for all x in Rn (1)

T .S.x// D x for all x in Rn (2)

The next theorem shows that if such an S exists, it is unique and must be a linear
transformation. We call S the inverse of T and write it as T �1.
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THEOREM 9 Let T W Rn ! Rn be a linear transformation and let A be the standard matrix for
T . Then T is invertible if and only if A is an invertible matrix. In that case, the
linear transformation S given by S.x/ D A�1x is the unique function satisfying
equations .1/ and .2/.

Remark: See the comment on the proof of Theorem 7.

PROOF Suppose that T is invertible. Then (2) shows that T is onto Rn, for if b is in
Rn and x D S.b/, then T .x/ D T .S.b// D b, so each b is in the range of T . Thus A is
invertible, by the Invertible Matrix Theorem, statement (i).

Conversely, suppose that A is invertible, and let S.x/ D A�1x. Then, S is a linear
transformation, and S obviously satisfies (1) and (2). For instance,

S.T .x// D S.Ax/ D A�1.Ax/ D x

Thus T is invertible. The proof that S is unique is outlined in Exercise 47.

EXAMPLE 2 What can you say about a one-to-one linear transformation T fromRn

into Rn?

SOLUTION The columns of the standard matrix A of T are linearly independent (by
Theorem 12 in Section 1.9). So A is invertible, by the Invertible Matrix Theorem, and
T maps Rn onto Rn. Also, T is invertible, by Theorem 9.

Numerical Notes

In practical work, you might occasionally encounter a “nearly singular” or ill-
conditioned matrix—an invertible matrix that can become singular if some of
its entries are changed ever so slightly. In this case, row reduction may produce
fewer than n pivot positions, as a result of roundoff error. Also, roundoff error can
sometimes make a singular matrix appear to be invertible.

Somematrix programswill compute a condition number for a squarematrix.
The larger the condition number, the closer the matrix is to being singular.
The condition number of the identity matrix is 1. A singular matrix has an
infinite condition number. In extreme cases, a matrix program may not be able
to distinguish between a singular matrix and an ill-conditioned matrix.

Exercises 49– 53 show thatmatrix computations can produce substantial error
when a condition number is large.

Practice Problems

1. Determine if A D

24 2 3 4

2 3 4

2 3 4

35 is invertible.

2. Suppose that for a certain n � n matrix A, statement (g) of the Invertible Matrix
Theorem is not true. What can you say about equations of the form Ax D b?

3. Suppose thatA andB are n � nmatrices and the equationABx D 0 has a nontrivial
solution. What can you say about the matrix AB?



148 CHAPTER 2 Matrix Algebra

2.3 Exercises
Unless otherwise specified, assume that all matrices in these ex-
ercises are n � n. Determine which of the matrices in Exercises
1–10 are invertible. Use as few calculations as possible. Justify
your answers.

1.
�

5 7

�3 �6

�
2.

�
�4 6

6 �9

�

3.

24 5 0 0

�3 �7 0

8 5 �1

35 4.

24�7 0 4

3 0 �1

2 0 9

35
5.

24 0 4 7

1 0 5

�5 8 �2

35 6.

24 1 �5 �4

0 3 4

�3 6 0

35

7.

2664
�1 0 2 1

�5 �3 9 3

3 0 1 �3

0 3 1 2

3775 8.

2664
1 3 7 4

0 5 9 6

0 0 2 8

0 0 0 10

3775

T 9.

2664
4 0 �7 �7

�6 1 11 9

7 �5 10 19

�1 2 3 �1

3775

T 10.

266664
5 3 1 7 9

6 4 2 8 �8

7 5 3 10 9

9 6 4 �9 �5

8 5 2 11 4

377775
In Exercises 11–20, the matrices are all n � n. Each part of
the exercises is an implication of the form “If ‘statement 1’,
then ‘statement 2’.” Mark an implication as True if the truth of
“statement 2” always follows whenever “statement 1” happens to
be true. An implication is False if there is an instance in which
“statement 2” is false but “statement 1” is true. Justify each answer.

11. (T/F) If the equationAx = 0 has only the trivial solution, then
A is row equivalent to the n � n identity matrix.

12. (T/F) If there is an n � n matrix D such that AD D I , then
there is also an n � n matrix C such that CA D I .

13. (T/F) If the columns of A span Rn, then the columns are
linearly independent.

14. (T/F) If the columns of A are linearly independent, then the
columns of A span Rn.

15. (T/F) If A is an n � n matrix, then the equation Ax D b has
at least one solution for each b in Rn.

16. (T/F) If the equationAx D b has at least one solution for each
b in Rn, then the solution is unique for each b.

17. (T/F) If the equation Ax = 0 has a nontrivial solution, then A

has fewer than n pivot positions.

18. (T/F) If the linear transformation x 7! Ax maps Rn into Rn,
then A has n pivot positions.

19. (T/F) If AT is not invertible, then A is not invertible.

20. (T/F) If there is a b in Rn such that the equation Ax D b
is inconsistent, then the transformation x 7! Ax is not one-
to-one.

21. An m � n upper triangular matrix is one whose entries
below the main diagonal are 0’s (as in Exercise 8). When
is a square upper triangular matrix invertible? Justify your
answer.

22. An m � n lower triangular matrix is one whose entries
above the main diagonal are 0’s (as in Exercise 3). When
is a square lower triangular matrix invertible? Justify your
answer.

23. Can a square matrix with two identical columns be invertible?
Why or why not?

24. Is it possible for a 5 � 5 matrix to be invertible when its
columns do not span R5? Why or why not?

25. If A is invertible, then the columns of A�1 are linearly
independent. Explain why.

26. If C is 6 � 6 and the equation Cx D v is consistent for every
v in R6, is it possible that for some v, the equation Cx D v
has more than one solution? Why or why not?

27. If the columns of a 7 � 7 matrix D are linearly independent,
what can you say about solutions of Dx D b? Why?

28. If n � n matrices E and F have the property that EF D I ,
then E and F commute. Explain why.

29. If the equation Gx D y has more than one solution for some
y in Rn, can the columns of G span Rn? Why or why not?

30. If the equationHx D c is inconsistent for some c inRn, what
can you say about the equation Hx D 0? Why?

31. If an n � n matrix K cannot be row reduced to In; what can
you say about the columns of K? Why?

32. If L is n � n and the equation Lx D 0 has the trivial solution,
do the columns of L span Rn? Why?

33. Verify the boxed statement preceding Example 1.

34. Explain why the columns of A2 span Rn whenever the
columns of A are linearly independent.

35. Show that if AB is invertible, so is A. You cannot use Theorem
6(b), because you cannot assume that A and B are invertible.
[Hint: There is a matrix W such that ABW D I: Why?]

36. Show that if AB is invertible, so is B.

37. If A is an n � nmatrix and the equationAx Db has more than
one solution for some b, then the transformation x 7! Ax is
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not one-to-one. What else can you say about this transforma-
tion? Justify your answer.

38. If A is an n � n matrix and the transformation x 7! Ax is
one-to-one, what else can you say about this transformation?
Justify your answer.

39. Suppose A is an n � n matrix with the property that the
equation Ax D b has at least one solution for each b in Rn.
Without using Theorems 5 or 8, explain why each equation
Ax D b has in fact exactly one solution.

40. Suppose A is an n � n matrix with the property that the equa-
tion Ax D 0 has only the trivial solution. Without using the
Invertible Matrix Theorem, explain directly why the equation
Ax D b must have a solution for each b in Rn.

In Exercises 41 and 42, T is a linear transformation from R2 into
R2. Show that T is invertible and find a formula for T�1:

41. T .x1; x2/ D .�9x1 C 7x2; 4x1 � 3x2/

42. T .x1; x2/ D .6x1 � 8x2;�5x1 C 7x2/

43. Let T W Rn ! Rn be an invertible linear transformation. Ex-
plain why T is both one-to-one and onto Rn. Use equations
(1) and (2). Then give a second explanation using one or more
theorems.

44. Let T be a linear transformation that maps Rn onto Rn. Show
that T�1 exists and maps Rn onto Rn. Is T�1 also one-to-
one?

45. Suppose T and U are linear transformations from Rn to Rn

such that T .U x/ D x for all x inRn. Is it true thatU.T x/ D x
for all x in Rn? Why or why not?

46. Suppose a linear transformation T W Rn ! Rn has the prop-
erty that T .u/ D T .v/ for some pair of distinct vectors u and
v in Rn. Can T map Rn onto Rn? Why or why not?

47. Let T W Rn ! Rn be an invertible linear transformation,
and let S and U be functions from Rn into Rn such that
S .T .x// D x and U .T .x// D x for all x in Rn. Show that
U.v/ D S.v/ for all v in Rn. This will show that T has a
unique inverse, as asserted in Theorem 9. [Hint: Given any
v in Rn, we can write v D T .x/ for some x. Why? Compute
S.v/ and U.v/.]

48. Suppose T and S satisfy the invertibility equations (1) and
(2), where T is a linear transformation. Show directly that
S is a linear transformation. [Hint: Given u, v in Rn, let
x D S.u/; y D S(v). Then T .x/ D u; T .y/ D v:Why?Apply
S to both sides of the equation T .x/C T .y/ D T .xC y/:

Also, consider T .cx/ D cT .x/.]

T 49. Suppose an experiment leads to the following system of
equations:

4:5x1 C 3:1x2 D 19:249 .3/

1:6x1 C 1:1x2 D 6:843

a. Solve system (3), and then solve system (4), below, in
which the data on the right have been rounded to two
decimal places. In each case, find the exact solution.

4:5x1 C 3:1x2 D 19:25 .4/

1:6x1 C 1:1x2 D 6:84

b. The entries in (4) differ from those in (3) by less than
:05%. Find the percentage error when using the solution
of (4) as an approximation for the solution of (3).

c. Use yourmatrix program to produce the condition number
of the coefficient matrix in (3).

Exercises 50–52 show how to use the condition number of amatrix
A to estimate the accuracy of a computed solution of Ax D b:

If the entries of A and b are accurate to about r significant digits
and if the condition number of A is approximately 10k (with k a
positive integer), then the computed solution of Ax D b should
usually be accurate to at least r � k significant digits.

T 50. Find the condition number of the matrix A in Exercise 9.
Construct a random vector x in R4 and compute b D Ax.
Then use your matrix program to compute the solution x1 of
Ax D b. To how many digits do x and x1 agree? Find out the
number of digits your matrix program stores accurately, and
report how many digits of accuracy are lost when x1 is used
in place of the exact solution x.

T 51. Repeat Exercise 50 for the matrix in Exercise 10.

T 52. Solve an equation Ax D b for a suitable b to find the last
column of the inverse of the fifth-order Hilbert matrix

A D

266664
1 1=2 1=3 1=4 1=5

1=2 1=3 1=4 1=5 1=6

1=3 1=4 1=5 1=6 1=7

1=4 1=5 1=6 1=7 1=8

1=5 1=6 1=7 1=8 1=9

377775
How many digits in each entry of x do you expect to be
correct? Explain. [Note: The exact solution is .630;�12600;

56700;�88200; 44100/:]

T 53. Some matrix programs, such as MATLAB, have a command
to create Hilbert matrices of various sizes. If possible, use an
inverse command to compute the inverse of a twelfth-order
or larger Hilbert matrix, A. ComputeAA�1: Report what you
find.

Solutions to Practice Problems

1. The columns of A are obviously linearly dependent because columns 2 and 3 are
STUDY GUIDE offers additional
resources for reviewing and
reflecting on what you have
learned.

multiples of column 1. Hence, A cannot be invertible (by the Invertible Matrix
Theorem).
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Solutions to Practice Problems (Continued)

2. If statement (g) is not true, then the equation Ax D b is inconsistent for at least one
b in Rn.

3. Apply the InvertibleMatrix Theorem to thematrixAB in place ofA. Then statement
(d) becomes: ABx D 0 has only the trivial solution. This is not true. So AB is not
invertible.

2.4 Partitioned Matrices
A key feature of our work with matrices has been the ability to regard a matrixA as a list
of column vectors rather than just a rectangular array of numbers. This point of view has
been so useful that we wish to consider other partitions of A, indicated by horizontal
and vertical dividing rules, as in Example 1 below. Partitioned matrices appear in most
modern applications of linear algebra because the notation highlights essential structures
in matrix analysis, as in the chapter introductory example on aircraft design. This section
provides an opportunity to reviewmatrix algebra and use the Invertible Matrix Theorem.

EXAMPLE 1 The matrix

A D

24 3 0 �1 5 9 �2

�5 2 4 0 �3 1

�8 �6 3 1 7 �4

35
can also be written as the 2 � 3 partitioned (or block) matrix

A D

�
A11 A12 A13

A21 A22 A23

�
whose entries are the blocks (or submatrices)

A11 D

�
3 0 �1

�5 2 4

�
; A12 D

�
5 9

0 �3

�
; A13 D

�
�2

1

�
A21 D

�
�8 �6 3

�
; A22 D

�
1 7

�
; A23 D

�
�4

�
EXAMPLE 2 When a matrix A appears in a mathematical model of a physical sys-
tem such as an electrical network, a transportation system, or a large corporation, it may
be natural to regard A as a partitioned matrix. For instance, if a microcomputer circuit
board consists mainly of three VLSI (very large-scale integrated) microchips, then the
matrix for the circuit board might have the general form

A D

264A11 A12 A13

A21 A22 A23

A31 A32 A33

375
The submatrices on the “diagonal” of A—namely A11, A22, and A33—concern the three
VLSI chips, while the other submatrices depend on the interconnections among those
microchips.

Addition and Scalar Multiplication
If matrices A and B are the same size and are partitioned in exactly the same way,
then it is natural to make the same partition of the ordinary matrix sum AC B . In this
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case, each block of AC B is the (matrix) sum of the corresponding blocks of A and B .
Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of Partitioned Matrices
Partitioned matrices can be multiplied by the usual row–column rule as if the block
entries were scalars, provided that for a product AB , the column partition of A matches
the row partition of B .

EXAMPLE 3 Let

A D

24 2 �3 1 0 �4

1 5 �2 3 �1

0 �4 �2 7 �1

35 D �A11 A12

A21 A22

�
; B D

266664
6 4

�2 1

�3 7

�1 3

5 2

377775 D
�

B1

B2

�

The 5 columns of A are partitioned into a set of 3 columns and then a set of 2
columns. The 5 rows of B are partitioned in the same way—into a set of 3 rows and
then a set of 2 rows. We say that the partitions of A and B are conformable for block
multiplication. It can be shown that the ordinary product AB can be written as

AB D

�
A11 A12

A21 A22

��
B1

B2

�
D

�
A11B1 C A12B2

A21B1 C A22B2

�
D

24�5 4

�6 2

2 1

35
It is important for each smaller product in the expression for AB to be written with

the submatrix from A on the left, since matrix multiplication is not commutative. For
instance,

A11B1 D

�
2 �3 1

1 5 �2

�24 6 4

�2 1

�3 7

35 D � 15 12

2 �5

�
A12B2 D

�
0 �4

3 �1

��
�1 3

5 2

�
D

�
�20 �8

�8 7

�
Hence the top block in AB is

A11B1 C A12B2 D

�
15 12

2 �5

�
C

�
�20 �8

�8 7

�
D

�
�5 4

�6 2

�
The row–column rule for multiplication of block matrices provides the most general

way to regard the product of two matrices. Each of the following views of a product
has already been described using simple partitions of matrices: (1) the definition of Ax
using the columns of A, (2) the column definition of AB , (3) the row–column rule for
computing AB , and (4) the rows of AB as products of the rows of A and the matrix B .
A fifth view of AB , again using partitions, follows in Theorem 10.

The calculations in the next example prepare the way for Theorem 10. Here colk.A/

is the kth column of A, and rowk.B/ is the kth row of B .

EXAMPLE 4 Let A D

�
�3 1 2

1 �4 5

�
and B D

24 a b

c d

e f

35. Verify that
AB D col1.A/ row1.B/C col2.A/ row2.B/C col3.A/ row3.B/
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SOLUTION Each term in the preceding equation is an outer product. (See Exercises 35
and 36 in Section 2.1.) By the row–column rule for computing a matrix product,

col1.A/ row1.B/ D

�
�3

1

��
a b

�
D

�
�3a �3b

a b

�
col2.A/ row2.B/ D

�
1

�4

��
c d

�
D

�
c d

�4c �4d

�
col3.A/ row3.B/ D

�
2

5

��
e f

�
D

�
2e 2f

5e 5f

�
Thus

3X
kD1

colk.A/ rowk.B/ D

�
�3aC c C 2e �3b C d C 2f

a � 4c C 5e b � 4d C 5f

�
This matrix is obviously AB . Notice that the .1; 1/-entry in AB is the sum of the .1; 1/-
entries in the three outer products, the .1; 2/-entry in AB is the sum of the .1; 2/-entries
in the three outer products, and so on.

THEOREM 10 Column–Row Expansion of AB

If A is m � n and B is n � p, then

AB D Œ col1.A/ col2.A/ � � � coln.A/ �

26664
row1.B/

row2.B/
:::

rown.B/

37775 (1)

D col1.A/ row1.B/C � � � C coln.A/ rown.B/

PROOF For each row index i and column index j , the .i; j /-entry in colk.A/ rowk.B/

is the product of aik from colk.A/ and bkj from rowk.B/. Hence the .i; j /-entry in the
sum shown in equation (1) is

ai1b1j C ai2b2j C � � � C ainbnj

.k D 1/ .k D 2/ .k D n/

This sum is also the .i; j /-entry in AB , by the row–column rule.

Inverses of Partitioned Matrices
The next example illustrates calculations involving inverses and partitioned matrices.

EXAMPLE 5 A matrix of the form

A D

�
A11 A12

0 A22

�
is said to be block upper triangular. Assume that A11 is p � p, A22 is q � q, and A is
invertible. Find a formula for A�1.
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SOLUTION Denote A�1 by B and partition B so that�
A11 A12

0 A22

��
B11 B12

B21 B22

�
D

�
Ip 0

0 Iq

�
(2)

This matrix equation provides four equations that will lead to the unknown blocks
B11; : : : ; B22. Compute the product on the left side of equation (2), and equate each entry
with the corresponding block in the identity matrix on the right. That is, set

A11B11 C A12B21 D Ip (3)

A11B12 C A12B22 D 0 (4)

A22B21 D 0 (5)

A22B22 D Iq (6)

By itself, equation (6) does not show that A22 is invertible. However, since A22 is
square, the Invertible Matrix Theorem and (6) together show that A22 is invertible and
B22 D A�1

22 . Next, left-multiply both sides of (5) by A�1
22 and obtain

B21 D A�1
22 0 D 0

so that (3) simplifies to
A11B11 C 0 D Ip

Since A11 is square, this shows that A11 is invertible and B11 D A�1
11 . Finally, use these

results with (4) to find that
A11B12 D �A12B22 D �A12A�1

22 and B12 D �A�1
11 A12A�1

22

Thus

A�1
D

"
A11 A12

0 A22

#�1

D

"
A�1

11 �A�1
11 A12A�1

22

0 A�1
22

#
A block diagonal matrix is a partitioned matrix with zero blocks off the main

diagonal (of blocks). Such a matrix is invertible if and only if each block on the diagonal
is invertible. See Exercises 15 and 16.

Numerical Notes

1. When matrices are too large to fit in a computer’s high-speed memory,
partitioning permits the computer to work with only two or three submatrices
at a time. For instance, one linear programming research team simplified
a problem by partitioning the matrix into 837 rows and 51 columns. The
problem’s solution took about 4 minutes on a Cray supercomputer.1

2. Some high-speed computers, particularly those with vector pipeline architec-
ture, perform matrix calculations more efficiently when the algorithms use
partitioned matrices.2

3. Professional software for high-performance numerical linear algebra, such as
LAPACK, makes intensive use of partitioned matrix calculations.

1 The solution time doesn’t sound too impressive until you learn that each of the 51 block columns contained
about 250,000 individual columns. The original problem had 837 equations and more than 12,750,000
variables! Nearly 100 million of the more than 10 billion entries in the matrix were nonzero. See Robert E.
Bixby et al., “Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and
Simplex Methods,” Operations Research, 40, no. 5 (1992): 885–897.
2 The importance of block matrix algorithms for computer calculations is described in Matrix Computations,
3rd ed., by Gene H. Golub and Charles F. van Loan (Baltimore: Johns Hopkins University Press, 1996).
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The exercises that follow give practice with matrix algebra and illustrate typical
calculations found in applications.

Practice Problems

1. Show that
�

I 0

A I

�
is invertible and find its inverse.

2. Compute XTX , where X is partitioned as
�
X1 X2

�
.

2.4 Exercises
In Exercises 1–9, assume that the matrices are partitioned con-
formably for block multiplication. Compute the products shown
in Exercises 1–4.

1.
�

I 0

E I

��
A B

C D

�
2.

�
E 0

0 F

��
A B

C D

�
3.

�
0 I

I 0

��
W X

Y Z

�
4.

�
I 0

�X I

��
A B

C D

�
In Exercises 5–8, find formulas for X, Y, and Z in terms of A, B,
and C, and justify your calculations. In some cases, you may need
to make assumptions about the size of a matrix in order to produce
a formula. [Hint: Compute the product on the left, and set it equal
to the right side.]

5.
�

A B

C 0

��
I 0

X Y

�
D

�
0 I

Z 0

�
6.

�
X 0

Y Z

��
A 0

B C

�
D

�
I 0

0 I

�

7.
�

X 0 0

Y 0 I

�24A Z

0 0

B I

35 D �I 0

0 I

�

8.
�

A B

0 I

��
X Y Z

0 0 I

�
D

�
I 0 0

0 0 I

�
9. Suppose A11 is an invertible matrix. Find matrices X and Y

such that the product below has the form indicated. Also,
compute B22. [Hint: Compute the product on the left, and set
it equal to the right side.]24 I 0 0

X I 0

Y 0 I

3524A11 A12

A21 A22

A31 A32

35 D 24B11 B12

0 B22

0 B32

35
10. The inverse of

24 I 0 0

C I 0

A B I

35 is

24 I 0 0

Z I 0

X Y I

35:

Find X, Y, and Z.

In Exercises 11–14, mark each statement True or False (T/F).
Justify each answer.

11. (T/F) If A D ŒA1 A2� and B D ŒB1 B2�, with A1 and A2

the same sizes as B1 and B2, respectively, then AC B D

ŒA1 C B1 A2 C B2�:

12. (T/F) The definition of the matrix–vector product Ax is a
special case of block multiplication.

13. (T/F) If A D

�
A11 A12

A21 A22

�
and B D

�
B1

B2

�
; then the parti-

tions of A and B are conformable for block multiplication.

14. (T/F) If A1; A2; B1; and B2 are n � n matrices, A D

�
A1

A2

�
,

and B D
�
B1 B2

�
, then the product BA is defined, but AB

is not.

15. Let A D

�
B 0

0 C

�
, where B and C are square. Show that A

is invertible if and only if both B and C are invertible.

16. Show that the block upper triangular matrix A in Example 5 is
invertible if and only if bothA11 andA22 are invertible. [Hint:
If A11 and A22 are invertible, the formula for A�1 given in
Example 5 actually works as the inverse of A.] This fact about
A is an important part of several computer algorithms that
estimate eigenvalues of matrices. Eigenvalues are discussed
in Chapter 5.

17. Suppose A11 is invertible. Find X and Y such that�
A11 A12

A21 A22

�
D

�
I 0

X I

��
A11 0

0 S

��
I Y

0 I

�
(7)

where S D A22 � A21A�1
11 A12: The matrix S is called the

Schur complement of A11: Likewise, if A22 is invertible,
the matrixA11 � A12A�1

22 A21 is called the Schur complement
of A22: Such expressions occur frequently in the theory of
systems engineering, and elsewhere.

18. Suppose the block matrix A on the left side of (7) is invertible
and A11 is invertible. Show that the Schur complement S of
A11 is invertible. [Hint: The outside factors on the right side
of (7) are always invertible. Verify this.] When A and A11 are
both invertible, (7) leads to a formula for A�1, using S�1,
A�1

11 , and the other entries in A.
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19. When a deep space probe is launched, corrections may
be necessary to place the probe on a precisely calculated
trajectory. Radio telemetry provides a stream of vectors,
x1; : : : ; xk ; giving information at different times about how
the probe’s position compares with its planned trajectory.
Let Xk be the matrix [x1 � � � xk]. The matrix Gk D XkXT

k is
computed as the radar data are analyzed. When xkC1 arrives,
a new GkC1 must be computed. Since the data vectors arrive
at high speed, the computational burden could be severe.
But partitioned matrix multiplication helps tremendously.
Compute the column–row expansions of Gk and GkC1; and
describe what must be computed in order to update Gk to
form GkC1.

The probe Galileo was launched October 18,
1989, and arrived near Jupiter in early
December 1995.

20. Let X be an m � n data matrix such that XT X is invertible,
and let M D Im �X.XT X/�1XT : Add a column x0 to the
data and form

W D ŒX x0�

Compute W T W: The (1, 1)-entry is XT X . Show that the
Schur complement (Exercise 17) of XT X can be written in
the form xT

0 Mx0: It can be shown that the quantity
.xT

0 Mx0/�1 is the (2, 2)-entry in .W T W /�1: This en-
try has a useful statistical interpretation, under appropriate
hypotheses.

In the study of engineering control of physical systems, a standard
set of differential equations is transformed by Laplace transforms
into the following system of linear equations:�

A � sIn B

C Im

��
x
u

�
D

�
0
y

�
(8)

where A is n � n; B is n �m; C is m � n, and s is a variable. The
vector u inRm is the “input” to the system, y inRm is the “output,”
and x in Rn is the “state” vector. (Actually, the vectors x, u, and
y are functions of s, but we suppress this fact because it does not
affect the algebraic calculations in Exercises 21 and 22.)

21. AssumeA � sIn is invertible and view (8) as a system of two
matrix equations. Solve the top equation for x and substitute

into the bottom equation. The result is an equation of the
form W.s/u D y, where W (s) is a matrix that depends on
s. W.s/ is called the transfer function of the system because
it transforms the input u into the output y. Find W.s/ and
describe how it is related to the partitioned system matrix on
the left side of (8). See Exercise 17.

22. Suppose the transfer function W.s/ in Exercise 21 is invert-
ible for some s. It can be shown that the inverse transfer
functionW .s/�1, which transforms outputs into inputs, is the
Schur complement of A � BC � sIn for the matrix below.
Find this Schur complement. See Exercise 17.�

A � BC � sIn B

�C Im

�
23. a. Verify that A2 D I when A D

�
1 0

3 �1

�
.

b. Use partitioned matrices to show that M 2 D I when

M D

2664
1 0 0 0

3 �1 0 0

1 0 �1 0

0 1 �3 1

3775
24. Generalize the idea of Exercise 23(a) [not 23(b)] by con-

structing a 5 � 5 matrix M D

�
A 0

C D

�
such that M 2 D I:

Make C a nonzero 2 � 3matrix. Show that your construction
works.

25. Use partitioned matrices to prove by induction that the prod-
uct of two lower triangular matrices is also lower triangular.
[Hint: A .k C 1/ � .k C 1/ matrix A1 can be written in the
form below, where a is a scalar, v is in Rk , and A is a k � k

lower triangular matrix. See the Study Guide for help with
induction.]

A1 D

�
a 0T

v A

�
26. Use partitioned matrices to prove by induction that for

n D 2; 3; : : : ; the n � n matrix A shown below is invertible
and B is its inverse.

A D

2666664
1 0 0 � � � 0

1 1 0 0

1 1 1 0
:::

: : :

1 1 1 : : : 1

3777775,

B D

2666664
1 0 0 � � � 0

�1 1 0 0

0 �1 1 0
:::

: : :
: : :

0 : : : �1 1

3777775
For the induction step, assume A and B are
.k C 1/ � .k C 1/ matrices, and partition A and B in a form
similar to that displayed in Exercise 25.
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27. Without using row reduction, find the inverse of

A D

266664
1 2 0 0 0

3 5 0 0 0

0 0 2 0 0

0 0 0 7 8

0 0 0 5 6

377775
T 28. For block operations, it may be necessary to access or enter

submatrices of a large matrix. Describe the functions or com-
mands of your matrix program that accomplish the following
tasks. Suppose A is a 20 � 30 matrix.

a. Display the submatrix of A from rows 15 to 20 and
columns 5 to 10.

b. Insert a 5 � 10 matrix B into A, beginning at row 10 and
column 20.

c. Create a 50 � 50 matrix of the form B D

�
A 0

0 AT

�
.

[Note: It may not be necessary to specify the zero blocks
in B.]

T 29. Suppose memory or size restrictions prevent your matrix
program from working with matrices having more than 32
rows and 32 columns, and suppose some project involves
50 � 50 matrices A and B . Describe the commands or oper-
ations of your matrix program that accomplish the following
tasks.

a. Compute AC B.

b. Compute AB.

c. Solve Ax D b for some vector b in R50, assuming that
A can be partitioned into a 2 � 2 block matrix

�
Aij

�
,

with A11 an invertible 20 � 20 matrix, A22 an invertible
30 � 30 matrix, and A12 a zero matrix. [Hint: Describe
appropriate smaller systems to solve, without using any
matrix inverses.]

Solutions to Practice Problems

1. If
�

I 0

A I

�
is invertible, its inverse has the form

�
W X

Y Z

�
. Verify that

�
I 0

A I

��
W X

Y Z

�
D

�
W X

AW C Y AX CZ

�
SoW ,X , Y , andZ must satisfyW D I ,X D 0,AW C Y D 0, andAX CZ D I .
It follows that Y D �A and Z D I . Hence�

I 0

A I

��
I 0

�A I

�
D

�
I 0

0 I

�
The product in the reverse order is also the identity, so the block matrix is invertible,

and its inverse is
�

I 0

�A I

�
. (You could also appeal to the Invertible Matrix

Theorem.)

2. XT X D

"
XT

1

XT
2

#h
X1 X2

i
D

"
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

#
. The partitions of XT and X are

automatically conformable for block multiplication because the columns of XT are
the rows of X . This partition of XTX is used in several computer algorithms for
matrix computations.

2.5 Matrix Factorizations
A factorization of a matrixA is an equation that expressesA as a product of two or more
matrices. Whereas matrix multiplication involves a synthesis of data (combining the
effects of two or more linear transformations into a single matrix), matrix factorization is
an analysis of data. In the language of computer science, the expression ofA as a product
amounts to a preprocessing of the data in A, organizing that data into two or more parts
whose structures are more useful in some way, perhaps more accessible for computation.
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Matrix factorizations and, later, factorizations of linear transformations will appear
at a number of key points throughout the text. This section focuses on a factorization that
lies at the heart of several important computer programswidely used in applications, such
as the airflow problem described in the chapter introduction. Several other factorizations,
to be studied later, are introduced in the exercises.

The LU Factorization
The LU factorization, described below, is motivated by the fairly common industrial and
business problem of solving a sequence of equations, all with the same coefficientmatrix:

Ax D b1; Ax D b2; : : : ; Ax D bp (1)

See Exercise 32, for example. Also see Section 5.8, where the inverse power method
is used to estimate eigenvalues of a matrix by solving equations like those in sequence
(1), one at a time.

When A is invertible, one could compute A�1 and then compute A�1b1, A�1b2,
and so on. However, it is more efficient to solve the first equation in sequence (1) by
row reduction and obtain an LU factorization of A at the same time. Thereafter, the
remaining equations in sequence (1) are solved with the LU factorization.

At first, assume that A is an m � n matrix that can be row reduced to echelon
form, without row interchanges. (Later, we will treat the general case.) Then A can be
written in the form A D LU , where L is an m �m lower triangular matrix with 1’s on
the diagonal and U is an m � n echelon form of A. For instance, see Figure 1. Such a
factorization is called an LU factorization of A. The matrix L is invertible and is called
a unit lower triangular matrix.

A 5 

L U

1
*
*
*

0
1
*
*

0
0
1
*

0
0
0
1

0
0
0

*

0
0

*
*
0
0

*
*
*
0

*
*

0

FIGURE 1 An LU factorization.

Before studying how to construct L and U , we should look at why they are so
useful. When A D LU , the equation Ax D b can be written as L.Ux/ D b. Writing y
for Ux, we can find x by solving the pair of equations

Ly D b

U x D y
(2)

First solve Ly D b for y; and then solve Ux D y for x. See Figure 2. Each equation is
easy to solve because L and U are triangular.

x

Multiplication

by A

b

Multiplication
by L

Multiplication
by U

y

FIGURE 2 Factorization of the mapping x 7!Ax.
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EXAMPLE 1 It can be verified that

A D

2664
3 �7 �2 2

�3 5 1 0

6 �4 0 �5

�9 5 �5 12

3775 D
2664

1 0 0 0

�1 1 0 0

2 �5 1 0

�3 8 3 1

3775
2664

3 �7 �2 2

0 �2 �1 2

0 0 �1 1

0 0 0 �1

3775 D LU

Use this LU factorization of A to solve Ax D b, where b D

2664
�9

5

7

11

3775.
SOLUTION The solution of Ly D b needs only 6 multiplications and 6 additions,
because the arithmetic takes place only in column 5. (The zeros below each pivot in
L are created automatically by the choice of row operations.)

�
L b

�
D

2664
1 0 0 0 �9

�1 1 0 0 5

2 �5 1 0 7

�3 8 3 1 11

3775 �
2664

1 0 0 0 �9

0 1 0 0 �4

0 0 1 0 5

0 0 0 1 1

3775 D � I y
�

Then, for U x D y, the “backward” phase of row reduction requires 4 divisions, 6 mul-
tiplications, and 6 additions. (For instance, creating the zeros in column 4 of Œ U y �

requires 1 division in row 4 and 3 multiplication–addition pairs to add multiples of row 4
to the rows above.)

�
U y

�
D

2664
3 �7 �2 2 �9

0 �2 �1 2 �4

0 0 �1 1 5

0 0 0 �1 1

3775 �
2664

1 0 0 0 3

0 1 0 0 4

0 0 1 0 �6

0 0 0 1 �1

3775; x D

2664
3

4

�6

�1

3775
To find x requires 28 arithmetic operations, or “flops” (floating point operations),

excluding the cost of finding L and U . In contrast, row reduction of Œ A b � to Œ I x �

takes 62 operations.

The computational efficiency of the LU factorization depends on knowingL andU .
The next algorithm shows that the row reduction of A to an echelon form U amounts to
an LU factorization because it produces L with essentially no extra work. After the first
row reduction, L and U are available for solving additional equations whose coefficient
matrix is A.

An LU Factorization Algorithm
Suppose A can be reduced to an echelon form U using only row replacements that add a
multiple of one row to another row below it. In this case, there exist unit lower triangular
elementary matrices E1; : : : ; Ep such that

Ep � � �E1A D U (3)

Then
A D .Ep � � �E1/�1U D LU

where
L D .Ep � � �E1/�1 (4)
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It can be shown that products and inverses of unit lower triangular matrices are also unit
lower triangular. (For instance, see Exercise 19.) Thus L is unit lower triangular.

Note that the row operations in equation (3), which reduce A to U , also reduce
the L in equation (4) to I , because Ep � � �E1L D .Ep � � �E1/.Ep � � �E1/�1 D I. This
observation is the key to constructing L.

ALGORITHM FOR AN LU FACTORIZATION

1. ReduceA to an echelon form U by a sequence of row replacement operations,
if possible.

2. Place entries in L such that the same sequence of row operations reduces L

to I.

Step 1 is not always possible, but when it is, the argument above shows that an LU
factorization exists. Example 2 will show how to implement step 2. By construction, L

will satisfy
.Ep � � �E1/L D I

using the sameE1; : : : ; Ep as in equation (3). ThusLwill be invertible, by the Invertible
Matrix Theorem, with .Ep � � �E1/ D L�1. From (3), L�1A D U , and A D LU . So
step 2 will produce an acceptable L.

EXAMPLE 2 Find an LU factorization of

A D

2664
2 4 �1 5 �2

�4 �5 3 �8 1

2 �5 �4 1 8

�6 0 7 �3 1

3775
SOLUTION Since A has four rows, L should be 4 � 4. The first column of L is the
first column of A divided by the top pivot entry:

L D

2664
1 0 0 0

�2 1 0 0

1 1 0

�3 1

3775
Compare the first columns of A and L. The row operations that create zeros in the
first column of A will also create zeros in the first column of L. To make this same
correspondence of row operations on A hold for the rest of L, watch a row reduction
of A to an echelon form U . That is, highlight the entries in each matrix that are used to
determine the sequence of row operations that transform A into U . [See the highlighted
entries in equation (5).]

A D

2664
2 4 �1 5 �2

�4 �5 3 �8 1

2 �5 �4 1 8

�6 0 7 �3 1

3775 �
2664

2 4 �1 5 �2

0 3 1 2 �3

0 �9 �3 �4 10

0 12 4 12 �5

3775 D A1 (5)

� A2 D

2664
2 4 �1 5 �2

0 3 1 2 �3

0 0 0 2 1

0 0 0 4 7

3775 �
2664

2 4 �1 5 �2

0 3 1 2 �3

0 0 0 2 1

0 0 0 0 5

3775 D U
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These highlighted entries determine the row reduction of A to U . At each pivot column,
divide the highlighted entries by the pivot and place the result into L:2664

2

�4

2

�6

377524 3

�9

12

35� 2

4

� �
5
�

�2 �3 �2 �5

# # # #2664
1

�2 1

1 �3 1

�3 4 2 1

3775, and L D

2664
1 0 0 0

�2 1 0 0

1 �3 1 0

�3 4 2 1

3775
An easy calculation verifies that this L and U satisfy LU D A.

In practical work, row interchanges are nearly always needed, because partial piv-
oting is used for high accuracy. (Recall that this procedure selects, among the possible
choices for a pivot, an entry in the column having the largest absolute value.) To handle
row interchanges, the LU factorization above can be modified easily to produce anL that
is permuted lower triangular, in the sense that a rearrangement (called a permutation)
of the rows of L can make L .unit/ lower triangular. The resulting permuted LU factor-
ization solves Ax D b in the same way as before, except that the reduction of Œ L b �

to Œ I y � follows the order of the pivots in L from left to right, starting with the pivotSTUDY GUIDE offers information
about permuted LU factorizations. in the first column. A reference to an “LU factorization” usually includes the possibility

that L might be permuted lower triangular. For details, see the Study Guide.

Numerical Notes

The following operation counts apply to an n � n dense matrix A (with most
entries nonzero) for n moderately large, say, n � 30.1

1. Computing an LU factorization of A takes about 2n3=3 flops (about the same
as row reducing Œ A b �/, whereas finding A�1 requires about 2n3 flops.

2. Solving Ly D b and U x D y requires about 2n2 flops, because any n � n

triangular system can be solved in about n2 flops.

3. Multiplication of b by A�1 also requires about 2n2 flops, but the result may
not be as accurate as that obtained from L and U (because of roundoff error
when computing both A�1 and A�1b/.

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too,
whereas A�1 is likely to be dense. In this case, a solution of Ax D b with an
LU factorization is much faster than using A�1. See Exercise 31.

A Matrix Factorization in Electrical Engineering
Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of the
connection between factorization and circuit design.

1 See Section 3.8 in Applied Linear Algebra, 3rd ed., by Ben Noble and James W. Daniel (Englewood Cliffs,
NJ: Prentice-Hall, 1988). Recall that for our purposes, a flop isC, �, �, or�.
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Suppose the box in Figure 3 represents some sort of electric circuit, with an input

and output. Record the input voltage and current by
�

v1

i1

�
(with voltage v in volts and

current i in amps), and record the output voltage and current by
�

v2

i2

�
. Frequently, the

transformation
�

v1

i1

�
7!

�
v2

i2

�
is linear. That is, there is a matrix A, called the transfer

matrix, such that �
v2

i2

�
D A

�
v1

i1

�
i1 i2

electric
circuit

input
terminals

output
terminalsv1 v2

FIGURE 3 A circuit with input and output
terminals.

Figure 4 shows a ladder network, where two circuits (there could be more) are
connected in series, so that the output of one circuit becomes the input of the next circuit.
The left circuit in Figure 4 is called a series circuit, with resistance R1 (in ohms).

i1

R1
v1

i2 i2

v2 R2

i3

v3

A series circuit A shunt circuit

FIGURE 4 A ladder network.

The right circuit in Figure 4 is a shunt circuit, with resistance R2. Using Ohm’s law and
Kirchhoff’s laws, one can show that the transfer matrices of the series and shunt circuits,
respectively, are �

1 �R1

0 1

�
Transfer matrix
of series circuit

and
�

1 0

�1=R2 1

�
Transfer matrix
of shunt circuit

EXAMPLE 3

a. Compute the transfer matrix of the ladder network in Figure 4.

b. Design a ladder network whose transfer matrix is
�

1 �8

�:5 5

�
.

SOLUTION

a. Let A1 and A2 be the transfer matrices of the series and shunt circuits, respectively.
Then an input vector x is transformed first intoA1x and then intoA2.A1x/. The series
connection of the circuits corresponds to composition of linear transformations, and
the transfer matrix of the ladder network is (note the order)

A2A1 D

�
1 0

�1=R2 1

� �
1 �R1

0 1

�
D

�
1 �R1

�1=R2 1CR1=R2

�
(6)
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b. To factor the matrix
�

1 �8

�:5 5

�
into the product of transfer matrices, as in equation

(6), look for R1 and R2 in Figure 4 to satisfy�
1 �R1

�1=R2 1CR1=R2

�
D

�
1 �8

�:5 5

�
From the .1; 2/-entries, R1 D 8 ohms, and from the .2; 1/-entries, 1=R2 D :5 ohm
and R2 D 1=:5 D 2 ohms. With these values, the network in Figure 4 has the desired
transfer matrix.

A network transfer matrix summarizes the input–output behavior (the design spec-
ifications) of the network without reference to the interior circuits. To physically build
a network with specified properties, an engineer first determines if such a network can
be constructed (or realized). Then the engineer tries to factor the transfer matrix into
matrices corresponding to smaller circuits that perhaps are already manufactured and
ready for assembly. In the common case of alternating current, the entries in the trans-
fer matrix are usually rational complex-valued functions. (See Exercises 21 and 22 in
Section 2.4.) A standard problem is to find a minimal realization that uses the smallest
number of electrical components.

Practice Problem

Find an LU factorization of A D

266664
2 �4 �2 3

6 �9 �5 8

2 �7 �3 9

4 �2 �2 �1

�6 3 3 4

377775. [Note: It will turn out that A

has only three pivot columns, so the method of Example 2 will produce only the first
three columns of L. The remaining two columns of L come from I5.]

2.5 Exercises
In Exercises 1–6, solve the equation Ax D b by using the LU
factorization given for A. In Exercises l and 2, also solve Ax D b
by ordinary row reduction.

1. A D

24 3 �7 �2

�3 5 1

6 �4 0

35; b D

24�7

5

2

35
A D

24 1 0 0

�1 1 0

2 �5 1

35 24 3 �7 �2

0 �2 �1

0 0 �1

35
2. A D

24 4 3 �5

�4 �5 7

8 6 �8

35, b D 24 2

�4

6

35
A D

24 1 0 0

�1 1 0

2 0 1

35 24 4 3 �5

0 �2 2

0 0 2

35
3. A D

24 2 �1 2

�6 0 �2

8 �1 5

35, b D 24 1

0

4

35

A D

24 1 0 0

�3 1 0

4 �1 1

3524 2 �1 2

0 �3 4

0 0 1

35

4. A D

24 2 �2 4

1 �3 1

3 7 5

35, b D 24 0

�5

7

35
A D

24 1 0 0

1=2 1 0

3=2 �5 1

3524 2 �2 4

0 �2 �1

0 0 �6

35

5. A D

2664
1 �2 �4 �3

2 �7 �7 �6

�1 2 6 4

�4 �1 9 8

3775, b D
2664

1

7

0

3

3775
A D

2664
1 0 0 0

2 1 0 0

�1 0 1 0

�4 3 �5 1

3775
2664

1 �2 �4 �3

0 �3 1 0

0 0 2 1

0 0 0 1

3775
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6. A D

2664
1 3 4 0

�3 �6 �7 2

3 3 0 �4

�5 �3 2 9

3775, b D
2664

1

�2

�1

2

3775
A D

2664
1 0 0 0

�3 1 0 0

3 �2 1 0

�5 4 �1 1

3775
2664

1 3 4 0

0 3 5 2

0 0 �2 0

0 0 0 1

3775
Find an LU factorization of the matrices in Exercises 7–16 (with
L unit lower triangular). Note that MATLAB will usually produce
a permuted LU factorization because it uses partial pivoting for
numerical accuracy.

7.
�

2 5

�3 �4

�
8.

�
6 9

4 5

�

9.

24 3 �1 2

�3 �2 10

9 �5 6

35 10.

24�5 3 4

10 �8 �9

15 1 2

35
11.

24 3 �6 3

6 �7 2

�1 7 0

35 12.

24 2 �4 2

1 5 �4

�6 �2 4

35

13.

2664
1 3 �5 �3

�1 �5 8 4

4 2 �5 �7

�2 �4 7 5

3775 14.

2664
1 4 �1 5

3 7 �2 9

�2 �3 1 �4

�1 6 �1 7

3775

15.

24 2 �4 4 �2

6 �9 7 �3

�1 �4 8 0

35 16.

266664
2 �6 6

�4 5 �7

3 5 �1

�6 4 �8

8 �3 9

377775
17. When A is invertible, MATLAB finds A�1 by factoring A D

LU (where L may be permuted lower triangular), inverting
L and U, and then computing U�1L�1: Use this method to
compute the inverse of A in Exercise 2. (Apply the algorithm
of Section 2.2 to L and to U.)

18. Find A�1 as in Exercise 17, using A from Exercise 3.

19. Let A be a lower triangular n � n matrix with nonzero entries
on the diagonal. Show that A is invertible and A�1 is lower
triangular. [Hint: Explain why A can be changed into I using
only row replacements and scaling. (Where are the pivots?)
Also, explain why the row operations that reduce A to I
change I into a lower triangular matrix.]

20. Let A D LU be an LU factorization. Explain why A can be
row reduced to U using only replacement operations. (This
fact is the converse of what was proved in the text.)

21. Suppose A D BC; where B is invertible. Show that any
sequence of row operations that reduces B to I also reduces A
to C. The converse is not true, since the zero matrix may be
factored as 0 D B.0/:

Exercises 22–26 provide a glimpse of some widely used matrix
factorizations, some of which are discussed later in the text.

22. (Reduced LU Factorization) With A as in the Practice Prob-
lem, find a 5 � 3 matrix B and a 3 � 4 matrix C such that
A D BC: Generalize this idea to the case where A is m � n;

A D LU; and U has only three nonzero rows.

23. (Rank Factorization) Suppose an m � n matrix A admits a
factorization A D CD where C is m � 4 and D is 4 � n:

a. Show that A is the sum of four outer products. (See
Section 2.4.)

b. Let m D 400 and n D 100: Explain why a computer pro-
grammer might prefer to store the data from A in the form
of two matrices C and D.

24. (QR Factorization) Suppose A D QR; where Q and R are
n � n; R is invertible and upper triangular, and Q has the
property that QT Q D I: Show that for each b in Rn, the
equation Ax D b has a unique solution. What computations
with Q and R will produce the solution?

25. (Singular Value Decomposition) Suppose A D UDV T ;

where U and V are n � n matrices with the property that
U T U D I and V T V D I; and where D is a diagonal matrix
with positive numbers �1; : : : ; �n on the diagonal. Show that
A is invertible, and find a formula for A�1.

26. (Spectral Factorization) Suppose a 3 � 3 matrix A admits a
factorization as A D PDP�1; where P is some invertible
3 � 3 matrix and D is the diagonal matrix

D D

24 1 0 0

0 1=2 0

0 0 1=3

35
Show that this factorization is useful when computing high
powers of A. Find fairly simple formulas for A2; A3; and Ak

(k a positive integer), using P and the entries in D.

27. Design two different ladder networks that each output 9 volts
and 4 amps when the input is 12 volts and 6 amps.

28. Show that if three shunt circuits (with resistancesR1; R2; R3)
are connected in series, the resulting network has the same
transfer matrix as a single shunt circuit. Find a formula for
the resistance in that circuit.

29. a. Compute the transfer matrix of the network in the figure.

b. Let A D

�
4=3 �12

�1=4 3

�
. Design a ladder network

whose transfer matrix is A by finding a suitable matrix
factorization of A.

i1 i2 i2

R1

R2

i3 i3 i4

R3
v1 v2 v3 v4



164 CHAPTER 2 Matrix Algebra

30. Find a different factorization of the A in Exercise 29, and
thereby design a different ladder network whose transfer
matrix is A.

T 31. The solution to the steady-state heat flow problem for the
plate in the figure is approximated by the solution to the
equation Ax D b; where b D .5; 15; 0; 10; 0; 10; 20; 30/ and

A D

266666666664

4 �1 �1

�1 4 0 �1

�1 0 4 �1 �1

�1 �1 4 0 �1

�1 0 4 �1 �1

�1 �1 4 0 �1

�1 0 4 �1

�1 �1 4

377777777775
08

58

58

208

208

08 0808

108 108 108108

1 3 5 7

2 4 6 8

(Refer to Exercise 43 of Section 1.1.) The missing entries in
A are zeros. The nonzero entries of A lie within a band along
the main diagonal. Such band matrices occur in a variety of
applications and often are extremely large (with thousands of
rows and columns but relatively narrow bands).

a. Use the method of Example 2 to construct an LU factor-
ization of A, and note that both factors are band matrices
(with two nonzero diagonals below or above the main
diagonal). Compute LU �A to check your work.

b. Use the LU factorization to solve Ax D b:

c. Obtain A�1 and note that A�1 is a dense matrix with no
band structure. When A is large, L and U can be stored in
much less space than A�1: This fact is another reason for
preferring the LU factorization of A to A�1 itself.

T 32. The band matrix A shown below can be used to estimate the
unsteady conduction of heat in a rod when the temperatures
at points p1; : : : ; p5 on the rod change with time.2

Dx Dx

p1 p2 p3 p4 p5

The constant C in the matrix depends on the physical nature
of the rod, the distance �x between the points on the rod,
and the length of time �t between successive temperature
measurements. Suppose that for k D 0; 1; 2; : : : ; a vector tk
inR5 lists the temperatures at time k�t . If the two ends of the
rod are maintained at 0ı, then the temperature vectors satisfy
the equation AtkC1 D tk.k D 0; 1; : : : /; where

A D

266664
.1C 2C / �C

�C .1C 2C / �C

�C .1C 2C / �C

�C .1C 2C / �C

�C .1C 2C /

377775
a. Find the LU factorization of A when C D 1: A matrix

such as A with three nonzero diagonals is called a tridiag-
onal matrix. The L andU factors are bidiagonal matrices.

b. Suppose C D 1 and t0 D .10; 12; 12; 12; 10/: Use the
LU factorization of A to find the temperature distributions
t1; t2; t3, and t4.

2 See Biswa N. Datta,Numerical Linear Algebra and Applications (Pacific
Grove, CA: Brooks/Cole, 1994), pp. 200–201.

Solution to Practice Problem

A D

266664
2 �4 �2 3

6 �9 �5 8

2 �7 �3 9

4 �2 �2 �1

�6 3 3 4

377775 �
266664

2 �4 �2 3

0 3 1 �1

0 �3 �1 6

0 6 2 �7

0 �9 �3 13

377775

�

266664
2 �4 �2 3

0 3 1 �1

0 0 0 5

0 0 0 �5

0 0 0 10

377775 �
266664

2 �4 �2 3

0 3 1 �1

0 0 0 5

0 0 0 0

0 0 0 0

377775 D U

Divide the entries in each highlighted column by the pivot at the top. The resulting
columns form the first three columns in the lower half of L. This suffices to make row
reduction of L to I correspond to reduction of A to U . Use the last two columns of I5
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to make L unit lower triangular.266664
2

6

2

4

�6

377775
2664

3

�3

6

�9

377524 5

�5

10

35
�2 �3 �5

# # #266664
1

3 1

1 �1 1 � � �

2 2 �1

�3 �3 2

377775, L D

266664
1 0 0 0 0

3 1 0 0 0

1 �1 1 0 0

2 2 �1 1 0

�3 �3 2 0 1

377775

2.6 The Leontief Input Output Model
Linear algebra played an essential role in the Nobel prize–winning work of Wassily
Leontief, as mentioned at the beginning of Chapter 1. The economic model described in
this section is the basis for more elaborate models used in many parts of the world.

Suppose a nation’s economy is divided into n sectors that produce goods or services,
and let x be a production vector in Rn that lists the output of each sector for one year.
Also, suppose another part of the economy (called the open sector) does not produce
goods or services but only consumes them, and let d be a final demand vector (or bill
of final demands) that lists the values of the goods and services demanded from the
various sectors by the nonproductive part of the economy. The vector d can represent
consumer demand, government consumption, surplus production, exports, or other ex-
ternal demands.

As the various sectors produce goods to meet consumer demand, the producers
themselves create additional intermediate demand for goods they need as inputs for
their own production. The interrelations between the sectors are very complex, and the
connection between the final demand and the production is unclear. Leontief asked if
there is a production level x such that the amounts produced (or “supplied”) will exactly
balance the total demand for that production, so that8<: amount

produced
x

9=; D
�
intermediate
demand

�
C

8<: final
demand

d

9=; (1)

The basic assumption of Leontief’s input–output model is that for each sector, there
is a unit consumption vector in Rn that lists the inputs needed per unit of output of
the sector. All input and output units are measured in millions of dollars, rather than in
quantities such as tons or bushels. (Prices of goods and services are held constant.)

As a simple example, suppose the economy consists of three sectors—manufac-
turing, agriculture, and services—with unit consumption vectors c1, c2, and c3, as shown
in the table that follows.
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Inputs Consumed per Unit of Output

Purchased from Manufacturing Agriculture Services

Manufacturing .50 .40 .20

Agriculture .20 .30 .10

Services .10 .10 .30

" " "

c1 c2 c3

EXAMPLE 1 What amounts will be consumed by the manufacturing sector if it
decides to produce 100 units?

SOLUTION Compute

100c1 D 100

24 :50

:20

:10

35 D 24 50

20

10

35
To produce 100 units, manufacturing will order (i.e., “demand”) and consume 50 units
from other parts of the manufacturing sector, 20 units from agriculture, and 10 units
from services.

If manufacturing decides to produce x1 units of output, then x1c1 represents the
intermediate demands of manufacturing, because the amounts in x1c1 will be consumed
in the process of creating the x1 units of output. Likewise, if x2 and x3 denote the planned
outputs of the agriculture and services sectors, x2c2 and x3c3 list their corresponding
intermediate demands. The total intermediate demand from all three sectors is given by

fintermediate demandg D x1c1 C x2c2 C x3c3

D Cx (2)

where C is the consumption matrix Œ c1 c2 c3 �, namely

C D

24 :50 :40 :20

:20 :30 :10

:10 :10 :30

35 (3)

Equations (1) and (2) yield Leontief’s model.

THE LEONTIEF INPUT–OUTPUT MODEL, OR PRODUCTION
EQUATION

x D Cx C d
Amount Intermediate Final
produced demand demand

(4)

Equation (4) may also be written as Ix � Cx D d, or

.I � C /x D d (5)

EXAMPLE 2 Consider the economy whose consumption matrix is given by (3).
Suppose the final demand is 50 units for manufacturing, 30 units for agriculture, and
20 units for services. Find the production level x that will satisfy this demand.
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SOLUTION The coefficient matrix in (5) is

I � C D

24 1 0 0

0 1 0

0 0 1

35 � 24 :5 :4 :2

:2 :3 :1

:1 :1 :3

35 D 24 :5 �:4 �:2

�:2 :7 �:1

�:1 �:1 :7

35
To solve (5), row reduce the augmented matrix24 :5 �:4 �:2 50

�:2 :7 �:1 30

�:1 �:1 :7 20

35 � 24 5 �4 �2 500

�2 7 �1 300

�1 �1 7 200

35 � � � � � 24 1 0 0 226

0 1 0 119

0 0 1 78

35
The last column is rounded to the nearest whole unit. Manufacturing must produce
approximately 226 units, agriculture 119 units, and services only 78 units.

If thematrix I � C is invertible, thenwe can apply Theorem 5 in Section 2.2, withA

replaced by .I � C /, and from the equation .I � C /x D d obtain x D .I � C /�1d. The
theorem below shows that in most practical cases, I � C is invertible and the production
vector x is economically feasible, in the sense that the entries in x are nonnegative.

In the theorem, the term column sum denotes the sum of the entries in a column
of a matrix. Under ordinary circumstances, the column sums of a consumption matrix
are less than 1 because a sector should require less than one unit’s worth of inputs to
produce one unit of output.

THEOREM 11 Let C be the consumption matrix for an economy, and let d be the final demand.
If C and d have nonnegative entries and if each column sum of C is less than 1,
then .I � C /�1 exists and the production vector

x D .I � C /�1d

has nonnegative entries and is the unique solution of

x D CxC d

The following discussion will suggest why the theorem is true and will lead to a
new way to compute .I � C /�1.

A Formula for ( I – C ) –1

Imagine that the demand represented by d is presented to the various industries at the
beginning of the year, and the industries respond by setting their production levels at
x D d, which will exactly meet the final demand. As the industries prepare to produce d,
they send out orders for their rawmaterials and other inputs. This creates an intermediate
demand of Cd for inputs.

To meet the additional demand of Cd, the industries will need as additional inputs
the amounts in C.Cd/ D C 2d. Of course, this creates a second round of intermediate
demand, and when the industries decide to produce even more to meet this new demand,
they create a third round of demand, namely C.C 2d/ D C 3d. And so it goes.

Theoretically, this process could continue indefinitely, although in real life it would
not take place in such a rigid sequence of events. We can diagram this hypothetical
situation as follows:
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Demand That Inputs Needed to
Must Be Met Meet This Demand

Final demand d Cd

Intermediate demand

1st round Cd C.Cd/ D C 2d

2nd round C 2d C.C 2d/ D C 3d

3rd round C 3d C.C 3d/ D C 4d
:::

:::

The production level x that will meet all of this demand is

x D dC CdC C 2dC C 3dC � � �

D .I C C C C 2
C C 3

C � � � /d (6)

To make sense of equation (6), consider the following algebraic identity:

.I � C /.I C C C C 2
C � � � C C m/ D I � C mC1 (7)

It can be shown that if the column sums in C are all strictly less than 1, then I � C is in-
vertible,C m approaches the zero matrix asm gets arbitrarily large, and I � C mC1 ! I .
(This fact is analogous to the fact that if a positive number t is less than 1, then tm ! 0

as m increases.) Using equation (7), write

.I � C /�1 � I C C C C 2 C C 3 C � � � C C m

when the column sums of C are less than 1.
(8)

The approximation in (8) means that the right side can be made as close to .I � C /�1

as desired by taking m sufficiently large.
In actual input–output models, powers of the consumption matrix approach the zero

matrix rather quickly. So (8) really provides a practical way to compute .I � C /�1.
Likewise, for any d, the vectors C md approach the zero vector quickly, and (6) is a
practical way to solve .I � C /x D d. If the entries in C and d are nonnegative, then (6)
shows that the entries in x are nonnegative, too.

The Economic Importance of Entries in ( I – C ) –1

The entries in .I � C /�1 are significant because they can be used to predict how the
production x will have to change when the final demand d changes. In fact, the entries
in column j of .I � C /�1 are the increased amounts the various sectors will have to
produce in order to satisfy an increase of 1 unit in the final demand for output from
sector j . See Exercise 8.

Numerical Note

In any applied problem (not just in economics), an equationAx D b can always be
written as .I � C /x D b, withC D I � A. If the system is large and sparse (with
mostly zero entries), it can happen that the column sums of the absolute values in
C are less than 1. In this case, C m ! 0. If C m approaches zero quickly enough,
(6) and (8) will provide practical formulas for solving Ax D b and finding A�1.
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Practice Problem

Suppose an economy has two sectors: goods and services. One unit of output from
goods requires inputs of .2 unit from goods and .5 unit from services. One unit of
output from services requires inputs of .4 unit from goods and .3 unit from services.
There is a final demand of 20 units of goods and 30 units of services. Set up the Leontief
input–output model for this situation.

2.6 Exercises

Agriculture Manufacturing Services

Open Sector

Exercises 1–4 refer to an economy that is divided into three
sectors—manufacturing, agriculture, and services. For each unit
of output, manufacturing requires .10 unit from other companies
in that sector, .30 unit from agriculture, and .30 unit from services.
For each unit of output, agriculture uses .20 unit of its own output,
.60 unit from manufacturing, and .10 unit from services. For each
unit of output, the services sector consumes .10 unit from services,
.60 unit from manufacturing, but no agricultural products.

1. Construct the consumption matrix for this economy, and de-
termine what intermediate demands are created if agriculture
plans to produce 100 units.

2. Determine the production levels needed to satisfy a final
demand of 18 units for agriculture, with no final demand for
the other sectors. (Do not compute an inverse matrix.)

3. Determine the production levels needed to satisfy a final
demand of 18 units for manufacturing, with no final demand
for the other sectors. (Do not compute an inverse matrix.)

4. Determine the production levels needed to satisfy a final de-
mand of 18 units for manufacturing, 18 units for agriculture,
and 0 units for services.

5. Consider the production model x D CxC d for an economy
with two sectors, where

C D

�
:0 :5

:6 :2

�
; d D

�
50

30

�
Use an inverse matrix to determine the production level
necessary to satisfy the final demand.

6. Repeat Exercise 5 with C D

�
:1 :6

:5 :2

�
, and d D

�
18

11

�
.

7. Let C and d be as in Exercise 5.
a. Determine the production level necessary to satisfy a final

demand for 1 unit of output from sector 1.
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b. Use an inverse matrix to determine the production level

necessary to satisfy a final demand of
�

51

30

�
:

c. Use the fact that
�

51

30

�
D

�
50

30

�
C

�
1

0

�
to explain how

and why the answers to parts (a) and (b) and to Exercise
5 are related.

8. Let C be an n � n consumption matrix whose column sums
are less than 1. Let x be the production vector that satisfies
a final demand d, and let �x be a production vector that
satisfies a different final demand �d:

a. Show that if the final demand changes from d to dC�d;

then the new production level must be xC�x: Thus �x
gives the amounts by which production must change in
order to accommodate the change �d in demand.

b. Let �d be the vector in Rn with 1 as the first entry and
0’s elsewhere. Explain why the corresponding production
�x is the first column of .I � C /�1: This shows that the
first column of .I � C /�1 gives the amounts the various
sectors must produce to satisfy an increase of 1 unit in the
final demand for output from sector 1.

9. Solve the Leontief production equation for an economy with
three sectors, given that

C D

24 :2 :2 :0

:3 :1 :3

:1 :0 :2

35 and d D

24 40

60

80

35
10. The consumption matrix C for the U.S. economy in 1972

has the property that every entry in the matrix .I � C /�1 is
nonzero (and positive).1 What does that say about the effect
of raising the demand for the output of just one sector of the
economy?

11. The Leontief production equation, x D CxC d; is usually
accompanied by a dual price equation,

p D C T pC v

where p is a price vector whose entries list the price per unit
for each sector’s output, and v is a value added vectorwhose
entries list the value added per unit of output. (Value added
includes wages, profit, depreciation, etc.) An important fact
in economics is that the gross domestic product (GDP) can
be expressed in two ways:

fgross domestic productg = pT d D vT x

Verify the second equality. [Hint:Compute pT x in two ways.]

1Wassily W. Leontief, “The World Economy of the Year 2000,”
Scientific American, September 1980, pp. 206–231.

12. Let C be a consumption matrix such that C m ! 0 as
m!1; and for m D 1; 2; : : : ; let Dm D I C C C � � � C

C m: Find a difference equation that relatesDm andDmC1 and
thereby obtain an iterative procedure for computing formula
(8) for .I � C /�1:

T 13. The consumption matrix C below is based on input–output
data for the U.S. economy in 1958, with data for 81 sectors
grouped into 7 larger sectors: (1) nonmetal household and
personal products, (2) final metal products (such as motor
vehicles), (3) basic metal products and mining, (4) basic
nonmetal products and agriculture, (5) energy, (6) services,
and (7) entertainment and miscellaneous products.2 Find the
production levels needed to satisfy the final demand d. (Units
are in millions of dollars.)2666666664

:1588 :0064 :0025 :0304 :0014 :0083 :1594

:0057 :2645 :0436 :0099 :0083 :0201 :3413

:0264 :1506 :3557 :0139 :0142 :0070 :0236

:3299 :0565 :0495 :3636 :0204 :0483 :0649

:0089 :0081 :0333 :0295 :3412 :0237 :0020

:1190 :0901 :0996 :1260 :1722 :2368 :3369

:0063 :0126 :0196 :0098 :0064 :0132 :0012

3777777775
;

d D

2666666664

74;000

56;000

10;500

25;000

17;500

196;000

5;000

3777777775
T 14. The demand vector in Exercise 13 is reasonable for 1958 data,

but Leontief’s discussion of the economy in the reference
cited there used a demand vector closer to 1964 data:

d D .99640; 75548; 14444; 33501; 23527; 263985; 6526/

Find the production levels needed to satisfy this demand.

T 15. Use equation (6) to solve the problem in Exercise 13.
Set x.0/ D d; and for k D 1; 2; : : : ; compute
x.k/ D d C C x.k�1/: How many steps are needed to obtain
the answer in Exercise 13 to four significant figures?

2Wassily W. Leontief, “The Structure of the U.S. Economy,”
Scientific American, April 1965, pp. 30–32.
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Solution to Practice Problem

The following data are given:

Inputs Needed per Unit of Output

Purchased from Goods Services External Demand

Goods .2 .4 20

Services .5 .3 30

The Leontief input–output model is x D CxC d, where

C D

�
:2 :4

:5 :3

�
; d D

�
20

30

�

2.7 Applications to Computer Graphics
Computer graphics are images displayed or animated on a computer screen. Applications
of computer graphics are widespread and growing rapidly. For instance, computer-aided
design (CAD) is an integral part of many engineering processes such as the aircraft de-
sign process described in the chapter introduction. The entertainment industry has made
the most spectacular use of computer graphics—from the special effects in Amazing
Spider-Man 2 to PlayStation 4 and Xbox One.

Most interactive computer software for business and industry makes use of com-
puter graphics in the screen displays and for other functions, such as graphical display
of data, desktop publishing, and slide production for commercial and educational pre-
sentations. Consequently, anyone studying a computer language invariably spends time
learning how to use at least two-dimensional (2D) graphics.

This section examines some of the basic mathematics used to manipulate and dis-
play graphical images such as a wire-frame model of an airplane. Such an image (or
picture) consists of a number of points, connecting lines or curves, and information about
how to fill in closed regions bounded by the lines and curves. Often, curved lines are
approximated by short straight-line segments, and a figure is defined mathematically by
a list of points.

Among the simplest 2D graphics symbols are letters used for labels on the screen.
Some letters are stored as wire-frame objects; others that have curved portions are stored
with additional mathematical formulas for the curves.

EXAMPLE 1 The capital letter N in Figure 1 is determined by eight points, or ver-
tices. The coordinates of the points can be stored in a data matrix, D.8

3

1 2 4

6 5

7

FIGURE 1

Regular N:

Vertex:

x-coordinate
y-coordinate

� 1
0

2
:5

3
:5

4
6

5
6

6
5:5

7
5:5

8
0

0 0 6:42 0 8 8 1:58 8

�
D D

In addition to D, it is necessary to specify which vertices are connected by lines, but we
omit this detail.

The main reason graphical objects are described by collections of straight-line seg-
ments is that the standard transformations in computer graphics map line segments onto
other line segments. (For instance, see Exercise 35 in Section 1.8.) Once the vertices
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that describe an object have been transformed, their images can be connected with the
appropriate straight lines to produce the complete image of the original object.

EXAMPLE 2 GivenA D

�
1 :25

0 1

�
, describe the effect of the shear transformation

x 7!Ax on the letter N in Example 1.

SOLUTION By definition of matrix multiplication, the columns of the product AD

contain the images of the vertices of the letter N.

AD D

� 1
0

2
:5

3
2:105

4
6

5
8

6
7:5

7
5:895

8
2

0 0 6:420 0 8 8 1:580 8

�
The transformed vertices are plotted in Figure 2, along with connecting line segments
that correspond to those in the original figure.

The italic N in Figure 2 looks a bit too wide. To compensate, shrink the width by a
scale transformation that affects the x-coordinates of the points.

5

1 2 4

7

3

68

FIGURE 2

Slanted N:

EXAMPLE 3 Compute the matrix of the transformation that performs a shear trans-
formation, as in Example 2, and then scales all x-coordinates by a factor of .75.

SOLUTION The matrix that multiplies the x-coordinate of a point by .75 is

FIGURE 3

Composite transformation of N:

S D

�
:75 0

0 1

�
So the matrix of the composite transformation is

SA D

�
:75 0

0 1

� �
1 :25

0 1

�
D

�
:75 :1875

0 1

�
The result of this composite transformation is shown in Figure 3.

The mathematics of computer graphics is intimately connected with matrix multi-
plication. Unfortunately, translating an object on a screen does not correspond directly
to matrix multiplication because translation is not a linear transformation. The standard
way to avoid this difficulty is to introduce what are called homogeneous coordinates.

Homogeneous Coordinates
Each point .x; y/ in R2 can be identified with the point .x; y; 1/ on the plane in R3

that lies one unit above the xy-plane. We say that .x; y/ has homogeneous coordinates
.x; y; 1/. For instance, the point .0; 0/ has homogeneous coordinates .0; 0; 1/. Homo-
geneous coordinates for points are not added or multiplied by scalars, but they can be
transformed via multiplication by 3 � 3 matrices.

EXAMPLE 4 A translation of the form .x; y/ 7!.x C h; y C k/ is written in ho-
mogeneous coordinates as .x; y; 1/ 7!.x C h; y C k; 1/. This transformation can be
computed via matrix multiplication:

x2

x1
24 22 2

2

4

4

Translation by
�

4

3

�
. 24 1 0 h

0 1 k

0 0 1

3524 x

y

1

35 D 24 x C h

y C k

1

35
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EXAMPLE 5 Any linear transformation on R2 is represented with respect to homo-

After Translating

After Rotating

After Scaling

Original Figure

geneous coordinates by a partitioned matrix of the form
�

A 0

0 1

�
, where A is a 2 � 2

matrix. Typical examples are24 cos' � sin' 0

sin' cos' 0

0 0 1

35 ;

24 0 1 0

1 0 0

0 0 1

35;

24 s 0 0

0 t 0

0 0 1

35
Counterclockwise Reflection Scale x by s
rotation about the through y D x and y by t
origin, angle '

Composite Transformations
Themovement of a figure on a computer screen often requires two ormore basic transfor-
mations. The composition of such transformations corresponds to matrix multiplication
when homogeneous coordinates are used.

EXAMPLE 6 Find the 3 � 3matrix that corresponds to the composite transformation
of a scaling by .3, a rotation of 90ı about the origin, and finally a translation that adds
.�:5; 2/ to each point of a figure.

SOLUTION If ' D �=2, then sin' D 1 and cos' D 0. From Examples 4 and 5, we
have24 x

y

1

35 Scale
������!

24 :3 0 0

0 :3 0

0 0 1

3524 x

y

1

35
Rotate
������!

24 0 �1 0

1 0 0

0 0 1

3524 :3 0 0

0 :3 0

0 0 1

3524 x

y

1

35
Translate
������!

24 1 0 �:5

0 1 2

0 0 1

3524 0 �1 0

1 0 0

0 0 1

3524 :3 0 0

0 :3 0

0 0 1

3524 x

y

1

35
The matrix for the composite transformation is24 1 0 �:5

0 1 2

0 0 1

3524 0 �1 0

1 0 0

0 0 1

3524 :3 0 0

0 :3 0

0 0 1

35
D

24 0 �1 �:5

1 0 2

0 0 1

3524 :3 0 0

0 :3 0

0 0 1

35 D 24 0 �:3 �:5

:3 0 2

0 0 1

35
3D Computer Graphics
Some of the newest and most exciting work in computer graphics is connected with
molecular modeling. With 3D (three-dimensional) graphics, a biologist can examine a
simulated protein molecule and search for active sites that might accept a drug molecule.
The biologist can rotate and translate an experimental drug and attempt to attach it to the
protein. This ability to visualize potential chemical reactions is vital to modern drug and
cancer research. In fact, advances in drug design depend to some extent upon progress
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in the ability of computer graphics to construct realistic simulations of molecules and
their interactions.1

Current research in molecular modeling is focused on virtual reality, an environ-
ment in which a researcher can see and feel the drug molecule slide into the protein. In
Figure 4, such tactile feedback is provided by a force-displaying remote manipulator.

FIGURE 4 Molecular modeling in virtual reality.

Another design for virtual reality involves a helmet and glove that detect head, hand, and
finger movements. The helmet contains two tiny computer screens, one for each eye.
Making this virtual environment more realistic is a challenge to engineers, scientists,
and mathematicians. The mathematics we examine here barely opens the door to this
interesting field of research.

Homogeneous 3D Coordinates
By analogy with the 2D case, we say that .x; y; ´; 1/ are homogeneous coordinates for
the point .x; y; ´/ in R3. In general, .X; Y; Z; H/ are homogeneous coordinates for
.x; y; ´/ if H ¤ 0 and

x D
X

H
; y D

Y

H
; and ´ D

Z

H
(1)

Each nonzero scalar multiple of .x; y; ´; 1/ gives a set of homogeneous coordinates
for .x; y; ´/. For instance, both .10;�6; 14; 2/ and .�15; 9;�21;�3/ are homogeneous
coordinates for .5;�3; 7/.

The next example illustrates the transformations used in molecular modeling to
move a drug into a protein molecule.

EXAMPLE 7 Give 4 � 4 matrices for the following transformations:

a. Rotation about the y-axis through an angle of 30ı. (By convention, a positive angle
is the counterclockwise direction when looking toward the origin from the positive
half of the axis of rotation—in this case, the y-axis.)

b. Translation by the vector p D .�6; 4; 5/.

SOLUTION

a. First, construct the 3 � 3 matrix for the rotation. The vector e1 rotates down toward
the negative ´-axis, stopping at .cos 30ı; 0;� sin 30ı/ D .

p
3=2; 0;�:5/. The vector

e2 on the y-axis does not move, but e3 on the ´-axis rotates down toward the positive

1Robert Pool, “Computing in Science,” Science 256, 3 April 1992, p. 45.
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x-axis, stopping at .sin 30ı; 0; cos 30ı/ D .:5; 0;
p

3=2/. See Figure 5. From Section
1.9, the standard matrix for this rotation isz

e3

e1

x
e2

y

FIGURE 5

24p3=2 0 :5

0 1 0

�:5 0
p

3=2

35
So the rotation matrix for homogeneous coordinates is

A D

2664
p

3=2 0 :5 0

0 1 0 0

�:5 0
p

3=2 0

0 0 0 1

3775
b. We want .x; y; ´; 1/ to map to .x � 6; y C 4; ´C 5; 1/. The matrix that does this is2664

1 0 0 �6

0 1 0 4

0 0 1 5

0 0 0 1

3775
Perspective Projections
A three-dimensional object is represented on the two-dimensional computer screen by
projecting the object onto a viewing plane. (We ignore other important steps, such as
selecting the portion of the viewing plane to display on the screen.) For simplicity, let
the xy-plane represent the computer screen, and imagine that the eye of a viewer is
along the positive ´-axis, at a point .0; 0; d/. A perspective projection maps each point
.x; y; ´/ onto an image point .x�; y�; 0/ so that the two points and the eye position,
called the center of projection, are on a line. See Figure 6(a).

(a) (b)

(0, 0, d )
z

z

y

(x*, y*, 0)

x

x

0 0
(x, y, z)

d 2 z

x*

FIGURE 6 Perspective projection of .x; y; ´/ onto .x�; y�; 0/.

The triangle in the x´-plane in Figure 6(a) is redrawn in part (b) showing the lengths
of line segments. Similar triangles show that

x�

d
D

x

d � ´
and x� D

dx

d � ´
D

x

1 � ´=d
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Similarly,

y� D
y

1 � ´=d

Using homogeneous coordinates, we can represent the perspective projection by a ma-

trix, say, P . We want .x; y; ´; 1/ to map into
�

x

1 � ´=d
;

y

1 � ´=d
; 0; 1

�
. Scaling these

coordinates by 1 � ´=d , we can also use .x; y; 0; 1 � ´=d/ as homogeneous coordinates
for the image. Now it is easy to display P . In fact,

P

2664
x

y

´

1

3775 D
2664

1 0 0 0

0 1 0 0

0 0 0 0

0 0 �1=d 1

3775
2664

x

y

´

1

3775 D
2664

x

y

0

1 � ´=d

3775
EXAMPLE 8 Let S be the box with vertices .3; 1; 5/, .5; 1; 5/, .5; 0; 5/, .3; 0; 5/,
.3; 1; 4/, .5; 1; 4/, .5; 0; 4/, and .3; 0; 4/. Find the image of S under the perspective pro-
jection with center of projection at .0; 0; 10/.

SOLUTION Let P be the projection matrix, and let D be the data matrix for S using
homogeneous coordinates. The data matrix for the image of S is

PD D

2664
1 0 0 0

0 1 0 0

0 0 0 0

0 0 �1=10 1

3775
Vertex:2664

1
3

2
5

3
5

4
3

5
3

6
5

7
5

8
3

1 1 0 0 1 1 0 0

5 5 5 5 4 4 4 4

1 1 1 1 1 1 1 1

3775
D

2664
3 5 5 3 3 5 5 3

1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0

:5 :5 :5 :5 :6 :6 :6 :6

3775
To obtain R3 coordinates, use equation (1) before Example 7, and divide the top three

S under the perspective
transformation.

entries in each column by the corresponding entry in the fourth row:

Vertex:24
1
6

2
10

3
10

4
6

5
5

6
8:3

7
8:3

8
5

2 2 0 0 1:7 1:7 0 0

0 0 0 0 0 0 0 0

35
This text’s web site has some interesting applications of computer graphics, includ-

ing a further discussion of perspective projections. One of the chapter projects involves
simple animation.

Numerical Note

Continuous movement of graphical 3D objects requires intensive computation
with 4 � 4 matrices, particularly when the surfaces are rendered to appear realis-
tic, with texture and appropriate lighting. High-end computer graphics boards
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have 4 � 4 matrix operations and graphics algorithms embedded in their mi-
crochips and circuitry. Such boards can perform the billions of matrix multiplica-
tions per second needed for realistic color animation in 3D gaming programs.2

Further Reading
James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, 3rd ed. (Boston, MA: Addison-Wesley, 2002),
Chapters 5 and 6.

Practice Problem

Rotation of a figure about a point p in R2 is accomplished by first translating the figure
by�p, rotating about the origin, and then translating back by p. See Figure 7. Construct
the 3 � 3 matrix that rotates points �30ı about the point .�2; 6/, using homogeneous
coordinates.

x2 x2 x2 x2

x1 x1 x1 x1

(a) Original figure. (b) Translated to
origin by 2p.

(c) Rotated about
      the origin.

(d) Translated
      back by p.

pppp

FIGURE 7 Rotation of figure about point p.

2.7 Exercises
1. What 3 � 3matrix will have the same effect on homogeneous

coordinates for R2 that the shear matrix A has in Example 2?

2. Use matrix multiplication to find the image of the triangle

with data matrix D D

�
5 2 4

0 2 3

�
under the transforma-

tion that reflects points through the y-axis. Sketch both the
original triangle and its image.

In Exercises 3–8, find the 3 � 3 matrices that produce the de-
scribed composite 2D transformations, using homogeneous coor-
dinates.

3. Translate by (3, 1), and then rotate 45ı about the origin.

4. Translate by .�3; 4/ and then scale the x-coordinate by
.7 and the y-coordinated by 1.3.

5. Reflect points through the x-axis, and then rotate 30ı about
the origin.

6. Rotate points 30ı, and then reflect through the x-axis.

7. Rotate points through 60ı about the point (6, 8).

8. Rotate points through 45ı about the point (3, 7).

9. A 2 � 200 data matrix D contains the coordinates of 200
points. Compute the number of multiplications required
to transform these points using two arbitrary 2 � 2 ma-
trices A and B. Consider the two possibilities A(BD) and
(AB)D. Discuss the implications of your results for computer
graphics calculations.

10. Consider the following geometric 2D transformations: D, a
dilation (in which x-coordinates and y-coordinates are scaled
by the same factor); R, a rotation; and T, a translation.
Does D commute with R? That is, is D .R.x// D R .D.x//

for all x in R2? Does D commute with T? Does R commute
with T?

2 See Jan Ozer, “High-Performance Graphics Boards,” PC Magazine 19, September 1, 2000, pp. 187–200.
Also, “The Ultimate Upgrade Guide: Moving On Up,” PC Magazine 21, January 29, 2002, pp. 82–91.
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11. A rotation on a computer screen is sometimes implemented
as the product of two shear-and-scale transformations, which
can speed up calculations that determine how a graphic image
actually appears in terms of screen pixels. (The screen con-
sists of rows and columns of small dots, called pixels.) The
first transformation A1 shears vertically and then compresses
each column of pixels; the second transformation A2 shears
horizontally and then stretches each row of pixels. Let

A1 D

24 1 0 0

sin' cos' 0

0 0 1

35,
A2 D

24 sec' � tan' 0

0 1 0

0 0 1

35
Show that the composition of the two transformations is a
rotation in R2.

12. A rotation in R2 usually requires four multiplications. Com-
pute the product below, and show that the matrix for a rotation
can be factored into three shear transformations (each of
which requires only one multiplication).24 1 � tan'=2 0

0 1 0

0 0 1

35 24 1 0 0

sin' 1 0

0 0 1

35
24 1 � tan'=2 0

0 1 0

0 0 1

35
13. The usual transformations on homogeneous coordinates for

2D computer graphics involve 3 � 3 matrices of the form�
A p
0T 1

�
where A is a 2 � 2 matrix and p is in R2. Show

that such a transformation amounts to a linear transformation
on R2 followed by a translation. [Hint: Find an appropriate
matrix factorization involving partitioned matrices.]

14. Show that the transformation in Exercise 7 is equivalent to
a rotation about the origin followed by a translation by p.
Find p.

15. What vector in R3 has homogeneous coordinates�
1
4
;� 1

12
; 1

18
; 1

36

�
‹

16. Are .1;�2; 3; 4/ and .10;�20; 30; 40/ homogeneous coordi-
nates for the same point in R3? Why or why not?

17. Give the 4 � 4 matrix that rotates points in R3 about the
x-axis through an angle of 60ı. (See the figure.)

z

e3

e2

y
e1

x

18. Give the 4 � 4 matrix that rotates points in R3 about the
z-axis through an angle of �30ı, and then translates by
p D .5;�2; 1/.

19. Let S be the triangle with vertices .4:2; 1:2; 4/; .6; 4; 2/;

.2; 2; 6/: Find the image of S under the perspective projection
with center of projection at .0; 0; 10/:

20. Let S be the triangle with vertices .9; 3;�5/; .12; 8; 2/;

.1:8; 2:7; 1/: Find the image of S under the perspective pro-
jection with center of projection at .0; 0; 10/.

Exercises 21 and 22 concern the way in which color is specified
for display in computer graphics. A color on a computer screen is
encoded by three numbers (R, G, B) that list the amount of energy
an electron gunmust transmit to red, green, and blue phosphor dots
on the computer screen. (A fourth number specifies the luminance
or intensity of the color.)

T 21. The actual color a viewer sees on a screen is influenced by
the specific type and amount of phosphors on the screen. So
each computer screenmanufacturer must convert between the
(R, G, B) data and an international CIE standard for color,
which uses three primary colors, called X, Y, and Z. A typical
conversion for short-persistence phosphors is24 :61 :29 :150

:35 :59 :063

:04 :12 :787

3524 R

G

B

35 D 24X

Y

Z

35
A computer program will send a stream of color information
to the screen, using standard CIE data (X, Y, Z). Find the
equation that converts these data to the (R, G, B) data needed
for the screen’s electron gun.

T 22. The signal broadcast by commercial television describes
each color by a vector (Y, I, Q). If the screen is black and
white, only the Y-coordinate is used. (This gives a better
monochrome picture than using CIE data for colors.) The
correspondence between YIQ and a “standard” RGB color is
given by24 Y

I

Q

35 D 24 :299 :587 :114

:596 �:275 �:321

:212 �:528 :311

3524 R

G

B

35
(A screen manufacturer would change the matrix entries to
work for its RGB screens.) Find the equation that converts
the YIQ data transmitted by the television station to the RGB
data needed for the television screen.
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Solution to Practice Problem

Assemble the matrices right-to-left for the three operations. Using p D .�2; 6/,
cos.�30ı/ D

p
3=2, and sin.�30ı/ D �:5, we have

Translate
back by p24 1 0 �2

0 1 6

0 0 1

35
Rotate around
the origin24p3=2 1=2 0

�1=2
p

3=2 0

0 0 1

35
Translate
by �p24 1 0 2

0 1 �6

0 0 1

35
D

24p3=2 1=2
p

3 � 5

�1=2
p

3=2 �3
p

3C 5

0 0 1

35

2.8 Subspaces of Rn

This section focuses on important sets of vectors in Rn called subspaces. Often sub-
spaces arise in connection with some matrix A; and they provide useful information
about the equation Ax D b. The concepts and terminology in this section will be used
repeatedly throughout the rest of the book.1

DEFINITION A subspace of Rn is any set H in Rn that has three properties:

a. The zero vector is in H .

b. For each u and v in H , the sum uC v is in H .

c. For each u in H and each scalar c, the vector cu is in H .

In words, a subspace is closed under addition and scalar multiplication. As you will
see in the next few examples, most sets of vectors discussed in Chapter 1 are subspaces.
For instance, a plane through the origin is the standard way to visualize the subspace in
Example 1. See Figure 1.

EXAMPLE 1 If v1 and v2 are in Rn and H D Span fv1; v2g, then H is a subspace
of Rn. To verify this statement, note that the zero vector is in H (because 0v1 C 0v2 is
a linear combination of v1 and v2/. Now take two arbitrary vectors in H , say,

0

x3

v2v1

x2
x1

FIGURE 1

Span fv1; v2g as a plane through
the origin. u D s1v1 C s2v2 and v D t1v1 C t2v2

Then
uC v D .s1 C t1/v1 C .s2 C t2/v2

which shows that uC v is a linear combination of v1 and v2 and hence is in H . Also, for
any scalar c, the vector cu is in H , because cu D c.s1v1 C s2v2/ D .cs1/v1 C .cs2/v2.

If v1 is not zero and if v2 is a multiple of v1, then v1 and v2 simply span a line
through the origin. So a line through the origin is another example of a subspace.

1 Sections 2.8 and 2.9 are included here to permit readers to postpone the study of most or all of the next two
chapters and to skip directly to Chapter 5, if so desired. Omit these two sections if you plan to work through
Chapter 4 before beginning Chapter 5.
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EXAMPLE 2 A line L not through the origin is not a subspace, because it does not

Span{v1, 
v 2}

v1

v2

x2

x1

v1 ¤ 0, v2 D kv1.

contain the origin, as required. Also, Figure 2 shows that L is not closed under addition
or scalar multiplication.

u

v

u 1 v

u 1 v is not on L 2w is not on L

2w

w

L L

FIGURE 2

EXAMPLE 3 For v1; : : : ; vp in Rn, the set of all linear combinations of v1; : : : ; vp

is a subspace of Rn. The verification of this statement is similar to the argument given
in Example 1. We shall now refer to Span fv1; : : : ; vpg as the subspace spanned (or
generated) by v1; : : : ; vp .

Note that Rn is a subspace of itself because it has the three properties required for
a subspace. Another special subspace is the set consisting of only the zero vector in Rn.
This set, called the zero subspace, also satisfies the conditions for a subspace.

Column Space and Null Space of a Matrix
Subspaces of Rn usually occur in applications and theory in one of two ways. In both
cases, the subspace can be related to a matrix.

DEFINITION The column space of a matrix A is the set ColA of all linear combinations of the
columns of A.

If A D Œ a1 � � � an �, with the columns in Rm, then ColA is the same as
Span fa1; : : : ; ang. Example 4 shows that the column space of an m � n matrix is a
subspace of Rm. Note that ColA equals Rm only when the columns of A span Rm.
Otherwise, ColA is only part of Rm.

EXAMPLE 4 Let A D

24 1 �3 �4

�4 6 �2

�3 7 6

35 and b D

24 3

3

�4

35. Determine whether b is
in the column space of A.

SOLUTION The vector b is a linear combination of the columns of A if and only if b
can be written asAx for some x, that is, if and only if the equationAx D b has a solution.
Row reducing the augmented matrix Œ A b �,24 1 �3 �4 3

�4 6 �2 3

�3 7 6 �4

35 � 24 1 �3 �4 3

0 �6 �18 15

0 �2 �6 5

35 � 24 1 �3 �4 3

0 �6 �18 15

0 0 0 0

35
we conclude that Ax D b is consistent and b is in ColA.

0

b

x3

x2
x1

Col A
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The solution of Example 4 shows that when a system of linear equations is written
in the form Ax D b, the column space of A is the set of all b for which the system has
a solution.

DEFINITION The null space of a matrix A is the set NulA of all solutions of the homogeneous
equation Ax D 0.

When A has n columns, the solutions of Ax D 0 belong to Rn, and the null space
of A is a subset of Rn. In fact, NulA has the properties of a subspace of Rn.

THEOREM 12 The null space of anm � nmatrixA is a subspace ofRn. Equivalently, the set of all
solutions of a system Ax D 0 of m homogeneous linear equations in n unknowns
is a subspace of Rn.

PROOF The zero vector is in NulA (because A0 D 0). To show that NulA satisfies the
other two properties required for a subspace, take any u and v in NulA. That is, suppose
Au D 0 and Av D 0. Then, by a property of matrix multiplication,

A.uC v/ D AuC Av D 0C 0 D 0

Thus uC v satisfies Ax D 0, and so uC v is in NulA. Also, for any scalar c; A.cu/ D

c.Au/ D c.0/ D 0, which shows that cu is in NulA.

To test whether a given vector v is in NulA, just compute Av to see whether Av is
the zero vector. Because NulA is described by a condition that must be checked for each
vector, we say that the null space is defined implicitly. In contrast, the column space is
defined explicitly, because vectors in ColA can be constructed (by linear combinations)
from the columns of A. To create an explicit description of NulA, solve the equation
Ax D 0 and write the solution in parametric vector form. (See Example 6.)2

Basis for a Subspace
Because a subspace typically contains an infinite number of vectors, some problems
involving a subspace are handled best by working with a small finite set of vectors that
span the subspace. The smaller the set, the better. It can be shown that the smallest
possible spanning set must be linearly independent.

DEFINITION A basis for a subspace H of Rn is a linearly independent set in H that spans H .

EXAMPLE 5 The columns of an invertible n � n matrix form a basis for all of Rn

because they are linearly independent and span Rn, by the Invertible Matrix Theorem.
One such matrix is the n � n identity matrix. Its columns are denoted by e1; : : : ; en:

e1 D

2664
1

0
:::

0

3775 ; e2 D

2664
0

1
:::

0

3775 ; : : : ; en D

2664
0
:::

0

1

3775
The set fe1; : : : ; eng is called the standard basis for Rn. See Figure 3.

x3

e3

e2
x2

e1

x1

FIGURE 3

The standard basis for R3. 2 The contrast between NulA and ColA is discussed further in Section 4.2.
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The next example shows that the standard procedure for writing the solution set of
Ax D 0 in parametric vector form actually identifies a basis for NulA. This fact will be
used throughout Chapter 5.

EXAMPLE 6 Find a basis for the null space of the matrix

A D

24�3 6 �1 1 �7

1 �2 2 3 �1

2 �4 5 8 �4

35
SOLUTION First, write the solution of Ax D 0 in parametric vector form:

�
A 0

�
�

24 1 �2 0 �1 3 0

0 0 1 2 �2 0

0 0 0 0 0 0

35;

x1 � 2x2 � x4 C 3x5 D 0

x3 C 2x4 � 2x5 D 0

0 D 0

The general solution is x1 D 2x2 C x4 � 3x5, x3 D �2x4 C 2x5, with x2, x4, and x5

free. 266664
x1

x2

x3

x4

x5

377775 D
266664

2x2 C x4 � 3x5

x2

�2x4 C 2x5

x4

x5

377775 D x2

266664
2

1

0

0

0

377775
6
u

C x4

266664
1

0

�2

1

0

377775
6
v

C x5

266664
�3

0

2

0

1

377775
6
w

D x2uC x4vC x5w (1)

Equation (1) shows that NulA coincides with the set of all linear combinations of u,
v; and w: That is, fu; v;wg generates NulA. In fact, this construction of u, v, and w
automatically makes them linearly independent, because equation (1) shows that 0 D
x2uC x4vC x5w only if the weights x2, x4, and x5 are all zero. (Examine entries 2, 4,
and 5 in the vector x2uC x4vC x5w.) So fu; v;wg is a basis for NulA.

Finding a basis for the column space of a matrix is actually less work than finding
a basis for the null space. However, the method requires some explanation. Let’s begin
with a simple case.

EXAMPLE 7 Find a basis for the column space of the matrix

B D

2664
1 0 �3 5 0

0 1 2 �1 0

0 0 0 0 1

0 0 0 0 0

3775
SOLUTION Denote the columns of B by b1; : : : ; b5 and note that b3 D �3b1 C 2b2

and b4 D 5b1 � b2. The fact that b3 and b4 are combinations of the pivot columns means
that any combination of b1; : : : ; b5 is actually just a combination of b1, b2, and b5.
Indeed, if v is any vector in ColB , say,

v D c1b1 C c2b2 C c3b3 C c4b4 C c5b5

then, substituting for b3 and b4, we can write v in the form

v D c1b1 C c2b2 C c3.�3b1 C 2b2/C c4.5b1 � b2/C c5b5
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which is a linear combination of b1, b2, and b5. So fb1; b2; b5g spans ColB . Also, b1,
b2, and b5 are linearly independent, because they are columns from an identity matrix.
So the pivot columns of B form a basis for ColB .

The matrix B in Example 7 is in reduced echelon form. To handle a general matrix
A, recall that linear dependence relations among the columns ofA can be expressed in the
form Ax D 0 for some x. (If some columns are not involved in a particular dependence
relation, then the corresponding entries in x are zero.) WhenA is row reduced to echelon
form B , the columns are drastically changed, but the equations Ax D 0 and Bx D 0
have the same set of solutions. That is, the columns of A have exactly the same linear
dependence relationships as the columns of B .

EXAMPLE 8 It can be verified that the matrix

A D Œ a1 a2 � � � a5 � D

2664
1 3 3 2 �9

�2 �2 2 �8 2

2 3 0 7 1

3 4 �1 11 �8

3775
is row equivalent to the matrix B in Example 7. Find a basis for ColA.

SOLUTION From Example 7, the pivot columns of A are columns 1, 2, and 5.
Also, b3 D �3b1 C 2b2 and b4 D 5b1 � b2. Since row operations do not affect linear
dependence relations among the columns of the matrix, we should have

a3 D �3a1 C 2a2 and a4 D 5a1 � a2

Check that this is true! By the argument in Example 7, a3 and a4 are not needed to
generate the column space ofA. Also, fa1; a2; a5gmust be linearly independent, because
any dependence relation among a1, a2, and a5 would imply the same dependence relation
among b1, b2, and b5. Since fb1; b2; b5g is linearly independent, fa1; a2; a5g is also
linearly independent and hence is a basis for ColA.

The argument in Example 8 can be adapted to prove the following theorem.

THEOREM 13 The pivot columns of a matrix A form a basis for the column space of A.

Warning: Be careful to use pivot columns of A itself for the basis of ColA. The
columns of an echelon form B are often not in the column space of A. (For instance,
in Examples 7 and 8, the columns of B all have zeros in their last entries and cannot
generate the columns of A.)

Practice Problems

1. Let A D

24 1 �1 5

2 0 7

�3 �5 �3

35 and u D

24�7

3

2

35. Is u in NulA? Is u in ColA? Justify
each answer.

2. Given A D

24 0 1 0

0 0 1

0 0 0

35, find a vector in NulA and a vector in ColA.STUDY GUIDE offers additional
resources for mastering the
concepts of subspace, column
space, and null space.

3. Suppose an n � n matrix A is invertible. What can you say about ColA? About
NulA?
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2.8 Exercises
Exercises 1–4 display sets in R2. Assume the sets include the
bounding lines. In each case, give a specific reason why the set
H is not a subspace of R2. (For instance, find two vectors in H
whose sum is not in H, or find a vector in H with a scalar multiple
that is not in H. Draw a picture.)

1.

2.

3.

4.

5. Let v1 D

24 2

3

�5

35; v2 D

24�4

�5

8

35; and w D

24 8

2

�9

35. Deter-
mine if w is in the subspace of R3 generated by v1 and v2.

6. Let v1 D

2664
1

�2

4

3

3775, v2 D

2664
4

�7

9

7

3775, v3 D

2664
5

�8

6

5

3775; and u D

2664
�4

10

�7

�5

3775. Determine if u is in the subspace of R4 generated

by fv1; v2; v3g.

7. Let v1 D

24 2

�8

6

35, v2 D

24�3

8

�7

35, v3 D

24�4

6

�7

35,
p D

24 6

�10

11

35, and A = Œv1 v2 v3�:

a. How many vectors are in fv1; v2; v3g?

b. How many vectors are in Col A?

c. Is p in Col A? Why or why not?

8. Let v1 D

24�3

0

6

35, v2 D

24�2

2

3

35, v3 D

24 0

�6

3

35, and p D24 1

14

�9

35: Determine if p is in Col A, where A D Œv1 v2 v3�:

9. With A and p as in Exercise 7, determine if p is in Nul A.

10. With u D .�2; 3; 1/ and A as in Exercise 8, determine if u is
in Nul A.

In Exercises 11 and 12, give integers p and q such that Nul A is a
subspace of Rp and Col A is a subspace of Rq .

11. A D

24 3 2 1 �5

�9 �4 1 7

9 2 �5 1

35

12. A D

2664
1 2 3

4 5 7

�5 �1 0

2 7 11

3775
13. For A as in Exercise 11, find a nonzero vector in Nul A and a

nonzero vector in Col A.

14. For A as in Exercise 12, find a nonzero vector in Nul A and a
nonzero vector in Col A.

Determine which sets in Exercises 15–20 are bases for R2 or R3.
Justify each answer.

15.
�

5

�2

�
,
�

10

�3

�
16.

�
�4

6

�
,
�

2

�3

�

17.

24 0

1

�2

35, 24 5

�7

4

35, 24 6

3

5

35 18.

24 1

1

�2

35;

24�5

�1

2

35;

24 7

0

�5

35
19.

24 3

�8

1

35;

24 6

2

�5

35
20.

24 1

�6

�7

35;

24 3

�4

7

35;

24�2

7

5

35;

24 0

8

9

35
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In Exercises 21–30, mark each statement Ture or False (T/F).
Justify each answer.

21. (T/F) A subspace of Rn is any set H such that (i) the zero
vector is in H , (ii) u, v, and uC v are in H , and (iii) c is a
scalar and cu is in H .

22. (T/F) A subset H of Rn is a subspace if the zero vector
is in H .

23. (T/F) If v1; : : : ; vp are in Rn, then Span fv1; : : : ; vpg is the
same as the column space of the matrix Œv1 : : : vp�.

24. (T/F) Given vectors v1; : : : ; vp in Rn, the set of all linear
combinations of these vectors is a subspace of Rn.

25. (T/F) The set of all solutions of a system of m homogeneous
equations in n unknowns is a subspace of Rm.

26. (T/F) The null space of an m � n matrix is a subspace of Rn.

27. (T/F) The columns of an invertible n � n matrix form a basis
for Rn.

28. (T/F) The column space of a matrix A is the set of solutions
of Ax D b.

29. (T/F) Row operations do not affect linear dependence rela-
tions among the columns of a matrix.

30. (T/F) If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col A.

Exercises 31–34 display a matrix A and an echelon form of A. Find
a basis for Col A and a basis for Nul A.

31. A D

24 4 5 9 �2

6 5 1 12

3 4 8 �3

35 � 24 1 2 6 �5

0 1 5 �6

0 0 0 0

35

32. A D

24�3 9 �2 �7

2 �6 4 8

3 �9 �2 2

35 � 24 1 �3 6 9

0 0 4 5

0 0 0 0

35

33. A D

2664
1 4 8 �3 �7

�1 2 7 3 4

�2 2 9 5 5

3 6 9 �5 �2

3775

�

2664
1 4 8 0 5

0 2 5 0 �1

0 0 0 1 4

0 0 0 0 0

3775

34. A D

2664
3 �1 7 3 9

�2 2 �2 7 5

�5 9 3 3 4

�2 6 6 3 7

3775

�

2664
3 �1 7 0 6

0 2 4 0 3

0 0 0 1 1

0 0 0 0 0

3775
35. Construct a nonzero 3 � 3 matrix A and a nonzero vector b

such that b is in Col A, but b is not the same as any one of the
columns of A.

36. Construct a nonzero 3 � 3 matrix A and a vector b such that
b is not in Col A.

37. Construct a nonzero 3 � 3 matrix A and a nonzero vector b
such that b is in Nul A.

38. Suppose the columns of a matrix A D Œa1 � � � ap� are lin-
early independent. Explain why fa1; : : : ; apg is a basis for
Col A.

In Exercises 39–44, respond as comprehensively as possible, and
justify your answer.

39. Suppose F is a 5 � 5 matrix whose column space is not equal
to R5. What can you say about Nul F?

40. If R is a 6 � 6matrix and Nul R is not the zero subspace, what
can you say about Col R?

41. IfQ is a 4 � 4matrix and ColQDR4, what can you say about
solutions of equations of the form Qx D b for b in R4?

42. If P is a 5 � 5 matrix and Nul P is the zero subspace, what
can you say about solutions of equations of the form P x D b
for b in R5?

43. What can you say about Nul B when B is a 5 � 4 matrix with
linearly independent columns?

44. What can you say about the shape of anm � nmatrix Awhen
the columns of A form a basis for Rm?

In Exercises 45 and 46, construct bases for the column space and
the null space of the given matrix A. Justify your work.

T 45. A D

2664
3 �5 0 �1 3

�7 9 �4 9 �11

�5 7 �2 5 �7

3 �7 �3 4 0

3775

T 46. A D

2664
5 2 0 �8 �8

4 1 2 �8 �9

5 1 3 5 19

�8 �5 6 8 5

3775
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Solutions to Practice Problems

1. To determine whether u is in NulA, simply compute

Au D

24 1 �1 5

2 0 7

�3 �5 �3

3524�7

3

2

35 D 24 0

0

0

35
The result shows that u is in NulA: Deciding whether u is in ColA requires more
work. Reduce the augmented matrix ŒA u� to echelon form to determine whether
the equation Ax D u is consistent:24 1 �1 5 �7

2 0 7 3

�3 �5 �3 2

35 � 24 1 �1 5 �7

0 2 �3 17

0 �8 12 �19

35 � 24 1 �1 5 �7

0 2 �3 17

0 0 0 49

35
The equation Ax D u has no solution, so u is not in ColA.

2. In contrast to Practice Problem 1, finding a vector in NulA requires more work
than testing whether a specified vector is in NulA. However, since A is already
in reduced echelon form, the equation Ax D 0 shows that if x D .x1; x2; x3/; then
x2 D 0; x3 D 0; and x1 is a free variable. Thus, a basis for NulA is v D .1; 0; 0/:

Finding just one vector in ColA is trivial, since each column of A is in ColA. In
this particular case, the same vector v is in both NulA and ColA. For most n � n

matrices, the zero vector of Rn is the only vector in both NulA and ColA.

3. IfA is invertible, then the columns ofA spanRn; by the Invertible Matrix Theorem.
By definition, the columns of any matrix always span the column space, so in this
case ColA is all of Rn: In symbols, ColA D Rn: Also, since A is invertible, the
equation Ax D 0 has only the trivial solution. This means that NulA is the zero
subspace. In symbols, NulA D f0g:

2.9 Dimension and Rank
This section continues the discussion of subspaces and bases for subspaces, beginning
with the concept of a coordinate system. The definition and example below should make
a useful new term, dimension, seem quite natural, at least for subspaces of R3.

Coordinate Systems
The main reason for selecting a basis for a subspace H; instead of merely a spanning
set, is that each vector in H can be written in only one way as a linear combination of
the basis vectors. To see why, suppose B D fb1; : : : ; bpg is a basis for H , and suppose
a vector x in H can be generated in two ways, say,

x D c1b1 C � � � C cpbp and x D d1b1 C � � � C dpbp (1)

Then, subtracting gives

0 D x � x D .c1 � d1/b1 C � � � C .cp � dp/bp (2)

Since B is linearly independent, the weights in (2) must all be zero. That is, cj D dj for
1 � j � p; which shows that the two representations in (1) are actually the same.
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DEFINITION Suppose the set B D fb1; : : : ; bpg is a basis for a subspace H . For each x in H ,
the coordinates of x relative to the basis B are the weights c1; : : : ; cp such that
x D c1b1 C � � � C cpbp; and the vector in Rp

Œx�B D

264 c1

:::

cp

375
is called the coordinate vector of x (relative to B) or the B-coordinate vector
of x.1

EXAMPLE 1 Let v1 D

24 3

6

2

35, v2 D

24�1

0

1

35, x D 24 3

12

7

35, andB D fv1; v2g. ThenB

is a basis for H D Span fv1; v2g because v1 and v2 are linearly independent. Determine
if x is in H , and if it is, find the coordinate vector of x relative to B.

SOLUTION If x is in H , then the following vector equation is consistent:

c1

24 3

6

2

35C c2

24�1

0

1

35 D 24 3

12

7

35
The scalars c1 and c2, if they exist, are the B-coordinates of x. Row operations show that24 3 �1 3

6 0 12

2 1 7

35 � 24 1 0 2

0 1 3

0 0 0

35
Thus c1 D 2, c2 D 3, and Œ x �B D

�
2

3

�
. The basis B determines a “coordinate system”

on H , which can be visualized by the grid shown in Figure 1.

0

x2

x3

x1

3v2

2v2

2v1

v2

v1

x 5 2v1 1 3v2

FIGURE 1 A coordinate system on a plane
H in R3:

Notice that although points in H are also in R3, they are completely determined
by their coordinate vectors, which belong to R2. The grid on the plane in Figure 1

1 It is important that the elements of B are numbered because the entries in Œx�B depend on the order of the
vectors in B.
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makesH “look” likeR2. The correspondence x 7! Œ x �B is a one-to-one correspondence
between H and R2 that preserves linear combinations. We call such a correspondence
an isomorphism, and we say that H is isomorphic to R2.

In general, if B D fb1; : : : ; bpg is a basis for H , then the mapping x 7! Œx�B is a
one-to-one correspondence that makes H look and act the same as Rp (even though the
vectors in H themselves may have more than p entries). (Section 4.4 has more details.)

The Dimension of a Subspace
It can be shown that if a subspaceH has a basis of p vectors, then every basis ofH must
consist of exactly p vectors. (See Exercises 35 and 36.) Thus the following definition
makes sense.

DEFINITION The dimension of a nonzero subspace H , denoted by dimH , is the number of
vectors in any basis for H . The dimension of the zero subspace f0g is defined to be
zero.2

The space Rn has dimension n. Every basis for Rn consists of n vectors. A plane
through 0 in R3 is two-dimensional, and a line through 0 is one-dimensional.

EXAMPLE 2 Recall that the null space of the matrix A in Example 6 in Section 2.8
had a basis of 3 vectors. So the dimension of NulA in this case is 3. Observe how each
basis vector corresponds to a free variable in the equation Ax D 0. Our construction
always produces a basis in this way. So, to find the dimension of NulA, simply identify
and count the number of free variables in Ax D 0.

DEFINITION The rank of a matrix A, denoted by rankA, is the dimension of the column space
of A.

Since the pivot columns ofA form a basis for ColA, the rank ofA is just the number
of pivot columns in A.

EXAMPLE 3 Determine the rank of the matrix

A D

2664
2 5 �3 �4 8

4 7 �4 �3 9

6 9 �5 2 4

0 �9 6 5 �6

3775
SOLUTION Reduce A to echelon form:

A �

2664
2 5 �3 �4 8

0 �3 2 5 �7

0 �6 4 14 �20

0 �9 6 5 �6

3775 � � � � �
2664

2 5 �3 �4 8

0 �3 2 5 �7

0 0 0 4 �6

0 0 0 0 0

3775
Pivot columns - - -

The matrix A has 3 pivot columns, so rankA D 3.

2 The zero subspace has no basis (because the zero vector by itself forms a linearly dependent set).
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The row reduction in Example 3 reveals that there are two free variables in Ax D 0,
because two of the five columns of A are not pivot columns. (The nonpivot columns
correspond to the free variables in Ax D 0.) Since the number of pivot columns plus the
number of nonpivot columns is exactly the number of columns, the dimensions of ColA
and NulA have the following useful connection. (See the Rank Theorem in Section 4.6
for additional details.)

THEOREM 14 The Rank Theorem

If a matrix A has n columns, then rankAC dimNulA D n.

The following theorem is important for applications and will be needed in
Chapters 5 and 6. The theorem (proved in Section 4.5) is certainly plausible, if you
think of a p-dimensional subspace as isomorphic to Rp . The Invertible Matrix Theorem
shows that p vectors in Rp are linearly independent if and only if they also span Rp .

THEOREM 15 The Basis Theorem

LetH be a p-dimensional subspace ofRn:Any linearly independent set of exactly
p elements in H is automatically a basis for H: Also, any set of p elements of H

that spans H is automatically a basis for H:

Rank and the Invertible Matrix Theorem
The various vector space concepts associated with a matrix provide several more
statements for the Invertible Matrix Theorem. They are presented below to follow the
statements in the original theorem in Section 2.3.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n � n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of Rn:

n. ColA D Rn

o. rankA D n

p. dimNulA D 0

q. NulA D f0g

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other four statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

(g)) (n)) (o)) (p)) (q)) (d)

Statement (g), which says that the equation Ax D b has at least one solution for each
b in Rn, implies statement (n), because ColA is precisely the set of all b such that
the equation Ax D b is consistent. The implications (n)) (o)) (p) follow from the
definitions of dimension and rank. If the rank of A is n, the number of columns of A,
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then dimNulA D 0, by the Rank Theorem, and so NulA D f0g. Thus (p)) (q). Also,
statement (q) implies that the equation Ax D 0 has only the trivial solution, which is
statement (d). Since statements (d) and (g) are already known to be equivalent to theSTUDY GUIDE offers an expanded

Invertible Matrix Theorem Table. statement that A is invertible, the proof is complete.

Numerical Notes

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

apparent rank of a matrix. For instance, if the value of x in the matrix
�

5 7

5 x

�
is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x � 7 as zero.

In practical applications, the effective rank of a matrix A is often determined
from the singular value decomposition of A, to be discussed in Section 7.4.

Practice Problems

1. Determine the dimension of the subspace H of R3 spanned by the vectors v1; v2;

and v3: (First, find a basis for H .)

v1 D

24 2

�8

6

35; v2 D

24 3

�7

�1

35; v3 D

24�1

6

�7

35
2. Consider the basis

B D
��

1

:2

�
;

�
:2

1

��
for R2. If Œ x �B D

�
3

2

�
, what is x?

3. Could R3 possibly contain a four-dimensional subspace? Explain.

2.9 Exercises
In Exercises 1 and 2, find the vector x determined by the given
coordinate vector Œx�B and the given basisB. Illustrate your answer
with a figure, as in the solution of Practice Problem 2.

1. B D
��

1

1

�
;

�
2

�1

��
; Œx�B D

�
3

2

�

2. B D
��
�2

1

�
;

�
3

1

��
; Œx�B D

�
�1

3

�
In Exercises 3–6, the vector x is in a subspace H with a basis
B D fb1; b2g: Find the B-coordinate vector of x.

3. b1 D

�
1

�4

�
; b2 D

�
�2

7

�
; x D

�
�3

7

�

4. b1 D

�
1

�3

�
; b2 D

�
�4

7

�
; x D

�
�8

9

�

5. b1 D

24 1

5

�3

35; b2 D

24�3

�7

5

35; x D

24 4

10

�7

35

6. b1 D

24�2

1

2

35; b2 D

24�6

7

8

35; x D

24 4

0

�3

35
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7. Let b1 D

�
3

0

�
; b2 D

�
�1

2

�
;w D

�
7

�2

�
; x D

�
4

1

�
; and

B D fb1; b2g: Use the figure to estimate Œw�B and Œx�B:

Confirm your estimate of Œx�B by using it and fb1; b2g to
compute x.

b 2

b1

x

w

0

8. Let b1 D

�
0

2

�
; b2 D

�
2

1

�
; x D

�
�2

3

�
; y D

�
2

4

�
;

z D
�
�1

�2:5

�
; and B D fb1; b2g: Use the figure to estimate

Œx�B; Œy�B, and Œz�B: Confirm your estimates of Œy�B and Œz�B
by using them and fb1; b2g to compute y and z.

b2

b1

x

0

z

y

Exercises 9–12 display a matrix A and an echelon form of A. Find
bases for Col A and Nul A, and then state the dimensions of these
subspaces.

9. A D

2664
1 �3 2 �4

�3 9 �1 5

2 �6 4 �3

�4 12 2 7

3775 �
2664

1 �3 2 �4

0 0 5 �7

0 0 0 5

0 0 0 0

3775

10. A D

2664
1 �2 9 5 4

1 �1 6 5 �3

�2 0 �6 1 �2

4 1 9 1 �9

3775

�

2664
1 �2 9 5 4

0 1 �3 0 �7

0 0 0 1 �2

0 0 0 0 0

3775

11. A D

2664
1 2 �5 0 �1

2 5 �8 4 3

�3 �9 9 �7 �2

3 10 �7 11 7

3775

�

2664
1 2 �5 0 �1

0 1 2 4 5

0 0 0 1 2

0 0 0 0 0

3775

12. A D

2664
1 2 �4 3 3

5 10 �9 �7 8

4 8 �9 �2 7

�2 �4 5 0 �6

3775

�

2664
1 2 �4 3 3

0 0 1 �2 0

0 0 0 0 �5

0 0 0 0 0

3775
In Exercises 13 and 14, find a basis for the subspace spanned by
the given vectors. What is the dimension of the subspace?

13.

2664
1

�3

2

�4

3775;

2664
�3

9

�6

12

3775;

2664
2

�1

4

2

3775;

2664
�4

5

�3

7

3775

14.

2664
1

�1

�2

5

3775;

2664
2

�3

�1

6

3775;

2664
0

2

�6

8

3775;

2664
�1

4

�7

7

3775;

2664
3

�8

9

�5

3775
15. Suppose a 5 � 8 matrix A has five pivot columns. Is

Col A D R5? Is Nul A D R3? Explain your answers.

16. Suppose a 5 � 8 matrix A has two pivot columns. Is
Col A D R2? What is the dimension of Nul A? Explain your
answers.

In Exercises 17–26, mark each statement True or False (T/F).
Justify each answer. Here A is an m � n matrix.

17. (T/F) If B D fv1; : : : ; vpg is a basis for a subspace H and
if x D c1v1 C � � � C cpvp , then c1; : : : ; cp are the coordinates
of x relative to the basis B.

18. (T/F) If B is a basis for a subspace H , then each vector in H

can be written in only one way as a linear combination of the
vectors in B.

19. (T/F) Each line in Rn is a one-dimensional subspace of Rn.

20. (T/F) If B D fv1; : : : ; vpg is a basis for a subspace H of Rn,
then the correspondence x 7! Œx�B makes H look and act the
same as Rp .

21. (T/F) The dimension of ColA is the number of pivot columns
of A.

22. (T/F) The dimension of Nul A is the number of variables in
the equation Ax D 0.
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23. (T/F) The dimensions of Col A and Nul A add up to the
number of columns of A.

24. (T/F) The dimension of the column space of A is rank A.

25. (T/F) If a set of p vectors spans a p-dimensional subspaceH

of Rn, then these vectors form a basis for H .

26. (T/F) IfH is a p-dimensional subspace ofRn, then a linearly
independent set of p vectors in H is a basis for H .

In Exercises 27–32, justify each answer or construction.

27. If the subspace of all solutions of Ax D 0 has a basis consist-
ing of three vectors and if A is a 5 � 7matrix, what is the rank
of A?

28. What is the rank of a 3 � 7 matrix whose null space is three-
dimensional?

29. If the rank of a 7 � 6 matrix A is 4, what is the dimension of
the solution space of Ax D 0?

30. Show that a set of vectors fv1; v2;…; v5g in Rn is linearly
dependent when dim Span fv1; v2;…; v5g D 4.

31. If possible, construct a 3 � 4 matrix A such that dim
Nul AD 2 and dim Col AD 2.

32. Construct a 4 � 3 matrix with rank l.

33. Let A be an n � p matrix whose column space is p-
dimensional. Explain why the columns of A must be linearly
independent.

34. Suppose columns 1, 3, 5, and 6 of a matrix A are linearly
independent (but are not necessarily pivot columns) and the

rank of A is 4. Explain why the four columns mentioned must
be a basis for the column space of A.

35. Suppose vectors b1; : : : ; bp span a subspace W, and let
fa1; : : : ; aqg be any set in W containing more than p
vectors. Fill in the details of the following argument to
show that fa1; : : : ; aqg must be linearly dependent. First, let
B D Œb1 � � � bp� and A D Œa1 � � � aq �.

a. Explain why for each vector aj , there exists a vector cj in
Rp such that aj D Bcj .

b. LetC = Œc1 � � � cq �. Explainwhy there is a nonzero vector
u such that Cu D 0.

c. Use B and C to show that Au D 0. This shows that the
columns of A are linearly dependent.

36. Use Exercise 35 to show that if A and B are bases for a
subspace W of Rn, then A cannot contain more vectors than
B, and, conversely, B cannot contain more vectors than A.

T 37. Let H = Spanfv1; v2g and B = fv1; v2g. Show that x is in H,
and find the B-coordinate vector of x, when

v1 D

2664
12

�4

9

5

3775; v2 D

2664
15

�7

12

8

3775; x D

2664
19

�11

16

12

3775
T 38. Let H D Spanfv1; v2; v3g and B D fv1; v2; v3g. Show that B

is a basis forH and x is inH, and find the B-coordinate vector
of x, when

v1 D

2664
�5

4

�3

2

3775; v2 D

2664
7

�5

3

�3

3775; v3 D

2664
�8

6

�4

3

3775; x D

2664
�7

8

�9

1

3775

Solutions to Practice Problems

1. Construct A D Œv1 v2 v3� so that the subspace spanned by v1; v2; v3 is the

STUDY GUIDE
offers additional resources for
mastering the concepts of
dimension and rank.

column space of A. A basis for this space is provided by the pivot columns of A.

A D

24 2 3 �1

�8 �7 6

6 �1 �7

35 � 24 2 3 �1

0 5 2

0 �10 �4

35 � 24 2 3 �1

0 5 2

0 0 0

35
The first two columns of A are pivot columns and form a basis for H . Thus

Col A 

v1

v2 v3

0

dimH D 2:

2. If Œx�B D

�
3

2

�
, then x is formed from a linear combination of the basis vectors using

weights 3 and 2:

x D 3b1 C 2b2 D 3

�
1

:2

�
C 2

�
:2

1

�
D

�
3:4

2:6

�
The basis fb1; b2g determines a coordinate system for R2, illustrated by the grid in
the figure. Note how x is 3 units in the b1-direction and 2 units in the b2-direction.

b1

b2

x

1

1
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3. A four-dimensional subspace would contain a basis of four linearly independent
vectors. This is impossible inside R3: Since any linearly independent set in R3 has
no more than three vectors, any subspace of R3 has dimension no more than 3. The
space R3 itself is the only three-dimensional subspace of R3. Other subspaces of
R3 have dimension 2, 1, or 0.

CHAPTER 2 PROJECTS
Chapter 2 projects are available online.

A. Other Matrix Products: This project introduces two new
operations on square matrices called the Jordan product and
the commutator product and their properties are explored.

B. Adjacency Matrices: The purpose of this project is to show
how powers of a matrix may be used to investigate graphs.

C. Dominance Matrices: The purpose of this project is to ap-
ply matrices and their powers to questions concerning various
forms of competition between individuals and groups.

D. Condition Numbers: The purpose of this project is to show
how a condition number of a matrix A may be defined, and
how its value affects the accuracy of solutions to systems of
equations Ax D b.

E. Equilibrium Temperature Distributions: The purpose of
this project is to discuss a physical situation in which solv-
ing a system of linear equations becomes necessary: that of
determining the equilibrium temperature of a thin plate.

F. The LU and QR Factorizations: The purpose of this project
is to explore a relationship between twomatrix factorizations:
the LU factorization and the QR factorization.

G. The Leontief Input–Output Model: The purpose of this
project is to provide three more examples of the Leontief
input–output model in action.

H. The Art of Linear Transformations: This project illustrates
how to graph a polygon and then use linear transformations
to move it around in the plane.

CHAPTER 2 SUPPLEMENTARY EXERCISES
Assume that the matrices mentioned in Exercises 1–15 below have
appropriate sizes. Mark each statement True or False (T/F). Justify
each answer.

1. (T/F) If A and B are m � n, then both ABT and ATB are
defined.

2. (T/F) If AB D C and C has 2 columns, then A has
2 columns.

3. (T/F) Left-multiplying a matrix B by a diagonal matrix A,
with nonzero entries on the diagonal, scales the rows of B .

4. (T/F) If BC D BD, then C D D.

5. (T/F) If AC D 0, then either A D 0 or C D 0.

6. (T/F) IfA andB aren � n, then .AC B/.A � B/ D A2 � B2.

7. (T/F) An elementary n � n matrix has either n or nC 1

nonzero entries.

8. (T/F) The transpose of an elementary matrix is an elementary
matrix.

9. (T/F) An elementary matrix must be square.

10. (T/F) Every square matrix is a product of elementary
matrices.

11. (T/F) If A is a 3 � 3 matrix with three pivot posi-
tions, there exist elementary matrices E1; : : : ; Ep such that
Ep � � �E1A D I .

12. (T/F) If AB D I , then A is invertible.

13. (T/F) If A and B are square and invertible, then AB is
invertible, and .AB/�1 D A�1B�1.

14. (T/F) If AB D BA and if A is invertible, then
A�1B D BA�1.

15. (T/F) If A is invertible and if r ¤ 0, then .rA/�1 D rA�1.

16. Find the matrix C whose inverse is C�1 D

�
4 5

6 7

�
.

17. A square matrix A is nilpotent of index k if Aj ¤ 0 for j D

1; : : : ; k � 1 and Ak D 0. Show that A D

24 1 �1 0

1 �0 0

0 0 0

35
and B D

24 0 1 2

0 0 3

0 0 0

35 are nilpotent and determine their

index.

18. Suppose An D 0 for n D 3. Use matrix algebra to compute
.I � A/.I C AC A2/ and .I C A/.I � AC A2/ and show
that both I � A and I C A are invertible.
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19. Suppose an n � n matrix A satisfies the equation
A2 � 2AC I D 0. Show that A3 D 3A � 2I and
A4 D 4A � 3I .

20. Let A D

�
1 0

0 �1

�
, B D

�
0 1

1 0

�
. These are Pauli spin

matrices used in the study of electron spin in quantum
mechanics. Show that A2 D I , B2 D I , and AB D �BA.
Matrices such that AB D �BA are said to anticommute.

21. Let A D

24 1 2 3

3 7 9

2 6 7

35 and B D

24 4 5

6 7

8 9

35. Compute
A�1B without computing A�1. [Hint: A�1B is the solution
of the equation AX D B .]

22. Find a matrix A such that the transformation x 7!Ax maps�
2

3

�
and

�
5

8

�
into

�
1

2

�
and

�
4

9

�
, respectively. [Hint:Write

a matrix equation involving A, and solve for A.]

23. Suppose AB D

�
9 8

7 6

�
and B D

�
3 2

2 3

�
. Find A.

24. Suppose A is invertible. Explain why ATA is also invertible.
Then show that A�1 D .ATA/�1AT .

25. Let x1; : : : ; xn be fixed numbers. The matrix below, called
a Vandermonde matrix, occurs in applications such as
signal processing, error-correcting codes, and polynomial
interpolation.

V D

26664
1 x1 x2

1 � � � xn�1
1

1 x2 x2
2 � � � xn�1

2
:::

:::
:::

:::

1 xn x2
n � � � xn�1

n

37775
Given y D .y1; : : : ; yn/ inRn, suppose c D .c0; : : : ; cn�1/ in
Rn satisfies V c D y, and define the polynomial

p.t/ D c0 C c1t C c2t2
C � � � C cn�1tn�1:

a. Show that p.x1/ D y1; : : : ; p.xn/ D yn. We call
p.t/ an interpolating polynomial for the points
.x1; y1/; : : : ; .xn; yn/ because the graph of p.t/ passes
through the points.

b. Suppose x1; : : : ; xn are distinct numbers. Show that the
columns of V are linearly independent. [Hint: How many
zeros can a polynomial of degree n � 1 have?]

c. Prove: “If x1; : : : ; xn are distinct numbers, and y1; : : : ; yn

are arbitrary numbers, then there is an interpolating poly-
nomial of degree � n � 1 for .x1; y1/; : : : ; .xn; yn/.”

26. LetA D LU , whereL is an invertible lower triangular matrix
and U is upper triangular. Explain why the first column of
A is a multiple of the first column of L. How is the second
column of A related to the columns of L?

27. Given u inRn with uTu D 1, let P D uuT (an outer product)
and Q D I � 2P . Justify statements (a), (b), and (c).

a. P 2 D P b. P T D P c. Q2 D I

The transformation x 7!P x is called a projection, and
x 7!Qx is called a Householder reflection. Such reflections
are used in computer programs to create multiple zeros in a
vector (usually a column of a matrix).

28. Let u D

24 0

0

1

35 and x D

24 1

5

3

35. Determine P and Q as in

Exercise 27, and compute P x and Qx. The figure shows that
Qx is the reflection of x through the x1x2-plane.

Px

x3

x1

x2

u

x

x 2 Px

Qx

A Householder reflection through the plane
x3 D 0.

29. Suppose C D E3E2E1B , where E1, E2, and E3 are elemen-
tary matrices. Explain why C is row equivalent to B .

30. Let A be an n � n matrix such that the sum of the entries of
each row equals zero. Explain why we can conclude that A is
singular.

31. Let A be a 6 � 4 matrix and B a 4 � 6 matrix. Show that the
6 � 6 matrix AB cannot be invertible.

32. SupposeA is a 5 � 3matrix and there exists a 3 � 5matrix C

such that CA D I3. Suppose further that for some given b in
R5, the equation Ax D b has at least one solution. Show that
this solution is unique.

T 33. Certain dynamical systems can be studied by examining pow-
ers of a matrix, such as those below. Determine what happens
toAk andBk as k increases (for example, try k D 2; : : : ; 16/.
Try to identify what is special about A and B . Investigate
large powers of other matrices of this type, and make a
conjecture about such matrices.

A D

24 :4 :2 :3

:3 :6 :3

:3 :2 :4

35; B D

24 0 :2 :3

:1 :6 :3

:9 :2 :4

35
T 34. Let An be the n � n matrix with 0’s on the main diagonal and

1’s elsewhere. Compute A�1
n for n D 4, 5, and 6, and make

a conjecture about the general form of A�1
n for larger values

of n.



3 Determinants

Introductory Example

WEIGHING DIAMONDS
How is the value of a diamond determined? Jewelers use
the four cs: cut, clarity, color, and carats; a carat is a unit of
mass equal to 0.2 grams. When a jeweler receives a supply
of diamonds, it is vital that they be weighed accurately as
part of determining their value. The difference of half a
carat can have a large impact on a diamond’s value.

When weighing small objects, such as diamonds or
other gemstones, one strategy is to weigh the objects
individually, but there are more accurate strategies that
involve weighing the objects in groups and then deducing
the individual weights from the results.

Suppose there are n small objects to be weighed,
labeled s1, s2; � � � ; sn. One method of determining the
weight of each small object uses a two-pan balance. A
weighing consists of placing some of the small objects
in the left pan and the rest in the right pan. The balance
records the difference between the weights in the pans.

The jeweler (or other individual weighing small
light objects) plans her strategy in advance by creating a
design matrix D with entries determined by the following

scheme: If gemstone sj is placed in the left pan during the
i th weighing, then dij D �1 and if gemstone sj is placed in
the right pan during the i th weighing the dij D 1. Each row
of the matrix D corresponds to a particular weighing. The
j th column ofD tells you where to put sj at each weighing.
Thus D is an m � n matrix, where m corresponds to the
number of weighings and n corresponds to the number of
objects. It has been shown that the accuracy of a weighing
design is highest when a design matrix that maximizes the
value of the determinant of DT D is chosen.

For example, consider the design matrix D D2664
1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

3775 for weighing the gems

s1; s2; s3; s4. For this design, the first weighing has all four
gems in the right tray (the first row of D consists of all
ones). For the second weighing, gem s2 is in the left tray
and the rest of the gems are in the right tray (the second
row of D has a �1 in the second column). For the third
weighing, gem s3 is in the left tray and the rest of the gems
are in the right tray (the third row ofD has a�1 in the third
column). In the last weighing, gem s4 is in the left tray and
the remaining gems are in the right tray (the fourth row
of D has a �1 in the fourth column). The determinant of
DT D is 64.

However, this is not the best design for using
four weighings to determine the weight of four objects.

195
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If D D

2664
1 1 1 1

1 1 �1 �1

1 �1 1 �1

�1 1 1 �1

3775, then the determinant
of DTD D 256, and hence this is a better design. Notice
that the first weighing of this design is the same as the
previous one, but then the remaining weighings each have
two objects in each pan.

Calculating determinants of matrices and understand-
ing their properties is the theme of this chapter. As you
learn more about determinants, you may also come up with
strategies for good and bad choices for a weighing design.

Another important use of the determinant is to
calculate the area of a parallelogram or the volume of

a parallelepiped. In Section 1.9, we saw that matrix
multiplication can be used to change the shape of a box or
other object. The determinant of thematrix used determines
how much the area changes when it is multiplied by a
matrix, just as a fish story can transform the size of the fish
caught.

Indeed, the determinant has so many uses that a
summary of the applications known in the early 1900s
filled a four-volume treatise by Thomas Muir. With
changes in emphasis and the greatly increased sizes of the
matrices used in modem applications, many uses that were
important then are no longer critical today. Nevertheless,
the determinant still plays many important theoretical and
practical roles.

Beyond introducing the determinant in Section 3.1, this chapter presents two important
ideas. Section 3.2 derives an invertibility criterion for a square matrix that plays a pivotal
role in Chapter 5. Section 3.3 shows how the determinant measures the amount by which
a linear transformation changes the area of a figure. When applied locally, this technique
answers the question of a map’s expansion rate near the poles. This idea plays a critical
role in multivariable calculus in the form of the Jacobian.

3.1 Introduction to Determinants
Recall from Section 2.2 that a 2 � 2 matrix is invertible if and only if its determinant
is nonzero. To extend this useful fact to larger matrices, we need a definition for the
determinant of an n � n matrix. We can discover the definition for the 3 � 3 case by
watching what happens when an invertible 3 � 3 matrix A is row reduced.

Consider A D Œaij � with a11 ¤ 0. If we multiply the second and third rows of A by
a11 and then subtract appropriate multiples of the first row from the other two rows, we
find that A is row equivalent to the following two matrices:

24 a11 a12 a13

a11a21 a11a22 a11a23

a11a31 a11a32 a11a33

35 � 24a11 a12 a13

0 a11a22 � a12a21 a11a23 � a13a21

0 a11a32 � a12a31 a11a33 � a13a31

35 (1)

Since A is invertible, either the .2; 2/-entry or the .3; 2/-entry on the right in (1) is
nonzero. Let us suppose that the .2; 2/-entry is nonzero. (Otherwise, we can make a row
interchange before proceeding.) Multiply row 3 by a11a22 � a12a21, and then to the new
row 3 add �.a11a32 � a12a31/ times row 2. This will show that

A �

24 a11 a12 a13

0 a11a22 � a12a21 a11a23 � a13a21

0 0 a11�

35
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where

� D a11a22a33 C a12a23a31 C a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31 (2)

Since A is invertible, � must be nonzero. The converse is true, too, as we will see in
Section 3.2. We call � in (2) the determinant of the 3 � 3 matrix A.

Recall that the determinant of a 2 � 2 matrix, A D Œaij �, is the number

detA D a11a22 � a12a21

For a 1 � 1 matrix—say, A D Œa11�—we define detA D a11. To generalize the defini-
tion of the determinant to larger matrices, we’ll use 2 � 2 determinants to rewrite
the 3 � 3 determinant � described above. Since the terms in � can be grouped as
.a11a22a33 � a11a23a32/ � .a12a21a33 � a12a23a31/C .a13a21a32 � a13a22a31/,

� D a11 det
�

a22 a23

a32 a33

�
� a12 det

�
a21 a23

a31 a33

�
C a13 det

�
a21 a22

a31 a32

�
For brevity, write

� D a11 detA11 � a12 detA12 C a13 detA13 (3)

where A11, A12, and A13 are obtained from A by deleting the first row and one of the
three columns. For any square matrixA, letAij denote the submatrix formed by deleting
the i th row and j th column of A. For instance, if

A D

2664
1 �2 5 0

2 0 4 �1

3 1 0 7

0 4 �2 0

3775
then A32 is obtained by crossing out row 3 and column 2,2664

1 �2 5 0

2 0 4 �1

3 1 0 7

0 4 �2 0

3775
so that

A32 D

24 1 5 0

2 4 �1

0 �2 0

35
We can now give a recursive definition of a determinant. When n D 3, detA is defined
using determinants of the 2 � 2 submatricesA1j , as in (3) above.When n D 4, detA uses
determinants of the 3 � 3 submatrices A1j . In general, an n � n determinant is defined
by determinants of .n � 1/ � .n � 1/ submatrices.

DEFINITION For n � 2, the determinant of an n � n matrix A D Œaij � is the sum of n terms
of the form ˙a1j detA1j , with plus and minus signs alternating, where the entries
a11; a12; : : : ; a1n are from the first row of A. In symbols,

detA D a11 detA11 � a12 detA12 C � � � C .�1/1Cna1n detA1n

D

nX
jD1

.�1/1Cj a1j detA1j
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EXAMPLE 1 Compute the determinant of

A D

24 1 5 0

2 4 �1

0 �2 0

35
SOLUTION Compute detA D a11 detA11 � a12 detA12 C a13 detA13:

detA D 1 det
�

4 �1

�2 0

�
� 5 det

�
2 �1

0 0

�
C 0 det

�
2 4

0 �2

�
D 1.0 � 2/ � 5.0 � 0/C 0.�4 � 0/ D �2

Another common notation for the determinant of a matrix uses a pair of vertical
lines in place of brackets. Thus the calculation in Example 1 can be written as

detA D 1

ˇ̌̌̌
4 �1

�2 0

ˇ̌̌̌
� 5

ˇ̌̌̌
2 �1

0 0

ˇ̌̌̌
C 0

ˇ̌̌̌
2 4

0 �2

ˇ̌̌̌
D � � � D �2

To state the next theorem, it is convenient to write the definition of detA in a slightly
different form. Given A D Œaij �, the .i; j /-cofactor of A is the number Cij given by

Cij D .�1/iCj detAij (4)

Then
detA D a11C11 C a12C12 C � � � C a1nC1n

This formula is called a cofactor expansion across the first row of A. We omit the
proof of the following fundamental theorem to avoid a lengthy digression.

THEOREM 1 The determinant of an n � n matrix A can be computed by a cofactor expansion
across any row or down any column. The expansion across the i th row using the
cofactors in (4) is

detA D ai1Ci1 C ai2Ci2 C � � � C ainCin

The cofactor expansion down the j th column is

detA D a1j C1j C a2j C2j C � � � C anj Cnj

The plus or minus sign in the .i; j /-cofactor depends on the position of aij in the
matrix, regardless of the sign of aij itself. The factor .�1/iCj determines the following
checkerboard pattern of signs: 26664

C � C � � �

� C �

C � C

:::
: : :

37775
EXAMPLE 2 Use a cofactor expansion across the third row to compute detA, where

A D

24 1 5 0

2 4 �1

0 �2 0

35
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SOLUTION Compute

detA D a31C31 C a32C32 C a33C33

D .�1/3C1a31 detA31 C .�1/3C2a32 detA32 C .�1/3C3a33 detA33

D 0

ˇ̌̌̌
5 0

4 �1

ˇ̌̌̌
� .�2/

ˇ̌̌̌
1 0

2 �1

ˇ̌̌̌
C 0

ˇ̌̌̌
1 5

2 4

ˇ̌̌̌
D 0C 2.�1/C 0 D �2

Theorem 1 is helpful for computing the determinant of a matrix that contains many
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row
has many terms that are zero, and the cofactors in those terms need not be calculated.
The same approach works with a column that contains many zeros.

EXAMPLE 3 Compute detA, where

A D

266664
3 �7 8 9 �6

0 2 �5 7 3

0 0 1 5 0

0 0 2 4 �1

0 0 0 �2 0

377775
SOLUTION The cofactor expansion down the first column of A has all terms equal to
zero except the first. Thus

detA D 3

ˇ̌̌̌
ˇ̌̌̌ 2 �5 7 3

0 1 5 0

0 2 4 �1

0 0 �2 0

ˇ̌̌̌
ˇ̌̌̌C 0 C21 C 0 C31 C 0 C41 C 0 C51

Henceforth we will omit the zero terms in the cofactor expansion. Next, expand this
4 � 4 determinant down the first column to take advantage of the zeros there. We have

detA D 3.2/

ˇ̌̌̌
ˇ̌ 1 5 0

2 4 �1

0 �2 0

ˇ̌̌̌
ˇ̌

This 3 � 3 determinant was computed in Example 1 and found to equal �2. Hence
detA D 3.2/.�2/ D �12.

The matrix in Example 3 was nearly triangular. The method in that example is easily
adapted to prove the following theorem.

THEOREM 2 If A is a triangular matrix, then detA is the product of the entries on the main
diagonal of A.

The strategy in Example 3 of looking for zeros works extremely well when an entire
row or column consists of zeros. In such a case, the cofactor expansion along such a row
or column is a sum of zeros! So the determinant is zero. Unfortunately, most cofactor
expansions are not so quickly evaluated.
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Reasonable Answers

How big can a determinant be? Let A be an n � n matrix. Notice that taking the
determinant ofA consists of adding and subtracting terms with n products each. If
p is the product of the n largest elements in absolute value (the same number may
be repeated if it occurs more than once as a matrix entry), then the determinant

must be between �np and np. For example, consider A D

�
6 5

�7 9

�
and B D�

7 6

7 �9

�
. The largest number in absolute value of each matrix is 9, and the

second largest number is 7. In these two cases, p D 7.9/ D 63 and np D 126.
The determinant of each of these matrices should be a number between �126

and 126. Notice that detA D 6.9/ � 5.�7/ D 54C 35 D 89, detB D 7.�9/ �

6.7/ D �63 � 42 D �105, illustrating that because the products are added and
subtracted, any number in the range between �126 and 126 could turn out to be
the determinant.

Next, considerC D

�
7 9

7 9

�
andD D

�
�9 9

9 9

�
. InmatricesC andD, the

number 9 appears twice and so should be selected twice. In this case, p D 9.9/ D

81 and np D 162, so the determinants of C and D should be numbers between
�162 and 162. Indeed, detC D .7/.9/ � .7/.9/ D 0 and detD D .�9/.9/ �

.9/.9/ D �162. Notice that it is important to choose 9 twice as the two largest
numbers in matrix D in order to get the correct bounds for the determinant
of D.

Numerical Note

By today’s standards, a 25 � 25 matrix is small. Yet it would be impossible
to calculate a 25 � 25 determinant by cofactor expansion. In general, a cofac-
tor expansion requires more than nŠ multiplications, and 25Š is approximately
1:55 � 1025.

If a computer performs one trillion multiplications per second, it would have
to run for almost 500,000 years to compute a 25 � 25 determinant by this method.
Fortunately, there are faster methods, as we’ll soon discover.

Exercises 19–38 explore important properties of determinants, mostly for the 2 � 2

case. The results from Exercises 33–36 will be used in the next section to derive the
analogous properties for n � n matrices.

Practice Problem

Compute

ˇ̌̌̌
ˇ̌̌̌ 5 �7 2 2

0 3 0 �4

�5 �8 0 3

0 5 0 �6

ˇ̌̌̌
ˇ̌̌̌.
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3.1 Exercises
Compute the determinants in Exercises 1–8 using a cofactor ex-
pansion across the first row. In Exercises 1–4, also compute the
determinant by a cofactor expansion down the second column.

1.

ˇ̌̌̌
ˇ̌ 3 0 4

2 3 2

0 5 �1

ˇ̌̌̌
ˇ̌ 2.

ˇ̌̌̌
ˇ̌ 0 4 1

5 �3 0

2 4 1

ˇ̌̌̌
ˇ̌

3.

ˇ̌̌̌
ˇ̌ 2 �2 3

3 1 2

1 3 �1

ˇ̌̌̌
ˇ̌ 4.

ˇ̌̌̌
ˇ̌ 1 2 4

3 1 1

2 4 2

ˇ̌̌̌
ˇ̌

5.

ˇ̌̌̌
ˇ̌ 4 5 �8

1 0 2

7 3 6

ˇ̌̌̌
ˇ̌ 6.

ˇ̌̌̌
ˇ̌ 6 �3 2

0 5 �5

3 �7 8

ˇ̌̌̌
ˇ̌

7.

ˇ̌̌̌
ˇ̌ 4 3 0

6 5 2

9 7 3

ˇ̌̌̌
ˇ̌ 8.

ˇ̌̌̌
ˇ̌ 4 1 2

4 0 3

3 �2 5

ˇ̌̌̌
ˇ̌

Compute the determinants in Exercises 9–14 by cofactor expan-
sions. At each step, choose a row or column that involves the least
amount of computation.

9.

ˇ̌̌̌
ˇ̌̌̌ 7 6 8 4

0 0 0 6

8 7 9 3

0 4 0 5

ˇ̌̌̌
ˇ̌̌̌ 10.

ˇ̌̌̌
ˇ̌̌̌ 1 �2 4 2

0 0 3 0

2 �4 �3 5

2 0 3 5

ˇ̌̌̌
ˇ̌̌̌

11.

ˇ̌̌̌
ˇ̌̌̌ 2 �3 4 5

0 5 3 �1

0 0 �2 7

0 0 0 4

ˇ̌̌̌
ˇ̌̌̌ 12.

ˇ̌̌̌
ˇ̌̌̌ 3 0 0 0

7 �2 0 0

2 6 3 0

3 �8 4 �3

ˇ̌̌̌
ˇ̌̌̌

13.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
4 0 �7 3 �5

0 0 2 0 0

7 3 �6 4 �8

5 0 5 2 �3

0 0 9 �1 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

14.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
6 0 2 4 0

9 0 �4 1 0

8 �5 6 7 1

2 0 0 0 0

4 2 3 2 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

The expansion of a 3 � 3 determinant can be remembered by the
following device. Write a second copy of the first two columns to
the right of the matrix, and compute the determinant by multiply-
ing entries on six diagonals:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

2 2 2

1 1 1

Add the downward diagonal products and subtract the up-
ward products. Use this method to compute the determinants in
Exercises 15–18. Warning: This trick does not generalize in any
reasonable way to 4 � 4 or larger matrices.

15.

ˇ̌̌̌
ˇ̌ 1 0 4

2 3 2

0 5 �2

ˇ̌̌̌
ˇ̌ 16.

ˇ̌̌̌
ˇ̌ 6 5 0

4 3 �2

2 0 1

ˇ̌̌̌
ˇ̌

17.

ˇ̌̌̌
ˇ̌ 2 �3 3

3 2 2

1 3 �1

ˇ̌̌̌
ˇ̌ 18.

ˇ̌̌̌
ˇ̌ 1 4 5

3 4 3

3 3 4

ˇ̌̌̌
ˇ̌

In Exercises 19–24, explore the effect of an elementary row
operation on the determinant of a matrix. In each case, state the
row operation and describe how it affects the determinant.

19.
�

a b

c d

�
,
�

c d

a b

�
20.

�
a b

c d

�
,
�

a b

kc kd

�
21.

�
6 5

3 4

�
,
�

6 5

3C 6k 4C 5k

�
22.

�
a b

c d

�
,
�

aC kc b C kd

c d

�

23.

24 1 �2 3

2 3 �4

3 �4 5

35, 24 k �2k 3k

2 3 �4

3 �4 5

35
24.

24 a b c

1 4 5

2 3 6

35, 24 2 3 6

1 4 5

a b c

35
Compute the determinants of the elementary matrices given in
Exercises 25–30. (See Section 2.2, Examples 5 and 6.)

25.

24 1 0 0

0 1 0

0 k 1

35 26.

24 0 1 0

1 0 0

0 0 1

35
27.

24 1 0 0

0 1 0

k 0 1

35 28.

24 0 0 1

0 1 0

1 0 0

35
29.

24 1 0 0

0 k 0

0 0 1

35 30.

24 k 0 0

0 1 0

0 0 1

35
Use Exercises 25–30 to answer the questions in Exercises 31
and 32. Give reasons for your answers.

31. What is the determinant of an elementary row replacement
matrix?

32. What is the determinant of an elementary scaling matrix with
k on the diagonal?
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In Exercises 33–36, verify that detEA D .detE/.detA/, where

E is the elementary matrix shown and A D

�
a b

c d

�
.

33.
�

1 k

0 1

�
34.

�
1 0

k 1

�
35.

�
0 1

1 0

�
36.

�
k 0

0 1

�
37. Let A D

�
6 5

3 4

�
. Write 2A. Is det 2A D 2 detA?

38. Let A D

�
a b

c d

�
and let k be a scalar. Find a formula that

relates det kA to k and detA.

In Exercises 39 through 42, A is an n � n matrix. Mark each
statement True or False (T/F). Justify each answer.

39. (T/F) An n � n determinant is defined by determinants of
.n � 1/ � .n � 1/ submatrices.

40. (T/F) The .i; j /-cofactor of a matrix A is the matrix Aij

obtained by deleting from A its ith row and jth column.

41. (T/F)The cofactor expansion of detA down a column is equal
to the cofactor expansion along a row.

42. (T/F) The determinant of a triangular matrix is the sum of the
entries on the main diagonal.

43. Let u D
�

3

0

�
and v D

�
1

2

�
. Compute the area of the par-

allelogram determined by u, v, uC v, and 0, and compute
the determinant of Œ u v �. How do they compare? Replace
the first entry of v by an arbitrary number x, and repeat the
problem. Draw a picture and explain what you find.

44. Let u D
�

a

b

�
and v D

�
c

0

�
, where a, b, and c are positive

(for simplicity). Compute the area of the parallelogram deter-
mined by u, v, uC v, and 0, and compute the determinants of
the matrices Œ u v � and Œ v u �. Draw a picture and explain
what you find.

45. Let A be a 2 � 2 matrix all of whose entries are numbers that
are greater than or equal to �10 and less than or equal to 10.
Decide if each of the following is a reasonable answer for
detA.

a. 0

b. 202

c. �110

d. 555

46. Let A be a 3 � 3 matrix all of whose entries are numbers that
are greater than or equal to�5 and less than or equal to 5. De-
cide if each of the following is a reasonable answer for detA.

a. 300

b. �220

c. 1000

d. 10

T 47. Construct a random 4 � 4 matrix A with integer entries
between �9 and 9. How is detA�1 related to detA?
Experiment with random n � n integer matrices for n D 4,
5, and 6, and make a conjecture. Note: In the unlikely event
that you encounter a matrix with a zero determinant, reduce
it to echelon form and discuss what you find.

T 48. Is it true that detAB D .detA/.detB/? To find out,
generate random 5 � 5 matrices A and B , and compute
detAB � .detA detB/. Repeat the calculations for three
other pairs of n � n matrices, for various values of n. Report
your results.

T 49. Is it true that det.AC B/ D detAC detB? Experiment with
four pairs of random matrices as in Exercise 48, and make a
conjecture.

T 50. Construct a random 4 � 4 matrix A with integer entries
between �9 and 9, and compare detA with detAT , det.�A/,
det.2A/, and det.10A/. Repeat with two other random 4 � 4

integer matrices, and make conjectures about how these
determinants are related. (Refer to Exercise 44 in Section
2.1.) Then check your conjectures with several random
5 � 5 and 6 � 6 integer matrices. Modify your conjectures, if
necessary, and report your results.

T 51. Recall from the introductory section that the larger the
determinant of DT D, where D is the design matrix, the
better will be the accuracy of the calculated weights for small
light objects. Which of the following matrices corresponds to
the best design for four weighings of four objects? Describe
which of the objects s1; s2; s3, and s4 you would put in
the left and right pans for each weighing corresponding to
the best design matrix.

a. D D

2664
1 1 1 1

1 �1 1 1

�1 �1 1 �1

1 1 1 �1

3775
b. D D

2664
�1 �1 �1 �1

1 �1 �1 1

�1 1 �1 1

�1 �1 1 1

3775
c. D D

2664
1 1 �1 �1

1 �1 �1 1

�1 1 1 �1

1 �1 1 �1

3775
T 52. Repeat Exercise 51 for the case of five weighings of four

objects and the following design matrices.
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a. D D

266664
1 1 1 1

1 �1 1 1

�1 �1 1 �1

1 1 1 �1

�1 �1 �1 1

377775

b. D D

266664
�1 �1 �1 �1

1 �1 �1 1

�1 1 1 1

�1 �1 1 1

1 1 1 �1

377775

c. D D

266664
1 1 �1 �1

1 �1 �1 1

�1 1 1 �1

1 �1 1 �1

�1 �1 �1 �1

377775

Solution to Practice Problem

Take advantage of the zeros. Begin with a cofactor expansion down the third column to
obtain a 3 � 3 matrix, which may be evaluated by an expansion down its first column.ˇ̌̌̌

ˇ̌̌̌ 5 �7 2 2

0 3 0 �4

�5 �8 0 3

0 5 0 �6

ˇ̌̌̌
ˇ̌̌̌ D .�1/1C3.2/

ˇ̌̌̌
ˇ̌ 0 3 �4

�5 �8 3

0 5 �6

ˇ̌̌̌
ˇ̌

D 2 .�1/2C1.�5/

ˇ̌̌̌
3 �4

5 �6

ˇ̌̌̌
D 20

The .�1/2C1 in the next-to-last calculation came from the .2; 1/-position of the �5 in
the 3 � 3 determinant.

3.2 Properties of Determinants
The secret of determinants lies in how they change when row operations are performed.
The following theorem generalizes the results of Exercises 19–24 in Section 3.1. The
proof is at the end of this section.

THEOREM 3 Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B ,
then detB D detA.

b. If two rows of A are interchanged to produce B , then detB D � detA.

c. If one row of A is multiplied by k to produce B , then detB D k detA.

The following examples show how to use Theorem 3 to find determinants
efficiently.

EXAMPLE 1 Compute detA, where A D

24 1 �4 2

�2 8 �9

�1 7 0

35.



204 CHAPTER 3 Determinants

SOLUTION The strategy is to reduce A to echelon form and then to use the fact that
the determinant of a triangular matrix is the product of the diagonal entries. The first two
row replacements in column 1 do not change the determinant:

detA D

ˇ̌̌̌
ˇ̌ 1 �4 2

�2 8 �9

�1 7 0

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 �4 2

0 0 �5

�1 7 0

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 �4 2

0 0 �5

0 3 2

ˇ̌̌̌
ˇ̌

An interchange of rows 2 and 3 reverses the sign of the determinant, so

detA D �

ˇ̌̌̌
ˇ̌ 1 �4 2

0 3 2

0 0 �5

ˇ̌̌̌
ˇ̌ D �.1/.3/.�5/ D 15

A common use of Theorem 3(c) in hand calculations is to factor out a common
multiple of one row of a matrix. For instance,ˇ̌̌̌

ˇ̌ � � �

5k �2k 3k

� � �

ˇ̌̌̌
ˇ̌ D k

ˇ̌̌̌
ˇ̌ � � �

5 �2 3

� � �

ˇ̌̌̌
ˇ̌

where the starred entries are unchanged. We use this step in the next example.

EXAMPLE 2 Compute detA, where A D

2664
2 �8 6 8

3 �9 5 10

�3 0 1 �2

1 �4 0 6

3775.
SOLUTION To simplify the arithmetic, we want a 1 in the upper-left corner. We could
interchange rows 1 and 4. Instead, we factor out 2 from the top row, and then proceed
with row replacements in the first column:

detA D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

3 �9 5 10

�3 0 1 �2

1 �4 0 6

ˇ̌̌̌
ˇ̌̌̌ D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

0 3 �4 �2

0 �12 10 10

0 0 �3 2

ˇ̌̌̌
ˇ̌̌̌

Next, we could factor out another 2 from row 3 or use the 3 in the second column as a
pivot. We choose the latter operation, adding 4 times row 2 to row 3:

detA D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

0 3 �4 �2

0 0 �6 2

0 0 �3 2

ˇ̌̌̌
ˇ̌̌̌

Finally, adding�1=2 times row 3 to row 4, and computing the “triangular” determinant,
we find that

detA D 2

ˇ̌̌̌
ˇ̌̌̌ 1 �4 3 4

0 3 �4 �2

0 0 �6 2

0 0 0 1

ˇ̌̌̌
ˇ̌̌̌ D 2 .1/.3/.�6/.1/ D �36
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Suppose a square matrix A has been reduced to an echelon form U by row replace-

U  5 

det U Þ 0

0
0
0

*

0
0

*
*

0

*
*
*

U  5 

det U 5 0

0
0
0

*

0
0

*
*
0
0

*
*

0

FIGURE 1

Typical echelon forms of square
matrices.

ments and row interchanges. (This is always possible. See the row reduction algorithm
in Section 1.2.) If there are r interchanges, then Theorem 3 shows that

detA D .�1/r detU

SinceU is in echelon form, it is triangular, and so detU is the product of the diagonal
entries u11; : : : ; unn. If A is invertible, the entries ui i are all pivots (because A � In and
the ui i have not been scaled to 1’s). Otherwise, at least unn is zero, and the product
u11 � � �unn is zero. See Figure 1. Thus

detA D

8̂<̂
:.�1/r

 
product of

pivots in U

!
when A is invertible

0 when A is not invertible

(1)

It is interesting to note that although the echelon form U described above is not
unique (because it is not completely row reduced), and the pivots are not unique, the
product of the pivots is unique, except for a possible minus sign.

Formula (1) not only gives a concrete interpretation of detA but also proves the
main theorem of this section:

THEOREM 4 A square matrix A is invertible if and only if detA ¤ 0.

Theorem 4 adds the statement “detA ¤ 0” to the Invertible Matrix Theorem. A
useful corollary is that detA D 0 when the columns of A are linearly dependent. Also,
detA D 0 when the rows of A are linearly dependent. (Rows of A are columns of AT ,
and linearly dependent columns of AT make AT singular. When AT is singular, so is A,
by the Invertible Matrix Theorem.) In practice, linear dependence is obvious when two
columns or two rows are the same or a column or a row is zero.

EXAMPLE 3 Compute detA, where A D

2664
3 �1 2 �5

0 5 �3 �6

�6 7 �7 4

�5 �8 0 9

3775.
SOLUTION Add 2 times row 1 to row 3 to obtain

detA D det

2664
3 �1 2 �5

0 5 �3 �6

0 5 �3 �6

�5 �8 0 9

3775 D 0

because the second and third rows of the second matrix are equal.

Numerical Notes

1. Most computer programs that compute detA for a general matrix A use the
method of formula (1) above.

2. It can be shown that evaluation of an n � n determinant using row operations
requires about 2n3=3 arithmetic operations. Any modern microcomputer can
calculate a 25 � 25 determinant in a fraction of a second, since only about
10,000 operations are required.
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Computers can also handle large “sparse” matrices, with special routines that
take advantage of the presence of many zeros. Of course, zero entries can speed
hand computations, too. The calculations in the next example combine the power
of row operations with the strategy from Section 3.1 of using zero entries in cofactor
expansions.

EXAMPLE 4 Compute detA, where A D

2664
0 1 2 �1

2 5 �7 3

0 3 6 2

�2 �5 4 �2

3775.
SOLUTION A good way to begin is to use the 2 in column 1 as a pivot, eliminating
the �2 below it. Then use a cofactor expansion to reduce the size of the determinant,
followed by another row replacement operation. Thus

detA D

ˇ̌̌̌
ˇ̌̌̌ 0 1 2 �1

2 5 �7 3

0 3 6 2

0 0 �3 1

ˇ̌̌̌
ˇ̌̌̌ D �2

ˇ̌̌̌
ˇ̌ 1 2 �1

3 6 2

0 �3 1

ˇ̌̌̌
ˇ̌ D �2

ˇ̌̌̌
ˇ̌ 1 2 �1

0 0 5

0 �3 1

ˇ̌̌̌
ˇ̌

An interchange of rows 2 and 3 would produce a “triangular determinant.” Another
approach is to make a cofactor expansion down the first column:

detA D .�2/.1/

ˇ̌̌̌
0 5

�3 1

ˇ̌̌̌
D �2 .15/ D �30

Column Operations
We can perform operations on the columns of a matrix in a way that is analogous to
the row operations we have considered. The next theorem shows that column operations
have the same effects on determinants as row operations.

Remark: The Principle of Mathematical Induction says the following: Let P.n/ be a
statement that is either true or false for each natural number n. Then P.n/ is true for
all n � 1 provided that P.1/ is true, and for each natural number k, if P.k/ is true,
then P.k C 1/ is true. The Principle of Mathematical Induction is used to prove the next
theorem.

THEOREM 5 If A is an n � n matrix, then detAT D detA.

PROOF The theorem is obvious for n D 1. Suppose the theorem is true for k � k

determinants and let n D k C 1. Then the cofactor of a1j in A equals the cofactor of aj1

in AT , because the cofactors involve k � k determinants. Hence the cofactor expansion
of detA along the first row equals the cofactor expansion of detAT down the first column.
That is, A and AT have equal determinants. The theorem is true for n D 1, and the truth
of the theorem for one value of n implies its truth for the next value of n. By the Principle
of Mathematical Induction, the theorem is true for all n � 1.
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Because of Theorem 5, each statement in Theorem 3 is true when the word row
is replaced everywhere by column. To verify this property, one merely applies the
original Theorem 3 to AT . A row operation on AT amounts to a column operation
on A.

Column operations are useful for both theoretical purposes and hand computations.
However, for simplicity we’ll perform only row operations in numerical calculations.

Determinants and Matrix Products
The proof of the following useful theorem is at the end of the section. Applications are
in the exercises.

THEOREM 6 Multiplicative Property

If A and B are n � n matrices, then detAB D .detA/.detB/.

EXAMPLE 5 Verify Theorem 6 for A D

�
6 1

3 2

�
and B D

�
4 3

1 2

�
.

SOLUTION

AB D

�
6 1

3 2

��
4 3

1 2

�
D

�
25 20

14 13

�
and

detAB D 25.13/ � 20.14/ D 325 � 280 D 45

Since detA D 9 and detB D 5,

.detA/.detB/ D 9.5/ D 45 D detAB

Warning: A common misconception is that Theorem 6 has an analogue for sums of
matrices. However, det.AC B/ is not equal to detAC detB , in general.

A Linearity Property of the Determinant Function
For an n � nmatrixA, we can consider detA as a function of the n column vectors inA.
We will show that if all columns except one are held fixed, then detA is a linear function
of that one (vector) variable.

Suppose that the j th column of A is allowed to vary, and write

A D
�
a1 � � � aj�1 x ajC1 � � � an

�
Define a transformation T from Rn to R by

T .x/ D det
�
a1 � � � aj�1 x ajC1 � � � an

�
Then,

T .cx/ D cT .x/ for all scalars c and all x in Rn (2)

T .uC v/ D T .u/C T .v/ for all u, v in Rn (3)
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Property (2) is Theorem 3(c) applied to the columns ofA. A proof of property (3) follows
from a cofactor expansion of detA down the j th column. (See Exercise 49.) This (multi-)
linearity property of the determinant turns out to have many useful consequences that
are studied in more advanced courses.

Proofs of Theorems 3 and 6
It is convenient to prove Theorem 3 when it is stated in terms of the elementary matrices
discussed in Section 2.2. We call an elementary matrix E a row replacement (matrix) if
E is obtained from the identity I by adding a multiple of one row to another row; E is
an interchange if E is obtained by interchanging two rows of I ; and E is a scale by r if
E is obtained by multiplying a row of I by a nonzero scalar r . With this terminology,
Theorem 3 can be reformulated as follows:

If A is an n � n matrix and E is an n � n elementary matrix, then

detEA D .detE/.detA/

where

detE D

8̂<̂
:

1 if E is a row replacement

�1 if E is an interchange

r if E is a scale by r

PROOF OF THEOREM 3 The proof is by induction on the size of A. The case of a
2 � 2 matrix was verified in Exercises 33–36 of Section 3.1. Suppose the theorem has
been verified for determinants of k � k matrices with k � 2, let n D k C 1, and let A

be n � n. The action of E on A involves either two rows or only one row. So we can
expand detEA across a row that is unchanged by the action of E, say, row i . Let
Aij (respectively, Bij / be the matrix obtained by deleting row i and column j from
A (respectively, EA). Then the rows of Bij are obtained from the rows of Aij by the
same type of elementary row operation that E performs on A. Since these submatrices
are only k � k, the induction assumption implies that

detBij D ˛ detAij

where ˛ D 1, �1, or r , depending on the nature of E. The cofactor expansion across
row i is

detEA D ai1.�1/iC1 detBi1 C � � � C ain.�1/iCn detBin

D ˛ai1.�1/iC1 detAi1 C � � � C ˛ain.�1/iCn detAin

D ˛ detA

In particular, taking A D In, we see that detE D 1, �1, or r , depending on the nature
of E. Thus the theorem is true for n D 2, and the truth of the theorem for one value of n

implies its truth for the next value of n. By the principle of induction, the theorem must
be true for n � 2. The theorem is trivially true for n D 1.

PROOF OF THEOREM 6 If A is not invertible, then neither is AB, by Exercise 35
in Section 2.3. In this case, detAB D .detA/.detB/, because both sides are zero, by
Theorem 4. If A is invertible, then A and the identity matrix In are row equivalent
by the Invertible Matrix Theorem. So there exist elementary matrices E1; : : : ; Ep such
that

A D EpEp�1 � � �E1 In D EpEp�1 � � �E1
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For brevity, write jAj for detA. Then repeated application of Theorem 3, as rephrased
above, shows that

jABj D jEp � � �E1Bj D jEpjjEp�1 � � �E1Bj D � � �

D jEpj � � � jE1jjBj D � � � D jEp � � �E1jjBj

D jAjjBj

Practice Problems

1. Compute

ˇ̌̌̌
ˇ̌̌̌ 1 �3 1 �2

2 �5 �1 �2

0 �4 5 1

�3 10 �6 8

ˇ̌̌̌
ˇ̌̌̌ in as few steps as possible.

2. Use a determinant to decide if v1, v2, and v3 are linearly independent, when

v1 D

24 5

�7

9

35; v2 D

24�3

3

�5

35; v3 D

24 2

�7

5

35
3. Let A be an n � n matrix such that A2 D I . Show that det A D ˙1.

3.2 Exercises
Each equation in Exercises 1–4 illustrates a property of determi-
nants. State the property.

1.

ˇ̌̌̌
ˇ̌ 0 5 �2

1 �3 6

4 �1 8

ˇ̌̌̌
ˇ̌ D �

ˇ̌̌̌
ˇ̌ 1 �3 6

0 5 �2

4 �1 8

ˇ̌̌̌
ˇ̌

2.

ˇ̌̌̌
ˇ̌ 3 �6 9

3 5 �5

1 3 3

ˇ̌̌̌
ˇ̌ D 3

ˇ̌̌̌
ˇ̌ 1 �2 3

3 5 �5

1 3 3

ˇ̌̌̌
ˇ̌

3.

ˇ̌̌̌
ˇ̌ 1 2 2

0 3 �4

2 7 4

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 2 2

0 3 �4

0 3 0

ˇ̌̌̌
ˇ̌

4.

ˇ̌̌̌
ˇ̌ 1 3 �4

2 0 �3

3 �5 2

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 1 3 �4

0 �6 5

3 �5 2

ˇ̌̌̌
ˇ̌

Find the determinants in Exercises 5–10 by row reduction to
echelon form.

5.

ˇ̌̌̌
ˇ̌ 1 5 �4

�1 �4 5

�2 �8 7

ˇ̌̌̌
ˇ̌ 6.

ˇ̌̌̌
ˇ̌ 3 �6 6

3 �5 9

3 �4 8

ˇ̌̌̌
ˇ̌

7.

ˇ̌̌̌
ˇ̌̌̌ 1 3 0 2

�2 �5 7 4

3 5 2 1

1 �1 2 �3

ˇ̌̌̌
ˇ̌̌̌ 8.

ˇ̌̌̌
ˇ̌̌̌ 1 2 �3 4

0 1 5 6

�4 �9 7 �14

2 5 0 7

ˇ̌̌̌
ˇ̌̌̌

9.

ˇ̌̌̌
ˇ̌̌̌ 1 �1 �3 0

0 1 5 4

�1 0 5 3

3 �3 �2 3

ˇ̌̌̌
ˇ̌̌̌

10.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

1 3 �1 0 �2

0 1 �2 �1 �3

�2 �6 2 3 10

1 5 �6 2 �3

0 2 �4 5 9

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Combine the methods of row reduction and cofactor expansion to
compute the determinants in Exercises 11–14.

11.

ˇ̌̌̌
ˇ̌̌̌ 3 4 �3 �1

3 0 1 �3

�6 0 �4 3

6 8 �4 �1

ˇ̌̌̌
ˇ̌̌̌ 12.

ˇ̌̌̌
ˇ̌̌̌�2 6 0 9

3 4 8 2

4 3 0 1

3 1 2 �1

ˇ̌̌̌
ˇ̌̌̌

13.

ˇ̌̌̌
ˇ̌̌̌ 2 5 4 1

4 7 6 2

6 �2 �4 0

�6 7 7 0

ˇ̌̌̌
ˇ̌̌̌ 14.

ˇ̌̌̌
ˇ̌̌̌ 4 3 2 1

5 4 �3 0

9 �8 �7 0

4 6 2 1

ˇ̌̌̌
ˇ̌̌̌

Find the determinants in Exercises 15–20, whereˇ̌̌̌
ˇ̌ a b c

d e f

g h i

ˇ̌̌̌
ˇ̌ D 7:
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15.

ˇ̌̌̌
ˇ̌ a b c

d e f

3g 3h 3i

ˇ̌̌̌
ˇ̌ 16.

ˇ̌̌̌
ˇ̌ a b c

d C 3g e C 3h f C 3i

g h i

ˇ̌̌̌
ˇ̌

17.

ˇ̌̌̌
ˇ̌ aC d b C e c C f

d e f

g h i

ˇ̌̌̌
ˇ̌

18.

ˇ̌̌̌
ˇ̌ a b c

8d 8e 8f

g h i

ˇ̌̌̌
ˇ̌

19.

ˇ̌̌̌
ˇ̌ a b c

2d C a 2e C b 2f C c

g h i

ˇ̌̌̌
ˇ̌

20.

ˇ̌̌̌
ˇ̌ g h i

a b c

d e f

ˇ̌̌̌
ˇ̌

In Exercises 21–23, use determinants to find out if the matrix is
invertible.

21.

24 1 3 6

2 4 7

0 5 8

35 22.

24 4 5 0

3 2 1

1 �4 3

35

23.

2664
3 0 0 2

6 8 9 0

4 5 6 0

0 �8 �9 4

3775
In Exercises 24–26, use determinants to decide if the set of vectors
is linearly independent.

24.

24 4

6

2

35, 24�6

0

6

35, 24�3

�5

�2

35
25.

24 7

�4

�6

35, 24�8

5

7

35, 24 7

0

�5

35

26.

2664
3

5

�6

4

3775,
2664

2

�6

0

7

3775,
2664
�2

�1

3

0

3775,
2664

0

0

0

�2

3775
In Exercises 27–34, A and B are n � n matrices. Mark each
statement True or False (T/F). Justify each answer.

27. (T/F) A row replacement operation does not affect the deter-
minant of a matrix.

28. (T/F) If detA is zero, then two rows or two columns are the
same, or a row or a column is zero.

29. (T/F) If the columns of A are linearly dependent, then
detA D 0.

30. (T/F) The determinant of A is the product of the diagonal
entries in A.

31. (T/F) If three row interchanges are made in succession, then
the new determinant equals the old determinant.

32. (T/F) The determinant of A is the product of the pivots in
any echelon formU ofA, multiplied by .�1/r , where r is the
number of row interchanges made during row reduction from
A to U .

33. (T/F) det.AC B/ D detAC detB .

34. (T/F) detA�1 D .�1/ detA.

35. Compute detB4, where B D

24 1 0 1

2 4 5

3 5 6

35.
36. Use Theorem 3 (but not Theorem 4) to show that if two rows

of a square matrix A are equal, then detA D 0. The same is
true for two columns. Why?

In Exercises 37–42, mention an appropriate theorem in your
explanation.

37. Show that if A is invertible, then detA�1 D
1

detA
.

38. Suppose that A is a square matrix such that detA3 D 0.
Explain why A cannot be invertible.

39. Let A and B be square matrices. Show that even though
AB and BA may not be equal, it is always true that
detAB D detBA.

40. LetA and P be square matrices, with P invertible. Show that
det.PAP�1/ D detA.

41. Let U be a square matrix such that U T U D I . Show that
detU D ˙1.

42. Find a formula for det.rA/ when A is an n � n matrix.

Verify that detAB D .detA/.detB/ for the matrices in Exercises
43 and 44. (Do not use Theorem 6.)

43. A D

�
3 0

6 1

�
, B D

�
2 0

5 4

�
44. A D

�
2 3

�3 �1

�
, B D

�
2 4

�3 �6

�
45. Let A and B be 3 � 3 matrices, with detA D �2 and

detB D 3. Use properties of determinants (in the text and in
the preceding exercises) to compute:

a. detAB b. det 5A c. detBT

d. detA�1 e. detA3

46. Let A and B be 4 � 4 matrices, with detA D 4 and
detB D �5. Compute:

a. detAB b. det 3A c. detB4

d. detBABT e. detABA�1
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47. Verify that detA D detB C detC , where

A D

�
aC e b C f

c d

�
; B D

�
a b

c d

�
; C D

�
e f

c d

�
48. Let A D

�
1 0

0 1

�
and B D

�
a b

c d

�
. Show that

det.AC B/ D detAC detB if and only if aC d D 0.

49. Verify that detA D detB C detC , where

A D

24 a11 a12 u1 C v1

a21 a22 u2 C v2

a31 a32 u3 C v3

35;

B D

24 a11 a12 u1

a21 a22 u2

a31 a32 u3

35; C D

24 a11 a12 v1

a21 a22 v2

a31 a32 v3

35
Note, however, that A is not the same as B C C .

50. Right-multiplication by an elementary matrix E affects the
columns of A in the same way that left-multiplication affects
the rows. Use Theorems 5 and 3 and the obvious fact that ET

is another elementary matrix to show that

detAE D .detE/.detA/

Do not use Theorem 6.

51. Suppose A is an n � n matrix and a computer suggests
that detA D 5 and det

�
A�1

�
D 1. Should you trust these

answers? Why or why not?

52. SupposeA andB are n � nmatrices and a computer suggests
that detA D 5, detB D 2 and detAB D 7. Should you trust
these answers? Why or why not?

T 53. Compute detAT A and detAAT for several random 4 � 5

matrices and several random 5 � 6 matrices. What can you
say about AT A and AAT when A has more columns than
rows?

T 54. If detA is close to zero, is the matrix A nearly singular?
Experiment with the nearly singular 4 � 4 matrix

A D

2664
4 0 �7 �7

�6 1 11 9

7 �5 10 19

�1 2 3 �1

3775
Compute the determinants of A, 10A, and 0:1A. In contrast,
compute the condition numbers of these matrices. Repeat
these calculations when A is the 4 � 4 identity matrix. Dis-
cuss your results.

Solutions to Practice Problems

1. Perform row replacements to create zeros in the first column, and then create a row
of zeros.ˇ̌̌̌

ˇ̌̌̌ 1 �3 1 �2

2 �5 �1 �2

0 �4 5 1

�3 10 �6 8

ˇ̌̌̌
ˇ̌̌̌ D

ˇ̌̌̌
ˇ̌̌̌ 1 �3 1 �2

0 1 �3 2

0 �4 5 1

0 1 �3 2

ˇ̌̌̌
ˇ̌̌̌ D

ˇ̌̌̌
ˇ̌̌̌ 1 �3 1 �2

0 1 �3 2

0 �4 5 1

0 0 0 0

ˇ̌̌̌
ˇ̌̌̌ D 0

2. det Œ v1 v2 v3 � D

ˇ̌̌̌
ˇ̌ 5 �3 2

�7 3 �7

9 �5 5

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ 5 �3 2

�2 0 �5

9 �5 5

ˇ̌̌̌
ˇ̌ Row 1 added

to row 2

D �.�3/

ˇ̌̌̌
�2 �5

9 5

ˇ̌̌̌
� .�5/

ˇ̌̌̌
5 2

�2 �5

ˇ̌̌̌
Cofactors of
column 2

D 3 .35/C 5 .�21/ D 0

By Theorem 4, the matrix Œ v1 v2 v3 � is not invertible. The columns are linearly
dependent, by the Invertible Matrix Theorem.

3. Recall that det I D 1. By Theorem 6, det .AA/ = (det A)(det A). Putting these two
observations together results in

1 D det I D detA2
D det .AA/ D .detA/.detA/ D .detA/2

Taking the square root of both sides establishes that det A D ˙1.
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3.3 Cramer’s Rule, Volume, and Linear Transformations
This section applies the theory of the preceding sections to obtain important theoretical
formulas and a geometric interpretation of the determinant.

Cramer’s Rule
Cramer’s rule is needed in a variety of theoretical calculations. For instance, it can be
used to study how the solution of Ax D b is affected by changes in the entries of b.
However, the formula is inefficient for hand calculations, except for 2 � 2 or perhaps
3 � 3 matrices.

For any n � n matrix A and any b in Rn, let Ai .b/ be the matrix obtained from A

by replacing column i by the vector b.

Ai .b/ D Œa1 � � � b � � � an�

-

col i

THEOREM 7 Cramer’s Rule

Let A be an invertible n � n matrix. For any b in Rn, the unique solution x of
Ax D b has entries given by

xi D
detAi .b/

detA
; i D 1; 2; : : : ; n (1)

PROOF Denote the columns of A by a1; : : : ; an and the columns of the n � n identity
matrix I by e1; : : : ; en. If Ax D b, the definition of matrix multiplication shows that

A .Ii .x// D A
�
e1 � � � x � � � en

�
D
�

Ae1 � � � Ax � � � Aen

�
D
�
a1 � � � b � � � an

�
D Ai .b/

By the multiplicative property of determinants,

.detA/.det Ii .x// D detAi .b/

The second determinant on the left is simply xi . (Make a cofactor expansion along
the i th row.) Hence .detA/ xi D detAi .b/. This proves (1) because A is invertible and
detA ¤ 0.

EXAMPLE 1 Use Cramer’s rule to solve the system

3x1 � 2x2 D 6

�5x1 C 4x2 D 8

SOLUTION View the system as Ax D b. Using the notation introduced above,

A D

�
3 �2

�5 4

�
; A1.b/ D

�
6 �2

8 4

�
; A2.b/ D

�
3 6

�5 8

�
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Since detA D 2, the system has a unique solution. By Cramer’s rule,

x1 D
detA1.b/

detA
D

24C 16

2
D 20

x2 D
detA2.b/

detA
D

24C 30

2
D 27

Application to Engineering
A number of important engineering problems, particularly in electrical engineering and
control theory, can be analyzed by Laplace transforms. This approach converts an appro-
priate system of linear differential equations into a system of linear algebraic equations
whose coefficients involve a parameter. The next example illustrates the type of algebraic
system that may arise.

EXAMPLE 2 Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution, and use Cramer’s
rule to describe the solution.

3sx1 � 2x2 D 4

�6x1 C sx2 D 1

SOLUTION View the system as Ax D b. Then

A D

�
3s �2

�6 s

�
; A1.b/ D

�
4 �2

1 s

�
; A2.b/ D

�
3s 4

�6 1

�
Since

detA D 3s2
� 12 D 3.s C 2/.s � 2/

the system has a unique solution precisely when s ¤ ˙2. For such an s, the solution is
.x1; x2/, where

x1 D
detA1.b/

detA
D

4s C 2

3.s C 2/.s � 2/

x2 D
detA2.b/

detA
D

3s C 24

3.s C 2/.s � 2/
D

s C 8

.s C 2/.s � 2/

A Formula for A–1
Cramer’s rule leads easily to a general formula for the inverse of an n � n matrix A. The
j th column of A�1 is a vector x that satisfies

Ax D ej

where ej is the j th column of the identity matrix, and the i th entry of x is the .i; j /-entry
of A�1. By Cramer’s rule,˚

.i; j /-entry of A�1
	
D xi D

detAi .ej /

detA
(2)

Recall that Aj i denotes the submatrix of A formed by deleting row j and column i . A
cofactor expansion down column i of Ai .ej / shows that

detAi .ej / D .�1/iCj detAj i D Cj i (3)
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where Cj i is a cofactor of A. By (2), the .i; j /-entry of A�1 is the cofactor Cj i divided
by detA. [Note that the subscripts on Cj i are the reverse of .i; j /.] Thus

A�1
D

1

detA

26664
C11 C21 � � � Cn1

C12 C22 � � � Cn2

:::
:::

:::

C1n C2n � � � Cnn

37775 (4)

The matrix of cofactors on the right side of (4) is called the adjugate (or classical
adjoint) ofA, denoted by adjA. (The term adjoint also has another meaning in advanced
texts on linear transformations.) The next theorem simply restates (4).

THEOREM 8 An Inverse Formula

Let A be an invertible n � n matrix. Then

A�1
D

1

detA
adjA

EXAMPLE 3 Find the inverse of the matrix A D

24 2 1 3

1 �1 1

1 4 �2

35.
SOLUTION The nine cofactors are

C11 D C

ˇ̌̌̌
�1 1

4 �2

ˇ̌̌̌
D �2; C12 D �

ˇ̌̌̌
1 1

1 �2

ˇ̌̌̌
D 3; C13 D C

ˇ̌̌̌
1 �1

1 4

ˇ̌̌̌
D 5

C21 D �

ˇ̌̌̌
1 3

4 �2

ˇ̌̌̌
D 14; C22 D C

ˇ̌̌̌
2 3

1 �2

ˇ̌̌̌
D �7; C23 D �

ˇ̌̌̌
2 1

1 4

ˇ̌̌̌
D �7

C31 D C

ˇ̌̌̌
1 3

�1 1

ˇ̌̌̌
D 4; C32 D �

ˇ̌̌̌
2 3

1 1

ˇ̌̌̌
D 1; C33 D C

ˇ̌̌̌
2 1

1 �1

ˇ̌̌̌
D �3

The adjugate matrix is the transpose of the matrix of cofactors. [For instance, C12 goes
in the .2; 1/ position.] Thus

adjA D

24�2 14 4

3 �7 1

5 �7 �3

35
We could compute detA directly, but the following computation provides a check on the
calculations for adj A and produces detA:

.adjA/ A D

24�2 14 4

3 �7 1

5 �7 �3

3524 2 1 3

1 �1 1

1 4 �2

35 D 24 14 0 0

0 14 0

0 0 14

35 D 14I

Since .adjA/A D 14I , Theorem 8 shows that detA D 14 and

A�1
D

1

14

24�2 14 4

3 �7 1

5 �7 �3

35 D 24�1=7 1 2=7

3=14 �1=2 1=14

5=14 �1=2 �3=14

35



3.3 Cramer's Rule, Volume, and Linear Transformations 215

Numerical Notes

Theorem 8 is useful mainly for theoretical calculations. The formula for A�1

permits one to deduce properties of the inverse without actually calculating it.
Except for special cases, the algorithm in Section 2.2 gives a much better way to
compute A�1, if the inverse is really needed.

Cramer’s rule is also a theoretical tool. It can be used to study how sensitive
the solution of Ax D b is to changes in an entry in b or in A (perhaps due
to experimental error when acquiring the entries for b or A). When A is a
3 � 3 matrix with complex entries, Cramer’s rule is sometimes selected for hand
computation because row reduction of Œ A b � with complex arithmetic can be
messy, and the determinants are fairly easy to compute. For a larger n � n matrix
(real or complex), Cramer’s rule is hopelessly inefficient. Computing just one
determinant takes about as much work as solving Ax D b by row reduction.

Determinants as Area or Volume
In the next application, we verify the geometric interpretation of determinants described
in the chapter introduction. Although a general discussion of length and distance in Rn

will not be given until Chapter 6, we assume here that the usual Euclidean concepts of
length, area, and volume are already understood for R2 and R3.

THEOREM 9 If A is a 2 � 2 matrix, the area of the parallelogram determined by the columns of
A is jdetAj. If A is a 3 � 3 matrix, the volume of the parallelepiped determined
by the columns of A is jdetAj.

PROOF The theorem is obviously true for any 2 � 2 diagonal matrix:STUDY GUIDE provides a
geometric proof of the
determinant as area.

ˇ̌̌̌
det
�

a 0

0 d

� ˇ̌̌̌
D jad j D

�
area of
rectangle

�
See Figure 1. It will suffice to show that any 2 � 2 matrix A D Œ a1 a2 � can be trans-

y

x

0
d

a
0

FIGURE 1

Area D jad j.

formed into a diagonal matrix in a way that changes neither the area of the associated
parallelogram nor jdetAj. From Section 3.2, we know that the absolute value of the
determinant is unchanged when two columns are interchanged or a multiple of one
column is added to another. And it is easy to see that such operations suffice to transform
A into a diagonal matrix. Column interchanges do not change the parallelogram at all.
So it suffices to prove the following simple geometric observation that applies to vectors
in R2 or R3:

Let a1 and a2 be nonzero vectors. Then for any scalar c, the area of the
parallelogram determined by a1 and a2 equals the area of the parallelogram
determined by a1 and a2 C ca1.

To prove this statement, we may assume that a2 is not a multiple of a1, for other-
wise the two parallelograms would be degenerate and have zero area. If L is the line
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through 0 and a1, then a2 C L is the line through a2 parallel to L, and a2 C ca1 is on
this line. See Figure 2. The points a2 and a2 C ca1 have the same perpendicular distance
to L. Hence the two parallelograms in Figure 2 have the same area, since they share the
base from 0 to a1. This completes the proof for R2.

a2 1 ca1 a2

ca1

a2 1 L

a10
L

FIGURE 2 Two parallelograms of equal area.

The proof for R3 is similar. The theorem is obviously true for a 3 � 3 diagonal
matrix. See Figure 3. And any 3 � 3 matrix A can be transformed into a diagonal matrix
using column operations that do not change jdetAj. (Think about doing row operations
on AT .) So it suffices to show that these operations do not affect the volume of the
parallelepiped determined by the columns of A.

0
b
0

0
0
c

a
0
0

z

x

y

FIGURE 3

Volume D jabcj.

A parallelepiped is shown in Figure 4 as a shaded box with two sloping sides.
Its volume is the area of the base in the plane Span fa1; a3g times the altitude of a2

above Span fa1; a3g. Any vector a2 C ca1 has the same altitude because a2 C ca1 lies
in the plane a2 C Span fa1; a3g, which is parallel to Span fa1; a3g. Hence the volume of
the parallelepiped is unchanged when Œ a1 a2 a3 � is changed to Œ a1 a2 C ca1 a3 �.
Thus a column replacement operation does not affect the volume of the parallelepiped.
Since column interchanges have no effect on the volume, the proof is complete.

a 3

a2

0
a1

Span{a1, a3}

a2 1 Span{a1, a3}

a2

0
a1

Span{a1, a3}

a2 1 Span{a1, a3}

a2 1 ca1

a 3

FIGURE 4 Two parallelepipeds of equal volume.

EXAMPLE 4 Calculate the area of the parallelogram determined by the points
.�2;�2/, .0; 3/, .4;�1/, and .6; 4/. See Figure 5(a).

SOLUTION First translate the parallelogram to one having the origin as a vertex. For
example, subtract the vertex .�2;�2/ from each of the four vertices. The new paral-
lelogram has the same area, and its vertices are .0; 0/, .2; 5/, .6; 1/, and .8; 6/. See
Figure 5(b). This parallelogram is determined by the columns of

A D

�
2 6

5 1

�
Since jdetAj D j�28j, the area of the parallelogram is 28.
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x2

x1 x1

x2

(a) (b)

FIGURE 5 Translating a parallelogram does not change its
area.

Linear Transformations
Determinants can be used to describe an important geometric property of linear trans-
formations in the plane and in R3. If T is a linear transformation and S is a set in the
domain of T , let T .S/ denote the set of images of points in S . We are interested in how
the area (or volume) of T .S/ compares with the area (or volume) of the original set S .
For convenience, when S is a region bounded by a parallelogram, we also refer to S as
a parallelogram.

THEOREM 10 Let T W R2 ! R2 be the linear transformation determined by a 2 � 2 matrix A. If
S is a parallelogram in R2, then

farea of T .S/g D jdetAj � farea of Sg (5)

If T is determined by a 3 � 3 matrix A, and if S is a parallelepiped in R3, then

fvolume of T .S/g D jdetAj � fvolume of Sg (6)

PROOF Consider the 2 � 2 case, with A D Œ a1 a2 �. A parallelogram at the origin in
R2 determined by vectors b1 and b2 has the form

S D fs1b1 C s2b2 W 0 � s1 � 1; 0 � s2 � 1g

The image of S under T consists of points of the form

T .s1b1 C s2b2/ D s1T .b1/C s2T .b2/

D s1Ab1 C s2Ab2

where 0 � s1 � 1, 0 � s2 � 1. It follows that T .S/ is the parallelogram determined
by the columns of the matrix Œ Ab1 Ab2 �. This matrix can be written as AB , where
B D Œ b1 b2 �. By Theorem 9 and the product theorem for determinants,

farea of T .S/g D jdetABj D jdetAj jdetBj

D jdetAj � farea of Sg
(7)

An arbitrary parallelogram has the form pC S , where p is a vector and S is a
parallelogram at the origin, as seen previously. It is easy to see that T transformspC S
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into T .p/C T .S/. (See Exercise 26.) Since translation does not affect the area
of a set,

farea of T .pC S/g D farea of T .p/C T .S/g

D farea of T .S/g Translation

D j detAj � farea of Sg By equation (7)

D j detAj � farea of (pC S )g Translation

This shows that (5) holds for all parallelograms inR2. The proof of (6) for the 3 � 3 case
is analogous.

When we attempt to generalize Theorem 10 to a region in R2 or R3 that is not
bounded by straight lines or planes, we must face the problem of how to define and
compute its area or volume. This is a question studied in calculus, and we shall only
outline the basic idea for R2. If R is a planar region that has a finite area, then R can
be approximated by a grid of small squares that lie inside R. By making the squares
sufficiently small, the area of R may be approximated as closely as desired by the sum
of the areas of the small squares. See Figure 6.

0 0

FIGURE 6 Approximating a planar region by a union of squares.
The approximation improves as the grid becomes finer.

If T is a linear transformation associated with a 2 � 2 matrix A, then the image of
a planar region R under T is approximated by the images of the small squares inside
R. The proof of Theorem 10 shows that each such image is a parallelogram whose area
is jdetAj times the area of the square. If R0 is the union of the squares inside R, then
the area of T .R0/ is jdetAj times the area of R0. See Figure 7. Also, the area of T .R0/

is close to the area of T .R/. An argument involving a limiting process may be given to
justify the following generalization of Theorem 10.

0 0
R9 T(R9)

T

FIGURE 7 Approximating T .R/ by a union of parallelograms.
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The conclusions of Theorem 10 hold whenever S is a region in R2 with finite area
or a region in R3 with finite volume.

EXAMPLE 5 Let a and b be positive numbers. Find the area of the regionE bounded
by the ellipse whose equation is

x2
1

a2
C

x2
2

b2
D 1

SOLUTION We claim that E is the image of the unit disk D under the linear transfor-

x2

x1

1

a

b

u1

u2

T

D

E

mation T determined by the matrix A D

�
a 0

0 b

�
, because if u D

�
u1

u2

�
, x D

�
x1

x2

�
,

and x D Au, then
u1 D

x1

a
and u2 D

x2

b

It follows that u is in the unit disk, with u2
1 C u2

2 � 1, if and only if x is in E, with
.x1=a/2 C .x2=b/2 � 1. By the generalization of Theorem 10,

farea of ellipseg D farea of T .D/g

D jdetAj � farea of Dg

D ab�.1/2
D �ab

Practice Problem

Let S be the parallelogram determined by the vectors b1 D

�
1

3

�
and b2 D

�
5

1

�
, and

let A D

�
1 �:1

0 2

�
. Compute the area of the image of S under the mapping x 7!Ax.

3.3 Exercises
Use Cramer’s rule to compute the solutions of the systems in
Exercises 1–6.

1. 5x1 C 7x2 D 3

2x1 C 4x2 D 1

2. 6x1 C x2 D 3

5x1 C 2x2 D 4

3. 3x1 � 2x2 D 3

�4x1 C 6x2 D �5

4. �5x1 C 2x2 D 9

3x1 � x2 D �4

5. x1 C x2 D 2

�5x1 C 4x3 D 0

x2 � x3 D �1

6. x1 C 3x2 C x3 D 8

�x1 C 2x3 D 4

3x1 C x2 D 4

In Exercises 7–10, determine the values of the parameter s

for which the system has a unique solution, and describe the
solution.

7. 2sx1 C 5x2 D 8

6x1 C 3sx2 D 4

8. 3sx1 C 5x2 D 3

12x1 C 5sx2 D 2

9. sx1 C 2sx2 D �1

3x1 C 6sx2 D 4

10. sx1 � 2x2 D 1

4sx1 C 4sx2 D 2

In Exercises 11–16, compute the adjugate of the given matrix, and
then use Theorem 8 to give the inverse of the matrix.

11.

24 0 �2 �1

5 0 0

�1 1 1

35 12.

24 1 1 �2

�1 1 3

0 �1 3

35

13.

24 3 5 4

1 0 1

2 1 1

35 14.

24 1 �1 2

0 2 1

3 0 6

35

15.

24 1 0 0

�3 4 0

�2 3 �1

35 16.

24 1 2 4

0 �3 1

0 0 �2

35
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17. Show that if A is 2 � 2, then Theorem 8 gives the same
formula for A�1 as that given by Theorem 4 in Section 2.2.

18. Suppose that all the entries in A are integers and detA D 1.
Explain why all the entries in A�1 are integers.

In Exercises 19–22, find the area of the parallelogram whose
vertices are listed.

19. .0; 0/, .5; 2/, .6; 4/, .11; 6/

20. .0; 0/, .�3; 7/, .8;�9/, .5;�2/

21. .�6; 0/, .0; 5/, .4; 5/, .�2; 0/

22. .0;�2/, .5;�2/, .�3; 1/, .2; 1/

23. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at .1; 0;�6/, .1; 3; 5/, and
.6; 7; 0/.

24. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at .1; 5; 0/, .�3; 0; 3/, and
.�1; 4;�1/.

25. Use the concept of volume to explain why the determinant of
a 3 � 3 matrix A is zero if and only if A is not invertible. Do
not appeal to Theorem 4 in Section 3.2. [Hint: Think about
the columns of A.]

26. Let T W Rm ! Rn be a linear transformation, and let p be a
vector and S a set inRm. Show that the image of pC S under
T is the translated set T .p/C T .S/ in Rn.

27. Let S be the parallelogram determined by the vectors

b1 D

�
�3

5

�
and b2 D

�
�3

8

�
, and let A D

�
3 �4

�4 6

�
.

Compute the area of the image of S under the mapping
x 7! Ax.

28. Repeat Exercise 27 with b1 D

�
�3

5

�
and b2 D

�
0

�3

�
, and

A D

�
3 4

�2 �2

�
.

29. Find a formula for the area of the triangle whose vertices are
0, v1, and v2 in R2.

30. Let R be the triangle with vertices at .x1; y1/, .x2; y2/, and
.x3; y3/. Show that

farea of triangleg D
1

2
det

24 x1 y1 1

x2 y2 1

x3 y3 1

35
[Hint: Translate R to the origin by subtracting one of the
vertices, and use Exercise 29.]

31. Let T W R3 ! R3 be the linear transformation determined

by the matrix A D

24 a 0 0

0 b 0

0 0 c

35, where a, b, and c are

positive numbers. Let S be the unit ball, whose bounding
surface has the equation x2

1 C x2
2 C x2

3 D 1.

a. Show that T .S/ is bounded by the ellipsoid with the

equation
x2

1

a2
C

x2
2

b2
C

x2
3

c2
D 1.

b. Use the fact that the volume of the unit ball is 4�=3

to determine the volume of the region bounded by the
ellipsoid in part (a).

32. Let S be the tetrahedron in R3 with vertices at the vectors 0,
e1, e2, and e3, and let S 0 be the tetrahedron with vertices at
vectors 0, v1, v2, and v3. See the figure.

e3

e2

x2x2

00

e1

v3 S9
v2

v1

S

x3

x1

x3

x1

a. Describe a linear transformation that maps S onto S 0.

b. Find a formula for the volume of the tetrahedron S 0 using
the fact that

fvolume of Sg D .1=3/ � farea of baseg � fheightg

33. LetA be an n � nmatrix. IfA�1 D
1

detA
adjA is computed,

what should AA�1 be equal to in order to confirm that A�1

has been found correctly?

34. If a parallelogram fits inside a circle radius 1 and detA D 4,
whereA is the matrix whose columns correspond to the edges
of the parallelogram, does it seem like A and its determinant
have been calculated correctly to correspond to the area of
this parallelogram? Explain why or why not.

In Exercises 35–38, mark each statement as True or False (T/F).
Justify each answer.

35. (T/F) Two parallelograms with the same base and height have
the same area.

36. (T/F) Applying a linear transformation to a region does not
change its area.

37. (T/F) If A is an invertible n � n matrix, then A�1 D adjA.

38. (T/F) Cramer’s rule can only be used for invertible matrices.

T 39. Test the inverse formula of Theorem 8 for a random 4 � 4

matrix A. Use your matrix program to compute the cofac-
tors of the 3 � 3 submatrices, construct the adjugate, and
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set B D .adjA/=.detA/. Then compute B � inv.A/, where
inv.A/ is the inverse ofA as computed by thematrix program.
Use floating point arithmetic with the maximum possible
number of decimal places. Report your results.

T 40. Test Cramer’s rule for a random 4 � 4matrixA and a random
4 � 1 vector b. Compute each entry in the solution ofAx D b,
and compare these entries with the entries inA�1b. Write the

command (or keystrokes) for your matrix program that uses
Cramer’s rule to produce the second entry of x.

T 41. If your version of MATLAB has the flops command, use it
to count the number of floating point operations to compute
A�1 for a random 30 � 30matrix. Compare this number with
the number of flops needed to form .adjA/=.detA/.

Solution to Practice Problem

The area of S is

ˇ̌̌̌
det

�
1 5

3 1

� ˇ̌̌̌
D 14; and detA D 2. By Theorem 10, the area of the

image of S under the mapping x 7! Ax is

jdetAj � farea of Sg D 2 � 14 D 28

CHAPTER 3 PROJECTS
Chapter 3 projects are available online.

A. Weighing Design: This project develops the concept of
weighing design and their corresponding matrices for use
in weighing a few small, light objects.

B. Jacobians: This set of exercises examines how a particular
determinant called the Jacobian may be used to allow us to
change variables in double and triple integrals.

CHAPTER 3 SUPPLEMENTARY EXERCISES
In Exercises 1-15, mark each statement True or False (T/F). Justify
each answer. Assume that all matrices here are square.

1. (T/F) If A is a 2 � 2 matrix with a zero determinant, then one
column of A is a multiple of the other.

2. (T/F) If two rows of a 3 � 3 matrix A are the same, then
detA D 0.

3. (T/F) If A is a 3 � 3 matrix, then det 5A D 5 detA.

4. (T/F) If A and B are n � n matrices, with detA D 2 and
detB D 3, then det.AC B/ D 5.

5. (T/F) If A is n � n and detA D 2, then detA3 D 6.

6. (T/F) If B is produced by interchanging two rows of A, then
detB D detA.

7. (T/F) If B is produced by multiplying row 3 of A by 5, then
detB D 5 detA.

8. (T/F) If B is formed by adding to one row of A a linear
combination of the other rows, then detB D detA.

9. (T/F) detAT D � detA.

10. (T/F) det.�A/ D � detA.

11. (T/F) detATA � 0.

12. (T/F) Any system of n linear equations in n variables can be
solved by Cramer’s rule.

13. (T/F) If u and v are in R2 and det Œ u v � D 10, then the
area of the triangle in the plane with vertices at 0, u, and v
is 10.

14. (T/F) If A3 D 0, then detA D 0.

15. (T/F) If A is invertible, then detA�1 D detA.

Use row operations to show that the determinants in Exercises 16–
18 are all zero.

16.

ˇ̌̌̌
ˇ̌ 12 13 14

15 16 17

18 19 20

ˇ̌̌̌
ˇ̌ 17.

ˇ̌̌̌
ˇ̌ 1 a b C c

1 b aC c

1 c aC b

ˇ̌̌̌
ˇ̌

18.

ˇ̌̌̌
ˇ̌ a b c

aC x b C x c C x

aC y b C y c C y

ˇ̌̌̌
ˇ̌

Compute the determinants in Exercises 19 and 20.

19.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
1 5 4 3 2

0 8 5 9 0

0 7 0 0 0

3 9 6 5 4

0 8 0 6 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
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20.

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
5 5 6 6 7

4 0 4 4 0

3 0 0 3 0

0 0 0 2 0

5 6 7 1 8

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

21. Show that the equation of the line in R2 through distinct
points .x1; y1/ and .x2; y2/ can be written as

det

24 1 x y

1 x1 y1

1 x2 y2

35 D 0

22. Find a 3 � 3 determinant equation similar to that in Exer-
cise 21 that describes the equation of the line through .x1; y1/

with slope m.

Exercises 23 and 24 concern determinants of the following Van-
dermonde matrices.

T D

264 1 a a2

1 b b2

1 c c2

375; V .t/ D

266664
1 t t2 t3

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

377775
23. Use row operations to show that

detV D .x2 � x1/.x3 � x1/.x3 � x2/

24. Let x1, x2, and x3 fixed numbers all distinct. Matrix V can
be used to find an interpolating quadratic polynomial for the
points (x1, y1), (x2, y2) and (x3, y3), where y1, y2 and y3 are
arbitrary (see Supplementary Exercise 11 in Chapter 2). Use
Exercise 9 to prove the existence of an interpolating polyno-
mial p.t/ D c0 C c1t C c2t2 such that p.x1/ D y1; p.x2/ D

y2 and p.x3/ D y3.

25. Find the area of the parallelogram determined by the points
.1; 4/, .�1; 5/, .3; 9/, and .5; 8/. How can you tell that the
quadrilateral determined by the points is actually a parallelo-
gram?

26. Use the concept of area of a parallelogram towrite a statement
about a 2 � 2matrixA that is true if and only ifA is invertible.

27. Show that if A is invertible, then adjA is invertible, and

.adjA/�1
D

1

detA
A

[Hint: Given matrices B and C , what calculation(s) would
show that C is the inverse of B‹�

28. LetA,B ,C ,D, and I be n � nmatrices. Use the definition or
properties of a determinant to justify the following formulas.
Part (c) is useful in applications of eigenvalues (Chapter 5).

a. det
�

A 0

0 I

�
D detA b. det

�
I 0

C D

�
D detD

c. det
�

A 0

C D

�
D .detA/.detD/ D det

�
A B

0 D

�

29. Let A, B , C , and D be n � n matrices with A invertible.

a. Find matrices X and Y to produce the block LU
factorization�

A B

C D

�
D

�
I 0

X I

��
A B

0 Y

�
and then show that

det
�

A B

C D

�
D .detA/ � det.D � CA�1B/

b. Show that if AC D CA, then

det
�

A B

C D

�
D det.AD � CB/

30. Let J be the n � n matrix of all 1’s and consider
A D bI C aJ ; that is,

A D

2666664
aC b a a � � � a

a aC b a � � � a

a a aC b � � � a
:::

:::
:::

: : :
:::

a a a � � � aC b

3777775
Confirm that detA D .naC b/bn�1 as follows:

a. Subtract row n from rows 1 to n � 1 and explain why this
does not change the determinant of the matrix.

b. With the resulting matrix from part (a), add column 1 to
column n, then add column 2 to column n and so on, and
explain why this does not change the determinant of the
matrix.

c. Find the determinant of the resulting matrix from (b).

31. Let A be the original matrix given in Exercise 16, and let

B D

2666664
a a a � � � a

a aC b a � � � a

a a aC b � � � a
:::

:::
:::

: : :
:::

a a a � � � aC b

3777775,
Notice that A, B are nearly the same except for the (1; 1)-
entry.

a. Compute the determinant of B .

b. Use part (a) to prove the formula in Exercise 16 by
induction on the size of matrix A.

T 32. Apply the result of Exercise 16 to find the determinants of the
following matrices, and confirm your answers using a matrix
program.
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2664
�2 7 7 7

7 �2 7 7

7 7 �2 7

7 7 7 �2

3775
266664

7 �2 �2 �2 �2

�2 7 �2 �2 �2

�2 �2 7 �2 �2

�2 �2 �2 7 �2

�2 �2 �2 �2 7

377775
T 33. Use a matrix program to compute the determinants of the

following matrices.24 1 1 1

1 2 2

1 2 3

35
2664

1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

3775
266664

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

377775
Use the results to guess the determinant of the matrix M, and

confirm your guess by using row operations to evaluate that
determinant.

M D

2666664
1 1 1 � � � 1

1 2 2 � � � 2

1 2 3 � � � 3
:::

:::
:::

: : :
:::

1 2 3 � � � n

3777775
T 34. Use the method of Exercise 33 to guess the determinant of2666664

1 1 1 � � � 1

1 3 3 � � � 3

1 3 6 � � � 6
:::

:::
:::

: : :
:::

1 3 6 � � � 3.n � 1/

3777775
Justify your conjecture. [Hint: Use Exercise 28(c) and the
result of Exercise 33.]
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4 Vector Spaces

Introductory Example

DISCRETE-TIME SIGNALS AND DIGITAL
SIGNAL PROCESSING
What is digital signal processing? Just ask Alexa, who
uses signal processing to record your question and deliver
the answer. In 2500 BC, the Egyptians created the first
recorded discrete-time signal by carving information about
the flooding of the Nile into a Palermo Stone. Despite the
early beginnings of discrete-time signals, it was not until
the 1940s that Claude Shannon set off the digital revolution
with the ideas articulated in his paper “A Mathematical
Theory of Communication.”

When a person speaks into a digital processor like
Alexa, it converts the sounds made by the voice into
a discrete-time signal—basically a sequence of numbers
fykg, where k represents the time at which the value yk was
recorded. Then using linear time invariant (LTI) transfor-
mations, the signal is processed to filter out unwanted noise,
such as the sound of a fan running in the background. The
processed signal is then compared to the signals produced
by recordings of the individual sounds that make up the
language of the speaker. Figure 1 shows a recording of
the word “yes” and of the word “no” illustrating that
the signals produced are quite distinct. Once the sounds
spoken in the question are identified, machine learning
is used to make a best guess at the intended question for
a digital processor like Alexa. The digital processor then
searches through digitized data to find the most appropriate
response. Finally, the signal is processed further to produce
the virtual sounds that replicate a spoken answer.

Digital signal processing (DSP) is the branch of
engineering that, in the span of just a few decades,
has revolutionized interpersonal communication and the
entertainment industry. By reworking the principles of
electronics, telecommunication, and computer science into
a unifying paradigm, DSP is at the heart of the digital
revolution. A smartphone fits easily in the palm of your
hand, replacing numerous other devices such as cameras,
video recorders, CD players, day planners, and calculators,
and taking the fantasy component out of Borges’s imagined
Library of Babel.

The usefulness of discrete-time signals and DSP goes
well beyond systems engineering. Technical analysis is
employed in the investment sector. Trading opportunities
are identified by applying DSP to the discrete-time signals
created when the price or volume traded of a stock is
recorded over time. In Example 11 of Section 4.2, price
data is smoothed using a linear transformation. In the
entertainment industry, audio and video are produced

“Yes”

“No”

FIGURE 1
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virtually and synthesized using DSP. In Example 3 of
Section 4.7, we see how signal processing can be used to
add richness to virtual sounds.

Discrete-time signals and DSP have become signifi-
cant tools in many industries and areas of research. Math-
ematically speaking, discrete-time signals can be viewed
as vectors that are processed using linear transformations.
The operations of adding, scaling, and applying linear
transformations to signals is completely analogous to the
same operations for vectors in Rn. For this reason, the

set of all possible signals, S, is treated as a vector space.
In Sections 4.7 and 4.8, we look at the vector space of
discrete-time signals in more detail.

The focus of Chapter 4 is to extend the theory of
vectors in Rn to include signals and other mathematical
structures that behave like the vectors you are already
familiar with. Later on in the text, you will see how
other vector spaces and their corresponding linear
transformations arise in engineering, physics, biology, and
statistics.

The mathematical seeds planted in Chapters 1 and 2 germinate and begin to blossom in
this chapter. The beauty and power of linear algebra will be seen more clearly when you
viewRn as only one of a variety of vector spaces that arise naturally in applied problems.

Beginning with basic definitions in Section 4.1, the general vector space frame-
work develops gradually throughout the chapter. A goal of Sections 4.5 and 4.6 is to
demonstrate how closely other vector spaces resemble Rn. Sections 4.7 and 4.8 apply
the theory of this chapter to discrete-time signals, DSP, and difference equations—the
mathematics underlying the digital revolution.

4.1 Vector Spaces and Subspaces
Much of the theory in Chapters 1 and 2 rested on certain simple and obvious alge-
braic properties of Rn, listed in Section 1.3. In fact, many other mathematical systems
have the same properties. The specific properties of interest are listed in the following
definition.

DEFINITION A vector space is a nonempty set V of objects, called vectors, on which are defined
two operations, called addition and multiplication by scalars (real numbers),
subject to the ten axioms (or rules) listed below.1 The axioms must hold for all
vectors u, v, and w in V and for all scalars c and d .

1. The sum of u and v, denoted by uC v, is in V .

2. uC v D vC u.

3. .uC v/C w D uC .vC w/.

4. There is a zero vector 0 in V such that uC 0 D u.

5. For each u in V , there is a vector �u in V such that uC .�u/ D 0.

1 Technically, V is a real vector space. All of the theory in this chapter also holds for a complex vector space
in which the scalars and matrix entries are complex numbers. We will look at this briefly in Chapter 5. Until
then, all scalars and matrix entries are assumed to be real.
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6. The scalar multiple of u by c, denoted by cu, is in V .

7. c.uC v/ D cuC cv.

8. .c C d/u D cuC du.

9. c.du/ D .cd/u.

10. 1u D u.

Using only these axioms, one can show that the zero vector in Axiom 4 is unique,
and the vector �u, called the negative of u, in Axiom 5 is unique for each u in V .
See Exercises 33 and 34. Proofs of the following simple facts are also outlined in the
exercises:

For each u in V and scalar c,
0u D 0 (1)

c0 D 0 (2)

�u D .�1/u (3)

EXAMPLE 1 The spaces Rn, where n � 1, are the premier examples of vector
spaces. The geometric intuition developed forR3 will help you understand and visualize
many concepts throughout the chapter.

EXAMPLE 2 Let V be the set of all arrows (directed line segments) in three-
dimensional space, with two arrows regarded as equal if they have the same length and
point in the same direction. Define addition by the parallelogram rule (from Section 1.3),
and for each v in V , define cv to be the arrow whose length is jcj times the length of
v, pointing in the same direction as v if c � 0 and otherwise pointing in the opposite
direction. (See Figure 1.) Show that V is a vector space. This space is a common model
in physical problems for various forces.

v 3v 2v

FIGURE 1

SOLUTION The definition of V is geometric, using concepts of length and direction.
No xy´-coordinate system is involved. An arrow of zero length is a single point and
represents the zero vector. The negative of v is .�1/v. So Axioms 1, 4, 5, 6, and 10 are
evident. The rest are verified by geometry. For instance, see Figures 2 and 3.

v u
u

v 1 u

u 1 v

FIGURE 2 uC v D vC u.

v

w

u v 1 w

u 1 v 1 w

u 1 v

FIGURE 3 .uC v/C w D uC .vC w/.

EXAMPLE 3 Let S be the space of all doubly infinite sequences of numbers (usually
written in a row rather than a column):

fykg D .: : : ; y�2; y�1; y0; y1; y2; : : :/
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If f´kg is another element of S, then the sum fykg C f´kg is the sequence fyk C ´kg

formed by adding corresponding terms of fykg and f´kg. The scalar multiple c fykg is
the sequence fcykg. The vector space axioms are verified in the same way as for Rn.

Elements of S arise in engineering, for example, whenever a signal is measured (or
sampled) at discrete times. A signal might be electrical, mechanical, optical, biological,
audio, and so on. The digital signal processors mentioned in the chapter introduction use
discrete (or digital) signals. For convenience, we will call S the space of (discrete-time)
signals. A signal may be visualized by a graph as in Figure 4.

25 0 5 10

FIGURE 4 A discrete-time signal.

EXAMPLE 4 For n � 0, the set Pn of polynomials of degree at most n consists of
all polynomials of the form

p.t/ D a0 C a1t C a2t2
C � � � C antn (4)

where the coefficients a0; : : : ; an and the variable t are real numbers. The degree of
p is the highest power of t in (4) whose coefficient is not zero. If p.t/ D a0 ¤ 0, the
degree of p is zero. If all the coefficients are zero, p is called the zero polynomial. The
zero polynomial is included in Pn even though its degree, for technical reasons, is not
defined.

If p is given by (4) and if q.t/ D b0 C b1t C � � � C bntn, then the sum pC q is
defined by

.pC q/.t/ D p.t/C q.t/

D .a0 C b0/C .a1 C b1/t C � � � C .an C bn/tn

The scalar multiple cp is the polynomial defined by

.cp/.t/ D cp.t/ D ca0 C .ca1/t C � � � C .can/tn

These definitions satisfy Axioms 1 and 6 because pC q and cp are polynomials of
degree less than or equal to n. Axioms 2, 3, and 7–10 follow from properties of the real
numbers. Clearly, the zero polynomial acts as the zero vector in Axiom 4. Finally, .�1/p
acts as the negative of p, so Axiom 5 is satisfied. Thus Pn is a vector space.

The vector spaces Pn for various n are used, for instance, in statistical trend analysis
of data, discussed in Section 6.8.

EXAMPLE 5 Let V be the set of all real-valued functions defined on a set D. (Typi-
cally, D is the set of real numbers or some interval on the real line.) Functions are added
in the usual way: fC g is the function whose value at t in the domain D is f.t/C g.t/.
Likewise, for a scalar c and an f in V , the scalar multiple cf is the function whose value
at t is cf.t/. For instance, if D D R, f.t/ D 1C sin 2t , and g.t/ D 2C :5t , then

.fC g/.t/ D 3C sin 2t C :5t and .2g/.t/ D 4C t
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Two functions in V are equal if and only if their values are equal for every t in D.
Hence the zero vector in V is the function that is identically zero, f.t/ D 0 for all t ,
and the negative of f is .�1/f. Axioms 1 and 6 are obviously true, and the other axioms
follow from properties of the real numbers, so V is a vector space.

It is important to think of each function in the vector space V of Example 5 as a
single object, as just one “point” or vector in the vector space. The sum of two vectors f
and g (functions in V , or elements of any vector space) can be visualized as in Figure 5,
because this can help you carry over to a general vector space the geometric intuition
you have developed while working with the vector space Rn. See the Study Guide for
help as you learn to adopt this more general point of view.

f 1 g

g

f

0

FIGURE 5

The sum of two vectors
(functions).

Subspaces
In many problems, a vector space consists of an appropriate subset of vectors from some
larger vector space. In this case, only three of the ten vector space axioms need to be
checked; the rest are automatically satisfied.

DEFINITION A subspace of a vector space V is a subset H of V that has three properties:

a. The zero vector of V is in H .2

b. H is closed under vector addition. That is, for each u and v inH , the sum uC v
is in H .

c. H is closed under multiplication by scalars. That is, for each u in H and each
scalar c, the vector cu is in H .

Properties (a), (b), and (c) guarantee that a subspace H of V is itself a vector space,
under the vector space operations already defined inV . To verify this, note that properties
(a), (b), and (c) are Axioms 1, 4, and 6. Axioms 2, 3, and 7–10 are automatically true
in H because they apply to all elements of V , including those in H . Axiom 5 is also
true in H , because if u is in H , then .�1/u is in H by property (c), and we know from
equation (3) earlier in this section that .�1/u is the vector �u in Axiom 5.

So every subspace is a vector space. Conversely, every vector space is a subspace
(of itself and possibly of other larger spaces). The term subspace is used when at least
two vector spaces are in mind, with one inside the other, and the phrase subspace of V

identifies V as the larger space. (See Figure 6.)

0

H

V

FIGURE 6

A subspace of V .

EXAMPLE 6 The set consisting of only the zero vector in a vector space V is a
subspace of V , called the zero subspace and written as f0g.

EXAMPLE 7 Let P be the set of all polynomials with real coefficients, with opera-
tions in P defined as for functions. Then P is a subspace of the space of all real-valued
functions defined on R. Also, for each n � 0, Pn is a subspace of P , because Pn is a
subset of P that contains the zero polynomial, the sum of two polynomials in Pn is also
in Pn, and a scalar multiple of a polynomial in Pn is also in Pn.

2 Some texts replace property (a) in this definition by the assumption that H is nonempty. Then (a) could be
deduced from (c) and the fact that 0u D 0. But the best way to test for a subspace is to look first for the zero
vector. If 0 is in H , then properties (b) and (c) must be checked. If 0 is not in H , then H cannot be a
subspace and the other properties need not be checked.
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EXAMPLE 8 The set of finitely supported signals Sf consists of the signals
fykg, where only finitely many of the yk are nonzero. Since the zero signal 0 D
.: : : ; 0; 0; 0; : : :/ has no nonzero entries, it is clearly an element of Sf . If two signals
with finitely many nonzeros are added, the resulting signal will have finitely many
nonzeros. Similarly if a signal with finitely many nonzeros is scaled, the result will still
have finitely many nonzeros. Thus Sf is a subspace of S, the discrete-time signals. See
Figure 7.

t

c 1 d

t

c
d c

bc

FIGURE 7

EXAMPLE 9 The vector space R2 is not a subspace of R3 because R2 is not even a
subset of R3. (The vectors in R3 all have three entries, whereas the vectors in R2 have
only two.) The set

H D

8<:
24 s

t

0

35 W s and t are real

9=;
is a subset of R3 that “looks” and “acts” like R2, although it is logically distinct from
R2. See Figure 8. Show that H is a subspace of R3.

SOLUTION The zero vector is in H , and H is closed under vector addition and scalar
multiplication because these operations on vectors in H always produce vectors whose
third entries are zero (and so belong to H/. Thus H is a subspace of R3.

x3

x2

x1

H

FIGURE 8

The x1x2-plane as a subspace
of R3.

EXAMPLE 10 A plane inR3 not through the origin is not a subspace ofR3, because
the plane does not contain the zero vector of R3. Similarly, a line in R2 not through the
origin, such as in Figure 9, is not a subspace of R2.

A Subspace Spanned by a Set
The next example illustrates one of the most common ways of describing a subspace.
As in Chapter 1, the term linear combination refers to any sum of scalar multiples of
vectors, and Span fv1; : : : ; vpg denotes the set of all vectors that can be written as linear
combinations of v1; : : : ; vp .

H

x2

x1

FIGURE 9

A line that is not a vector space.

EXAMPLE 11 Given v1 and v2 in a vector space V , let H D Span fv1; v2g. Show
that H is a subspace of V .

SOLUTION The zero vector is in H , since 0 D 0v1 C 0v2. To show that H is closed
under vector addition, take two arbitrary vectors in H , say,

u D s1v1 C s2v2 and w D t1v1 C t2v2

By Axioms 2, 3, and 8 for the vector space V ,

uC w D .s1v1 C s2v2/C .t1v1 C t2v2/

D .s1 C t1/v1 C .s2 C t2/v2
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So uC w is in H . Furthermore, if c is any scalar, then by Axioms 7 and 9,

cu D c.s1v1 C s2v2/ D .cs1/v1 C .cs2/v2

which shows that cu is in H and H is closed under scalar multiplication. Thus H is a
subspace of V .

In Section 4.5, you will see that every nonzero subspace of R3, other than R3 itself,
is either Span fv1, v2g for some linearly independent v1 and v2 or Span fvg for v ¤ 0.
In the first case, the subspace is a plane through the origin; in the second case, it is a
line through the origin. (See Figure 10.) It is helpful to keep these geometric pictures in
mind, even for an abstract vector space.

x3

x2

x1

v2v1
0

FIGURE 10

An example of a subspace.
The argument in Example 11 can easily be generalized to prove the following

theorem.

THEOREM 1 If v1; : : : ; vp are in a vector space V , then Span fv1; : : : ; vpg is a subspace of V .

We call Span fv1; : : : ; vpg the subspace spanned (or generated) by fv1; : : : ; vpg.
Given any subspace H of V , a spanning (or generating) set for H is a set fv1; : : : ; vpg

in H such that H D Span fv1; : : : ; vpg.
The next example shows how to use Theorem 1.

EXAMPLE 12 Let H be the set of all vectors of the form .a � 3b; b � a; a; b/,
where a and b are arbitrary scalars. That is, let H D f.a � 3b; b � a; a; b/ W a and b

in Rg. Show that H is a subspace of R4.

SOLUTION Write the vectors in H as column vectors. Then an arbitrary vector in H

has the form

2664
a � 3b

b � a

a

b

3775 D a

2664
1

�1

1

0

3775
6
v1

C b

2664
�3

1

0

1

3775
6
v2

This calculation shows thatH D Span fv1; v2g, where v1 and v2 are the vectors indicated
above. Thus H is a subspace of R4 by Theorem 1.

Example 12 illustrates a useful technique of expressing a subspace H as the set
of linear combinations of some small collection of vectors. If H D Span fv1; : : : ; vpg,
we can think of the vectors v1; : : : ; vp in the spanning set as “handles” that allow us to
hold on to the subspace H . Calculations with the infinitely many vectors in H are often
reduced to operations with the finite number of vectors in the spanning set.

EXAMPLE 13 For what value(s) of h will y be in the subspace of R3 spanned by
v1; v2; v3, if

v1 D

24 1

�1

�2

35; v2 D

24 5

�4

�7

35; v3 D

24�3

1

0

35; and y D

24�4

3

h

35
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SOLUTION This question is Practice Problem 2 in Section 1.3, written here with
the term subspace rather than Span fv1; v2; v3g. The solution there shows that y is in
Span fv1; v2; v3g if and only if h D 5. That solution is worth reviewing now, along with
Exercises 11–16 and 19–21 in Section 1.3.

Although many vector spaces in this chapter will be subspaces ofRn, it is important
to keep in mind that the abstract theory applies to other vector spaces as well. Vector
spaces of functions arise in many applications, and they will receive more attention later.

Practice Problems

1. Show that the setH of all points inR2 of the form .3s; 2C 5s/ is not a vector space,
by showing that it is not closed under scalar multiplication. (Find a specific vector
u in H and a scalar c such that cu is not in H .)

2. Let W D Span fv1; : : : ; vpg, where v1; : : : ; vp are in a vector space V . Show that
vk is in W for 1 � k � p. [Hint: First write an equation that shows that v1 is in W .
Then adjust your notation for the general case.]

3. An n � n matrix A is said to be symmetric if AT D A. Let S be the set of all 3 � 3

symmetric matrices. Show that S is a subspace of M3�3, the vector space of 3 � 3

matrices.

4.1 Exercises
1. Let V be the first quadrant in the xy-plane; that is, let

V D

��
x

y

�
W x � 0; y � 0

�
a. If u and v are in V , is uC v in V ? Why?

b. Find a specific vector u in V and a specific scalar c such
that cu is not in V . (This is enough to show that V is not
a vector space.)

2. Let W be the union of the first and third quadrants in the xy-

plane. That is, let W D

��
x

y

�
W xy � 0

�
.

a. If u is in W and c is any scalar, is cu in W ? Why?

b. Find specific vectors u and v in W such that uC v is not
in W . (This is enough to show that W is not a vector
space.)

3. Let H be the set of points inside and on the unit circle in

the xy-plane. That is, let H D

��
x

y

�
W x2 C y2 � 1

�
. Find

a specific example—two vectors or a vector and a scalar—to
show that H is not a subspace of R2.

4. Construct a geometric figure that illustrates why a line in R2

not through the origin is not closed under vector addition.

In Exercises 5–8, determine if the given set is a subspace of Pn for
an appropriate value of n. Justify your answers.

5. All polynomials of the form p.t/ D at2, where a is in R.

6. All polynomials of the form p.t/ D aC t2, where a is in R.

7. All polynomials of degree at most 3, with integers as coeffi-
cients.

8. All polynomials in Pn such that p.0/ D 0.

9. Let H be the set of all vectors of the form

24 s

3s

2s

35. Find a

vector v in R3 such that H D Span fvg. Why does this show
that H is a subspace of R3?

10. Let H be the set of all vectors of the form

24 2t

0

�t

35. Show that

H is a subspace of R3. (Use the method of Exercise 9.)

11. Let W be the set of all vectors of the form

246b C 7c

b

c

35,
where b and c are arbitrary. Find vectors u and v such that
W D Span u; v. Why does this show that W is a subspace
of R3?

12. Let W be the set of all vectors of the form

2664
s C 3t

s � t

2s � t

4t

3775. Show
that W is a subspace of R4. (Use the method of Exercise 11.)

13. Let v1 D

24 1

0

�1

35, v2 D

242

1

3

35, v3 D

244

2

6

35, and w D 243

1

2

35.
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a. Isw in fv1; v2; v3g? Howmany vectors are in fv1; v2; v3g?

b. How many vectors are in Span fv1; v2; v3g?

c. Is w in the subspace spanned by fv1; v2; v3g? Why?

14. Let v1; v2; v3 be as in Exercise 13, and let w D

248

4

7

35. Is w in

the subspace spanned by fv1; v2; v3g? Why?

In Exercises 15–18, let W be the set of all vectors of the form
shown, where a, b, and c represent arbitrary real numbers. In each
case, either find a set S of vectors that spansW or give an example
to show that W is not a vector space.

15.

24 3aC b

4

a � 5b

35 16.

24�aC 1

a � 6b

2b C a

35

17.

2664
a � b

b � c

c � a

b

3775 18.

2664
4aC 3b

0

aC b C c

c � 2a

3775
19. If a mass m is placed at the end of a spring, and if the mass is

pulled downward and released, the mass–spring system will
begin to oscillate. The displacement y of the mass from its
resting position is given by a function of the form

y.t/ D c1 cos!t C c2 sin!t (5)

where ! is a constant that depends on the spring and the
mass. (See the figure below.) Show that the set of all functions
described in (5) (with ! fixed and c1, c2 arbitrary) is a vector
space.

y

20. The set of all continuous real-valued functions defined on a
closed interval Œa; b� in R is denoted by C Œa; b�. This set is
a subspace of the vector space of all real-valued functions
defined on Œa; b�.

a. What facts about continuous functions should be proved
in order to demonstrate that C Œa; b� is indeed a subspace
as claimed? (These facts are usually discussed in a calcu-
lus class.)

b. Show that ff in C Œa; b� W f.a/ D f.b/g is a subspace of
C Œa; b�.

For fixed positive integers m and n, the set Mm�n of all m � n

matrices is a vector space, under the usual operations of addition
of matrices and multiplication by real scalars.

21. Determine if the set H of all matrices of the form
�

a b

0 d

�
is a subspace of M2�2.

22. Let F be a fixed 3 � 2 matrix, and let H be the set of all
matrices A in M2�4 with the property that FA D 0 (the zero
matrix in M3�4/. Determine if H is a subspace of M2�4.

In Exercises 23–32, mark each statement True or False (T/F).
Justify each answer.

23. (T/F) If f is a function in the vector space V of all real-valued
functions on R and if f.t/ D 0 for some t , then f is the zero
vector in V .

24. (T/F) A vector is any element of a vector space.

25. (T/F)An arrow in three-dimensional space can be considered
to be a vector.

26. (T/F) If u is a vector in a vector space V , then .�1/ u is the
same as the negative of u.

27. (T/F) A subset H of a vector space V is a subspace of V if
the zero vector is in H .

28. (T/F) A vector space is also a subspace.

29. (T/F) A subspace is also a vector space.

30. (T/F) R2 is a subspace of R3.

31. (T/F) The polynomials of degree two or less are a subspace
of the polynomials of degree three or less.

32. (T/F) A subset H of a vector space V is a subspace of V if
the following conditions are satisfied: (i) the zero vector of V

is in H , (ii) u; v, and uC v are in H , and (iii) c is a scalar
and cu is in H .

Exercises 33–36 show how the axioms for a vector space V can
be used to prove the elementary properties described after the
definition of a vector space. Fill in the blanks with the appropriate
axiom numbers. Because of Axiom 2, Axioms 4 and 5 imply,
respectively, that 0C u D u and �uC u D 0 for all u.

33. Complete the following proof that the zero vector is
unique. Suppose that w in V has the property that
uC w D wC u D u for all u in V . In particular, 0C w D 0.
But 0C w D w, by Axiom . Hence w D 0C w D 0.

34. Complete the following proof that �u is the unique vec-
tor in V such that uC .�u/ D 0. Suppose that w satisfies
uC w D 0. Adding �u to both sides, we have

.�u/C ŒuC w� D .�u/C 0

Œ.�u/C u�C w D .�u/C 0 by Axiom (a)

0C w D .�u/C 0 by Axiom (b)

w D �u by Axiom (c)

35. Fill in the missing axiom numbers in the following proof that
0u D 0 for every u in V .

0u D .0C 0/u D 0uC 0u by Axiom (a)
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Add the negative of 0u to both sides:

0uC .�0u/ D Œ0uC 0u�C .�0u/

0uC .�0u/ D 0uC Œ0uC .�0u/� by Axiom (b)

0 D 0uC 0 by Axiom (c)

0 D 0u by Axiom (d)

36. Fill in the missing axiom numbers in the following proof that
c0 D 0 for every scalar c.

c0 D c.0C 0/ by Axiom (a)

D c0C c0 by Axiom (b)

Add the negative of c0 to both sides:

c0C .�c0/ D Œc0C c0�C .�c0/

c0C .�c0/ D c0C Œc0C .�c0/� by Axiom (c)

0 D c0C 0 by Axiom (d)

0 D c0 by Axiom (e)

37. Prove that .�1/u D �u. [Hint: Show that uC .�1/u D 0.
Use some axioms and the results of Exercises 34 and 35.]

38. Suppose cu D 0 for some nonzero scalar c. Show that u D 0.
Mention the axioms or properties you use.

39. Let u and v be vectors in a vector space V , and let H be any
subspace of V that contains both u and v. Explain why H

also contains Span fu; vg. This shows that Span fu; vg is the
smallest subspace of V that contains both u and v.

40. LetH andK be subspaces of a vector space V . The intersec-
tion of H and K, written as H \K, is the set of v in V that
belong to both H and K. Show that H \K is a subspace of
V . (See the figure.) Give an example in R2 to show that the
union of two subspaces is not, in general, a subspace.

0

K

H

V

H > K

41. Given subspacesH andK of a vector space V , the sum ofH

and K, written as H CK, is the set of all vectors in V that

can be written as the sum of two vectors, one in H and the
other in K; that is,

H CK D fw : w = u + v for some u in H

and some v in Kg

a. Show that H CK is a subspace of V .

b. Show thatH is a subspace ofH CK andK is a subspace
of H CK.

42. Suppose u1; : : : ; up and v1; : : : ; vq are vectors in a vector
space V , and let

H D Span fu1; : : : ; upg and K D Span fv1; : : : ; vqg

Show that H CK D Span fu1; : : : ; up; v1; : : : ; vqg.

T 43. Show that w is in the subspace of R4 spanned by v1; v2; v3,
where

w D

2664
6

�7

8

�9

3775; v1 D

2664
7

�6

�5

4

3775; v2 D

2664
�3

2

�1

�4

3775; v3 D

2664
�2

1

2

�5

3775
T 44. Determine if y is in the subspace of R4 spanned by the

columns of A, where

y D

2664
�4

�8

6

�5

3775; A D

2664
3 �5 �9

8 7 �6

�5 �8 3

2 �2 �9

3775
T 45. The vector space H D Span f1; cos2 t; cos4 t; cos6 tg con-

tains at least two interesting functions that will be used in
a later exercise:
f.t/ D 1 � 8 cos2 t C 8 cos4 t

g.t/ D �1C 18 cos2 t � 48 cos4 t C 32 cos6 t

Study the graph of f for 0 � t � 2� , and guess a simple
formula for f.t/. Verify your conjecture by graphing the
difference between 1C f.t/ and your formula for f.t/. (Hope-
fully, you will see the constant function 1.) Repeat for g.

T 46. Repeat Exercise 45 for the functions

f.t/ D 3 sin t � 4 sin3 t

g.t/ D 1 � 8 sin2 t C 8 sin4 t

h.t/ D 5 sin t � 20 sin3 t C 16 sin5 t

in the vector space Span f1; sin t; sin2 t; : : : ; sin5 tg.

Solutions to Practice Problems

1. Take any u in H—say, u D
�

3

7

�
—and take any c ¤ 1—say, c D 2. Then

cu D
�

6

14

�
. If this is in H , then there is some s such that

�
3s

2C 5s

�
D

�
6

14

�
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That is, s D 2 and s D 12=5, which is impossible. So 2u is not in H and H is not
a vector space.

2. v1 D 1v1 C 0v2 C � � � C 0vp . This expresses v1 as a linear combination of
v1; : : : ; vp , so v1 is in W . In general, vk is in W because

vk D 0v1 C � � � C 0vk�1 C 1vk C 0vkC1 C � � � C 0vp

3. The subset S is a subspace of M3�3 since it satisfies all three of the requirements
listed in the definition of a subspace:
a. Observe that the 0 in M3�3 is the 3 � 3 zero matrix and since 0T

D 0, the matrix
0 is symmetric and hence 0 is in S .

b. LetA andB in S . Notice thatA andB are 3 � 3 symmetric matrices soAT D A

and BT D B . By the properties of transposes of matrices, .AC B/T D AT C

BT D AC B . Thus AC B is symmetric and hence AC B is in S .

c. Let A be in S and let c be a scalar. Since A is symmetric, by the properties of
symmetric matrices, .cA/T D c.AT / D cA. Thus cA is also a symmetric matrix
and hence cA is in S .

4.2 Null Spaces, Column Spaces, Row Spaces, and Linear
Transformations

In applications of linear algebra, subspaces ofRn usually arise in one of two ways: (1) as
the set of all solutions to a system of homogeneous linear equations or (2) as the set of all
linear combinations of certain specified vectors. In this section, we compare and contrast
these two descriptions of subspaces, allowing us to practice using the concept of a
subspace. Actually, as youwill soon discover, we have beenworkingwith subspaces ever
since Section 1.3. The main new feature here is the terminology. The section concludes
with a discussion of the kernel and range of a linear transformation.

The Null Space of a Matrix
Consider the following system of homogeneous equations:

x1 � 3x2 � 2x3 D 0

�5x1 C 9x2 C x3 D 0
(1)

In matrix form, this system is written as Ax D 0, where

A D

�
1 �3 �2

�5 9 1

�
(2)

Recall that the set of all x that satisfy (1) is called the solution set of the system (1).
Often it is convenient to relate this set directly to the matrix A and the equation Ax D 0.
We call the set of x that satisfy Ax D 0 the null space of the matrix A.
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DEFINITION The null space of an m � n matrix A, written as NulA, is the set of all solutions of
the homogeneous equation Ax D 0. In set notation,

NulA D fx W x is in Rn and Ax D 0g

A more dynamic description of NulA is the set of all x in Rn that are mapped into
the zero vector of Rm via the linear transformation x 7! Ax. See Figure 1.

0
0

R
n

Nul A

Rm

FIGURE 1

EXAMPLE 1 LetA be the matrix in (2), and let u D

24 5

3

�2

35. Determine if u belongs
to the null space of A.

SOLUTION To test if u satisfies Au D 0, simply compute

Au D
�

1 �3 �2

�5 9 1

�24 5

3

�2

35 D � 5 � 9C 4

�25C 27 � 2

�
D

�
0

0

�
Thus u is in NulA.

The term space in null space is appropriate because the null space of a matrix is a
vector space, as shown in the next theorem.

THEOREM 2 The null space of anm � nmatrixA is a subspace ofRn. Equivalently, the set of all
solutions to a system Ax D 0 of m homogeneous linear equations in n unknowns
is a subspace of Rn.

PROOF Certainly NulA is a subset of Rn because A has n columns. We must show
that NulA satisfies the three properties of a subspace. Of course, 0 is in NulA. Next, let
u and v represent any two vectors in NulA. Then

Au D 0 and Av D 0

To show that uC v is in NulA, we must show that A.uC v/ D 0. Using a property of
matrix multiplication, compute

A.uC v/ D AuC Av D 0C 0 D 0

Thus uC v is in NulA, and NulA is closed under vector addition. Finally, if c is any
scalar, then

A.cu/ D c.Au/ D c.0/ D 0

which shows that cu is in NulA. Thus NulA is a subspace of Rn.
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EXAMPLE 2 Let H be the set of all vectors in R4 whose coordinates a, b, c, d

satisfy the equations a � 2b C 5c D d and c � a D b. Show that H is a subspace of
R4.

SOLUTION Rearrange the equations that describe the elements of H , and note that H

is the set of all solutions of the following system of homogeneous linear equations:

a � 2b C 5c � d D 0

�a � b C c D 0

By Theorem 2, H is a subspace of R4.

It is important that the linear equations defining the set H are homogeneous.
Otherwise, the set of solutions will definitely not be a subspace (because the zero vector
is not a solution of a nonhomogeneous system). Also, in some cases, the set of solutions
could be empty.

An Explicit Description of Nul A
There is no obvious relation between vectors in NulA and the entries in A. We say that
NulA is defined implicitly, because it is defined by a condition that must be checked.
No explicit list or description of the elements in NulA is given. However, solving
the equation Ax D 0 amounts to producing an explicit description of NulA. The next
example reviews the procedure from Section 1.5.

EXAMPLE 3 Find a spanning set for the null space of the matrix

A D

24�3 6 �1 1 �7

1 �2 2 3 �1

2 �4 5 8 �4

35
SOLUTION The first step is to find the general solution of Ax D 0 in terms of free
variables. Row reduce the augmented matrix Œ A 0 � to reduced echelon form in order
to write the basic variables in terms of the free variables:24 1 �2 0 �1 3 0

0 0 1 2 �2 0

0 0 0 0 0 0

35;

x1 � 2x2 � x4 C 3x5 D 0

x3 C 2x4 � 2x5 D 0

0 D 0

The general solution is x1 D 2x2 C x4 � 3x5, x3 D �2x4 C 2x5, with x2, x4, and x5

free. Next, decompose the vector giving the general solution into a linear combination
of vectors where the weights are the free variables. That is,266664

x1

x2

x3

x4

x5

377775 D
266664

2x2 C x4 � 3x5

x2

�2x4 C 2x5

x4

x5

377775 D x2

266664
2

1

0

0

0

377775
"

u

C x4

266664
1

0

�2

1

0

377775
"

v

C x5

266664
�3

0

2

0

1

377775
"

w
D x2uC x4vC x5w (3)

Every linear combination of u, v, and w is an element of NulA and vice versa. Thus
fu; v;wg is a spanning set for NulA.
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Two points should be made about the solution of Example 3 that apply to all
problems of this type where NulA contains nonzero vectors. We will use these facts
later.

1. The spanning set produced by the method in Example 3 is automatically linearly
independent because the free variables are the weights on the spanning vectors. For
instance, look at the 2nd, 4th, and 5th entries in the solution vector in (3) and note
that x2uC x4vC x5w can be 0 only if the weights x2; x4, and x5 are all zero.

2. When NulA contains nonzero vectors, the number of vectors in the spanning set for
NulA equals the number of free variables in the equation Ax D 0.

The Column Space of a Matrix
Another important subspace associated with a matrix is its column space. Unlike the null
space, the column space is defined explicitly via linear combinations.

DEFINITION The column space of an m � n matrix A, written as ColA, is the set of all linear
combinations of the columns of A. If A D Œ a1 � � � an �, then

ColA D Span fa1; : : : ; ang

Since Span fa1; : : : ; ang is a subspace, by Theorem 1, the next theorem follows from
the definition of ColA and the fact that the columns of A are in Rm.

THEOREM 3 The column space of an m � n matrix A is a subspace of Rm.

Note that a typical vector in ColA can be written as Ax for some x because the
notation Ax stands for a linear combination of the columns of A. That is,

ColA D fb W b D Ax for some x in Rng

The notation Ax for vectors in ColA also shows that ColA is the range of the linear
transformation x 7! Ax. We will return to this point of view at the end of the section.

EXAMPLE 4 Find a matrix A such that W D ColA.

W D

8<:
24 6a � b

aC b

�7a

35 W a, b in R

9=;
SOLUTION First, write W as a set of linear combinations.

W D

8<:a

24 6

1

�7

35C b

24�1

1

0

35 W a, b in R

9=; D Span

8<:
24 6

1

�7

35;

24�1

1

0

359=;
Second, use the vectors in the spanning set as the columns of A. Let A D

24 6 �1

1 1

�7 0

35.W

x3

x2

x1

0

Then W D ColA, as desired.
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Recall from Theorem 4 in Section 1.4 that the columns of A span Rm if and only if
the equation Ax D b has a solution for each b. We can restate this fact as follows:

The column space of an m � n matrix A is all of Rm if and only if the equation
Ax D b has a solution for each b in Rm.

The Row Space
If A is an m � n matrix, each row of A has n entries and thus can be identified with
a vector in Rn. The set of all linear combinations of the row vectors is called the row
space of A and is denoted by Row A. Each row has n entries, so Row A is a subspace
of Rn. Since the rows of A are identified with the columns of AT , we could also write
Col AT in place of Row A.

EXAMPLE 5 Let

A D

2664
�2 �5 8 0 �17

1 3 �5 1 5

3 11 �19 7 1

1 7 �13 5 �3

3775 and

r1 D .�2;�5; 8; 0;�17/

r2 D .1; 3;�5; 1; 5/

r3 D .3; 11;�19; 7; 1/

r4 D .1; 7;�13; 5;�3/

The row space of A is the subspace of R5 spanned by fr1; r2; r3; r4g. That is, Row A D

Span fr1; r2; r3; r4g. It is natural to write row vectors horizontally; however, they may
also be written as column vectors if that is more convenient.

The Contrast Between Nul A and Col A
It is natural to wonder how the null space and column space of a matrix are related.
In fact, the two spaces are quite dissimilar, as Examples 6–8 will show. Nevertheless,
a surprising connection between the null space and column space will emerge in
Section 4.5, after more theory is available.

EXAMPLE 6 Let

A D

24 2 4 �2 1

�2 �5 7 3

3 7 �8 6

35
a. If the column space of A is a subspace of Rk , what is k?

b. If the null space of A is a subspace of Rk , what is k?

SOLUTION

a. The columns ofA each have three entries, so ColA is a subspace ofRk , where k D 3.

b. A vector x such that Ax is defined must have four entries, so NulA is a subspace of
Rk , where k D 4.

When a matrix is not square, as in Example 6, the vectors in NulA and ColA live in
entirely different “universes.” For example, no linear combination of vectors in R3 can
produce a vector in R4. When A is square, NulA and ColA do have the zero vector in
common, and in special cases it is possible that some nonzero vectors belong to both
NulA and ColA.



240 CHAPTER 4 Vector Spaces

EXAMPLE 7 With A as in Example 6, find a nonzero vector in ColA and a nonzero
vector in NulA.

SOLUTION It is easy to find a vector in ColA. Any column of A will do, say,

24 2

�2

3

35.
To find a nonzero vector in NulA, row reduce the augmented matrix Œ A 0 � and obtain

Œ A 0 � �

24 1 0 9 0 0

0 1 �5 0 0

0 0 0 1 0

35
Thus, if x satisfies Ax D 0, then x1 D �9x3, x2 D 5x3, x4 D 0, and x3 is free. As-
signing a nonzero value to x3—say, x3 D 1—we obtain a vector in NulA, namely,
x D .�9; 5; 1; 0/.

EXAMPLE 8 With A as in Example 6, let u D

2664
3

�2

�1

0

3775 and v D

24 3

�1

3

35.
a. Determine if u is in NulA. Could u be in ColA?

b. Determine if v is in ColA. Could v be in NulA?

SOLUTION

a. An explicit description of NulA is not needed here. Simply compute the product Au.

Au D

24 2 4 �2 1

�2 �5 7 3

3 7 �8 6

35
2664

3

�2

�1

0

3775 D
24 0

�3

3

35 ¤ 24 0

0

0

35
Obviously, u is not a solution ofAx D 0, so u is not in NulA. Also, with four entries,
u could not possibly be in ColA, since ColA is a subspace of R3.

b. Reduce Œ A v � to an echelon form.

Œ A v � D

24 2 4 �2 1 3

�2 �5 7 3 �1

3 7 �8 6 3

35 � 24 2 4 �2 1 3

0 1 �5 �4 �2

0 0 0 17 1

35
At this point, it is clear that the equation Ax D v is consistent, so v is in ColA.
With only three entries, v could not possibly be in NulA, since NulA is a subspace
of R4.

The table on page 241 summarizes what we have learned about NulA and ColA.
Item 8 is a restatement of Theorems 11 and 12(a) in Section 1.9.

Kernel and Range of a Linear Transformation
Subspaces of vector spaces other than Rn are often described in terms of a linear
transformation instead of a matrix. To make this precise, we generalize the definition
given in Section 1.8.
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Contrast Between Nul A and Col A for an m � n Matrix A

Nul A Col A

1. NulA is a subspace of Rn. 1. ColA is a subspace of Rm.

2. NulA is implicitly defined; that is, you are
given only a condition .Ax D 0/ that vec-
tors in NulA must satisfy.

2. ColA is explicitly defined; that is, you are
told how to build vectors in ColA.

3. It takes time to find vectors in NulA. Row
operations on Œ A 0 � are required.

3. It is easy to find vectors in ColA. The
columns of A are displayed; others are
formed from them.

4. There is no obvious relation between NulA
and the entries in A.

4. There is an obvious relation between ColA
and the entries in A, since each column of
A is in ColA.

5. A typical vector v in NulA has the property
that Av D 0.

5. A typical vector v in ColA has the property
that the equation Ax D v is consistent.

6. Given a specific vector v, it is easy to tell if
v is in NulA. Just compute Av.

6. Given a specific vector v, it may take time
to tell if v is in ColA. Row operations on
Œ A v � are required.

7. NulA D f0g if and only if the equation
Ax D 0 has only the trivial solution.

7. ColA D Rm if and only if the equation
Ax D b has a solution for every b in Rm.

8. NulA D f0g if and only if the linear trans-
formation x 7! Ax is one-to-one.

8. ColA D Rm if and only if the linear trans-
formation x 7! Ax maps Rn onto Rm.

DEFINITION A linear transformation T from a vector space V into a vector space W is a rule
that assigns to each vector x in V a unique vector T .x/ in W , such that

(i) T .uC v/ D T .u/C T .v/ for all u, v in V , and

(ii) T .cu/ D cT .u/ for all u in V and all scalars c.

The kernel (or null space) of such a T is the set of all u in V such that T .u/ D 0
(the zero vector in W /. The range of T is the set of all vectors in W of the form T .x/

for some x in V . If T happens to arise as a matrix transformation—say, T .x/ D Ax for
somematrixA—then the kernel and the range of T are just the null space and the column
space of A, as defined earlier.

It is not difficult to show that the kernel of T is a subspace of V . The proof is
essentially the same as the one for Theorem 2. Also, the range of T is a subspace of W .
See Figure 2 and Exercise 42.

Kernel is a 
subspace of V

Range is a 
subspace of W

Domain
Range

0

T

0

V

Kern
el

W

FIGURE 2 Subspaces associated with
a linear transformation.
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In applications, a subspace usually arises as either the kernel or the range of an
appropriate linear transformation. For instance, the set of all solutions of a homogeneous
linear differential equation turns out to be the kernel of a linear transformation. Typically,
such a linear transformation is described in terms of one ormore derivatives of a function.
To explain this in any detail would take us too far afield at this point. So we consider
only two examples. The first explains why the operation of differentiation is a linear
transformation.

EXAMPLE 9 (Calculus required) Let V be the vector space of all real-valued func-
tions f defined on an interval Œa; b� with the property that they are differentiable and
their derivatives are continuous functions on Œa; b�. Let W be the vector space C Œa; b�

of all continuous functions on Œa; b�, and let D W V ! W be the transformation that
changes f in V into its derivative f 0. In calculus, two simple differentiation rules are

D.f C g/ D D.f /CD.g/ and D.cf / D cD.f /

That is, D is a linear transformation. It can be shown that the kernel of D is the set of
constant functions on Œa; b� and the range of D is the set W of all continuous functions
on Œa; b�.

EXAMPLE 10 (Calculus required) The differential equation

y00 C !2y D 0 (4)

where ! is a constant, is used to describe a variety of physical systems, such as the
vibration of a weighted spring, the movement of a pendulum, and the voltage in an
inductance-capacitance electrical circuit. The set of solutions of (4) is precisely the
kernel of the linear transformation that maps a function y D f .t/ into the function
f 00.t/C !2f .t/. Finding an explicit description of this vector space is a problem in
differential equations. The solution set turns out to be the space described in Exercise 19
in Section 4.1.

A common technique used in the stockmarket is technical analysis. Statistical trends
gathered from stock-trading activity, such as price movement and volume, are analyzed.
Technical analysts focus on patterns of stock-price movements, trading signals, and
various other analytical charting tools to evaluate a security’s strength or weakness. A
moving average is a commonly used indicator in technical analysis. It smooths out price
action by filtering out the effects from random price fluctuations. In the final example
for this section, we examine the linear transformation that creates the two-day moving
average from a “signal” of daily prices. We will look at moving average transformations
that average over a longer period of time in Section 4.7.

EXAMPLE 11 Let fpkg in S represent the price of a stock that has been recorded
daily over an extended period of time. Note that we can assume that pk D 0 for k outside
the time period under study. To create a two-daymoving average, themappingM2 W S!

S defined by M2.fpkg/ D

�
pk C pk�1

2

�
is applied to the data. Show that M2 is a linear

transformation and find its kernel.

SOLUTION To see thatM2 is a linear transformation, observe that for two signals fpkg

and fqkg in S and any scalar c,
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M2.fpkg C fqkg/ DM2.fpk C qkg/ D

�
pk C qk C pk�1 C qk�1

2

�
D

�
pk C pk�1

2

�
C

�
qk C qk�1

2

�
DM2.fpkg/CM2.fqkg/

and

M2.cfpkg/ DM2.fcpkg/ D

�
cpk C cpk�1

2

�
D c

�
pk C pk�1

2

�
D cM2.fpkg/

thus M2 is a linear transformation.
To find the kernel of M2, notice that fpkg is in the kernel if and only if

pk C pk�1

2
D 0 for all k, and hence pk D �pk�1. Since this relationship is true for

all integers k, it can be applied recursively resulting in pk D �pk�1 D .�1/2pk�2 D

.�1/3pk�3 : : : . Working out from k D 0, any signal in the kernel can be written as
pk D p0.�1/k , a multiple of the alternating signal described by f.�1/kg. Since the
kernel of the two-day moving average function consists of all multiples of the alternating
sequence, it smooths out daily fluctuations, without leveling out overall trends. (See
Figure 3.)

k

Moving average
Original signal

FIGURE 3

Practice Problems

1. Let W D

8<:
24 a

b

c

35 W a � 3b � c D 0

9=;. Show in two different ways that W is a

subspace of R3. (Use two theorems.)

2. LetA D

24 7 �3 5

�4 1 �5

�5 2 �4

35, v D 24 2

1

�1

35, andw D 24 7

6

�3

35. Suppose you know that

the equations Ax D v and Ax D w are both consistent. What can you say about the
equation Ax D vC w?

3. Let A be an n � n matrix. If Col A D Nul A, show that Nul A2 D Rn.

4.2 Exercises

1. Determine if w D

24 1

3

�4

35 is in NulA, where

A D

24 3 �5 �3

6 �2 0

�8 4 1

35 :

2. Determine if w D

24 5

�3

2

35 is in NulA, where

A D

24 5 21 19

13 23 2

8 14 1

35 :
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In Exercises 3–6, find an explicit description of NulA by listing
vectors that span the null space.

3. A D

�
1 3 5 0

0 1 4 �2

�
4. A D

�
1 �6 4 0

0 0 2 0

�

5. A D

241 �2 0 4 0

0 0 1 �9 0

0 0 0 0 1

35
6. A D

241 5 �4 �3 1

0 1 �2 1 0

0 0 0 0 0

35
In Exercises 7–14, either use an appropriate theorem to show that
the given set, W , is a vector space, or find a specific example to
the contrary.

7.

8<:
24 a

b

c

35 W aC b C c D 2

9=; 8.

8<:
24 r

s

t

35 W 5r � 1 D s C 2t

9=;
9.

8̂̂<̂
:̂
2664

a

b

c

d

3775 W a � 2b D 4c

2a D c C 3d

9>>=>>; 10.

8̂̂<̂
:̂
2664

a

b

c

d

3775 W aC 3b D c

b C c C a D d

9>>=>>;
11.

8̂̂<̂
:̂
2664

b � 2d

5C d

b C 3d

d

3775 W b; d real

9>>=>>; 12.

8̂̂<̂
:̂
2664

b � 5d

2b

2d C 1

d

3775 W b; d real

9>>=>>;
13.

8<:
24 c � 6d

d

c

35 W c; d real

9=; 14.

8<:
24�aC 2b

a � 2b

3a � 6b

35 W a; b real

9=;
In Exercises 15 and 16, find A such that the given set is ColA.

15.

8̂̂<̂
:̂
2664

2s C 3t

r C s � 2t

4r C s

3r � s � t

3775 W r; s; t real

9>>=>>;
16.

8̂̂<̂
:̂
2664

b � c

2b C c C d

5c � 4d

d

3775 W b; c; d real

9>>=>>;
For the matrices in Exercises 17–20, (a) find k such that NulA
is a subspace of Rk , and (b) find k such that ColA is a subspace
of Rk .

17. A D

24 2 �8

�1 4

1 �4

35 18. A D

24 8 �3 0 �1

�3 0 �1 8

0 �1 8 �3

35
19. A D

�
4 5 �2 6 0

1 1 0 1 0

�

20. A D
�
1 �3 9 0 �5

�
21. With A as in Exercise 17, find a nonzero vector in NulA, a

nonzero vector in ColA, and a nonzero vector in Row A.

22. With A as in Exercise 3, find a nonzero vector in NulA, a
nonzero vector in ColA, and a nonzero vector in Row A.

23. Let A D

�
�6 12

�3 6

�
and w D

�
2

1

�
. Determine if w is in

ColA. Is w in NulA?

24. Let A D

24�8 �2 �9

6 4 8

4 0 4

35 and w D

24 2

1

�2

35. Determine if
w is in ColA. Is w in NulA?

In Exercises 25–38, A denotes an m � n matrix. Mark each state-
ment True or False (T/F). Justify each answer.

25. (T/F) The null space of A is the solution set of the equation
Ax D 0.

26. (T/F) A null space is a vector space.

27. (T/F) The null space of an m � n matrix is in Rm.

28. (T/F) The column space of an m � n matrix is in Rm.

29. (T/F) The column space of A is the range of the mapping
x 7! Ax.

30. (T/F) Col A is the set of all solutions of Ax D b.

31. (T/F) If the equation Ax D b is consistent, then Col A = Rm.

32. (T/F) Nul A is the kernel of the mapping x 7! Ax.

33. (T/F) The kernel of a linear transformation is a vector space.

34. (T/F) The range of a linear transformation is a vector space.

35. (T/F) Col A is the set of all vectors that can be written as Ax
for some x.

36. (T/F) The set of all solutions of a homogeneous linear differ-
ential equation is the kernel of a linear transformation.

37. (T/F) The row space of A is the same as the column space
of AT .

38. (T/F) The null space ofA is the same as the row space ofAT .

39. It can be shown that a solution of the system below is x1 D 3,
x2 D 2, and x3 D �1. Use this fact and the theory from this
section to explain why another solution is x1 D 30, x2 D 20,
and x3 D �10. (Observe how the solutions are related, but
make no other calculations.)

x1 � 3x2 � 3x3 D 0

�2x1 C 4x2 C 2x3 D 0

�x1 C 5x2 C 7x3 D 0
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40. Consider the following two systems of equations:

5x1 C x2 � 3x3 D 0 5x1 C x2 � 3x3 D 0

�9x1 C 2x2 C 5x3 D 1 �9x1 C 2x2 C 5x3 D 5

4x1 C x2 � 6x3 D 9 4x1 C x2 � 6x3 D 45

It can be shown that the first system has a solution. Use this
fact and the theory from this section to explainwhy the second
system must also have a solution. (Make no row operations.)

41. Prove Theorem 3 as follows: Given an m � n matrix A, an
element in ColA has the form Ax for some x in Rn. Let Ax
and Aw represent any two vectors in ColA.

a. Explain why the zero vector is in ColA.

b. Show that the vector AxC Aw is in ColA.

c. Given a scalar c, show that c.Ax/ is in ColA.

42. Let T W V ! W be a linear transformation from a vector
space V into a vector space W . Prove that the range of T is
a subspace of W . [Hint: Typical elements of the range have
the form T .x/ and T .w/ for some x, w in V .]

43. Define T W P2 ! R2 by T .p/ D

�
p.0/

p.1/

�
. For instance, if

p.t/ D 3C 5t C 7t2, then T .p/ D

�
3

15

�
.

a. Show thatT is a linear transformation. [Hint: For arbitrary
polynomials p, q in P2, compute T .pC q/ and T .cp/.]

b. Find a polynomial p in P2 that spans the kernel of T , and
describe the range of T .

44. Define a linear transformation T W P2 ! R2 by

T .p/ D

�
p.0/

p.0/

�
. Find polynomials p1 and p2 in P2 that

span the kernel of T , and describe the range of T .

45. Let M2�2 be the vector space of all 2 � 2 matrices,
and define T WM2�2 !M2�2 by T .A/ D AC AT , where

A D

�
a b

c d

�
.

a. Show that T is a linear transformation.

b. Let B be any element of M2�2 such that BT D B . Find
an A in M2�2 such that T .A/ D B .

c. Show that the range of T is the set of B in M2�2 with the
property that BT D B .

d. Describe the kernel of T .

46. (Calculus required) Define T W C Œ0; 1�! C Œ0; 1� as follows:
For f in C Œ0; 1�, let T .f/ be the antiderivative F of f such
that F.0/ D 0. Show that T is a linear transformation, and
describe the kernel of T . (See the notation in Exercise 20 of
Section 4.1.)

47. LetV andW be vector spaces, and let T W V ! W be a linear
transformation. Given a subspace U of V , let T .U / denote
the set of all images of the form T .x/, where x is in U . Show
that T .U / is a subspace of W .

48. Given T W V ! W as in Exercise 47, and given a subspace
Z of W , let U be the set of all x in V such that T .x/ is in Z.
Show that U is a subspace of V .

T 49. Determine whether w is in the column space of A, the null
space of A, or both, where

w D

2664
1

1

�1

�3

3775; A D

2664
7 6 �4 1

�5 �1 0 �2

9 �11 7 �3

19 �9 7 1

3775
T 50. Determine whether w is in the column space of A, the null

space of A, or both, where

w D

2664
1

2

1

0

3775; A D

2664
�8 5 �2 0

�5 2 1 �2

10 �8 6 �3

3 �2 1 0

3775
T 51. Let a1; : : : ; a5 denote the columns of the matrix A, where

A D

2664
5 1 2 2 0

3 3 2 �1 �12

8 4 4 �5 12

2 1 1 0 �2

3775; B D Œ a1 a2 a4 �

a. Explain why a3 and a5 are in the column space of B .

b. Find a set of vectors that spans NulA.

c. Let T W R5 ! R4 be defined by T .x/ D Ax. Explain why
T is neither one-to-one nor onto.

T 52. Let H D Span fv1; v2g and K D Span fv3; v4g, where

v1 D

24 5

3

8

35; v2 D

24 1

3

4

35; v3 D

24 2

�1

5

35; v4 D

24 0

�12

�28

35:

Then H and K are subspaces of R3. In fact, H and K

are planes in R3 through the origin, and they intersect
in a line through 0. Find a nonzero vector w that gen-
erates that line. [Hint: w can be written as c1v1 C c2v2

and also as c3v3 C c4v4. To build w, solve the equation
c1v1 C c2v2 D c3v3 C c4v4 for the unknown cj ’s.]

STUDY GUIDE offers additional
resources for mastering vector
spaces, subspaces, and column
row, and null spaces.
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Solutions to Practice Problems

1. First method: W is a subspace of R3 by Theorem 2 because W is the set of
all solutions to a system of homogeneous linear equations (where the system
has only one equation). Equivalently, W is the null space of the 1 � 3 matrix
A D Œ 1 �3 �1 �.
Second method: Solve the equation a � 3b � c D 0 for the leading variable a in

terms of the free variables b and c. Any solution has the form

24 3b C c

b

c

35, where b

and c are arbitrary, and 24 3b C c

b

c

35 D b

24 3

1

0

35
"

v1

C c

24 1

0

1

35
"

v2

This calculation shows that W D Span fv1; v2g. Thus W is a subspace of R3 by
Theorem 1. We could also solve the equation a � 3b � c D 0 for b or c and get
alternative descriptions of W as a set of linear combinations of two vectors.

2. Both v and w are in ColA. Since ColA is a vector space, vC w must be in ColA.
That is, the equation Ax D vC w is consistent.

3. Let x be any vector in Rn. Notice Ax is in Col A, since it is a linear combination
of the columns of A. Since Col A D Nul A, the vector Ax is also in Nul A. Hence
A2x D A.Ax/ D 0 establishing that every vector x from Rn is in Nul A2.

4.3 Linearly Independent Sets; Bases
In this section we identify and study the subsets that span a vector space V or a subspace
H as “efficiently” as possible. The key idea is that of linear independence, defined as
in Rn.

An indexed set of vectors fv1; : : : ; vpg in V is said to be linearly independent if
the vector equation

c1v1 C c2v2 C � � � C cpvp D 0 (1)

has only the trivial solution, c1 D 0; : : : ; cp D 0.1

The set fv1; : : : ; vpg is said to be linearly dependent if (1) has a nontrivial solution,
that is, if there are some weights, c1; : : : ; cp , not all zero, such that (1) holds. In such a
case, (1) is called a linear dependence relation among v1; : : : ; vp .

Just as in Rn, a set containing a single vector v is linearly independent if and only
if v ¤ 0. Also, a set of two vectors is linearly dependent if and only if one of the vectors
is a multiple of the other. And any set containing the zero vector is linearly dependent.
The following theorem has the same proof as Theorem 7 in Section 1.7.

1 It is convenient to use c1; : : : ; cp in (1) for the scalars instead of x1; : : : ; xp , as we did previously.
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THEOREM 4 An indexed set fv1; : : : ; vpg of two or more vectors, with v1 ¤ 0, is linearly
dependent if and only if some vj (with j > 1/ is a linear combination of the
preceding vectors, v1; : : : ; vj�1.

The main difference between linear dependence in Rn and in a general vector space
is that when the vectors are not n-tuples, the homogeneous equation (1) usually cannot
be written as a system of n linear equations. That is, the vectors cannot be made into the
columns of a matrix A in order to study the equation Ax D 0. We must rely instead on
the definition of linear dependence and on Theorem 4.

EXAMPLE 1 Let p1.t/ D 1, p2.t/ D t , and p3.t/ D 4 � t . Then fp1; p2; p3g is
linearly dependent in P because p3 D 4p1 � p2.

EXAMPLE 2 The set fsin t; cos tg is linearly independent in C Œ0; 1�, the space of
all continuous functions on 0 � t � 1, because sin t and cos t are not multiples of one
another as vectors in C Œ0; 1�. That is, there is no scalar c such that cos t D c � sin t for all
t in Œ0; 1�. (Look at the graphs of sin t and cos t .) However, fsin t cos t; sin 2tg is linearly
dependent because of the identity sin 2t D 2 sin t cos t , for all t .

DEFINITION Let H be a subspace of a vector space V . A set of vectors B in V is a basis for
H if

(i) B is a linearly independent set, and

(ii) the subspace spanned by B coincides with H ; that is,

H D Span B

The definition of a basis applies to the case when H D V , because any vector
space is a subspace of itself. Thus a basis of V is a linearly independent set that spans
V . Observe that when H ¤ V , condition (ii) includes the requirement that each of the
vectors b in Bmust belong toH , because Span B contains every element in B, as shown
in Section 4.1.

EXAMPLE 3 Let A be an invertible n � n matrix—say, A D Œ a1 � � � an �. Then
the columns of A form a basis for Rn because they are linearly independent and they
span Rn, by the Invertible Matrix Theorem.

EXAMPLE 4 Let e1; : : : ; en be the columns of the n � n identity matrix, In. That is,

e1 D

26664
1

0
:::

0

37775; e2 D

26664
0

1
:::

0

37775; : : : ; en D

26664
0
:::

0

1

37775
The set fe1; : : : ; eng is called the standard basis for Rn (Figure 1).

x1

x2

x3

e3

e2

e1

FIGURE 1

The standard basis for R3.
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EXAMPLE 5 Let v1 D

24 3

0

�6

35, v2 D

24�4

1

7

35, and v3 D

24�2

1

5

35. Determine if

fv1; v2; v3g is a basis for R3.

SOLUTION Since there are exactly three vectors here in R3, we can use any of several
methods to determine if the matrix A D Œ v1 v2 v3 � is invertible. For instance, two
row replacements reveal that A has three pivot positions. Thus A is invertible. As in
Example 3, the columns of A form a basis for R3.

EXAMPLE 6 Let S D f1; t; t2; : : : ; tng. Verify that S is a basis for Pn. This basis is
called the standard basis for Pn.

SOLUTION Certainly S spans Pn. To show that S is linearly independent, suppose that
c0; : : : ; cn satisfy

c01C c1t C c2t2
C � � � C cntn

D 0.t/ (2)

This equality means that the polynomial on the left has the same values as the zero
polynomial on the right. A fundamental theorem in algebra says that the only polynomial
in Pn with more than n zeros is the zero polynomial. That is, equation (2) holds for all
t only if c0 D � � � D cn D 0. This proves that S is linearly independent and hence is a
basis for Pn. See Figure 2.

y 5 1

y 5 t

y 5 t2

tt

y

FIGURE 2

The standard basis for P2.

Problems involving linear independence and spanning in Pn are handled best by a
technique to be discussed in Section 4.4.

The Spanning Set Theorem
Aswewill see, a basis is an “efficient” spanning set that contains no unnecessary vectors.
In fact, a basis can be constructed from a spanning set by discarding unneeded vectors.

EXAMPLE 7 Let

v1 D

24 0

2

�1

35; v2 D

24 2

2

0

35; v3 D

24 6

16

�5

35; and H D Span fv1; v2; v3g:

Note that v3 D 5v1 C 3v2, and show that Span fv1; v2; v3g D Span fv1; v2g. Then find a
basis for the subspace H .

SOLUTION Every vector in Span fv1; v2g belongs to H because

c1v1 C c2v2 D c1v1 C c2v2 C 0v3

Now let x be any vector inH—say, x D c1v1 C c2v2 C c3v3. Since v3 D 5v1 C 3v2, we
may substitute

H

v1

v3

v2

x D c1v1 C c2v2 C c3.5v1 C 3v2/

D .c1 C 5c3/v1 C .c2 C 3c3/v2

Thus x is in Span fv1; v2g, so every vector in H already belongs to Span fv1; v2g. We
conclude that H and Span fv1; v2g are actually the same set of vectors. It follows that
fv1; v2g is a basis of H since fv1; v2g is obviously linearly independent.

The next theorem generalizes Example 7.
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THEOREM 5 The Spanning Set Theorem

Let S D fv1; : : : ; vpg be a set in a vector space V , and letH D Span fv1; : : : ; vpg.

a. If one of the vectors in S—say, vk—is a linear combination of the remaining
vectors in S , then the set formed from S by removing vk still spans H .

b. If H ¤ f0g, some subset of S is a basis for H .

PROOF

a. By rearranging the list of vectors in S , if necessary, we may suppose that vp is a linear
combination of v1; : : : ; vp�1—say,

vp D a1v1 C � � � C ap�1vp�1 (3)

Given any x in H , we may write

x D c1v1 C � � � C cp�1vp�1 C cpvp (4)

for suitable scalars c1; : : : ; cp . Substituting the expression for vp from (3) into (4),
it is easy to see that x is a linear combination of v1; : : : ; vp�1. Thus fv1; : : : ; vp�1g

spans H , because x was an arbitrary element of H .

b. If the original spanning set S is linearly independent, then it is already a basis for H .
Otherwise, one of the vectors in S depends on the others and can be deleted, by part
(a). So long as there are two or more vectors in the spanning set, we can repeat this
process until the spanning set is linearly independent and hence is a basis for H . If
the spanning set is eventually reduced to one vector, that vector will be nonzero (and
hence linearly independent) because H ¤ f0g.

Bases for Nul A, Col A, and Row A
We already know how to find vectors that span the null space of a matrix A. The
discussion in Section 4.2 pointed out that our method always produces a linearly
independent set when NulA contains nonzero vectors. So, in this case, that method
produces a basis for NulA.

The next two examples describe a simple algorithm for finding a basis for the
column space.

EXAMPLE 8 Find a basis for ColB , where

B D
�
b1 b2 � � � b5

�
D

2664
1 4 0 2 0

0 0 1 �1 0

0 0 0 0 1

0 0 0 0 0

3775
SOLUTION Each nonpivot column of B is a linear combination of the pivot columns.
In fact, b2 D 4b1 and b4 D 2b1 � b3. By the Spanning Set Theorem, we may discard
b2 and b4, and fb1; b3; b5g will still span ColB . Let

S D fb1; b3; b5g D

8̂̂<̂
:̂
2664

1

0

0

0

3775;

2664
0

1

0

0

3775;

2664
0

0

1

0

3775
9>>=>>;
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Since b1 ¤ 0 and no vector in S is a linear combination of the vectors that precede it, S
is linearly independent (Theorem 4). Thus S is a basis for ColB .

What about a matrix A that is not in reduced echelon form? Recall that any
linear dependence relationship among the columns of A can be expressed in the form
Ax D 0, where x is a column of weights. (If some columns are not involved in a
particular dependence relation, then their weights are zero.) When A is row reduced
to a matrix B , the columns of B are often totally different from the columns of A.
However, the equations Ax D 0 and Bx D 0 have exactly the same set of solutions.
If A D Œ a1 � � � an � and B D Œ b1 � � � bn �, then the vector equations

x1a1 C � � � C xnan D 0 and x1b1 C � � � C xnbn D 0

also have the same set of solutions. That is, the columns of A have exactly the same
linear dependence relationships as the columns of B .

EXAMPLE 9 It can be shown that the matrix

A D
�
a1 a2 � � � a5

�
D

2664
1 4 0 2 �1

3 12 1 5 5

2 8 1 3 2

5 20 2 8 8

3775
is row equivalent to the matrix B in Example 8. Find a basis for ColA.

SOLUTION In Example 8 we saw that

b2 D 4b1 and b4 D 2b1 � b3

so we can expect that
a2 D 4a1 and a4 D 2a1 � a3

Check that this is indeed the case! Thus we may discard a2 and a4 when selecting a
minimal spanning set for ColA. In fact, fa1; a3; a5gmust be linearly independent because
any linear dependence relationship among a1, a3, a5 would imply a linear dependence
relationship among b1, b3, b5. But we know that fb1; b3; b5g is a linearly independent
set. Thus fa1; a3; a5g is a basis for ColA. The columns we have used for this basis are
the pivot columns of A.

Examples 8 and 9 illustrate the following useful fact.

THEOREM 6 The pivot columns of a matrix A form a basis for ColA.

PROOF The general proof uses the arguments discussed above. Let B be the reduced
echelon form of A. The set of pivot columns of B is linearly independent, for no
vector in the set is a linear combination of the vectors that precede it. Since A is row
equivalent to B , the pivot columns of A are linearly independent as well, because any
linear dependence relation among the columns of A corresponds to a linear dependence
relation among the columns of B . For this same reason, every nonpivot column of A is
a linear combination of the pivot columns of A. Thus the nonpivot columns of A may
be discarded from the spanning set for ColA, by the Spanning Set Theorem. This leaves
the pivot columns of A as a basis for ColA.
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Warning: The pivot columns of a matrix A are evident when A has been reduced only
to echelon form. But, be careful to use the pivot columns ofA itself for the basis of ColA.
Row operations can change the column space of a matrix. The columns of an echelon
form B of A are often not in the column space of A. For instance, the columns of matrix
B in Example 8 all have zeros in their last entries, so they cannot span the column space
of matrix A in Example 9.

In contrast, the following theorem establishes that row reduction does not change
the row space of a matrix.

THEOREM 7 If two matrices A and B are row equivalent, then their row spaces are the same. If
B is in echelon form, the nonzero rows of B form a basis for the row space of A

as well as for that of B .

PROOF If B is obtained from A by row operations, the rows of B are linear com-
binations of the rows of A. It follows that any linear combination of the rows of B

is automatically a linear combination of the rows of A. Thus the row space of B is
contained in the row space of A. Since row operations are reversible, the same argument
shows that the row space of A is a subset of the row space of B . So the two row spaces
are the same. If B is in echelon form, its nonzero rows are linearly independent because
no nonzero row is a linear combination of the nonzero rows below it. (Apply Theorem
4 to the nonzero rows of B in reverse order, with the first row last.) Thus the nonzero
rows of B form a basis of the (common) row space of B and A.

EXAMPLE 10 Find a basis for the row space of the matrix A from Example 9.

SOLUTION To find a basis for the row space, recall that matrix A from Example 9 is
row equivalent to matrix B from Example 8:

A D

2664
1 4 0 2 �1

3 12 1 5 5

2 8 1 3 2

5 20 2 8 8

3775 � B D

2664
1 4 0 2 0

0 0 1 �1 0

0 0 0 0 1

0 0 0 0 0

3775
By Theorem 7, the first three rows of B form a basis for the row space of A (as well as
for the row space of B). Thus

Basis for Row A W f.1; 4; 0; 2; 0/; .0; 0; 1;�1; 0/; .0; 0; 0; 0; 1/g

Observe that, unlike the basis for Col A, the bases for Row A and Nul A have no simple
connection with the entries in A itself.2

Two Views of a Basis
When the Spanning Set Theorem is used, the deletion of vectors from a spanning set
must stop when the set becomes linearly independent. If an additional vector is deleted,

2 It is possible to find a basis for the row space Row A that uses rows of A. First form AT , and then row
reduce until the pivot columns of AT are found. These pivot columns of AT are rows of A, and they form a
basis for the row space of A.
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it will not be a linear combination of the remaining vectors, and hence the smaller set
will no longer span V . Thus a basis is a spanning set that is as small as possible.

A basis is also a linearly independent set that is as large as possible. If S is a basis
for V , and if S is enlarged by one vector—say, w—from V , then the new set cannot be
linearly independent, because S spans V , and w is therefore a linear combination of the
elements in S .

EXAMPLE 11 The following three sets in R3 show how a linearly independent set
can be enlarged to a basis and how further enlargement destroys the linear independence
of the set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys
the spanning property.8<:

24 1

0

0

35;

24 2

3

0

359=;
8<:
24 1

0

0

35;

24 2

3

0

35;

24 4

5

6

359=;
8<:
24 1

0

0

35;

24 2

3

0

35;

24 4

5

6

35;

24 7

8

9

359=;
Linearly independent A basis Spans R3 but is
but does not span R3 for R3 linearly dependent

Practice Problems

1. Let v1 D

24 1

�2

3

35 and v2 D

24�2

7

�9

35. Determine if fv1; v2g is a basis for R3. Is

fv1; v2g a basis for R2?

2. Let v1 D

24 1

�3

4

35, v2 D

24 6

2

�1

35, v3 D

24 2

�2

3

35, and v4 D

24�4

�8

9

35. Find a basis for
the subspace W spanned by fv1; v2; v3; v4g.

3. Let v1 D

24 1

0

0

35, v2 D

24 0

1

0

35, and H D

8<:
24 s

s

0

35 W s in R

9=;. Then every vector in H

is a linear combination of v1 and v2 because24 s

s

0

35 D s

24 1

0

0

35C s

24 0

1

0

35
Is fv1; v2g a basis for H?

4. Let V and W be vector spaces, let T W V ! W and U W V ! W be linear transfor-
mations, and let fv1;…; vpg be a basis for V . If T .vj / D U.vj / for every value of

STUDY GUIDE offers additional
resources for mastering the
concept of basis. j between 1 and p, show that T .x/ D U.x/ for every vector x in V .

4.3 Exercises
Determinewhich sets in Exercises 1–8 are bases forR3. Of the sets
that are not bases, determine which ones are linearly independent
and which ones span R3. Justify your answers.

1.

24 1

0

0

35, 24 1

1

0

35, 24 1

1

1

35 2.

24 1

0

1

35, 24 0

0

0

35, 24 0

1

0

35
3.

24 1

0

�2

35, 24 3

2

�4

35, 24�3

�5

1

35 4.

24 2

�2

1

35, 24 1

�3

2

35, 24�7

5

4

35

5.

24 1

�3

0

35, 24�2

9

0

35, 24 0

0

0

35, 24 0

�3

5

35 6.

24 1

2

�3

35, 24�4

�5

6

35
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7.

24�2

3

0

35, 24 6

�1

5

35 8.

24 1

�4

3

35, 24 0

3

�1

35, 24 3

�5

4

35, 24 0

2

�2

35
Find bases for the null spaces of the matrices given in Exercises 9
and 10. Refer to the remarks that follow Example 3 in Section 4.2.

9.

24 1 0 �3 2

0 1 �5 4

3 �2 1 �2

35 10.

24 1 0 �5 1 4

�2 1 6 �2 �2

0 2 �8 1 9

35
11. Find a basis for the set of vectors in R3 in the plane

x C 4y � 5´ D 0. [Hint: Think of the equation as a “system”
of homogeneous equations.]

12. Find a basis for the set of vectors in R2 on the line y D 5x.

In Exercises 13 and 14, assume thatA is row equivalent toB . Find
bases for NulA, ColA, and RowA.

13. A D

24�2 4 �2 �4

2 �6 �3 1

�3 8 2 �3

35, B D

241 0 6 5

0 2 5 3

0 0 0 0

35

14. A D

2664
1 2 �5 11 �3

2 4 �5 15 2

1 2 0 4 5

3 6 �5 19 �2

3775,

B D

2664
1 2 0 4 5

0 0 5 �7 8

0 0 0 0 �9

0 0 0 0 0

3775
In Exercises 15–18, find a basis for the space spanned by the given
vectors, v1; : : : ; v5.

15.

2664
1

0

�3

2

3775,
2664

0

1

2

�3

3775,
2664
�3

�4

1

6

3775,
2664

1

�3

�8

7

3775,
2664

2

1

�6

9

3775

16.

2664
1

0

0

1

3775,
2664
�2

1

�1

1

3775,
2664

6

�1

2

�1

3775,
2664

5

�3

3

�4

3775,
2664

0

3

�1

1

3775

T 17.

266664
8

9

�3

�6

0

377775,
266664

4

5

1

�4

4

377775,
266664
�1

�4

�9

6

�7

377775,
266664

6

8

4

�7

10

377775,
266664
�1

4

11

�8

�7

377775

T 18.

266664
�8

7

6

5

�7

377775,
266664

8

�7

�9

�5

7

377775,
266664
�8

7

4

5

�7

377775,
266664

1

4

9

6

�7

377775,
266664
�9

3

�4

�1

0

377775

19. Let v1 D

24 4

�3

7

35, v2 D

24 1

9

�2

35, v3 D

24 7

11

6

35, and H D

Span fv1; v2; v3g. It can be verified that 4v1 C 5v2 � 3v3 D 0.
Use this information to find a basis forH . There is more than
one answer.

20. Let v1 D

2664
7

4

�9

�5

3775, v2 D

2664
4

�7

2

5

3775, v3 D

2664
1

�5

3

4

3775. It can be ver-
ified that v1 � 3v2 C 5v3 D 0. Use this information to find a
basis for H D Span fv1; v2; v3g.

In Exercises 21–32, mark each statement True or False (T/F).
Justify each answer.

21. (T/F) A single vector by itself is linearly dependent.

22. (T/F) A linearly independent set in a subspace H is a basis
for H .

23. (T/F) If H D Span fb1; : : : ; bpg, then fb1; : : : ; bpg is a basis
for H .

24. (T/F) If a finite set S of nonzero vectors spans a vector space
V , then some subset of S is a basis for V .

25. (T/F) The columns of an invertible n � n matrix form a basis
for Rn.

26. (T/F) A basis is a linearly independent set that is as large as
possible.

27. (T/F) A basis is a spanning set that is as large as possible.

28. (T/F) The standard method for producing a spanning set for
Nul A, described in Section 4.2, sometimes fails to produce
a basis for Nul A.

29. (T/F) In some cases, the linear dependence relations among
the columns of a matrix can be affected by certain elementary
row operations on the matrix.

30. (T/F) If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col A.

31. (T/F) Row operations preserve the linear dependence rela-
tions among the rows of A.

32. (T/F) If A and B are row equivalent, then their row spaces
are the same.

33. Suppose R4 D Span fv1; : : : ; v4g. Explain why fv1; : : : ; v4g

is a basis for R4.

34. Let B D fv1; : : : ; vng be a linearly independent set in Rn.
Explain why B must be a basis for Rn.
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35. Let v1 D

24 1

0

1

35, v2 D

24 0

1

1

35, v3 D

24 0

1

0

35, and let H be the

set of vectors in R3 whose second and third entries are equal.
Then every vector in H has a unique expansion as a linear
combination of v1; v2; v3, because24 s

t

t

35 D s

24 1

0

1

35C .t � s/

24 0

1

1

35C s

24 0

1

0

35
for any s and t . Is fv1; v2; v3g a basis forH?Why or why not?

36. In the vector space of all real-valued functions, find a basis
for the subspace spanned by fsin t; sin 2t; sin t cos tg.

37. Let V be the vector space of functions that describe the
vibration of a mass–spring system. (Refer to Exercise 19 in
Section 4.1.) Find a basis for V .

38. (RLC circuit) The circuit in the figure consists of a resistor
(R ohms), an inductor (L henrys), a capacitor (C farads),
and an initial voltage source. Let b D R=.2L/, and sup-
pose R, L, and C have been selected so that b also equals
1=
p

LC . (This is done, for instance, when the circuit is used
in a voltmeter.) Let v.t/ be the voltage (in volts) at time
t , measured across the capacitor. It can be shown that v is
in the null space H of the linear transformation that maps
v.t/ into Lv00.t/CRv0.t/C .1=C /v.t/, and H consists of
all functions of the form v.t/ D e�bt .c1 C c2t /. Find a basis
for H .

Voltage
source

L

R

C

Exercises 39 and 40 show that every basis for Rn must contain
exactly n vectors.

39. Let S D fv1; : : : ; vkg be a set of k vectors in Rn, with k < n.
Use a theorem from Section 1.4 to explain why S cannot be
a basis for Rn.

40. Let S D fv1; : : : ; vkg be a set of k vectors in Rn, with k > n.
Use a theorem from Chapter 1 to explain why S cannot be a
basis for Rn.

Exercises 41 and 42 reveal an important connection between
linear independence and linear transformations and provide prac-
tice using the definition of linear dependence. Let V and W be
vector spaces, let T W V ! W be a linear transformation, and let
fv1; : : : ; vpg be a subset of V .

41. Show that if fv1; : : : ; vpg is linearly dependent in V , then
the set of images, fT .v1/; : : : ; T .vp/g, is linearly dependent
in W . This fact shows that if a linear transformation
maps a set fv1; : : : ; vpg onto a linearly independent set
fT .v1/; : : : ; T .vp/g, then the original set is linearly indepen-
dent, too (because it cannot be linearly dependent).

42. Suppose that T is a one-to-one transformation, so that an
equationT .u/ D T .v/ always implies u D v. Show that if the
set of images fT .v1/; : : : ; T .vp/g is linearly dependent, then
fv1; : : : ; vpg is linearly dependent. This fact shows that a one-
to-one linear transformation maps a linearly independent set
onto a linearly independent set (because in this case the set
of images cannot be linearly dependent).

43. Consider the polynomials p1.t/ D 1C t2 and p2.t/ D 1 �

t2. Is fp1; p2g a linearly independent set in P3? Why or why
not?

44. Consider the polynomials p1.t/ D 1C t , p2.t/ D 1 � t , and
p3.t/ D 2 (for all t ). By inspection, write a linear depen-
dence relation among p1, p2, and p3. Then find a basis for
Span fp1; p2; p3g.

45. Let V be a vector space that contains a linearly indepen-
dent set fu1; u2; u3; u4g. Describe how to construct a set of
vectors fv1; v2; v3; v4g in V such that fv1; v3g is a basis for
Span fv1; v2; v3; v4g.

T 46. LetH D Span fu1; u2; u3g andK D Span fv1; v2; v3g, where

u1 D

2664
1

3

0

�1

3775; u2 D

2664
0

3

�2

1

3775; u3 D

2664
2

�3

6

�5

3775;

v1 D

2664
�4

3

2

1

3775; v2 D

2664
1

9

�4

1

3775; v3 D

2664
�1

7

6

5

3775
Find bases for H , K, and H CK. (See Exercises 41 and 42
in Section 4.1.)

T 47. Show that ft; sin t; cos 2t; sin t cos tg is a linearly independent
set of functions defined on R. Start by assuming that

c1t C c2 sin t C c3 cos 2t C c4 sin t cos t D 0 (5)

Equation (5)must hold for all real t , so choose several specific
values of t (say, t D 0; :1; :2/ until you get a system of
enough equations to determine that all the cj must be zero.

T 48. Show that f1; cos t; cos2 t; : : : ; cos6 tg is a linearly indepen-
dent set of functions defined on R. Use the method of
Exercise 47. (This result will be needed in Exercise 54 in
Section 4.5.)
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Solutions to Practice Problems

1. Let A D Œ v1 v2 �. Row operations show that

A D

24 1 �2

�2 7

3 �9

35 � 24 1 �2

0 3

0 0

35
Not every row of A contains a pivot position. So the columns of A do not span R3,
by Theorem 4 in Section 1.4. Hence fv1; v2g is not a basis for R3. Since v1 and
v2 are not in R2, they cannot possibly be a basis for R2. However, since v1 and v2

are obviously linearly independent, they are a basis for a subspace of R3, namely
Span fv1; v2g.

2. Set up a matrix A whose column space is the space spanned by fv1; v2; v3; v4g, and
then row reduce A to find its pivot columns.

A D

24 1 6 2 �4

�3 2 �2 �8

4 �1 3 9

35 � 24 1 6 2 �4

0 20 4 �20

0 �25 �5 25

35 � 24 1 6 2 �4

0 5 1 �5

0 0 0 0

35
The first two columns of A are the pivot columns and hence form a basis of
ColA D W . Hence fv1; v2g is a basis for W . Note that the reduced echelon form of
A is not needed in order to locate the pivot columns.

3. Neither v1 nor v2 is in H , so fv1; v2g cannot be a basis for H . In fact, fv1; v2g is a
basis for the plane of all vectors of the form .c1; c2; 0/, but H is only a line.

4. Since fv1; : : : ; vpg is a basis for V , for any vector x in V , there exist scalars
c1; : : : ; cp such that x D c1v1 C � � � C cpvp . Then since T and U are linear trans-
formations

T .x/ D T .c1v1 C � � � C cpvp/ D c1T .v1/C � � � C cpT .vp/

D c1U.v1/C � � � C cpU.vp/ D U.c1v1 C � � � C cpvp/

D U.x/

4.4 Coordinate Systems
An important reason for specifying a basis B for a vector space V is to impose a
“coordinate system” on V . This section will show that if B contains n vectors, then
the coordinate system will make V act like Rn. If V is already Rn itself, then B will
determine a coordinate system that gives a new “view” of V .

The existence of coordinate systems rests on the following fundamental result.

THEOREM 8 The Unique Representation Theorem

Let B D fb1; : : : ; bng be a basis for a vector space V . Then for each x in V , there
exists a unique set of scalars c1; : : : ; cn such that

x D c1b1 C � � � C cnbn (1)
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PROOF Since B spans V , there exist scalars such that (1) holds. Suppose x also has the
representation

x D d1b1 C � � � C dnbn

for scalars d1; : : : ; dn. Then, subtracting, we have

0 D x � x D .c1 � d1/b1 C � � � C .cn � dn/bn (2)

Since B is linearly independent, the weights in (2) must all be zero. That is, cj D dj for
1 � j � n.

DEFINITION Suppose B D fb1; : : : ; bng is a basis for a vector space V and x is in V . The
coordinates of x relative to the basisB (or theB-coordinates of x) are the weights
c1; : : : ; cn such that x D c1b1 C � � � C cnbn.

If c1; : : : ; cn are the B-coordinates of x, then the vector in Rn

�
x
�
B D

264 c1

:::

cn

375
is the coordinate vector of x (relative to B/, or the B-coordinate vector of x. The
mapping x 7!

�
x
�
B is the coordinate mapping (determined by B/.1

EXAMPLE 1 Consider a basis B D fb1; b2g for R2, where b1 D

�
1

0

�
and

b2 D

�
1

2

�
. Suppose an x in R2 has the coordinate vector Œ x �B D

�
�2

3

�
. Find x.

SOLUTION The B-coordinates of x tell how to build x from the vectors in B. That is,

x D .�2/b1 C 3b2 D .�2/

�
1

0

�
C 3

�
1

2

�
D

�
1

6

�

EXAMPLE 2 The entries in the vector x D
�

1

6

�
are the coordinates of x relative to

the standard basis E D fe1; e2g, since�
1

6

�
D 1

�
1

0

�
C 6

�
0

1

�
D 1e1 C 6e2

If E D fe1; e2g, then Œ x �E D x.

A Graphical Interpretation of Coordinates
A coordinate system on a set consists of a one-to-one mapping of the points in the set
into Rn. For example, ordinary graph paper provides a coordinate system for the plane

1 The concept of a coordinate mapping assumes that the basis B is an indexed set whose vectors are listed in
some fixed preassigned order. This property makes the definition of Œ x �B unambiguous.
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when one selects perpendicular axes and a unit of measurement on each axis. Figure 1
shows the standard basis fe1; e2g, the vectors b1.D e1/ and b2 from Example 1, and the

vector x D
�

1

6

�
. The coordinates 1 and 6 give the location of x relative to the standard

basis: 1 unit in the e1 direction and 6 units in the e2 direction.
Figure 2 shows the vectors b1, b2, and x from Figure 1. (Geometrically, the three

vectors lie on a vertical line in both figures.) However, the standard coordinate grid
was erased and replaced by a grid especially adapted to the basis B in Example 1. The

coordinate vector Œ x �B D

�
�2

3

�
gives the location of x on this new coordinate system:

�2 units in the b1 direction and 3 units in the b2 direction.

b2

x

b1 5 e1

e2

0

FIGURE 1 Standard graph
paper.

b2

b1

x

0

FIGURE 2 B-graph paper.

EXAMPLE 3 In crystallography, the description of a crystal lattice is aided by
choosing a basis fu; v;wg for R3 that corresponds to three adjacent edges of one “unit
cell” of the crystal. An entire lattice is constructed by stacking together many copies of
one cell. There are fourteen basic types of unit cells; three are displayed in Figure 3.2

(b)
Body-centered

cubic

u
v

w

0

(c)
Face-centered
orthorhombic

0

u

w

v

(a)
Simple

monoclinic

0

u

w

v

FIGURE 3 Examples of unit cells.

The coordinates of atoms within the crystal are given relative to the basis for the
lattice. For instance, 24 1=2

1=2

1

35
identifies the top face-centered atom in the cell in Figure 3(c).

2Adapted from The Science and Engineering of Materials, 4th Ed., by Donald R. Askeland (Boston: Prindle,
Weber & Schmidt, © 2002), p. 36.
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Coordinates in Rn

When a basis B for Rn is fixed, the B-coordinate vector of a specified x is easily found,
as in the next example.

EXAMPLE 4 Let b1 D

�
2

1

�
, b2 D

�
�1

1

�
, x D

�
4

5

�
, and B D fb1; b2g. Find the

coordinate vector Œ x �B of x relative to B.

SOLUTION The B-coordinates c1, c2 of x satisfy

c1

�
2

1

�
b1

C c2

�
�1

1

�
b2

D

�
4

5

�
x

or �
2 �1

1 1

�
b1 b2

�
c1

c2

�
D

�
4

5

�
x

(3)

This equation can be solved by row operations on an augmented matrix or by
multiplying the vector x by the inverse of the matrix. In any case, the solution is c1 D 3,
c2 D 2. Thus x D 3b1 C 2b2, and

Œ x �B D

�
c1

c2

�
D

�
3

2

�
See Figure 4.

b2 b1

x

FIGURE 4

The B-coordinate vector of x is
.3; 2/.

The matrix in (3) changes the B-coordinates of a vector x into the standard
coordinates for x. An analogous change of coordinates can be carried out in Rn for a
basis B D fb1; : : : ; bng. Let

PB D Œ b1 b2 � � � bn �

Then the vector equation

x D c1b1 C c2b2 C � � � C cnbn

is equivalent to

x D PBŒ x �B (4)

We call PB the change-of-coordinates matrix from B to the standard basis in Rn.
Left-multiplication by PB transforms the coordinate vector Œ x �B into x. The change-of-
coordinates equation (4) is important and will be needed at several points in Chapters 5
and 7.

Since the columns of PB form a basis for Rn, PB is invertible (by the Invertible
Matrix Theorem). Left-multiplication by P�1

B converts x into its B-coordinate vector:

P�1
B x D Œ x �B

The correspondence x 7! Œ x �B, produced here by P�1
B , is the coordinate mapping

mentioned earlier. Since P�1
B is an invertible matrix, the coordinate mapping is a one-

to-one linear transformation from Rn onto Rn, by the Invertible Matrix Theorem. (See
also Theorem 12 in Section 1.9.) This property of the coordinate mapping is also true in
a general vector space that has a basis, as we shall see.
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The Coordinate Mapping
Choosing a basis B D fb1; : : : ; bng for a vector space V introduces a coordinate system
in V . The coordinate mapping x 7! Œ x �B connects the possibly unfamiliar space V to the
familiar spaceRn. See Figure 5. Points in V can now be identified by their new “names.”

Rn
V

[ ]

[x]x

FIGURE 5 The coordinate mapping from V

onto Rn.

THEOREM 9 LetB D fb1; : : : ; bng be a basis for a vector spaceV . Then the coordinatemapping
x 7! Œ x �B is a one-to-one linear transformation from V onto Rn.

PROOF Take two typical vectors in V , say,

u D c1b1 C � � � C cnbn

w D d1b1 C � � � C dnbn

Then, using vector operations,

uC w D .c1 C d1/b1 C � � � C .cn C dn/bn

It follows that

Œ uC w �B D

264 c1 C d1

:::

cn C dn

375 D
264 c1

:::

cn

375C
264 d1

:::

dn

375 D Œ u �B C Œw �B

So the coordinate mapping preserves addition. If r is any scalar, then

ru D r.c1b1 C � � � C cnbn/ D .rc1/b1 C � � � C .rcn/bn

So

Œ ru �B D

264 rc1

:::

rcn

375 D r

264 c1

:::

cn

375 D rŒ u �B

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear
transformation. See Exercises 27 and 28 for verification that the coordinate mapping is
one-to-one and maps V onto Rn.

The linearity of the coordinate mapping extends to linear combinations, just as in
Section 1.8. If u1; : : : ; up are in V and if c1; : : : ; cp are scalars, then

Œ c1u1 C � � � C cpup �B D c1Œ u1 �B C � � � C cpŒ up �B (5)
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In words, (5) says that the B-coordinate vector of a linear combination of u1; : : : ; up is
the same linear combination of their coordinate vectors.

The coordinate mapping in Theorem 9 is an important example of an isomorphism
from V onto Rn. In general, a one-to-one linear transformation from a vector space V

onto a vector space W is called an isomorphism from V onto W (iso from the Greek
for “the same,” and morph from the Greek for “form” or “structure”). The notation and
terminology for V and W may differ, but the two spaces are indistinguishable as vector
spaces. Every vector space calculation in V is accurately reproduced in W, and viceSTUDY GUIDE offers additional

resources about isomorphic vector
spaces.

versa. In particular, any real vector space with a basis of n vectors is indistinguishable
from Rn. See Exercises 29 and 30.

EXAMPLE 5 Let B be the standard basis of the space P3 of polynomials; that is, let
B D f1; t; t2; t3g. A typical element p of P3 has the form

p.t/ D a0 C a1t C a2t2
C a3t3

Since p is already displayed as a linear combination of the standard basis vectors, we
conclude that

Œ p �B D

2664
a0

a1

a2

a3

3775
Thus the coordinate mapping p 7! Œ p �B is an isomorphism from P3 onto R4. All vector
space operations in P3 correspond to operations in R4.

If we think of P3 andR4 as displays on two computer screens that are connected via
the coordinate mapping, then every vector space operation in P3 on one screen is exactly
duplicated by a corresponding vector operation in R4 on the other screen. The vectors
on the P3 screen look different from those on the R4 screen, but they “act” as vectors in
exactly the same way. See Figure 6.

a0 1 a1t 1 a2t2 1 a3t 3

a0

a1

a2

a3

FIGURE 6 The space P3 is isomorphic to R4.

EXAMPLE 6 Use coordinate vectors to verify that the polynomials 1C 2t2,
4C t C 5t2, and 3C 2t are linearly dependent in P2.

SOLUTION The coordinate mapping from Example 5 produces the coordinate vectors
.1; 0; 2/, .4; 1; 5/, and .3; 2; 0/, respectively. Writing these vectors as the columns of a
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matrix A, we can determine their independence by row reducing the augmented matrix
for Ax D 0: 24 1 4 3 0

0 1 2 0

2 5 0 0

35 � 24 1 4 3 0

0 1 2 0

0 0 0 0

35
The columns of A are linearly dependent, so the corresponding polynomials are linearly
dependent. In fact, it is easy to check that column 3 of A is 2 times column 2 minus 5
times column 1. The corresponding relation for the polynomials is

3C 2t D 2.4C t C 5t2/ � 5.1C 2t2/

The final example concerns a plane in R3 that is isomorphic to R2.

EXAMPLE 7 Let

v1 D

24 3

6

2

35; v2 D

24�1

0

1

35; x D

24 3

12

7

35;

and B D fv1; v2g. Then B is a basis for H D Span fv1; v2g. Determine if x is in H , and
if it is, find the coordinate vector of x relative to B.

SOLUTION If x is in H , then the following vector equation is consistent:

c1

24 3

6

2

35C c2

24�1

0

1

35 D 24 3

12

7

35
The scalars c1 and c2, if they exist, are the B-coordinates of x. Using row operations, we
obtain 24 3 �1 3

6 0 12

2 1 7

35 � 24 1 0 2

0 1 3

0 0 0

35
Thus c1 D 2, c2 D 3, and Œ x �B D

�
2

3

�
. The coordinate system on H determined by B

is shown in Figure 7.

x 5 2v1 1 3v2

v1

2v1

3v2

2v2

v2

0

x2
x1

x3

FIGURE 7 A coordinate system on a plane H in R3.



262 CHAPTER 4 Vector Spaces

If a different basis for H were chosen, would the associated coordinate system also
makeH isomorphic toR2? Surely, this must be true.We shall prove it in the next section.

Practice Problems

1. Let b1 D

24 1

0

0

35, b2 D

24�3

4

0

35, b3 D

24 3

�6

3

35, and x D 24�8

2

3

35.
a. Show that the set B D fb1; b2; b3g is a basis of R3.

b. Find the change-of-coordinates matrix from B to the standard basis.

c. Write the equation that relates x in R3 to Œ x �B.

d. Find Œ x �B, for the x given above.

2. The set B D f1C t; 1C t2; t C t2g is a basis for P2. Find the coordinate vector of
p.t/ D 6C 3t � t2 relative to B.

4.4 Exercises
In Exercises 1–4, find the vector x determined by the given coor-
dinate vector Œ x �B and the given basis B.

1. B D
��

3

�5

�
;

�
�4

6

��
, Œ x �B D

�
5

3

�
2. B D

��
4

5

�
;

�
6

7

��
, Œ x �B D

�
8

�5

�

3. B D

8<:
24 1

�8

6

35 ;

24 2

�5

7

35 ;

24 3

9

�4

359=;, Œ x �B D

24 2

�3

0

35
4. B D

8<:
24�1

2

0

35 ;

24 3

�5

2

35 ;

24 4

�7

3

359=;, Œ x �B D

24�4

8

�7

35
In Exercises 5–8, find the coordinate vector Œ x �B of x relative to
the given basis B D fb1; : : : ; bng.

5. b1 D

�
1

�3

�
, b2 D

�
2

�5

�
, x D

�
�2

1

�
6. b1 D

�
1

�2

�
, b2 D

�
5

�6

�
, x D

�
4

0

�

7. b1 D

24 1

�1

�3

35, b2 D

24�3

4

9

35, b3 D

24 2

�2

4

35, x D 24 8

�9

6

35
8. b1 D

241

0

4

35, b2 D

243

1

7

35, b3 D

24 1

�1

5

35, x D 241

3

1

35
In Exercises 9 and 10, find the change-of-coordinates matrix from
B to the standard basis in Rn.

9. B D
��

2

�9

�
,
�

1

8

��

10. B D

8<:
24 5

�2

3

35 , 24 4

0

�1

35, 24 3

�7

8

359=;
In Exercises 11 and 12, use an inverse matrix to find Œ x �B for the
given x and B.

11. B D
��

3

�5

�
;

�
�4

6

��
; x D

�
2

�6

�
12. B D

��
4

5

�
;

�
6

7

��
; x D

�
2

0

�
13. The set B D f1C t2; t C t2; 1C 2t C t2g is a basis for P2.

Find the coordinate vector of p.t/ D 1C 4t C 7t2 relative
to B.

14. The set B D f1 � t2; t � t2; 2 � 2t C t2g is a basis for P2.
Find the coordinate vector of p.t/ D 3C t � 6t2 relative
to B.

In Exercises 15–20, mark each statement True or False (T/F).
Justify each answer. Unless stated otherwise, B is a basis for a
vector space V .

15. (T/F) If x is in V and if B contains n vectors, then the B-
coordinate vector of x is in Rn.

16. (T/F) If B is the standard basis for Rn, then the B-coordinate
vector of an x in Rn is x itself.

17. (T/F) If PB is the change-of-coordinates matrix, then Œx�B D

PB x, for x in V .

18. (T/F) The correspondence Œ x �B 7! x is called the coordinate
mapping.

19. (T/F) The vector spaces P3 and R3 are isomorphic.

20. (T/F) In some cases, a plane in R3 can be isomorphic to R2.
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21. The vectors v1 D

�
1

�3

�
, v2 D

�
2

�8

�
, v3 D

�
�3

7

�
spanR2

but do not form a basis. Find two different ways to express�
1

1

�
as a linear combination of v1, v2, v3.

22. LetB D fb1; : : : ; bng be a basis for a vector space V . Explain
why the B-coordinate vectors of b1; : : : ; bn are the columns
e1; : : : ; en of the n � n identity matrix.

23. Let S be a finite set in a vector space V with the prop-
erty that every x in V has a unique representation as a
linear combination of elements of S . Show that S is a basis
of V .

24. Suppose fv1; : : : ; v4g is a linearly dependent spanning set for
a vector space V . Show that each w in V can be expressed
in more than one way as a linear combination of v1; : : : ; v4.
[Hint:Letw D k1v1 C � � � C k4v4 be an arbitrary vector inV .
Use the linear dependence of fv1; : : : ; v4g to produce another
representation of w as a linear combination of v1; : : : ; v4.]

25. Let B D
��

1

�2

�
;

�
�3

7

��
. Since the coordinate mapping

determined by B is a linear transformation from R2 into R2,
this mapping must be implemented by some 2 � 2 matrix A.
Find it. [Hint:Multiplication by A should transform a vector
x into its coordinate vector Œ x �B.]

26. LetB D fb1; : : : ; bng be a basis forRn. Produce a description
of an n � nmatrixA that implements the coordinate mapping
x 7! Œ x �B. (See Exercise 25.)

Exercises 27–30 concern a vector space V , a basis B D
fb1; : : : ; bng, and the coordinate mapping x 7! Œ x �B.

27. Show that the coordinate mapping is one-to-one. [Hint: Sup-
pose Œ u �B D Œ w �B for some u and w in V , and show that
u D w.]

28. Show that the coordinate mapping is onto Rn. That is, given
any y inRn, with entries y1; : : : ; yn, produce u in V such that
Œ u �B D y.

29. Show that a subset fu1; : : : ; upg inV is linearly independent if
and only if the set of coordinate vectors fŒ u1 �B; : : : ; Œ up �Bg

is linearly independent in Rn. [Hint: Since the coordinate
mapping is one-to-one, the following equations have the same
solutions, c1; : : : ; cp .]

c1u1 C � � � C cpup D 0 The zero vector in V

Œ c1u1 C � � � C cpup �B D Œ 0 �B The zero vector in Rn

30. Given vectors u1; : : : ; up , and w in V , show that w is a linear
combination of u1; : : : ; up if and only if Œ w �B is a linear
combination of the coordinate vectors Œ u1 �B; : : : ; Œ up �B.

In Exercises 31–34, use coordinate vectors to test the linear inde-
pendence of the sets of polynomials. Explain your work.

31. f1C 2t3; 2C t � 3t2; �t C 2t2 � t3g

32. f1 � 2t2 � t3; t C 2t3; 1C t � 2t2g

33. f.1 � t /2; t � 2t2 C t3; .1 � t /3g

34. f.2 � t /3; .3 � t /2; 1C 6t � 5t2 C t3g

35. Use coordinate vectors to test whether the following sets of
polynomials span P2. Justify your conclusions.

a. f1 � 3t C 5t2;�3C 5t � 7t2;�4C 5t � 6t2; 1 � t2g

b. f5t C t2; 1 � 8t � 2t2;�3C 4t C 2t2; 2 � 3tg

36. Let p1.t/ D 1C t2, p2.t/ D t � 3t2, p3.t/ D 1C t � 3t2.

a. Use coordinate vectors to show that these polynomials
form a basis for P2.

b. Consider the basis B D fp1; p2; p3g for P2. Find q in P2,

given that Œq�B D

24�1

1

2

35.
In Exercises 37 and 38, determine whether the sets of polynomials
form a basis for P3. Justify your conclusions.

T 37. 3C 7t; 5C t � 2t3; t � 2t2; 1C 16t � 6t2 C 2t3

T 38. 5 � 3t C 4t2 C 2t3; 9C t C 8t2 � 6t3; 6 � 2t C 5t2; t3

T 39. Let H D Span fv1; v2g and B D fv1; v2g. Show that x is in
H and find the B-coordinate vector of x, for

v1 D

2664
11

�5

10

7

3775; v2 D

2664
14

�8

13

10

3775; x D

2664
19

�13

18

15

3775
T 40. LetH D Span fv1; v2; v3g and B D fv1; v2; v3g. Show that B

is a basis forH and x is inH , and find theB-coordinate vector
of x, for

v1 D

2664
�6

4

�9

4

3775; v2 D

2664
8

�3

7

�3

3775; v3 D

2664
�9

5

�8

3

3775; x D

2664
4

7

�8

3

3775
Exercises 41 and 42 concern the crystal lattice for titanium, which
has the hexagonal structure shown on the left in the accompany-

ing figure. The vectors

24 2:6

�1:5

0

35, 24 0

3

0

35, 24 0

0

4:8

35 in R3 form a

basis for the unit cell shown on the right. The numbers here are
Ångstrom units (1 Å D 10�8 cm). In alloys of titanium, some
additional atoms may be in the unit cell at the octahedral and
tetrahedral sites (so named because of the geometric objects
formed by atoms at these locations).
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u

w

v0

The hexagonal close-packed lattice and its unit cell.

41. One of the octahedral sites is

24 1=2

1=4

1=6

35, relative to the lattice
basis. Determine the coordinates of this site relative to the
standard basis of R3.

42. One of the tetrahedral sites is

24 1=2

1=2

1=3

35. Determine the coor-
dinates of this site relative to the standard basis of R3.

Solutions to Practice Problems

1. a. It is evident that the matrixPB D Œ b1 b2 b3 � is row-equivalent to the identity
matrix. By the Invertible Matrix Theorem, PB is invertible and its columns form
a basis for R3.

b. From part (a), the change-of-coordinates matrix is PB D

24 1 �3 3

0 4 �6

0 0 3

35.
c. x D PBŒ x �B
d. To solve the equation in (c), it is probably easier to row reduce an augmented

matrix than to compute P�1
B :24 1 �3 3 �8

0 4 �6 2

0 0 3 3

35
PB x

�

24 1 0 0 �5

0 1 0 2

0 0 1 1

35
I Œ x �B

Hence

Œ x �B D

24�5

2

1

35
2. The coordinates of p.t/ D 6C 3t � t2 with respect to B satisfy

c1.1C t /C c2.1C t2/C c3.t C t2/ D 6C 3t � t2

Equating coefficients of like powers of t , we have

c1 C c2 D 6

c1 C c3 D 3

c2 C c3 D �1

Solving, we find that c1 D 5, c2 D 1, c3 D �2, and Œ p �B D

24 5

1

�2

35.
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4.5 The Dimension of a Vector Space
Theorem 9 in Section 4.4 implies that a vector space V with a basis B containing n

vectors is isomorphic toRn. This section shows that this number n is an intrinsic property
(called the dimension) of the space V that does not depend on the particular choice of
basis. The discussion of dimension will give additional insight into properties of bases.

The first theorem generalizes a well-known result about the vector space Rn.

THEOREM 10 If a vector space V has a basis B D fb1; : : : ; bng, then any set in V containing
more than n vectors must be linearly dependent.

PROOF Let fu1; : : : ; upg be a set in V with more than n vectors. The coordinate vectors
Œ u1 �B; : : : ; Œ up �B form a linearly dependent set in Rn, because there are more vectors
(p) than entries (n) in each vector. So there exist scalars c1; : : : ; cp , not all zero, such
that

c1Œ u1 �B C � � � C cpŒ up �B D

264 0
:::

0

375 The zero vector in Rn

Since the coordinate mapping is a linear transformation,

�
c1u1 C � � � C cpup

�
B D

264 0
:::

0

375
The zero vector on the right displays the n weights needed to build the vector c1u1

C � � � C cpup from the basis vectors in B. That is, c1u1 C � � � C cpup D 0b1 C � � � C

0bn D 0. Since the ci are not all zero, fu1; : : : ; upg is linearly dependent.1

Theorem 10 implies that if a vector space V has a basis B D fb1; : : : ; bng, then each
linearly independent set in V has no more than n vectors.

THEOREM 11 If a vector space V has a basis of n vectors, then every basis of V must consist of
exactly n vectors.

PROOF Let B1 be a basis of n vectors and B2 be any other basis (of V ). Since B1 is
a basis and B2 is linearly independent, B2 has no more than n vectors, by Theorem 10.
Also, since B2 is a basis and B1 is linearly independent, B2 has at least n vectors. Thus
B2 consists of exactly n vectors.

1 Theorem 10 also applies to infinite sets in V . An infinite set is said to be linearly dependent if some finite
subset is linearly dependent; otherwise, the set is linearly independent. If S is an infinite set in V , take any
subset fu1; : : : ;upg of S , with p > n. The proof above shows that this subset is linearly dependent and
hence so is S .
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If a nonzero vector space V is spanned by a finite set S , then a subset of S is a basis
for V , by the Spanning Set Theorem. In this case, Theorem 11 ensures that the following
definition makes sense.

DEFINITION If a vector spaceV is spanned by a finite set, thenV is said to be finite-dimensional,
and the dimension of V , written as dimV , is the number of vectors in a basis for
V . The dimension of the zero vector space f0g is defined to be zero. If V is not
spanned by a finite set, then V is said to be infinite-dimensional.

EXAMPLE 1 The standard basis for Rn contains n vectors, so dimRn D n. The
standard polynomial basis f1; t; t2g shows that dimP2 D 3. In general, dimPn D nC 1.
The space P of all polynomials is infinite-dimensional.

EXAMPLE 2 LetH D Span fv1; v2g, where v1 D

24 3

6

2

35 and v2 D

24�1

0

1

35. ThenH

is the plane studied in Example 7 in Section 4.4. A basis for H is fv1; v2g, since v1 and
v2 are not multiples and hence are linearly independent. Thus dimH D 2.

EXAMPLE 3 Find the dimension of the subspace
x2

0

x3

x1

2v1

v1

3v2

2v2

v2

H D

8̂̂<̂
:̂
2664

a � 3b C 6c

5aC 4d

b � 2c � d

5d

3775 W a, b, c, d in R

9>>=>>;
SOLUTION It is easy to see that H is the set of all linear combinations of the vectors

v1 D

2664
1

5

0

0

3775; v2 D

2664
�3

0

1

0

3775; v3 D

2664
6

0

�2

0

3775; v4 D

2664
0

4

�1

5

3775
Clearly, v1 ¤ 0, v2 is not a multiple of v1, but v3 is a multiple of v2. By the Spanning
Set Theorem, we may discard v3 and still have a set that spans H . Finally, v4 is not a
linear combination of v1 and v2. So fv1; v2; v4g is linearly independent (by Theorem 4
in Section 4.3) and hence is a basis for H . Thus dimH D 3.

EXAMPLE 4 The subspaces of R3 can be classified by dimension. See Figure 1.

0-dimensional subspaces. Only the zero subspace.

1-dimensional subspaces. Any subspace spanned by a single nonzero vector. Such
subspaces are lines through the origin.

2-dimensional subspaces. Any subspace spanned by two linearly independent
vectors. Such subspaces are planes through the origin.

3-dimensional subspaces. Only R3 itself. Any three linearly independent vectors
in R3 span all of R3, by the Invertible Matrix Theorem.
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x2

x1

(a)

0-dim

1-dim

x2

x1

(b) (c)

3-dim

2-dim2-dim

x1

x2

x3x3x3

FIGURE 1 Sample subspaces of R3.

Subspaces of a Finite-Dimensional Space
The next theorem is a natural counterpart to the Spanning Set Theorem.

THEOREM 12 Let H be a subspace of a finite-dimensional vector space V . Any linearly inde-
pendent set in H can be expanded, if necessary, to a basis for H . Also, H is
finite-dimensional and

dimH � dimV

PROOF If H D f0g, then certainly dimH D 0 � dimV . Otherwise, let S D fu1; : : : ;

ukg be any linearly independent set in H . If S spans H , then S is a basis for H .
Otherwise, there is some ukC1 in H that is not in SpanS . But then fu1; : : : ; uk ; ukC1g

will be linearly independent, because no vector in the set can be a linear combination of
vectors that precede it (by Theorem 4).

So long as the new set does not span H , we can continue this process of expanding
S to a larger linearly independent set in H . But the number of vectors in a linearly
independent expansion of S can never exceed the dimension of V , by Theorem 10.
So eventually the expansion of S will span H and hence will be a basis for H , and
dimH � dimV .

When the dimension of a vector space or subspace is known, the search for a basis
is simplified by the next theorem. It says that if a set has the right number of elements,
then one has only to show either that the set is linearly independent or that it spans the
space. The theorem is of critical importance in numerous applied problems (involving
differential equations or difference equations, for example) where linear independence
is much easier to verify than spanning.

THEOREM 13 The Basis Theorem

Let V be a p-dimensional vector space, p � 1. Any linearly independent set of
exactly p elements in V is automatically a basis for V . Any set of exactly p

elements that spans V is automatically a basis for V .

PROOF By Theorem 12, a linearly independent set S of p elements can be extended
to a basis for V . But that basis must contain exactly p elements, since dimV D p. So S

must already be a basis for V . Now suppose that S has p elements and spans V . Since
V is nonzero, the Spanning Set Theorem implies that a subset S 0 of S is a basis of V .
Since dimV D p, S 0 must contain p vectors. Hence S D S 0.
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The Dimensions of Nul A, Col A, and Row A
Since the dimensions of the null space and column space of anm � nmatrix are referred
to frequently, they have specific names:

DEFINITION The rank of anm � nmatrixA is the dimension of the column space and the nullity
of A is the dimension of the null space.

The pivot columns of a matrix A form a basis for Col A, so the rank of A is just
the number of pivot columns. Since a basis for Row A can be found by taking the pivot
rows from the row reduced echelon form of A, the dimension of Row A is also equal to
the rank of A.

The nullity of A might seem to require more work, since finding a basis for Nul A

usually takes more time than finding a basis for Col A. There is a shortcut: Let A be
an m � n matrix, and suppose the equation Ax D 0 has k free variables. From Section
4.2, we know that the standard method of finding a spanning set for Nul A will produce
exactly k linearly independent vectors—say, u1; : : : ; uk – one for each free variable. So
u1; : : : ; uk is a basis for Nul A, and the number of free variables determines the size of
the basis.

To summarize these facts for future reference:

The rank of an m � n matrix A is the number of pivot columns and the nullity of A

is the number of free variables. Since the dimension of the row space is the number
of pivot rows, it is also equal to the rank of A.

Putting these observations together results in the rank theorem.

THEOREM 14 The Rank Theorem

The dimensions of the column space and the null space of an m � n matrix A

satisfy the equation

rank AC nullity A D number of columns in A

PROOF By Theorem 6 in Section 4.3, rank A is the number of pivot columns in A.
The nullity of A equals the number of free variables in the equation Ax D 0. Expressed
another way, the nullity of A is the number of columns of A that are not pivot columns.
(It is the number of these columns, not the columns themselves, that is related to NulA.)
Obviously, �

number of
pivot columns

�
C

�
number of

nonpivot columns

�
D

�
number of
columns

�
This proves the theorem.
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EXAMPLE 5 Find the nullity and rank of

A D

24 �3 6 �1 1 �7

1 �2 2 3 �1

2 �4 5 8 �4

35
SOLUTION Row reduce the augmented matrix ŒA 0� to echelon form:

B D

24 1 �2 2 3 �1 0

0 0 1 2 �2 0

0 0 0 0 0 0

35
There are three free variables: x2; x4, and x5. Hence the nullity of A is 3. Also, the rank
of A is 2 because A has two pivot columns.

The ideas behind Theorem 14 are visible in the calculations in Example 5. The two
pivot positions in B , an echelon form of A, determine the basic variables and identify
the basis vectors for Col A and those for Row A.

EXAMPLE 6

a. If A is a 7 � 9 matrix with nullity 2, what is the rank of A?

b. Could a 6 � 9 matrix have nullity 2?

SOLUTION

a. Since A has 9 columns, .rank A/C 2 D 9, and hence rank A D 7.

b. No. If a 6 � 9 matrix, call it B , had a two-dimensional null space, it would have to
have rank 7, by the Rank Theorem. But the columns of B are vectors in R6, and so
the dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6.

The next example provides a nice way to visualize the subspaces we have been
studying. In Chapter 6, we will learn that Row A and Nul A have only the zero vector in
common and are actually perpendicular to each other. The same fact applies to Row AT

.D ColA/ and Nul AT . So Figure 2, which accompanies Example 7, creates a good
mental image for the general case.

EXAMPLE 7 Let A D

24 3 0 �1

3 0 �1

4 0 5

35. It is readily checked that Nul A is the

x2-axis, Row A is the x1x3-plane, Col A is the plane whose equation is x1 � x2 D 0,
and Nul AT is the set of all multiples of .1;�1; 0/. Figure 2 shows Nul A and Row A

in the domain of the linear transformation x 7! Ax; the range of this mapping, Col A, is
shown in a separate copy of R3, along with Nul AT .

A

00

x3

x1

x2

x1

x2

x3

3 3

Nul A Nul A
T

Row A Col A

FIGURE 2 Subspaces determined by a
matrix A.
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Applications to Systems of Equations
The Rank Theorem is a powerful tool for processing information about systems of
linear equations. The next example simulates the way a real-life problem using linear
equations might be stated, without explicit mention of linear algebra terms such as
matrix, subspace, and dimension.

EXAMPLE 8 A scientist has found two solutions to a homogeneous system of 40
equations in 42 variables. The two solutions are not multiples, and all other solutions
can be constructed by adding together appropriate multiples of these two solutions.
Can the scientist be certain that an associated nonhomogeneous system (with the same
coefficients) has a solution?

SOLUTION Yes. Let A be the 40 � 42 coefficient matrix of the system. The given
information implies that the two solutions are linearly independent and span Nul A.
So nullity A D 2. By the Rank Theorem, rank A D 42 � 2 D 40. Since R40 is the only
subspace ofR40 whose dimension is 40, ColAmust be all ofR40. This means that every
nonhomogeneous equation Ax D b has a solution.

Rank and the Invertible Matrix Theorem
The various vector space concepts associated with a matrix provide several more
statements for the Invertible Matrix Theorem. The new statements listed here follow
those in the original Invertible Matrix Theorem in Section 2.3 and other theorems in the
text where statements have been added to it.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n � n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of Rn.

n. Col A D Rn

o. rankA D n

p. nullity A D 0

q. Nul A D f0g

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other five statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

.g/) .n/) .o/) .p/) .q/) .d/

Statement (g), which says that the equationAx D b has at least one solution for each b in
Rn, implies (n), because ColA is precisely the set of all b such that the equationAx D b
is consistent. The implication .n/) .o/ follows from the definitions of dimension and
rank. If the rank of A is n, the number of columns of A, then nullity A D 0, by the
Rank Theorem, and so Nul A D f0g. Thus .o/) .p/) .q/. Also, (q) implies that the
equation Ax D 0 has only the trivial solution, which is statement (d). Since statements
(d) and (g) are already known to be equivalent to the statement that A is invertible, the
proof is complete.
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We have refrained from adding to the InvertibleMatrix Theorem obvious statements
about the row space of A, because the row space is the column space of AT . Recall from
statement (1) of the Invertible Matrix Theorem that A is invertible if and only if AT is
invertible. Hence every statement in the Invertible Matrix Theorem can also be stated
for AT . To do so would double the length of the theorem and produce a list of more than
30 statements!

Numerical Notes

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

apparent rank of a matrix. For instance, if the value of x in the matrix
�

5 7

5 x

�
is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x � 7 as zero.

In practical applications, the effective rank of a matrix A is often determined
from the singular value decomposition of A, to be discussed in Section 7.4. This
decomposition is also a reliable source of bases for Col A, Row A, Nul A, and
Nul AT.

Practice Problems

1. Decide whether each statement is True or False, and give a reason for each answer.
Here V is a nonzero finite-dimensional vector space.
a. If dimV D p and if S is a linearly dependent subset of V , then S contains more

than p vectors.

b. If S spans V and if T is a subset of V that contains more vectors than S , then T

is linearly dependent.

2. Let H and K be subspaces of a vector space V . In Section 4.1, Exercise 40, it is
established that H \K is also a subspace of V . Prove dim (H \K) ≤ dim H .

4.5 Exercises
For each subspace in Exercises 1–8, (a) find a basis, and (b) state
the dimension.

1.

8<:
24 s � 2t

s C t

3t

35 W s; t in R

9=; 2.

8<:
24 5s

�t

�7s

35 W s; t 2 R

9=;
3.

8̂̂<̂
:̂
2664

2c

a � b

b � 3c

aC 2b

3775 W a; b; c in R

9>>=>>; 4.

8̂̂<̂
:̂
2664

aC b

2a

3a � b

�b

3775 W a; b inR

9>>=>>;
5.

8̂̂<̂
:̂
2664

a � 4b � 2c

2aC 5b � 4c

�aC 2c

�3aC 7b C 6c

3775 W a; b; c in R

9>>=>>;

6.

8̂̂<̂
:̂
2664

3aC 6b � c

6a � 2b � 2c

�9aC 5b C 3c

�3aC b C c

3775 W a; b; c in R

9>>=>>;
7. f.a; b; c/ W a � 3b C c D 0; b � 2c D 0; 2b � c D 0g

8. f.a; b; c; d/ W a � 3b C c D 0g

In Exercises 9 and 10, find the dimension of the subspace spanned
by the given vectors.

9.

241

0

2

35, 243

1

1

35, 24 9

4

�2

35, 24�7

�3

1

35
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10.

24 1

�2

0

35, 24�3

4

1

35, 24�8

6

5

35, 24�3

0

7

35
Determine the dimensions of NulA, ColA, and RowA for the
matrices shown in Exercises 11–16.

11. A D

2664
1 �6 9 0 �2

0 1 2 �4 5

0 0 0 5 1

0 0 0 0 0

3775
12. A D

2664
1 3 �4 2 �1 6

0 0 1 �3 7 0

0 0 0 1 4 �3

0 0 0 0 0 0

3775
13. A D

�
1 2 3 4 5

0 0 0 1 �6

�
14. A D

�
3 4

�6 10

�
15. A D

24 1 �1 0

0 4 7

0 0 5

35 16. A D

24 1 4 �1

0 7 0

0 0 0

35
In Exercises 17–26, V is a vector space and A is an m � n matrix.
Mark each statement True or False (T/F). Justify each answer.

17. (T/F) The number of pivot columns of a matrix equals the
dimension of its column space.

18. (T/F) The number of variables in the equationAx D 0 equals
the nullity A.

19. (T/F) A plane in R3 is a two-dimensional subspace of R3.

20. (T/F) The dimension of the vector space P4 is 4.

21. (T/F) The dimension of the vector space of signals, S, is 10.

22. (T/F) The dimensions of the row space and the column space
of A are the same, even if A is not square.

23. (T/F) If B is any echelon form of A, then the pivot columns
of B form a basis for the column space of A.

24. (T/F) The nullity of A is the number of columns of A that are
not pivot columns.

25. (T/F) If a set fv1; : : : ; vpg spans a finite-dimensional vector
space V and if T is a set of more than p vectors in V, then T

is linearly dependent.

26. (T/F) A vector space is infinite-dimensional if it is spanned
by an infinite set.

27. The first four Hermite polynomials are 1, 2t , �2C 4t2, and
�12t C 8t3. These polynomials arise naturally in the study
of certain important differential equations in mathematical

physics.2 Show that the first four Hermite polynomials form
a basis of P3.

28. The first four Laguerre polynomials are 1, 1 � t , 2 � 4t C t2,
and 6 � 18t C 9t2 � t3. Show that these polynomials form a
basis of P3.

29. Let B be the basis of P3 consisting of the Hermite polyno-
mials in Exercise 27, and let p.t/ D 7 � 12t � 8t2 C 12t3.
Find the coordinate vector of p relative to B.

30. Let B be the basis of P2 consisting of the first three
Laguerre polynomials listed in Exercise 28, and let
p.t/ D 7 � 8t C 3t2. Find the coordinate vector of p relative
to B.

31. Let S be a subset of an n-dimensional vector space V , and
suppose S contains fewer than n vectors. Explain why S

cannot span V .

32. Let H be an n-dimensional subspace of an n-dimensional
vector space V . Show that H D V .

33. If a 4 � 7 matrix A has rank 4, find nullity A, rank A, and
rank AT .

34. If a 6 � 3 matrix A has rank 3, find nullity A, rank A, and
rank AT .

35. Suppose a 5 � 9 matrix A has four pivot columns. Is Col
A D R5? Is Nul A D R4? Explain your answers.

36. Suppose a 5 � 6 matrix A has four pivot columns. What is
nullity A? Is Col A D R4? Why or why not?

37. If the nullity of a 5 � 6matrixA is 4, what are the dimensions
of the column and row spaces of A?

38. If the nullity of a 7 � 6matrixA is 5, what are the dimensions
of the column and row spaces of A?

39. If A is a 7 � 5 matrix, what is the largest possible rank of A?
If A is a 5 � 7 matrix, what is the largest possible rank of A?
Explain your answers.

40. If A is a 4 � 3 matrix, what is the largest possible dimension
of the row space of A? If A is a 3 � 4 matrix, what is the
largest possible dimension of the row space of A? Explain.

41. Explain why the space P of all polynomials is an infinite-
dimensional space.

42. Show that the spaceC.R/ of all continuous functions defined
on the real line is an infinite-dimensional space.

In Exercises 43–48, V is a nonzero finite-dimensional vector
space, and the vectors listed belong to V . Mark each statement
True or False (T/F). Justify each answer. (These questions are
more difficult than those in Exercises 17–26.)

2 See Introduction to Functional Analysis, 2nd ed., by A. E. Taylor and David C. Lay (New York: John Wiley
& Sons, 1980), pp. 92–93. Other sets of polynomials are discussed there, too.
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43. (T/F) If there exists a set fv1; : : : ; vpg that spans V , then
dimV � p.

44. (T/F) If there exists a linearly dependent set fv1; : : : ; vpg in
V , then dimV � p.

45. (T/F) If there exists a linearly independent set fv1; : : : ; vpg in
V , then dimV � p.

46. (T/F) If dimV D p, then there exists a spanning set of p C 1

vectors in V.

47. (T/F) If every set of p elements in V fails to span V, then
dimV > p.

48. (T/F) If p � 2 and dimV D p, then every set of p � 1

nonzero vectors is linearly independent.

49. Justify the following equality: dim Row AC nullity A D n,
the number of columns of A

50. Justify the following equality: dim Row AC nullity AT D m,
the number of rows of A

Exercises 51 and 52 concern finite-dimensional vector spaces V

and W and a linear transformation T W V ! W .

51. LetH be a nonzero subspace of V , and let T .H/ be the set of
images of vectors in H . Then T .H/ is a subspace of W , by
Exercise 47 in Section 4.2. Prove that dimT .H/ � dimH .

52. Let H be a nonzero subspace of V , and suppose T is
a one-to-one (linear) mapping of V into W . Prove that
dimT .H/ D dimH . If T happens to be a one-to-one map-
ping of V onto W , then dimV D dimW . Isomorphic finite-
dimensional vector spaces have the same dimension.

T 53. According to Theorem 12, a linearly independent set
fv1; : : : ; vkg in Rn can be expanded to a basis for Rn. One
way to do this is to createA D Œ v1 � � � vk e1 � � � en �,
with e1; : : : ; en the columns of the identity matrix; the pivot
columns of A form a basis for Rn.

a. Use the method described to extend the following vectors
to a basis for R5:

v1 D

266664
�9

�7

8

�5

7

377775; v2 D

266664
9

4

1

6

�7

377775; v3 D

266664
6

7

�8

5

�7

377775
b. Explain why the method works in general: Why are the

original vectors v1; : : : ; vk included in the basis found for
ColA? Why is ColA D Rn?

T 54. Let B D f1; cos t; cos2 t; : : : ; cos6 tg and C D f1; cos t;

cos 2t; : : : ; cos 6tg. Assume the following trigonometric
identities (see Exercise 45 in Section 4.1).

cos 2t D �1C 2 cos2 t

cos 3t D �3 cos t C 4 cos3 t

cos 4t D 1 � 8 cos2 t C 8 cos4 t

cos 5t D 5 cos t � 20 cos3 t C 16 cos5 t

cos 6t D �1C 18 cos2 t � 48 cos4 t C 32 cos6 t

Let H be the subspace of functions spanned by the functions
in B. Then B is a basis for H, by Exercise 48 in Section 4.3.

a. Write theB-coordinate vectors of the vectors in C, and use
them to show that C is a linearly independent set in H .

b. Explain why C is a basis for H .

Solutions to Practice Problems

1. a. False. Consider the set f0g.

b. True. By the Spanning Set Theorem, S contains a basis for V ; call that basis
S 0. Then T will contain more vectors than S 0. By Theorem 10, T is linearly
dependent.

2. Let fv1;…; vpg be a basis for H \K. Notice fv1;…; vpg is a linearly independent
subset of H , hence by Theorem 12, fv1;…; vpg can be expanded, if necessary, to
a basis for H . Since the dimension of a subspace is just the number of vectors in a
basis, it follows that dim .H \K/ D p � dim H .

4.6 Change of Basis
When a basisB is chosen for an n-dimensional vector space V , the associated coordinate
mapping onto Rn provides a coordinate system for V . Each x in V is identified uniquely
by its B-coordinate vector Œ x �B.

1

1 Think of Œ x �B as a name for x that lists the weights used to build x as a linear combination of the basis
vectors in B.
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In some applications, a problem is described initially using a basis B, but the
problem’s solution is aided by changing B to a new basis C. (Examples will be given
in Chapters 5 and 7.) Each vector is assigned a new C-coordinate vector. In this section,
we study how Œ x �C and Œ x �B are related for each x in V .

To visualize the problem, consider the two coordinate systems in Figure 1. In
Figure 1(a), x D 3b1 C b2, while in Figure 1(b), the same x is shown as x D 6c1 C 4c2.
That is,

Œ x �B D

�
3

1

�
and Œ x �C D

�
6

4

�
Our problem is to find the connection between the two coordinate vectors. Example 1
shows how to do this, provided we know how b1 and b2 are formed from c1 and c2.

b2

b1

3b1

x0

(a) (b)

c2

4c2

6c1

c1
x0

FIGURE 1 Two coordinate systems for the same vector space.

EXAMPLE 1 Consider two bases B D fb1; b2g and C D fc1; c2g for a vector space
V , such that

b1 D 4c1 C c2 and b2 D �6c1 C c2 (1)

Suppose
x D 3b1 C b2 (2)

That is, suppose Œ x �B D

�
3

1

�
. Find Œ x �C .

SOLUTION Apply the coordinate mapping determined by C to x in (2). Since the
coordinate mapping is a linear transformation,

Œ x �C D Œ 3b1 C b2 �C

D 3Œ b1 �C C Œ b2 �C

We can write this vector equation as a matrix equation, using the vectors in the linear
combination as the columns of a matrix:

Œ x �C D
�

Œ b1 �C Œ b2 �C
�� 3

1

�
(3)

This formula gives Œ x �C , once we know the columns of the matrix. From (1),

Œ b1 �C D

�
4

1

�
and Œ b2 �C D

�
�6

1

�
Thus (3) provides the solution:

Œ x �C D

�
4 �6

1 1

��
3

1

�
D

�
6

4

�
The C-coordinates of x match those of the x in Figure 1.

The argument used to derive formula (3) can be generalized to yield the following
result. (See Exercises 17 and 18.)
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THEOREM 15 Let B D fb1; : : : ; bng and C D fc1; : : : ; cng be bases of a vector space V . Then

there is a unique n � n matrix P
C B such that

Œ x �C D
P

C B Œ x �B (4)

The columns of P
C B are the C-coordinate vectors of the vectors in the basis B.

That is,
P

C B D
�

Œb1�C Œb2�C � � � Œbn�C
�

(5)

The matrix P
C B in Theorem 15 is called the change-of-coordinates matrix from

B to C. Multiplication by P
C B converts B-coordinates into C-coordinates.2 Figure 2

illustrates the change-of-coordinates equation (4).

Rn Rn

[  ]

[x]

x

[  ]

multiplication

by     P [x]

V

FIGURE 2 Two coordinate systems for V .

The columns of P
C B are linearly independent because they are the coordinate

vectors of the linearly independent set B. (See Exercise 29 in Section 4.4.) Since P
C B

is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both

sides of equation (4) by . P
C B /�1 yields

. P
C B /�1Œ x �C D Œ x �B

Thus . P
C B /�1 is the matrix that converts C-coordinates into B-coordinates. That is,

. P
C B /�1 D P

B C (6)

Change of Basis in Rn

If B D fb1; : : : ; bng and E is the standard basis fe1; : : : ; eng in Rn, then Œb1�E D b1,

and likewise for the other vectors in B. In this case, P
E B is the same as the change-of-

coordinates matrix PB introduced in Section 4.4, namely

PB D Œ b1 b2 � � � bn �

2 To remember how to construct the matrix, think of P
C B Œ x �B as a linear combination of the columns of

P
C B . The matrix-vector product is a C-coordinate vector, so the columns of P

C B should be C-coordinate
vectors, too.
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To change coordinates between two nonstandard bases inRn, we need Theorem 15.
The theorem shows that to solve the change-of-basis problem, we need the coordinate
vectors of the old basis relative to the new basis.

EXAMPLE 2 Let b1 D

�
�9

1

�
, b2 D

�
�5

�1

�
, c1 D

�
1

�4

�
, c2 D

�
3

�5

�
, and con-

sider the bases for R2 given by B D fb1; b2g and C D fc1; c2g. Find the change-of-
coordinates matrix from B to C.

SOLUTION The matrix P
C B involves the C-coordinate vectors of b1 and b2. Let

Œ b1 �C D

�
x1

x2

�
and Œ b2 �C D

�
y1

y2

�
. Then, by definition,

�
c1 c2

�� x1

x2

�
D b1 and

�
c1 c2

�� y1

y2

�
D b2

To solve both systems simultaneously, augment the coefficient matrix with b1 and b2,
and row reduce:�

c1 c2 b1 b2

�
D

�
1 3 �9 �5

�4 �5 1 �1

�
�

�
1 0 6 4

0 1 �5 �3

�
(7)

Thus

Œ b1 �C D

�
6

�5

�
and Œ b2 �C D

�
4

�3

�
The desired change-of-coordinates matrix is therefore

P
C B D

�
Œ b1 �C Œ b2 �C

�
D

�
6 4

�5 �3

�
Observe that the matrix P

C B in Example 2 already appeared in (7). This is not

surprising because the first column of P
C B results from row reducing Œ c1 c2 b1 � to

Œ I Œ b1 �C �, and similarly for the second column of P
C B . Thus

Œ c1 c2 b1 b2 � � Œ I P
C B �

An analogous procedure works for finding the change-of-coordinates matrix between
any two bases in Rn.

EXAMPLE 3 Let b1 D

�
1

�3

�
, b2 D

�
�2

4

�
, c1 D

�
�7

9

�
, c2 D

�
�5

7

�
, and con-

sider the bases for R2 given by B D fb1; b2g and C D fc1; c2g.

a. Find the change-of-coordinates matrix from C to B.
b. Find the change-of-coordinates matrix from B to C.

SOLUTION

a. Notice that P
B C is needed rather than P

C B , and compute�
b1 b2 c1 c2

�
D

�
1 �2 �7 �5

�3 4 9 7

�
�

�
1 0 5 3

0 1 6 4

�
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So
P

B C D

�
5 3

6 4

�
b. By part (a) and property (6) (with B and C interchanged),

P
C B D . P

B C /�1
D

1

2

�
4 �3

�6 5

�
D

�
2 �3=2

�3 5=2

�
Another description of the change-of-coordinates matrix P

C B uses the change-of-
coordinate matrices PB and PC that convert B-coordinates and C-coordinates, respec-
tively, into standard coordinates. Recall that for each x in Rn,

PBŒx�B D x; PCŒx�C D x; and Œx�C D P�1
C x

Thus
Œx�C D P�1

C x D P�1
C PBŒx�B

In Rn, the change-of-coordinates matrix P
C B may be computed as P�1

C PB. Actually,
for matrices larger than 2 � 2, an algorithm analogous to the one in Example 3 is faster
than computing P�1

C and then P�1
C PB. See Exercise 22 in Section 2.2.

Practice Problems

1. Let F D ff1; f2g and G D fg1; g2g be bases for a vector space V , and let P be a
matrix whose columns are Œ f1 �G and Œ f2 �G . Which of the following equations is
satisfied by P for all v in V ?
(i) Œ v �F D P Œ v �G (ii) Œ v �G D PŒ v �F

2. Let B and C be as in Example 1. Use the results of that example to find the change-
of-coordinates matrix from C to B.

4.6 Exercises
1. LetB D fb1; b2g and C D fc1; c2g be bases for a vector space

V , and suppose b1 D 6c1 � 2c2 and b2 D 9c1 � 4c2.

a. Find the change-of-coordinates matrix from B to C.
b. Find Œ x �C for x D �3b1 C 2b2. Use part (a).

2. LetB D fb1; b2g and C D fc1; c2g be bases for a vector space
V , and suppose b1 D �c1 C 4c2 and b2 D 5c1 � 3c2.

a. Find the change-of-coordinates matrix from B to C.
b. Find Œ x �C for x D 5b1 C 3b2.

3. Let U D fu1; u2g andW D fw1;w2g be bases for V , and let
P be a matrix whose columns are Œu1�W and Œu2�W . Which
of the following equations is satisfied by P for all x in V ?

(i) Œ x �U D P Œ x �W (ii) Œ x �W D P Œ x �U

4. Let A D fa1; a2; a3g and D D fd1; d2; d3g be bases for V ,
and let P D Œ Œd1�A Œd2�A Œd3�A �. Which of the follow-
ing equations is satisfied by P for all x in V ?

(i) Œ x �A D P Œ x �D (ii) Œ x �D D P Œ x �A

5. Let A D fa1; a2; a3g and B D fb1; b2; b3g be bases
for a vector space V , and suppose a1 D 4b1 � b2,
a2 D �b1 C b2 C b3, and a3 D b2 � 2b3.

a. Find the change-of-coordinates matrix from A to B.
b. Find Œ x �B for x D 3a1 C 4a2 C a3.

6. Let D D fd1; d2; d3g and F D ff1; f2; f3g be bases for
a vector space V , and suppose f1 D 2d1 � d2 C d3,
f2 D 3d2 C d3, and f3 D �3d1 C 2d3.

a. Find the change-of-coordinates matrix from F to D.
b. Find Œ x �D for x D f1 � 2f2 C 2f3.

In Exercises 7–10, let B D fb1; b2g and C D fc1; c2g be bases for
R2. In each exercise, find the change-of-coordinates matrix from
B to C and the change-of-coordinates matrix from C to B.

7. b1 D

�
7

5

�
, b2 D

�
�3

�1

�
, c1 D

�
1

�5

�
, c2 D

�
�2

2

�

8. b1 D

�
�3

1

�
, b2 D

�
�4

1

�
, c1 D

�
5

1

�
, c2 D

�
4

1

�
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9. b1 D

�
�6

�1

�
, b2 D

�
2

0

�
, c1 D

�
2

�1

�
, c2 D

�
6

�2

�
10. b1 D

�
8

�3

�
, b2 D

�
3

�1

�
, c1 D

�
2

1

�
, c2 D

�
7

3

�
In Exercises 11–14, B and C are bases for a vector space V. Mark
each statement True or False (T/F). Justify each answer.

11. (T/F)The columns of the change-of-coordinatesmatrix P
C B

are B-coordinate vectors of the vectors in C.

12. (T/F) The columns of P
C B are linearly independent.

13. (T/F) If V D Rn and C is the standard basis for V , then
P

C B is the same as the change-of-coordinates matrix PB

introduced in Section 4.4.

14. (T/F) If V D R2, B D fb1; b2g, and C D fc1; c2g, then row
reduction of Œ c1 c2 b1 b2 � to Œ I P � produces a ma-
trix P that satisfies Œ x �B D P Œ x �C for all x in V .

15. In P2, find the change-of-coordinates matrix from the basis
B D f1 � 2t C t2; 3 � 5t C 4t2; 2t C 3t2g to the standard
basis C D f1; t; t2g. Then find the B-coordinate vector for
�1C 2t .

16. In P2, find the change-of-coordinates matrix from the ba-
sis B D f1 � 3t2; 2C t � 5t2; 1C 2tg to the standard basis.
Then write t2 as a linear combination of the polynomials inB.

Exercises 17 and 18 provide a proof of Theorem 15. Fill in a
justification for each step.

17. Given v in V , there exist scalars x1; : : : ; xn, such that

v D x1b1 C x2b2 C � � � C xnbn

because (a) . Apply the coordinate mapping deter-
mined by the basis C, and obtain

Œv�C D x1Œb1�C C x2Œb2�C C � � � C xnŒbn�C

because (b) . This equation may be written in the form

Œ v �C D
�
Œ b1 �C Œ b2 �C � � � Œ bn �C

�264 x1
:::

xn

375 .8/

by the definition of (c) . This shows that the matrix
P

C B shown in (5) satisfies Œv�C D P
C B Œv�B for each v in

V , because the vector on the right side of (8) is (d) .

18. Suppose Q is any matrix such that

Œv�C D QŒv�B for each v in V .9/

Set v D b1 in (9). Then (9) shows that Œb1�C is the first column
of Q because (a) . Similarly, for k D 2; : : : ; n, the kth
column of Q is (b) because (c) . This shows

that the matrix P
C B defined by (5) in Theorem 15 is the only

matrix that satisfies condition (4).

T 19. Let B D fx0; : : : ; x6g and C D fy0; : : : ; y6g, where xk is the
function cosk t and yk is the function cos kt . Exercise 54 in
Section 4.5 showed that both B and C are bases for the vector
space H D Span fx0; : : : ; x6g.

a. Set P D
�

Œ y0 �B � � � Œ y6 �B

�
, and calculate P�1.

b. Explain why the columns of P�1 are the C-coordinate
vectors of x0; : : : ; x6. Then use these coordinate vectors to
write trigonometric identities that express powers of cos t

in terms of the functions in C.
See the Study Guide.

T 20. (Calculus required)3 Recall from calculus that integrals
such asZ

.5 cos3 t � 6 cos4 t C 5 cos5 t � 12 cos6 t / dt .10/

are tedious to compute. (The usual method is to apply inte-
gration by parts repeatedly and use the half-angle formula.)
Use the matrixP orP�1 from Exercise 19 to transform (10);
then compute the integral.

T 21. Let

P D

24 1 2 �1

�3 �5 0

4 6 1

35,
v1 D

24�2

2

3

35, v2 D

24�8

5

2

35, v3 D

24�7

2

6

35
a. Find a basis fu1; u2; u3g for R3 such that P is the

change-of-coordinates matrix from fu1; u2; u3g to the ba-

sis fv1; v2; v3g. [Hint: What do the columns of P
C B

represent?]

b. Find a basis fw1;w2;w3g forR3 such thatP is the change-
of-coordinates matrix from fv1; v2; v3g to fw1;w2;w3g.

T 22. Let B D fb1; b2g, C D fc1; c2g, and D D fd1; d2g be bases
for a two-dimensional vector space.

a. Write an equation that relates the matrices P
C B ,

P
D C ,

and P
D B . Justify your result.

b. Use a matrix program either to help you find the equation
or to check the equation you write. Work with three bases
for R2. (See Exercises 7–10.)

3 The idea for Exercises 19 and 20 and five related exercises in earlier
sections came from a paper by Jack W. Rogers, Jr., of Auburn University,
presented at a meeting of the International Linear Algebra Society,
August 1995. See “Applications of Linear Algebra in Calculus,” American
Mathematical Monthly 104 (1), 1997.
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Solutions to Practice Problems

1. Since the columns of P are G-coordinate vectors, a vector of the form P x must be
a G-coordinate vector. Thus P satisfies equation (ii).

2. The coordinate vectors found in Example 1 show that

P
C B D

�
Œ b1 �C Œ b2 �C

�
D

�
4 �6

1 1

�
Hence

P
B C D . P

C B /�1
D

1

10

�
1 6

�1 4

�
D

�
:1 :6

�:1 :4

�

4.7 Digital Signal Processing

Introduction
In the space of just a few decades, digital signal processing (DSP) has led to a dramatic
shift in how data is collected, processed, and synthesized. DSP models unify the
approach to dealing with data that was previously viewed as unrelated. From stock
market analysis to telecommunications and computer science, the data collected over
time can be viewed as discrete-time signals and DSP used to store and process the data
for more efficient and effective use. Not only do digital signals arise in electrical and
control systems engineering, but discrete-data sequences are also generated in biology,
physics, economics, demography, andmany other areas, wherever a process is measured,
or sampled, at discrete time intervals. In this section, we will explore the properties of
the discrete-time signal space, S, and some of its subspaces, as well as how linear trans-
formations can be used to process, filter, and synthesize the data contained in signals.

Discrete-Time Signals
The vector space S of discrete-time signals was introduced in Section 4.1. A signal in S
is an infinite sequence of numbers, fykg, where the subscripts k range over all integers.
Table 1 shows several examples of signals.

TABLE 1 Examples of Signals

Signals

Name Symbol Vector Formal Description

delta ı .: : : ; 0; 0; 0; 1; 0; 0; 0; : : :/ fdkg, where dk D

(
1 if k D 0

0 if k ¤ 0

unit step � .: : : ; 0; 0; 0; 1; 1; 1; 1; : : :/ fukg, where uk D

(
1 if k � 0

0 if k < 0

constant � .: : : ; 1; 1; 1; 1; 1; 1; 1; : : :/ fckg, where ck D 1

alternating ˛ .: : : ;�1; 1;�1; 1;�1; 1;�1; : : :/ fakg, where ak D .�1/k

Fibonacci F .: : : ; 2;�1; 1; 0; 1; 1; 2; : : :/ ffkg, where fk D

8̂̂̂̂
<̂
ˆ̂̂:

0 if k D 0

1 if k D 1

fk�1 C fk�2 if k > 1

fkC2 � fkC1 if k < 0

exponential �c .: : : ; c�2; c�1; c0; c1; c2; : : :/ fekg, where ek D ck

"

k D 0
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{cos( 1
6

1
4 p)}pk 1

k

FIGURE 1

Another set of commonly used signals are the periodic signals—specifically signals
fpkg for which there exists a positive integer q such that pk D pkCq for all integers k. In
particular, the sinusoidal signals, described by �f;� D fcos.f k� C ��/g where f and
� are fixed rational numbers, are periodic functions. (See Figure 1.)

Linear Time Invariant Transformations
Linear time invariant (LTI) transformations are used to process signals. One type of
processing is to create signals as they are needed, rather than using valuable storage
space to store the signals themselves.

To describe the standard basis for Rn given in Example 4 of Section 4.3, n vectors,
e1; e2; : : : ; en, are listed where ej has a value of 1 in the j -th position and zeros
elsewhere. In Example 1 that follows, the analogous signal to each ej can be created
by repeatedly applying a shift LTI transformation to just one signal, that of ı in Table 1.

EXAMPLE 1 Let S be the transformation that shifts each element in a signal to
the right, specifically S.fxkg/ D fykg, where yk D xk�1. For ease of notation, write
S.fxkg/ D fxk�1g. To shift a signal to the left, consider S�1.fxkg/ D fxkC1g. Notice
S�1S.fxkg/ D S�1.fxk�1g/ D fx.k�1/C1g D fxkg. It is easy to verify that S�1S D

SS�1 D S0 D I , the identity transformation, and hence S is an example of an invertible
transformation. Table 2 illustrates the effect of repeatedly applying S and S�1 to delta,
and the resulting signals can be visualized using Figure 2.

TABLE 2 Applying a Shift Signal

:::
:::

:::

S�2.ı/ .: : : ; 1; 0; 0; 0; 0; : : :/ fwkg, where wk D

(
1 if k D �2

0 if k ¤ �2

S�1.ı/ .: : : ; 0; 1; 0; 0; 0; : : :/ fxkg, where xk D

(
1 if k D �1

0 if k ¤ �1

ı .: : : ; 0; 0; 1; 0; 0; : : :/ fdkg, where dk D

(
1 if k D 0

0 if k ¤ 0

S1.ı/ .: : : ; 0; 0; 0; 1; 0; : : :/ fykg, where yk D

(
1 if k D 1

0 if k ¤ 1

S2.ı/ .: : : ; 0; 0; 0; 0; 1; : : :/ f´kg, where ´k D

(
1 if k D 2

0 if k ¤ 2
::: "

:::

k D 0
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x

d

S1(d)

FIGURE 2

Notice that S satisfies the properties of a linear transformation. Specifically, for
any scalar c and signals fxkg and fykg, applying S results in S.fxkg C fykg/ D

fxk�1 C yk�1g D fxk�1g C fyk�1g D S.fxkg/C S.fykg/ and S.cfxkg/ D fcxk�1g D

cS.fxkg/. The mapping S has an additional property. Notice that for any integer q,
S.fxkCqg/ D fxk�1Cqg. One can think of this last property as the time invariance
property. Transformations with the same properties as S are referred to as linear time
invariant (LTI).

DEFINITION Linear Time Invariant (LTI) Transformations

A transformation T W S! S is linear time invariant provided

(i) T .fxk C ykg/ D T .fxkg/C T .fykg/ for all signals fxkg and fykg;

(ii) T .cfxkg/ D cT .fxkg/ for all scalars c and all signals fxkg;

(iii) If T .fxkg/ D fykg, then T .fxkCqg/ D fykCqg for all integers q and
all signals fxkg.

The first two properties in the definition of LTI transformations are the same as the
two properties listed in the definition of a linear transformation resulting in the following
theorem:

THEOREM 16 LTI Transformations are Linear Transformations

A linear time invariant transformation on the signal space S is a special type of
linear transformation.

Digital Signal Processing
LTI transformations, like the shift transformation, can be used to create new signals from
signals that are already stored in a system. Another type of LTI transformation is used
for smoothing or filtering data. In Example 11 of Section 4.2, a two-day moving average
LTI transformation is used to smooth out stock price fluctuations. In Example 2, this
mapping is extended to encompass longer time periods. Smoothing out a signal canmake
it easier to spot trends in data. Filtering will be discussed in more detail in Section 4.8.

EXAMPLE 2 For any positive integer m, the moving average LTI transformation
with time period m is given by

Mm.fxkg/ D fykg where yk D
1

m

kX
jDk�mC1

xk
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Figure 3 illustrates how M3 smooths out a signal. Section 4.2, Figure 3 illustrates
the smoothing that occurred when M2 was applied to the same data. As m is increased,
applying Mm smooths the signal even more.

k

Moving average
Original signal

FIGURE 3

The kernel of M2 is calculated in Example 11 of Section 4.2. It is the span of the
alternating sequence ˛ listed in Table 1. The kernel of the LTI transformation describes
what is smoothed out of the original signal. Exercises 10, 12, and 14 explore properties
of M3 further.

Another type ofDSP does the opposite of smoothing or filtering - it combines signals
to increase their complexity.Auralization is a process used in the entertainment industry
to give a more acoustic quality to virtually generated sounds. In Example 3, we illustrate
how combining signals enhances the sound generated by the signal fcos.440�k/g.

EXAMPLE 3 Combining several signals can be used to produce more realistic
virtual sounds. In Figure 4, notice that the original cosine wave contains very little
variation, whereas by enhancing the equation used, the waves created contain more
variation by introducing echos or allowing a sound to fade out.

{cos(440pk )}

{(0.3)4k cos(440pk )}

{cos(420pk ) 1 cos(440pk ) 1 cos(460pk )}

{(0.2)k cos(2pk ) cos(440pk )}

1

1

1

1

xx

xx

FIGURE 4

Generating Bases for Subspaces of S

If several sets of data are being sampled over the same n time periods, it may be
advantageous to view the signals created as part of Sn. The set of signals of length n,
Sn, is defined to be the set of all signals fykg such that yk D 0whenever k < 0 or k > n.
Theorem 17 establishes that Sn is isomorphic to RnC1. A basis for Sn can be generated
using the shift LTI transformation S from Example 1 and the signal ı as illustrated in
Table 2.
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THEOREM 17 The set Sn is a subspace of S isomorphic to RnC1, and the set of signals Bn D˚
ı; S.ı/; S2.ı/; : : : ; Sn.ı/

	
forms a basis for Sn.

PROOF Since the zero signal is in Sn, and adding or scaling signals cannot create
nonzeros in the positions that must contain zeros, the set Sn is a subspace of S. Let
fykg be any signal in Sn. Notice

fykg D

nX
jD0

yj S j .ı/;

so Bn is a spanning set for Sn. Conversely, if c0; : : : ; cn are scalars such that

c0ı C c1S.ı/C : : :C cnSn.ı/ D f0g;

specifically

.: : : 0; 0; c0; c1; : : : ; cn; 0; 0; : : :/ D .: : : ; 0; 0; 0; 0; : : : ; 0; 0; 0; : : :/;

then c0 D c1 D � � � D cn D 0, and thus the vectors in Bn form a linearly independent
set. This establishes that Bn is a basis for Sn and hence it is an nC 1 dimensional vector
space isomorphic to RnC1.

Since Sn has a finite basis, any vector in Sn can be represented as a vector in RnC1.

EXAMPLE 4 Using the basis B2 D fı; S.ı/; S2.ı/g for S2, represent the signal
fykg, where

yk D

8̂̂<̂
:̂

0 if k < 0 or k > 3

2 if k D 0

3 if k D 1

�1 if k D 2

as a vector in R3.

SOLUTION First write fykg as a linear combination of the basis vectors in B2.

fykg D 2ı C 3S.ı/C .�1/S2.ı/

The coefficients of this linear combination are precisely the entries in the coordinate

vector. Thus Œfykg�B2
D

24 2

3

�1

35
The set of finitely supported signals, Sf , is the set of signals fykg, where only

finitely many of the entries are nonzero. In Example 8 of Section 4.1, it is established
that Sf is a subspace of S. The signals created by recording the daily price of a stock
increase in length each day, but remain finitely supported, and hence these signals belong
to Sf , but not to any particular Sn. Conversely, if a signal is in Sn for some positive
integer n, then it is also in Sf . In Theorem 18, we see that Sf is an infinite dimensional
subspace and so it is not isomorphic to Rn for any n.
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THEOREM 18 The set Bf D
˚
S j .ı/ W where j 2 Z

	
is a basis for the infinite dimensional vector

space Sf .

PROOF Let fykg be any signal in Sf . Since only finitely many entries in fykg are
nonzero, there exist integers p and q such that yk D 0 for all k < p and and k > q.
Thus

fykg D

qX
jDp

yj S j .ı/;

so Bf is a spanning set for Sn. Moreover, if a linear combination of signals with scalars
cp; cpC1; : : : ; cq add to zero,

qX
jDp

cj S j .ı/;D f0g;

then cp D cpC1 D � � � D cq D 0, and thus the vectors in Bf form a linearly independent
set. This establishes that Bf is a basis for Sf . Since Bf contains infinitely many signals,
Sf is an infinite dimensional vector space.

The creative power of the shift LTI transformation falls short of being able to create
a basis for S itself. The definition of linear combination requires that only finitely many
vectors and scalars are used in a sum. Consider the unit step signal, � , from Table 1.

Although � D
1P

jD0

S j .ı/, this is an infinite sum of vectors and hence not technically

considered a linear combination of the basis elements from Bf .
In calculus, sums with infinitely many terms are studied in detail. Although it

can be shown that every vector space has a basis (using a finite number of terms
in each linear combination), the proof relies on the Axiom of Choice and hence
establishing that S has a basis is a topic you may see in higher level math classes. The
sinusoidal and exponential signals, which have infinite support, are explored in detail in
Section 4.8

Practice Problems

1. Find � C � from Table 1. Express the answer as a vector and give its formal
description.

2. Show that T .fxkg/ D f3xk � 2xk�1g is a linear time invariant transformation.

3. Find a nonzero vector in the kernel of T for the linear time invariant transformation
given in Practice Problem 2.

4.7 Exercises
For Exercises 1–4, find the indicated sums of the signals in Table 1.

1. �C ˛ 2. � � ˛

3. � C 2˛ 4. � � 3˛

For Exercises 5–8, recall that I.fxkg/ D fxkg and S.fxkg/ D

fxk�1g.

5. Which signals from Table 1 are in the kernel of I C S?

6. Which signals from Table 1 are in the kernel of I � S?
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7. Which signals from Table 1 are in the kernel of I � cS for a
fixed nonzero scalar c ¤ 1?

8. Which signals from Table 1 are in the kernel of I � S � S2?

9. Show that T .fxkg/ D fxk � xk�1g is a linear time invariant
transformation.

10. Show that M3.fxkg/ D

�
1

3
.xk�2 C xk�1 C xk/

�
is a linear

time invariant transformation.

11. Find a nonzero signal in the kernel of T from Exercise 9.

12. Find a nonzero signal in the kernel of M3 from Exercise 10.

13. Find a nonzero signal in the range of T from Exercise 9.

14. Find a nonzero signal in the range of M3 from Exercise 10.

In Exercises 15–22, V is a vector space and A is an m � n

matrix. Mark each statement True or False (T/F). Justify each
answer.

15. (T/F)The set of signals of length n,Sn, has a basis with nC 1

signals.

16. (T/F) The set of signals, S, has a finite basis.

17. (T/F) Every subspace of the set of signals S is infinite dimen-
sional.

18. (T/F) The vector space RnC1 is a subspace of S.

19. (T/F) Every linear time invariant transformation is a linear
transformation.

20. (T/F) The moving average function is a linear time invariant
transformation.

21. (T/F) If you scale a signal by a fixed constant, the result is
not a signal.

22. (T/F) If you scale a linear time invariant transforma-
tion by a fixed constant, the result is no longer a linear
transformation.

Guess and check or working backwards through the solution
to Practice Problem 3 are two good ways to find solutions to
Exercises 23 and 24.

23. Construct a linear time invariant transformation that has the

signal fxkg D

(�
4

5

�k
)
in its kernel.

24. Construct a linear time invariant transformation that has the

signal fxkg D

(�
�3

4

�k
)
in its kernel.

25. Let W D

�
fxkg j xk D

�
0 if k is a multiple of 2

r if k is not a multiple of 2

where r can be any real number
o
. A typical signal in W

looks like

.: : : ; r; 0; r; 0; r; 0; r; : : :/

"

k = 0

Show that W is a subspace of S.

26. Let W D

�
fxkg j xk D

�
0 if k < 0

r if k � 0
where r can be any

real number:
o
A typical signal in W looks like

.: : : ; 0; 0; 0; r; r; r; r; : : :/

"

k = 0

Show that W is a subspace of S.

27. Find a basis for the subspace W in Exercise 25. What is the
dimension of this subspace?

28. Find a basis for the subspace W in Exercise 26. What is the
dimension of this subspace?

29. Let W D

�
fxkg j xk D

�
0 if k is a multiple of 2

rk if k is not a multiple of 2

where each rk can be any real number
o
. A typical signal in

W looks like

.: : : ; r�3; 0; r�1; 0; r1; 0; r3; : : :/

"

k = 0

Show that W is a subspace of S.

30. Let W D

�
fxkg j xk D

�
0 if k < 0

rk if k � 0

where each rk can be any real number
o
. A typical signal in

W looks like

.: : : ; 0; 0; 0; r0; r1; r2; r3; : : :/

"

k = 0

Show that W is a subspace of S.

31. Describe an infinite linearly independent subset of the sub-
space W in Exercise 29. Does this establish that W is infinite
dimensional? Justify your answer.

32. Describe an infinite linearly independent subset of the sub-
space W in Exercise 30. Does this establish that W is infinite
dimensional? Justify your.
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Solutions to Practice Problems

1. First add � C � in vector form:

.: : : ; 0; 0; 0; 1; 1; 1; 1; : : :/

C .: : : ; 1; 1; 1; 1; 1; 1; 1; : : :/

D .: : : ; 1; 1; 1; 2; 2; 2; 2; : : :/

"

k D 0

Then add the terms in the formal description to get a new formal description:

� C � D f´kg;where ´k D uk C ck D

�
1C 1 if k � 0

0C 1 if k < 0
D

�
2 if k � 0

1 if k < 0

2. Verify that the three conditions for a linear time invariant transformation hold.
Specifically, for any two signals fxkg and fykg, and scalar c, observe that
a. T .fxk C ykg/ D f3.xk C yk/ � 2.xk�1 C yk�1/g D f3xk � 2xk�1g C f3yk �

2yk�1g D T .fxkg/C T .fykg/

b. T .cfxkg/ D f3cxk � 2cxk�1g D cf3xk � 2xk�1g D cT .fxkg/

c. T .fxkg/ D f3xk � 2xk�1g and T .fxkCqg/ D f3xkCq � 2xkCq�1g D f3xkCq �

2xk�1Cqg for all integers q.
Thus T is a linear time invariant transformation.

3. To find a vector in the kernel of T , set T .fxkg/ D f3xk � 2xk�1g D f0g. Then for

each k, notice 3xk � 2xk�1 D 0 and hence xk D
2

3
xk�1. Picking a nonzero value

for x0, say x0 D 1, then x1 D
2

3
, x2 D

�
2

3

�2

, and in general, xk D

�
2

3

�k

. To

verify that this signal is indeed in the kernel of T observe that T

 (�
2

3

�k
)!
D(

3

�
2

3

�k

� 2

�
2

3

�k�1
)
D

(�
2

3

�k�1 �
3

�
2

3

�
� 2

�)
D f0g. Notice that

(�
2

3

�k
)

is the exponential signal with c D
2

3
.

4.8 Applications to Difference Equations
Continuing our study of discrete-time signals, in this section we explore difference
equations, a valuable tool used to filter the data contained in signals. Even when a
differential equation is used to model a continuous process, a numerical solution is often
produced from a related difference equation. This section highlights some fundamental
properties of linear difference equations that are explained using linear algebra.

Linear Independence in the Space S of Signals
To simplify notation, we consider a set of only three signals in S, say, fukg, fvkg, and
fwkg. They are linearly independent precisely when the equation

c1uk C c2vk C c3wk D 0 for all k (1)
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implies that c1 D c2 D c3 D 0. The phrase “for all k” means for all integers—positive,
negative, and zero. One could also consider signals that start with k D 0, for example,
in which case, “for all k” would mean for all integers k � 0.

Suppose c1, c2, c3 satisfy (1). Then equation (1) holds for any three consecutive
values of k, say, k, k C 1, and k C 2. Thus (1) implies that

c1ukC1 C c2vkC1 C c3wkC1 D 0 for all k

and
c1ukC2 C c2vkC2 C c3wkC2 D 0 for all k

Hence c1, c2, c3 satisfy24 uk vk wk

ukC1 vkC1 wkC1

ukC2 vkC2 wkC2

3524 c1

c2

c3

35 D 24 0

0

0

35 for all k (2)

The coefficient matrix in this system is called theCasorati matrix, C.k/, of the signals,
and the determinant of the matrix is called the Casoratian of fukg, fvkg, and fwkg.
If the Casorati matrix is invertible for at least one value of k, then (2) will imply thatSTUDY GUIDE offers additional

resources on the Casorati Test. c1 D c2 D c3 D 0, which will prove that the three signals are linearly independent.

EXAMPLE 1 Verify that f1kg, f.�2/kg, and f3kg are linearly independent signals.

SOLUTION The Casorati matrix is24 1k .�2/k 3k

1kC1 .�2/kC1 3kC1

1kC2 .�2/kC2 3kC2

35
Row operations can show fairly easily that this matrix is always invertible. However, it
is faster to substitute a value for k—say, k D 0—and row reduce the numerical matrix:24 1 1 1

1 �2 3

1 4 9

35 � 24 1 1 1

0 �3 2

0 3 8

35 � 24 1 1 1

0 �3 2

0 0 10

35
The Casorati matrix is invertible for k D 0. So f1kg, f.�2/kg, and f3kg are linearly
independent.

k

2

22

2224

The signals 1k , .�2/k , and 3k .

If a Casorati matrix is not invertible, the associated signals being tested may or may
not be linearly dependent. (See Exercise 35.) However, it can be shown that if the signals
are all solutions of the same homogeneous difference equation (described below), then
either the Casorati matrix is invertible for all k and the signals are linearly independent,
or else the Casorati matrix is not invertible for all k and the signals are linearly dependent.
A nice proof using linear transformations is in the Study Guide.

Linear Difference Equations
Given scalars a0; : : : ; an, with a0 and an nonzero, and given a signal f´kg, the equation

a0ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk D ´k for all k (3)

is called a linear difference equation (or linear recurrence relation) of order n. For
simplicity, a0 is often taken equal to 1. If f´kg is the zero sequence, the equation is
homogeneous; otherwise, the equation is nonhomogeneous.
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In digital signal processing (DSP), a difference equation such as (3) describes a
linear time invariant (LTI) filter, and a0; : : : ; an are called the filter coefficients. The
shift LTI transformations S.fykg/ D fyk�1g and S�1.fykg/ D fykC1g were introduced
in Example 1 of Section 4.7 and are used here to describe the LTI filter associated with
a linear difference equation. Define

T D a0S�n
C a1S�nC1

C � � � C an�1S�1
C anS0:

Notice if f´kg D T .fykg/, then for any k, Equation (3) describes the relationship
between terms in the two signals.

EXAMPLE 2 Let us feed two different signals into the filter

:35ykC2 C :5ykC1 C :35yk D ´k

Here .35 is an abbreviation for
p

2=4. The first signal is created by sampling the
continuous signal y D cos.� t=4/ at integer values of t , as in Figure 1(a). The discrete
signal is

fykg D .: : : ; cos.0/; cos.�=4/; cos.2�=4/; cos.3�=4/; : : :/

For simplicity, write˙:7 in place of˙
p

2=2, so that

fykg D . : : : ; 1; :7; 0; �:7; �1; �:7; 0; :7; 1; :7; 0; : : :/

-

k D 0

y

1

21

1
2

y

1

21

1
2

t

y 5 cos pt––4 y 5 cos 3pt–––4

t

(a) (b)

FIGURE 1 Discrete signals with different frequencies.

Table 1 shows a calculation of the output sequence f´kg, where :35.:7/ is an abbreviation
for .
p

2=4/.
p

2=2/ D :25. The output is fykg, shifted by one term.

TABLE 1 Computing the Output of a Filter

k yk ykC1 ykC2 :35yk C :5ykC1 C :35ykC2 D ´k

0 1 .7 0 .35(1) + .5(.7) + .35(0) = .7

1 .7 0 �:7 .35(.7) + .5(0) + :35.�:7/ = 0

2 0 �:7 �1 .35(0) + :5.�:7/ + :35.�1/ = �:7

3 �:7 �1 �:7 :35.�:7/ + :5.�1/ + :35.�:7/ = �1

4 �1 �:7 0 :35.�1/ + :5.�:7/ + .35(0) = �:7

5 �:7 0 .7 :35.�:7/ + .5(0) + .35(.7) = 0
:::

:::
:::

A different input signal is produced from the higher frequency signal y D

cos.3� t=4/, shown in Figure 1(b). Sampling at the same rate as before produces a new
input sequence:

fwkg D .: : : ; 1; �:7; 0; :7; �1; :7; 0; �:7; 1; �:7; 0; : : :/

-

k D 0
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When fwkg is fed into the filter, the output is the zero sequence. The filter, called a
low-pass filter, lets fykg pass through, but stops the higher frequency fwkg.

In many applications, a sequence f´kg is specified for the right side of a difference
equation (3), and a fykg that satisfies (3) is called a solution of the equation. The next
example shows how to find solutions for a homogeneous equation.

EXAMPLE 3 Solutions of a homogeneous difference equation often have the form
fykg D fr

kg for some r . Find some solutions of the equation

ykC3 � 2ykC2 � 5ykC1 C 6yk D 0 for all k (4)

SOLUTION Substitute rk for yk in the equation and factor the left side:

rkC3
� 2rkC2

� 5rkC1
C 6rk

D 0 (5)

rk.r3
� 2r2

� 5r C 6/ D 0

rk.r � 1/.r C 2/.r � 3/ D 0 (6)

Since (5) is equivalent to (6), frkg satisfies the difference equation (4) if and only if r

satisfies (6). Thus f1kg, f.�2/kg, and f3kg are all solutions of (4). For instance, to verify
that f3kg is a solution of (4), compute

3kC3
� 2 � 3kC2

� 5 � 3kC1
C 6 � 3k

D 3k.27 � 18 � 15C 6/ D 0 for all k

In general, a nonzero signal frkg satisfies the homogeneous difference equation

ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk D 0 for all k

if and only if r is a root of the auxiliary equation

rn
C a1rn�1

C � � � C an�1r C an D 0

Wewill not consider the case inwhich r is a repeated root of the auxiliary equation.When
the auxiliary equation has a complex root, the difference equation has solutions of the
form fsk cos k!g and fsk sin k!g, for constants s and !. This happened in Example 2.

Solution Sets of Linear Difference Equations
Given a1; : : : ; an, recall that the LTI transformation T W S! S given by

T D a0S�n
C a1S�nC1

C � � � C an�1S�1
C anS0

transforms a signal fykg into the signal fwkg given by

wk D ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk for all k

This implies that the solution set of the homogeneous equation

ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk D 0 for all k

is the kernel of T and describes the signals that are filtered out or transformed into the
zero signal. Since the kernel of any linear transformation with domain S is a subspace of
S, so is the solution set of a homogeneous equation. Any linear combination of solutions
is again a solution.

The next theorem, a simple but basic result, will lead to more information about the
solution sets of difference equations.
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THEOREM 19 If an ¤ 0 and if f´kg is given, the equation

ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk D ´k for all k (7)

has a unique solution whenever y0; : : : ; yn�1 are specified.

PROOF If y0; : : : ; yn�1 are specified, use (7) to define

yn D ´0 � Œ a1yn�1 C � � � C an�1y1 C any0 �

And now that y1; : : : ; yn are specified, use (7) to define ynC1. In general, use the
recurrence relation

ynCk D ´k � Œ a1ykCn�1 C � � � C anyk � (8)

to define ynCk for k � 0. To define yk for k < 0, use the recurrence relation

yk D
1

an

´k �
1

an

Œ ykCn C a1ykCn�1 C � � � C an�1ykC1 � (9)

This produces a signal that satisfies (7). Conversely, any signal that satisfies (7) for all k

certainly satisfies (8) and (9), so the solution of (7) is unique.

THEOREM 20 The setH of all solutions of the nth-order homogeneous linear difference equation

ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk D 0 for all k (10)

is an n-dimensional vector space.

PROOF As was pointed out earlier, H is a subspace of S because H is the kernel
of a linear transformation. For fykg in H , let F fykg be the vector in Rn given by
.y0; y1; : : : ; yn�1/. It is readily verified that F W H ! Rn is a linear transformation.
Given any vector .y0; y1; : : : ; yn�1/ in Rn, Theorem 19 says that there is a unique
signal fykg in H such that F fykg D .y0; y1; : : : ; yn�1/. This means that F is a
one-to-one linear transformation of H onto Rn; that is, F is an isomorphism. Thus
dimH D dimRn D n. (See Exercise 52 in Section 4.5.)

EXAMPLE 4 Find a basis for the set of all solutions to the difference equation

ykC3 � 2ykC2 � 5ykC1 C 6yk D 0 for all k

SOLUTION Our work in linear algebra really pays off now!We know from Examples 1
and 3 that f1kg, f.�2/kg, and f3kg are linearly independent solutions. In general, it can
be difficult to verify directly that a set of signals spans the solution space. But that is no
problem here because of two key theorems—Theorem 20, which shows that the solution
space is exactly three-dimensional, and the Basis Theorem in Section 4.5, which says
that a linearly independent set of n vectors in an n-dimensional space is automatically a
basis. So f1kg, f.�2/kg, and f3kg form a basis for the solution space.

The standard way to describe the “general solution” of the difference equation (10)
is to exhibit a basis for the subspace of all solutions. Such a basis is usually called a
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fundamental set of solutions of (10). In practice, if you can find n linearly independent
signals that satisfy (10), they will automatically span the n-dimensional solution space,
as explained in Example 4.

Nonhomogeneous Equations
The general solution of the nonhomogeneous difference equation

ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk D ´k for all k (11)

can be written as one particular solution of (11) plus an arbitrary linear combination of
a fundamental set of solutions of the corresponding homogeneous equation (10). This
fact is analogous to the result in Section 1.5 showing that the solution sets of Ax D b
and Ax D 0 are parallel. Both results have the same explanation: The mapping x 7! Ax
is linear, and the mapping that transforms the signal fykg into the signal f´kg in (11) is
linear.

EXAMPLE 5 Verify that the signal fykg D fk
2g satisfies the difference equation

ykC2 � 4ykC1 C 3yk D �4k for all k (12)

Then find a description of all solutions of this equation.

SOLUTION Substitute k2 for yk on the left side of (12):

.k C 2/2
�4.k C 1/2

C 3k2

D .k2
C 4k C 4/ � 4.k2

C 2k C 1/C 3k2

D �4k

So k2 is indeed a solution of (12). The next step is to solve the homogeneous equation

ykC2 � 4ykC1 C 3yk D 0 for all k (13)

The auxiliary equation is

r2
� 4r C 3 D .r � 1/.r � 3/ D 0

The roots are r D 1; 3. So two solutions of the homogeneous difference equation are f1kg

and f3kg. They are obviously not multiples of each other, so they are linearly independent
signals. By Theorem 20, the solution space is two-dimensional, so f1kg and f3kg form a
basis for the set of solutions of equation (13). Translating that set by a particular solution
of the nonhomogeneous equation (12), we obtain the general solution of (12):

fk2
g C c1f1

k
g C c2f3

k
g; or fk2

C c1 C c23k
g

Figure 2 gives a geometric visualization of the two solution sets. Each point in the figure
corresponds to one signal in S.

x3

1k

3k

k2

x1

x2

Span{1k, 3k}

k2 1 Span{1k, 3k}

FIGURE 2

Solution sets of difference
equations (12) and (13).

Reduction to Systems of First-Order Equations
Amodern way to study a homogeneous nth-order linear difference equation is to replace
it by an equivalent system of first-order difference equations, written in the form

xkC1 D Axk for all k

where the vectors xk are in Rn and A is an n � n matrix.
A simple example of such a (vector-valued) difference equation was already studied

in Section 1.10. Further examples will be covered in Sections 5.6 and 5.9.
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EXAMPLE 6 Write the following difference equation as a first-order system:

ykC3 � 2ykC2 � 5ykC1 C 6yk D 0 for all k

SOLUTION For each k, set

xk D

24 yk

ykC1

ykC2

35
The difference equation says that ykC3 D �6yk C 5ykC1 C 2ykC2, so

xkC1 D

24 ykC1

ykC2

ykC3

35 D
264 0 C ykC1 C 0

0 C 0 C ykC2

�6yk C 5ykC1 C 2ykC2

375 D
24 0 1 0

0 0 1

�6 5 2

3524 yk

ykC1

ykC2

35
That is,

xkC1 D Axk for all k; where A D

24 0 1 0

0 0 1

�6 5 2

35
In general, the equation

ykCn C a1ykCn�1 C � � � C an�1ykC1 C anyk D 0 for all k

can be rewritten as xkC1 D Axk for all k, where

xk D

26664
yk

ykC1

:::

ykCn�1

37775 ; A D

2666664
0 1 0 : : : 0

0 0 1 0
:::

: : :
:::

0 0 0 1

�an �an�1 �an�2 � � � �a1

3777775
Practice Problem

It can be shown that the signals 2k , 3k sin k�
2
, and 3k cos k�

2
are solutions of

ykC3 � 2ykC2 C 9ykC1 � 18yk D 0

Show that these signals form a basis for the set of all solutions of the difference equation.

4.8 Exercises
Verify that the signals in Exercises 1 and 2 are solutions of the
accompanying difference equation.

1. 2k ; .�4/k I ykC2 C 2ykC1 � 8yk D 0

2. 4k ; .�4/k I ykC2 � 16yk D 0

Show that the signals in Exercises 3–6 form a basis for the solution
set of the accompanying difference equation.

3. The signals and equation in Exercise 1

4. The signals and equation in Exercise 2

5. .�3/k ; k.�3/k I ykC2 C 6ykC1 C 9yk D 0

6. 5k cos k�
2

; 5k sin k�
2
I ykC2 C 25yk D 0

In Exercises 7–12, assume the signals listed are solutions of the
given difference equation. Determine if the signals form a basis
for the solution space of the equation. Justify your answers using
appropriate theorems.

7. 1k ; 3k ; .�3/k I ykC3 � ykC2 � 9ykC1 C 9yk D 0

8. 2k ; 4k ; .�5/k I ykC3 � ykC2 � 22ykC1 C 40yk D 0

9. 1k ; 3k cos k�
2

; 3k sin k�
2
I ykC3 � ykC2 C 9ykC1 � 9yk D 0
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10. .�1/k ; k.�1/k ; 5k I ykC3 � 3ykC2 � 9ykC1 � 5yk D 0

11. .�1/k ; 3k I ykC3 C ykC2 � 9ykC1 � 9yk D 0

12. 1k ; .�1/k I ykC4 � 2ykC2 C yk D 0

In Exercises 13–16, find a basis for the solution space of the
difference equation. Prove that the solutions you find span the
solution set.

13. ykC2 � ykC1 C
2
9
yk D 0 14. ykC2 � 9ykC1 C 14yk D 0

15. ykC2 � 25yk D 0 16. 16ykC2 C 8ykC1�3ykD0

17. The Fibonacci Sequence is listed in Table 1 of Section 4.7. It
can be viewed as the sequence of numberswhere each number
is the sum of the two numbers before it. It can be described
as the homogeneous difference equation

ykC2 � ykC1 � yk D 0

with the initial conditions y0 D 0 and y1 D 1. Find the gen-
eral solution of the Fibonacci sequence.

18. If the initial conditions are changed to y0 D 1 and y1 D 2

for the Fibonacci sequence in Exercise 17, list the terms of
the sequence for k D 2; 3; 4 and 5. Find the solution to the
difference equation from 17 with these new initial conditions.

Exercises 19 and 20 concern a simple model of the national
economy described by the difference equation

YkC2 � a.1C b/YkC1 C abYk D 1 (14)

Here Yk is the total national income during year k, a is a constant
less than 1, called the marginal propensity to consume, and b is
a positive constant of adjustment that describes how changes in
consumer spending affect the annual rate of private investment.1

19. Find the general solution of equation (14) when a D :9 and
b D 4

9
. What happens to Yk as k increases? [Hint: First find a

particular solution of the form Yk D T , where T is a constant,
called the equilibrium level of national income.]

20. Find the general solution of equation (14) when a D :9 and
b D :5.

A lightweight cantilevered beam is supported at N points spaced
10 ft apart, and a weight of 500 lb is placed at the end of the
beam, 10 ft from the first support, as in the figure. Let yk be
the bending moment at the kth support. Then y1 D 5000 ft-lb.
Suppose the beam is rigidly attached at the N th support and the
bending moment there is zero. In between, the moments satisfy
the three-moment equation

ykC2 C 4ykC1 C yk D 0 for k D 1; 2; : : : ; N � 2 .15/

1 For example, see Discrete Dynamical Systems, by James T. Sandefur
(Oxford: Clarendon Press, 1990), pp. 267–276. The original
accelerator-multiplier model is attributed to the economist P. A.
Samuelson.

1 2 3

y1 y2 y3 yN

N500
lb

109 109 109

Bending moments on a cantilevered beam.

21. Find the general solution of difference equation (15). Justify
your answer.

22. Find the particular solution of (15) that satisfies the boundary
conditions y1 D 5000 and yN D 0. (The answer involvesN .)

23. When a signal is produced from a sequence of measurements
made on a process (a chemical reaction, a flow of heat through
a tube, a moving robot arm, etc.), the signal usually contains
random noise produced by measurement errors. A standard
method of preprocessing the data to reduce the noise is to
smooth or filter the data. One simple filter is amoving average
that replaces each yk by its average with the two adjacent
values:

1
3
ykC1 C

1
3
yk C

1
3
yk�1 D ´k for k D 1; 2; : : :

Suppose a signal yk , for k D 0; : : : ; 14, is

9; 5; 7; 3; 2; 4; 6; 5; 7; 6; 8; 10; 9; 5; 7

Use the filter to compute ´1; : : : ; ´13. Make a broken-line
graph that superimposes the original signal and the smoothed
signal.

24. Let fykg be the sequence produced by sampling the continu-
ous signal 2 cos �t

4
C cos 3�t

4
at t D 0; 1; 2; : : : ; as shown in

the figure. The values of yk , beginning with k D 0, are

3; :7; 0; �:7; �3; �:7; 0; :7; 3; :7; 0; : : :

where .7 is an abbreviation for
p

2=2.

a. Compute the output signal f´kg when fykg is fed into the
filter in Example 2.

b. Explain how and why the output in part (a) is related to
the calculations in Example 2.

y

1

21
1 2

t

3pt–––4
pt––4y 5 2 cos        1 cos          

Sampled data from 2 cos �t
4
C cos 3�t

4
.

Exercises 25 and 26 refer to a difference equation of the form
ykC1 � ayk D b, for suitable constants a and b.

25. A loan of $10,000 has an interest rate of 1% per month and a
monthly payment of $450. The loan is made at month k D 0,
and the first payment is made one month later, at k D 1. For
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k D 0; 1; 2; : : : ; let yk be the unpaid balance of the loan just
after the kth monthly payment. Thus

y1 D 10;000 C .:01/10;000 � 450

New Balance Interest Payment
balance due added

a. Write a difference equation satisfied by fykg.

T b. Create a table showing k and the balance yk at month k.
List the program or the keystrokes you used to create the
table.

T c. What will k be when the last payment is made? How
much will the last payment be? How much money did the
borrower pay in total?

26. At time k D 0, an initial investment of $1000 is made into a
savings account that pays 6% interest per year compounded
monthly. (The interest rate per month is .005.) Each month
after the initial investment, an additional $200 is added to
the account. For k D 0; 1; 2; : : : ; let yk be the amount in the
account at time k, just after a deposit has been made.

a. Write a difference equation satisfied by fykg.

T b. Create a table showing k and the total amount in the
savings account at month k, for k D 0 through 60. List
your program or the keystrokes you used to create the
table.

T c. How much will be in the account after two years (that is,
24 months), four years, and five years? How much of the
five-year total is interest?

In Exercises 27–30, show that the given signal is a solution of
the difference equation. Then find the general solution of that
difference equation.

27. yk D k2I ykC2 C 4ykC1 � 5yk D 8C 12k

28. yk D 1C kI ykC2 � 8ykC1 C 15yk D 2C 8k

29. yk D 2 � 2kI ykC2 �
9
2
ykC1 C 2yk D 2C 3k

30. yk D 2k � 4I ykC2 C
3
2
ykC1 � yk D 1C 3k

Write the difference equations in Exercises 31 and 32 as first-order
systems, xkC1 D Axk , for all k.

31. ykC4 � 2ykC3 � 3ykC2 C 8ykC1 � 4yk D 0

32. ykC3 �
3
4
ykC2 C

1
16

yk D 0

33. Is the following difference equation of order 3? Explain.

ykC3 C 5ykC2 C 6ykC1 D 0

34. What is the order of the following difference equation? Ex-
plain your answer.

ykC3 C a1ykC2 C a2ykC1 C a3yk D 0

35. Let yk D k2 and ´k D 2kjkj. Are the signals fykg and f´kg

linearly independent? Evaluate the associated Casorati matrix
C.k/ for k D 0, k D �1, and k D �2, and discuss your
results.

36. Let f , g, and h be linearly independent functions defined for
all real numbers, and construct three signals by sampling the
values of the functions at the integers:

uk D f .k/; vk D g.k/; wk D h.k/

Must the signals be linearly independent in S? Discuss.

Solution to Practice Problem

Examine the Casorati matrix:

C.k/ D

26664
2k 3k sin k�

2
3k cos k�

2

2kC1 3kC1 sin .kC1/�

2
3kC1 cos .kC1/�

2

2kC2 3kC2 sin .kC2/�

2
3kC2 cos .kC2/�

2

37775
Set k D 0 and row reduce the matrix to verify that it has three pivot positions and hence
is invertible:

C.0/ D

24 1 0 1

2 3 0

4 0 �9

35 � 24 1 0 1

0 3 �2

0 0 �13

35
The Casorati matrix is invertible at k D 0, so the signals are linearly independent.
Since there are three signals, and the solution space H of the difference equation has
dimension 3 (Theorem 20), the signals form a basis for H , by the Basis Theorem.
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CHAPTER 4 PROJECTS
Chapter 4 projects are available online.

A. Exploring Subspaces: This project explores subspaces with a
more hands-on approach.

B. Hill Substitution Ciphers: This project shows how to use
matrices to encode and decode messages.

C. Error Detecting and Error Correcting: In this project,
a method detecting and correcting errors made in the

transmission of encoded messages is constructed. It will turn
out that abstract vector spaces and the concepts of null space,
rank, and dimension are needed for this construction.

D. Signal Processing: This project examines signal processing
in more detail.

E. Fibonacci Sequences: The purpose of this project is to inves-
tigate further the Fibonacci sequence, which arises in number
theory, applied mathematics, and biology.

CHAPTER 4 SUPPLEMENTARY EXERCISES
In Exercises 1–19, mark each statement True or False (T/F).
Justify each answer. (If true, cite appropriate facts or theorems.
If false, explain why or give a counterexample that shows why the
statement is not true in every case.) In Exercises 1–6, v1; : : : ; vp

are vectors in a nonzero finite-dimensional vector space V , and
S D fv1; : : : ; vpg.

1. (T/F) The set of all linear combinations of v1; : : : ; vp is a
vector space.

2. (T/F) If fv1; : : : ; vp�1g spans V , then S spans V .

3. (T/F) If fv1; : : : ; vp�1g is linearly independent, then so is S .

4. (T/F) If S is linearly independent, then S is a basis for V.

5. (T/F) If SpanS D V, then some subset of S is a basis for V .

6. (T/F) If dimV D p and SpanS D V , then S cannot be
linearly dependent.

7. (T/F) A plane in R3 is a two-dimensional subspace.

8. (T/F) The nonpivot columns of a matrix are always linearly
dependent.

9. (T/F) Row operations on a matrix A can change the linear
dependence relations among the rows of A.

10. (T/F) Row operations on a matrix can change the null space.

11. (T/F) The rank of a matrix equals the number of nonzero
rows.

12. (T/F) If an m � n matrix A is row equivalent to an echelon
matrix U and if U has k nonzero rows, then the dimension of
the solution space of Ax D 0 is m � k.

13. (T/F) If B is obtained from a matrix A by several elementary
row operations, then rankB D rankA.

14. (T/F)The nonzero rows of amatrixA form a basis for RowA.

15. (T/F) If matrices A and B have the same reduced echelon
form, then RowA D RowB .

16. (T/F) If H is a subspace of R3, then there is a 3 � 3 matrix
A such that H D ColA.

17. (T/F) If A is m � n and rankA D m, then the linear transfor-
mation x 7! Ax is one-to-one.

18. (T/F) If A is m � n and the linear transformation x 7! Ax is
onto, then rankA D m.

19. (T/F) A change-of-coordinates matrix is always invertible.

20. Find a basis for the set of all vectors of the form2664
aC 2b C 3c

2aC 3b C 4c

3aC 4b C 5c

4aC 5b C 6c

3775 : (Be careful.)

21. Let u1 D

24�2

4

�6

35, u2 D

24 1

2

�5

35, b D

24 b1

b2

b3

35, and

W D Span fu1; u2g. Find an implicit description of W ; that
is, find a set of one or more homogeneous equations that
characterize the points of W . [Hint:When is b in W ‹�

22. Explain what is wrong with the following discus-
sion: Let f.t/ D 1C t and g.t/ D 1 � t2, and note that
g.t/ D .1 � t/f.t/. Then ff; gg is linearly dependent because
g is a multiple of f.

23. Consider the polynomials p1.t/ D 1C t , p2.t/ D 1 � t ,
p3.t/ D 4, p4.t/ D t C t2, and p5.t/ D 1C 2t C t2,
and let H be the subspace of P5 spanned by the set
S D fp1; p2; p3; p4; p5g. Use the method described in the
proof of the Spanning Set Theorem (Section 4.3) to produce
a basis for H . (Explain how to select appropriate members
of S .)

24. Suppose p1, p2, p3, and p4 are specific polynomials that span
a two-dimensional subspace H of P5. Describe how one can
find a basis for H by examining the four polynomials and
making almost no computations.

25. What would you have to know about the solution set of a
homogeneous system of 23 linear equations in 25 variables
in order to know that every associated nonhomogeneous
equation has a solution? Discuss.
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26. Let H be an n-dimensional subspace of an n-dimensional
vector space V . Explain why H D V .

27. Let T W Rn ! Rm be a linear transformation.

a. What is the dimension of the range of T if T is a one-to-
one mapping? Explain.

b. What is the dimension of the kernel of T (see Section 4.2)
if T maps Rn onto Rm? Explain.

28. Let S be a maximal linearly independent subset of a vector
space V . That is, S has the property that if a vector not in S

is adjoined to S , then the new set will no longer be linearly
independent. Prove that S must be a basis for V . [Hint:What
if S were linearly independent but not a basis of V ‹�

29. Let S be a finite minimal spanning set of a vector space V .
That is, S has the property that if a vector is removed from S ,
then the new set will no longer span V . Prove that S must be
a basis for V .

Exercises 30–35 develop properties of rank that are sometimes
needed in applications. Assume the matrix A is m � n.

30. Show from parts (a) and (b) that rankAB cannot exceed the
rank ofA or the rank ofB . (In general, the rank of a product of
matrices cannot exceed the rank of any factor in the product.)

a. Show that if B is n � p, then rankAB � rankA. [Hint:
Explain why every vector in the column space of AB is in
the column space of A.]

b. Show that if B is n � p, then rankAB � rankB . [Hint:
Use part (a) to study rank.AB/T .]

31. Show that if Q is an invertible n � n matrix, then
rankAQ D rankA. [Hint: Apply Exercise 12 to AQ and
.AQ/Q�1.]

32. Show that if P is an invertible m �m matrix, then
rankPA D rankA. [Hint: Use Exercise 13 to study
rank.PA/T .]

33. Let A be an m � n matrix, and let B be an n � p matrix
such that AB D 0. Show that rankAC rankB � n. [Hint:
One of the four subspaces NulA, ColA, NulB , and ColB
is contained in one of the other three subspaces.]

34. If A is an m � n matrix of rank r , then a rank factorization of
A is an equation of the form A D CR, where C is an m � r

matrix of rank r and R is an r � n matrix of rank r . Show
that such a factorization always exists. Then show that given
any two m � n matrices A and B .

rank.AC B/ � rankAC rankB

[Hint: Write AC B as the product of two partitioned
matrices.]

35. A submatrix of a matrix A is any matrix that results from
deleting some (or no) rows and/or columns of A. It can be

shown thatA has rank r if and only ifA contains an invertible
r � r submatrix and no larger square submatrix is invertible.
Demonstrate part of this statement by explaining (a) why
an m � n matrix A of rank r has an m � r submatrix A1 of
rank r , and (b) why A1 has an invertible r � r submatrix A2.

The concept of rank plays an important role in the design of
engineering control systems. A state-space model of a control
system includes a difference equation of the form

xkC1 D Axk C Buk for k D 0; 1; : : : (1)

whereA is n � n,B is n �m, fxkg is a sequence of “state vectors”
in Rn that describe the state of the system at discrete times, and
fukg is a control, or input, sequence. The pair .A; B/ is said to be
controllable if

rank Œ B AB A2B � � � An�1B � D n (2)

The matrix that appears in (2) is called the controllability matrix
for the system. If .A; B/ is controllable, then the system can be
controlled, or driven from the state 0 to any specified state v (in
Rn) in at most n steps, simply by choosing an appropriate control
sequence in Rm. This fact is illustrated in Exercise 36 for n D 4

and m D 2.

36. Suppose A is a 4 � 4 matrix and B is a 4 � 2 matrix, and let
u0; : : : ; u3 represent a sequence of input vectors in R2.

a. Set x0 D 0, compute x1; : : : ; x4 from equation (1), and
write a formula for x4 involving the controllability matrix
M appearing in equation (2). (Note: The matrix M is
constructed as a partitioned matrix. Its overall size here
is 4 � 8.)

b. Suppose .A; B/ is controllable and v is any vector in R4.
Explain why there exists a control sequence u0; : : : ; u3 in
R2 such that x4 D v.

Determine if the matrix pairs in Exercises 37–40 are controllable.

37. A D

24 :9 1 0

0 �:9 0

0 0 :5

35, B D

24 0

1

1

35
38. A D

24 :8 �:3 0

:2 :5 1

0 0 �:5

35, B D

24 1

1

0

35

T 39. A D

2664
0 1 0 0

0 0 1 0

0 0 0 1

�2 �4:2 �4:8 �3:6

3775, B D

2664
1

0

0

�1

3775

T 40. A D

2664
0 1 0 0

0 0 1 0

0 0 0 1

�1 �13 �12:2 �1:5

3775, B D

2664
1

0

0

�1

3775



5 Eigenvalues and
Eigenvectors

Introductory Example

DYNAMICAL SYSTEMS AND SPOTTED OWLS
In 1990, the northern spotted owl became the center of
a nationwide controversy over the use and misuse of the
majestic forests in the Pacific Northwest. Environmentalists
convinced the federal government that the owl was
threatened with extinction if logging continued in the old-
growth forests (with trees more than 200 years old), where
the owls prefer to live. The timber industry, anticipating the
loss of 30,000–100,000 jobs as a result of new government
restrictions on logging, argued that the owl should not be
classified as a “threatened species” and cited a number of
published scientific reports to support its case.1

The population of spotted owls continues to decline,
and it remains a species caught in the crossfire between eco-
nomic opportunities and conservation efforts. Mathemati-
cal ecologists help to analyze the effects on the spotted owl
population of factors such as logging techniques, wildfires,
and competition for habitat with the invasive barred owl.
The life cycle of a spotted owl divides naturally into three
stages: juvenile (up to 1 year old), subadult (1–2 years), and
adult (older than 2 years). The owls mate for life during
the subadult and adult stages, begin to breed as adults,
and live for up to 20 years. Each owl pair requires about
1000 hectares (4 square miles) for its own home territory.
A critical time in the life cycle is when the juveniles leave
the nest. To survive and become a subadult, a juvenile must
successfully find a new home range (and usually a mate).

1 “The Great Spotted Owl War,” Reader’s Digest, November 1992,
pp. 91–95.

A first step in studying the population dynamics is to
model the population at yearly intervals, at times denoted
by k D 0; 1; 2; : : : : Usually, one assumes that there is a
1:1 ratio of males to females in each life stage and counts
only the females. The population at year k can be described
by a vector xk D .jk ; sk ; ak/, where jk , sk , and ak are the
numbers of females in the juvenile, subadult, and adult
stages, respectively.

Using actual field data from demographic studies, R.
Lamberson and coworkers considered the following stage-
matrix model:224 jkC1

skC1

akC1

35 D 24 0 0 :33

:18 0 0

0 :71 :94

3524 jk

sk

ak

35
Here the number of new juvenile females in year k C 1

is .33 times the number of adult females in year k (based
on the average birth rate per owl pair). Also, 18% of the
juveniles survive to become subadults, and 71% of the
subadults and 94% of the adults survive to be counted as
adults.

The stage-matrix model is a difference equation of
the form xkC1 D Axk. Such an equation is often called
a dynamical system (or a discrete linear dynamical

2R. H. Lamberson, R. McKelvey, B. R. Noon, and C. Voss, “A Dynamic
Analysis of the Viability of the Northern Spotted Owl in a Fragmented
Forest Environment,” Conservation Biology 6 (1992), 505–512. Also, a
private communication from Professor Lamberson, 1993.
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system) because it describes the changes in a system as
time passes.

The 18% juvenile survival rate in the Lamberson stage
matrix is the entry affected most by the amount of old-
growth forest available. Actually, 60% of the juveniles
normally survive to leave the nest, but in the Willow
Creek region of California studied by Lamberson and his
colleagues, only 30% of the juveniles that left the nest were
able to find new home ranges. The rest perished during the
search process.

A significant reason for the failure of owls to find new
home ranges is the increasing fragmentation of old-growth
timber stands due to clear-cutting of scattered areas on
the old-growth land. When an owl leaves the protective
canopy of the forest and crosses a clear-cut area, the risk of
attack by predators increases dramatically. Section 5.6 will
show that the model described in the chapter introduction
predicts the eventual demise of the spotted owl, but that if
50% of the juveniles who survive to leave the nest also find
new home ranges, then the owl population will thrive.

The goal of this chapter is to dissect the action of a linear transformation x 7!Ax into
elements that are easily visualized. All matrices in the chapter are square. The main
applications described here are to discrete dynamical systems, differential equations, and
Markov chains. However, the basic concepts—eigenvectors and eigenvalues—are useful
throughout pure and applied mathematics, and they appear in settings far more general
than we consider here. Eigenvalues are also used to study differential equations and
continuous dynamical systems, they provide critical information in engineering design,
and they arise naturally in fields such as physics and chemistry.

5.1 Eigenvectors and Eigenvalues
Although a transformation x 7!Ax may move vectors in a variety of directions, it often
happens that there are special vectors on which the action of A is quite simple.

EXAMPLE 1 Let A D

�
3 �2

1 0

�
, u D

�
�1

1

�
, and v D

�
2

1

�
. The images of u and

v under multiplication by A are shown in Figure 1. In fact, Av is just 2v. So A only
“stretches” or dilates v.

v

x1

x2

Av

Au

u 1

1

FIGURE 1 Effects of multiplication by A.
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This section studies equations such as

Ax D 2x or Ax D �4x

where special vectors are transformed by A into scalar multiples of themselves.

DEFINITION An eigenvector of an n � n matrix A is a nonzero vector x such that Ax D �x for
some scalar �. A scalar � is called an eigenvalue ofA if there is a nontrivial solution
x of Ax D �x; such an x is called an eigenvector corresponding to �.1

It is easy to determine if a given vector is an eigenvector of a matrix. See Example
2. It is also easy to decide if a specified scalar is an eigenvalue. See Example 3.

EXAMPLE 2 Let A D

�
1 6

5 2

�
, u D

�
6

�5

�
, and v D

�
3

�2

�
. Are u and v eigen-

vectors of A?

SOLUTION

Au D
�

1 6

5 2

��
6

�5

�
D

�
�24

20

�
D �4

�
6

�5

�
D �4u

Av D
�

1 6

5 2

��
3

�2

�
D

�
�9

11

�
¤ �

�
3

�2

�
Thus u is an eigenvector corresponding to an eigenvalue .�4/, but v is not an eigenvector
of A, because Av is not a multiple of v.

Au

Av

v

u

20

230 30

210

220

x1

x2

Au D �4u, but Av ¤ �v .

EXAMPLE 3 Show that 7 is an eigenvalue of matrix A in Example 2, and find the
corresponding eigenvectors.

SOLUTION The scalar 7 is an eigenvalue of A if and only if the equation

Ax D 7x (1)

has a nontrivial solution. But (1) is equivalent to Ax � 7x D 0, or

.A � 7I /x D 0 (2)

To solve this homogeneous equation, form the matrix

A � 7I D

�
1 6

5 2

�
�

�
7 0

0 7

�
D

�
�6 6

5 �5

�
The columns ofA � 7I are obviously linearly dependent, so (2) has nontrivial solutions.
Thus 7 is an eigenvalue ofA. To find the corresponding eigenvectors, use row operations:�

�6 6 0

5 �5 0

�
�

�
1 �1 0

0 0 0

�
The general solution has the form x2

�
1

1

�
. Each vector of this form with x2 ¤ 0 is an

eigenvector corresponding to � D 7.

1Note that an eigenvector must be nonzero, by definition, but an eigenvalue may be zero. The case in which
the number 0 is an eigenvalue is discussed after Example 5.
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Warning: Although row reduction was used in Example 3 to find eigenvectors, it
cannot be used to find eigenvalues. An echelon form of a matrix A usually does not
display the eigenvalues of A.

The equivalence of equations (1) and (2) obviously holds for any� in place of� D 7.
Thus � is an eigenvalue of an n � n matrix A if and only if the equation

.A � �I/x D 0 (3)

has a nontrivial solution. The set of all solutions of (3) is just the null space of the matrix
A � �I . So this set is a subspace of Rn and is called the eigenspace of A corresponding
to �. The eigenspace consists of the zero vector and all the eigenvectors corresponding
to �.

Example 3 shows that for matrix A in Example 2, the eigenspace corresponding to
� D 7 consists of all multiples of .1; 1/, which is the line through .1; 1/ and the origin.
From Example 2, you can check that the eigenspace corresponding to � D �4 is the
line through .6;�5/. These eigenspaces are shown in Figure 2, along with eigenvectors
.1; 1/ and .3=2;�5=4/ and the geometric action of the transformation x 7!Ax on each
eigenspace.

x1

x2

Eigenspace
for l 5 7

Multiplication
by 7

Eigenspace
for l 5 24

Multiplication
by 24

2

2

(6, 25)

FIGURE 2 Eigenspaces for � D �4 and � D 7.

EXAMPLE 4 LetA D

24 4 �1 6

2 1 6

2 �1 8

35. An eigenvalue ofA is 2. Find a basis for the

corresponding eigenspace.

SOLUTION Form

A � 2I D

24 4 �1 6

2 1 6

2 �1 8

35 � 24 2 0 0

0 2 0

0 0 2

35 D 24 2 �1 6

2 �1 6

2 �1 6

35
and row reduce the augmented matrix for .A � 2I /x D 0:24 2 �1 6 0

2 �1 6 0

2 �1 6 0

35 � 24 2 �1 6 0

0 0 0 0

0 0 0 0

35
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At this point, it is clear that 2 is indeed an eigenvalue of A because the equation
.A � 2I /x D 0 has free variables. The general solution is24 x1

x2

x3

35 D x2

24 1=2

1

0

35C x3

24�3

0

1

35; x2 and x3 free

The eigenspace, shown in Figure 3, is a two-dimensional subspace of R3. A basis is8<:
24 1

2

0

35;

24�3

0

1

359=;

Eigenspace for l5 2

Multiplication by A

x2

x1

x3

Eigenspace for l5 2

x2

x1

x3

FIGURE 3 A acts as a dilation on the eigenspace.

Reasonable Answers

Remember that once you find a potential eigenvector v, you can easily check your
answer: just find Av and see if it is a multiple of v. For example, to check whether

v D
�

1

1

�
is an eigenvector ofA D

�
1 2

�1 �2

�
, noticeAv D

�
3

�3

�
, which

is not a multiple of v D
�

1

1

�
, establishing that v is not an eigenvector. It turns

out we had a sign error. The vector u D
�

1

�1

�
is a correct eigenvector for A

since Au D
�
�1

1

�
D �1

�
1

�1

�
D �1 u.

Numerical Notes

Example 4 shows a good method for manual computation of eigenvectors in
simple cases when an eigenvalue is known. Using a matrix program and row
reduction to find an eigenspace (for a specified eigenvalue) usually works, too, but
this is not entirely reliable. Roundoff error can lead occasionally to a reduced ech-
elon formwith the wrong number of pivots. The best computer programs compute
approximations for eigenvalues and eigenvectors simultaneously, to any desired
degree of accuracy, for matrices that are not too large. The size of matrices that
can be analyzed increases each year as computing power and software improve.
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The following theorem describes one of the few special cases in which eigenvalues
can be found precisely. Calculation of eigenvalues will also be discussed in Section 5.2.

THEOREM 1 The eigenvalues of a triangular matrix are the entries on its main diagonal.

PROOF For simplicity, consider the 3 � 3 case. If A is upper triangular, then A � �I

has the form

A � �I D

24 a11 a12 a13

0 a22 a23

0 0 a33

35 � 24 � 0 0

0 � 0

0 0 �

35
D

24 a11 � � a12 a13

0 a22 � � a23

0 0 a33 � �

35
The scalar � is an eigenvalue of A if and only if the equation .A � �I/x D 0 has a
nontrivial solution, that is, if and only if the equation has a free variable. Because of the
zero entries in A � �I , it is easy to see that .A � �I/x D 0 has a free variable if and
only if at least one of the entries on the diagonal of A � �I is zero. This happens if and
only if � equals one of the entries a11, a22, a33 in A. For the case in which A is lower
triangular, see Exercise 36.

EXAMPLE 5 Let A D

24 3 6 �8

0 0 6

0 0 2

35 and B D

24 4 0 0

�2 1 0

5 3 4

35. The eigenval-
ues of A are 3, 0, and 2. The eigenvalues of B are 4 and 1.

What does it mean for a matrix A to have an eigenvalue of 0, such as in Example 5?
This happens if and only if the equation

Ax D 0x (4)

has a nontrivial solution. But (4) is equivalent toAx D 0, which has a nontrivial solution
if and only if A is not invertible. Thus 0 is an eigenvalue of A if and only if A is not
invertible. This fact will be added to the Invertible Matrix Theorem in Section 5.2.

The following important theorem will be needed later. Its proof illustrates a typical
calculation with eigenvectors. One way to prove the statement “If P then Q” is to show
that P and the negation of Q leads to a contradiction. This strategy is used in the proof
of the theorem.

THEOREM 2 If v1; : : : ; vr are eigenvectors that correspond to distinct eigenvalues �1; : : : ; �r of
an n � n matrix A, then the set fv1; : : : ; vrg is linearly independent.

PROOF Suppose fv1; : : : ; vrg is linearly dependent. Since v1 is nonzero, Theorem 7 in
Section 1.7 says that one of the vectors in the set is a linear combination of the preceding
vectors. Let p be the least index such that vpC1 is a linear combination of the preceding
(linearly independent) vectors. Then there exist scalars c1; : : : ; cp such that

c1v1 C � � � C cpvp D vpC1 (5)
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Multiplying both sides of (5) by A and using the fact that Avk D �kvk for each k, we
obtain

c1Av1 C � � � C cpAvp D AvpC1

c1�1v1 C � � � C cp�pvp D �pC1vpC1 (6)

Multiplying both sides of (5) by �pC1 and subtracting the result from (6), we have

c1.�1 � �pC1/v1 C � � � C cp.�p � �pC1/vp D 0 (7)

Since fv1; : : : ; vpg is linearly independent, the weights in (7) are all zero. But none of
the factors �i � �pC1 are zero, because the eigenvalues are distinct. Hence ci D 0 for
i D 1; : : : ; p. But then (5) says that vpC1 D 0, which is impossible. Hence fv1; : : : ; vrg

cannot be linearly dependent and therefore must be linearly independent.

Eigenvectors and Difference Equations
This section concludes by showing how to construct solutions of the first-order difference
equation discussed in the chapter introductory example:

xkC1 D Axk .k D 0; 1; 2; : : :/ (8)

If A is an n � n matrix, then (8) is a recursive description of a sequence fxkg in Rn.
A solution of (8) is an explicit description of fxkg whose formula for each xk does not
depend directly on A or on the preceding terms in the sequence other than the initial
term x0.

The simplest way to build a solution of (8) is to take an eigenvector x0 and its
corresponding eigenvalue � and let

xk D �kx0 .k D 1; 2; : : :/ (9)

This sequence is a solution because

Axk D A.�kx0/ D �k.Ax0/ D �k.�x0/ D �kC1x0 D xkC1

Linear combinations of solutions in the form of equation (9) are solutions, too! See
Exercise 41.

Practice Problems

1. Is 5 an eigenvalue of A D

24 6 �3 1

3 0 5

2 2 6

35?
2. If x is an eigenvector of A corresponding to �, what is A3x?

3. Suppose that b1 and b2 are eigenvectors corresponding to distinct eigenvalues �1

and �2, respectively, and suppose that b3 and b4 are linearly independent eigen-
vectors corresponding to a third distinct eigenvalue �3. Does it necessarily follow
that fb1; b2; b3; b4g is a linearly independent set? [Hint: Consider the equation
c1b1 C c2b2 C .c3b3 C c4b4/ D 0.]

4. If A is an n�n matrix and � is an eigenvalue of A, show that 2� is an eigenvalue
of 2A.
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5.1 Exercises

1. Is � D 2 an eigenvalue of
�

3 2

3 8

�
? Why or why not?

2. Is � D �2 an eigenvalue of
�

7 3

3 �1

�
? Why or why not?

3. Is
�

1

4

�
an eigenvector of

�
�3 1

�3 8

�
? If so, find the eigen-

value.

4. Is
�
�1

1

�
an eigenvector of

�
4 2

2 4

�
? If so, find the eigen-

value.

5. Is

24 4

�3

1

35 an eigenvector of

24 3 7 9

�4 �5 1

2 4 4

35? If so, find
the eigenvalue.

6. Is

24 1

�2

1

35 an eigenvector of

24 2 6 7

3 2 7

5 6 4

35? If so, find the
eigenvalue.

7. Is � D 4 an eigenvalue of

24 3 0 �1

2 3 1

�3 4 5

35? If so, find one
corresponding eigenvector.

8. Is � D 3 an eigenvalue of

24 1 2 2

3 �2 1

0 1 1

35? If so, find one
corresponding eigenvector.

In Exercises 9–16, find a basis for the eigenspace corresponding
to each listed eigenvalue.

9. A D

�
9 0

2 3

�
, � D 3; 9

10. A D

�
14 �4

16 �2

�
, � D 6

11. A D

�
4 �2

�3 9

�
, � D 10

12. A D

�
1 4

3 2

�
, � D �2; 5

13. A D

24 4 0 1

�2 1 0

�2 0 1

35, � D 1; 2; 3

14. A D

24 3 �1 3

�1 3 3

6 6 2

35, � D �4

15. A D

24 8 3 �4

�1 4 4

2 6 �1

35, � D 7

16. A D

2664
3 0 2 0

1 3 1 0

0 1 1 0

0 0 0 4

3775, � D 4

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.

24 0 0 0

0 2 5

0 0 �1

35 18.

24 8 0 0

�7 0 0

6 �5 �4

35
19. For A D

24 1 2 3

1 2 3

1 2 3

35, find one eigenvalue, with no cal-
culation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly

independent eigenvectors of A D

24 4 4 �4

4 4 �4

4 4 �4

35. Justify
your answer.

In Exercises 21–30, A is an n � n matrix. Mark each statement
True or False (T/F). Justify each answer.

21. (T/F) If Ax D �x for some vector x, then � is an eigenvalue
of A.

22. (T/F) If Ax D �x for some scalar �, then x is an eigenvector
of A.

23. (T/F)AmatrixA is invertible if and only if 0 is an eigenvalue
of A.

24. (T/F) A number c is an eigenvalue of A if and only if the
equation .A � cI /x D 0 has a nontrivial solution.

25. (T/F) Finding an eigenvector of A may be difficult, but
checking whether a given vector is in fact an eigenvector is
easy.

26. (T/F) To find the eigenvalues ofA, reduceA to echelon form.

27. (T/F) If v1 and v2 are linearly independent eigenvectors, then
they correspond to distinct eigenvalues.

28. (T/F) The eigenvalues of a matrix are on its main diagonal.

29. (T/F) If v is an eigenvector with eigenvalue 2, then 2v is an
eigenvector with eigenvalue 4.

30. (T/F) An eigenspace of A is a null space of a certain matrix.

31. Explain why a 2 � 2 matrix can have at most two distinct
eigenvalues. Explain why an n � n matrix can have at most
n distinct eigenvalues.

32. Construct an example of a 2 � 2matrix with only one distinct
eigenvalue.
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33. Let � be an eigenvalue of an invertible matrix A. Show that
��1 is an eigenvalue of A�1. [Hint: Suppose a nonzero x
satisfies Ax D �x.]

34. Show that if A2 is the zero matrix, then the only eigenvalue
of A is 0.

35. Show that � is an eigenvalue of A if and only if � is an
eigenvalue of AT . [Hint: Find out how A � �I and AT � �I

are related.]

36. Use Exercise 35 to complete the proof of Theorem 1 for the
case when A is lower triangular.

37. Consider an n � n matrix A with the property that the row
sums all equal the same number s. Show that s is an eigen-
value of A. [Hint: Find an eigenvector.]

38. Consider an n � nmatrixAwith the property that the column
sums all equal the same number s. Show that s is an eigen-
value of A. [Hint: Use Exercises 35 and 37.]

In Exercises 39 and 40, let A be the matrix of the linear transfor-
mation T . Without writingA, find an eigenvalue ofA and describe
the eigenspace.

39. T is the transformation onR2 that reflects points across some
line through the origin.

40. T is the transformation on R3 that rotates points about some
line through the origin.

41. Let u and v be eigenvectors of a matrixA, with corresponding
eigenvalues � and �, and let c1 and c2 be scalars. Define

xk D c1�kuC c2�kv .k D 0; 1; 2; : : :/

a. What is xkC1, by definition?

b. Compute Axk from the formula for xk , and show that
Axk D xkC1. This calculation will prove that the se-
quence fxkg defined above satisfies the difference equa-
tion xkC1 D Axk .k D 0; 1; 2; : : :/.

42. Describe how you might try to build a solution of a difference
equation xkC1 D Axk .k D 0; 1; 2; : : :/ if you were given the

initial x0 and this vector did not happen to be an eigenvector
of A. [Hint: How might you relate x0 to eigenvectors of A?]

43. Let u and v be the vectors shown in the figure, and suppose
u and v are eigenvectors of a 2 � 2 matrix A that correspond
to eigenvalues 2 and 3, respectively. Let T W R2 ! R2 be the
linear transformation given by T .x/ D Ax for each x in R2,
and letw D uC v.Make a copy of the figure, and on the same
coordinate system, carefully plot the vectors T .u/, T .v/, and
T .w/.

x1

x2

v

u

44. Repeat Exercise 43, assuming u and v are eigenvectors of A

that correspond to eigenvalues �1 and 3, respectively.

T In Exercises 45–48, use a matrix program to find the eigenval-
ues of the matrix. Then use the method of Example 4 with a row
reduction routine to produce a basis for each eigenspace.

45.

24 8 �10 �5

2 17 2

�9 �18 4

35

46.

2664
9 �4 �2 �4

�56 32 �28 44

�14 �14 6 �14

42 �33 21 �45

3775

47.

266664
4 �9 �7 8 2

�7 �9 0 7 14

5 10 5 �5 �10

�2 3 7 0 4

�3 �13 �7 10 11

377775

48.

266664
�4 �4 20 �8 �1

14 12 46 18 2

6 4 �18 8 1

11 7 �37 17 2

18 12 �60 24 5

377775
Solutions to Practice Problems

1. The number 5 is an eigenvalue of A if and only if the equation .A � 5I /x D 0 has
a nontrivial solution. Form

A � 5I D

24 6 �3 1

3 0 5

2 2 6

35 � 24 5 0 0

0 5 0

0 0 5

35 D 24 1 �3 1

3 �5 5

2 2 1

35
and row reduce the augmented matrix:24 1 �3 1 0

3 �5 5 0

2 2 1 0

35 � 24 1 �3 1 0

0 4 2 0

0 8 �1 0

35 � 24 1 �3 1 0

0 4 2 0

0 0 �5 0

35
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Solutions to Practice Problems (Continued)

At this point, it is clear that the homogeneous system has no free variables. Thus
A � 5I is an invertible matrix, which means that 5 is not an eigenvalue of A.

2. If x is an eigenvector of A corresponding to �, then Ax D �x and so

A2x D A.�x/ D �Ax D �2x

Again, A3x D A.A2x/ D A.�2x/ D �2Ax D �3x. The general pattern, Akx D
�kx, is proved by induction.

3. Yes. Suppose c1b1 C c2b2 C .c3b3 C c4b4/ D 0. Since any linear combination of
eigenvectors corresponding to the same eigenvalue is in the eigenspace for that
eigenvalue, c3b3 C c4b4 is either 0 or an eigenvector for �3. If c3b3 C c4b4 were an
eigenvector for �3, then by Theorem 2, fb1; b2; c3b3 C c4b4g would be a linearly
independent set, which would force c1 D c2 D 0 and c3b3 C c4b4 D 0, contradict-
ing that c3b3 C c4b4 is an eigenvector. Thus c3b3 C c4b4 must be 0, implying that
c1b1 C c2b2 D 0 also. By Theorem 2, fb1; b2g is a linearly independent set so
c1 D c2 D 0. Moreover, fb3; b4g is a linearly independent set so c3 D c4 D 0. Since
all of the coefficients c1, c2, c3, and c4 must be zero, it follows that fb1, b2, b3, b4g

is a linearly independent set.

4. Since � is an eigenvalue of A, there is a nonzero vector x in Rn such that Ax D �x.
Multiplying both sides of this equation by 2 results in the equation 2.Ax/ D 2.�x/.
Thus .2A/x D .2�/x and hence 2� is an eigenvalue of 2A.

5.2 The Characteristic Equation
Useful information about the eigenvalues of a square matrix A is encoded in a special
scalar equation called the characteristic equation of A. A simple example will lead to
the general case.

EXAMPLE 1 Find the eigenvalues of A D

�
2 3

3 �6

�
.

SOLUTION We must find all scalars � such that the matrix equation

.A � �I/x D 0

has a nontrivial solution. By the Invertible Matrix Theorem in Section 2.3, this problem
is equivalent to finding all � such that the matrix A � �I is not invertible, where

A � �I D

�
2 3

3 �6

�
�

�
� 0

0 �

�
D

�
2 � � 3

3 �6 � �

�
By Theorem 4 in Section 2.2, this matrix fails to be invertible precisely when its

determinant is zero. So the eigenvalues of A are the solutions of the equation

det.A � �I/ D det
�

2 � � 3

3 �6 � �

�
D 0

Recall that

det
�

a b

c d

�
D ad � bc
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So

det.A � �I/ D .2 � �/.�6 � �/ � .3/.3/

D �12C 6� � 2�C �2
� 9

D �2
C 4� � 21

D .� � 3/.�C 7/

If det.A � �I/ D 0, then � D 3 or � D �7. So the eigenvalues of A are 3 and �7.

Determinants
The determinant in Example 1 transformed the matrix equation .A � �l/ x D 0, which
involves two unknowns � and x, into the scalar equation �2 C 4� � 21 D 0, which
involves only one unknown. The same idea works for n � n matrices.

Before turning to larger matrices, recall from Section 3.1 that the matrix Aij is
obtained from A by deleting the i th row and j th column. The determinant of an n � n

matrix A can be computed by an expansion across any row or down any column. The
expansion across the i th row is given by

detA D .�1/iC1ai1 detAi1 C .�1/iC2ai2 detAi2 C � � � C .�1/iCnain detAin

The expansion down the j th column is given by

detA D .�1/1Cj a1j detA1j C .�1/2Cj a2j detA2j C � � � C .�1/nCj anj detAnj

EXAMPLE 2 Compute the determinant of

A D

242 3 1

4 0 �1

0 2 1

35
SOLUTION Any row or column can be chosen for the expansion. For example,
expanding down the first column of A results in

detA D a11 detA11 � a21 detA21 C a31 detA31

D 2 det
�

0 �1

2 1

�
� 4 det

�
3 1

2 1

�
C 0 det

�
3 1

0 �1

�
D 2.0 � .�2//�4 .3 � 2/C 0.�3 � 0/D 0

The next theorem lists facts from Sections 3.1 and 3.2 and is included here for
convenient reference.

THEOREM 3 Properties of Determinants

Let A and B be n � n matrices.

a. A is invertible if and only if detA ¤ 0.

b. detAB D .detA/.detB/.

c. detAT D detA.

d. If A is triangular, then detA is the product of the entries on the main diagonal
of A.
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e. A row replacement operation on A does not change the determinant. A row
interchange changes the sign of the determinant. A row scaling also scales the
determinant by the same scalar factor.

Recall that A is invertible if and only if the equation Ax D 0 has only the trivial
solution. Notice that the number 0 is an eigenvalue of A if and only if there is a nonzero
vector x such thatAx D 0x D 0, which happens if and only if 0 D det.A � 0I / D detA.
Hence A is invertible if and only if 0 is not an eigenvalue.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n � n matrix. Then A is invertible if and only if

r. The number 0 is not an eigenvalue of A.

The Characteristic Equation
Theorem 3(a) shows how to determine when a matrix of the form A � �I is not
invertible. The scalar equation det.A � �I/ D 0 is called the characteristic equation
of A, and the argument in Example 1 justifies the following fact.

A scalar � is an eigenvalue of an n � n matrix A if and only if � satisfies the
characteristic equation

det.A � �I/ D 0

EXAMPLE 3 Find the characteristic equation of

A D

2664
5 �2 6 �1

0 3 �8 0

0 0 5 4

0 0 0 1

3775
SOLUTION Form A � �I , and use Theorem 3(d):

det.A � �I/ D det

2664
5 � � �2 6 �1

0 3 � � �8 0

0 0 5 � � 4

0 0 0 1 � �

3775
D .5 � �/.3 � �/.5 � �/.1 � �/

The characteristic equation is

.5 � �/2.3 � �/.1 � �/ D 0
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or
.� � 5/2.� � 3/.� � 1/ D 0

Expanding the product, we can also write

�4
� 14�3

C 68�2
� 130�C 75 D 0

Reasonable Answers

If you want to verify � is an eigenvalue of A, row reduce A � �I . If you get a
pivot in every column, something is amiss—the scalar � is not an eigenvalue of
A. Looking back at Example 3, notice that A � 5I; A � 3I , and A � I all have at
least one column without a pivot; however, if � is chosen to be any number other
than 5, 3, or 1, the matrix A � �I has a pivot in every column.

In Examples 1 and 3, det .A � �I/ is a polynomial in �. It can be shown that if A is
an n � nmatrix, then det .A � �I/ is a polynomial of degree n called the characteristic
polynomial of A.

The eigenvalue 5 in Example 3 is said to have multiplicity 2 because .� � 5/

occurs two times as a factor of the characteristic polynomial. In general, the (algebraic)
multiplicity of an eigenvalue � is its multiplicity as a root of the characteristic equation.

EXAMPLE 4 The characteristic polynomial of a 6 � 6 matrix is �6 � 4�5 � 12�4.
Find the eigenvalues and their multiplicities.

SOLUTION Factor the polynomial

�6
� 4�5

� 12�4
D �4.�2

� 4� � 12/ D �4.� � 6/.�C 2/

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1), and �2 (multiplicity 1).

We could also list the eigenvalues in Example 4 as 0; 0; 0; 0; 6, and �2, so that the
eigenvalues are repeated according to their multiplicities.

Because the characteristic equation for an n � n matrix involves an nth-degree
polynomial, the equation has exactly n roots, counting multiplicities, provided complex
roots are allowed. Such complex roots, called complex eigenvalues, will be discussed in
Section 5.5. Until then, we consider only real eigenvalues, and scalars will continue to
be real numbers.

The characteristic equation is important for theoretical purposes. In practical work,
however, eigenvalues of any matrix larger than 2 � 2 should be found by a computer,
unless the matrix is triangular or has other special properties. Although a 3 � 3 charac-
teristic polynomial is easy to compute by hand, factoring it can be difficult (unless theSTUDY GUIDE has advice on how

to factor a polynomial. matrix is carefully chosen). See the Numerical Notes at the end of this section.

Similarity
The next theorem illustrates one use of the characteristic polynomial, and it provides
the foundation for several iterative methods that approximate eigenvalues. If A and
B are n � n matrices, then A is similar to B if there is an invertible matrix P

such that P�1AP D B , or, equivalently, A D PBP�1. Writing Q for P�1, we have
Q�1BQ D A. So B is also similar to A, and we say simply that A and B are similar.
Changing A into P�1AP is called a similarity transformation.
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THEOREM 4 If n � n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

PROOF If B D P�1AP, then

B � �I D P�1AP � �P�1P D P�1.AP � �P / D P�1.A � �I/P

Using the multiplicative property (b) in Theorem 3, we compute

det.B � �I/ D detŒP�1.A � �I/P �

D det.P�1/ � det.A � �I/ � det.P / (1)

Since det.P�1/ � det.P / D det.P�1P / D det I D 1, we see from equation (1) that
det.B � �I/ D det.A � �I/.

Warnings:

1. The matrices �
2 1

0 2

�
and

�
2 0

0 2

�
are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (IfA is row equivalent toB , then
B D EA for some invertible matrix E.) Row operations on a matrix usually
change its eigenvalues.

Application to Dynamical Systems
Eigenvalues and eigenvectors hold the key to the discrete evolution of a dynamical
system, as mentioned in the chapter introduction.

EXAMPLE 5 Let A D

�
:95 :03

:05 :97

�
. Analyze the long-term behavior (as k

increases) of the dynamical system defined by xkC1 D Axk .k D 0; 1; 2; : : :/, with

x0 D

�
:6

:4

�
.

SOLUTION The first step is to find the eigenvalues of A and a basis for each
eigenspace. The characteristic equation for A is

0 D det
�

:95 � � :03

:05 :97 � �

�
D .:95 � �/.:97 � �/ � .:03/.:05/

D �2
� 1:92�C :92

By the quadratic formula

� D
1:92˙

p
.�1:92/2 � 4.:92/

2
D

1:92˙
p

:0064

2

D
1:92˙ :08

2
D 1 or :92
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It is readily checked that eigenvectors corresponding to � D 1 and � D :92 are
multiples of

v1 D

�
3

5

�
and v2 D

�
1

�1

�
respectively.

The next step is to write the given x0 in terms of v1 and v2. This can be done because
fv1; v2g is obviously a basis for R2. (Why?) So there exist weights c1 and c2 such that

x0 D c1v1 C c2v2 D Œ v1 v2 �

�
c1

c2

�
(2)

In fact, �
c1

c2

�
D Œ v1 v2 �

�1
x0 D

�
3 1

5 �1

��1�
:60

:40

�
D

1

�8

�
�1 �1

�5 3

��
:60

:40

�
D

�
:125

:225

�
(3)

Because v1 and v2 in (3) are eigenvectors of A, with Av1 D v1 and Av2 D :92v2, we
easily compute each xk :

x1 D Ax0 D c1Av1 C c2Av2 Using linearity of x 7! Ax

D c1v1 C c2.:92/v2 v1 and v2 are eigenvectors.

x2 D Ax1 D c1Av1 C c2.:92/Av2

D c1v1 C c2.:92/2v2

and so on. In general,

xk D c1v1 C c2.:92/kv2 .k D 0; 1; 2; : : :/

Using c1 and c2 from (4),

xk D :125

�
3

5

�
C :225.:92/k

�
1

�1

�
.k D 0; 1; 2; : : :/ (4)

This explicit formula for xk gives the solution of the difference equation xkC1 D Axk .

As k !1, .:92/k tends to zero and xk tends to
�

:375

:625

�
D :125v1.

The calculations in Example 5 have an interesting application to a Markov chain
discussed in Section 5.9. Those who read that section may recognize that matrix A

in Example 5 above is the same as the migration matrix M in Section 5.9, x0 is the
initial population distribution between city and suburbs, and xk represents the population
distribution after k years.

Numerical Notes

1. Computer software such as Mathematica and Maple can use symbolic calcu-
lations to find the characteristic polynomial of a moderate-sized matrix. But
there is no formula or finite algorithm to solve the characteristic equation of a
general n � n matrix for n � 5.
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Numerical Notes (Continued)

2. The best numerical methods for finding eigenvalues avoid the characteristic
polynomial entirely. In fact, MATLAB finds the characteristic polynomial
of a matrix A by first computing the eigenvalues �1; : : : ; �n of A and then
expanding the product .� � �1/.� � �2/ � � � .� � �n/.

3. Several common algorithms for estimating the eigenvalues of a matrix A

are based on Theorem 4. The powerful QR algorithm is discussed in the
exercises. Another technique, called Jacobi’s method, works when A D AT

and computes a sequence of matrices of the form

A1 D A and AkC1 D P�1
k AkPk .k D 1; 2; : : :/

Each matrix in the sequence is similar to A and so has the same eigenvalues
as A. The nondiagonal entries of AkC1 tend to zero as k increases, and the
diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

Practice Problem

Find the characteristic equation and eigenvalues of A D

�
1 �4

4 2

�
.

5.2 Exercises
Find the characteristic polynomial and the eigenvalues of the
matrices in Exercises 1–8.

1.
�

2 7

7 2

�
2.

�
8 4

4 8

�

3.
�

3 �2

1 �1

�
4.

�
5 �5

�2 3

�

5.
�

2 1

�1 4

�
6.

�
1 �4

4 6

�

7.
�

5 3

�4 4

�
8.

�
7 �2

2 3

�
Exercises 9–14 require techniques from Section 3.1. Find the char-
acteristic polynomial of each matrix using expansion across a row
or down a column. [Note: Finding the characteristic polynomial of
a 3 � 3 matrix is not easy to do with just row operations, because
the variable � is involved.]

9.

24 1 0 �1

2 3 �1

0 6 0

35 10.

24 0 3 1

3 0 2

1 2 0

35

11.

24 6 0 0

5 4 3

1 0 2

35 12.

24 1 0 1

�3 6 1

0 0 4

35

13.

24 6 �2 0

�2 9 0

5 8 3

35 14.

24 3 �2 3

0 �1 0

6 7 �4

35
For the matrices in Exercises 15–17, list the eigenvalues, repeated
according to their multiplicities.

15.

2664
7 �5 3 0

0 3 7 �5

0 0 5 �3

0 0 0 7

3775 16.

2664
5 0 0 0

8 �4 0 0

0 7 1 0

1 �5 2 1

3775

17.

266664
3 0 0 0 0

�5 1 0 0 0

3 8 0 0 0

0 �7 2 1 0

�4 1 9 �2 3

377775
18. It can be shown that the algebraic multiplicity of an eigen-

value � is always greater than or equal to the dimension of the
eigenspace corresponding to �. Find h in the matrix A below
such that the eigenspace for � D 6 is two-dimensional:

A D

2664
6 3 9 �5

0 9 h 2

0 0 6 8

0 0 0 7

3775
19. Let A be an n � n matrix, and suppose A has n real eigenval-

ues, �1; : : : ; �n, repeated according to multiplicities, so that
det.A � �I/ D .�1 � �/.�2 � �/ � � � .�n � �/
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Explain why detA is the product of the n eigenvalues of
A. (This result is true for any square matrix when complex
eigenvalues are considered.)

20. Use a property of determinants to show that A and AT have
the same characteristic polynomial.

In Exercises 21–30, A and B are n � n matrices. Mark each
statement True or False (T/F). Justify each answer.

21. (T/F) If 0 is an eigenvalue of A, then A is invertible.

22. (T/F) The zero vector is in the eigenspace of A associated
with an eigenvalue �.

23. (T/F) The matrix A and its transpose, AT, have different sets
of eigenvalues.

24. (T/F) The matrices A and B�1AB have the same sets of
eigenvalues for every invertible matrix B .

25. (T/F) If 2 is an eigenvalue ofA, thenA � 2I is not invertible.

26. (T/F) If two matrices have the same set of eigenvalues, then
they are similar.

27. (T/F) If �C 5 is a factor of the characteristic polynomial of
A, then 5 is an eigenvalue of A.

28. (T/F) The multiplicity of a root r of the characteristic equa-
tion of A is called the algebraic multiplicity of r as an
eigenvalue of A.

29. (T/F) The eigenvalue of the n � n identity matrix is 1 with
algebraic multiplicity n.

30. (T/F) The matrix A can have more than n eigenvalues.

A widely used method for estimating eigenvalues of a general
matrix A is the QR algorithm. Under suitable conditions, this al-
gorithm produces a sequence of matrices, all similar to A, that be-
come almost upper triangular, with diagonal entries that approach

the eigenvalues of A. The main idea is to factor A (or another
matrix similar to A) in the form A D Q1R1, where QT

1 D Q�1
1

and R1 is upper triangular. The factors are interchanged to form
A1 D R1Q1, which is again factored asA1 D Q2R2; then to form
A2 D R2Q2, and so on. The similarity of A; A1; : : : follows from
the more general result in Exercise 31.

31. Show that if A D QR with Q invertible, then A is similar to
A1 D RQ.

32. Show that if A and B are similar, then detA D detB .

T 33. Construct a random integer-valued 4 � 4matrixA, and verify
that A and AT have the same characteristic polynomial (the
same eigenvalues with the same multiplicities). DoA andAT

have the same eigenvectors? Make the same analysis of a
5 � 5 matrix. Report the matrices and your conclusions.

T 34. Construct a random integer-valued 4 � 4 matrix A.

a. Reduce A to echelon form U with no row scaling, and
compute detA. (If A happens to be singular, start over
with a new random matrix.)

b. Compute the eigenvalues of A and the product of these
eigenvalues (as accurately as possible).

c. List the matrix A, and, to four decimal places, list the
pivots in U and the eigenvalues ofA. Compute detAwith
your matrix program, and compare it with the products
you found in (a) and (b).

T 35. Let A D

24�6 28 21

4 �15 �12

�8 a 25

35. For each value of a in the

set f32; 31:9; 31:8; 32:1; 32:2g, compute the characteristic
polynomial of A and the eigenvalues. In each case, create a
graph of the characteristic polynomial p.t/ D det .A � tI /

for 0 � t � 3. If possible, construct all graphs on one coor-
dinate system. Describe how the graphs reveal the changes in
the eigenvalues as a changes.

Solution to Practice Problem

The characteristic equation is

0 D det.A � �I/ D det
�

1 � � �4

4 2 � �

�
D .1 � �/.2 � �/ � .�4/.4/ D �2

� 3�C 18

From the quadratic formula,

� D
3˙

p
.�3/2 � 4.18/

2
D

3˙
p
�63

2

It is clear that the characteristic equation has no real solutions, so A has no real
eigenvalues. The matrixA is acting on the real vector spaceR2, and there is no nonzero
vector v in R2 such that Av D �v for some scalar �.
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5.3 Diagonalization
In many cases, the eigenvalue–eigenvector information contained within a matrix A can
be displayed in a useful factorization of the form A D PDP�1 where D is a diagonal
matrix. In this section, the factorization enables us to computeAk quickly for large values
of k, a fundamental idea in several applications of linear algebra. Later, in Sections 5.6
and 5.7, the factorization will be used to analyze (and decouple) dynamical systems.

The following example illustrates that powers of a diagonal matrix are easy to
compute.

EXAMPLE 1 If D D

�
5 0

0 3

�
, then D2 D

�
5 0

0 3

��
5 0

0 3

�
D

�
52 0

0 32

�
and

D3
D DD2

D

�
5 0

0 3

� �
52 0

0 32

�
D

�
53 0

0 33

�
In general,

Dk
D

�
5k 0

0 3k

�
for k � 1

If A D PDP�1 for some invertible P and diagonal D, then Ak is also easy to
compute, as the next example shows.

EXAMPLE 2 Let A D

�
7 2

�4 1

�
. Find a formula for Ak , given that A D PDP�1,

where

P D

�
1 1

�1 �2

�
and D D

�
5 0

0 3

�
SOLUTION The standard formula for the inverse of a 2 � 2 matrix yields

P�1
D

�
2 1

�1 �1

�
Then, by associativity of matrix multiplication,

A2
D .PDP�1/.PDP�1/ D PD .P�1P /„ ƒ‚ …

I

DP�1
D PDDP�1

D PD2P�1
D

�
1 1

�1 �2

� �
52 0

0 32

� �
2 1

�1 �1

�
Again,

A3
D .PDP�1/A2

D .PDP�1/P„ƒ‚…
I

D2P�1
D PDD2P�1

D PD3P�1

In general, for k � 1,

Ak
D PDkP�1

D

�
1 1

�1 �2

� �
5k 0

0 3k

� �
2 1

�1 �1

�
D

�
2 � 5k � 3k 5k � 3k

2 � 3k � 2 � 5k 2 � 3k � 5k

�
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A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix,
that is, if A D PDP�1 for some invertible matrix P and some diagonal matrix D.
The next theorem gives a characterization of diagonalizable matrices and tells how to
construct a suitable factorization.

THEOREM 5 The Diagonalization Theorem

An n � n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In fact, A D PDP�1, with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal entries
of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P .

In other words, A is diagonalizable if and only if there are enough eigenvectors to
form a basis of Rn. We call such a basis an eigenvector basis of Rn.

PROOF First, observe that if P is any n � n matrix with columns v1; : : : ; vn, and if D

is any diagonal matrix with diagonal entries �1; : : : ; �n, then

AP D AŒ v1 v2 � � � vn � D Œ Av1 Av2 � � � Avn � (1)

while

PD D P

26664
�1 0 � � � 0

0 �2 � � � 0
:::

:::
:::

0 0 � � � �n

37775 D Œ �1v1 �2v2 � � � �nvn � (2)

Now suppose A is diagonalizable and A D PDP�1. Then right-multiplying this relation
by P , we have AP D PD. In this case, equations (1) and (2) imply that

Œ Av1 Av2 � � � Avn � D Œ �1v1 �2v2 � � � �nvn � (3)

Equating columns, we find that

Av1 D �1v1; Av2 D �2v2; : : : ; Avn D �nvn (4)

Since P is invertible, its columns v1; : : : ; vn must be linearly independent. Also, since
these columns are nonzero, the equations in (4) show that �1; : : : ; �n are eigenvalues
and v1; : : : ; vn are corresponding eigenvectors. This argument proves the “only if” parts
of the first and second statements, along with the third statement, of the theorem.

Finally, given any n eigenvectors v1; : : : ; vn, use them to construct the columns
of P and use corresponding eigenvalues �1; : : : ; �n to construct D. By equations
(1)–(3), AP D PD. This is true without any condition on the eigenvectors. If, in fact,
the eigenvectors are linearly independent, then P is invertible (by the Invertible Matrix
Theorem), and AP D PD implies that A D PDP�1.

Diagonalizing Matrices
EXAMPLE 3 Diagonalize the following matrix, if possible.

A D

24 1 3 3

�3 �5 �3

3 3 1

35
That is, find an invertible matrix P and a diagonal matrix D such that A D PDP�1.
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SOLUTION There are four steps to implement the description in Theorem 5.

Step 1. Find the eigenvalues of A. As mentioned in Section 5.2, the mechanics of
this step are appropriate for a computer when the matrix is larger than 2 � 2. To avoid
unnecessary distractions, the text will usually supply information needed for this step.
In the present case, the characteristic equation turns out to involve a cubic polynomial
that can be factored:

0 D det .A � �I/ D ��3
� 3�2

C 4

D �.� � 1/.�C 2/2

The eigenvalues are � D 1 and � D �2.

Step 2. Find three linearly independent eigenvectors of A. Three vectors are needed
because A is a 3 � 3 matrix. This is the critical step. If it fails, then Theorem 5 says
that A cannot be diagonalized. The method in Section 5.1 produces a basis for each
eigenspace:

Basis for � D 1W v1 D

24 1

�1

1

35
Basis for � D �2W v2 D

24�1

1

0

35 and v3 D

24�1

0

1

35
You can check that fv1; v2; v3g is a linearly independent set.

Step 3. Construct P from the vectors in step 2. The vectors may be listed in any order.
Using the order chosen in step 2, form

P D
�
v1 v2 v3

�
D

24 1 �1 �1

�1 1 0

1 0 1

35
Step 4. Construct D from the corresponding eigenvalues. In this step, it is essential that
the order of the eigenvalues matches the order chosen for the columns of P . Use the
eigenvalue � D �2 twice, once for each of the eigenvectors corresponding to � D �2:

D D

24 1 0 0

0 �2 0

0 0 �2

35
It is a good idea to check that P and D really work. To avoid computing P�1,

simply verify that AP D PD. This is equivalent to A D PDP�1 when P is invertible.
(However, be sure that P is invertible!) Compute

AP D

24 1 3 3

�3 �5 �3

3 3 1

3524 1 �1 �1

�1 1 0

1 0 1

35 D 24 1 2 2

�1 �2 0

1 0 �2

35
PD D

24 1 �1 �1

�1 1 0

1 0 1

3524 1 0 0

0 �2 0

0 0 �2

35 D 24 1 2 2

�1 �2 0

1 0 �2

35
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EXAMPLE 4 Diagonalize the following matrix, if possible.

A D

24 2 4 3

�4 �6 �3

3 3 1

35
SOLUTION The characteristic equation of A turns out to be exactly the same as that
in Example 3:

0 D det .A � �I/ D ��3
� 3�2

C 4 D �.� � 1/.�C 2/2

The eigenvalues are � D 1 and � D �2. However, it is easy to verify that each
eigenspace is only one-dimensional:

Basis for � D 1W v1 D

24 1

�1

1

35
Basis for � D �2W v2 D

24�1

1

0

35
There are no other eigenvalues, and every eigenvector ofA is a multiple of either v1 or v2.
Hence it is impossible to construct a basis ofR3 using eigenvectors ofA. By Theorem 5,
A is not diagonalizable.

The following theorem provides a sufficient condition for a matrix to be
diagonalizable.

THEOREM 6 An n � n matrix with n distinct eigenvalues is diagonalizable.

PROOF Let v1; : : : ; vn be eigenvectors corresponding to the n distinct eigenvalues of a
matrixA. Then fv1; : : : ; vng is linearly independent, by Theorem 2 in Section 5.1. Hence
A is diagonalizable, by Theorem 5.

It is not necessary for an n � n matrix to have n distinct eigenvalues in order to be
diagonalizable. The 3 � 3 matrix in Example 3 is diagonalizable even though it has only
two distinct eigenvalues.

EXAMPLE 5 Determine if the following matrix is diagonalizable.

A D

24 5 �8 1

0 0 7

0 0 �2

35
SOLUTION This is easy! Since the matrix is triangular, its eigenvalues are obviously 5,
0, and�2. Since A is a 3 � 3 matrix with three distinct eigenvalues, A is diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct
If an n � nmatrixA has n distinct eigenvalues, with corresponding eigenvectors v1; : : : ;

vn, and if P D Œ v1 � � � vn �, then P is automatically invertible because its columns
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are linearly independent, by Theorem 2. When A is diagonalizable but has fewer than n

distinct eigenvalues, it is still possible to build P in a way that makes P automatically
invertible, as the next theorem shows.1

THEOREM 7 Let A be an n � n matrix whose distinct eigenvalues are �1; : : : ; �p .

a. For 1 � k � p, the dimension of the eigenspace for �k is less than or equal to
the multiplicity of the eigenvalue �k .

b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals n, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (ii) the dimension of the
eigenspace for each �k equals the multiplicity of �k .

c. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to �k

for each k, then the total collection of vectors in the sets B1; : : : ;Bp forms an
eigenvector basis for Rn.

EXAMPLE 6 Diagonalize the following matrix, if possible.

A D

2664
5 0 0 0

0 5 0 0

1 4 �3 0

�1 �2 0 �3

3775
SOLUTION Since A is a triangular matrix, the eigenvalues are 5 and �3, each
with multiplicity 2. Using the method in Section 5.1, we find a basis for each
eigenspace.

Basis for � D 5W v1 D

2664
�8

4

1

0

3775 and v2 D

2664
�16

4

0

1

3775
Basis for � D �3W v3 D

2664
0

0

1

0

3775 and v4 D

2664
0

0

0

1

3775
The set fv1; : : : ; v4g is linearly independent, by Theorem 7. So the matrix P D

Œ v1 � � � v4 � is invertible, and A D PDP�1, where

P D

2664
�8 �16 0 0

4 4 0 0

1 0 1 0

0 1 0 1

3775 and D D

2664
5 0 0 0

0 5 0 0

0 0 �3 0

0 0 0 �3

3775
1 The proof of Theorem 7 is somewhat lengthy but not difficult. For instance, see S. Friedberg, A. Insel, and
L. Spence, Linear Algebra, 4th ed. (Englewood Cliffs, NJ: Prentice-Hall, 2002), Section 5.2.
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Practice Problems

1. Compute A8, where A D

�
4 �3

2 �1

�
.

2. LetA D
�
�3 12

�2 7

�
, v1 D

�
3

1

�
, and v2 D

�
2

1

�
. Suppose you are told that v1 and

v2 are eigenvectors of A. Use this information to diagonalize A.

3. Let A be a 4 � 4 matrix with eigenvalues 5, 3, and �2, and suppose you know that
the eigenspace for � D 3 is two-dimensional. Do you have enough information to
determine if A is diagonalizable?

5.3 Exercises
In Exercises 1 and 2, let A D PDP�1 and compute A4.

1. P D

�
2 5

1 3

�
, D D

�
3 0

0 1

�
2. P D

�
2 �3

�3 5

�
, D D

�
1 0

0 �1

�
In Exercises 3 and 4, use the factorization A D PDP�1 to com-
pute Ak , where k represents an arbitrary positive integer.

3.
�

a 0

3.a � b/ b

�
D

�
1 0

3 1

��
a 0

0 b

��
1 0

�3 1

�
4.

�
15 �36

6 �15

�
D

�
2 3

1 1

� �
�3 0

0 3

� �
�1 3

1 �2

�
In Exercises 5 and 6, the matrix A is factored in the form PDP�1.
Use the Diagonalization Theorem to find the eigenvalues of A and
a basis for each eigenspace.

5.

24 2 2 1

1 3 1

1 2 2

35 D24 1 1 2

1 0 �1

1 �1 0

3524 5 0 0

0 1 0

0 0 1

3524 1=4 1=2 1=4

1=4 1=2 �3=4

1=4 �1=2 1=4

35
6.

24 7 �1 1

6 2 3

0 0 5

35 D24 2 1 1

5 2 3

1 0 0

3524 5 0 0

0 5 0

0 0 4

3524 0 0 1

3 �1 �1

�2 1 �1

35
Diagonalize the matrices in Exercises 7–20, if possible. The
eigenvalues for Exercises 11–16 are as follows: (11) � D 1; 2; 3;
(12) � D 1; 4; (13) � D 5; 1; (14) � D 3; 4; (15) � D 3; 1; (16)
� D 2; 1. For Exercise 18, one eigenvalue is � D 5 and one eigen-
vector is .�2; 1; 2/.

7.
�

1 0

6 �1

�
8.

�
5 1

0 5

�
9.

�
3 �1

1 5

�
10.

�
3 6

4 1

�

11.

24�1 4 �2

�3 4 0

�3 1 3

35 12.

24 3 �1 �1

�1 3 �1

�1 �1 3

35
13.

24 2 2 �1

1 3 �1

�1 �2 2

35 14.

24 4 0 2

2 3 4

0 0 3

35
15.

24�7 24 �16

�2 7 �4

2 �6 5

35 16.

24 0 �4 �6

�1 0 �3

1 2 5

35
17.

24 4 0 0

1 4 0

0 0 5

35 18.

24�7 �16 4

6 13 �2

12 16 1

35

19.

2664
5 �3 0 9

0 3 1 �2

0 0 2 0

0 0 0 2

3775 20.

2664
2 0 0 0

0 2 0 0

0 0 2 0

1 0 0 2

3775
In Exercises 21–28, A; P , and D are n � n matrices. Mark each
statement True or False (T/F). Justify each answer. (Study Theo-
rems 5 and 6 and the examples in this section carefully before you
try these exercises.)

21. (T/F)A is diagonalizable ifA D PDP�1 for some matrixD

and some invertible matrix P .

22. (T/F) If Rn has a basis of eigenvectors of A, then A is
diagonalizable.

23. (T/F) A is diagonalizable if and only if A has n eigenvalues,
counting multiplicities.

24. (T/F) If A is diagonalizable, then A is invertible.

25. (T/F) A is diagonalizable if A has n eigenvectors.

26. (T/F) If A is diagonalizable, then A has n distinct
eigenvalues.

27. (T/F) If AP D PD, with D diagonal, then the nonzero
columns of P must be eigenvectors of A.

28. (T/F) If A is invertible, then A is diagonalizable.
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29. A is a 5 � 5 matrix with two eigenvalues. One eigenspace
is three-dimensional, and the other eigenspace is two-
dimensional. Is A diagonalizable? Why?

30. A is a 3 � 3 matrix with two eigenvalues. Each eigenspace is
one-dimensional. Is A diagonalizable? Why?

31. A is a 4 � 4 matrix with three eigenvalues. One eigenspace
is one-dimensional, and one of the other eigenspaces is two-
dimensional. Is it possible that A is not diagonalizable? Jus-
tify your answer.

32. A is a 7 � 7 matrix with three eigenvalues. One eigenspace is
two-dimensional, and one of the other eigenspaces is three-
dimensional. Is it possible that A is not diagonalizable? Jus-
tify your answer.

33. Show that if A is both diagonalizable and invertible, then so
is A�1.

34. Show that if A has n linearly independent eigenvectors, then
so does AT . [Hint: Use the Diagonalization Theorem.]

35. A factorization A D PDP�1 is not unique. Demonstrate this

for the matrix A in Example 2. With D1 D

�
3 0

0 5

�
, use

the information in Example 2 to find a matrix P1 such that
A D P1D1P�1

1 .

36. With A and D as in Example 2, find an invertible P2 unequal
to the P in Example 2, such that A D P2DP�1

2 .

37. Construct a nonzero 2 � 2 matrix that is invertible but not
diagonalizable.

38. Construct a nondiagonal 2 � 2 matrix that is diagonalizable
but not invertible.

Diagonalize the matrices in Exercises 39–42. Use your matrix
program’s eigenvalue command to find the eigenvalues, and then
compute bases for the eigenspaces as in Section 5.1.

T 39.

2664
�6 4 0 9

�3 0 1 6

�1 �2 1 0

�4 4 0 7

3775 40.T

2664
0 13 8 4

4 9 8 4

8 6 12 8

0 5 0 �4

3775

T 41.

266664
11 �6 4 �10 �4

�3 5 �2 4 1

�8 12 �3 12 4

1 6 �2 3 �1

8 �18 8 �14 �1

377775

T 42.

266664
4 4 2 3 �2

0 1 �2 �2 2

6 12 11 2 �4

9 20 10 10 �6

15 28 14 5 �3

377775
Solutions to Practice Problems

1. det .A � �I/ D �2 � 3�C 2 D .� � 2/.� � 1/. The eigenvalues are 2 and 1, and

the corresponding eigenvectors are v1 D

�
3

2

�
and v2 D

�
1

1

�
. Next, form

P D

�
3 1

2 1

�
; D D

�
2 0

0 1

�
; and P�1

D

�
1 �1

�2 3

�
Since A D PDP�1,

A8
D PD8P�1

D

�
3 1

2 1

��
28 0

0 18

��
1 �1

�2 3

�
D

�
3 1

2 1

��
256 0

0 1

��
1 �1

�2 3

�
D

�
766 �765

510 �509

�
2. Compute Av1 D

�
�3 12

�2 7

��
3

1

�
D

�
3

1

�
D 1 � v1, and

Av2 D

�
�3 12

�2 7

��
2

1

�
D

�
6

3

�
D 3 � v2

So, v1 and v2 are eigenvectors for the eigenvalues 1 and 3, respectively. Thus

A D PDP�1; where P D

�
3 2

1 1

�
and D D

�
1 0

0 3

�
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3. Yes, A is diagonalizable. There is a basis fv1; v2g for the eigenspace corresponding
to � D 3. In addition, there will be at least one eigenvector for � D 5 and one
for � D �2. Call them v3 and v4. Then fv1; v2; v3; v4g is linearly independent by
Theorem 2 and Practice Problem 3 in Section 5.1. There can be no additional eigen-
vectors that are linearly independent from v1, v2, v3, v4, because the vectors are allSTUDY GUIDE has advice on

mastering eigenvalues and
eigenspaces.

in R4. Hence the eigenspaces for � D 5 and � D �2 are both one-dimensional. It
follows that A is diagonalizable by Theorem 7(b).

5.4 Eigenvectors and Linear Transformations
In this section, we will look at eigenvalues and eigenvectors of linear transformations
T W V ! V, where V is any vector space. In the case where V is a finite dimensional
vector space and there is a basis for V consisting of eigenvectors of T, we will see how
to represent the transformation T as left multiplication by a diagonal matrix.

Eigenvectors of Linear Transformations
Previously, we looked at a variety of vector spaces including the discrete-time signal
space, S, and the set of polynomials, P . Eigenvalues and eigenvectors can be defined for
linear transformations from any vector space to itself.

DEFINITION Let V be a vector space. An eigenvector of a linear transformation T W V ! V is
a nonzero vector x in V such that T .x/ D �x for some scalar �. A scalar � is called
an eigenvalue of T if there is a nontrivial solution x of T .x/ D �x; such an x is
called an eigenvector corresponding to �.

EXAMPLE 1 The sinusoidal signals were studied in detail in Sections 4.7 and 4.8.

Consider the signal defined by fskg D

�
cos

�
k�

2

��
, where k ranges over all integers.

The left double-shift linear transformation D is defined by D.fxkg/ D fxkC2g. Show
that fskg is an eigenvector of D and determine the associated eigenvalue.

SOLUTION The trigonometric formula cos.� C �/ D � cos.�/ is useful here. Set
fykg D D.fskg/ and observe that

yk D skC2 D cos
�

.k C 2/�

2

�
D cos

�
k�

2
C �

�
D � cos

�
k�

2

�
D �sk

and soD.fskg/ D f�skg D �fskg. This establishes that fskg is an eigenvector ofD with
eigenvalue �1.

In Figure 1, different values for the frequency, f, are chosen to graph a section of the

sinusoidal signals
�
cos

�
f k�

4

��
and D

��
cos

�
f k�

4

���
. Setting f D 2 illustrates

the eigenvector for D established in Example 1. What is the relationship in the patterns
of the dots that signifies an eigenvector relationship between the original signal and the
transformed signal? Which other choices of the frequency, f, create a signal that is an
eigenvector for D? What are the associated eigenvalues? In Figure 1, the graph on the
left illustrates the sinusoidal signal with f D 1 and the graph on the right illustrates the
sinusoidal signal with f D 2.
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{yk}
D ({yk})

x

{yk}
D ({yk})

x

FIGURE 1

The Matrix of a Linear Transformation
There are branches of linear algebra that use infinite dimensional matrices to transform
infinite dimensional vector spaces; however, in the remainder of this chapter we will re-
strict our study to linear transformations and matrices associated with finite dimensional
vector spaces.

Let V be an n-dimensional vector space and let T be any linear transformation from
V to V . To associate a matrix with T , choose any basis B for V . Given any x in V , the
coordinate vector Œx�B is in Rn, as is the coordinate vector of its image, ŒT .x/�B.

The connection between Œx�B and ŒT .x/�B is easy to find. Let fb1; : : : ; bng be the
basis B for V . If x D r1b1 C � � � C rnbn, then

Œx�B D

264 r1

:::

rn

375
and

T .x/ D T .r1b1 C � � � C rnbn/ D r1T .b1/C � � � C rnT .bn/ (1)

because T is linear. Now, since the coordinate mapping from V toRn is linear (Theorem
8 in Section 4.4), equation (1) leads to

ŒT .x/�B D r1ŒT .b1/�B C � � � C rnŒT .bn/�B (2)

Since B-coordinate vectors are in Rn, the vector equation (2) can be written as a matrix
equation, namely

ŒT .x/�B DMŒx�B (3)

where

M D ŒŒT .b1/�B ŒT .b2/�B � � � ŒT .bn/�B� (4)

The matrix M is a matrix representation of T , called the matrix for T relative to
the basis B and denoted by ŒT �B. See Figure 2.

Equation (3) says that, so far as coordinate vectors are concerned, the action of T

on x may be viewed as left-multiplication by M .

x
T

T(x)

[T(x)]
Multiplication

by M5[T ]
[x]

FIGURE 2
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EXAMPLE 2 Suppose B D fb1; b2g is a basis for V . Let T W V ! V be a linear
transformation with the property that

T .b1/ D 3b1 � 2b2 and T .b2/ D 4b1 C 7b2

Find the matrix M for T relative to B.
SOLUTION The B-coordinate vectors of the images of b1 and b2 are

ŒT .b1/�B D

�
3

�2

�
and ŒT .b2/�B D

�
4

7

�
? ?Hence

M D

�
3 4

�2 7

�

EXAMPLE 3 The mapping T W P2 ! P2 defined by

T
�
a0 C a1t C a2t2

�
D a1 C 2a2t

is a linear transformation. (Calculus students will recognize T as the differentiation
operator.)

a. Find the B-matrix for T , when B is the basis f1; t; t2g.

b. Verify that ŒT .p/�B D ŒT �BŒp�B for each p in P2.

SOLUTION

a. Compute the images of the basis vectors:

T .1/ D 0 The zero polynomial

T .t/ D 1 The polynomial whose value is always 1

T
�
t2
�
D 2t

Then write the B-coordinate vectors of T .1/, T .t/, and T
�
t2
�
(which are found by

inspection in this example) and place them together as the B-matrix for T :

ŒT .1/�B D

24 0

0

0

35; ŒT .t/�B D

24 1

0

0

35;
�
T
�
t2
��

B D

24 0

2

0

35
? ??

ŒT �B D

24 0 1 0

0 0 2

0 0 0

35
b. For a general p.t/ D a0 C a1t C a2t2

ŒT .p/�B D Œa1 C 2a2t �B D

24 a1

2a2

0

35
D

24 0 1 0

0 0 2

0 0 0

3524 a0

a1

a2

35 D ŒT �BŒp�B
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See Figure 3.

a0 + a1t + a2t2

a0

Multiplication
by [T ]

a1

a1
2a2
0

a2

T

2

3
3

2

a1 + 2a2t

FIGURE 3 Matrix representation of a linear
transformation.

Linear Transformations on Rn

In an applied problem involving Rn, a linear transformation T usually appears first as
a matrix transformation, x 7!Ax. If A is diagonalizable, then there is a basis B for Rn

consisting of eigenvectors of A. Theorem 8 below shows that, in this case, the B-matrix
for T is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation
of x 7!Ax.

THEOREM 8 Diagonal Matrix Representation

Suppose A D PDP�1, where D is a diagonal n � n matrix. If B is the basis for
Rn formed from the columns of P , then D is the B-matrix for the transformation
x 7!Ax.

PROOF Denote the columns of P by b1; : : : ; bn, so that B D fb1; : : : ; bng and P D

Œ b1 � � � bn �. In this case, P is the change-of-coordinates matrix PB discussed in
Section 4.4, where

P Œ x �B D x and Œ x �B D P�1x

If T .x/ D Ax for x in Rn, then

Œ T �B D
�

Œ T .b1/ �B � � � Œ T .bn/ �B
�

Definition of Œ T �B

D
�

Œ Ab1 �B � � � Œ Abn �B
�

Since T .x/ D Ax

D Œ P�1Ab1 � � � P�1Abn � Change of coordinates

D P�1AŒ b1 � � � bn � Matrix multiplication

D P�1AP (6)

Since A D PDP�1, we have Œ T �B D P�1AP D D.

EXAMPLE 4 Define T W R2 ! R2 by T .x/ D Ax, where A D

�
7 2

�4 1

�
. Find a

basis B for R2 with the property that the B-matrix for T is a diagonal matrix.

SOLUTION From Example 2 in Section 5.3, we know that A D PDP�1, where

P D

�
1 1

�1 �2

�
and D D

�
5 0

0 3

�
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The columns of P , call them b1 and b2, are eigenvectors of A. By Theorem 8, D is the
B-matrix for T when B D fb1; b2g. The mappings x 7!Ax and u 7!Du describe the
same linear transformation, relative to different bases.

Similarity of Matrix Representations
The proof of Theorem 8 did not use the information that D was diagonal. Hence,
if A is similar to a matrix C , with A D P CP�1, then C is the B-matrix for the
transformation x 7!Ax when the basis B is formed from the columns of P . The
factorization A D P CP�1 is shown in Figure 4.

Multiplication
by A

Multiplication
by C

Multiplication
by P21

[x]

Multiplication
by P

[Ax]

Axx

FIGURE 4 Similarity of two matrix representations:
A D PCP�1.

Conversely, if T W Rn ! Rn is defined by T .x/ D Ax, and if B is any basis for
Rn, then the B-matrix for T is similar to A. In fact, the calculations in the proof
of Theorem 8 show that if P is the matrix whose columns come from the vectors
in B, then ŒT �B D P�1AP. This important connection between the matrix of a linear
transformation and similar matrices is highlighted here.

The set of all matrices similar to a matrix A coincides with the set of all matrix
representations of the transformation x 7! Ax.

EXAMPLE 5 Let A D

�
4 �9

4 �8

�
, b1 D

�
3

2

�
, and b2 D

�
2

1

�
. The characteristic

polynomial of A is .�C 2/2, but the eigenspace for the eigenvalue �2 is only one-

dimensional; so A is not diagonalizable. However, the basis B D fb1; b2g has the
property that the B-matrix for the transformation x 7! Ax is a triangular matrix called
the Jordan form of A.1 Find this B-matrix.

SOLUTION If P D Œ b1 b2 �, then the B-matrix is P�1AP. Compute

AP D
�

4 �9

4 �8

��
3 2

2 1

�
D

�
�6 �1

�4 0

�
P�1AP D

�
�1 2

2 �3

��
�6 �1

�4 0

�
D

�
�2 1

0 �2

�
Notice that the eigenvalue of A is on the diagonal.

1 Every square matrix A is similar to a matrix in Jordan form. The basis used to produce a Jordan form
consists of eigenvectors and so-called “generalized eigenvectors” of A. See Chapter 9 of Applied Linear
Algebra, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1988), by B. Noble and J. W. Daniel.
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Numerical Notes

An efficient way to compute a B-matrix P�1AP is to compute AP and then to row
reduce the augmented matrix Œ P AP � to Œ I P�1AP �. A separate computation
of P�1 is unnecessary. See Exercise 22 in Section 2.2.

Practice Problems

1. Find T .a0 C a1t C a2t2/, if T is the linear transformation from P2 to P2 whose
matrix relative to B D f1; t; t2g is

Œ T �B D

24 3 4 0

0 5 �1

1 �2 7

35
2. Let A, B , and C be n � n matrices. The text has shown that if A is similar to B ,

thenB is similar toA. This property, together with the statements below, shows that
“similar to” is an equivalence relation. (Row equivalence is another example of an
equivalence relation.) Verify parts (a) and (b).
a. A is similar to A.

b. If A is similar to B and B is similar to C , then A is similar to C .

5.4 Exercises
1. Let B D fb1; b2; b3g be a basis for the vector space V . Let

T W V ! V be a linear transformation with the property that

T .b1/ D 3b1 � 5b2; T .b2/ D �b1 C 6b2; T .b3/ D 4b2

Find ŒT �B, the matrix for T relative to B.

2. Let B D fb1; b2g be a basis for a vector space V . Let
T W V ! V be a linear transformation with the property that

T .b1/ D 7b1 C 4b2; T .b2/ D 6b1 � 5b2

Find ŒT �B, the matrix for T relative to B.

3. Assume the mapping T W P2 ! P2 defined by

T
�
a0 C a1t C a2t2

�
D 2 a0 C .3 a1 C 4 a2/t C .5 a0 � 6 a2/t2

is linear. Find the matrix representation of T relative to the
basis B D f1; t; t2g.

4. Define T W P2 ! P2 by T .p/ D p.0/ � p.1/t C p.2/t2.

a. Show that T is a linear transformation.

b. Find T .p/when p.t/ D �2C t . Is p an eigenvector of T ?

c. Find the matrix for T relative to the basis f1; t; t2g for P2.

5. Let B D fb1; b2; b3g be a basis for a vector space V . Find
T .2b1 � 5b3/when T is a linear transformation from V to V

whose matrix relative to B is

ŒT �B D

24 1 2 �3

0 �4 3

2 0 �1

35

6. Let B D fb1; b2; b3g be a basis for a vector space V . Find
T .2b1 � b2 C 4b3/ when T is a linear transformation from
V to V whose matrix relative to B is

ŒT �B D

24 0 �6 1

0 5 �1

1 �2 7

35
In Exercises 7 and 8, find the B-matrix for the transformation
x 7! Ax, when B D fb1; b2g.

7. A D

�
4 9

1 4

�
; b1 D

�
3

�1

�
; b2 D

�
1

3

�
8. A D

�
�1 4

�2 3

�
; b1 D

�
3

2

�
; b2 D

�
�1

1

�
In Exercises 9–12, define T W R2 ! R2 by T .x/ D Ax. Find a
basis B for R2 with the property that ŒT �B is diagonal.

9. A D

�
0 1

�3 4

�
10. A D

�
5 �3

�7 1

�
11. A D

�
4 �2

�1 3

�
12. A D

�
2 �6

�1 3

�
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13. LetA D
�

1 1

�1 3

�
andB D fb1; b2g, for b1 D

�
1

1

�
; b2 D�

5

4

�
. Define T W R2 ! R2 by T .x/ D Ax.

a. Verify that b1 is an eigenvector of A but A is not diago-
nalizable.

b. Find the B matrix for T .

14. Define T W R3 ! R3 by T .x/ D Ax, where A is a 3 � 3

matrix with eigenvalues 5 and �2. Does there exist a basis
B for R3 such that the B-matrix for T is a diagonal matrix?
Discuss.

15. Define T W P2 ! P2 by T .p/ D p.1/C p.1/t C p.1/t2.

a. Find T .p/ when p.t/ D 1C t C t2. Is p an eigenvector
of T ? If p is an eigenvector, what is its eigenvalue?

b. Find T .p/ when p.t/ D �2C t . Is p an eigenvector of
T ? If p is an eigenvector, what is its eigenvalue?

16. Define T W P3 ! P3 by T .p/ D p.0/C p.2/t � p.0/t2 �

p.2/t3.

a. Find T .p/ when p.t/ D 1 � t2. Is p an eigenvector of T ?
If p is an eigenvector, what is its eigenvalue?

b. Find T .p/ when p.t/ D t � t3. Is p an eigenvector of T ?
If p is an eigenvector, what is its eigenvalue?

In Exercises 17 through 20, mark each statement True or False
(T/F). Justify each answer.

17. (T/F) Similar matrices have the same eigenvalues.

18. (T/F) Similar matrices have the same eigenvectors.

19. (T/F) Only linear transformations on finite vectors spaces
have eigenvectors.

20. (T/F) If there is a nonzero vector in the kernel of a linear
transformation T , then 0 is an eigenvalue of T .

Verify the statements in Exercises 21–28 by providing justification
for each statement. In each case, the matrices are square.

21. If A is invertible and similar to B , then B is invertible and
A�1 is similar to B�1. [Hint: P�1AP D B for some invert-
ible P . Explain why B is invertible. Then find an invertible
Q such that Q�1A�1Q D B�1:]

22. If A is similar to B , then A2 is similar to B2.

23. If B is similar to A and C is similar to A, then B is similar
to C .

24. If A is diagonalizable and B is similar to A, then B is also
diagonalizable.

25. If B D P�1AP and x is an eigenvector of A corresponding
to an eigenvalue �, then P�1 x is an eigenvector of B corre-
sponding also to �.

26. If A and B are similar, then they have the same rank. [Hint:
Refer to Supplementary Exercises 31 and 32 for Chapter 4.]

27. The trace of a square matrix A is the sum of the diagonal
entries in A and is denoted by tr A. It can be verified that
tr.F G/ D tr.GF / for any two n � nmatricesF andG. Show
that if A and B are similar, then trA D trB .

28. It can be shown that the trace of a matrix A equals the sum of
the eigenvalues of A. Verify this statement for the case when
A is diagonalizable.

Exercises 29–32 refer to the vector space of signals, S, from
Section 4.7. The shift transformation, S.fykg/ D fyk�1g, shifts
each entry in the signal one position to the right. The moving av-

erage transformation, M2.fykg/ D

�
yk C yk�1

2

�
, creates a new

signal by averaging two consecutive terms in the given signal. The
constant signal of all ones is given by � D

˚
1k
	
and the alternating

signal by ˛ D
˚
.�1/k

	
.

29. Show that � is an eigenvector of the shift transformation S .
What is the associated eigenvalue?

30. Show that ˛ is an eigenvector of the shift transformation S .
What is the associated eigenvalue?

31. Show that ˛ is an eigenvector of the moving average trans-
formation M2. What is the associated eigenvalue?

32. Show that � is an eigenvector of the moving average trans-
formation M2. What is the associated eigenvalue?

In Exercises 33 and 34, find the B-matrix for the transformation
x 7! Ax when B D fb1; b2; b3g.

T 33. A D

24�14 4 �14

�33 9 �31

11 �4 11

35; b1 D

24�1

�2

1

35;

b2 D

24�1

�1

1

35; b3 D

24�1

�2

0

35
T 34. A D

24�7 �48 �16

1 14 6

�3 �45 �19

35; b1 D

24�3

1

�3

35;

b2 D

24�2

1

�3

35; b3 D

24 3

�1

0

35
T 35. Let T be the transformation whose standard matrix is given

below. Find a basis for R4 with the property that ŒT �B is
diagonal.

A D

2664
15 �66 �44 �33

0 13 21 �15

1 �15 �21 12

2 �18 �22 8

3775
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Solutions to Practice Problems

1. Let p.t/ D a0 C a1t C a2t2 and compute

Œ T .p/ �B D Œ T �BŒ p �B D

24 3 4 0

0 5 �1

1 �2 7

3524 a0

a1

a2

35 D 24 3a0 C 4a1

5a1 � a2

a0 � 2a1 C 7a2

35
So T .p/ D .3a0 C 4a1/C .5a1 � a2/t C .a0 � 2a1 C 7a2/t2.

2. a. A D .I /�1AI , so A is similar to A.

b. By hypothesis, there exist invertible matrices P and Q with the property that
B D P�1AP and C D Q�1BQ. Substitute the formula for B into the formula
for C , and use a fact about the inverse of a product:

C D Q�1BQ D Q�1.P�1AP/Q D .PQ/�1A.PQ/

This equation has the proper form to show that A is similar to C .

5.5 Complex Eigenvalues
Since the characteristic equation of an n � n matrix involves a polynomial of degree n,
the equation always has exactly n roots, counting multiplicities, provided that possibly
complex roots are included. This section shows that if the characteristic equation of a real
matrix A has some complex roots, then these roots provide critical information about A.
The key is to let A act on the space Cn of n-tuples of complex numbers.1

Our interest in Cn does not arise from a desire to “generalize” the results of the
earlier chapters, although that would in fact open up significant new applications of
linear algebra.2 Rather, this study of complex eigenvalues is essential in order to uncover
“hidden” information about certain matrices with real entries that arise in a variety of
real-life problems. Such problems include many real dynamical systems that involve
periodic motion, vibration, or some type of rotation in space.

The matrix eigenvalue–eigenvector theory already developed forRn applies equally
well to Cn. So a complex scalar � satisfies det.A � �I/ D 0 if and only if there is a
nonzero vector x in Cn such that Ax D �x. We call � a (complex) eigenvalue and x a
(complex) eigenvector corresponding to �.

EXAMPLE 1 If A D

�
0 �1

1 0

�
, then the linear transformation x 7! Ax on R2

rotates the plane counterclockwise through a quarter-turn. The action of A is periodic,
since after four quarter-turns, a vector is back where it started. Obviously, no nonzero
vector is mapped into a multiple of itself, so A has no eigenvectors in R2 and hence no
real eigenvalues. In fact, the characteristic equation of A is

�2
C 1 D 0

1Refer to Appendix B for a brief discussion of complex numbers. Matrix algebra and concepts about
real vector spaces carry over to the case with complex entries and scalars. In particular, A.cxC dy/ D

cAxC dAy, for A an m� n matrix with complex entries, x, y in Cn, and c, d in C.
2A second course in linear algebra often discusses such topics. They are of particular importance in
electrical engineering.
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The only roots are complex: � D i and � D �i . However, if we permit A to act on C2,
then �

0 �1

1 0

��
1

�i

�
D

�
i

1

�
D i

�
1

�i

�
�

0 �1

1 0

��
1

i

�
D

�
�i

1

�
D �i

�
1

i

�
Thus i and �i are eigenvalues, with

�
1

�i

�
and

�
1

i

�
as corresponding eigenvectors.

(A method for finding complex eigenvectors is discussed in Example 2.)

The main focus of this section will be on the matrix in the next example.

EXAMPLE 2 Let A D
�

:5 �:6

:75 1:1

�
. Find the eigenvalues of A, and find a basis for

each eigenspace.

SOLUTION The characteristic equation of A is

0 D det
�

:5 � � �:6

:75 1:1 � �

�
D .:5 � �/.1:1 � �/ � .�:6/.:75/

D �2
� 1:6�C 1

From the quadratic formula, � D 1
2
Œ1:6˙

p
.�1:6/2 � 4� D :8˙ :6i . For the eigen-

value � D :8 � :6i , construct

A � .:8 � :6i/I D

�
:5 �:6

:75 1:1

�
�

�
:8 � :6i 0

0 :8 � :6i

�
D

�
�:3C :6i �:6

:75 :3C :6i

�
(1)

Row reduction of the usual augmented matrix is quite unpleasant by hand because of the
complex arithmetic. However, here is a nice observation that really simplifies matters:
Since :8 � :6i is an eigenvalue, the system

.�:3C :6i/x1 � :6x2 D 0

:75x1 C .:3C :6i/x2 D 0
(2)

has a nontrivial solution (with x1 and x2 possibly complex numbers). Therefore, both
equations in (2) determine the same relationship between x1 and x2, and either equation
can be used to express one variable in terms of the other.3

The second equation in (2) leads to

:75x1 D .�:3 � :6i/x2

x1 D .�:4 � :8i/x2

Choose x2 D 5 to eliminate the decimals, and obtain x1 D �2 � 4i . A basis for the
eigenspace corresponding to � D :8 � :6i is

v1 D

�
�2 � 4i

5

�
3Another way to see this is to realize that the matrix in equation (1) is not invertible, so its rows are linearly
dependent (as vectors in C2/, and hence one row is a (complex) multiple of the other.
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Analogous calculations for � D :8C :6i produce the eigenvector

v2 D

�
�2C 4i

5

�
As a check on the work, compute

Av2 D

�
:5 �:6

:75 1:1

� �
�2C 4i

5

�
D

�
�4C 2i

4C 3i

�
D .:8C :6i/v2

Surprisingly, the matrix A in Example 2 determines a transformation x 7!Ax that
is essentially a rotation. This fact becomes evident when appropriate points are plotted,
as illustrated in Figure 1.

EXAMPLE 3 One way to see how multiplication by the matrix A in Example 2
affects points is to plot an arbitrary initial point—say, x0 D .2; 0/—and then to plot
successive images of this point under repeated multiplications by A. That is, plot

x1 D Ax0 D

�
:5 �:6

:75 1:1

��
2

0

�
D

�
1:0

1:5

�
x2 D Ax1 D

�
:5 �:6

:75 1:1

��
1:0

1:5

�
D

�
�:4

2:4

�
x3 D Ax2; : : :

Figure 1 shows x0 ; : : : ; x8 as larger dots. The smaller dots are the locations of x9 ; : : : ;

x100. The sequence lies along an elliptical orbit.

x1

x2

x2x3

x4

x5

x6

x7
x8

x1

x0

FIGURE 1 Iterates of a point x0

under the action of a matrix with a
complex eigenvalue.

Of course, Figure 1 does not explain why the rotation occurs. The secret to the
rotation is hidden in the real and imaginary parts of a complex eigenvector.

Real and Imaginary Parts of Vectors
The complex conjugate of a complex vector x in Cn is the vector x in Cn whose entries
are the complex conjugates of the entries in x. The real and imaginary parts of a
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complex vector x are the vectors Re x and Im x inRn formed from the real and imaginary
parts of the entries of x. Thus,

x = Re x + iIm x (3)

EXAMPLE 4 If x D

24 3 � i

i

2C 5i

35 D 24 3

0

2

35C i

24�1

1

5

35, then
Re x D

24 3

0

2

35; Im x D

24�1

1

5

35; and x D

24 3

0

2

35 � i

24�1

1

5

35 D 24 3C i

�i

2 � 5i

35
If B is an m � n matrix with possibly complex entries, then B denotes the matrix

whose entries are the complex conjugates of the entries inB . Let r be a complex number
and x any vector. Properties of conjugates for complex numbers carry over to complex
matrix algebra:

rx D r x; Bx D B x; BC D B C ; and rB D r B

Eigenvalues and Eigenvectors of a Real Matrix
That Acts on Cn

Let A be an n � n matrix whose entries are real. Then Ax D Ax D Ax. If � is an
eigenvalue of A and x is a corresponding eigenvector in Cn, then

Ax D Ax D �x D �x

Hence � is also an eigenvalue of A, with x a corresponding eigenvector. This shows that
when A is real, its complex eigenvalues occur in conjugate pairs. (Here and elsewhere,
we use the term complex eigenvalue to refer to an eigenvalue � D aC bi , with b ¤ 0.)

EXAMPLE 5 The eigenvalues of the real matrix in Example 2 are complex conju-
gates, namely :8 � :6i and :8C :6i . The corresponding eigenvectors found in Example 2
are also conjugates:

v1 D

�
�2 � 4i

5

�
and v2 D

�
�2C 4i

5

�
D v1

The next example provides the basic “building block” for all real 2 � 2 matrices
with complex eigenvalues.

EXAMPLE 6 If C D

�
a �b

b a

�
, where a and b are real and not both zero, then the

eigenvalues of C are � D a˙ bi . (See the Practice Problem at the end of this section.)
Also, if r D j�j D

p
a2 C b2, then

C D r

�
a=r �b=r

b=r a=r

�
D

�
r 0

0 r

��
cos' � sin'

sin' cos'

�
where ' is the angle between the positive x-axis and the ray from .0; 0/ through .a; b/.
See Figure 2 and Appendix B. The angle ' is called the argument of � D aC bi . Thus

b

(a, b)

a

w
r

Re z

Im z

FIGURE 2
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the transformation x 7!Cx may be viewed as the composition of a rotation through the
angle ' and a scaling by j�j (see Figure 3).

x2

x1

Cx

x

w

Scaling

Rotation

FIGURE 3 A rotation followed by a
scaling.

Finally, we are ready to uncover the rotation that is hidden within a real matrix
having a complex eigenvalue.

EXAMPLE 7 Let A D

�
:5 �:6

:75 1:1

�
, � D :8 � :6i , and v1 D

�
�2 � 4i

5

�
, as in

Example 2. Also, let P be the 2 � 2 real matrix, described in Theorem 9,

P D
�
Re v1 Im v1

�
D

�
�2 �4

5 0

�
and let

C D P�1AP D
1

20

�
0 4

�5 �2

��
:5 �:6

:75 1:1

��
�2 �4

5 0

�
D

�
:8 �:6

:6 :8

�
By Example 6, C is a pure rotation because j�j2 D .:8/2 C .:6/2 D 1. From
C D P�1AP, we obtain

A D P CP�1
D P

�
:8 �:6

:6 :8

�
P�1

Here is the rotation “inside” A! The matrix P provides a change of variable, say,
x D Pu. The action of A amounts to a change of variable from x to u, followed by
a rotation, and then a return to the original variable. See Figure 4. The rotation produces
an ellipse, as in Figure 1, instead of a circle, because the coordinate system determined
by the columns of P is not rectangular and does not have equal unit lengths on the two
axes.

P21

A

P

Ax

Cuu

x

Change to 
original 
variable

Change of
variable

C
Rotation

FIGURE 4 Rotation due to a complex eigenvalue.

The next theorem shows that the calculations in Example 7 can be carried out for
any 2 � 2 real matrix A having a complex eigenvalue �. The proof uses the fact that if
the entries in A are real, then A.Re x/ D Re.Ax/ and A.Im x/ D Im.Ax/, and if x is an
eigenvector for a complex eigenvalue, then Re x and Im x are linearly independent inR2.
(See Exercises 29 and 30.) The details are omitted.
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THEOREM 9 Let A be a real 2 � 2 matrix with a complex eigenvalue � D a � bi (b ¤ 0) and
an associated eigenvector v in C2. Then

A D PCP�1; where P D Œ Re v Im v � and C D

�
a �b

b a

�

The phenomenon displayed in Example 7 persists in higher dimensions. For in-
stance, if A is a 3 � 3 matrix with a complex eigenvalue, then there is a plane in R3 on
whichA acts as a rotation (possibly combined with scaling). Every vector in that plane is
rotated into another point on the same plane. We say that the plane is invariant under A.

EXAMPLE 8 ThematrixA D

24 :8 �:6 0

:6 :8 0

0 0 1:07

35 has eigenvalues :8˙ :6i and 1.07.

Any vector w0 in the x1x2-plane (with third coordinate 0) is rotated by A into another
point in the plane. Any vector x0 not in the plane has its x3-coordinate multiplied by

w0 w1

w2 x2

x1

w10

x3

x0

x10

x1

x2

FIGURE 5

Iterates of two points under the
action of a 3 � 3 matrix with a
complex eigenvalue.

1.07. The iterates of the pointsw0 D .2; 0; 0/ and x0 D .2; 0; 1/ under multiplication by
A are shown in Figure 5.

u2

u1

u3

FIGURE 6

EXAMPLE 9 Many robots work by rotating at various joints, just as matrices with
complex eigenvalues rotate points in space. Figure 6 illustrates a robot arm made using
linear transformations, each with a pair of complex eigenvalues. In Project C, at the end
of the chapter, you will be asked to find videos of robots on the web that use rotations
as a key element of their functioning.

Practice Problem

Show that if a and b are real, then the eigenvalues of A D

�
a �b

b a

�
are a˙ bi , with

corresponding eigenvectors
�

1

�i

�
and

�
1

i

�
.
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5.5 Exercises
Let each matrix in Exercises 1–6 act on C2. Find the eigenvalues
and a basis for each eigenspace in C2.

1.
�

1 �2

1 3

�
2.

�
�1 �1

5 �5

�
3.

�
1 2

�4 5

�
4.

�
�7 1

�5 �3

�
5.

�
0 1

�8 4

�
6.

�
4 3

�3 4

�
In Exercises 7–12, use Example 6 to list the eigenvalues of A.
In each case, the transformation x 7! Ax is the composition of
a rotation and a scaling. Give the angle ' of the rotation, where
�� < ' � � , and give the scale factor r .

7.
�p

3 �1

1
p

3

�
8.

�p
3 3

�3
p

3

�
9.

�
�
p

3=2 1=2

�1=2 �
p

3=2

�
10.

�p
2 �

p
2

p
2

p
2

�
11.

�
:1 :1

�:1 :1

�
12.

�
0 4

�4 0

�
In Exercises 13–20, find an invertible matrix P and a matrix

C of the form
�

a �b

b a

�
such that the given matrix has the

form A D P CP�1. For Exercises 13–16, use information from
Exercises 1–4.

13.
�

1 �2

1 3

�
14.

�
�1 �1

5 �5

�
15.

�
1 2

�4 5

�
16.

�
�7 1

�5 �3

�
17.

�
1 �:8

4 �2:2

�
18.

�
1 �1

:4 :6

�
19.

�
1:52 �:7

:56 :4

�
20.

�
�1:64 �2:4

1:92 2:2

�
21. In Example 2, solve the first equation in (2) for x2 in terms of

x1, and from that produce the eigenvector y D
�

2

�1C 2i

�
for the matrix A. Show that this y is a (complex) multiple of
the vector v1 used in Example 2.

22. Let A be a complex (or real) n � n matrix, and let x in Cn be
an eigenvector corresponding to an eigenvalue � in C. Show
that for each nonzero complex scalar �, the vector �x is an
eigenvector of A.

In Exercises 23–26, A is a 2 � 2 matrix with real entries, and x is
a vector in R2. Mark each statement True or False (T/F). Justify
each answer.

23. (T/F) The matrix A can have one real and one complex
eigenvalue.

24. (T/F) The points Ax; A2 x; A3 x; : : : always lie on the same
circle.

25. (T/F) The matrix A always has two eigenvalues, but some-
times they have algebraic multiplicity 2 or are complex
numbers.

26. (T/F) If the matrix A has two complex eigenvalues, then it
also has two linearly independent real eigenvectors.

Chapter 7 will focus onmatricesAwith the property thatAT D A.
Exercises 27 and 28 show that every eigenvalue of such a matrix
is necessarily real.

27. LetA be an n � n real matrix with the property thatAT D A,
let x be any vector in Cn, and let q D xTAx. The equalities
below show that q is a real number by verifying that q D q.
Give a reason for each step.

q D xTAx D xTAx D xTAx D .xTAx/TD xTAT x D q

(a) (b) (c) (d) (e)

28. LetA be an n � n real matrix with the property thatAT D A.
Show that if Ax D �x for some nonzero vector x in Cn, then,
in fact, � is real and the real part of x is an eigenvector of A.
[Hint: Compute xTAx, and use Exercise 27. Also, examine
the real and imaginary parts of Ax.]

29. LetA be a real n � nmatrix, and let x be a vector inCn. Show
that Re.Ax/ D A.Re x/ and Im.Ax/ D A.Im x/.

30. Let A be a real 2 � 2 matrix with a complex eigenvalue
� D a � bi (b ¤ 0) and an associated eigenvector v in C2.

a. Show that A.Re v/ D aRe vC b Im v and A.Im v/ D

�bRe vC a Im v. [Hint: Write v D Re vC i Im v, and
compute Av.]

b. Verify that if P and C are given as in Theorem 9, then
AP D P C .

T In Exercises 31 and 32, find a factorization of the given matrix
A in the form A D P CP�1, where C is a block-diagonal matrix
with 2 � 2 blocks of the form shown in Example 6. (For each
conjugate pair of eigenvalues, use the real and imaginary parts of
one eigenvector in C4 to create two columns of P .)

31.

2664
:7 1:1 2:0 1:7

�2:0 �4:0 �8:6 �7:4

0 �:5 �1:0 �1:0

1:0 2:8 6:0 5:3

3775

32.

2664
�1:4 �2:0 �2:0 �2:0

�1:3 �:8 �:1 �:6

:3 �1:9 �1:6 �1:4

2:0 3:3 2:3 2:6

3775



5.6 Discrete Dynamical Systems 335

Solution to Practice Problem

Remember that it is easy to test whether a vector is an eigenvector. There is no need to
examine the characteristic equation. Compute

Ax D
�

a �b

b a

��
1

�i

�
D

�
aC bi

b � ai

�
D .aC bi/

�
1

�i

�
Thus

�
1

�i

�
is an eigenvector corresponding to � D aC bi . From the discussion in

this section,
�

1

i

�
must be an eigenvector corresponding to � D a � bi .

5.6 Discrete Dynamical Systems
Eigenvalues and eigenvectors provide the key to understanding the long-term behavior,
or evolution, of a dynamical system described by a difference equation xkC1 D Axk .
Such an equation was used to model population movement in Section 1.10, and will
be used in various Markov chains in Section 5.9 and the spotted owl population in the
introductory example for this chapter. The vectors xk give information about the system
as time (denoted by k) passes, where k is a nonnegative integer. In the spotted owl
example, for instance, xk listed the numbers of owls in three age classes at time k.

The applications in this section focus on ecological problems because they are easier
to state and explain than, say, problems in physics or engineering. However, dynamical
systems arise in many scientific fields. For instance, standard undergraduate courses
in control systems discuss several aspects of dynamical systems. The modern state-
space design method in such courses relies heavily on matrix algebra.1 The steady-state
response of a control system is the engineering equivalent of what we call here the “long-
term behavior” of the dynamical system xkC1 D Axk .

Until Example 6, we assume that A is diagonalizable, with n linearly indepen-
dent eigenvectors, v1; : : : ; vn, and corresponding eigenvalues, �1; : : : ; �n. For conve-
nience, assume the eigenvectors are arranged so that j�1j � j�2j � � � � � j�nj. Since
fv1; : : : ; vng is a basis for Rn, any initial vector x0 can be written uniquely as

x0 D c1v1 C � � � C cnvn (1)

This eigenvector decomposition of x0 determines what happens to the sequence fxkg.
The next calculation generalizes the simple case examined in Example 5 of Section 5.2.
Since the vi are eigenvectors,

x1 D Ax0 D c1Av1 C � � � C cnAvn

D c1�1v1 C � � � C cn�nvn

and
x2 D Ax1 D c1�1Av1 C � � � C cn�nAvn

D c1.�1/2v1 C � � � C cn.�n/2vn

1 See G. F. Franklin, J. D. Powell, and A. Emami-Naeimi, Feedback Control of Dynamic Systems, 5th ed.
(Upper Saddle River, NJ: Prentice-Hall, 2006). This undergraduate text has a nice introduction to dynamic
models (Chapter 2). State-space design is covered in Chapters 7 and 8.
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In general,

xk D c1.�1/kv1 C � � � C cn.�n/kvn .k D 0; 1; 2; : : :/ (2)

The examples that follow illustrate what can happen in (2) as k !1.

A Predator–Prey System
Deep in the redwood forests of California, dusky-footed wood rats provide up to 80% of
the diet for the spotted owl, the main predator of the wood rat. Example 1 uses a linear
dynamical system to model the physical system of the owls and the rats. (Admittedly, the
model is unrealistic in several respects, but it can provide a starting point for the study
of more complicated nonlinear models used by environmental scientists.)

EXAMPLE 1 Denote the owl and wood rat populations at time k by xk D

�
Ok

Rk

�
,

where k is the time in months, Ok is the number of owls in the region studied, and Rk

is the number of rats (measured in thousands). Suppose

OkC1 D .:5/Ok C .:4/Rk

RkC1 D �p �Ok C .1:1/Rk

(3)

where p is a positive parameter to be specified. The .:5/Ok in the first equation says
that with no wood rats for food, only half of the owls will survive each month, while the
.1:1/Rk in the second equation says that with no owls as predators, the rat population
will grow by 10% per month. If rats are plentiful, the .:4/Rk will tend to make the owl
population rise, while the negative term �p �Ok measures the deaths of rats due to
predation by owls. (In fact, 1000p is the average number of rats eaten by one owl in one
month.) Determine the evolution of this system when the predation parameter p is .104.

SOLUTION When p D :104, the eigenvalues of the coefficient matrix A D�
:5 :4

�p 1:1

�
for the equations in (3) turn out to be �1 D 1:02 and �2 D :58. Corre-

sponding eigenvectors are

v1 D

�
10

13

�
; v2 D

�
5

1

�
An initial x0 can be written as x0 D c1v1 C c2v2. Then, for k � 0,

xk D c1.1:02/kv1 C c2.:58/kv2

D c1.1:02/k

�
10

13

�
C c2.:58/k

�
5

1

�
As k !1, .:58/k rapidly approaches zero. Assume c1 > 0. Then, for all sufficiently
large k, xk is approximately the same as c1.1:02/kv1, and we write

xk � c1.1:02/k

�
10

13

�
(4)

The approximation in (4) improves as k increases, and so for large k,

xkC1 � c1.1:02/kC1

�
10

13

�
D .1:02/c1.1:02/k

�
10

13

�
� 1:02xk (5)

The approximation in (5) says that eventually both entries of xk (the numbers of owls
and rats) grow by a factor of almost 1.02 each month, a 2% monthly growth rate. By
(4), xk is approximately a multiple of .10; 13/, so the entries in xk are nearly in the same
ratio as 10 to 13. That is, for every 10 owls there are about 13 thousand rats.
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Example 1 illustrates two general facts about a dynamical system xkC1 D Axk in
which A is n � n, its eigenvalues satisfy j�1j � 1 and 1 > j�j j for j D 2; : : : ; n, and v1

is an eigenvector corresponding to �1. If x0 is given by equation (1), with c1 ¤ 0, then
for all sufficiently large k,

xkC1 � �1xk (6)

and
xk � c1.�1/kv1 (7)

The approximations in (6) and (7) can bemade as close as desired by taking k sufficiently
large. By (6), the xk eventually grow almost by a factor of �1 each time, so �1 determines
the eventual growth rate of the system. Also, by (7), the ratio of any two entries in xk

(for large k) is nearly the same as the ratio of the corresponding entries in v1. The case
in which �1 D 1 is illustrated in Example 5 in Section 5.2.

Graphical Description of Solutions
WhenA is 2 � 2, algebraic calculations can be supplemented by a geometric description
of a system’s evolution. We can view the equation xkC1 D Axk as a description of what
happens to an initial point x0 in R2 as it is transformed repeatedly by the mapping
x 7!Ax. The graph of x0; x1; : : : is called a trajectory of the dynamical system.

EXAMPLE 2 Plot several trajectories of the dynamical system xkC1 D Axk , when

A D

�
:80 0

0 :64

�
SOLUTION The eigenvalues of A are .8 and .64, with eigenvectors v1 D

�
1

0

�
and

v2 D

�
0

1

�
. If x0 D c1v1 C c2v2, then

xk D c1.:8/k

�
1

0

�
C c2.:64/k

�
0

1

�
Of course, xk tends to 0 because .:8/k and .:64/k both approach 0 as k !1. But the way
xk goes toward 0 is interesting. Figure 1 shows the first few terms of several trajectories

x2

x1

x1

x2

x0

x2

x1

x0

x2

x1

x0

3

3

FIGURE 1 The origin as an attractor.
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that begin at points on the boundary of the box with corners at .˙3;˙3/. The points on
each trajectory are connected by a thin curve, to make the trajectory easier to see.

In Example 2, the origin is called an attractor of the dynamical system because
all trajectories tend toward 0. This occurs whenever both eigenvalues are less than 1
in magnitude. The direction of greatest attraction is along the line through 0 and the
eigenvector v2 for the eigenvalue of smaller magnitude.

In the next example, both eigenvalues of A are larger than 1 in magnitude, and 0
is called a repeller of the dynamical system. All solutions of xkC1 D Axk except the
(constant) zero solution are unbounded and tend away from the origin.2

EXAMPLE 3 Plot several typical solutions of the equation xkC1 D Axk , where

A D

�
1:44 0

0 1:2

�
SOLUTION The eigenvalues of A are 1.44 and 1.2. If x0 D

�
c1

c2

�
, then

xk D c1.1:44/k

�
1

0

�
C c2.1:2/k

�
0

1

�
Both terms grow in size, but the first term grows faster. So the direction of greatest
repulsion is the line through 0 and the eigenvector for the eigenvalue of larger magnitude.
Figure 2 shows several trajectories that begin at points quite close to 0.

FIGURE 2 The origin as a repeller.

In the next example, 0 is called a saddle point because the origin attracts solutions
from some directions and repels them in other directions. This occurs whenever one
eigenvalue is greater than 1 in magnitude and the other is less than 1 in magnitude. The
direction of greatest attraction is determined by an eigenvector for the eigenvalue of
smaller magnitude. The direction of greatest repulsion is determined by an eigenvector
for the eigenvalue of greater magnitude.

2 The origin is the only possible attractor or repeller in a linear dynamical system, but there can be multiple
attractors and repellers in a more general dynamical system for which the mapping xk 7! xkC1 is not linear.
In such a system, attractors and repellers are defined in terms of the eigenvalues of a special matrix (with
variable entries) called the Jacobian matrix of the system.
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EXAMPLE 4 Plot several typical solutions of the equation ykC1 D Dyk , where

D D

�
2:0 0

0 0:5

�
(We write D and y here instead of A and x because this example will be used later.)
Show that a solution fykg is unbounded if its initial point is not on the x2-axis.

SOLUTION The eigenvalues of D are 2 and .5. If y0 D

�
c1

c2

�
, then

yk D c12k

�
1

0

�
C c2.:5/k

�
0

1

�
(8)

If y0 is on the x2-axis, then c1 D 0 and yk ! 0 as k !1. But if y0 is not on the x2-axis,
then the first term in the sum for yk becomes arbitrarily large, and so fykg is unbounded.
Figure 3 shows ten trajectories that begin near or on the x2-axis.

x3

x2

x1

x1

x2

x0

x3
x2

x1

x0

FIGURE 3 The origin as a saddle point.

Change of Variable
The preceding three examples involved diagonal matrices. To handle the nondiagonal
case, we return for a moment to the n � n case in which eigenvectors of A form a
basis fv1; : : : ; vng for Rn. Let P D Œ v1 � � � vn �, and let D be the diagonal matrix
with the corresponding eigenvalues on the diagonal. Given a sequence fxkg satisfying
xkC1 D Axk , define a new sequence fykg by

yk D P�1xk ; or equivalently; xk D P yk

Substituting these relations into the equation xkC1 D Axk and using the fact that A D

PDP�1, we find that

P ykC1 D APyk D .PDP�1/P yk D PDyk

Left-multiplying both sides by P�1, we obtain

ykC1 D Dyk
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If we write yk as y.k/ and denote the entries in y.k/ by y1.k/; : : : ; yn.k/, then266664
y1.k C 1/

y2.k C 1/
:::

yn.k C 1/

377775 D
266664

�1 0 � � � 0

0 �2

:::
:::

: : : 0

0 � � � 0 �n

377775
266664

y1.k/

y2.k/
:::

yn.k/

377775
The change of variable from xk to yk has decoupled the system of difference equations.
The evolution of y1.k/, for example, is unaffected by what happens to y2.k/; : : : ; yn.k/,
because y1.k C 1/ D �1 �y1.k/ for each k.

The equation xk D P yk says that yk is the coordinate vector of xk with respect to
the eigenvector basis fv1; : : : ; vng. We can decouple the system xkC1 D Axk by making
calculations in the new eigenvector coordinate system. When n D 2, this amounts to
using graph paper with axes in the directions of the two eigenvectors.

EXAMPLE 5 Show that the origin is a saddle point for solutions of xkC1 D Axk ,
where

A D

�
1:25 �:75

�:75 1:25

�
Find the directions of greatest attraction and greatest repulsion.

SOLUTION Using standard techniques, we find that A has eigenvalues 2 and .5, with

corresponding eigenvectors v1 D

�
1

�1

�
and v2 D

�
1

1

�
, respectively. Since j2j > 1 and

j:5j < 1, the origin is a saddle point of the dynamical system. If x0 D c1v1 C c2v2, then

xk D c12kv1 C c2.:5/kv2 (9)

This equation looks just like equation (8) in Example 4, with v1 and v2 in place of the
standard basis.

On graph paper, draw axes through 0 and the eigenvectors v1 and v2. See Figure 4.
Movement along these axes corresponds to movement along the standard axes in
Figure 3. In Figure 4, the direction of greatest repulsion is the line through 0 and the

x3

x2

v2

v1

x1

x

y

x0

x3

x2
x1

x0

FIGURE 4 The origin as a saddle point.
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eigenvector v1 whose eigenvalue is greater than 1 in magnitude. If x0 is on this line, the
c2 in (9) is zero and xk moves quickly away from 0. The direction of greatest attraction
is determined by the eigenvector v2 whose eigenvalue is less than 1 in magnitude.

A number of trajectories are shown in Figure 4. When this graph is viewed in
terms of the eigenvector axes, the picture “looks” essentially the same as the picture in
Figure 3.

Complex Eigenvalues
When a real 2 � 2 matrix A has complex eigenvalues, A is not diagonalizable (when
acting on R2/, but the dynamical system xkC1 D Axk is easy to describe. Example 3
of Section 5.5 illustrated the case in which the eigenvalues have absolute value 1. The
iterates of a point x0 spiral around the origin along an elliptical trajectory.

If A has two complex eigenvalues whose absolute value is greater than 1, then 0 is
a repeller and iterates of x0 will spiral outward around the origin. If the absolute values
of the complex eigenvalues are less than 1, then the origin is an attractor and the iterates
of x0 spiral inward toward the origin, as in the following example.

EXAMPLE 6 It can be verified that the matrix

A D

�
:8 :5

�:1 1:0

�
has eigenvalues :9˙ :2i , with eigenvectors

�
1� 2i

1

�
. Figure 5 shows three trajectories

of the system xkC1 D Axk , with initial vectors
�

0

2:5

�
,
�

3

0

�
, and

�
0

�2:5

�
.

x3 x2 x1

x3
x2

x1

x1

x2

x0

x0

x3

x2
x1

x0

FIGURE 5 Rotation associated with complex
eigenvalues.

Survival of the Spotted Owls
Recall from this chapter’s introductory example that the spotted owl population in the
Willow Creek area of California was modeled by a dynamical system xkC1 D Axk in
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which the entries in xk D .jk ; sk ; ak/ listed the numbers of females (at time k) in the
juvenile, subadult, and adult life stages, respectively, and A is the stage-matrix

A D

24 0 0 :33

:18 0 0

0 :71 :94

35 (10)

MATLAB shows that the eigenvalues of A are approximately �1 D :98,
�2 D �:02C :21i , and �3 D �:02 � :21i . Observe that all three eigenvalues are
less than 1 in magnitude, because j�2j

2 D j�3j
2 D .�:02/2 C .:21/2 D :0445.

For the moment, let A act on the complex vector space C3. Then, because A has
three distinct eigenvalues, the three corresponding eigenvectors are linearly independent
and form a basis for C3. Denote the eigenvectors by v1, v2, and v3. Then the general
solution of xkC1 D Axk (using vectors in C3) has the form

xk D c1.�1/kv1 C c2.�2/kv2 C c3.�3/kv3 (11)

If x0 is a real initial vector, then x1 D Ax0 is real becauseA is real. Similarly, the equation
xkC1 D Axk shows that each xk on the left side of (11) is real, even though it is expressed
as a sum of complex vectors. However, each term on the right side of (11) is approaching
the zero vector, because the eigenvalues are all less than 1 in magnitude. Therefore the
real sequence xk approaches the zero vector, too. Sadly, this model predicts that the
spotted owls will eventually all perish.

Is there hope for the spotted owl? Recall from the introductory example that the
18% entry in the matrix A in (10) comes from the fact that although 60% of the juvenile
owls live long enough to leave the nest and search for new home territories, only 30%
of that group survive the search and find new home ranges. Search survival is strongly
influenced by the number of clear-cut areas in the forest, which make the search more
difficult and dangerous.

Some owl populations live in areas with few or no clear-cut areas. It may be that
a larger percentage of the juvenile owls there survive and find new home ranges. Of
course, the problem of the spotted owl is more complex than we have described, but the
final example provides a happy ending to the story.

EXAMPLE 7 Suppose the search survival rate of the juvenile owls is 50%, so the
.2; 1/-entry in the stage-matrix A in (10) is .3 instead of .18. What does the stage-matrix
model predict about this spotted owl population?

SOLUTION Now the eigenvalues of A turn out to be approximately �1 D 1:01, �2 D

�:03C :26i , and �3 D �:03 � :26i . An eigenvector for �1 is approximately v1 D

.10; 3; 31/. Let v2 and v3 be (complex) eigenvectors for �2 and �3. In this case,
equation (11) becomes

xk D c1.1:01/kv1 C c2.�:03C :26i/kv2 C c3.�:03 � :26i/kv3

As k !1, the second two vectors tend to zero. So xk becomes more and more like
the (real) vector c1.1:01/kv1. The approximations in equations (6) and (7), following
Example 1, apply here. Also, it can be shown that the constant c1 in the initial

Further Reading: Franklin, G. F., J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems,
3rd ed. Reading, MA: Addison-Wesley, 1998; Sandefur, James T. Discrete Dynamical Systems—Theory and
Applications. Oxford: Oxford University Press, 1990; Tuchinsky, Philip.Management of a Buffalo Herd,
UMAP Module 207. Lexington, MA: COMAP, 1980.



5.6 Discrete Dynamical Systems 343

decomposition of x0 is positive when the entries in x0 are nonnegative. Thus the owl
population will grow slowly, with a long-term growth rate of 1.01. The eigenvector v1

describes the eventual distribution of the owls by life stages: for every 31 adults, there
will be about 10 juveniles and 3 subadults.

Practice Problems

1. The matrix A below has eigenvalues 1, 2
3
, and 1

3
, with corresponding eigenvectors

v1, v2, and v3:

A D
1

9

24 7 �2 0

�2 6 2

0 2 5

35; v1 D

24�2

2

1

35; v2 D

24 2

1

2

35; v3 D

24 1

2

�2

35

Find the general solution of the equation xkC1 D Axk if x0 D

24 1

11

�2

35.
2. What happens to the sequence fxkg in Practice Problem 1 as k !1?

5.6 Exercises
1. Let A be a 2 � 2 matrix with eigenvalues 3 and 1=3 and

corresponding eigenvectors v1 D

�
1

1

�
and v2 D

�
�1

1

�
. Let

fxkg be a solution of the difference equation xkC1 D Axk ,

x0 D

�
9

1

�
.

a. Compute x1 D Ax0. [Hint: You do not need to know A

itself.]

b. Find a formula for xk involving k and the eigenvectors v1

and v2.

2. Suppose the eigenvalues of a 3 � 3 matrix A are 3, 4=5, and

3=5, with corresponding eigenvectors

24 1

0

�3

35, 24 2

1

�5

35, and24�3

�3

7

35. Let x0 D

24�2

�5

3

35. Find the solution of the equation
xkC1 D Axk for the specified x0, and describe what happens
as k !1.

In Exercises 3–6, assume that any initial vector x0 has an eigen-
vector decomposition such that the coefficient c1 in equation (1)
of this section is positive.3

3. Determine the evolution of the dynamical system in Exam-
ple 1 when the predation parameter p is .2 in equation (3).
(Give a formula for xk :/ Does the owl population grow or
decline? What about the wood rat population?

3 One of the limitations of the model in Example 1 is that there always exist
initial population vectors x0 with positive entries such that the coefficient
c1 is negative. The approximation (7) is still valid, but the entries in xk

eventually become negative.

4. Determine the evolution of the dynamical system in Example
1 when the predation parameter p is :125. (Give a formula
for xk .) As time passes, what happens to the sizes of the owl
and wood rat populations? The system tends toward what is
sometimes called an unstable equilibrium.What do you think
might happen to the system if some aspect of the model (such
as birth rates or the predation rate) were to change slightly?

5. The tawny owl is a widespread breeding species in Europe
that feeds mostly on mice. Suppose the predator–prey matrix

for these two populations is A D

�
:5 :4

�p 1:2

�
. Show that

if the predation parameter p is .15, both populations grow.
Estimate the long-term growth rate and the eventual ratio of
owls to mice.

6. Show that if the predation parameterp in Exercise 5 is .3, both
the owls and the mice will eventually perish. Find a value of
p for which populations of both owls and mice tend toward
constant levels. What are the relative population sizes in this
case?

7. Let A have the properties described in Exercise 1.

a. Is the origin an attractor, a repeller, or a saddle point of
the dynamical system xkC1 D Axk?

b. Find the directions of greatest attraction and/or repulsion
for this dynamical system.

c. Make a graphical description of the system, showing the
directions of greatest attraction or repulsion. Include a
rough sketch of several typical trajectories (without com-
puting specific points).

8. Determine the nature of the origin (attractor, repeller, or
saddle point) for the dynamical system xkC1 D Axk if A has
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the properties described in Exercise 2. Find the directions of
greatest attraction or repulsion.

In Exercises 9–14, classify the origin as an attractor, repeller,
or saddle point of the dynamical system xkC1 D Axk . Find the
directions of greatest attraction and/or repulsion.

9. A D

�
1:7 �:3

�1:2 :8

�
10. A D

�
:3 :4

�:3 1:1

�

11. A D

�
:4 :5

�:4 1:3

�
12. A D

�
:5 :6

�:3 1:4

�
13. A D

�
:8 :3

�:4 1:5

�
14. A D

�
1:7 :6

�:4 :7

�

15. Let A D

24 :4 0 :2

:3 :8 :3

:3 :2 :5

35. The vector v1 D

24 :1

:6

:3

35 is an

eigenvector for A, and two eigenvalues are .5 and .2. Con-
struct the solution of the dynamical system xkC1 D Axk that
satisfies x0 D .0; :3; :7/. What happens to xk as k !1?

T 16. Produce the general solution of the dynamical system

xkC1 D Axk when A D

24 :90 :01 :09

:01 :90 :01

:09 :09 :90

35.
17. Construct a stage-matrix model for an animal species that has

two life stages: juvenile (up to 1 year old) and adult. Suppose
the female adults give birth each year to an average of 1.6
female juveniles. Each year, 30% of the juveniles survive
to become adults and 80% of the adults survive. For k � 0,

let xk D .jk ; ak/, where the entries in xk are the numbers of
female juveniles and female adults in year k.

a. Construct the stage-matrix A such that xkC1 D Axk for
k � 0.

b. Show that the population is growing, compute the eventual
growth rate of the population, and give the eventual ratio
of juveniles to adults.

T c. Suppose that initially there are 15 juveniles and 10 adults
in the population. Produce four graphs that show how the
population changes over eight years: (a) the number of ju-
veniles, (b) the number of adults, (c) the total population,
and (d) the ratio of juveniles to adults (each year). When
does the ratio in (d) seem to stabilize? Include a listing of
the program or keystrokes used to produce the graphs for
(c) and (d).

18. Manta ray populations can be modeled by a stage matrix sim-
ilar to that for the spotted owls. The females can be divided
into yearlings (up to 1 year old), juveniles (1 to 9 years), and
adults. Suppose an average of 50 female rays are born each
year per 100 adult females. (Only adults produce offspring.)
Each year, about 63% of the yearlings survive, 86% of the
juveniles survive (among which 11% become adults), and
95% of the adults survive. For k � 0, let xk D .yk ; jk ; ak/,
where the entries in xk are the numbers of females in each
life stage at year k.

a. Construct the stage-matrixA for themanta ray population,
such that xkC1 D Axk for k � 0.

T b. Show that the manta ray population is growing, determine
the expected growth rate after many years, and give the
expected numbers of yearlings and juveniles present per
100 adults.

Solutions to Practice Problems

1. The first step is to write x0 as a linear combination of v1, v2, and v3. Row reduction
of Œ v1 v2 v3 x0 � produces the weights c1 D 2, c2 D 1, and c3 D 3, so that

x0 D 2v1 C 1v2 C 3v3

Since the eigenvalues are 1, 2
3
, and 1

3
, the general solution is

xk D 2 � 1kv1 C 1 �

�
2

3

�k

v2 C 3 �

�
1

3

�k

v3

D 2

24�2

2

1

35C �2

3

�k

24 2

1

2

35C 3 �

�
1

3

�k

24 1

2

�2

35 (12)

2. As k !1, the second and third terms in (12) tend to the zero vector, and

xk D 2v1 C

�
2

3

�k

v2 C 3

�
1

3

�k

v3 ! 2v1 D

24�4

4

2

35
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5.7 Applications to Differential Equations
This section describes continuous analogues of the difference equations studied in
Section 5.6. In many applied problems, several quantities are varying continuously in
time, and they are related by a system of differential equations:

x01 D a11x1 C � � � C a1nxn

x02 D a21x1 C � � � C a2nxn

:::

x0n D an1x1 C � � � C annxn

Here x1; : : : ; xn are differentiable functions of t , with derivatives x01; : : : ; x0n, and the aij

are constants. The crucial feature of this system is that it is linear. To see this, write the
system as a matrix differential equation

x0.t/ D Ax.t/ (1)

where

x.t/ D

264 x1.t/
:::

xn.t/

375 ; x0.t/ D

264 x01.t/
:::

x0n.t/

375 ; and A D

264 a11 � � � a1n
:::

:::

an1 � � � ann

375
A solution of equation (1) is a vector-valued function that satisfies (1) for all t in some
interval of real numbers, such as t � 0.

Equation (1) is linear because both differentiation of functions and multiplication of
vectors by a matrix are linear transformations. Thus, if u and v are solutions of x0 D Ax,
then cuC dv is also a solution, because

.cuC dv/0 D cu0 C dv0

D cAuC dAv D A.cuC dv/

(Engineers call this property superposition of solutions.) Also, the identically zero
function is a (trivial) solution of (1). In the terminology of Chapter 4, the set of all
solutions of (1) is a subspace of the set of all continuous functions with values in Rn.

Standard texts on differential equations show that there always exists what is called
a fundamental set of solutions to (1). IfA is n � n, then there are n linearly independent
functions in a fundamental set, and each solution of (1) is a unique linear combination
of these n functions. That is, a fundamental set of solutions is a basis for the set of all
solutions of (1), and the solution set is an n-dimensional vector space of functions. If a
vector x0 is specified, then the initial value problem is to construct the (unique) function
x such that x0 D Ax and x.0/ D x0.

When A is a diagonal matrix, the solutions of (1) can be produced by elementary
calculus. For instance, consider"

x01.t/

x02.t/

#
D

"
3 0

0 �5

#"
x1.t/

x2.t/

#
(2)

that is,
x01.t/ D 3x1.t/

x02.t/ D �5x2.t/
(3)
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The system (2) is said to be decoupled because each derivative of a function depends
only on the function itself, not on some combination or “coupling” of both x1.t/ and
x2.t/. From calculus, the solutions of (3) are x1.t/ D c1e3t and x2.t/ D c2e�5t , for any
constants c1 and c2. Each solution of equation (2) can be written in the form�

x1.t/

x2.t/

�
D

�
c1e3t

c2e�5t

�
D c1

�
1

0

�
e3t
C c2

�
0

1

�
e�5t

This example suggests that for the general equation x0 D Ax, a solution might be a
linear combination of functions of the form

x.t/ D ve�t (4)

for some scalar � and some fixed nonzero vector v. [If v D 0, the function x.t/ is
identically zero and hence satisfies x0 D Ax.] Observe that

x0.t/ D �ve�t By calculus, since v is a constant vector

Ax.t/ D Ave�t Multiplying both sides of (4) by A

Since e�t is never zero, x0.t/ will equal Ax.t/ if and only if �v D Av, that is, if and only
if � is an eigenvalue of A and v is a corresponding eigenvector. Thus each eigenvalue–
eigenvector pair provides a solution (4) of x0 D Ax. Such solutions are sometimes called
eigenfunctions of the differential equation. Eigenfunctions provide the key to solving
systems of differential equations.

EXAMPLE 1 The circuit in Figure 1 can be described by the differential equation
R1

R2

C1

C2

1

1

FIGURE 1

"
x01.t/

x02.t/

#
D

"
�.1=R1 C 1=R2/=C1 1=.R2C1/

1=.R2C2/ �1=.R2C2/

#"
x1.t/

x2.t/

#
where x1.t/ and x2.t/ are the voltages across the two capacitors at time t . Suppose
resistor R1 is 1 ohm, R2 is 2 ohms, capacitor C1 is 1 farad, and C2 is .5 farad, and
suppose there is an initial charge of 5 volts on capacitor C1 and 4 volts on capacitor C2.
Find formulas for x1.t/ and x2.t/ that describe how the voltages change over time.

SOLUTION LetA denote the matrix displayed above, and let x.t/ D

�
x1.t/

x2.t/

�
. For the

data given, A D

�
�1:5 :5

1 �1

�
, and x.0/ D

�
5

4

�
. The eigenvalues of A are �1 D �:5

and �2 D �2, with corresponding eigenvectors

v1 D

�
1

2

�
and v2 D

�
�1

1

�
The eigenfunctions x1.t/ D v1e�1t and x2.t/ D v2e�2t both satisfy x0 D Ax, and so does
any linear combination of x1 and x2. Set

x.t/ D c1v1e�1t
C c2v2e�2t

D c1

�
1

2

�
e�:5t

C c2

�
�1

1

�
e�2t

and note that x.0/ D c1v1 C c2v2. Since v1 and v2 are obviously linearly independent
and hence spanR2, c1 and c2 can be found to make x.0/ equal to x0. In fact, the equation

c1

�
1

2

�
6
v1

C c2

�
�1

1

�
6
v2

D

�
5

4

�
6
x0
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leads easily to c1 D 3 and c2 D �2. Thus the desired solution of the differential equation
x0 D Ax is

x.t/ D 3

�
1

2

�
e�:5t

� 2

�
�1

1

�
e�2t

or �
x1.t/

x2.t/

�
D

"
3e�:5t C 2e�2t

6e�:5t � 2e�2t

#
Figure 2 shows the graph, or trajectory, of x.t/, for t � 0, along with trajectories for
some other initial points. The trajectories of the two eigenfunctions x1 and x2 lie in the
eigenspaces of A.

The functions x1 and x2 both decay to zero as t !1, but the values of x2

decay faster because its exponent is more negative. The entries in the corresponding
eigenvector v2 show that the voltages across the capacitors will decay to zero as rapidly
as possible if the initial voltages are equal in magnitude but opposite in sign.

5

4 x0

v2

v1

FIGURE 2 The origin as an attractor.

In Figure 2, the origin is called an attractor, or sink, of the dynamical system
because all trajectories are drawn into the origin. The direction of greatest attraction
is along the trajectory of the eigenfunction x2 (along the line through 0 and v2/

corresponding to the more negative eigenvalue, � D �2. Trajectories that begin at points
not on this line become asymptotic to the line through 0 and v1 because their components
in the v2 direction decay so rapidly.

If the eigenvalues in Example 1 were positive instead of negative, the corresponding
trajectories would be similar in shape, but the trajectories would be traversed away from
the origin. In such a case, the origin is called a repeller, or source, of the dynamical
system, and the direction of greatest repulsion is the line containing the trajectory of the
eigenfunction corresponding to the more positive eigenvalue.

EXAMPLE 2 Suppose a particle is moving in a planar force field and its position
vector x satisfies x0 D Ax and x.0/ D x0, where

A D

�
4 �5

�2 1

�
; x0 D

�
2:9

2:6

�
Solve this initial value problem for t � 0, and sketch the trajectory of the particle.
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SOLUTION The eigenvalues of A turn out to be �1 D 6 and �2 D �1, with corre-
sponding eigenvectors v1 D .�5; 2/ and v2 D .1; 1/. For any constants c1 and c2, the
function

x.t/ D c1v1e�1t
C c2v2e�2t

D c1

�
�5

2

�
e6t
C c2

�
1

1

�
e�t

is a solution of x0 D Ax. We want c1 and c2 to satisfy x.0/ D x0, that is,

c1

�
�5

2

�
C c2

�
1

1

�
D

�
2:9

2:6

�
or

�
�5 1

2 1

��
c1

c2

�
D

�
2:9

2:6

�
Calculations show that c1 D �3=70 and c2 D 188=70, and so the desired function is

x.t/ D
�3

70

�
�5

2

�
e6t
C

188

70

�
1

1

�
e�t

Trajectories of x and other solutions are shown in Figure 3.

x0

v2
v1

FIGURE 3 The origin as a saddle point.

In Figure 3, the origin is called a saddle point of the dynamical system because
some trajectories approach the origin at first and then change direction and move away
from the origin. A saddle point arises whenever the matrix A has both positive and
negative eigenvalues. The direction of greatest repulsion is the line through v1 and 0,
corresponding to the positive eigenvalue. The direction of greatest attraction is the line
through v2 and 0, corresponding to the negative eigenvalue.

Decoupling a Dynamical System
The following discussion shows that the method of Examples 1 and 2 produces a
fundamental set of solutions for any dynamical system described by x0 D Ax when A

is n � n and has n linearly independent eigenvectors, that is, when A is diagonalizable.
Suppose the eigenfunctions for A are

v1e�1t ; : : : ; vne�nt

with v1; : : : ; vn linearly independent eigenvectors. LetP D Œ v1 � � � vn �, and letD be
the diagonal matrix with entries �1; : : : ; �n, so that A D PDP�1. Now make a change
of variable, defining a new function y by

y.t/ D P�1x.t/ or, equivalently; x.t/ D P y.t/
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The equation x.t/ D P y.t/ says that y.t/ is the coordinate vector of x.t/ relative to the
eigenvector basis. Substitution of P y for x in the equation x0 D Ax gives

d

dt
.P y/ D A.P y/ D .PDP�1/P y D PDy (5)

Since P is a constant matrix, the left side of (5) is P y0. Left-multiply both sides of (5)
by P�1 and obtain y0 D Dy, or266664

y01.t/

y02.t/
:::

y0n.t/

377775 D
266664

�1 0 � � � 0

0 �2

:::
:::

: : : 0

0 � � � 0 �n

377775
266664

y1.t/

y2.t/
:::

yn.t/

377775
The change of variable from x to y has decoupled the system of differential equations,
because the derivative of each scalar function yk depends only on yk . (Review the
analogous change of variables in Section 5.6.) Since y01 D �1y1, we have y1.t/ D c1e�1t ,
with similar formulas for y2; : : : ; yn. Thus

y.t/ D

264 c1e�1t

:::

cne�nt

375 ; where

264 c1
:::

cn

375 D y.0/ D P�1x.0/ D P�1x0

To obtain the general solution x of the original system, compute

x.t/ D P y.t/ D Œ v1 � � � vn � y.t/

D c1v1e�1t
C � � � C cnvne�nt

This is the eigenfunction expansion constructed as in Example 1.

Complex Eigenvalues

In the next example, a real matrix A has a pair of complex eigenvalues � and �, with
associated complex eigenvectors v and v. (Recall from Section 5.5 that for a real matrix,
complex eigenvalues and associated eigenvectors come in conjugate pairs.) So two
solutions of x0 D Ax are

x1.t/ D ve�t and x2.t/ D ve�t (6)

It can be shown that x2.t/ D x1.t/ by using a power series representation for the complex
exponential function. Although the complex eigenfunctions x1 and x2 are convenient
for some calculations (particularly in electrical engineering), real functions are more
appropriate for many purposes. Fortunately, the real and imaginary parts of x1 are (real)
solutions of x0 D Ax, because they are linear combinations of the solutions in (6):

Re.ve�t / D
1

2
Œ x1.t/C x1.t/ �; Im.ve�t / D

1

2i
Œ x1.t/ � x1.t/ �

To understand the nature of Re.ve�t /, recall from calculus that for any number x,
the exponential function ex can be computed from the power series:

ex
D 1C x C

1

2Š
x2
C � � � C

1

nŠ
xn
C � � �
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This series can be used to define e�t when � is complex:

e�t
D 1C .�t/C

1

2Š
.�t/2

C � � � C
1

nŠ
.�t/n

C � � �

By writing � D aC bi (with a and b real), and using similar power series for the cosine
and sine functions, one can show that

e.aCbi/t
D eat eibt

D eat .cos bt C i sin bt/ (7)

Hence

ve�t
D .Re vC i Im v/ .eat /.cos bt C i sin bt/

D Œ .Re v/ cos bt � .Im v/ sin bt �eat

C i Œ .Re v/ sin bt C .Im v/ cos bt �eat

So two real solutions of x0 D Ax are

y1.t/ D Re x1.t/ D Œ .Re v/ cos bt � .Im v/ sin bt � eat

y2.t/ D Im x1.t/ D Œ .Re v/ sin bt C .Im v/ cos bt � eat

It can be shown that y1 and y2 are linearly independent functions (when b ¤ 0).1

EXAMPLE 3 The circuit in Figure 4 can be described by the equation
R1

R2

C

L

1

iL

FIGURE 4

"
i 0L

v0C

#
D

"
�R2=L �1=L

1=C �1=.R1C /

#"
iL

vC

#
where iL is the current passing through the inductor L and vC is the voltage drop across
the capacitor C . Suppose R1 is 5 ohms, R2 is .8 ohm, C is .1 farad, and L is .4 henry.
Find formulas for iL and vC , if the initial current through the inductor is 3 amperes and
the initial voltage across the capacitor is 3 volts.

SOLUTION For the data given, A D

�
�2 �2:5

10 �2

�
and x0 D

�
3

3

�
. The method dis-

cussed in Section 5.5 produces the eigenvalue � D �2C 5i and the corresponding

eigenvector v1 D

�
i

2

�
. The complex solutions of x0 D Ax are complex linear combina-

tions of

x1.t/ D

�
i

2

�
e.�2C5i/t and x2.t/ D

�
�i

2

�
e.�2�5i/t

Next, use equation (7) to write

x1.t/ D

�
i

2

�
e�2t .cos 5t C i sin 5t/

The real and imaginary parts of x1 provide real solutions:

y1.t/ D

�
� sin 5t

2 cos 5t

�
e�2t ; y2.t/ D

�
cos 5t

2 sin 5t

�
e�2t

1 Since x2.t/ is the complex conjugate of x1.t/, the real and imaginary parts of x2.t/ are y1.t/ and �y2.t/,
respectively. Thus one can use either x1.t/ or x2.t/, but not both, to produce two real linearly independent
solutions of x0 D Ax.
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Since y1 and y2 are linearly independent functions, they form a basis for the two-
dimensional real vector space of solutions of x0 D Ax. Thus the general solution is

x.t/ D c1

�
� sin 5t

2 cos 5t

�
e�2t
C c2

�
cos 5t

2 sin 5t

�
e�2t

To satisfy x.0/ D

�
3

3

�
, we need c1

�
0

2

�
C c2

�
1

0

�
D

�
3

3

�
, which leads to c1 D 1:5 and

c2 D 3. Thus

x.t/ D 1:5

�
� sin 5t

2 cos 5t

�
e�2t
C 3

�
cos 5t

2 sin 5t

�
e�2t

or �
iL.t/

vC .t/

�
D

�
�1:5 sin 5t C 3 cos 5t

3 cos 5t C 6 sin 5t

�
e�2t

See Figure 5.

x0

FIGURE 5

The origin as a spiral point.

In Figure 5, the origin is called a spiral point of the dynamical system. The rotation
is caused by the sine and cosine functions that arise from a complex eigenvalue. The
trajectories spiral inward because the factor e�2t tends to zero. Recall that �2 is the real
part of the eigenvalue in Example 3. When A has a complex eigenvalue with positive
real part, the trajectories spiral outward. If the real part of the eigenvalue is zero, the
trajectories form ellipses around the origin.

Practice Problems

A real 3 � 3 matrix A has eigenvalues �:5, :2C :3i , and :2 � :3i , with corresponding
eigenvectors

v1 D

24 1

�2

1

35; v2 D

24 1C 2i

4i

2

35 ; and v3 D

24 1 � 2i

�4i

2

35
1. Is A diagonalizable as A D PDP�1, using complex matrices?

2. Write the general solution of x0 D Ax using complex eigenfunctions, and then find
the general real solution.

3. Describe the shapes of typical trajectories.

5.7 Exercises
1. A particle moving in a planar force field has a position vector

x that satisfies x0 D Ax. The 2 � 2 matrix A has eigenvalues

4 and 2, with corresponding eigenvectors v1 D

�
�3

1

�
and

v2 D

�
�1

1

�
. Find the position of the particle at time t ,

assuming that x.0/ D

�
�6

1

�
.

2. Let A be a 2 � 2 matrix with eigenvalues �3 and �1 and

corresponding eigenvectors v1 D

�
�1

1

�
and v2 D

�
1

1

�
. Let

x.t/ be the position of a particle at time t . Solve the initial

value problem x0 D Ax, x.0/ D

�
2

3

�
.

In Exercises 3–6, solve the initial value problem x0.t/ D Ax.t/

for t � 0, with x.0/ D .3; 2/. Classify the nature of the origin
as an attractor, repeller, or saddle point of the dynamical system
described by x0 D Ax. Find the directions of greatest attraction
and/or repulsion. When the origin is a saddle point, sketch typical
trajectories.

3. A D

�
2 3

�1 �2

�
4. A D

�
�2 �5

1 4

�
5. A D

�
2 �4

5 �7

�
6. A D

�
7 �3

5 �1

�
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In Exercises 7 and 8, make a change of variable that decouples the
equation x0 D Ax. Write the equation x.t/ D P y.t/ and show the
calculation that leads to the uncoupled system y0 D Dy, specify-
ing P and D.

7. A as in Exercise 5 8. A as in Exercise 6

In Exercises 9–18, construct the general solution of x0 D Ax
involving complex eigenfunctions and then obtain the general real
solution. Describe the shapes of typical trajectories.

9. A D

�
�3 2

�1 �1

�
10. A D

�
3 1

�2 1

�
11. A D

�
�3 �9

2 3

�
12. A D

�
�7 10

�4 5

�
13. A D

�
4 �3

6 �2

�
14. A D

�
�3 2

�9 3

�

T 15. A D

24�8 �12 �6

2 1 2

7 12 5

35
T 16. A D

24�6 �11 16

2 5 �4

�4 �5 10

35
T 17. A D

24 30 64 23

�11 �23 �9

6 15 4

35
T 18. A D

24 53 �30 �2

90 �52 �3

20 �10 2

35

T 19. Find formulas for the voltages v1 and v2 (as functions of time
t ) for the circuit in Example 1, assuming thatR1 D 1=5 ohm,
R2 D 1=3 ohm, C1 D 4 farads, C2 D 3 farads, and the initial
charge on each capacitor is 4 volts.

T 20. Find formulas for the voltages v1 and v2 for the circuit in
Example 1, assuming that R1 D 1=15 ohm, R2 D 1=3 ohm,
C1 D 9 farads, C2 D 2 farads, and the initial charge on each
capacitor is 3 volts.

T 21. Find formulas for the current iL and the voltage vC for the
circuit in Example 3, assuming that R1 D 1 ohm, R2 D :125

ohm, C D :2 farad, L D :125 henry, the initial current is
0 amp, and the initial voltage is 15 volts.

T 22. The circuit in the figure is described by the equation"
i 0L

v0C

#
D

"
0 1=L

�1=C �1=.RC /

#"
iL

vC

#

where iL is the current through the inductor L and vC is the
voltage drop across the capacitor C . Find formulas for iL and
vC when R D :5 ohm, C D 2:5 farads, L D :5 henry, the
initial current is 0 amp, and the initial voltage is 12 volts.

R

C

1

L

Solutions to Practice Problems

1. Yes, the 3 � 3 matrix is diagonalizable because it has three distinct eigenvalues.
Theorem 2 in Section 5.1 and Theorem 6 in Section 5.3 are valid when complex
scalars are used. (The proofs are essentially the same as for real scalars.)

2. The general solution has the form

x.t/ D c1

24 1

�2

1

35e�:5t
C c2

24 1C 2i

4i

2

35 e.:2C:3i/t
C c3

24 1 � 2i

�4i

2

35 e.:2�:3i/t

The scalars c1, c2, and c3 here can be any complex numbers. The first term in x.t/

is real, provided c1 is real. Two more real solutions can be produced using the real
and imaginary parts of the second term in x.t/:24 1C 2i

4i

2

35 e:2t .cos :3t C i sin :3t/

The general real solution has the following form, with real scalars c1, c2, and c3:

c1

24 1

�2

1

35e�:5t
C c2

24 cos :3t � 2 sin :3t

�4 sin :3t

2 cos :3t

35 e:2t
C c3

24 sin :3t C 2 cos :3t

4 cos :3t

2 sin :3t

35 e:2t
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3. Any solution with c2 D c3 D 0 is attracted to the origin because of the negative
exponential factor. Other solutions have components that grow without bound, and
the trajectories spiral outward.
Be careful not to mistake this problem for one in Section 5.6. There the condition

for attraction toward 0 was that an eigenvalue be less than 1 in magnitude, to make
j�jk ! 0. Here the real part of the eigenvalue must be negative, to make e�t ! 0.

5.8 Iterative Estimates for Eigenvalues
In scientific applications of linear algebra, eigenvalues are seldom known precisely.
Fortunately, a close numerical approximation is usually quite satisfactory. In fact, some
applications require only a rough approximation to the largest eigenvalue. The first
algorithm described below can work well for this case. Also, it provides a foundation
for a more powerful method that can give fast estimates for other eigenvalues as well.

The Power Method
The power method applies to an n � nmatrixAwith a strictly dominant eigenvalue �1,
which means that �1 must be larger in absolute value than all the other eigenvalues. In
this case, the power method produces a scalar sequence that approaches �1 and a vector
sequence that approaches a corresponding eigenvector. The background for the method
rests on the eigenvector decomposition used at the beginning of Section 5.6.

Assume for simplicity that A is diagonalizable and Rn has a basis of eigenvectors
v1; : : : ; vn, arranged so their corresponding eigenvalues �1; : : : ; �n decrease in size, with
the strictly dominant eigenvalue first. That is,

j�1j > j�2j � j�3j � � � � � j�nj

Strictly larger-

(1)

As we saw in equation (2) of Section 5.6, if x in Rn is written as x D c1v1 C � � � C cnvn,
then

Akx D c1.�1/kv1 C c2.�2/kv2 C � � � C cn.�n/kvn .k D 1; 2; : : :/

Assume c1 ¤ 0. Then, dividing by .�1/k ,

1

.�1/k
Akx D c1v1 C c2

�
�2

�1

�k

v2 C � � � C cn

�
�n

�1

�k

vn .k D 1; 2; : : :/ (2)

From inequality (1), the fractions �2=�1; : : : ; �n=�1 are all less than 1 in magnitude and
so their powers go to zero. Hence

.�1/�kAkx! c1v1 as k !1 (3)

Thus, for large k, a scalar multiple of Akx determines almost the same direction as the
eigenvector c1v1. Since positive scalar multiples do not change the direction of a vector,
Akx itself points almost in the same direction as v1 or �v1, provided c1 ¤ 0.

EXAMPLE 1 Let A D

�
1:8 :8

:2 1:2

�
, v1 D

�
4

1

�
, and x D

�
�:5

1

�
. Then A has

eigenvalues 2 and 1, and the eigenspace for �1 D 2 is the line through 0 and v1. For
k D 0; : : : ; 8, compute Akx and construct the line through 0 and Akx. What happens as
k increases?



354 CHAPTER 5 Eigenvalues and Eigenvectors

SOLUTION The first three calculations are

Ax D
�

1:8 :8

:2 1:2

��
�:5

1

�
D

�
�:1

1:1

�
A2x D A.Ax/ D

�
1:8 :8

:2 1:2

��
�:1

1:1

�
D

�
:7

1:3

�
A3x D A.A2x/ D

�
1:8 :8

:2 1:2

��
:7

1:3

�
D

�
2:3

1:7

�
Analogous calculations complete Table 1.

TABLE 1 Iterates of a Vector

k 0 1 2 3 4 5 6 7 8

Akx
�
�:5

1

� �
�:1

1:1

� �
:7

1:3

� �
2:3

1:7

� �
5:5

2:5

� �
11:9

4:1

� �
24:7

7:3

� �
50:3

13:7

� �
101:5

26:5

�

The vectors x, Ax; : : : ; A4x are shown in Figure 1. The other vectors are growing
too long to display. However, line segments are drawn showing the directions of those
vectors. In fact, the directions of the vectors are what we really want to see, not the vec-
tors themselves. The lines seem to be approaching the line representing the eigenspace
spanned by v1. More precisely, the angle between the line (subspace) determined byAkx
and the line (eigenspace) determined by v1 goes to zero as k !1.

1

Eigenspace

A4x

A3x
A2x

Ax

x

10
x1

x2

v1

41

2

FIGURE 1 Directions determined by x, Ax, A2x; : : : ; A7x.

The vectors .�1/�kAkx in (3) are scaled to make them converge to c1v1, provided
c1 ¤ 0. We cannot scale Akx in this way because we do not know �1. But we can scale
each Akx to make its largest entry a 1. It turns out that the resulting sequence fxkg will
converge to a multiple of v1 whose largest entry is 1. Figure 2 shows the scaled sequence
for Example 1. The eigenvalue�1 can be estimated from the sequence fxkg, too.When xk

Eigenspace

A3x

A2x
Ax
x1 x2 x3

x4

x1

x2

41

Multiple of v1

1

2

x 5 x0

FIGURE 2 Scaled multiples of x, Ax, A2x; : : : ; A7x.
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is close to an eigenvector for �1, the vector Axk is close to �1xk , with each entry in Axk

approximately �1 times the corresponding entry in xk . Because the largest entry in xk is
1, the largest entry inAxk is close to �1. (Careful proofs of these statements are omitted.)

THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT
EIGENVALUE

1. Select an initial vector x0 whose largest entry is 1.

2. For k D 0; 1; : : : ;

a. Compute Axk .

b. Let �k be an entry in Axk whose absolute value is as large as possible.

c. Compute xkC1 D .1=�k/Axk .

3. For almost all choices of x0, the sequence f�kg approaches the dominant
eigenvalue, and the sequence fxkg approaches a corresponding eigenvector.

EXAMPLE 2 Apply the power method to A D

�
6 5

1 2

�
with x0 D

�
0

1

�
. Stop

when k D 5, and estimate the dominant eigenvalue and a corresponding eigenvector
of A.

SOLUTION Calculations in this example and the next were made with MATLAB,
which computes with 16-digit accuracy, although we show only a few significant figures
here. To begin, compute Ax0 and identify the largest entry �0 in Ax0:

Ax0 D

�
6 5

1 2

��
0

1

�
D

�
5

2

�
; �0 D 5

Scale Ax0 by 1=�0 to get x1, compute Ax1, and identify the largest entry in Ax1:

x1 D
1

�0

Ax0 D
1

5

�
5

2

�
D

�
1

:4

�
Ax1 D

�
6 5

1 2

��
1

:4

�
D

�
8

1:8

�
; �1 D 8

Scale Ax1 by 1=�1 to get x2, compute Ax2, and identify the largest entry in Ax2:

x2 D
1

�1

Ax1 D
1

8

�
8

1:8

�
D

�
1

:225

�
Ax2 D

�
6 5

1 2

� �
1

:225

�
D

�
7:125

1:450

�
; �2 D 7:125

Scale Ax2 by 1=�2 to get x3, and so on. The results of MATLAB calculations for the
first five iterations are arranged in Table 2.

TABLE 2 The Power Method for Example 2

k 0 1 2 3 4 5

xk

�
0

1

� �
1

:4

� �
1

:225

� �
1

:2035

� �
1

:2005

� �
1

:20007

�
Axk

�
5

2

� �
8

1:8

� �
7:125

1:450

� �
7:0175

1:4070

� �
7:0025

1:4010

� �
7:00036

1:40014

�
�k 5 8 7.125 7.0175 7.0025 7.00036
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The evidence from Table 2 strongly suggests that fxkg approaches .1; :2/ and f�kg

approaches 7. If so, then .1; :2/ is an eigenvector and 7 is the dominant eigenvalue. This
is easily verified by computing

A

�
1

:2

�
D

�
6 5

1 2

��
1

:2

�
D

�
7

1:4

�
D 7

�
1

:2

�
The sequence f�kg in Example 2 converged quickly to �1 D 7 because the second

eigenvalue of A was much smaller. (In fact, �2 D 1.) In general, the rate of convergence
depends on the ratio j�2=�1j, because the vector c2.�2=�1/kv2 in equation (2) is the main
source of error when using a scaled version of Akx as an estimate of c1v1. (The other
fractions �j =�1 are likely to be smaller.) If j�2=�1j is close to 1, then f�kg and fxkg can
converge very slowly, and other approximation methods may be preferred.

With the power method, there is a slight chance that the chosen initial vector x will
have no component in the v1 direction (when c1 D 0). But computer rounding errors dur-
ing the calculations of the xk are likely to create a vector with at least a small component
in the direction of v1. If that occurs, the xk will start to converge to a multiple of v1.

The Inverse Power Method
This method provides an approximation for any eigenvalue, provided a good initial
estimate ˛ of the eigenvalue � is known. In this case, we let B D .A � ˛I /�1 and apply
the power method to B . It can be shown that if the eigenvalues of A are �1; : : : ; �n, then
the eigenvalues of B are

1

�1 � ˛
;

1

�2 � ˛
; : : : ;

1

�n � ˛

and the corresponding eigenvectors are the same as those for A. (See Exercises 15
and 16.)

Suppose, for example, that ˛ is closer to �2 than to the other eigenvalues ofA. Then
1=.�2 � ˛/ will be a strictly dominant eigenvalue of B . If ˛ is really close to �2, then
1=.�2 � ˛/ ismuch larger than the other eigenvalues ofB , and the inverse power method
produces a very rapid approximation to �2 for almost all choices of x0. The following
algorithm gives the details.

THE INVERSE POWER METHOD FOR ESTIMATING AN EIGENVALUE
� OF A
1. Select an initial estimate ˛ sufficiently close to �.

2. Select an initial vector x0 whose largest entry is 1.

3. For k D 0; 1; : : : ;

a. Solve .A � ˛I /yk D xk for yk .

b. Let �k be an entry in yk with the largest absolute value.

c. Compute �k D ˛ C .1=�k/.

d. Compute xkC1 D .1=�k/yk .

4. For almost all choices of x0, the sequence f�kg approaches the eigenvalue �

of A, and the sequence fxkg approaches a corresponding eigenvector.

Notice that B , or rather .A � ˛I /�1, does not appear in the algorithm. Instead of
computing .A � ˛I /�1xk to get the next vector in the sequence, it is better to solve
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the equation .A � ˛I /yk D xk for yk (and then scale yk to produce xkC1/. Since this
equation for yk must be solved for each k, an LU factorization of A � ˛I will speed up
the process.

EXAMPLE 3 It is not uncommon in some applications to need to know the smallest
eigenvalue of a matrixA and to have at hand rough estimates of the eigenvalues. Suppose
21, 3.3, and 1.9 are estimates for the eigenvalues of the matrixA below. Find the smallest
eigenvalue, accurate to six decimal places.

A D

24 10 �8 �4

�8 13 4

�4 5 4

35
SOLUTION The two smallest eigenvalues seem close together, so we use the inverse
power method for A � 1:9I . Results of a MATLAB calculation are shown in Table 3.
Here x0 was chosen arbitrarily, yk D .A � 1:9I /�1xk , �k is the largest entry in yk ,
�k D 1:9C 1=�k , and xkC1 D .1=�k/yk . As it turns out, the initial eigenvalue estimate
was fairly good, and the inverse power sequence converged quickly. The smallest
eigenvalue is exactly 2.

TABLE 3 The Inverse Power Method

k 0 1 2 3 4

xk

24 1

1

1

35 24 :5736

:0646

1

35 24 :5054

:0045

1

35 24 :5004

:0003

1

35 24 :50003

:00002

1

35
yk

24 4:45

:50

7:76

35 24 5:0131

:0442

9:9197

35 24 5:0012

:0031

9:9949

35 24 5:0001

:0002

9:9996

35 24 5:000006

:000015

9:999975

35
�k 7.76 9.9197 9.9949 9.9996 9.999975

�k 2.03 2.0008 2.00005 2.000004 2.0000002

If an estimate for the smallest eigenvalue of a matrix is not available, one can simply
take ˛ D 0 in the inverse power method. This choice of ˛ works reasonably well if the
smallest eigenvalue is much closer to zero than to the other eigenvalues.

The two algorithms presented in this section are practical tools for many simple
situations, and they provide an introduction to the problem of eigenvalue estimation.
A more robust and widely used iterative method is the QR algorithm. For instance, it
is the heart of the MATLAB command eig(A), which rapidly computes eigenvalues
and eigenvectors of A. A brief description of the QR algorithm was given in the exer-
cises for Section 5.2. Further details are presented in most modern numerical analysis
texts.

Practice Problem

How can you tell if a given vector x is a good approximation to an eigenvector of a
matrix A? If it is, how would you estimate the corresponding eigenvalue? Experiment
with

A D

24 5 8 4

8 3 �1

4 �1 2

35 and x D

24 1:0

�4:3

8:1

35
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5.8 Exercises
In Exercises 1–4, the matrix A is followed by a sequence fxkg

produced by the power method. Use these data to estimate the
largest eigenvalue of A, and give a corresponding eigenvector.

1. A D

�
5 4

1 2

�
;�

1

0

�
;

�
1

:2

�
;

�
1

:2414

�
;

�
1

:2486

�
;

�
1

:2498

�
2. A D

�
1:8 �:8

�3:2 4:2

�
;�

1

0

�
;

�
�:5625

1

�
;

�
�:3021

1

�
;

�
�:2601

1

�
;

�
�:2520

1

�
3. A D

�
:5 :2

:4 :7

�
;�

1

0

�
;

�
1

:8

�
;

�
:6875

1

�
;

�
:5577

1

�
;

�
:5188

1

�
4. A D

�
4:1 �6

3 �4:4

�
;�

1

1

�
;

�
1

:7368

�
;

�
1

:7541

�
;

�
1

:7490

�
;

�
1

:7502

�
5. Let A D

�
15 16

�20 �21

�
. The vectors x; : : : ; A5x are

�
1

1

�
,�

31

�41

�
;

�
�191

241

�
;

�
991

�1241

�
;

�
�4991

6241

�
;

�
24991

�31241

�
:

Find a vector with a 1 in the second entry that is close to
an eigenvector of A. Use four decimal places. Check your
estimate, and give an estimate for the dominant eigenvalue
of A.

6. LetA D
�
�3 �4

8 9

�
. Repeat Exercise 5, using the following

sequence x, Ax; : : : ; A5x.

�
1

1

�
;

�
�7

17

�
;

�
�47

97

�
;

�
�247

497

�
;

�
�1247

2497

�
;

�
�6247

12497

�
Exercises 7–12 require MATLAB or other computational aid. In
Exercises 7 and 8, use the power method with the x0 given. List
fxkg and f�kg for k D 1; : : : ; 5. In Exercises 9 and 10, list �5

and �6.

T 7. A D

�
6 7

8 5

�
, x0 D

�
1

0

�
T 8. A D

�
2 1

4 5

�
, x0 D

�
1

0

�

T 9. A D

24 8 0 12

1 �2 1

0 3 0

35, x0 D

24 1

0

0

35

T 10. A D

24 1 2 �2

1 1 9

0 1 9

35, x0 D

24 1

0

0

35
Another estimate can be made for an eigenvalue when an ap-
proximate eigenvector is available. Observe that if Ax D �x, then
xTAx D xT .�x/ D �.xT x/, and the Rayleigh quotient

R.x/ D
xTAx
xT x

equals �. If x is close to an eigenvector for �, then this quotient is
close to �. WhenA is a symmetric matrix .AT D A/, the Rayleigh
quotient R.xk/ D .xT

k Axk/=.xT
k xk/ will have roughly twice as

many digits of accuracy as the scaling factor �k in the power
method. Verify this increased accuracy in Exercises 11 and 12 by
computing �k and R.xk/ for k D 1; : : : ; 4.

T 11. A D

�
5 2

2 2

�
, x0 D

�
1

0

�
T 12. A D

�
�3 2

2 0

�
, x0 D

�
1

0

�
Exercises 13 and 14 apply to a 3 � 3 matrix A whose eigenvalues
are estimated to be 4, �4, and 3.

13. If the eigenvalues close to 4 and �4 are known to have
different absolute values, will the power method work? Is it
likely to be useful?

14. Suppose the eigenvalues close to 4 and�4 are known to have
exactly the same absolute value. Describe how one might
obtain a sequence that estimates the eigenvalue close to 4.

15. Suppose Ax D �x with x ¤ 0. Let ˛ be a scalar different
from the eigenvalues ofA, and letB D .A � ˛I /�1. Subtract
˛x from both sides of the equation Ax D �x, and use algebra
to show that 1=.� � ˛/ is an eigenvalue of B , with x a
corresponding eigenvector.

16. Suppose � is an eigenvalue of the B in Exercise 15, and that
x is a corresponding eigenvector, so that .A � ˛I /�1x D �x.
Use this equation to find an eigenvalue ofA in terms of� and
˛. [Note: � ¤ 0 because B is invertible.]

T 17. Use the inverse power method to estimate the middle eigen-
value of the A in Example 3, with accuracy to four decimal
places. Set x0 D .1; 0; 0/.

T 18. Let A be as in Exercise 9. Use the inverse power method with
x0 D .1; 0; 0/ to estimate the eigenvalue ofA near ˛ D �1:4,
with an accuracy to four decimal places.

In Exercises 19 and 20, find (a) the largest eigenvalue and (b)
the eigenvalue closest to zero. In each case, set x0 D .1; 0; 0; 0/

and carry out approximations until the approximating sequence
seems accurate to four decimal places. Include the approximate
eigenvector.
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19. A D

2664
10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

3775

20. A D

2664
1 2 3 2

2 12 13 11

�2 3 0 2

4 5 7 2

3775
21. A common misconception is that if A has a strictly dominant

eigenvalue, then, for any sufficiently large value of k, the

vectorAkx is approximately equal to an eigenvector ofA. For
the three matrices below, study what happens to Akx when
x D .:5; :5/, and try to draw general conclusions (for a 2 � 2

matrix).

a. A D

�
:8 0

0 :2

�
b. A D

�
1 0

0 :8

�
c. A D

�
8 0

0 2

�

Solution to Practice Problem

For the given A and x,

Ax D

24 5 8 4

8 3 �1

4 �1 2

3524 1:00

�4:30

8:10

35 D 24 3:00

�13:00

24:50

35
IfAx is nearly a multiple of x, then the ratios of corresponding entries in the two vectors
should be nearly constant. So compute:

fentry in Axg � fentry in xg D fratiog
3:00 1:00 3:000

�13:00 �4:30 3:023

24:50 8:10 3:025

Each entry in Ax is about 3 times the corresponding entry in x, so x is close to an
eigenvector. Any of the ratios above is an estimate for the eigenvalue. (To five decimal
places, the eigenvalue is 3.02409.)

5.9 Applications to Markov Chains
The Markov chains described in this section are used as mathematical models of a
wide variety of situations in biology, business, chemistry, engineering, physics, and
elsewhere. In each case, the model is used to describe an experiment or measurement
that is performed many times in the same way, where the outcome of each trial of the
experiment will be one of several specified possible outcomes, and where the outcome
of one trial depends only on the immediately preceding trial.

For example, if the population of a city and its suburbs were measured each year,
then a vector such as

x0 D

�
:60

:40

�
(1)

could indicate that 60% of the population lives in the city and 40% in the suburbs. The
decimals in x0 add up to 1 because they account for the entire population of the region.
Percentages are more convenient for our purposes here than population totals.
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DEFINITION A vector with nonnegative entries that add up to 1 is called a probability vector.
A stochastic matrix is a square matrix whose columns are probability vectors.

AMarkov chain is a sequence of probability vectors x0; x1; x2; : : :, together with a
stochastic matrix P , such that

x1 D P x0; x2 D P x1; x3 D P x2; : : :

Thus the Markov chain is described by the first-order difference equation

xkC1 D P xk for k D 0; 1; 2; : : :

When a Markov chain of vectors in Rn describes a system or a sequence of
experiments, the entries in xk list, respectively, the probabilities that the system is in
each of n possible states, or the probabilities that the outcome of the experiment is one
of n possible outcomes. For this reason, xk is often called a state vector.

EXAMPLE 1 Section 1.10 examined a model for population movement between a
city and its suburbs. See Figure 1. The annual migration between these two parts of the
metropolitan region was governed by the migration matrix M :

From
City Suburbs To

MD

�
:95

:05

:03

:97

�
City
Suburbs

That is, each year 5% of the city populationmoves to the suburbs, and 3%of the suburban
population moves to the city. The columns of M are probability vectors, so M is a
stochastic matrix. Suppose the 2020 population of the region is 600,000 in the city and
400,000 in the suburbs. Then the initial distribution of the population in the region is
given previously by x0 in (1). What is the distribution of the population in 2021? In
2022?

.03

.05

.95 .97

City Suburbs

FIGURE 1 Annual percentage migration between city and suburbs.

SOLUTION In Example 3 of Section 1.10, we saw that after one year, the population

vector
�

600;000

400;000

�
changed to

�
:95 :03

:05 :97

��
600;000

400;000

�
D

�
582;000

418;000

�



5.9 Applications to Markov Chains 361

If we divide both sides of this equation by the total population of 1 million, and use the
fact that kMx DM.kx/, we find that�

:95 :03

:05 :97

��
:600

:400

�
D

�
:582

:418

�
The vector x1 D

�
:582

:418

�
gives the population distribution in 2021. That is, 58.2% of

the region lived in the city and 41.8% lived in the suburbs. Similarly, the population
distribution in 2022 is described by a vector x2, where

x2 DMx1 D

�
:95 :03

:05 :97

��
:582

:418

�
D

�
:565

:435

�

EXAMPLE 2 Suppose the voting results of a congressional election at a certain
voting precinct are represented by a vector x in R3:

x D

24% voting Democratic (D)
% voting Republican (R)
% voting Other (O)

35
Suppose we record the outcome of the congressional election every two years by a vector
of this type and the outcome of one election depends only on the results of the preceding
election. Then the sequence of vectors that describe the votes every two years may be a
Markov chain. As an example of a stochastic matrix P for this chain, we take

From
D R O To

P D

24 :70

:20

:10

:10

:80

:10

:30

:30

:40

35 D
R
O

The entries in the first column, labeled D, describe what the persons voting Democratic
in one election will do in the next election. Here we have supposed that 70% will vote D
again in the next election, 20% will vote R, and 10% will vote O. Similar interpretations
hold for the other columns of P . A diagram for this matrix is shown in Figure 2.

Democratic
vote

Republican
vote

Other
vote

.30 .30

.20

.80.70

.40

.10.10

.10

FIGURE 2 Voting changes from one election to the next.
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If the “transition” percentages remain constant over many years from one election
to the next, then the sequence of vectors that give the voting outcomes forms a Markov
chain. Suppose the outcome of one election is given by

x0 D

24 :55

:40

:05

35
Determine the likely outcome of the next election and the likely outcome of the election
after that.

SOLUTION The outcome of the next election is described by the state vector x1 and
that of the election after that by x2, where

x1 D P x0 D

24 :70 :10 :30

:20 :80 :30

:10 :10 :40

3524 :55

:40

:05

35 D 24 :440

:445

:115

35 44% will vote D.
44.5% will vote R.
11.5% will vote O.

x2 D P x1 D

24 :70 :10 :30

:20 :80 :30

:10 :10 :40

3524 :440

:445

:115

35 D 24 :3870

:4785

:1345

35 38.7% will vote D.
47.9% will vote R.
13.5% will vote O.

To understand why x1 does indeed give the outcome of the next election, suppose 1000
persons voted in the “first” election, with 550 voting D, 400 voting R, and 50 voting O.
(See the percentages in x0.) In the next election, 70% of the 550 will vote D again, 10%
of the 400 will switch from R to D, and 30% of the 50 will switch from O to D. Thus
the total D vote will be

:70.550/C :10.400/C :30.50/ D 385C 40C 15 D 440 (2)

Thus 44% of the vote next time will be for the D candidate. The calculation in (2) is
essentially the same as that used to compute the first entry in x1. Analogous calculations
could be made for the other entries in x1, for the entries in x2, and so on.

Predicting the Distant Future
The most interesting aspect of Markov chains is the study of a chain’s long-term
behavior. For instance, what can be said in Example 2 about the voting after many
elections have passed (assuming that the given stochastic matrix continues to describe
the transition percentages from one election to the next)? Or, what happens to the
population distribution in Example 1 “in the long run”? Here our work on eigenvalues
and eigenvectors becomes helpful.

THEOREM 10 Stochastic Matrices

If P is a stochastic matrix, then 1 is an eigenvalue of P .

PROOF Since the columns of P sum to 1, the rows of P T will also sum to 1. Let e
represent the vector for which every entry is 1. Notice that multiplying P T by e has
the effect of adding up the values in each row, hence P T e D e, establishing that e is
an eigenvector of P T with eigenvalue 1. Since P and P T have the same eigenvalues
(Exercise 20 in Section 5.2), 1 is also an eigenvalue of P .
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In the next example, we see that the vectors generated in a Markov chain are almost
the same as the vectors generated using the power method outlined in Section 5.8 – the
only difference is that in a Markov chain, the vectors are not scaled at each step. Based
on our experience from Section 5.8, as k increases we expect xk ! q, where q is an
eigenvector of P .

EXAMPLE 3 Let P D

24 :5 :2 :3

:3 :8 :3

:2 0 :4

35 and x0 D

24 1

0

0

35. Consider a system whose

state is described by the Markov chain xkC1 D P xk , for k D 0; 1; : : : What happens to
the system as time passes? Compute the state vectors x1; : : : ; x15 to find out.

SOLUTION

x1 D P x0 D

24 :5 :2 :3

:3 :8 :3

:2 0 :4

3524 1

0

0

35 D 24 :5

:3

:2

35
x2 D P x1 D

24 :5 :2 :3

:3 :8 :3

:2 0 :4

3524 :5

:3

:2

35 D 24 :37

:45

:18

35
x3 D P x2 D

24 :5 :2 :3

:3 :8 :3

:2 0 :4

3524 :37

:45

:18

35 D 24 :329

:525

:146

35
The results of further calculations are shown below, with entries rounded to four or five
significant figures.

x4 D

24 :3133

:5625

:1242

35; x5 D

24 :3064

:5813

:1123

35; x6 D

24 :3032

:5906

:1062

35; x7 D

24 :3016

:5953

:1031

35
x8 D

24 :3008

:5977

:1016

35; x9 D

24 :3004

:5988

:1008

35; x10 D

24 :3002

:5994

:1004

35; x11 D

24 :3001

:5997

:1002

35
x12 D

24 :30005

:59985

:10010

35; x13 D

24 :30002

:59993

:10005

35; x14 D

24 :30001

:59996

:10002

35; x15 D

24 :30001

:59998

:10001

35

These vectors seem to be approaching q D

24 :3

:6

:1

35. The probabilities are hardly changing
from one value of k to the next. Observe that the following calculation is exact (with no
rounding error):

Pq D

24 :5 :2 :3

:3 :8 :3

:2 0 :4

3524 :3

:6

:1

35 D
264 :15 C :12 C :03

:09 C :48 C :03

:06 C 0 C :04

375 D
24 :30

:60

:10

35 D q

When the system is in state q, there is no change in the system from one measurement
to the next.
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Steady-State Vectors
If P is a stochastic matrix, then a steady-state vector (or equilibrium vector) for P is
a probability vector q such that

Pq D q

In Theorem 10, it is established that 1 is an eigenvalue of any stochastic matrix. It can be
shown that 1 is actually the largest eigenvalue of a stochastic matrix and the associated
eigenvector can be chosen to be a steady-state vector. In Example 3, q is a steady-state
vector for P .

EXAMPLE 4 The probability vector q D
�

:375

:625

�
is a steady-state vector for the

population migration matrix M in Example 1, because

Mq D
�

:95 :03

:05 :97

��
:375

:625

�
D

�
:35625C :01875

:01875C :60625

�
D

�
:375

:625

�
D q

If the total population of the metropolitan region in Example 1 is 1 million,
then q from Example 4 would correspond to having 375,000 persons in the city and
625,000 in the suburbs. At the end of one year, the migration out of the city would
be .:05/.375;000/ D 18;750 persons, and the migration into the city from the suburbs
would be .:03/.625;000/ D 18;750 persons. As a result, the population in the city would
remain the same. Similarly, the suburban population would be stable.

The next example shows how to find a steady-state vector. Notice that we are just
finding an eigenvector associated with the eigenvalue 1 and then scaling it to create a
probability vector.

EXAMPLE 5 Let P D

�
:6 :3

:4 :7

�
. Find a steady-state vector for P .

SOLUTION First, solve the equation P x D x.

P x � x D 0

P x � Ix D 0 Recall from Section 1.4 that Ix D x.

.P � I /x D 0

For P as above,

P � I D

�
:6 :3

:4 :7

�
�

�
1 0

0 1

�
D

�
�:4 :3

:4 �:3

�
To find all solutions of .P � I /x D 0, row reduce the augmented matrix:�

�:4 :3 0

:4 �:3 0

�
�

�
�:4 :3 0

0 0 0

�
�

�
1 �3=4 0

0 0 0

�
Then x1 D

3
4
x2 and x2 is free. The general solution is x2

�
3=4

1

�
.

Next, choose a simple basis for the solution space. One obvious choice is
�

3=4

1

�
but a better choice with no fractions is w D

�
3

4

�
(corresponding to x2 D 4/.
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Finally, find a probability vector in the set of all solutions of P x D x. This process
is easy, since every solution is a multiple of the solution w. Divide w by the sum of its
entries and obtain

q D
�

3=7

4=7

�
As a check, compute

Pq D
�

6=10 3=10

4=10 7=10

��
3=7

4=7

�
D

�
18=70C 12=70

12=70C 28=70

�
D

�
30=70

40=70

�
D q

The next theorem shows that what happened in Example 3 is typical of many
stochastic matrices. We say that a stochastic matrix is regular if some matrix power
P k contains only strictly positive entries. For P in Example 3,

P 2
D

24 :37 :26 :33

:45 :70 :45

:18 :04 :22

35
Since every entry in P 2 is strictly positive, P is a regular stochastic matrix.

Also, we say that a sequence of vectors, xk for k D 1; 2; : : : ; converges to a vector
q as k !1, if the entries in xk can be made as close as desired to the corresponding
entries in q by taking k sufficiently large.

THEOREM 11 If P is an n � n regular stochastic matrix, then P has a unique steady-state vector
q. Further, if x0 is any initial state and xkC1 D P xk for k D 0; 1; 2; : : : ; then the
Markov chain fxkg converges to q as k !1.

This theorem is proved in standard texts on Markov chains. The amazing part of the
theorem is that the initial state has no effect on the long-term behavior of the Markov
chain.

EXAMPLE 6 In Example 2, what percentage of the voters are likely to vote for the
Republican candidate in some election many years from now, assuming that the election
outcomes form a Markov chain?

SOLUTION If you want to compute the precise entries of the steady-state vector by
hand, it is better to recognize that it is an eigenvector with eigenvalue 1 rather than to
pick some initial vector x0 and compute x1; : : : ; xk for some large value of k. You have
no way of knowing howmany vectors to compute, and you cannot be sure of the limiting
values of the entries in xk .

A better approach is to compute the steady-state vector and then appeal to Theo-
rem 11. Given P as in Example 2, form P � I by subtracting 1 from each diagonal
entry in P . Then row reduce the augmented matrix:

Œ .P � I / 0 � D

24�:3 :1 :3 0

:2 �:2 :3 0

:1 :1 �:6 0

35
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Recall from earlier work with decimals that the arithmetic is simplified by multi-
plying each row by 10.124�3 1 3 0

2 �2 3 0

1 1 �6 0

35 � 24 1 0 �9=4 0

0 1 �15=4 0

0 0 0 0

35
The general solution of .P � I /x D 0 is x1 D

9
4
x3; x2 D

15
4

x3, and x3 is free. Choosing
x3 D 4, we obtain a basis for the solution space whose entries are integers, and from this
we easily find the steady-state vector whose entries sum to 1:

w D

24 9

15

4

35; and q D

24 9=28

15=28

4=28

35 � 24 :32

:54

:14

35
The entries in q describe the distribution of votes at an election to be held many years
from now (assuming the stochastic matrix continues to describe the changes from one
election to the next). Thus, eventually, about 54% of the vote will be for the Republican
candidate.

Numerical Notes

You may have noticed that if xkC1 D P xk for k D 0; 1; : : : ; then

x2 D P x1 D P.P x0/ D P 2x0;

and, in general,
xk D P kx0 for k D 0; 1; : : :

To compute a specific vector such as x3, fewer arithmetic operations are needed
to compute x1, x2, and x3, rather than P 3 and P 3x0. However, if P is small—say,
30 � 30—the machine computation time is insignificant for both methods, and a
command to compute P 3x0 might be preferred because it requires fewer human
keystrokes.

Practice Problems

1. Suppose the residents of a metropolitan region move according to the probabilities
in the migration matrix M in Example 1 and a resident is chosen “at random.” Then
a state vector for a certain year may be interpreted as giving the probabilities that
the person is a city resident or a suburban resident at that time.

a. Suppose the person chosen is a city resident now, so that x0 D

�
1

0

�
. What is the

likelihood that the person will live in the suburbs next year?

b. What is the likelihood that the person will be living in the suburbs in two years?

2. Let P D

�
:6 :2

:4 :8

�
and q D

�
:3

:7

�
. Is q a steady-state vector for P ?

3. What percentage of the population in Example 1 will live in the suburbs after many
years?

1 Warning: Don’t multiply only P by 10. Instead multiply the augmented matrix for equation .P � I /x D 0
by 10.
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5.9 Exercises
1. A small remote village receives radio broadcasts from two

radio stations, a news station and a music station. Of the
listeners who are tuned to the news station, 70% will remain
listening to the news after the station break that occurs each
half hour, while 30% will switch to the music station at the
station break. Of the listeners who are tuned to the music
station, 60% will switch to the news station at the station
break, while 40% will remain listening to the music. Suppose
everyone is listening to the news at 8:15 A.M.

a. Give the stochastic matrix that describes how the radio
listeners tend to change stations at each station break.
Label the rows and columns.

b. Give the initial state vector.

c. What percentage of the listeners will be listening to the
music station at 9:25 A.M. (after the station breaks at 8:30
and 9:00 A.M.)?

2. A laboratory animal may eat any one of three foods each day.
Laboratory records show that if the animal chooses one food
on one trial, it will choose the same food on the next trial with
a probability of 50%, and it will choose the other foods on the
next trial with equal probabilities of 25%.

a. What is the stochastic matrix for this situation?

b. If the animal chooses food #1 on an initial trial, what is
the probability that it will choose food #2 on the second
trial after the initial trial?

3. On any given day, a student is either healthy or ill. Of the
students who are healthy today, 95% will be healthy tomor-
row. Of the students who are ill today, 55% will still be ill
tomorrow.

a. What is the stochastic matrix for this situation?

b. Suppose 20% of the students are ill on Monday. What
fraction or percentage of the students are likely to be ill
on Tuesday? On Wednesday?

c. If a student is well today, what is the probability that he
or she will be well two days from now?

4. The weather in Edinburgh is either good, indifferent, or bad
on any given day. If the weather is good today, there is
a 50% chance the weather will be good tomorrow, a 30%
chance the weather will be indifferent, and a 20% chance the
weather will be bad. If the weather is indifferent today, it will
be good tomorrow with probability .20 and indifferent with
probability .70. Finally, if the weather is bad today, it will
be good tomorrow with probability .10 and indifferent with
probability .30.

a. What is the stochastic matrix for this situation?

b. Suppose there is a 30% chance of bad weather today and a
70% chance of indifferent weather. What are the chances
of good weather tomorrow?

c. Suppose the predicted weather for Friday is 50% indiffer-
ent weather and 50% good weather. What are the chances
for bad weather on Sunday?

In Exercises 5–8, find the steady-state vector.

5.
�

:1 :6

:9 :4

�
6.

�
:8 :5

:2 :5

�

7.

24 :7 :1 :1

:2 :8 :2

:1 :1 :7

35 8.

24 :7 :2 :2

0 :2 :4

:3 :6 :4

35
9. Determine if P D

�
:7 0

:3 1

�
is a regular stochastic matrix.

10. Determine if P D

�
0 :7

1 :3

�
is a regular stochastic matrix.

11. a. Find the steady-state vector for the Markov chain in
Exercise 1.

b. At some time late in the day, what fraction of the listeners
will be listening to the news?

12. Refer to Exercise 2. Which food will the animal prefer after
many trials?

13. a. Find the steady-state vector for the Markov chain in
Exercise 3.

b. What is the probability that after many days a specific
student is ill? Does it matter if that person is ill today?

14. Refer to Exercise 4. In the long run, how likely is it for the
weather in Edinburgh to be good on a given day?

In Exercises 15–20, P is an n � n stochastic matrix. Mark each
statement True or False (T/F). Justify each answer.

15. (T/F) The steady state vector is an eigenvector of P .

16. (T/F) Every eigenvector of P is a steady state vector.

17. (T/F) The all ones vector is an eigenvector of P T .

18. (T/F) The number 2 can be an eigenvalue of a stochastic
matrix.

19. (T/F) The number 1/2 can be an eigenvalue of a stochastic
matrix.

20. (T/F) All stochastic matrices are regular.

21. Is q D
�
:6

:8

�
a steady state vector for A D

�
:2 :6

:8 :4

�
? Justify

your answer.
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22. Is q D
�

:4

:4

�
a steady state vector for A D

�
:2 :8

:8 :2

�
? Jus-

tify your answer.

23. Is q D
�
:6

:4

�
a steady state vector for A D

�
:4 :6

:6 :4

�
? Justify

your answer.

24. Is q D
�
3=7

4=7

�
a steady state vector forA D

�
:2 :6

:8 :4

�
? Justify

your answer.

T 25. Suppose the following matrix describes the likelihood that
an individual will switch between an iOS and an Android
smartphone:

From To
iOS Android�

:70 :15

:30 :85

�
iOS
Android

In the long run, what percentage of smartphone owners would
you expect to have an Android operating system?

T 26. In Rome, Europcar Rent A Car has a fleet of about 2500
cars. The pattern of rental and return locations is given by
the fractions in the table below. On a typical day, about how
many cars will be rented or ready to rent from the Fiumicino
Airport?

Cars Rented from:
Ciampino Railway Fiumicino
Airport Station Airport Returned to24:90

:02

:08

:02

:90

:08

:08

:02

:90

35 Ciampino Airport
Railway Station
Fiumicino Airport

27. Let P be an n � n stochastic matrix. The following argument
shows that the equation P x D x has a nontrivial solution. (In
fact, a steady-state solution exists with nonnegative entries. A
proof is given in some advanced texts.) Justify each assertion
below. (Mention a theorem when appropriate.)

a. If all the other rows ofP � I are added to the bottom row,
the result is a row of zeros.

b. The rows of P � I are linearly dependent.

c. The dimension of the row space of P � I is less than n.

d. P � I has a nontrivial null space.

28. Show that every 2 � 2 stochastic matrix has at least one
steady-state vector. Any such matrix can be written in the

form P D

�
1 � ˛ ˇ

˛ 1 � ˇ

�
, where ˛ and ˇ are constants

between 0 and 1. (There are two linearly independent steady-
state vectors if ˛ D ˇ D 0. Otherwise, there is only one.)

29. Let S be the 1 � n row matrix with a 1 in each column,

S D Œ 1 1 � � � 1 �

a. Explain why a vector x in Rn is a probability vector if and
only if its entries are nonnegative and Sx D 1. (A 1 � 1

matrix such as the product Sx is usually written without
the matrix bracket symbols.)

b. Let P be an n � n stochastic matrix. Explain why
SP D S .

c. Let P be an n � n stochastic matrix, and let x be a
probability vector. Show that P x is also a probability
vector.

30. Use Exercise 29 to show that if P is an n � n stochastic
matrix, then so is P 2.

T 31. Examine powers of a regular stochastic matrix.

a. Compute P k for k D 2; 3; 4; 5, when

P D

2664
:3355 :3682 :3067 :0389

:2663 :2723 :3277 :5451

:1935 :1502 :1589 :2395

:2047 :2093 :2067 :1765

3775
Display calculations to four decimal places. What hap-
pens to the columns of P k as k increases? Compute the
steady-state vector for P .

b. Compute Qk for k D 10; 20; : : : ; 80, when

Q D

24 :97 :05 :10

0 :90 :05

:03 :05 :85

35
(Stability for Qk to four decimal places may require
k D 116 or more.) Compute the steady-state vector forQ.
Conjecture what might be true for any regular stochastic
matrix.

c. Use Theorem 11 to explain what you found in parts (a)
and (b).

T 32. Compare two methods for finding the steady-state vector
q of a regular stochastic matrix P : (1) computing q as in
Example 5, or (2) computing P k for some large value of k

and using one of the columns of P k as an approximation for
q. [The Study Guide describes a program nulbasis that almost
automates method (1).]

Experiment with the largest random stochastic matri-
ces your matrix program will allow, and use k D 100 or
some other large value. For each method, describe the time
you need to enter the keystrokes and run your program.
(Some versions of MATLAB have commands flops and
tic : : :toc that record the number of floating point oper-
ations and the total elapsed time MATLAB uses.) Contrast
the advantages of each method, and state which you prefer.
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Solutions to Practice Problems

1. a. Since 5% of the city residents will move to the suburbs within one year, there
is a 5% chance of choosing such a person. Without further knowledge about the
person, we say that there is a 5% chance the person will move to the suburbs.
This fact is contained in the second entry of the state vector x1, where

x1 DMx0 D

�
:95 :03

:05 :97

��
1

0

�
D

�
:95

:05

�
b. The likelihood that the person will be living in the suburbs after two years is

9.6%, because

x2 DMx1 D

�
:95 :03

:05 :97

��
:95

:05

�
D

�
:904

:096

�
2. The steady-state vector satisfies P x D x. Since

Pq D
�

:6 :2

:4 :8

��
:3

:7

�
D

�
:32

:68

�
¤ q

we conclude that q is not the steady-state vector for P .

3. M in Example 1 is a regular stochastic matrix because its entries are all strictly
positive. So we may use Theorem 11. We already know the steady-state vector from
Example 4. Thus the population distribution vectors xk converge to

q D
�

:375

:625

�
Eventually 62.5% of the population will live in the suburbs.

CHAPTER 5 PROJECTS
Chapter 5 projects are available online.

A. Power Method for Finding Eigenvalues: This project shows
how to find the eigenvector associated with the eigenvalue
corresponding to the largest eigenvalue.

B. Integration by Parts: The purpose of this project is to show
how the matrix of a linear transformation relative to a basis

B may be used to find antiderivatives usually found using
integration by parts.

C. Robotics: In this project, students are asked to find online
examples of robots that use 3D rotations to function.

D. Dynamical Systems and Markov Chains: This project ap-
plies the techniques of discrete dynamical systems to Markov
chains.

CHAPTER 5 SUPPLEMENTARY EXERCISES
Throughout these supplementary exercises, A and B represent
square matrices of appropriate sizes.

For Exercises 1–23, mark each statement as True or
False (T/F). Justify each answer.

1. (T/F) If A is invertible and 1 is an eigenvalue for A, then 1 is
also an eigenvalue of A�1.

2. (T/F) If A is row equivalent to the identity matrix I , then A

is diagonalizable.

3. (T/F) If A contains a row or column of zeros, then 0 is an
eigenvalue of A.

4. (T/F) Each eigenvalue of A is also an eigenvalue of A2.

5. (T/F) Each eigenvector of A is also an eigenvector of A2.

6. (T/F) Each eigenvector of an invertible matrix A is also an
eigenvector of A�1.

7. (T/F) Eigenvalues must be nonzero scalars.
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8. (T/F) Eigenvectors must be nonzero vectors.

9. (T/F) Two eigenvectors corresponding to the same eigen-
value are always linearly dependent.

10. (T/F) Similar matrices always have exactly the same eigen-
values.

11. (T/F) Similar matrices always have exactly the same eigen-
vectors.

12. (T/F) The sum of two eigenvectors of a matrix A is also an
eigenvector of A.

13. (T/F) The eigenvalues of an upper triangular matrix A are
exactly the nonzero entries on the diagonal of A.

14. (T/F) The matrices A and AT have the same eigenvalues,
counting multiplicities.

15. (T/F) If a 5 � 5 matrix A has fewer than 5 distinct eigenval-
ues, then A is not diagonalizable.

16. (T/F) There exists a 2 � 2 matrix that has no eigenvectors in
R2.

17. (T/F) If A is diagonalizable, then the columns of A are
linearly independent.

18. (T/F) A nonzero vector cannot correspond to two different
eigenvalues of A.

19. (T/F) A (square) matrix A is invertible if and only if there is
a coordinate system in which the transformation x 7! Ax is
represented by a diagonal matrix.

20. (T/F) If each vector ej in the standard basis for Rn is an
eigenvector of A, then A is a diagonal matrix.

21. (T/F) If A is similar to a diagonalizable matrix B , then A is
also diagonalizable.

22. (T/F) If A and B are invertible n � n matrices, then AB is
similar to BA.

23. (T/F) An n � n matrix with n linearly independent eigenvec-
tors is invertible.

24. Show that if x is an eigenvector of the matrix productAB and
Bx ¤ 0, then Bx is an eigenvector of BA.

25. Suppose x is an eigenvector of A corresponding to an eigen-
value �.

a. Show that x is an eigenvector of 5I � A. What is the
corresponding eigenvalue?

b. Show that x is an eigenvector of 5I � 3AC A2. What is
the corresponding eigenvalue?

26. Use mathematical induction to show that if � is an eigenvalue
of an n � n matrix A, with x a corresponding eigenvector,
then, for each positive integer m, �m is an eigenvalue of Am,
with x a corresponding eigenvector.

27. If p.t/ D c0 C c1t C c2t2 C � � � C cntn, define p.A/ to be
the matrix formed by replacing each power of t in p.t/ by
the corresponding power of A (with A0 D I ). That is,

p.A/ D c0I C c1AC c2A2 C � � � C cnAn

Show that if � is an eigenvalue of A, then one eigenvalue of
p.A/ is p.�/.

28. Suppose A D PDP�1, where P is 2 � 2 and

D D

�
2 0

0 7

�
.

a. Let B D 5I � 3AC A2. Show that B is diagonalizable
by finding a suitable factorization of B .

b. Given p.t/ and p.A/ as in Exercise 27, show that p.A/

is diagonalizable.

29. a. Verify teh Cayley–Hamilton theorem for A D

�
3 4

2 3

�
and B D

24 4 3 2

0 4 3

0 0 4

35.
b. Use part (a) to express A2, A3 and A�1 as linear combi-

nations of A and I .

30. a. Let A be a diagonalizable n � n matrix. Show that if the
multiplicity of an eigenvalue � is n, then A D �I .

b. Use part (a) to show that the matrixA D

24 2 0 0

1 2 0

0 1 2

35
is not diagonalizable.

31. Show that I � A is invertible when all the eigenvalues of A

are less than 1 in magnitude. [Hint: What would be true if
I � A were not invertible?]

32. Show that if A is diagonalizable, with all eigenvalues less
than 1 in magnitude, then Ak tends to the zero matrix as
k !1. [Hint: Consider Akx where x represents any one of
the columns of I .]

33. Let u be an eigenvector of A corresponding to an eigenvalue
�, and let H be the line in Rn through u and the origin.
a. Explain why H is invariant under A in the sense that Ax

is in H whenever x is in H .

b. Let K be a one-dimensional subspace of Rn that is invari-
ant under A. Explain why K contains an eigenvector of
A.

34. Let G D

�
A X

0 B

�
. Use formula for the determinant in

Section 5.2 to explain why detG D .detA/.detB/. From
this, deduce that the characteristic polynomial of G is the
product of the characteristic polynomials of A and B .

Use Exercise 34 to find the eigenvalues of the matrices in Exer-
cises 35 and 36.



Chapter 5 Supplementary Exercises 371

35. A D

24 3 �2 8

0 5 �2

0 �4 3

35

36. A D

2664
3 4 5 6

4 3 2 1

0 0 1 2

0 0 4 3

3775
37. Let J be the n � n matrix of all 1’s, and consider

A D bI C aJ ; that is,

A D

2666664
aC b a a � � � a

a aC b a � � � a

a a aC b � � � a
:::

:::
:::

: : :
:::

a a a � � � aC b

3777775
Use the results of Exercise 16 in the Supplementary Ex-
ercises for Chapter 3 to show that the eigenvalues of A

are naC b and b. What are the multiplicities of these
eigenvalues?

38. Apply the result of Exercise 15 to find the eigenvalues of the
following matrices2664
�2 7 7 7

7 �2 7 7

7 7 �2 7

7 7 7 �2

3775
266664

7 �2 �2 �2 �2

�2 7 �2 �2 �2

�2 �2 7 �2 �2

�2 �2 �2 7 �2

�2 �2 �2 �2 7

377775
39. Let A D

�
a b

c d

�
. Recall from Exercise 25 in Section 5.4

that trA (the trace of A) is the sum of the diagonal entries
in A. Show that the characteristic polynomial of A is

det.A � �I/ D �2 � .trA/�C detA

Hence, give the condition for A to have real eigenvalues.

40. Let A D

�
:4 �:3

:4 1:2

�
. Explain why Ak approaches�

�:5 �:75

1:0 1:50

�
as k !1.

Exercises 41–45 concern the polynomial

p.t/ D a0 C a1t C � � � C an�1tn�1 C tn

and an n � n matrix Cp called the companion matrix of p:

Cp D

2666664
0 1 0 � � � 0

0 0 1 0
:::

:::

0 0 0 1

�a0 �a1 �a2 � � � �an�1

3777775

41. Write the companion matrix Cp for p.t/ D a0 C a1t C t2,
then find the characteristic polynomial of Cp .

42. Let p.t/ D 2t � 3t2 C t3. Write the companion matrix for
p.t/ and use techniques from Chapter 3 to find its character-
istic polynomial and its eigenvalues.

43. Use mathematical induction to prove that for n � 2,

det.Cp � �I/ D .�1/n.a0 C a1�C � � � C an�1�n�1 C �n/

D .�1/np.�/

[Hint: Use Exercise 19 and then calculate det .Cp � �I/

expanding by cofactors down the first column.]

44. Let p.t/ D a0 C a1t C a2t2 C t3, and let � be a zero of p.

a. Write the companion matrix for p.

b. Explain why �3 D �a0 � a1� � a2�2, and show that
.1; �; �2/ is an eigenvector of the companionmatrix forp.

45. Let p be the polynomial in Exercise 44, and suppose the
equation p.t/ D 0 has distinct roots �1, �2, �3. Let V be the
Vandermonde matrix

V D

264 1 1 1

�1 �2 �3

�2
1 �2

2 �2
3

375
Use Exercise 44 and a theorem from this chapter to deduce
that V is invertible (but do not compute V �1/. Then explain
why V �1CpV is a diagonal matrix.

T 46. The MATLAB command roots(p) computes the roots of
the polynomial equationp.t/ D 0. Read aMATLABmanual,
and then describe the basic idea behind the algorithm for the
roots command.

T 47. Use a matrix program to diagonalize

A D

24�3 �2 0

14 7 �1

�6 �3 1

35
if possible. Use the eigenvalue command to create the diag-
onal matrix D. If the program has a command that produces
eigenvectors, use it to create an invertible matrix P . Then
compute AP � PD and PDP�1. Discuss your results.

T 48. Repeat Exercise 47 for A D

2664
�8 5 �2 0

�5 2 1 �2

10 �8 6 �3

3 �2 1 0

3775.
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6 Orthogonality and
Least Squares

Introductory Example

ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING
Can you tell a puppy from a kitten regardless of breed or
coloring? Of course! Both may be furry bundles of joy,
but one is clearly a feline and one is clearly a canine
to the human eye. Simple. But, as blatantly obvious
as it may seem to our trained eyes that are capable of
interpreting meaning in the pixels of an image, this turns
out to be a significant challenge for a machine. With the
advancements in artificial intelligence (AI) and machine
learning, computers are rapidly improving their capability
to identify the creature on the left in the picture above as a
puppy and the one on the right as a cat.

Many industries are now using AI technology to speed
up the process of what once took hours of mindless work,
such as post office scanners that can read bar codes and
handwriting on envelopes to sort the mail with precision
and speed. Nordstrom is using machine learning to design,
display, organize, and recommend clothing ensembles to
customers, exemplifying how even in creative aesthetic
fields machine learning can be used to interpret color and
shape patterns in pixels and organize visual possibilities
into that which our eyes register as pleasing.

When calling a service desk number, one is often
greeted by a machine that asks a series of questions and
provides suggestions. Only persistence in interacting with
this machine gets the caller through to a real person.
More and more service calls are answered by machines,
making it easier for customers’ simple questions to
be answered succinctly without waiting time and the
obnoxious jingles of hold music. Google has designed
an AI assistant that will handle making service calls for
you too—booking a restaurant or hair appointment on your
behalf.

AI and machine learning comprise developing systems
that interpret external data correctly, learn from such data,
and use that learning to achieve specific goals and tasks
through flexibility and adaptation. Often, the driving engine
behind these techniques is linear algebra. In Section 6.2,
we see a simple way to design a matrix so that matrix
multiplication can identify the correct pattern of blue and
white squares. In Sections 6.5, 6.6, and 6.8, we explore
techniques used in machine learning.

373
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In order to find an approximate solution to an inconsistent system of equations that has
no actual solution, a well-defined notion of nearness is needed. Section 6.1 introduces
the concepts of distance and orthogonality in a vector space. Sections 6.2 and 6.3 show
how orthogonality can be used to identify the point within a subspace W that is nearest
to a point y lying outside of W. By taking W to be the column space of a matrix,
Section 6.5 develops a method for producing approximate (“least-squares”) solutions
for inconsistent linear systems, an important technique in machine learning, which is
discussed in Sections 6.6 and 6.8.

Section 6.4 provides another opportunity to see orthogonal projections at work,
creating a matrix factorization widely used in numerical linear algebra. The remaining
sections examine some of the many least-squares problems that arise in applications,
including those in vector spaces more general than Rn.

6.1 Inner Product, Length, and Orthogonality
Geometric concepts of length, distance, and perpendicularity, which are well known for
R2 andR3, are defined here forRn. These concepts provide powerful geometric tools for
solving many applied problems, including the least-squares problems mentioned above.
All three notions are defined in terms of the inner product of two vectors.

The Inner Product
If u and v are vectors in Rn, then we regard u and v as n � 1 matrices. The transpose
uT is a 1 � n matrix, and the matrix product uT v is a 1 � 1 matrix, which we write as
a single real number (a scalar) without brackets. The number uT v is called the inner
product of u and v, and often it is written as u�v. This inner product, mentioned in the
exercises for Section 2.1, is also referred to as a dot product. If

u D

26664
u1

u2

:::

un

37775 and v D

26664
v1

v2

:::

vn

37775
then the inner product of u and v is

Œ u1 u2 � � � un �

26664
v1

v2

:::

vn

37775 D u1v1 C u2v2 C � � � C unvn

EXAMPLE 1 Compute u�v and v�u for u D

24 2

�5

�1

35 and v D

24 3

2

�3

35.
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SOLUTION

u�v D uT v D Œ 2 �5 �1 �

24 3

2

�3

35 D .2/.3/C .�5/.2/C .�1/.�3/ D �1

v�u D vT u D Œ 3 2 �3 �

24 2

�5

�1

35 D .3/.2/C .2/.�5/C .�3/.�1/ D �1

It is clear from the calculations in Example 1why u�v D v�u. This commutativity of
the inner product holds in general. The following properties of the inner product are eas-
ily deduced from properties of the transpose operation in Section 2.1. (See Exercises 29
and 30 at the end of this section.)

THEOREM 1 Let u, v, and w be vectors in Rn, and let c be a scalar. Then

a. u�v D v�u

b. .uC v/�w D u�wC v�w

c. .cu/�v D c.u�v/ D u�.cv/

d. u�u � 0, and u�u D 0 if and only if u D 0

Properties (b) and (c) can be combined several times to produce the following useful
rule:

.c1u1 C � � � C cpup/�w D c1.u1 �w/C � � � C cp.up �w/

The Length of a Vector
If v is in Rn, with entries v1; : : : ; vn, then the square root of v�v is defined because v�v
is nonnegative.

DEFINITION The length (or norm) of v is the nonnegative scalar kvk defined by

kvk D
p
v�v D

q
v2

1 C v2
2 C � � � C v2

n; and kvk2 D v�v

Suppose v is in R2, say, v D
�

a

b

�
. If we identify v with a geometric point in the

plane, as usual, then kvk coincides with the standard notion of the length of the line
segment from the origin to v. This follows from the Pythagorean Theorem applied to a
triangle such as the one in Figure 1.

A similar calculation with the diagonal of a rectangular box shows that the definition
of length of a vector v in R3 coincides with the usual notion of length.

|a|

|b|

x1

x2

(a, b)

!a2 1 b2

0

FIGURE 1

Interpretation of kvk as length.
For any scalar c, the length of cv is jcj times the length of v. That is,

kcvk D jcjkvk

(To see this, compute kcvk2 D .cv/� .cv/ D c2v�v D c2kvk2 and take square roots.)
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A vector whose length is 1 is called a unit vector. If we divide a nonzero vector v
by its length—that is, multiply by 1=kvk—we obtain a unit vector u because the length
of u is .1=kvk/kvk. The process of creating u from v is sometimes called normalizing
v, and we say that u is in the same direction as v.

Several examples that follow use the space-saving notation for (column) vectors.

EXAMPLE 2 Let v D .1;�2; 2; 0/. Find a unit vector u in the same direction as v.

SOLUTION First, compute the length of v:

kvk2 D v�v D .1/2
C .�2/2

C .2/2
C .0/2

D 9

kvk D
p

9 D 3

Then, multiply v by 1=kvk to obtain

u D
1

kvk
v D

1

3
v D

1

3

2664
1

�2

2

0

3775 D
2664

1=3

�2=3

2=3

0

3775
To check that kuk D 1, it suffices to show that kuk2 D 1.

kuk2 D u�u D
�

1
3

�2
C
�
�

2
3

�2
C
�

2
3

�2
C .0/2

D
1
9
C

4
9
C

4
9
C 0 D 1

EXAMPLE 3 LetW be the subspace ofR2 spanned by x D . 2
3
; 1/. Find a unit vector

z that is a basis for W .

SOLUTION W consists of all multiples of x, as in Figure 2(a). Any nonzero vector in
W is a basis for W . To simplify the calculation, “scale” x to eliminate fractions. That is,
multiply x by 3 to get

y D
�

2

3

�
Now compute kyk2 D 22 C 32 D 13, kyk D

p
13, and normalize y to get

z D
1
p

13

�
2

3

�
D

�
2=
p

13

3=
p

13

�
See Figure 2(b). Another unit vector is .�2=

p
13;�3=

p
13/.

(a)

x1

x2

x

W

1

1

(b)

x1

x2

y

z

1

1

FIGURE 2

Normalizing a vector to produce a
unit vector.

Distance in Rn

We are ready now to describe how close one vector is to another. Recall that if a and
b are real numbers, the distance on the number line between a and b is the number
ja � bj. Two examples are shown in Figure 3. This definition of distance in R has a
direct analogue in Rn.

|2 2 8| 5 |26| 5 6   or   |8 2 2| 5 |6| 5 6 |(23) 2 4| 5 |27| 5 7   or   |4 2 (23)| 5 |7| 5 7

6 units apart

a b a b

7 units apart
1 32 4 5 6 7 8 9 1 30 22123 22 4 5

FIGURE 3 Distances in R.
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DEFINITION For u and v inRn, the distance between u and v, written as dist.u; v/, is the length
of the vector u � v. That is,

dist.u; v/ D ku � vk

In R2 and R3, this definition of distance coincides with the usual formulas for the
Euclidean distance between two points, as the next two examples show.

EXAMPLE 4 Compute the distance between the vectors u D .7; 1/ and v D .3; 2/.

SOLUTION Calculate

u � v D
�

7

1

�
�

�
3

2

�
D

�
4

�1

�
ku � vk D

p
42 C .�1/2 D

p
17

The vectors u, v, and u � v are shown in Figure 4. When the vector u � v is added
to v, the result is u. Notice that the parallelogram in Figure 4 shows that the distance
from u to v is the same as the distance from u � v to 0.

||u 2 v||

x1

x2

v

u

u v

2v

1

1

2

FIGURE 4 The distance between u and v is
the length of u � v.

EXAMPLE 5 If u D .u1; u2; u3/ and v D .v1; v2; v3/, then

dist.u; v/ D ku � vk D
p

.u � v/�.u � v/

D
p

.u1 � v1/2 C .u2 � v2/2 C .u3 � v3/2

Orthogonal Vectors
The rest of this chapter depends on the fact that the concept of perpendicular lines in

||u 2(2 v)||

||u 2 v||

v

0

u

2v

FIGURE 5

ordinary Euclidean geometry has an analogue in Rn.
Consider R2 or R3 and two lines through the origin determined by vectors u and

v. The two lines shown in Figure 5 are geometrically perpendicular if and only if the
distance from u to v is the same as the distance from u to�v. This is the same as requiring
the squares of the distances to be the same. Now

Œ dist.u;�v/ �
2
D ku � .�v/k2 D kuC vk2

D .uC v/� .uC v/

D u�.uC v/C v� .uC v/ Theorem 1(b)

D u�uC u�vC v�uC v�v Theorem 1(a), (b)

D kuk2 C kvk2 C 2u�v Theorem 1(a) (1)
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The same calculations with v and �v interchanged show that

Œdist.u; v/�2 D kuk2 C k � vk2 C 2u� .�v/

D kuk2 C kvk2 � 2u�v

The two squared distances are equal if and only if 2u�v D �2u�v, which happens if and
only if u�v D 0.

This calculation shows that when vectors u and v are identified with geometric
points, the corresponding lines through the points and the origin are perpendicular if
and only if u�v D 0. The following definition generalizes to Rn this notion of perpen-
dicularity (or orthogonality, as it is commonly called in linear algebra).

DEFINITION Two vectors u and v in Rn are orthogonal (to each other) if u�v D 0.

Observe that the zero vector is orthogonal to every vector in Rn because 0T v D 0

for all v.
The next theorem provides a useful fact about orthogonal vectors. The proof follows

immediately from the calculation in (1) and the definition of orthogonality. The right
triangle shown in Figure 6 provides a visualization of the lengths that appear in the
theorem.

THEOREM 2 The Pythagorean Theorem

Two vectors u and v are orthogonal if and only if kuC vk2 D kuk2 C kvk2.

Orthogonal Complements
To provide practice using inner products, we introduce a concept here that will be of use
in Section 6.3 and elsewhere in the chapter. If a vector z is orthogonal to every vector in
a subspace W of Rn, then z is said to be orthogonal to W . The set of all vectors z that
are orthogonal to W is called the orthogonal complement of W and is denoted by W ?

(and read as “W perpendicular” or simply “W perp”).

v

u 1 v

||u 1 v|| u

||v||

||u||

0

FIGURE 6

EXAMPLE 6 LetW be a plane through the origin inR3, and letL be the line through
the origin and perpendicular to W . If z and w are nonzero, z is on L, and w is in W ,
then the line segment from 0 to z is perpendicular to the line segment from 0 to w; that
is, z�w D 0. See Figure 7. So each vector on L is orthogonal to every w in W . In fact, L
consists of all vectors that are orthogonal to the w’s in W , and W consists of all vectors
orthogonal to the z’s in L. That is,

z
L

w

0

W

FIGURE 7

A plane and line through 0 as
orthogonal complements.

L D W ? and W D L?

The following two facts aboutW ?, withW a subspace ofRn, are needed later in the
chapter. Proofs are suggested in Exercises 37 and 38. Exercises 35–39 provide excellent
practice using properties of the inner product.

1. A vector x is in W ? if and only if x is orthogonal to every vector in a set that
spans W .

2. W ? is a subspace of Rn.
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The next theorem and Exercise 39 verify the claims made in Section 4.5 concerning
the subspaces shown in Figure 8.

A

0 0

Row A

Nul A

Col A

Nul A
T

FIGURE 8 The fundamental subspaces determined
by an m � n matrix A.

Remark: A common way to prove that two sets, say S and T , are equal is to show that
S is a subset of T and T is a subset of S . The proof of the next theorem that Nul A D

(Row A)? is established by showing that Nul A is a subset of (Row A)? and (Row A)?

is a subset of Nul A. That is, an arbitrary element x in Nul A is shown to be in (Row
A)?, and then an arbitrary element x in (Row A)? is shown to be in Nul A.

THEOREM 3 Let A be an m � n matrix. The orthogonal complement of the row space of A is
the null space of A, and the orthogonal complement of the column space of A is
the null space of AT :

.RowA/? D NulA and .ColA/? D NulAT

PROOF The row–column rule for computing Ax shows that if x is in NulA, then x is
orthogonal to each row ofA (with the rows treated as vectors inRn/. Since the rows ofA

span the row space, x is orthogonal to RowA. Conversely, if x is orthogonal to RowA,
then x is certainly orthogonal to each row of A, and hence Ax D 0. This proves the first
statement of the theorem. Since this statement is true for any matrix, it is true for AT .
That is, the orthogonal complement of the row space of AT is the null space of AT . This
proves the second statement, because RowAT D ColA.

Angles in R2 and R3 (Optional)
If u and v are nonzero vectors in eitherR2 orR3, then there is a nice connection between
their inner product and the angle # between the two line segments from the origin to the
points identified with u and v. The formula is

u�v D kuk kvk cos# (2)

To verify this formula for vectors in R2, consider the triangle shown in Figure 9, with
sides of lengths kuk, kvk, and ku � vk. By the law of cosines,

ku � vk2 D kuk2 C kvk2 � 2kuk kvk cos#

(u1, u2)

(v1, v2)

||u 2 v||

||v||

||u|| q

FIGURE 9 The angle between two vectors.
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which can be rearranged to produce

kuk kvk cos# D
1

2

�
kuk2 C kvk2 � ku � vk2

�
D

1

2

�
u2

1 C u2
2 C v2

1 C v2
2 � .u1 � v1/2

� .u2 � v2/2
�

D u1v1 C u2v2

D u�v

The verification for R3 is similar. When n > 3, formula (2) may be used to define the
angle between two vectors in Rn. In statistics, for instance, the value of cos# defined
by (2) for suitable vectors u and v is what statisticians call a correlation coefficient.

Practice Problems

1. Let a D
�
�2

1

�
and b D

�
�3

1

�
. Compute

a�b
a�a

and
�
a�b
a�a

�
a.

2. Let c D

24 4=3

�1

2=3

35 and d D

24 5

6

�1

35.
a. Find a unit vector u in the direction of c.

b. Show that d is orthogonal to c.

c. Use the results of (a) and (b) to explain why d must be orthogonal to the unit
vector u.

3. Let W be a subspace of Rn. Exercise 38 establishes that W ? is also a subspace of
Rn. Prove that dim WC dim W ? D n.

6.1 Exercises
Compute the quantities in Exercises 1–8 using the vectors

u D
�
�1

2

�
, v D

�
2

3

�
, w D

24 3

�1

�5

35, x D

24 6

�2

3

35
1. u�u, v�u, and

v�u
u�u

2. w�w, x�w, and
x�w
w�w

3.
1

w�w
w 4.

1

u�u
u

5.
�u�v
v�v

�
v 6.

�x �w
x � x

�
x

7. kwk 8. kxk

In Exercises 9–12, find a unit vector in the direction of the given
vector.

9.
�
�30

40

�
10.

24 3

6

�3

35

11.

24 2=9

1=3

1

35 12.
�

8=3

1

�

13. Find the distance between x D
�

10

�3

�
and y D

�
�1

�5

�
.

14. Find the distance between u D

24 0

�1

3

35 and z D

24�7

�5

7

35.
Determine which pairs of vectors in Exercises 15–18 are
orthogonal.

15. a D
�

8

�5

�
, b D

�
�2

�3

�
16. x D

24 4

�2

5

35, y D 24 11

�1

�9

35

17. u D

2664
3

2

�5

0

3775, v D
2664
�4

1

�2

6

3775 18. w D

2664
3

�6

7

8

3775, z D
2664
�9

6

17

�7

3775
In Exercises 19–28, all vectors are in Rn. Mark each statement
True or False (T/F). Justify each answer.

19. (T/F) v � v D kvk2.

20. (T/F) u � v � v � u D 0.
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21. (T/F) If the distance from u to v equals the distance from u
to �v, then u and v are orthogonal.

22. (T/F) If kuk2 C kvk2 D kuC vk2, then u and v are
orthogonal.

23. (T/F) If vectors v1; : : : ; vp span a subspace W and if x is
orthogonal to each vj for j D 1; : : : ; p, then x is in W ?.

24. (T/F) If x is orthogonal to every vector in a subspace W then
x is in W ?.

25. (T/F) For any scalar c; kcvk D ckvk.

26. (T/F) For any scalar c; u � .cv/ D c.u � v/.

27. (T/F) For a square matrix A, vectors in Col A are orthogonal
to vectors in Nul A.

28. (T/F) For an m � n matrix A, vectors in the null space of A

are orthogonal to vectors in the row space of A.

29. Use the transpose definition of the inner product to verify
parts (b) and (c) of Theorem 1. Mention the appropriate facts
from Chapter 2.

30. Let u D .u1; u2; u3/. Explain why u�u � 0. When is
u�u D 0?

31. Let u D

24 3

�4

�1

35 and v D

24�8

�7

4

35. Compute and compare

u�v, kuk2, kvk2, and kuC vk2. Do not use the Pythagorean
Theorem.

32. Verify the parallelogram law for vectors u and v in Rn:

kuC vk2 C ku � vk2 D 2kuk2 C 2kvk2

33. Let v D
�

a

b

�
. Describe the set H of vectors

�
x

y

�
that are

orthogonal to v. [Hint: Consider v D 0 and v ¤ 0.]

34. Let u D

24 5

�6

7

35, and let W be the set of all x in R3 such that

u�x D 0. What theorem in Chapter 4 can be used to show that
W is a subspace of R3? Describe W in geometric language.

35. Suppose a vector y is orthogonal to vectors u and v. Show
that y is orthogonal to the vector uC v.

36. Suppose y is orthogonal to u and v. Show that y is orthogonal
to everyw in Span fu; vg. [Hint:An arbitraryw in Span fu; vg
has the form w D c1uC c2v. Show that y is orthogonal to
such a vector w.]

w

0

yv

u

Span{u, v}

37. Let W D Span fv1; : : : ; vpg. Show that if x is orthogonal to
each vj , for 1 � j � p, then x is orthogonal to every vector
in W .

38. Let W be a subspace of Rn, and let W ? be the set of all
vectors orthogonal to W . Show that W ? is a subspace of Rn

using the following steps.

a. Take z inW ?, and let u represent any element ofW . Then
z�u D 0. Take any scalar c and show that cz is orthogonal
to u. (Since u was an arbitrary element of W , this will
show that cz is in W ?.)

b. Take z1 and z2 in W ?, and let u be any element of
W . Show that z1 C z2 is orthogonal to u. What can you
conclude about z1 C z2? Why?

c. Finish the proof that W ? is a subspace of Rn.

39. Show that if x is in both W and W ?, then x D 0.

T 40. Construct a pair u, v of random vectors in R4, and let

A D

2664
:5 :5 :5 :5

:5 :5 �:5 �:5

:5 �:5 :5 �:5

:5 �:5 �:5 :5

3775
a. Denote the columns of A by a1; : : : ; a4. Compute

the length of each column, and compute a1 �a2,
a1 �a3; a1 �a4; a2 �a3; a2 �a4, and a3 �a4.

b. Compute and compare the lengths of u, Au, v, and Av.

c. Use equation (2) in this section to compute the cosine of
the angle between u and v. Compare this with the cosine
of the angle between Au and Av.

d. Repeat parts (b) and (c) for two other pairs of random
vectors. What do you conjecture about the effect of A on
vectors?

T 41. Generate random vectors x, y, and v inR4 with integer entries
(and v ¤ 0), and compute the quantities�x�v
v�v

�
v;
�y�v
v�v

�
v;

.xC y/�v
v�v

v;
.10x/�v
v�v

v

Repeat the computations with new random vectors x and y.
What do you conjecture about the mapping x 7! T .x/ D�x�v
v�v

�
v (for v ¤ 0)? Verify your conjecture algebraically.

T 42. Let A D

266664
�6 3 �27 �33 �13

6 �5 25 28 14

8 �6 34 38 18

12 �10 50 41 23

14 �21 49 29 33

377775. Construct a

matrix N whose columns form a basis for NulA, and con-
struct a matrix R whose rows form a basis for RowA (see
Section 4.6 for details). Perform a matrix computation with
N and R that illustrates a fact from Theorem 3.
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Solutions to Practice Problems

1. a�b D 7, a�a D 5. Hence
a�b
a�a
D

7

5
, and

�
a�b
a�a

�
a D

7

5
a D

�
�14=5

7=5

�
.

2. a. Scale c, multiplying by 3 to get y D

24 4

�3

2

35. Compute kyk2 D 29

and kyk D
p

29. The unit vector in the direction of both c and y is

u D
1

kyk
y D

24 4=
p

29

�3=
p

29

2=
p

29

35.
b. d is orthogonal to c, because

d�c D

24 5

6

�1

35�

24 4=3

�1

2=3

35 D 20

3
� 6 �

2

3
D 0

c. d is orthogonal to u, because u has the form kc for some k, and

d�u D d� .kc/ D k.d�c/ D k.0/ D 0

3. IfW ¤ f0g, let fb1; : : : ; bpg be a basis forW , where 1 � p � n. LetA be thep � n

matrix having rows bT
1 ; : : : ; bT

p . It follows that W is the row space of A. Theorem
3 implies that W ? D (Row A/? D Nul A and hence dim W ? D dim Nul A. Thus,
dimW C dimW ? D dim RowAC dim Nul A D rankAC dim Nul A D n, by the
Rank Theorem. If W D f0g, then W ? D Rn, and the result follows.

6.2 Orthogonal Sets
A set of vectors fu1; : : : ; upg inRn is said to be an orthogonal set if each pair of distinct
vectors from the set is orthogonal, that is, if ui �uj D 0 whenever i ¤ j .

EXAMPLE 1 Show that fu1; u2; u3g is an orthogonal set, where

u1 D

24 3

1

1

35; u2 D

24�1

2

1

35; u3 D

24�1=2

�2

7=2

35
SOLUTION Consider the three possible pairs of distinct vectors, namely fu1; u2g,
fu1; u3g, and fu2; u3g.

u1 �u2 D 3.�1/C 1.2/C 1.1/ D 0

u1 �u3 D 3
�
�

1
2

�
C 1.�2/C 1

�
7
2

�
D 0

u2 �u3 D �1
�
�

1
2

�
C 2.�2/C 1

�
7
2

�
D 0

Each pair of distinct vectors is orthogonal, and so fu1; u2; u3g is an orthogonal set. See
Figure 1; the three line segments are mutually perpendicular.

u1

u2

u3

x2

x1

x3

FIGURE 1

THEOREM 4 If S D fu1; : : : ; upg is an orthogonal set of nonzero vectors in Rn, then S is
linearly independent and hence is a basis for the subspace spanned by S .
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PROOF If 0 D c1u1 C � � � C cpup for some scalars c1; : : : ; cp , then

0 D 0�u1 D .c1u1 C c2u2 C � � � C cpup/�u1

D .c1u1/�u1 C .c2u2/�u1 C � � � C .cpup/�u1

D c1.u1 � u1/C c2.u2 � u1/C � � � C cp.up � u1/

D c1.u1 � u1/

because u1 is orthogonal to u2; : : : ; up . Since u1 is nonzero, u1 �u1 is not zero and so
c1 D 0. Similarly, c2; : : : ; cp must be zero. Thus S is linearly independent.

DEFINITION An orthogonal basis for a subspace W of Rn is a basis for W that is also an
orthogonal set.

The next theorem suggests why an orthogonal basis is much nicer than other bases.
The weights in a linear combination can be computed easily.

THEOREM 5 Let fu1; : : : ; upg be an orthogonal basis for a subspace W of Rn. For each y in W ,
the weights in the linear combination

y D c1u1 C � � � C cpup

are given by

cj D
y�uj

uj � uj

.j D 1; : : : ; p/

PROOF As in the preceding proof, the orthogonality of fu1; : : : ; upg shows that

y�u1 D .c1u1 C c2u2 C � � � C cpup/�u1 D c1.u1 � u1/

Since u1 �u1 is not zero, the equation above can be solved for c1. To find cj for j D

2; : : : ; p, compute y�uj and solve for cj .

EXAMPLE 2 The set S D fu1; u2; u3g in Example 1 is an orthogonal basis for R3.

Express the vector y D

24 6

1

�8

35 as a linear combination of the vectors in S .

SOLUTION Compute

y�u1 D 11; y�u2 D �12; y�u3 D �33

u1 � u1 D 11; u2 � u2 D 6; u3 � u3 D 33=2

By Theorem 5,

y D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 C
y�u3

u3 � u3

u3

D
11

11
u1 C

�12

6
u2 C

�33

33=2
u3

D u1 � 2u2 � 2u3

Notice how easy it is to compute the weights needed to build y from an orthogonal
basis. If the basis were not orthogonal, it would be necessary to solve a system of linear
equations in order to find the weights, as in Chapter 1.

We turn next to a construction that will become a key step in many calculations
involving orthogonality, and it will lead to a geometric interpretation of Theorem 5.



384 CHAPTER 6 Orthogonality and Least Squares

An Orthogonal Projection
Given a nonzero vector u in Rn, consider the problem of decomposing a vector y in Rn

into the sum of two vectors, one a multiple of u and the other orthogonal to u. We wish
to write

y D OyC z (1)

where Oy D ˛u for some scalar ˛ and z is some vector orthogonal to u. See Figure 2.
Given any scalar ˛, let z D y � ˛u, so that (1) is satisfied. Then y � Oy is orthogonal to
u if and only if

0 D .y � ˛u/�u D y�u � .˛u/�u D y�u � ˛.u�u/

y

ˆz 5 y 2 y

ŷ 5 projW y

0

W

FIGURE 2

Finding ˛ to make y � Oy
orthogonal to u.

That is, (1) is satisfied with z orthogonal to u if and only if ˛ D
y�u
u�u

and Oy D
y�u
u�u

u.

The vector Oy is called the orthogonal projection of y onto u, and the vector z is called
the component of y orthogonal to u.

If c is any nonzero scalar and if u is replaced by cu in the definition of Oy, then the
orthogonal projection of y onto cu is exactly the same as the orthogonal projection of
y onto u (Exercise 39). Hence this projection is determined by the subspace L spanned
by u (the line through u and 0). Sometimes Oy is denoted by projL y and is called the
orthogonal projection of y onto L. That is,

Oy D projL y D
y�u
u�u

u (2)

EXAMPLE 3 Let y D
�

7

6

�
and u D

�
4

2

�
. Find the orthogonal projection of y onto

u. Then write y as the sum of two orthogonal vectors, one in Span fug and one orthogonal
to u.

SOLUTION Compute

y�u D
�

7

6

�
�

�
4

2

�
D 40

u�u D
�

4

2

�
�

�
4

2

�
D 20

The orthogonal projection of y onto u is

Oy D
y�u
u�u

u D
40

20
u D 2

�
4

2

�
D

�
8

4

�
and the component of y orthogonal to u is

y � Oy D
�

7

6

�
�

�
8

4

�
D

�
�1

2

�
The sum of these two vectors is y. That is,�

7

6

�
"

y

D

�
8

4

�
"

Oy

C

�
�1

2

�
"

.y � Oy/

This decomposition of y is illustrated in Figure 3. Note: If the calculations above are
correct, then fOy; y � Oyg will be an orthogonal set. As a check, compute

Oy�.y � Oy/ D

�
8

4

�
�

�
�1

2

�
D �8C 8 D 0
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x1

x2
y

u

ŷ

L 5 Span{u}

3

1 8

6

yy 2 ˆ

FIGURE 3 The orthogonal projection of y onto a
line L through the origin.

Since the line segment in Figure 3 between y and Oy is perpendicular to L, by con-
struction of Oy, the point identified with Oy is the closest point ofL to y. (This can be proved
from geometry. We will assume this for R2 now and prove it for Rn in Section 6.3.)

EXAMPLE 4 Find the distance in Figure 3 from y to L.

SOLUTION The distance from y to L is the length of the perpendicular line segment
from y to the orthogonal projection Oy. This length equals the length of y � Oy. Thus the
distance is

ky � Oyk D
p

.�1/2 C 22 D
p

5

A Geometric Interpretation of Theorem 5
The formula for the orthogonal projection Oy in (2) has the same appearance as each of the
terms in Theorem 5. Thus Theorem 5 decomposes a vector y into a sum of orthogonal
projections onto one-dimensional subspaces.

It is easy to visualize the case in which W D R2 D Span fu1; u2g, with u1 and u2

orthogonal. Any y in R2 can be written in the form

y D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 (3)

The first term in (3) is the projection of y onto the subspace spanned by u1 (the line
through u1 and the origin), and the second term is the projection of y onto the subspace
spanned by u2. Thus (3) expresses y as the sum of its projections onto the (orthogonal)
axes determined by u1 and u2. See Figure 4.

0

y

u1

u2

ŷ2 5 projection of y onto u2

ŷ1 5 projection of y onto u1

FIGURE 4 A vector decomposed into the
sum of two projections.
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Theorem 5 decomposes each y in Span fu1; : : : ; upg into the sum of p projections
onto one-dimensional subspaces that are mutually orthogonal.

Decomposing a Force into Component Forces
The decomposition in Figure 4 can occur in physics when some sort of force is applied to
an object. Choosing an appropriate coordinate system allows the force to be represented
by a vector y in R2 or R3. Often the problem involves some particular direction of
interest, which is represented by another vector u. For instance, if the object is moving
in a straight line when the force is applied, the vector u might point in the direction of
movement, as in Figure 5. A key step in the problem is to decompose the force into
a component in the direction of u and a component orthogonal to u. The calculations
would be analogous to those previously made in Example 3.

u

y

FIGURE 5

Orthonormal Sets
A set fu1; : : : ; upg is an orthonormal set if it is an orthogonal set of unit vectors. If W

is the subspace spanned by such a set, then fu1; : : : ; upg is an orthonormal basis for
W , since the set is automatically linearly independent, by Theorem 4.

The simplest example of an orthonormal set is the standard basis fe1; : : : ; eng forRn.
Any nonempty subset of fe1; : : : ; eng is orthonormal, too. Here is a more complicated
example.

EXAMPLE 5 Show that fv1; v2; v3g is an orthonormal basis of R3, where

v1 D

264 3=
p

11

1=
p

11

1=
p

11

375; v2 D

264�1=
p

6

2=
p

6

1=
p

6

375; v3 D

264 �1=
p

66

�4=
p

66

7=
p

66

375
SOLUTION Compute

v1 �v2 D �3=
p

66C 2=
p

66C 1=
p

66 D 0

v1 �v3 D �3=
p

726 � 4=
p

726C 7=
p

726 D 0

v2 �v3 D 1=
p

396 � 8=
p

396C 7=
p

396 D 0

Thus fv1; v2; v3g is an orthogonal set. Also,

v1 �v1 D 9=11C 1=11C 1=11 D 1

v2 �v2 D 1=6C 4=6C 1=6 D 1

v3 �v3 D 1=66C 16=66C 49=66 D 1

which shows that v1, v2, and v3 are unit vectors. Thus fv1; v2; v3g is an orthonormal set.
Since the set is linearly independent, its three vectors form a basis for R3. See Figure 6.

v3

v2

x1

v1

x3

x2

FIGURE 6
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When the vectors in an orthogonal set of nonzero vectors are normalized to have
unit length, the new vectors will still be orthogonal, and hence the new set will be
an orthonormal set. See Exercise 40. It is easy to check that the vectors in Figure 6
(Example 5) are simply the unit vectors in the directions of the vectors in Figure 1
(Example 1).

Matrices whose columns form an orthonormal set are important in applications
and in computer algorithms for matrix computations. Their main properties are given
in Theorems 6 and 7.

THEOREM 6 An m � n matrix U has orthonormal columns if and only if U TU D I .

PROOF To simplify notation, we suppose that U has only three columns, each a vector
inRm. The proof of the general case is essentially the same. LetU D Œ u1 u2 u3 � and
compute

U TU D

264 uT
1

uT
2

uT
3

375�u1 u2 u3

�
D

264uT
1 u1 uT

1 u2 uT
1 u3

uT
2 u1 uT

2 u2 uT
2 u3

uT
3 u1 uT

3 u2 uT
3 u3

375 (4)

The entries in the matrix at the right are inner products, using transpose notation. The
columns of U are orthogonal if and only if

uT
1 u2 D uT

2 u1 D 0; uT
1 u3 D uT

3 u1 D 0; uT
2 u3 D uT

3 u2 D 0 (5)

The columns of U all have unit length if and only if

uT
1 u1 D 1; uT

2 u2 D 1; uT
3 u3 D 1 (6)

The theorem follows immediately from (4)–(6).

THEOREM 7 Let U be an m � n matrix with orthonormal columns, and let x and y be in Rn.
Then

a. kU xk D kxk

b. .U x/�.U y/ D x�y

c. .U x/� .U y/ D 0 if and only if x�y D 0

Properties (a) and (c) say that the linear mapping x 7! U x preserves lengths and or-
thogonality. These properties are crucial for many computer algorithms. See Exercise 33
for the proof of Theorem 7.

EXAMPLE 6 Let U D

264 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

375 and x D
�p

2

3

�
. Notice that U has or-

thonormal columns and

U TU D

�
1=
p

2 1=
p

2 0

2=3 �2=3 1=3

�24 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

35 D � 1 0

0 1

�
Verify that kU xk D kxk.
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SOLUTION

U x D

24 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

35�p2

3

�
D

24 3

�1

1

35
kU xk D

p
9C 1C 1 D

p
11

kxk D
p

2C 9 D
p

11

Theorems 6 and 7 are particularly useful when applied to square matrices. An
orthogonal matrix is a square invertible matrix U such that U�1 D U T . By Theo-
rem 6, such a matrix has orthonormal columns.1 It is easy to see that any square matrix
with orthonormal columns is an orthogonal matrix. Surprisingly, such a matrix must
have orthonormal rows, too. See Exercises 35 and 36. Orthogonal matrices will appear
frequently in Chapter 7.

EXAMPLE 7 The matrix

U D

264 3=
p

11 �1=
p

6 �1=
p

66

1=
p

11 2=
p

6 �4=
p

66

1=
p

11 1=
p

6 7=
p

66

375
is an orthogonal matrix because it is square and because its columns are orthonormal,
by Example 5. Verify that the rows are orthonormal, too!

Practice Problems

1. Let u1 D

�
�1=
p

5

2=
p

5

�
and u2 D

�
2=
p

5

1=
p

5

�
. Show that fu1; u2g is an orthonormal

basis for R2.

2. Let y and L be as in Example 3 and Figure 3. Compute the orthogonal projection Oy

of y onto L using u D
�

2

1

�
instead of the u in Example 3.

3. Let U and x be as in Example 6, and let y D
�
�3
p

2

6

�
. Verify that U x�U y D x�y.

4. Let U be an n � n matrix with orthonormal columns. Show that det U D ±1.

6.2 Exercises
In Exercises 1–6, determine which sets of vectors are orthogonal.

1.

24�1

4

�3

35, 24 5

2

1

35, 24 3

�4

�7

35 2.

24 1

�2

1

35, 24 0

1

2

35, 24�5

�2

1

35

3.

24 2

�7

�1

35, 24�6

�3

9

35, 24 3

1

�1

35 4.

24 2

�5

�3

35, 24 0

0

0

35, 24 4

2

6

35

5.

2664
3

�2

1

3

3775,
2664
�1

3

�3

4

3775,
2664

3

8

7

0

3775 6.

2664
5

�4

0

3

3775,
2664
�4

1

�3

8

3775,
2664

3

3

5

�1

3775
In Exercises 7–10, show that fu1; u2g or fu1; u2; u3g is an orthog-
onal basis for R2 or R3, respectively. Then express x as a linear
combination of the u’s.

7. u1 D

�
2

�3

�
, u2 D

�
6

4

�
, and x D

�
9

�7

�
1A better name might be orthonormal matrix, and this term is found in some statistics texts. However,
orthogonal matrix is the standard term in linear algebra.
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8. u1 D

�
3

1

�
, u2 D

�
�2

6

�
, and x D

�
�4

3

�

9. u1 D

24 1

0

�1

35, u2 D

24 1

�4

1

35, u3 D

24 4

2

4

35, and x D 24 6

4

�2

35
10. u1 D

24 4

�4

0

35, u2 D

24 2

2

�1

35, u3 D

24 1

1

4

35, and x D 24 3

�4

7

35
11. Compute the orthogonal projection of

�
1

7

�
onto the line

through
�
�4

2

�
and the origin.

12. Compute the orthogonal projection of
�
�3

4

�
onto the line

through
�

1

�3

�
and the origin.

13. Let y D
�

2

3

�
and u D

�
4

�7

�
. Write y as the sum of two

orthogonal vectors, one in Span fug and one orthogonal to u.

14. Let y D
�

2

6

�
and u D

�
6

1

�
. Write y as the sum of a vector

in Span fug and a vector orthogonal to u.

15. Let y D
�

3

1

�
and u D

�
8

6

�
. Compute the distance from y to

the line through u and the origin.

16. Let y D
�
�1

7

�
and u D

�
1

3

�
. Compute the distance from y

to the line through u and the origin.

In Exercises 17–22, determine which sets of vectors are orthonor-
mal. If a set is only orthogonal, normalize the vectors to produce
an orthonormal set.

17.

24 1=3

1=3

1=3

35, 24�1=2

0

1=2

35 18.

24 0

0

1

35, 24 0

�1

0

35
19.

�
�:6

:8

�
,
�

:8

:6

�
20.

24 4=3

7=3

4=3

35, 24 7=3

�4=3

0

35
21.

24 1=
p

10

3=
p

20

3=
p

20

35, 24 3=
p

10

�1=
p

20

�1=
p

20

35, 24 0

�1=
p

2

1=
p

2

35
22.

24 1=
p

18

4=
p

18

1=
p

18

35, 24 1=
p

2

0

�1=
p

2

35, 24�2=3

1=3

�2=3

35
In Exercises 23–32, all vectors are in Rn. Mark each statement
True or False (T/F). Justify each answer.

23. (T/F) Not every linearly independent set in Rn is an orthog-
onal set.

24. (T/F) Not every orthogonal set in Rn is linearly independent.

25. (T/F) If y is a linear combination of nonzero vectors from an
orthogonal set, then the weights in the linear combination can
be computed without row operations on a matrix.

26. (T/F) If a set S D fu1; : : : ; upg has the property that
ui � uj D 0 whenever i ¤ j , then S is an orthonormal set.

27. (T/F) If the vectors in an orthogonal set of nonzero vectors
are normalized, then some of the new vectors may not be
orthogonal.

28. (T/F) If the columns of an m � n matrix A are orthonormal,
then the linear mapping x 7! Ax preserves lengths.

29. (T/F) A matrix with orthonormal columns is an orthogonal
matrix.

30. (T/F) The orthogonal projection of y onto v is the same as the
orthogonal projection of y onto cv whenever c ¤ 0.

31. (T/F) If L is a line through 0 and if Oy is the orthogonal
projection of y onto L, then kOyk gives the distance from y
to L.

32. (T/F) An orthogonal matrix is invertible.

33. Prove Theorem 7. [Hint: For (a), compute kU xk2, or prove
(b) first.]

34. Suppose W is a subspace of Rn spanned by n nonzero
orthogonal vectors. Explain why W D Rn.

35. Let U be a square matrix with orthonormal columns. Explain
why U is invertible. (Mention the theorems you use.)

36. Let U be an n � n orthogonal matrix. Show that the rows of
U form an orthonormal basis of Rn.

37. Let U and V be n � n orthogonal matrices. Explain why
UV is an orthogonal matrix. [That is, explain why UV is
invertible and its inverse is .UV /T .]

38. Let U be an orthogonal matrix, and construct V by inter-
changing some of the columns of U . Explain why V is an
orthogonal matrix.

39. Show that the orthogonal projection of a vector y onto a lineL

through the origin in R2 does not depend on the choice of the
nonzero u in L used in the formula for Oy. To do this, suppose
y and u are given and Oy has been computed by formula (2) in
this section. Replace u in that formula by cu, where c is an
unspecified nonzero scalar. Show that the new formula gives
the same Oy.

40. Let fv1; v2g be an orthogonal set of nonzero vectors, and let
c1, c2 be any nonzero scalars. Show that fc1v1; c2v2g is also
an orthogonal set. Since orthogonality of a set is defined in
terms of pairs of vectors, this shows that if the vectors in
an orthogonal set are normalized, the new set will still be
orthogonal.
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41. Given u ¤ 0 inRn, letL D Span fug. Show that the mapping
x 7! projL x is a linear transformation.

42. Given u ¤ 0 in Rn, let L D Span fug. For y in Rn, the
reflection of y in L is the point reflL y defined by

reflL y D 2 projL y � y

See the figure, which shows that reflL y is the sum of
Oy D projL y and Oy � y. Show that the mapping y 7! reflL y
is a linear transformation.

x1

x2 y

u

ŷ

L 5 Span{u}

yy 2 ˆ ref lL y

yy 2ˆ

The reflection of y in a line through the origin.

T 43. Show that the columns of the matrix A are orthogonal by
making an appropriate matrix calculation. State the calcula-
tion you use.

A D

266666666664

�6 �3 6 1

�1 2 1 �6

3 6 3 �2

6 �3 6 �1

2 �1 2 3

�3 6 3 2

�2 �1 2 �3

1 2 1 6

377777777775
T 44. In parts (a)–(d), let U be the matrix formed by normalizing

each column of the matrix A in Exercise 43.

a. Compute U TU and U U T . How do they differ?

b. Generate a random vector y in R8, and compute
p D U U Ty and z D y � p. Explain why p is in ColA.
Verify that z is orthogonal to p.

c. Verify that z is orthogonal to each column of U .

d. Notice that y D pC z, with p in ColA. Explain why z is
in .ColA/?. (The significance of this decomposition of y
will be explained in the next section.)

Solutions to Practice Problems

1. The vectors are orthogonal because

u1 � u2 D �2=5C 2=5 D 0

They are unit vectors because

ku1k
2
D .�1=

p
5/2
C .2=

p
5/2
D 1=5C 4=5 D 1

ku2k
2
D .2=

p
5/2
C .1=

p
5/2
D 4=5C 1=5 D 1

In particular, the set fu1; u2g is linearly independent, and hence is a basis for R2

since there are two vectors in the set.

2. When y D
�

7

6

�
and u D

�
2

1

�
,

Oy D
y�u
u�u

u D
20

5

�
2

1

�
D 4

�
2

1

�
D

�
8

4

�
This is the same Oy found in Example 3. The orthogonal projection does not depend
on the u chosen on the line. See Exercise 39.

3. U y D

24 1=
p

2 2=3

1=
p

2 �2=3

0 1=3

35��3
p

2

6

�
D

24 1

�7

2

35
Also, from Example 6, x D

�p
2

3

�
and U x D

24 3

�1

1

35. Hence
U x�U y D 3C 7C 2 D 12; and x�y D �6C 18 D 12
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4. Since U is an n � n matrix with orthonormal columns, by Theorem 6, U T U D I .STUDY GUIDE offers additional
resources for mastering the
concepts around an orthogonal
basis.

Taking the determinant of the left side of this equation, and applying Theorems 5
and 6 from Section 3.2 results in detU T U D .detU T /.detU / D .detU /.detU / D

.detU /2. Recall det I D 1. Putting the two sides of the equation back together
results in (det U )2 D 1 and hence det U D ±1.

6.3 Orthogonal Projections
The orthogonal projection of a point inR2 onto a line through the origin has an important
analogue in Rn. Given a vector y and a subspace W in Rn, there is a vector Oy in W such
that (1) Oy is the unique vector in W for which y � Oy is orthogonal to W , and (2) Oy is the
unique vector in W closest to y. See Figure 1. These two properties of Oy provide the key
to finding least-squares solutions of linear systems.

To prepare for the first theorem, observe that whenever a vector y is written as a
linear combination of vectors u1; : : : ; un inRn, the terms in the sum for y can be grouped
into two parts so that y can be written as

y D z1 C z2

where z1 is a linear combination of some of the ui and z2 is a linear combination of
the rest of the ui . This idea is particularly useful when fu1; : : : ; ung is an orthogonal
basis. Recall from Section 6.1 that W ? denotes the set of all vectors orthogonal to a

y

ŷ 5 projW y0

W

FIGURE 1

subspace W .

EXAMPLE 1 Let fu1; : : : ; u5g be an orthogonal basis for R5 and let

y D c1u1 C � � � C c5u5

Consider the subspace W D Span fu1; u2g, and write y as the sum of a vector z1 in W

and a vector z2 in W ?.

SOLUTION Write

y D c1u1 C c2u2„ ƒ‚ …
z1

C c3u3 C c4u4 C c5u5„ ƒ‚ …
z2

z1 D c1u1 C c2u2 is in Span fu1; u2gwhere

z2 D c3u3 C c4u4 C c5u5 is in Span fu3; u4; u5g:and

To show that z2 is in W ?, it suffices to show that z2 is orthogonal to the vectors in the
basis fu1; u2g for W . (See Section 6.1.) Using properties of the inner product, compute

z2 �u1 D .c3u3 C c4u4 C c5u5/�u1

D c3u3 � u1 C c4u4 � u1 C c5u5 � u1

D 0

because u1 is orthogonal to u3, u4, and u5. A similar calculation shows that z2 �u2 D 0.
Thus z2 is in W ?.

The next theorem shows that the decomposition y D z1 C z2 in Example 1 can be
computed without having an orthogonal basis for Rn. It is enough to have an orthogonal
basis only for W .
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THEOREM 8 The Orthogonal Decomposition Theorem

LetW be a subspace ofRn. Then each y inRn can be written uniquely in the form

y D OyC z (1)

where Oy is in W and z is in W ?. In fact, if fu1; : : : ; upg is any orthogonal basis of
W , then

Oy D
y�u1

u1 � u1

u1 C � � � C
y�up

up � up

up (2)

and z D y � Oy.

The vector Oy in (2) is called the orthogonal projection of y onto W and often is
written as projW y. See Figure 2. When W is a one-dimensional subspace, the formula
for Oy matches the formula given in Section 6.2.

y

ˆz 5 y 2 y

ŷ 5 projW y

0

W

FIGURE 2 The orthogonal projection
of y onto W .

PROOF Let fu1; : : : ; upg be any orthogonal basis for W , and define Oy by (2).1 Then Oy
is in W because Oy is a linear combination of the basis u1; : : : ; up . Let z D y � Oy. Since
u1 is orthogonal to u2; : : : ; up , it follows from (2) that

z�u1 D .y � Oy/�u1 D y�u1 �

�
y�u1

u1 � u1

�
u1 � u1 � 0 � � � � � 0

D y�u1 � y�u1 D 0

Thus z is orthogonal to u1. Similarly, z is orthogonal to each uj in the basis forW . Hence
z is orthogonal to every vector in W . That is, z is in W ?.

To show that the decomposition in (1) is unique, suppose y can also be written as
y D Oy1 C z1, with Oy1 in W and z1 in W ?. Then OyC z D Oy1 C z1 (since both sides equal
y/, and so

Oy � Oy1 D z1 � z

This equality shows that the vector v D Oy � Oy1 is in W and in W ? (because z1 and z
are both in W ?, and W ? is a subspace). Hence v�v D 0, which shows that v D 0. This
proves that Oy D Oy1 and also z1 D z.

The uniqueness of the decomposition (1) shows that the orthogonal projection Oy
depends only on W and not on the particular basis used in (2).

1We may assume that W is not the zero subspace, for otherwise W ? D Rn and (1) is simply y D 0C y.
The next section will show that any nonzero subspace of Rn has an orthogonal basis.
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EXAMPLE 2 Let u1 D

24 2

5

�1

35, u2 D

24�2

1

1

35, and y D24 1

2

3

35. Observe that fu1; u2g

is an orthogonal basis for W D Span fu1; u2g. Write y as the sum of a vector in W and
a vector orthogonal to W .

SOLUTION The orthogonal projection of y onto W is

Oy D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2

D
9

30

24 2

5

�1

35C 3

6

24�2

1

1

35 D 9

30

24 2

5

�1

35C 15

30

24�2

1

1

35 D 24�2=5

2

1=5

35
Also

y � Oy D

24 1

2

3

35 � 24�2=5

2

1=5

35 D 24 7=5

0

14=5

35
Theorem 8 ensures that y � Oy is in W ?. To check the calculations, however, it is a good
idea to verify that y � Oy is orthogonal to both u1 and u2 and hence to all of W . The
desired decomposition of y is

y D

24 1

2

3

35 D 24�2=5

2

1=5

35C 24 7=5

0

14=5

35

A Geometric Interpretation of the Orthogonal
Projection
When W is a one-dimensional subspace, the formula (2) for projW y contains just one
term. Thus, when dimW > 1, each term in (2) is itself an orthogonal projection of y
onto a one-dimensional subspace spanned by one of the u’s in the basis for W . Figure 3
illustrates this whenW is a subspace ofR3 spanned by u1 and u2. Here Oy1 and Oy2 denote
the projections of y onto the lines spanned by u1 and u2, respectively. The orthogonal
projection Oy of y onto W is the sum of the projections of y onto one-dimensional sub-
spaces that are orthogonal to each other. The vector Oy in Figure 3 corresponds to the
vector y in Figure 4 of Section 6.2, because now it is Oy that is in W .

y2

x3 x2

0

ˆ

y 5 u1 1ˆ ˆ ˆ

y1 u1

u2

y . u1
u1 . u1

ˆ

––––– u2 5 y1 1 y2

y . u2
u2 . u2
–––––

x1

FIGURE 3 The orthogonal projection of y is the
sum of its projections onto one-dimensional
subspaces that are mutually orthogonal.
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Properties of Orthogonal Projections
If fu1; : : : ; upg is an orthogonal basis for W and if y happens to be in W , then the
formula for projW y is exactly the same as the representation of y given in Theorem 5 in
Section 6.2. In this case, projW y D y.

If y is in W D Span fu1; : : : ; upg, then projW y D y.

This fact also follows from the next theorem.

THEOREM 9 The Best Approximation Theorem

Let W be a subspace of Rn, let y be any vector in Rn, and let Oy be the orthogonal
projection of y onto W . Then Oy is the closest point in W to y, in the sense that

ky � Oyk < ky � vk (3)

for all v in W distinct from Oy.

The vector Oy in Theorem 9 is called the best approximation to y by elements ofW .
Later sections in the text will examine problems where a given y must be replaced, or
approximated, by a vector v in some fixed subspace W . The distance from y to v, given
by ky � vk, can be regarded as the “error” of using v in place of y. Theorem 9 says that
this error is minimized when v D Oy.

Inequality (3) leads to a new proof that Oy does not depend on the particular orthogo-
nal basis used to compute it. If a different orthogonal basis for W was used to construct
an orthogonal projection of y, then this projection would also be the closest point in W

to y, namely Oy.

PROOF Take v inW distinct from Oy. See Figure 4. Then Oy � v is inW . By the Orthogo-
nal Decomposition Theorem, y � Oy is orthogonal toW . In particular, y � Oy is orthogonal
to Oy � v (which is in W ). Since

y � v D .y � Oy/C .Oy � v/

the Pythagorean Theorem gives

ky � vk2 D ky � Oyk2 C kOy � vk2

(See the right triangle outlined in teal in Figure 4. The length of each side is labeled.)
Now kOy � vk2 > 0 because Oy � v ¤ 0, and so inequality (3) follows immediately.

y

v
|| ||y 2 vˆ

0
||y 2 y||ˆ

ŷ ||y 2 v||

W

FIGURE 4 The orthogonal projection
of y onto W is the closest point in W

to y.
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EXAMPLE 3 If u1 D

24 2

5

�1

35, u2 D

24�2

1

1

35, y D 24 1

2

3

35, and W D Span fu1; u2g,

as in Example 2, then the closest point in W to y is

Oy D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 D

24�2=5

2

1=5

35
EXAMPLE 4 The distance from a point y in Rn to a subspace W is defined as the
distance from y to the nearest point inW . Find the distance from y toW D Span fu1; u2g,
where

y D

24�1

�5

10

35; u1 D

24 5

�2

1

35; u2 D

24 1

2

�1

35
SOLUTION By the Best Approximation Theorem, the distance from y toW is ky � Oyk,
where Oy D projW y. Since fu1; u2g is an orthogonal basis for W ,

Oy D
15

30
u1 C

�21

6
u2 D

1

2

24 5

�2

1

35 � 7

2

24 1

2

�1

35 D 24�1

�8

4

35
y � Oy D

24�1

�5

10

35 � 24�1

�8

4

35 D 24 0

3

6

35
ky � Oyk2 D 32

C 62
D 45

The distance from y to W is
p

45 D 3
p

5.

The final theorem in this section shows how formula (2) for projW y is simplified
when the basis for W is an orthonormal set.

THEOREM 10 If fu1; : : : ; upg is an orthonormal basis for a subspace W of Rn, then

projW y D .y�u1/u1 C .y�u2/u2 C � � � C .y�up/up (4)

If U D Œ u1 u2 � � � up �, then

projW y D U U Ty for all y in Rn (5)

PROOF Formula (4) follows immediately from (2) in Theorem 8. Also, (4) shows
that projW y is a linear combination of the columns of U using the weights y�u1,
y�u2; : : : ; y�up . The weights can be written as uT

1 y; uT
2 y; : : : ; uT

py, showing that they
are the entries in U Ty and justifying (5).

Suppose U is an n � p matrix with orthonormal columns, and let W be the column
space of U . Then

U TU x D Ipx D x for all x in Rp Theorem 6

U U Ty D projW y for all y in Rn Theorem 10

If U is an n � n (square) matrix with orthonormal columns, then U is an orthogonal
matrix, the column space W is all of Rn, and U U Ty D Iy D y for all y in Rn.
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Although formula (4) is important for theoretical purposes, in practice it usually
involves calculations with square roots of numbers (in the entries of the ui /. Formula (2)
is recommended for hand calculations.

Example 9 of Section 2.1 illustrates how matrix multiplication and transposition
are used to detect a specified pattern illustrated using blue and white squares. Now
that we have more experience working with bases for W and W ?, we are ready to
discuss how to set up the matrix M in Figure 6. Let w be the vector generated from
a pattern of blue and white squares by turning each blue square into a 1 and each
white square into a 0, and then lining up each column below the column before it. See
Figure 5.

0 1 0

0 1 0

1 1 1

w 5

0

0

1

1

1

1

0

0

1

FIGURE 5 Creating a vector from colored squares.

Let W D span fwg. Choose a basis fv1; v2; : : : ; vn�1g for W ?. Create the matrix

B D

26664
v1

T

v2
T

:::

vn�1
T

37775. Notice Bu D 0 if and only if u is orthogonal to a set of basis vectors

for W ?, which happens if and only if u is in W. Set M D BT B . Then uT Mu D
uT BT Bu D .Bu/T Bu. By Theorem 1, .Bu/T Bu D 0 if and only ifBu D 0, and hence
uT Mu D 0 if and only if u 2 W. But there are only two vectors inW consisting of zeros
and ones: 1w D w and 0w D 0. Thus we can conclude that if uT Mu D 0, but uT u ¤ 0,
then u D w. See Figure 6.

EXAMPLE 5 Find a matrix M that can be used in Figure 6 to identify the perp
symbol.

SOLUTION First change the symbol into a vector. Set w D Œ0 0 1 1 1 1 0 0 1�T .
Next set W D span fwg and find a basis for W ?: solving xTw D 0 creates the homoge-
neous system of equations:

x3 C x4 C x5 C x6 C x9 D 0

Treating x3 as the basic variable and the remaining variables as free variables we get
a basis for W ?. Transposing each vector in the basis and inserting it as a row of B

we get
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w 5

1
0
1
1
1
1
1
0
1

wTMw 5 2 and wTw 5 7

This pattern is not the perpendicular symbol since wTMw Þ 0.

w 5

0
0
1
1
1
1
0
0
1

wTMw 5 0 and wTw 5 5

This pattern is the perpendicular symbol since wTMw 5 0, but wTw Þ 0.

FIGURE 6 How AI detects the perp symbol.

B D

266666666664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 �1 1 0 0 0 0 0

0 0 �1 0 1 0 0 0 0

0 0 �1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 �1 0 0 0 0 0 1

377777777775
and M D BT B D

26666666666664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 4 �1 �1 �1 0 0 �1

0 0 �1 1 0 0 0 0 0

0 0 �1 0 1 0 0 0 0

0 0 �1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 �1 0 0 0 0 0 1

37777777777775
Notice wT Mw D 0, but wTw ¤ 0.

Practice Problems

1. Let u1 D

24�7

1

4

35, u2 D

24�1

1

�2

35, y D 24�9

1

6

35, andW D Span fu1; u2g. Use the fact

that u1 and u2 are orthogonal to compute projW y.

2. Let W be a subspace of Rn. Let x and y be vectors in Rn and let z D xC y. If u is
the projection of x onto W and v is the projection of y onto W , show that uC v is
the projection of z onto W .
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6.3 Exercises
In Exercises 1 and 2, you may assume that fu1; : : : ; u4g is an
orthogonal basis for R4.

1. u1 D

2664
0

1

�4

�1

3775, u2 D

2664
3

5

1

1

3775, u3 D

2664
1

0

1

�4

3775, u4 D

2664
5

�3

�1

1

3775,
x D

2664
10

�8

2

0

3775. Write x as the sum of two vectors, one in

Span fu1; u2; u3g and the other in Span fu4g.

2. u1 D

2664
1

2

1

1

3775, u2 D

2664
�2

1

�1

1

3775, u3 D

2664
1

1

�2

�1

3775, u4 D

2664
�1

1

1

�2

3775,

v D

2664
4

5

�2

2

3775. Write v as the sum of two vectors, one in

Span fu1g and the other in Span fu2; u3; u4g.

In Exercises 3–6, verify that fu1; u2g is an orthogonal set, and then
find the orthogonal projection of y onto Span fu1; u2g.

3. y D

24�1

4

3

35, u1 D

24 1

1

0

35, u2 D

24�1

1

0

35
4. y D

24 4

3

�2

35, u1 D

24 3

4

0

35, u2 D

24�4

3

0

35
5. y D

24�1

2

6

35, u1 D

24 3

�1

2

35, u2 D

24 1

�1

�2

35
6. y D

24�1

5

3

35, u1 D

24 4

�1

1

35, u2 D

24 1

�1

�5

35
In Exercises 7–10, let W be the subspace spanned by the u’s, and
write y as the sum of a vector in W and a vector orthogonal to W .

7. y D

24 1

3

5

35, u1 D

24 1

3

�2

35, u2 D

24 5

1

4

35
8. y D

24�1

6

4

35, u1 D

24 1

1

1

35, u2 D

24�1

4

�3

35

9. y D

2664
4

3

3

�1

3775, u1 D

2664
1

1

0

1

3775, u2 D

2664
�1

3

1

�2

3775, u3 D

2664
�1

0

1

1

3775

10. y D

2664
3

4

5

4

3775, u1 D

2664
1

1

0

�1

3775, u2 D

2664
1

0

1

1

3775, u3 D

2664
0

�1

1

�1

3775
In Exercises 11 and 12, find the closest point to y in the subspace
W spanned by v1 and v2.

11. y D

2664
3

1

5

1

3775, v1 D

2664
3

1

�1

1

3775, v2 D

2664
1

�1

1

�1

3775

12. y D

2664
4

3

4

7

3775, v1 D

2664
2

1

�2

1

3775, v2 D

2664
1

1

1

�1

3775
In Exercises 13 and 14, find the best approximation to z by vectors
of the form c1v1 C c2v2.

13. z D

2664
3

�7

2

3

3775, v1 D

2664
2

�1

�3

1

3775, v2 D

2664
1

1

0

�1

3775

14. z D

2664
2

4

0

�1

3775, v1 D

2664
2

0

�1

�3

3775, v2 D

2664
5

�2

4

2

3775
15. Let y D

24 5

�9

5

35, u1 D

24�3

�5

1

35, u2 D

24�3

2

1

35. Find the dis-
tance from y to the plane in R3 spanned by u1 and u2.

16. Let y, v1, and v2 be as in Exercise 12. Find the distance from
y to the subspace of R4 spanned by v1 and v2.

17. Let y D

24 4

8

1

35, u1 D

24 2=3

1=3

2=3

35, u2 D

24�2=3

2=3

1=3

35, and

W D Span fu1; u2g.

a. Let U D Œ u1 u2 �. Compute U TU and U U T .

b. Compute projW y and .U U T /y.

18. Let y D
�

7

9

�
, u1 D

�
1=
p

10

�3=
p

10

�
, and W D Span fu1g.

a. Let U be the 2 � 1 matrix whose only column is u1.
Compute U TU and U U T .

b. Compute projW y and .U U T /y.

19. Let u1 D

24 1

1

1

35, u2 D

24 1

�2

1

35, and u3 D

24 0

0

1

35. Note that
u1 and u2 are orthogonal but that u3 is not orthogonal to u1 or
u2. It can be shown that u3 is not in the subspace W spanned
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by u1 and u2. Use this fact to construct a nonzero vector v in
R3 that is orthogonal to u1 and u2.

20. Let u1 and u2 be as in Exercise 19, and let u3 D

24 1

0

0

35. It can
be shown that u4 is not in the subspace W spanned by u1 and
u2. Use this fact to construct a nonzero vector v in R3 that is
orthogonal to u1 and u2.

In Exercises 21–30, all vectors and subspaces are inRn. Mark each
statement True or False (T/F). Justify each answer.

21. (T/F) If z is orthogonal to u1 and to u2 and if W D

Span fu1; u2g, then z must be in W ?.

22. (T/F) For each y and each subspaceW, the vector y � projW y
is orthogonal to W .

23. (T/F) The orthogonal projection Oy of y onto a subspace W

can sometimes depend on the orthogonal basis for W used to
compute Oy.

24. (T/F) If y is in a subspace W, then the orthogonal projection
of y onto W is y itself.

25. (T/F) The best approximation to y by elements of a subspace
W is given by the vector y � projW y.

26. (T/F) IfW is a subspace ofRn and if v is in bothW andW ?,
then v must be the zero vector.

27. (T/F) In the Orthogonal Decomposition Theorem, each term
in formula (2) for Oy is itself an orthogonal projection of y onto
a subspace of W.

28. (T/F) If y D z1 C z2, where z1 is in a subspaceW and z2 is in
W ?, then z1 must be the orthogonal projection of y onto W.

29. (T/F) If the columns of an n � p matrix U are orthonormal,
thenU U T y is the orthogonal projection of y onto the column

space of U .

30. (T/F) If an n � p matrix U has orthonormal columns, then
U U T x D x for all x in Rn.

31. Let A be an m � n matrix. Prove that every vector x in Rn

can be written in the form x D pC u, where p is in RowA

and u is in NulA. Also, show that if the equation Ax D b
is consistent, then there is a unique p in RowA such that
Ap D b.

32. Let W be a subspace of Rn with an orthogonal basis
fw1; : : : ;wpg, and let fv1; : : : ; vqg be an orthogonal basis for
W ?.

a. Explain why fw1; : : : ;wp; v1; : : : ; vqg is an orthogonal
set.

b. Explain why the set in part (a) spans Rn.

c. Show that dimW C dimW ? D n.

In Exercises 33–36, first change the given pattern into a vector w
of zeros and ones and then use the method illustrated in Example
5 to find a matrix M so that wT Mw D 0, but uT Mu ¤ 0 for all
other nonzero vectors u of zeros and ones.

33. 34.

35. 36.

T 37. Let U be the 8 � 4 matrix in Exercise 43 in Section 6.2. Find
the closest point to y D .1; 1; 1; 1; 1; 1; 1; 1/ in ColU . Write
the keystrokes or commands you use to solve this problem.

T 38. Let U be the matrix in Exercise 37. Find the distance from
b D .1; 1; 1; 1;�1;�1;�1;�1/ to ColU .

Solution to Practice Problems

1. Compute

projW y D
y�u1

u1 � u1

u1 C
y�u2

u2 � u2

u2 D
88

66
u1 C

�2

6
u2

D
4

3

24�7

1

4

35 � 1

3

24�1

1

�2

35 D 24�9

1

6

35 D y

In this case, y happens to be a linear combination of u1 and u2, so y is in W . The
closest point in W to y is y itself.

2. Using Theorem 10, letU be amatrix whose columns consist of an orthonormal basis
for W . Then projW zD U U T zD U U T (xC y)D U U T xC U U T y D projW xC
projW y D uC v.
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6.4 The Gram Schmidt Process
The Gram–Schmidt process is a simple algorithm for producing an orthogonal or
orthonormal basis for any nonzero subspace ofRn. The first two examples of the process
are aimed at hand calculation.

EXAMPLE 1 LetW D Span fx1; x2g, where x1 D

24 3

6

0

35 and x2 D

24 1

2

2

35. Construct
an orthogonal basis fv1; v2g for W .

SOLUTION The subspaceW is shown in Figure 1, alongwith x1, x2, and the projection
p of x2 onto x1. The component of x2 orthogonal to x1 is x2 � p, which is in W because
it is formed from x2 and a multiple of x1. Let v1 D x1 and

v2 D x2 � p D x2 �
x2 � x1

x1 � x1

x1 D

24 1

2

2

35 � 15

45

24 3

6

0

35 D 24 0

0

2

35
Then fv1; v2g is an orthogonal set of nonzero vectors in W . Since dimW D 2, the set

x3

v1 5 x1

0

x2

W

x2

v2

p
x1

FIGURE 1

Construction of an orthogonal
basis fv1; v2g.

fv1; v2g is a basis for W .

The next example fully illustrates the Gram–Schmidt process. Study it carefully.

EXAMPLE 2 Let x1 D

2664
1

1

1

1

3775, x2 D

2664
0

1

1

1

3775, and x3 D

2664
0

0

1

1

3775. Then fx1; x2; x3g is

clearly linearly independent and thus is a basis for a subspace W of R4. Construct an
orthogonal basis for W .

SOLUTION

Step 1. Let v1 D x1 and W1 D Span fx1g D Span fv1g.

Step 2. Let v2 be the vector produced by subtracting from x2 its projection onto the
subspace W1. That is, let

v2 D x2 � projW1
x2

D x2 �
x2 � v1

v1 � v1

v1 Since v1 D x1

D

2664
0

1

1

1

3775 � 3

4

2664
1

1

1

1

3775 D
2664
�3=4

1=4

1=4

1=4

3775
As in Example 1, v2 is the component of x2 orthogonal to x1, and fv1; v2g is an orthogonal
basis for the subspace W2 spanned by x1 and x2.

Step 20 (optional). If appropriate, scale v2 to simplify later computations. Since v2 has
fractional entries, it is convenient to scale it by a factor of 4 and replace fv1; v2g by the
orthogonal basis

v1 D

2664
1

1

1

1

3775; v02 D

2664
�3

1

1

1

3775
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Step 3. Let v3 be the vector produced by subtracting from x3 its projection onto the
subspace W2. Use the orthogonal basis fv1; v02g to compute this projection onto W2:

projW2
x3 D

Projection of
x3 onto v1

?

x3 � v1

v1 � v1

v1 C

Projection of
x3 onto v02

?

x3 � v02
v02 � v02

v02 D
2

4

2664
1

1

1

1

3775C 2

12

2664
�3

1

1

1

3775 D
2664

0

2=3

2=3

2=3

3775
Then v3 is the component of x3 orthogonal to W2, namely

v3 D x3 � projW2
x3 D

2664
0

0

1

1

3775 �
2664

0

2=3

2=3

2=3

3775 D
2664

0

�2=3

1=3

1=3

3775
See Figure 2 for a diagram of this construction. Observe that v3 is in W , because x3

and projW2x3 are both in W . Thus fv1; v02; v3g is an orthogonal set of nonzero vectors
and hence a linearly independent set in W . Note that W is three-dimensional since it
was defined by a basis of three vectors. Hence, by the Basis Theorem in Section 4.5,
fv1; v02; v3g is an orthogonal basis for W .

v3

v1

v92

x3

projW2
x3

0

W2 5 Span{v1, v92}

FIGURE 2 The construction of
v3 from x3 and W2.

The proof of the next theorem shows that this strategy really works. Scaling of
vectors is not mentioned because that is used only to simplify hand calculations.

THEOREM 11 The Gram–Schmidt Process

Given a basis fx1; : : : ; xpg for a nonzero subspace W of Rn, define

v1 D x1

v2 D x2 �
x2 � v1

v1 � v1

v1

v3 D x3 �
x3 � v1

v1 � v1

v1 �
x3 � v2

v2 � v2

v2

:::

vp D xp �
xp � v1

v1 � v1

v1 �
xp � v2

v2 � v2

v2 � � � � �
xp � vp�1

vp�1 � vp�1

vp�1

Then fv1; : : : ; vpg is an orthogonal basis for W . In addition

Span fv1; : : : ; vkg D Span fx1; : : : ; xkg for 1 � k � p (1)
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PROOF For 1 � k � p, let Wk D Span fx1; : : : ; xkg. Set v1 D x1, so that Span fv1g D

Span fx1g. Suppose, for some k < p, we have constructed v1; : : : ; vk so that fv1; : : : ; vkg

is an orthogonal basis for Wk . Define

vkC1 D xkC1 � projWk
xkC1 (2)

By the Orthogonal Decomposition Theorem, vkC1 is orthogonal to Wk . Note that
projWk

xkC1 is inWk and hence also inWkC1. Since xkC1 is inWkC1, so is vkC1 (because
WkC1 is a subspace and is closed under subtraction). Furthermore, vkC1 ¤ 0 because
xkC1 is not in Wk D Span fx1; : : : ; xkg. Hence fv1; : : : ; vkC1g is an orthogonal set of
nonzero vectors in the .k C 1/-dimensional space WkC1. By the Basis Theorem in Sec-
tion 4.5, this set is an orthogonal basis for WkC1. Hence WkC1 D Span fv1; : : : ; vkC1g.
When k C 1 D p, the process stops.

Theorem 11 shows that any nonzero subspaceW ofRn has an orthogonal basis, be-
cause an ordinary basis fx1; : : : ; xpg is always available (by Theorem 12 in Section 4.5),
and the Gram–Schmidt process depends only on the existence of orthogonal projections
onto subspaces of W that already have orthogonal bases.

Orthonormal Bases
An orthonormal basis is constructed easily from an orthogonal basis fv1; : : : ; vpg: simply
normalize (i.e., “scale”) all the vk . When working problems by hand, this is easier than
normalizing each vk as soon as it is found (because it avoids unnecessary writing of
square roots).

EXAMPLE 3 Example 1 constructed the orthogonal basis

v1 D

24 3

6

0

35; v2 D

24 0

0

2

35
An orthonormal basis is

u1 D
1

kv1k
v1 D

1
p

45

24 3

6

0

35 D 24 1=
p

5

2=
p

5

0

35
u2 D

1

kv2k
v2 D

24 0

0

1

35
QR Factorization of Matrices
If an m � n matrix A has linearly independent columns x1; : : : ; xn, then applying the
Gram–Schmidt process (with normalizations) to x1; : : : ; xn amounts to factoring A, as
described in the next theorem. This factorization is widely used in computer algorithms
for various computations, such as solving equations (discussed in Section 6.5) and
finding eigenvalues (mentioned in the exercises for Section 5.2).
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THEOREM 12 The QR Factorization

IfA is anm � nmatrix with linearly independent columns, thenA can be factored
as A D QR, where Q is an m � n matrix whose columns form an orthonormal
basis for ColA and R is an n � n upper triangular invertible matrix with positive
entries on its diagonal.

PROOF The columns of A form a basis fx1; : : : ; xng for ColA. Construct an orthonor-
mal basis fu1; : : : ; ung for W D ColA with property (1) in Theorem 11. This basis may
be constructed by the Gram–Schmidt process or some other means. Let

Q D Œ u1 u2 � � � un �

For k D 1; : : : ; n; xk is in Span fx1; : : : ; xkg D Span fu1; : : : ; ukg. So there are con-
stants, r1k ; : : : ; rkk , such that

xk D r1ku1 C � � � C rkkuk C 0 ukC1 C � � � C 0 un

We may assume that rkk � 0. (If rkk < 0, multiply both rkk and uk by �1.) This shows
that xk is a linear combination of the columns of Q using as weights the entries in the
vector

rk D

266666664

r1k

:::

rkk

0
:::

0

377777775
That is, xk D Qrk for k D 1; : : : ; n. Let R D Œ r1 � � � rn �. Then

A D Œ x1 � � � xn � D Œ Qr1 � � � Qrn � D QR

The fact thatR is invertible follows easily from the fact that the columns ofA are linearly
independent (Exercise 23). Since R is clearly upper triangular, its nonnegative diagonal
entries must be positive.

EXAMPLE 4 Find a QR factorization of A D

2664
1 0 0

1 1 0

1 1 1

1 1 1

3775.
SOLUTION The columns of A are the vectors x1, x2, and x3 in Example 2. An
orthogonal basis for ColA D Span fx1; x2; x3g was found in that example:

v1 D

2664
1

1

1

1

3775; v02 D

2664
�3

1

1

1

3775; v3 D

2664
0

�2=3

1=3

1=3

3775
To simplify the arithmetic that follows, scale v3 by letting v03 D 3v3. Then normalize the
three vectors to obtain u1, u2, and u3, and use these vectors as the columns of Q:

Q D

26664
1=2 �3=

p
12 0

1=2 1=
p

12 �2=
p

6

1=2 1=
p

12 1=
p

6

1=2 1=
p

12 1=
p

6

37775
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By construction, the first k columns ofQ are an orthonormal basis of Span fx1; : : : ; xkg.
From the proof of Theorem 12, A D QR for some R. To find R, observe that QTQ D I ,
because the columns of Q are orthonormal. Hence

QTA D QT .QR/ D IR D R

and

R D

24 1=2 1=2 1=2 1=2

�3=
p

12 1=
p

12 1=
p

12 1=
p

12

0 �2=
p

6 1=
p

6 1=
p

6

35
2664

1 0 0

1 1 0

1 1 1

1 1 1

3775
D

24 2 3=2 1

0 3=
p

12 2=
p

12

0 0 2=
p

6

35
Numerical Notes

1. When the Gram–Schmidt process is run on a computer, roundoff error can
build up as the vectors uk are calculated, one by one. For j and k large but
unequal, the inner products uT

j uk may not be sufficiently close to zero. This
loss of orthogonality can be reduced substantially by rearranging the order
of the calculations.1 However, a different computer-based QR factorization is
usually preferred to this modified Gram–Schmidt method because it yields a
more accurate orthonormal basis, even though the factorization requires about
twice as much arithmetic.

2. To produce a QR factorization of a matrix A, a computer program usually
left-multiplies A by a sequence of orthogonal matrices until A is transformed
into an upper triangular matrix. This construction is analogous to the left-
multiplication by elementary matrices that produces an LU factorization of A.

Practice Problems

1. Let W D Span fx1; x2g, where x1 D

24 1

1

1

35 and x2 D

24 1=3

1=3

�2=3

35. Construct an or-
thonormal basis for W .

2. Suppose A D QR, where Q is an m � n matrix with orthogonal columns and R

is an n � n matrix. Show that if the columns of A are linearly dependent, then R

cannot be invertible.

6.4 Exercises
In Exercises 1–6, the given set is a basis for a subspace W . Use
the Gram–Schmidt process to produce an orthogonal basis for W .

1.

24 3

0

�1

35, 24 8

5

�6

35 2.

24 0

4

2

35, 24 5

6

�7

35
3.

24 2

�5

1

35, 24 4

�1

2

35 4.

24 4

�5

6

35, 24 �8

17

�19

35

5.

2664
1

�4

0

1

3775,
2664

7

�7

�4

1

3775 6.

2664
1

�2

1

�2

3775,
2664

5

�6

7

�8

3775
1 See Fundamentals of Matrix Computations, by David S. Watkins (New York: John Wiley & Sons, 1991),
pp. 167–180.
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7. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 3.

8. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 4.

Find an orthogonal basis for the column space of each matrix in
Exercises 9–12.

9.

2664
3 �5 1

1 1 1

�1 5 �2

3 �7 8

3775 10.

2664
�1 6 6

3 �8 3

1 �2 6

1 �4 �3

3775

11.

266664
1 2 5

�1 1 �4

�1 4 �3

1 �4 7

1 2 1

377775 12.

266664
1 2 4

�1 �3 �3

0 1 1

�1 �1 �1

1 2 4

377775
In Exercises 13 and 14, the columns of Q were obtained by
applying the Gram–Schmidt process to the columns of A. Find an
upper triangular matrix R such that A D QR. Check your work.

13. A D

2664
5 9

1 7

�3 �5

1 5

3775, Q D

2664
5=6 �1=6

1=6 5=6

�3=6 1=6

1=6 3=6

3775

14. A D

2664
�2 3

5 7

2 �2

4 6

3775, Q D

2664
�2=7 5=7

5=7 2=7

2=7 �4=7

4=7 2=7

3775
15. Find a QR factorization of the matrix in Exercise 11.

16. Find a QR factorization of the matrix in Exercise 12.

In Exercises 17–22, all vectors and subspaces are inRn. Mark each
statement True or False (T/F). Justify each answer.

17. (T/F) If fv1; v2; v3g is an orthogonal basis for W , then
multiplying v3 by a scalar c gives a new orthogonal basis
fv1; v2; cv3g.

18. (T/F) If W D Span fx1; x2; x3g with fx1; x2; x3g linearly in-
dependent, and if fv1; v2; v3g is an orthogonal set in W , then
fv1; v2; v3g is a basis for W.

19. (T/F) The Gram–Schmidt process produces from a linearly
independent set fx1; : : : ; xpg an orthogonal set fv1; : : : ; vpg

with the property that for each k, the vectors v1; : : : ; vk span
the same subspace as that spanned by x1; : : : ; xk .

20. (T/F) If x is not in a subspaceW, then x � projW x is not zero.

21. (T/F) If A D QR, where Q has orthonormal columns, then
R D QT A.

22. (T/F) In a QR factorization, say A D QR (when A has
linearly independent columns), the columns of Q form an

orthonormal basis for the column space of A.

23. Suppose A D QR, where Q is m � n and R is n � n. Show
that if the columns ofA are linearly independent, thenR must
be invertible. [Hint: Study the equation Rx D 0 and use the
fact that A D QR.]

24. Suppose A D QR, where R is an invertible matrix. Show
that A and Q have the same column space. [Hint: Given y in
ColA, show that y D Qx for some x. Also, given y in ColQ,
show that y D Ax for some x.]

25. Given A D QR as in Theorem 12, describe how to find an
orthogonalm �m (square) matrixQ1 and an invertible n � n

upper triangular matrix R such that

A D Q1

�
R

0

�
The MATLAB qr command supplies this “full” QR factor-
ization when rankA D n.

26. Let u1; : : : ; up be an orthogonal basis for a subspace W of
Rn, and let T W Rn ! Rn be defined by T .x/ D projW x.
Show that T is a linear transformation.

27. Suppose A D QR is a QR factorization of an m � n ma-
trix A (with linearly independent columns). Partition A as
ŒA1 A2�, where A1 has p columns. Show how to obtain a
QR factorization of A1, and explain why your factorization
has the appropriate properties.

T 28. Use the Gram–Schmidt process as in Example 2 to produce
an orthogonal basis for the column space of

A D

266664
�10 13 7 �11

2 1 �5 3

�6 3 13 �3

16 �16 �2 5

2 1 �5 �7

377775
T 29. Use the method in this section to produce a QR factorization

of the matrix in Exercise 28.

T 30. For a matrix program, the Gram–Schmidt process works
better with orthonormal vectors. Starting with x1; : : : ; xp as
in Theorem 11, let A D Œ x1 � � � xp �. Suppose Q is an
n � k matrix whose columns form an orthonormal basis for
the subspace Wk spanned by the first k columns of A. Then
for x in Rn, QQT x is the orthogonal projection of x onto Wk

(Theorem 10 in Section 6.3). If xkC1 is the next column ofA,
then equation (2) in the proof of Theorem 11 becomes

vkC1 D xkC1 �Q.QT xkC1/

(The parentheses above reduce the number of arithmetic
operations.) Let ukC1 D vkC1=kvkC1k. The new Q for the
next step is Œ Q ukC1 �. Use this procedure to compute the
QR factorization of the matrix in Exercise 28. Write the
keystrokes or commands you use.
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Solution to Practice Problems

1. Let v1 D x1 D

24 1

1

1

35 and v2 D x2 �
x2 � v1

v1 � v1

v1 D x2 � 0v1 D x2. So fx1; x2g is al-

ready orthogonal. All that is needed is to normalize the vectors. Let

u1 D
1

kv1k
v1 D

1
p

3

24 1

1

1

35 D 24 1=
p

3

1=
p

3

1=
p

3

35
Instead of normalizing v2 directly, normalize v02 D 3v2 instead:

u2 D
1

kv02k
v02 D

1p
12 C 12 C .�2/2

24 1

1

�2

35 D 24 1=
p

6

1=
p

6

�2=
p

6

35
Then fu1; u2g is an orthonormal basis for W .

2. Since the columns of A are linearly dependent, there is a nontrivial vector x such
that Ax D 0. But then QRx D 0. Applying Theorem 7 from Section 6.2 results in
kRxk D kQRxk D k0k D 0. But kRxk D 0 implies Rx D 0, by Theorem 1 from
Section 6.1. Thus there is a nontrivial vector x such that Rx D 0 and hence, by the
Invertible Matrix Theorem, R cannot be invertible.

6.5 Least-Squares Problems
Inconsistent systems arise often in applications. When a solution is demanded and none
exists, the best one can do is to find an x that makes Ax as close as possible to b.

Think of Ax as an approximation to b. The smaller the distance between b and Ax,
given by kb � Axk, the better the approximation. The general least-squares problem
is to find an x that makes kb � Axk as small as possible. The adjective “least-squares”
arises from the fact that kb � Axk is the square root of a sum of squares.

DEFINITION If A is m � n and b is in Rm, a least-squares solution of Ax D b is an Ox in Rn

such that
kb � AOxk � kb � Axk

for all x in Rn.

The most important aspect of the least-squares problem is that no matter what x we
select, the vector Ax will necessarily be in the column space, ColA. So we seek an x
that makes Ax the closest point in ColA to b. See Figure 1. (Of course, if b happens to
be in ColA, then b is Ax for some x, and such an x is a “least-squares solution.”)

Solution of the General Least-Squares Problem
Given A and b as above, apply the Best Approximation Theorem in Section 6.3 to the
subspace ColA. Let

Ob D projColA b
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Ax̂
0

Ax1
Col A

b

Ax2

FIGURE 1 The vector b is closer to
AOx than to Ax for other x.

Because Ob is in the column space of A, the equation Ax D Ob is consistent, and there is
an Ox in Rn such that

AOx D Ob (1)

Since Ob is the closest point in ColA to b, a vector Ox is a least-squares solution ofAx D b
if and only if Ox satisfies (1). Such an Ox in Rn is a list of weights that will build Ob out of
the columns of A. See Figure 2. [There are many solutions of (1) if the equation has free
variables.]

x̂n
0

subspace of m

b

b 2 Ax̂

b 5 Axˆ

Col A

A

ˆ

FIGURE 2 The least-squares solution Ox is in Rn.

Suppose Ox satisfies AOx D Ob. By the Orthogonal Decomposition Theorem in Sec-
tion 6.3, the projection Ob has the property that b � Ob is orthogonal to ColA, so b � AOx
is orthogonal to each column of A. If aj is any column of A, then aj �.b � AOx/ D 0, and
aT

j .b � AOx/ D 0. Since each aT
j is a row of AT ,

AT .b � AOx/ D 0 (2)

(This equation also follows from Theorem 3 in Section 6.1.) Thus

AT b � ATAOx D 0

ATAOx D AT b

These calculations show that each least-squares solution ofAx D b satisfies the equation

ATAx D AT b (3)

The matrix equation (3) represents a system of equations called the normal equations
for Ax D b. A solution of (3) is often denoted by Ox.

THEOREM 13 The set of least-squares solutions of Ax D b coincides with the nonempty set of
solutions of the normal equations ATAx D AT b.
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PROOF As shown, the set of least-squares solutions is nonempty and each least-squares
solution Ox satisfies the normal equations. Conversely, suppose Ox satisfies ATAOxD AT b.
Then Ox satisfies (2), which shows that b � AOx is orthogonal to the rows of AT and hence
is orthogonal to the columns ofA. Since the columns ofA span ColA, the vector b � AOx
is orthogonal to all of ColA. Hence the equation

b D AOxC .b � AOx/

is a decomposition of b into the sum of a vector in ColA and a vector orthogonal to
ColA. By the uniqueness of the orthogonal decomposition, AOx must be the orthogonal
projection of b onto ColA. That is, AOx D Ob, and Ox is a least-squares solution.

EXAMPLE 1 Find a least-squares solution of the inconsistent system Ax D b for

A D

24 4 0

0 2

1 1

35; b D

24 2

0

11

35
SOLUTION To use normal equations (3), compute:

ATA D

�
4 0 1

0 2 1

�24 4 0

0 2

1 1

35 D � 17 1

1 5

�

AT b D
�

4 0 1

0 2 1

�24 2

0

11

35 D � 19

11

�
Then the equation ATAx D AT b becomes�

17 1

1 5

��
x1

x2

�
D

�
19

11

�
Row operations can be used to solve this system, but since ATA is invertible and 2 � 2,
it is probably faster to compute

.ATA/�1
D

1

84

�
5 �1

�1 17

�
and then to solve ATAx D AT b as

Ox D .ATA/�1AT b

D
1

84

�
5 �1

�1 17

��
19

11

�
D

1

84

�
84

168

�
D

�
1

2

�
In many calculations, ATA is invertible, but this is not always the case. The next

example involves a matrix of the sort that appears in what are called analysis of variance
problems in statistics.

EXAMPLE 2 Find a least-squares solution of Ax D b for

A D

26666664
1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

37777775; b D

26666664
�3

�1

0

2

5

1

37777775
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SOLUTION Compute

ATA D

2664
1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

3775
26666664

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

37777775 D
2664

6 2 2 2

2 2 0 0

2 0 2 0

2 0 0 2

3775

AT b D

2664
1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

3775
26666664
�3

�1

0

2

5

1

37777775 D
2664

4

�4

2

6

3775
The augmented matrix for ATAx D AT b is2664

6 2 2 2 4

2 2 0 0 �4

2 0 2 0 2

2 0 0 2 6

3775 �
2664

1 0 0 1 3

0 1 0 �1 �5

0 0 1 �1 �2

0 0 0 0 0

3775
The general solution is x1 D 3 � x4, x2 D �5C x4, x3 D �2C x4, and x4 is free. So
the general least-squares solution of Ax D b has the form

Ox D

2664
3

�5

�2

0

3775C x4

2664
�1

1

1

1

3775
The next theorem gives useful criteria for determining when there is only one least-

squares solution of Ax D b. (Of course, the orthogonal projection Ob is always unique.)

THEOREM 14 Let A be an m � n matrix. The following statements are logically equivalent:

a. The equation Ax D b has a unique least-squares solution for each b in Rm.

b. The columns of A are linearly independent.

c. The matrix ATA is invertible.

When these statements are true, the least-squares solution Ox is given by

Ox D .ATA/�1AT b (4)

The main elements of a proof of Theorem 14 are outlined in Exercises 27–29, which
also review concepts from Chapter 4. Formula (4) for Ox is useful mainly for theoretical
purposes and for hand calculations when ATA is a 2 � 2 invertible matrix.

When a least-squares solution Ox is used to produceAOx as an approximation to b, the
distance from b to AOx is called the least-squares error of this approximation.

EXAMPLE 3 Given A and b as in Example 1, determine the least-squares error in
the least-squares solution of Ax D b.
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SOLUTION From Example 1,

b D

24 2

0

11

35 and AOx D

24 4 0

0 2

1 1

35� 1

2

�
D

24 4

4

3

35
Hence

b � AOx D

24 2

0

11

35 � 24 4

4

3

35 D 24�2

�4

8

35
and

kb � AOxk D
p

.�2/2 C .�4/2 C 82 D
p

84

The least-squares error is
p

84. For any x in R2, the distance between b and the vector

(2, 0, 11)
b

0

84!

(0, 2, 1)

(4, 0, 1)
Ax ˆ

x1

x2

x3

Col A

FIGURE 3 Ax is at least
p

84. See Figure 3. Note that the least-squares solution Ox itself does not
appear in the figure.

Alternative Calculations of Least-Squares Solutions
The next example shows how to find a least-squares solution of Ax D b when the
columns of A are orthogonal. Such matrices often appear in linear regression problems,
discussed in the next section.

EXAMPLE 4 Find a least-squares solution of Ax D b for

A D

2664
1 �6

1 �2

1 1

1 7

3775; b D

2664
�1

2

1

6

3775
SOLUTION Because the columns a1 and a2 of A are orthogonal, the orthogonal
projection of b onto ColA is given by

Ob D
b�a1

a1 � a1

a1 C
b�a2

a2 � a2

a2 D
8

4
a1 C

45

90
a2 (5)

D

2664
2

2

2

2

3775C
2664
�3

�1

1=2

7=2

3775 D
2664
�1

1

5=2

11=2

3775
Now that Ob is known, we can solve AOx D Ob. But this is trivial, since we already

know what weights to place on the columns of A to produce Ob. It is clear from (5) that

Ox D
�

8=4

45=90

�
D

�
2

1=2

�
In some cases, the normal equations for a least-squares problem can be ill-

conditioned; that is, small errors in the calculations of the entries of ATA can sometimes
cause relatively large errors in the solution Ox. If the columns of A are linearly inde-
pendent, the least-squares solution can often be computed more reliably through a QR
factorization of A (described in Section 6.4).1

1 The QR method is compared with the standard normal equation method in G. Golub and C. Van Loan,
Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins Press, 1996), pp. 230–231.
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THEOREM 15 Given anm � nmatrixAwith linearly independent columns, letA D QR be a QR
factorization of A as in Theorem 12. Then, for each b in Rm, the equation Ax D b
has a unique least-squares solution, given by

Ox D R�1QT b (6)

PROOF Let Ox D R�1QT b. Then

AOx D QROx D QRR�1QT b D QQT b

By Theorem 12, the columns of Q form an orthonormal basis for ColA. Hence, by
Theorem 10,QQTb is the orthogonal projection Ob of b onto ColA. ThenAOx D Ob, which
shows that Ox is a least-squares solution of Ax D b. The uniqueness of Ox follows from
Theorem 14.

Numerical Notes

Since R in Theorem 15 is upper triangular, Ox should be calculated as the exact
solution of the equation

Rx D QT b (7)

It is much faster to solve (7) by back-substitution or row operations than to
compute R�1 and use (6).

EXAMPLE 5 Find the least-squares solution of Ax D b for

A D

2664
1 3 5

1 1 0

1 1 2

1 3 3

3775; b D

2664
3

5

7

�3

3775
SOLUTION The QR factorization of A can be obtained as in Section 6.4.

A D QR D

2664
1=2 1=2 1=2

1=2 �1=2 �1=2

1=2 �1=2 1=2

1=2 1=2 �1=2

3775
24 2 4 5

0 2 3

0 0 2

35
Then

QT b D

24 1=2 1=2 1=2 1=2

1=2 �1=2 �1=2 1=2

1=2 �1=2 1=2 �1=2

35
2664

3

5

7

�3

3775 D
24 6

�6

4

35
The least-squares solution Ox satisfies Rx D QT b; that is,24 2 4 5

0 2 3

0 0 2

3524 x1

x2

x3

35 D 24 6

�6

4

35
This equation is solved easily and yields Ox D

24 10

�6

2

35.
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Practice Problems

1. LetA D

24 1 �3 �3

1 5 1

1 7 2

35 and b D

24 5

�3

�5

35. Find a least-squares solution ofAx D b,

and compute the associated least-squares error.

2. What can you say about the least-squares solution of Ax D b when b is orthogonal
to the columns of A?

6.5 Exercises
In Exercises 1–4, find a least-squares solution of Ax D b by (a)
constructing the normal equations for Ox and (b) solving for Ox.

1. A D

24�1 2

2 �3

�1 3

35, b D 24 4

1

2

35

2. A D

24 2 1

�2 0

2 3

35, b D 24�5

8

1

35

3. A D

2664
1 �2

�1 2

0 3

2 5

3775, b D
2664

3

1

�4

2

3775

4. A D

24 1 1

1 �4

1 1

35, b D 24 9

2

5

35
In Exercises 5 and 6, describe all least-squares solutions of the
equation Ax D b.

5. A D

2664
1 1 0

1 1 0

1 0 1

1 0 1

3775, b D
2664

1

3

8

2

3775

6. A D

26666664
1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

37777775, b D
26666664

7

2

3

6

5

4

37777775
7. Compute the least-squares error associated with the least-

squares solution found in Exercise 3.

8. Compute the least-squares error associated with the least-
squares solution found in Exercise 4.

In Exercises 9–12, find (a) the orthogonal projection of b onto
ColA and (b) a least-squares solution of Ax D b.

9. A D

24 1 5

3 1

�2 4

35, b D 24 4

�2

�3

35

10. A D

24 1 2

�1 4

1 2

35, b D 24 3

�1

5

35

11. A D

2664
1 �1 �4

1 �4 1

3 0 1

5 1 0

3775, b D
2664

3

�2

�4

7

3775

12. A D

2664
1 1 2

2 0 �1

�1 1 0

0 2 �1

3775, b D
2664

3

9

9

3

3775
13. Let A D

24 3 4

�2 1

3 4

35, b D 24 11

�9

5

35, u D � 5

�1

�
, and v D�

5

�2

�
. Compute Au and Av, and compare them with b.

Could u possibly be a least-squares solution of Ax D b?
(Answer this without computing a least-squares solution.)

14. Let A D

24 2 1

�3 �4

3 2

35, b D 24 5

4

4

35, u D � 4

�5

�
, and v D�

6

�5

�
. Compute Au and Av, and compare them with b. Is

it possible that at least one of u or v could be a least-squares
solution of Ax D b? (Answer this without computing a least-
squares solution.)

In Exercises 15 and 16, use the factorization A D QR to find the
least-squares solution of Ax D b.

15. A D

24 2 3

2 4

1 1

35 D 24 2=3 �1=3

2=3 2=3

1=3 �2=3

35� 3 5

0 1

�
, b D

24 7

3

1

35

16. A D

2664
3 5

3 0

3 0

3 5

3775 D
2664

1=2 1=2

1=2 �1=2

1=2 �1=2

1=2 1=2

3775� 6 5

0 5

�
; b D

2664
9

�8

5

�3

3775
In Exercises 17–26, A is an m � n matrix and b is in Rm. Mark
each statement True or False (T/F). Justify each answer.

17. (T/F) The general least-squares problem is to find an x that
makes Ax as close as possible to b.
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18. (T/F) If b is in the column space of A, then every solution of
Ax D b is a least-squares solution.

19. (T/F) A least-squares solution of Ax D b is a vector Ox that
satisfies AOx D Ob, where Ob is the orthogonal projection of b
onto Col A.

20. (T/F) A least-squares solution of Ax D b is a vector Ox such
that kb � Axk � kb � AOxk for all x in Rn.

21. (T/F) Any solution of AT Ax D AT b is a least-squares solu-
tion of Ax D b.

22. (T/F) If the columns of A are linearly independent, then the
equation Ax D b has exactly one least-squares solution.

23. (T/F) The least-squares solution ofAx D b is the point in the
column space of A closest to b.

24. (T/F) A least-squares solution of Ax D b is a list of weights
that, when applied to the columns of A, produces the orthog-
onal projection of b onto Col A.

25. (T/F) The normal equations always provide a reliable method
for computing least-squares solutions.

26. (T/F) IfA has a QR factorization, sayA D QR, then the best
way to find the least-squares solution ofAx D b is to compute
Ox D R�1QT b.

27. Let A be an m � n matrix. Use the steps below to show that a
vector x in Rn satisfies Ax D 0 if and only if ATAx D 0. This
will show that NulA D NulATA.

a. Show that if Ax D 0, then ATAx D 0.

b. Suppose ATAx D 0. Explain why xTATAx D 0, and use
this to show that Ax D 0.

28. Let A be an m � n matrix such that ATA is invertible. Show
that the columns of A are linearly independent. [Careful:
You may not assume that A is invertible; it may not even be
square.]

29. Let A be an m � n matrix whose columns are linearly inde-
pendent. [Careful: A need not be square.]

a. Use Exercise 27 to show that ATA is an invertible matrix.

b. Explain why A must have at least as many rows as
columns.

c. Determine the rank of A.

30. Use Exercise 27 to show that rankATA D rankA. [Hint:How
many columns doesATA have?How is this connectedwith the
rank of ATA?]

31. Suppose A is m � n with linearly independent columns and
b is in Rm. Use the normal equations to produce a formula
for Ob, the projection of b onto ColA. [Hint: Find Ox first. The
formula does not require an orthogonal basis for ColA.]

32. Find a formula for the least-squares solution ofAx D bwhen
the columns of A are orthonormal.

33. Describe all least-squares solutions of the system

x C 2y D 3

x C 2y D 1

T 34. Example 2 in Section 4.8 displayed a low-pass linear fil-
ter that changed a signal fykg into fykC1g and changed a
higher-frequency signal fwkg into the zero signal, where
yk D cos.�k=4/ and wk D cos.3�k=4/. The following cal-
culations will design a filter with approximately those prop-
erties. The filter equation is

a0ykC2 C a1ykC1 C a2yk D ´k for all k .8/

Because the signals are periodic, with period 8, it suffices
to study equation (8) for k D 0; : : : ; 7. The action on the
two signals described above translates into two sets of eight
equations, shown below:

k D 0

k D 1
:::

k D 7

266666666664

ykC2

0

ykC1

.7

yk

1
�:7 0 :7

�1 �:7 0

�:7 �1 �:7

0 �:7 �1

:7 0 �:7

1 :7 0

:7 1 :7

377777777775
24 a0

a1

a2

35 D
266666666664

ykC1

.7
0

�:7

�1

�:7

0

:7

1

377777777775

k D 0

k D 1
:::

k D 7

266666666664

wkC2

0 �

wkC1

.7

wk

1
:7 0 �:7

�1 :7 0

:7 �1 :7

0 :7 �1

�:7 0 :7

1 �:7 0

�:7 1 �:7

377777777775
24 a0

a1

a2

35 D
266666666664

0

0

0

0

0

0

0

0

377777777775
Write an equationAx D b, whereA is a 16 � 3matrix formed
from the two coefficient matrices above and where b inR16 is
formed from the two right sides of the equations. Find a0, a1,
and a2 given by the least-squares solution of Ax D b. (The
.7 in the data above was used as an approximation for

p
2=2,

to illustrate how a typical computation in an applied problem
might proceed. If .707 were used instead, the resulting filter
coefficients would agree to at least seven decimal places
with

p
2=4; 1=2, and

p
2=4, the values produced by exact

arithmetic calculations.)
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Solutions to Practice Problems

1. First, compute

ATA D

24 1 1 1

�3 5 7

�3 1 2

3524 1 �3 �3

1 5 1

1 7 2

35 D 24 3 9 0

9 83 28

0 28 14

35
AT b D

24 1 1 1

�3 5 7

�3 1 2

3524 5

�3

�5

35 D 24 �3

�65

�28

35
Next, row reduce the augmented matrix for the normal equations, ATAx D AT b:24 3 9 0 �3

9 83 28 �65

0 28 14 �28

35 � 24 1 3 0 �1

0 56 28 �56

0 28 14 �28

35 � � � � � 24 1 0 �3=2 2

0 1 1=2 �1

0 0 0 0

35
The general least-squares solution is x1 D 2C 3

2
x3, x2 D �1 � 1

2
x3, with x3 free.

For one specific solution, take x3 D 0 (for example), and get

Ox D

24 2

�1

0

35
To find the least-squares error, compute

Ob D AOx D

24 1 �3 �3

1 5 1

1 7 2

3524 2

�1

0

35 D 24 5

�3

�5

35
It turns out that Ob D b, so kb � Obk D 0. The least-squares error is zero because b
happens to be in ColA.

2. If b is orthogonal to the columns of A, then the projection of b onto the column
space of A is 0. In this case, a least-squares solution Ox of Ax D b satisfies AOx D 0.

6.6 Machine Learning and Linear Models

Machine Learning
Machine learning uses linear models in situations where the machine is being trained to
predict the outcome (dependent variables) based on the values of the inputs (independent
variables). Themachine is given a set of training datawhere the values of the independent
and dependent variables are known. The machine then learns the relationship between
the independent variables and the dependent variables. One type of learning is to fit a
curve, such as a least-squares line or parabola, to the data. Once the machine has learned
the pattern from the training data, it can then estimate the value of the output based on a
given value for the input.
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Least-Squares Lines
A common task in science and engineering is to analyze and understand relationships
among several quantities that vary. This section describes a variety of situations in which
data are used to build or verify a formula that predicts the value of one variable as a
function of other variables. In each case, the problem will amount to solving a least-
squares problem.

For easy application of the discussion to real problems that you may encounter later
in your career, we choose notation that is commonly used in the statistical analysis of
scientific and engineering data. Instead of Ax D b, we write Xˇ D y and refer to X as
the design matrix, ˇ as the parameter vector, and y as the observation vector.

The simplest relation between two variables x and y is the linear equation
y D ˇ0 C ˇ1x.1 Experimental data often produce points .x1; y1/; : : : ; .xn; yn/ that,
when graphed, seem to lie close to a line. We want to determine the parameters ˇ0 and
ˇ1 that make the line as “close” to the points as possible.

Suppose ˇ0 and ˇ1 are fixed, and consider the line y D ˇ0 C ˇ1x in Figure 1.
Corresponding to each data point .xj ; yj / there is a point .xj ; ˇ0 C ˇ1xj / on the line
with the same x-coordinate. We call yj the observed value of y and ˇ0 C ˇ1xj the
predicted y-value (determined by the line). The difference between an observed y-value
and a predicted y-value is called a residual.

ResidualResidual
Point on line

Data pointy

xjx1 xn

x
y 5 b0 1 b1x

(xj, b0 1 b1xj)

(xj, yj)

FIGURE 1 Fitting a line to experimental data.

There are several ways to measure how “close” the line is to the data. The usual
choice (primarily because the mathematical calculations are simple) is to add the squares
of the residuals. The least-squares line is the line y D ˇ0 C ˇ1x that minimizes the
sum of the squares of the residuals. This line is also called a line of regression of y
on x, because any errors in the data are assumed to be only in the y-coordinates. The
coefficients ˇ0, ˇ1 of the line are called (linear) regression coefficients.2

If the data points were on the line, the parameters ˇ0 and ˇ1 would satisfy the
equations

Predicted Observed
y-value y-value

ˇ0 C ˇ1x1 = y1

ˇ0 C ˇ1x2 = y2

:::
:::

ˇ0 C ˇ1xn = yn

1 This notation is commonly used for least-squares lines instead of y D mxC b.
2 If the measurement errors are in x instead of y, simply interchange the coordinates of the data .xj ; yj /

before plotting the points and computing the regression line. If both coordinates are subject to possible error,
then you might choose the line that minimizes the sum of the squares of the orthogonal (perpendicular)
distances from the points to the line.
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We can write this system as

Xˇ D y; where X D

26664
1 x1

1 x2
:::

:::

1 xn

37775 ; ˇ D

�
ˇ0

ˇ1

�
; y D

26664
y1

y2
:::

yn

37775 (1)

Of course, if the data points don’t lie on a line, then there are no parameters ˇ0, ˇ1 for
which the predicted y-values in Xˇ equal the observed y-values in y, and Xˇ D y has
no solution. This is a least-squares problem, Ax D b, with different notation!

The square of the distance between the vectors Xˇ and y is precisely the sum of
the squares of the residuals. The ˇ that minimizes this sum also minimizes the distance
between Xˇ and y. Computing the least-squares solution of Xˇ D y is equivalent to
finding the ˇ that determines the least-squares line in Figure 1.

EXAMPLE 1 Find the equation y D ˇ0 C ˇ1x of the least-squares line that best fits
the data points .2; 1/, .5; 2/, .7; 3/, and .8; 3/.

SOLUTION Use the x-coordinates of the data to build the design matrix X in (1) and
the y-coordinates to build the observation vector y:

X D

2664
1 2

1 5

1 7

1 8

3775; y D

2664
1

2

3

3

3775
For the least-squares solution of Xˇ D y, obtain the normal equations (with the new
notation):

XTXˇ D XTy

That is, compute

XTX D

�
1 1 1 1

2 5 7 8

�2664
1 2

1 5

1 7

1 8

3775 D � 4 22

22 142

�

XTy D
�

1 1 1 1

2 5 7 8

�2664
1

2

3

3

3775 D � 9

57

�

The normal equations are �
4 22

22 142

��
ˇ0

ˇ1

�
D

�
9

57

�
Hence�

ˇ0

ˇ1

�
D

�
4 22

22 142

��1�
9

57

�
D

1

84

�
142 �22

�22 4

��
9

57

�
D

1

84

�
24

30

�
D

�
2=7

5=14

�
Thus the least-squares line has the equation

y D
2

7
C

5

14
x

See Figure 2.
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2

4

y

x
8642 91 753

3

1

Data points
Least-squares line

FIGURE 2 The least-squares line y D 2
7
C

5
14

x.

EXAMPLE 2 If amachine learns the data fromExample 1 by creating a least-squares
line, what outcome will it predict for the inputs 4 and 6?

SOLUTION The machine would perform the same calculations as in Example 1 to
arrive at the least-squares line

y D
2

7
C

5

14
x

as a reasonable pattern to use to predict the outcomes.

For the value x D 4, the machine will predict an output of y D
2

7
C

5

14
.4/ D

12

7
.

For the value x D 6, the machine will predict an output of y D
2

7
C

5

14
.6/ D

17

7
.

See Figure 3.

2

Learning data points
Input 6 Output 17

7

Learned line
Predicted point

Machine Learned Output

4

y

x
8642 91 753

3

1

FIGURE 3 Machine-learned output.

A common practice before computing a least-squares line is to compute the average
x of the original x-values and form a new variable x� D x � x. The new x-data are said
to be in mean-deviation form. In this case, the two columns of the design matrix will
be orthogonal. Solution of the normal equations is simplified, just as in Example 4 in
Section 6.5. See Exercises 23 and 24.

The General Linear Model
In some applications, it is necessary to fit data points with something other than a straight
line. In the examples that follow, the matrix equation is still Xˇ D y, but the specific
form of X changes from one problem to the next. Statisticians usually introduce a
residual vector �, defined by � D y �Xˇ, and write

y D Xˇ C �

Any equation of this form is referred to as a linearmodel. OnceX and y are determined,
the goal is to minimize the length of �, which amounts to finding a least-squares solution
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of Xˇ D y. In each case, the least-squares solution Ǒ is a solution of the normal
equations

XTXˇ D XTy

Least-Squares Fitting of Other Curves
When data points .x1; y1/; : : : ; .xn; yn/ on a scatter plot do not lie close to any line, it
may be appropriate to postulate some other functional relationship between x and y.

The next two examples show how to fit data by curves that have the general
form

y D ˇ0f0.x/C ˇ1f1.x/C � � � C ˇkfk.x/ (2)

where f0; : : : ; fk are known functions and ˇ0; : : : ; ˇk are parameters that must be
determined. As we will see, equation (2) describes a linear model because it is linear
in the unknown parameters.

For a particular value of x, (2) gives a predicted, or “fitted,” value of y. The
difference between the observed value and the predicted value is the residual. The
parameters ˇ0; : : : ; ˇk must be determined so as to minimize the sum of the squares
of the residuals.

EXAMPLE 3 Suppose data points .x1; y1/; : : : ; .xn; yn/ appear to lie along some
sort of parabola instead of a straight line. For instance, if the x-coordinate denotes the
production level for a company, and y denotes the average cost per unit of operating at
a level of x units per day, then a typical average cost curve looks like a parabola that
opens upward (Figure 4). In ecology, a parabolic curve that opens downward is used to
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FIGURE 4

Average cost curve.
model the net primary production of nutrients in a plant, as a function of the surface area
of the foliage (Figure 5). Suppose we wish to approximate the data by an equation of the
form

y D ˇ0 C ˇ1x C ˇ2x2 (3)

Describe the linear model that produces a “least-squares fit” of the data by equation (3).

SOLUTION Equation (3) describes the ideal relationship. Suppose the actual values of
the parameters are ˇ0, ˇ1, ˇ2. Then the coordinates of the first data point .x1; y1/ satisfy
an equation of the form

y1 D ˇ0 C ˇ1x1 C ˇ2x2
1 C �1

where �1 is the residual error between the observed value y1 and the predicted y-value
ˇ0 C ˇ1x1 C ˇ2x2

1 . Each data point determines a similar equation:
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FIGURE 5

Production of nutrients.

y1 D ˇ0 C ˇ1x1 C ˇ2x2
1 C �1

y2 D ˇ0 C ˇ1x2 C ˇ2x2
2 C �2

:::
:::

yn D ˇ0 C ˇ1xn C ˇ2x2
n C �n
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It is a simple matter to write this system of equations in the form y D Xˇ C �. To find
X , inspect the first few rows of the system and look for the pattern.26664

y1

y2

:::

yn

37775 D
266664

1 x1 x2
1

1 x2 x2
2

:::
:::

:::

1 xn x2
n

377775
264 ˇ0

ˇ1

ˇ2

375 C
266664

�1

�2

:::

�n

377775
y D X ˇ C �

EXAMPLE 4 If data points tend to follow a pattern such as in Figure 6, then an

x

y

FIGURE 6

Data points along a cubic curve.

appropriate model might be an equation of the form

y D ˇ0 C ˇ1x C ˇ2x2
C ˇ3x3

Such data, for instance, could come from a company’s total costs, as a function of the
level of production. Describe the linear model that gives a least-squares fit of this type
to data .x1; y1/; : : : ; .xn; yn/.

SOLUTION By an analysis similar to that in Example 2, we obtain

Observation Design Parameter Residual
vector matrix vector vector

y D

266664
y1

y2

:::

yn

377775 ; X D

266664
1 x1 x2

1 x3
1

1 x2 x2
2 x3

2

:::
:::

:::
:::

1 xn x2
n x3

n

377775 ; ˇ D

266664
ˇ0

ˇ1

ˇ2

ˇ3

377775; � D

266664
�1

�2

:::

�n

377775

Multiple Regression
Suppose an experiment involves two independent variables—say, u and v—and one
dependent variable, y. A simple equation for predicting y from u and v has the form

y D ˇ0 C ˇ1uC ˇ2v (4)

A more general prediction equation might have the form

y D ˇ0 C ˇ1uC ˇ2v C ˇ3u2
C ˇ4uv C ˇ5v2 (5)

This equation is used in geology, for instance, to model erosion surfaces, glacial cirques,
soil pH, and other quantities. In such cases, the least-squares fit is called a trend
surface.

Equations (4) and (5) both lead to a linear model because they are linear in the
unknown parameters (even though u and v are multiplied). In general, a linear model
will arise whenever y is to be predicted by an equation of the form

y D ˇ0f0.u; v/C ˇ1f1.u; v/C � � � C ˇkfk.u; v/

with f0; : : : ; fk any sort of known functions and ˇ0; : : : ; ˇk unknown weights.
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EXAMPLE 5 In geography, local models of terrain are constructed from data
.u1; v1; y1/; : : : ; .un; vn; yn/, where uj , vj , and yj are latitude, longitude, and altitude,
respectively. Describe the linear model based on (4) that gives a least-squares fit to such
data. The solution is called the least-squares plane. See Figure 7.

FIGURE 7 A least-squares plane.

SOLUTION We expect the data to satisfy the following equations:

y1 D ˇ0 C ˇ1u1 C ˇ2v1 C �1

y2 D ˇ0 C ˇ1u2 C ˇ2v2 C �2

:::
:::

yn D ˇ0 C ˇ1un C ˇ2vn C �n

This system has the matrix form y D Xˇ C �, where

Observation Design Parameter Residual
vector matrix vector vector

y D

26664
y1

y2

:::

yn

37775 ; X D

26664
1 u1 v1

1 u2 v2

:::
:::

:::

1 un vn

37775 ; ˇ D

24 ˇ0

ˇ1

ˇ2

35; � D

26664
�1

�2

:::

�n

37775
Example 5 shows that the linear model for multiple regression has the same abstract

form as the model for the simple regression in the earlier examples. Linear algebra gives
us the power to understand the general principle behind all the linear models. Once X

is defined properly, the normal equations for ˇ have the same matrix form, no matterSTUDY GUIDE offers additional
resources for understanding
the geometry of a linear model.

how many variables are involved. Thus, for any linear model where XTX is invertible,
the least-squares Ǒ is given by .XTX/�1XTy.

Practice Problem

When the monthly sales of a product are subject to seasonal fluctuations, a curve that
approximates the sales data might have the form

y D ˇ0 C ˇ1x C ˇ2 sin .2�x=12/

where x is the time in months. The term ˇ0 C ˇ1x gives the basic sales trend, and
the sine term reflects the seasonal changes in sales. Give the design matrix and the
parameter vector for the linear model that leads to a least-squares fit of the equation
above. Assume the data are .x1; y1/; : : : ; .xn; yn/.
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6.6 Exercises
In Exercises 1–4, find the equation y D ˇ0 C ˇ1x of the least-
squares line that best fits the given data points.

1. .0; 1/, .1; 1/, .2; 2/, .3; 2/

2. .1; 0/, .2; 2/, .3; 7/, .4; 9/

3. .�1; 0/, .0; 1/, .1; 2/, .2; 4/

4. .2; 3/, .3; 2/, .5; 1/, .6; 0/

5. If a machine learns the least-squares line that best fits the data
in Exercise 1, what will the machine pick for the value of y

when x D 4?

6. If a machine learns the least-squares line that best fits the data
in Exercise 2, what will the machine pick for the value of y

when x D 3?

7. If a machine learns the least-squares line that best fits the data
in Exercise 1, what will the machine pick for the value of y

when x D 3? How closely does this match the data point at
x D 3 fed into the machine?

8. If a machine learns the least-squares line that best fits the data
in Exercise 2, what will the machine pick for the value of y

when x D 4? How closely does this match the data point at
x D 4 fed into the machine?

9. If you enter the data from Exercise 1 into a machine and it
returns a y value of 20 when x D 2:5, should you trust the
machine? Justify your answer.

10. If you enter the data from Exercise 2 into a machine and it
returns a y value of �1 when x D 1:5, should you trust the
machine? Justify your answer.

11. Let X be the design matrix used to find the least-squares line
to fit data .x1; y1/; : : : ; .xn; yn/. Use a theorem in Section 6.5
to show that the normal equations have a unique solution
if and only if the data include at least two data points with
different x-coordinates.

12. Let X be the design matrix in Example 2 corresponding to a
least-squares fit of a parabola to data .x1; y1/; : : : ; .xn; yn/.
Suppose x1, x2, and x3 are distinct. Explain why there is only
one parabola that fits the data best, in a least-squares sense.
(See Exercise 11.)

13. A certain experiment produces the data .1; 2:5/, .2; 4:3/,
.3; 5:5/, .4; 6:1/, .5; 6:1/. Describe the model that produces
a least-squares fit of these points by a function of the form

y D ˇ1x C ˇ2x2

Such a function might arise, for example, as the revenue from
the sale of x units of a product, when the amount offered for
sale affects the price to be set for the product.

a. Give the design matrix, the observation vector, and the
unknown parameter vector.

T b. Find the associated least-squares curve for the data.

c. If a machine learned the curve you found in (b), what
output would it provide for an input of x D 6?

14. A simple curve that oftenmakes a goodmodel for the variable
costs of a company, as a function of the sales level x, has
the form y D ˇ1x C ˇ2x2 C ˇ3x3. There is no constant term
because fixed costs are not included.

a. Give the design matrix and the parameter vector for the
linear model that leads to a least-squares fit of the equation
above, with data .x1; y1/; : : : ; .xn; yn/.

T b. Find the least-squares curve of the form above to fit
the data .4; 1:58/, .6; 2:08/, .8; 2:5/, .10; 2:8/, .12; 3:1/,
.14; 3:4/, .16; 3:8/, and .18; 4:32/, with values in thou-
sands. If possible, produce a graph that shows the data
points and the graph of the cubic approximation.

c. If a machine learned the curve you found in (b), what
output would it provide for an input of x D 9?

15. A certain experiment produces the data .1; 7:9/, .2; 5:4/, and
.3;�:9/. Describe the model that produces a least-squares fit
of these points by a function of the form

y D A cos x C B sin x

16. Suppose radioactive substances A andB have decay constants
of .02 and .07, respectively. If a mixture of these two sub-
stances at time t D 0 containsMA grams of A andMB grams
of B, then a model for the total amount y of the mixture
present at time t is

y DMAe�:02t CMBe�:07t .6/

Suppose the initial amounts MA and MB are unknown, but a
scientist is able tomeasure the total amounts present at several
times and records the following points .ti ; yi /: .10; 21:34/,
.11; 20:68/, .12; 20:05/, .14; 18:87/, and .15; 18:30/.

a. Describe a linear model that can be used to estimate MA

and MB.

T b. Find the least-squares curve based on (6).

Halley’s Comet last appeared in 1986 and will reappear in
2061.
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T 17. According to Kepler’s first law, a comet should have an ellip-
tic, parabolic, or hyperbolic orbit (with gravitational attrac-
tions from the planets ignored). In suitable polar coordinates,
the position .r; #/ of a comet satisfies an equation of the form

r D ˇ C e.r � cos#/

where ˇ is a constant and e is the eccentricity of the orbit,
with 0 � e < 1 for an ellipse, e D 1 for a parabola, and e > 1

for a hyperbola. Suppose observations of a newly discovered
comet provide the data below. Determine the type of orbit,
and predict where the comet will be when # D 4:6 (radians).3

# .88 1.10 1.42 1.77 2.14

r 3.00 2.30 1.65 1.25 1.01

T 18. A healthy child’s systolic blood pressure p (in millimeters of
mercury) and weightw (in pounds) are approximately related
by the equation

ˇ0 C ˇ1 lnw D p

Use the following experimental data to estimate the systolic
blood pressure of a healthy child weighing 100 pounds.

w 44 61 81 113 131

lnw 3.78 4.11 4.39 4.73 4.88

p 91 98 103 110 112

T 19. To measure the takeoff performance of an airplane, the hori-
zontal position of the plane was measured every second, from
t D 0 to t D 12. The positions (in feet) were: 0, 8.8, 29.9,
62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7, 686.8,
and 809.2.

a. Find the least-squares cubic curve y D ˇ0 C ˇ1t C

ˇ2t2 C ˇ3t3 for these data.

b. If a machine learned the curve given in part (a), what
would it estimate the velocity of the plane to be when
t D 4:5 seconds?

20. Let x D
1

n
.x1 C � � � C xn/ and y D

1

n
.y1 C � � � C yn/.

Show that the least-squares line for the data
.x1; y1/; : : : ; .xn; yn/must pass through .x; y/. That is, show

that x and y satisfy the linear equation y D Ǒ0 C Ǒ1x. [Hint:

Derive this equation from the vector equation y D X Ǒ C �.
Denote the first column of X by 1. Use the fact that the
residual vector � is orthogonal to the column space of X and
hence is orthogonal to 1.]

3 The basic idea of least-squares fitting of data is due to K. F. Gauss (and,
independently, to A. Legendre), whose initial rise to fame occurred in
1801 when he used the method to determine the path of the asteroid Ceres.
Forty days after the asteroid was discovered, it disappeared behind the sun.
Gauss predicted it would appear ten months later and gave its location. The
accuracy of the prediction astonished the European scientific community.

Given data for a least-squares problem, .x1; y1/; : : : ; .xn; yn/, the
following abbreviations are helpful:P

x D
Pn

iD1 xi ;
P

x2 D
Pn

iD1 x2
i ;P

y D
Pn

iD1 yi ;
P

xy D
Pn

iD1 xi yi

The normal equations for a least-squares line y D Ǒ0 C Ǒ1x may
be written in the form

n Ǒ0 C Ǒ1
P

x D
P

y

Ǒ
0

P
x C Ǒ1

P
x2 D

P
xy

.7/

21. Derive the normal equations (7) from the matrix form given
in this section.

22. Use a matrix inverse to solve the system of equations in (7)
and thereby obtain formulas for Ǒ0 and Ǒ1 that appear inmany
statistics texts.

23. a. Rewrite the data in Example 1 with new x-coordinates
in mean deviation form. Let X be the associated design
matrix. Why are the columns of X orthogonal?

b. Write the normal equations for the data in part (a), and
solve them to find the least-squares line, y D ˇ0 C ˇ1x�,
where x� D x � 5:5.

24. Suppose the x-coordinates of the data .x1; y1/; : : : ; .xn; yn/

are in mean deviation form, so that
P

xi D 0. Show that if
X is the design matrix for the least-squares line in this case,
then XTX is a diagonal matrix.

Exercises 25 and 26 involve a design matrix X with two or more
columns and a least-squares solution Ǒ of y D Xˇ. Consider the
following numbers.

(i) kX Ǒ k2—the sum of the squares of the “regression term.”
Denote this number by SS(R).

(ii) ky �X Ǒ k2—the sum of the squares for the error term. De-
note this number by SS(E).

(iii)
kyk2—the “total” sum of the squares of the y-values. Denote
this number by SS(T).

Every statistics text that discusses regression and the linear model
y D Xˇ C � introduces these numbers, though terminology and
notation vary somewhat. To simplify matters, assume that the
mean of the y-values is zero. In this case, SS(T) is proportional
to what is called the variance of the set of y-values.

25. Justify the equation SS(T) D SS(R)C SS(E). [Hint: Use
a theorem, and explain why the hypotheses of the theo-
rem are satisfied.] This equation is extremely important in
statistics, both in regression theory and in the analysis of
variance.

26. Show that kX Ǒ k2 = Ǒ T XTy. [Hint: Rewrite the left side
and use the fact that Ǒ satisfies the normal equations.] This
formula for SS(R) is used in statistics. From this and from
Exercise 25, obtain the standard formula for SS(E):

SS(E) D yT y � Ǒ
T

XT y



6.7 Inner Product Spaces 423

Solution to Practice Problem

Construct X and ˇ so that the kth row of Xˇ is the predicted y-value that corresponds

x

y

Sales trend with seasonal
fluctuations.

to the data point .xk ; yk/, namely

ˇ0 C ˇ1xk C ˇ2 sin.2�xk=12/

It should be clear that

X D

264 1 x1 sin.2�x1=12/
:::

:::
:::

1 xn sin.2�xn=12/

375 ; ˇ D

24 ˇ0

ˇ1

ˇ2

35

6.7 Inner Product Spaces
Notions of length, distance, and orthogonality are often important in applications
involving a vector space. For Rn, these concepts were based on the properties of the
inner product listed in Theorem 1 of Section 6.1. For other spaces, we need analogues of
the inner product with the same properties. The conclusions of Theorem 1 now become
axioms in the following definition.

DEFINITION An inner product on a vector space V is a function that, to each pair of vectors u
and v in V , associates a real number hu; vi and satisfies the following axioms, for
all u, v, and w in V and all scalars c:

1. hu; vi D hv; ui

2. huC v;wi D hu;wi C hv;wi

3. hcu; vi D chu; vi

4. hu; ui � 0 and hu; ui D 0 if and only if u D 0

A vector space with an inner product is called an inner product space.

The vector space Rn with the standard inner product is an inner product space, and
nearly everything discussed in this chapter for Rn carries over to inner product spaces.
The examples in this section and the next lay the foundation for a variety of applications
treated in courses in engineering, physics, mathematics, and statistics.

EXAMPLE 1 Fix any two positive numbers—say, 4 and 5—and for vectors
u D .u1; u2/ and v D .v1; v2/ in R2, set

hu; vi D 4u1v1 C 5u2v2 (1)

Show that equation (1) defines an inner product.

SOLUTION Certainly Axiom 1 is satisfied, because hu; vi D 4u1v1 C 5u2v2 D

4v1u1 C 5v2u2 D hv; ui. If w D .w1; w2/, then

huC v;wi D 4.u1 C v1/w1 C 5.u2 C v2/w2

D 4u1w1 C 5u2w2 C 4v1w1 C 5v2w2

D hu;wi C hv;wi
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This verifies Axiom 2. For Axiom 3, compute

hcu; vi D 4.cu1/v1 C 5.cu2/v2 D c.4u1v1 C 5u2v2/ D chu; vi

For Axiom 4, note that hu; ui D 4u2
1 C 5u2

2 � 0, and 4u2
1 C 5u2

2 D 0 only if u1 D u2 D

0, that is, if u D 0. Also, h0; 0i D 0. So (1) defines an inner product on R2.

Inner products similar to (1) can be defined onRn. They arise naturally in connection
with “weighted least-squares” problems, in which weights are assigned to the various
entries in the sum for the inner product in such a way that more importance is given to
the more reliable measurements.

From now on, when an inner product space involves polynomials or other functions,
we will write the functions in the familiar way, rather than use the boldface type for
vectors. Nevertheless, it is important to remember that each function is a vector when it
is treated as an element of a vector space.

EXAMPLE 2 Let t0; : : : ; tn be distinct real numbers. For p and q in Pn, define

hp; qi D p.t0/q.t0/C p.t1/q.t1/C � � � C p.tn/q.tn/ (2)

Inner product Axioms 1–3 are readily checked. For Axiom 4, note that

hp; pi D Œp.t0/�2 C Œp.t1/�2 C � � � C Œp.tn/�2 � 0

Also, h0; 0i D 0. (The boldface zero here denotes the zero polynomial, the zero vector in
Pn.) If hp; pi D 0, then p must vanish at nC 1 points: t0; : : : ; tn. This is possible only
if p is the zero polynomial, because the degree of p is less than nC 1. Thus (2) defines
an inner product on Pn.

EXAMPLE 3 Let V be P2, with the inner product from Example 2, where t0 D 0,
t1 D

1
2
, and t2 D 1. Let p.t/ D 12t2 and q.t/ D 2t � 1. Compute hp; qi and hq; qi.

SOLUTION

hp; qi D p.0/q.0/C p
�

1
2

�
q
�

1
2

�
C p.1/q.1/

D .0/.�1/C .3/.0/C .12/.1/ D 12

hq; qi D Œq.0/�2 C Œq
�

1
2

�
�2 C Œq.1/�2

D .�1/2
C .0/2

C .1/2
D 2

Lengths, Distances, and Orthogonality
Let V be an inner product space, with the inner product denoted by hu; vi. Just as in Rn,
we define the length, or norm, of a vector v to be the scalar

kvk D
p
hv; vi

Equivalently, kvk2 D hv; vi. (This definition makes sense because hv; vi � 0, but the
definition does not say that hv; vi is a “sum of squares,” because v need not be an element
of Rn.)

A unit vector is one whose length is 1. The distance between u and v is ku � vk.
Vectors u and v are orthogonal if hu; vi D 0.
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EXAMPLE 4 Let P2 have the inner product (2) of Example 3. Compute the lengths
of the vectors p.t/ D 12t2 and q.t/ D 2t � 1.

SOLUTION

kpk2 D hp; pi D Œp.0/�2 C
�
p
�

1
2

��2
C Œp.1/�2

D 0C Œ3�2 C Œ12�2 D 153

kpk D
p

153

From Example 3, hq; qi D 2. Hence kqk D
p

2.

The Gram–Schmidt Process
The existence of orthogonal bases for finite-dimensional subspaces of an inner product
space can be established by the Gram–Schmidt process, just as inRn. Certain orthogonal
bases that arise frequently in applications can be constructed by this process.

The orthogonal projection of a vector onto a subspace W with an orthogonal basis
can be constructed as usual. The projection does not depend on the choice of orthogonal
basis, and it has the properties described in the Orthogonal Decomposition Theorem and
the Best Approximation Theorem.

EXAMPLE 5 Let V be P4 with the inner product in Example 2, involving evaluation
of polynomials at �2, �1, 0, 1, and 2, and view P2 as a subspace of V . Produce an
orthogonal basis for P2 by applying the Gram–Schmidt process to the polynomials 1, t ,
and t2.

SOLUTION The inner product depends only on the values of a polynomial at
�2; : : : ; 2, so we list the values of each polynomial as a vector in R5, underneath the
name of the polynomial:1

Polynomial: 1 t t2

Vector of values:

266664
1

1

1

1

1

377775;

266664
�2

�1

0

1

2

377775;

266664
4

1

0

1

4

377775
The inner product of two polynomials in V equals the (standard) inner product of their
corresponding vectors in R5. Observe that t is orthogonal to the constant function 1. So
take p0.t/ D 1 and p1.t/ D t . For p2, use the vectors in R5 to compute the projection
of t2 onto Span fp0; p1g:

ht2; p0i D ht
2; 1i D 4C 1C 0C 1C 4 D 10

hp0; p0i D 5

ht2; p1i D ht
2; ti D �8C .�1/C 0C 1C 8 D 0

The orthogonal projection of t2 onto Span f1; tg is 10
5

p0 C 0p1. Thus

p2.t/ D t2
� 2p0.t/ D t2

� 2

1 Each polynomial in P4 is uniquely determined by its value at the five numbers �2; : : : ; 2. In fact, the
correspondence between p and its vector of values is an isomorphism, that is, a one-to-one mapping onto R5

that preserves linear combinations.
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An orthogonal basis for the subspace P2 of V is

Polynomial p0 p1 p2

Vector of values

266664
1

1

1

1

1

377775;

266664
�2

�1

0

1

2

377775;

266664
2

�1

�2

�1

2

377775 (3)

Best Approximation in Inner Product Spaces
A common problem in applied mathematics involves a vector space V whose elements
are functions. The problem is to approximate a function f in V by a function g from a
specified subspace W of V . The “closeness” of the approximation of f depends on the
way kf � gk is defined. We will consider only the case in which the distance between
f and g is determined by an inner product. In this case, the best approximation to f by
functions in W is the orthogonal projection of f onto the subspace W .

EXAMPLE 6 Let V be P4 with the inner product in Example 5, and let p0, p1,
and p2 be the orthogonal basis found in Example 5 for the subspace P2. Find the best
approximation to p.t/ D 5 � 1

2
t4 by polynomials in P2.

SOLUTION The values of p0; p1, and p2 at the numbers �2, �1, 0, 1, and 2 are listed
in R5 vectors in (3) above. The corresponding values for p are �3, 9/2, 5, 9/2, and �3.
Compute

hp; p0i D 8; hp; p1i D 0; hp; p2i D �31

hp0; p0i D 5; hp2; p2i D 14

Then the best approximation in V to p by polynomials in P2 is

Op D projP2
p D

hp; p0i

hp0; p0i
p0 C

hp; p1i

hp1; p1i
p1 C

hp; p2i

hp2; p2i
p2

D
8
5
p0 C

�31
14

p2 D
8
5
�

31
14

.t2
� 2/:

This polynomial is the closest to p of all polynomials in P2, when the distance between
polynomials is measured only at �2, �1, 0, 1, and 2. See Figure 1.

t

y

2

2

p(t)

p(t)ˆ

FIGURE 1
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The polynomialsp0,p1, andp2 in Examples 5 and 6 belong to a class of polynomials
that are referred to in statistics as orthogonal polynomials.2 The orthogonality refers to
the type of inner product described in Example 2.

Two Inequalities
Given a vector v in an inner product space V and given a finite-dimensional subspace
W , we may apply the Pythagorean Theorem to the orthogonal decomposition of v with
respect to W and obtain

kvk2 D k projW vk2 C kv � projW vk2

See Figure 2. In particular, this shows that the norm of the projection of v onto W does
not exceed the norm of v itself. This simple observation leads to the following important

W

v

0
||projWv|| projW v

||v 2 projW v||
||v||

FIGURE 2

The hypotenuse is the longest side.
inequality.

THEOREM 16 The Cauchy–Schwarz Inequality

For all u, v in V ,
jhu; vij � kuk kvk (4)

PROOF If u D 0, then both sides of (4) are zero, and hence the inequality is true in this
case. (See Practice Problem 1.) If u ¤ 0, let W be the subspace spanned by u. Recall
that kcuk D jcj kuk for any scalar c. Thus

k projW vk D

 hv; ui
hu; ui

u

 D jhv; uij
jhu; uij

kuk D
jhv; uij
kuk2

kuk D
jhu; vij
kuk

Since k projW vk � kvk, we have
jhu; vij
kuk

� kvk, which gives (4).

The Cauchy–Schwarz inequality is useful in many branches of mathematics. A few
simple applications are presented in the exercises. Our main need for this inequality here
is to prove another fundamental inequality involving norms of vectors. See Figure 3.

0 u

v

||u 1 v||

u 1 v

||v||

||u||

FIGURE 3

The lengths of the sides of a
triangle.

THEOREM 17 The Triangle Inequality

For all u; v in V ,
kuC vk � kuk C kvk

PROOF kuC vk2 D huC v; uC vi D hu; ui C 2hu; vi C hv; vi

� kuk2 C 2jhu; vij C kvk2

� kuk2 C 2kuk kvk C kvk2 Cauchy–Schwarz

D .kuk C kvk/2

The triangle inequality follows immediately by taking square roots of both sides.

2 See Statistics and Experimental Design in Engineering and the Physical Sciences, 2nd ed., by Norman
L. Johnson and Fred C. Leone (New York: John Wiley & Sons, 1977). Tables there list “Orthogonal
Polynomials,” which are simply the values of the polynomial at numbers such as �2, �1, 0, 1, and 2.
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An Inner Product for C [a, b] (Calculus required)
Probably the most widely used inner product space for applications is the vector space
C Œa; b� of all continuous functions on an interval a � t � b, with an inner product that
we will describe.

We begin by considering a polynomial p and any integer n larger than or equal to
the degree of p. Then p is in Pn, and we may compute a “length” for p using the inner
product of Example 2 involving evaluation at nC 1 points in Œa; b�. However, this length
of p captures the behavior at only those nC 1 points. Since p is in Pn for all large n, we
could use a much larger n, with many more points for the “evaluation” inner product.
See Figure 4.

t
ba

t
ba

p(t) p(t)

FIGURE 4 Using different numbers of evaluation points in Œa; b� to compute
kpk2.

Let us partition Œa; b� into nC 1 subintervals of length �t D .b � a/=.nC 1/, and
let t0; : : : ; tn be arbitrary points in these subintervals.

a t0

Dt

tj btn

If n is large, the inner product on Pn determined by t0; : : : ; tn will tend to give a large
value to hp; pi, so we scale it down and divide by nC 1. Observe that 1=.nC 1/ D

�t=.b � a/, and define

hp; qi D
1

nC 1

nX
jD0

p.tj /q.tj / D
1

b � a

24 nX
jD0

p.tj /q.tj /�t

35
Now, let n increase without bound. Since polynomials p and q are continuous functions,
the expression in brackets is a Riemann sum that approaches a definite integral, and we
are led to consider the average value of p.t/q.t/ on the interval Œa; b�:

1

b � a

Z b

a

p.t/q.t/ dt

This quantity is defined for polynomials of any degree (in fact, for all continuous
functions), and it has all the properties of an inner product, as the next example shows.
The scale factor 1=.b � a/ is inessential and is often omitted for simplicity.

EXAMPLE 7 For f , g in C Œa; b�, set

hf; gi D

Z b

a

f .t/g.t/ dt (5)

Show that (5) defines an inner product on C Œa; b�.
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SOLUTION Inner product Axioms 1–3 follow from elementary properties of definite
integrals. For Axiom 4, observe that

hf; f i D

Z b

a

Œf .t/�2 dt � 0

The function Œf .t/�2 is continuous and nonnegative on Œa; b�. If the definite integral of
Œf .t/�2 is zero, then Œf .t/�2 must be identically zero on Œa; b�, by a theorem in advanced
calculus, in which case f is the zero function. Thus hf; f i D 0 implies that f is the
zero function on Œa; b�. So (5) defines an inner product on C Œa; b�.

EXAMPLE 8 Let V be the space C Œ0; 1� with the inner product of Example 7, and
let W be the subspace spanned by the polynomials p1.t/ D 1, p2.t/ D 2t � 1, and
p3.t/ D 12t2. Use the Gram–Schmidt process to find an orthogonal basis for W .

SOLUTION Let q1 D p1, and compute

hp2; q1i D

Z 1

0

.2t � 1/.1/ dt D .t2
� t /

ˇ̌̌̌1
0

D 0

So p2 is already orthogonal to q1, and we can take q2 D p2. For the projection of p3

onto W2 D Span fq1; q2g, compute

hp3; q1i D

Z 1

0

12t2
� 1 dt D 4t3

ˇ̌̌̌1
0

D 4

hq1; q1i D

Z 1

0

1 � 1 dt D t

ˇ̌̌̌1
0

D 1

hp3; q2i D

Z 1

0

12t2.2t � 1/ dt D

Z 1

0

.24t3
� 12t2/ dt D 2

hq2; q2i D

Z 1

0

.2t � 1/2 dt D
1

6
.2t � 1/3

ˇ̌̌̌1
0

D
1

3

Then

projW2
p3 D

hp3; q1i

hq1; q1i
q1 C

hp3; q2i

hq2; q2i
q2 D

4

1
q1 C

2

1=3
q2 D 4q1 C 6q2

and
q3 D p3 � projW2

p3 D p3 � 4q1 � 6q2

As a function, q3.t/ D 12t2 � 4 � 6.2t � 1/ D 12t2 � 12t C 2. The orthogonal basis
for the subspace W is fq1; q2; q3g.

Practice Problems

Use the inner product axioms to verify the following statements.

1. hv; 0i D h0; vi D 0.

2. hu; vC wi D hu; vi C hu;wi.
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6.7 Exercises
1. Let R2 have the inner product of Example 1, and let

x D .1; 1/ and y D .5;�1/.

a. Find kxk, kyk, and jhx; yij2.

b. Describe all vectors .´1; ´2/ that are orthogonal to y.

2. Let R2 have the inner product of Example 1. Show that
the Cauchy–Schwarz inequality holds for x D .3;�4/ and
y D .�4; 3/. [Suggestion: Study jhx; yij2.]

Exercises 3–8 refer to P2 with the inner product given by evalua-
tion at �1, 0, and 1. (See Example 2.)

3. Compute hp; qi, where p.t/ D 4C t , q.t/ D 5 � 4t2.

4. Compute hp; qi, where p.t/ D 4t � 3t2, q.t/ D 1C 9t2.

5. Compute kpk and kqk, for p and q in Exercise 3.

6. Compute kpk and kqk, for p and q in Exercise 4.

7. Compute the orthogonal projection of q onto the subspace
spanned by p, for p and q in Exercise 3.

8. Compute the orthogonal projection of q onto the subspace
spanned by p, for p and q in Exercise 4.

9. Let P3 have the inner product given by evaluation at �3, �1,
1, and 3. Let p0.t/ D 1, p1.t/ D t , and p2.t/ D t2.

a. Compute the orthogonal projection of p2 onto the sub-
space spanned by p0 and p1.

b. Find a polynomial q that is orthogonal to p0 and
p1, such that fp0; p1; qg is an orthogonal basis for
Span fp0; p1; p2g. Scale the polynomial q so that its vec-
tor of values at .�3;�1; 1; 3/ is .1;�1;�1; 1/.

10. Let P3 have the inner product as in Exercise 9, with p0; p1,
and q the polynomials described there. Find the best approx-
imation to p.t/ D t3 by polynomials in Span fp0; p1; qg.

11. Let p0, p1, and p2 be the orthogonal polynomials described
in Example 5, where the inner product on P4 is given by eval-
uation at �2, �1, 0, 1, and 2. Find the orthogonal projection
of t3 onto Span fp0; p1; p2g.

12. Find a polynomial p3 such that fp0; p1; p2; p3g (see Ex-
ercise 11) is an orthogonal basis for the subspace P3 of
P4. Scale the polynomial p3 so that its vector of values is
.�1; 2; 0;�2; 1/.

13. Let A be any invertible n � n matrix. Show that for u, v in
Rn, the formula hu; vi D .Au/� .Av/ D .Au/T .Av/ defines
an inner product on Rn.

14. Let T be a one-to-one linear transformation from a vector
space V into Rn. Show that for u, v in V , the formula
hu; vi D T .u/�T .v/ defines an inner product on V .

Use the inner product axioms and other results of this section to
verify the statements in Exercises 15–18.

15. hu; cvi D chu; vi for all scalars c.

16. If fu; vg is an orthonormal set in V , then ku � vk D
p

2.

17. hu; vi D 1
4
kuC vk2 � 1

4
ku � vk2.

18. kuC vk2 C ku � vk2 D 2kuk2 C 2kvk2.

In Exercises 19–24, u; v, and w are vectors. Mark each statement
True or False (T/F). Justify each answer.

19. (T/F) If hu; ui D 0, then u D 0.

20. (T/F) If hu; vi D 0, then either u D 0 or v D 0.

21. (T/F) huC v;wi D hw; ui C hw; vi.

22. (T/F) hcu; cvi D chu; vi.

23. (T/F) jhu; uij D hu; ui.

24. (T/F) jhu; vij � kuk kvk.

25. Given a � 0 and b � 0, let u D
�p

a
p

b

�
and v D

�p
b
p

a

�
. Use

the Cauchy–Schwarz inequality to compare the geometric
mean

p
ab with the arithmetic mean .aC b/=2.

26. Let u D
�

a

b

�
and v D

�
1

1

�
. Use the Cauchy–Schwarz in-

equality to show that�
aC b

2

�2

�
a2 C b2

2

Exercises 27–30 refer toV D C Œ0; 1�, with the inner product given
by an integral, as in Example 7.

27. Compute hf; gi, where f .t/ D 1 � 3t2 and g.t/ D t � t3.

28. Compute hf; gi, where f .t/ D 5t � 2 and g.t/ D 7t3 � 6t2.

29. Compute kf k for f in Exercise 27.

30. Compute kgk for g in Exercise 28.

31. Let V be the space C Œ�1; 1� with the inner product of Exam-
ple 7. Find an orthogonal basis for the subspace spanned by
the polynomials 1, t , and t2. The polynomials in this basis are
called Legendre polynomials.

32. Let V be the space C Œ�2; 2� with the inner product of Exam-
ple 7. Find an orthogonal basis for the subspace spanned by
the polynomials 1, t , and t2.

T 33. Let P4 have the inner product as in Example 5, and let p0, p1,
p2 be the orthogonal polynomials from that example. Using
your matrix program, apply the Gram–Schmidt process to the
set fp0; p1; p2; t3; t4g to create an orthogonal basis for P4.

T 34. Let V be the space C Œ0; 2�� with the inner product of Exam-
ple 7. Use the Gram–Schmidt process to create an orthogonal
basis for the subspace spanned by f1; cos t; cos2 t; cos3 tg.
Use a matrix program or computational program to compute
the appropriate definite integrals.
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Solutions to Practice Problems

1. By Axiom 1, hv; 0i D h0; vi. Then h0; vi D h0v; vi D 0hv; vi, by Axiom 3, so
h0; vi D 0.

2. By Axioms 1, 2, and then 1 again, hu; vC wi D hvC w; ui D hv; ui C hw; ui D
hu; vi C hu;wi.

6.8 Applications of Inner Product Spaces
The examples in this section suggest how the inner product spaces defined in Section
6.7 arise in practical problems. Like in Section 6.6, important components of machine
learning are analyzed.

Weighted Least-Squares
Let y be a vector of n observations, y1; : : : ; yn, and suppose we wish to approximate y by
a vector Oy that belongs to some specified subspace of Rn. (In Section 6.5, Oy was written
as Ax so that Oy was in the column space of A.) Denote the entries in Oy by Oy1; : : : ; Oyn.
Then the sum of the squares for error, or SS(E), in approximating y by Oy is

SS(E) D .y1 � Oy1/2
C � � � C .yn � Oyn/2 (1)

This is simply ky � Oyk2, using the standard length in Rn.
Now suppose the measurements that produced the entries in y are not equally

reliable. The entries in y might be computed from various samples of measurements,
with unequal sample sizes. Then it becomes appropriate to weight the squared errors in
(1) in such a way that more importance is assigned to the more reliable measurements.1

If the weights are denoted by w2
1 ; : : : ; w2

n, then the weighted sum of the squares for
error is

Weighted SS(E) D w2
1.y1 � Oy1/2

C � � � C w2
n.yn � Oyn/2 (2)

This is the square of the length of y � Oy, where the length is derived from an inner product
analogous to that in Example 1 in Section 6.7, namely

hx; yi D w2
1x1y1 C � � � C w2

nxnyn

It is sometimes convenient to transform a weighted least-squares problem into an
equivalent ordinary least-squares problem. Let W be the diagonal matrix with (positive)
w1; : : : ; wn on its diagonal, so that

W y D

26664
w1 0 � � � 0

0 w2

:::
: : :

:::

0 � � � wn

37775
26664

y1

y2

:::

yn

37775 D
26664

w1y1

w2y2

:::

wnyn

37775
with a similar expression for W Oy. Observe that the j th term in (2) can be written as

w2
j .yj � Oyj /2

D .wj yj � wj Oyj /2

1Note for readers with a background in statistics: Suppose the errors in measuring the yi are independent
random variables with means equal to zero and variances of �2

1 ; : : : ; �2
n . Then the appropriate weights in (2)

are w2
i D 1=�2

i . The larger the variance of the error, the smaller the weight.
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It follows that the weighted SS(E) in (2) is the square of the ordinary length in Rn of
W y �W Oy, which we write as kW y �W Oyk2.

Now suppose the approximating vector Oy is to be constructed from the columns of
a matrix A. Then we seek an Ox that makes AOx D Oy as close to y as possible. However,
the measure of closeness is the weighted error,

kW y �W Oyk2 D kW y �WAOxk2

Thus Ox is the (ordinary) least-squares solution of the equation

WAx D W y

The normal equation for the least-squares solution is

.WA/T WAx D .WA/T W y

EXAMPLE 1 Find the least-squares line y D ˇ0 C ˇ1x that best fits the data
.�2; 3/, .�1; 5/, .0; 5/, .1; 4/, and .2; 3/. Suppose the errors in measuring the y-values
of the last two data points are greater than for the other points. Weight these data half as
much as the rest of the data.

SOLUTION As in Section 6.6, write X for the matrix A and ˇ for the vector x, and
obtain

X D

266664
1 �2

1 �1

1 0

1 1

1 2

377775; ˇ D

�
ˇ0

ˇ1

�
; y D

266664
3

5

5

4

3

377775
For a weighting matrix, choose W with diagonal entries 2, 2, 2, 1, and 1. Left-
multiplication by W scales the rows of X and y:

WX D

266664
2 �4

2 �2

2 0

1 1

1 2

377775; W y D

266664
6

10

10

4

3

377775
For the normal equation, compute

.WX/T WX D

�
14 �9

�9 25

�
and .WX/T W y D

�
59

�34

�
and solve �

14 �9

�9 25

��
ˇ0

ˇ1

�
D

�
59

�34

�
The solution of the normal equation is (to two significant digits) ˇ0 D 4:3 and ˇ1 D :20.
The desired line is

y D 4:3C :20x

In contrast, the ordinary least-squares line for these data is

y D 4:0 � :10x

Both lines are displayed in Figure 1.

2

2

22

y 5 4 2 .1x

y 5 4.3 1 .2x

y

x

FIGURE 1

Weighted and ordinary
least-squares lines.
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Trend Analysis of Data
Let f represent an unknown function whose values are known (perhaps only approx-
imately) at t0; : : : ; tn. If there is a “linear trend” in the data f .t0/; : : : ; f .tn/, then we
might expect to approximate the values of f by a function of the form ˇ0 C ˇ1t .
If there is a “quadratic trend” to the data, then we would try a function of the form
ˇ0 C ˇ1t C ˇ2t2. This was discussed in Section 6.6, from a different point of view.

In some statistical problems, it is important to be able to separate the linear trend
from the quadratic trend (and possibly cubic or higher-order trends). For instance,
suppose engineers are analyzing the performance of a new car, and f .t/ represents the
distance between the car at time t and some reference point. If the car is traveling at
constant velocity, then the graph of f .t/ should be a straight line whose slope is the
car’s velocity. If the gas pedal is suddenly pressed to the floor, the graph of f .t/ will
change to include a quadratic term and possibly a cubic term (due to the acceleration).
To analyze the ability of the car to pass another car, for example, engineers may want to
separate the quadratic and cubic components from the linear term.

If the function is approximated by a curve of the form y D ˇ0 C ˇ1t C ˇ2t2, the
coefficient ˇ2 may not give the desired information about the quadratic trend in the data,
because it may not be “independent” in a statistical sense from the other ˇi . To make
what is known as a trend analysis of the data, we introduce an inner product on the
space Pn analogous to that given in Example 2 in Section 6.7. For p, q in Pn, define

hp; qi D p.t0/q.t0/C � � � C p.tn/q.tn/

In practice, statisticians seldom need to consider trends in data of degree higher than
cubic or quartic. So let p0, p1, p2, p3 denote an orthogonal basis of the subspace P3

of Pn, obtained by applying the Gram–Schmidt process to the polynomials 1, t , t2, and
t3. There is a polynomial g in Pn whose values at t0; : : : ; tn coincide with those of the
unknown function f . Let Og be the orthogonal projection (with respect to the given inner
product) of g onto P3, say,

Og D c0p0 C c1p1 C c2p2 C c3p3

Then Og is called a cubic trend function, and c0; : : : ; c3 are the trend coefficients of
the data. The coefficient c1 measures the linear trend, c2 the quadratic trend, and c3 the
cubic trend. It turns out that if the data have certain properties, these coefficients are
statistically independent.

Since p0; : : : ; p3 are orthogonal, the trend coefficients may be computed one
at a time, independently of one another. (Recall that ci D hg; pi i=hpi ; pi i.) We can
ignore p3 and c3 if we want only the quadratic trend. And if, for example, we needed
to determine the quartic trend, we would have to find (via Gram–Schmidt) only a
polynomial p4 in P4 that is orthogonal to P3 and compute hg; p4i=hp4; p4i.

EXAMPLE 2 The simplest and most common use of trend analysis occurs when the
points t0; : : : ; tn can be adjusted so that they are evenly spaced and sum to zero. Fit a
quadratic trend function to the data .�2; 3/, .�1; 5/, .0; 5/, .1; 4/, and .2; 3/.
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SOLUTION The t -coordinates are suitably scaled to use the orthogonal polynomials
found in Example 5 of Section 6.7:

Polynomial p0 p1 p2 Data: g

Vector of values

266664
1

1

1

1

1

377775;

266664
�2

�1

0

1

2

377775;

266664
2

�1

�2

�1

2

377775;

266664
3

5

5

4

3

377775
The calculations involve only these vectors, not the specific formulas for the orthogonal
polynomials. The best approximation to the data by polynomials in P2 is the orthogonal
projection given by

Op D
hg; p0i

hp0; p0i
p0 C

hg; p1i

hp1; p1i
p1 C

hg; p2i

hp2; p2i
p2

D
20
5

p0 �
1
10

p1 �
7
14

p2

and

Op.t/ D 4 � :1t � :5.t2
� 2/ (3)

Since the coefficient of p2 is not extremely small, it would be reasonable to conclude
that the trend is at least quadratic. This is confirmed by the graph in Figure 2.

2

2

22

y

y 5 p(t)

x

FIGURE 2

Approximation by a quadratic
trend function.

Fourier Series (Calculus required)
Continuous functions are often approximated by linear combinations of sine and cosine
functions. For instance, a continuous function might represent a sound wave, an electric
signal of some type, or the movement of a vibrating mechanical system.

For simplicity, we consider functions on 0 � t � 2� . It turns out that any function
in C Œ0; 2�� can be approximated as closely as desired by a function of the form

a0

2
C a1 cos t C � � � C an cosnt C b1 sin t C � � � C bn sinnt (4)

for a sufficiently large value of n. The function (4) is called a trigonometric polynomial.
If an and bn are not both zero, the polynomial is said to be of order n. The connection
between trigonometric polynomials and other functions in C Œ0; 2�� depends on the fact
that for any n � 1, the set

f1; cos t; cos 2t; : : : ; cosnt; sin t; sin 2t; : : : ; sinntg (5)

is orthogonal with respect to the inner product

hf; gi D

Z 2�

0

f .t/g.t/ dt (6)

This orthogonality is verified as in the following example and in Exercises 5 and 6.
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EXAMPLE 3 Let C Œ0; 2�� have the inner product (6), and let m and n be unequal
positive integers. Show that cosmt and cosnt are orthogonal.

SOLUTION Use a trigonometric identity. When m ¤ n,

hcosmt; cosnti D

Z 2�

0

cosmt cosnt dt

D
1

2

Z 2�

0

Œcos.mt C nt/C cos.mt � nt/� dt

D
1

2

�
sin.mt C nt/

mC n
C

sin.mt � nt/

m � n

�ˇ̌̌̌2�

0

D 0

Let W be the subspace of C Œ0; 2�� spanned by the functions in (5). Given f in
C Œ0; 2��, the best approximation to f by functions inW is called the nth-order Fourier
approximation to f on Œ0; 2��. Since the functions in (5) are orthogonal, the best
approximation is given by the orthogonal projection ontoW . In this case, the coefficients
ak and bk in (4) are called the Fourier coefficients of f . The standard formula for an
orthogonal projection shows that

ak D
hf; cos kti

hcos kt; cos kti
; bk D

hf; sin kti

hsin kt; sin kti
; k � 1

Exercise 7 asks you to show that hcos kt; cos kti D � and hsin kt; sin kti D � . Thus

ak D
1

�

Z 2�

0

f .t/ cos kt dt; bk D
1

�

Z 2�

0

f .t/ sin kt dt (7)

The coefficient of the (constant) function 1 in the orthogonal projection is

hf; 1i

h1; 1i
D

1

2�

Z 2�

0

f .t/�1 dt D
1

2

�
1

�

Z 2�

0

f .t/ cos.0�t / dt

�
D

a0

2

where a0 is defined by (7) for k D 0. This explains why the constant term in (4) is written
as a0=2.

EXAMPLE 4 Find the nth-order Fourier approximation to the function f .t/ D t on
the interval Œ0; 2��.

SOLUTION Compute

a0

2
D

1

2
�

1

�

Z 2�

0

t dt D
1

2�

"
1

2
t2

ˇ̌̌̌2�

0

#
D �

and for k > 0, using integration by parts,

ak D
1

�

Z 2�

0

t cos kt dt D
1

�

�
1

k2
cos kt C

t

k
sin kt

�2�

0

D 0

bk D
1

�

Z 2�

0

t sin kt dt D
1

�

�
1

k2
sin kt �

t

k
cos kt

�2�

0

D �
2

k

Thus the nth-order Fourier approximation of f .t/ D t is

� � 2 sin t � sin 2t �
2

3
sin 3t � � � � �

2

n
sinnt

Figure 3 shows the third- and fourth-order Fourier approximations of f .
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(a) Third order

y

2p

2p

y 5 t

p

p
t

y

2p

2p

y 5 t

p

p
t

(b) Fourth order

FIGURE 3 Fourier approximations of the function f .t/ D t .

The norm of the difference between f and a Fourier approximation is called the
mean square error in the approximation. (The termmean refers to the fact that the norm
is determined by an integral.) It can be shown that the mean square error approaches zero
as the order of the Fourier approximation increases. For this reason, it is common to write

f .t/ D
a0

2
C

1X
mD1

.am cosmt C bm sinmt/

This expression for f .t/ is called the Fourier series for f on Œ0; 2��. The term
am cosmt , for example, is the projection of f onto the one-dimensional subspace
spanned by cosmt .

Practice Problems

1. Let q1.t/ D 1, q2.t/ D t , and q3.t/ D 3t2 � 4. Verify that fq1; q2; q3g is an orthog-
onal set in C Œ�2; 2�with the inner product of Example 7 in Section 6.7 (integration
from �2 to 2).

2. Find the first-order and third-order Fourier approximations to

f .t/ D 3 � 2 sin t C 5 sin 2t � 6 cos 2t

6.8 Exercises
1. Find the least-squares line y D ˇ0 C ˇ1x that best fits the

data .�2; 0/, .�1; 0/, .0; 2/, .1; 4/, and .2; 4/, assuming that
the first and last data points are less reliable. Weight them half
as much as the three interior points.

2. Suppose 5 out of 25 data points in a weighted least-squares
problem have a y-measurement that is less reliable than the
others, and they are to be weighted half as much as the other
20 points. One method is to weight the 20 points by a factor
of 1 and the other 5 by a factor of 1

2
. A second method is to

weight the 20 points by a factor of 2 and the other 5 by a factor
of 1. Do the two methods produce different results? Explain.

3. Fit a cubic trend function to the data in Example 2. The
orthogonal cubic polynomial is p3.t/ D 5

6
t3 �

17
6

t .

4. Tomake a trend analysis of six evenly spaced data points, one
can use orthogonal polynomials with respect to evaluation at
the points t D �5;�3;�1; 1; 3, and 5.

a. Show that the first three orthogonal polynomials are

p0.t/ D 1; p1.t/ D t; and p2.t/ D 3
8
t2 �

35
8

(The polynomial p2 has been scaled so that its values at
the evaluation points are small integers.)

b. Fit a quadratic trend function to the data

.�5; 1/; .�3; 1/; .�1; 4/; .1; 4/; .3; 6/; .5; 8/

In Exercises 5–14, the space isC Œ0; 2��with the inner product (6).

5. Show that sinmt and sinnt are orthogonal when m ¤ n.
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6. Show that sinmt and cosnt are orthogonal for all positive
integers m and n.

7. Show that k cos ktk2 D � and k sin ktk2 D � for k > 0.

8. Find the third-order Fourier approximation to f .t/ D t � 1.

9. Find the third-order Fourier approximation to f .t/ D

2� � t .

10. Find the third-order Fourier approximation to the square
wave function f .t/ D 1 for 0 � t < � and f .t/ D �1 for
� � t < 2� .

11. Find the third-order Fourier approximation to cos2 t , without
performing any integration calculations.

12. Find the third-order Fourier approximation to sin3 t , without
performing any integration calculations.

13. Explain why a Fourier coefficient of the sum of two functions
is the sum of the corresponding Fourier coefficients of the two
functions.

14. Suppose the first few Fourier coefficients of some function
f in C Œ0; 2�� are a0, a1, a2, and b1, b2, b3. Which of the
following trigonometric polynomials is closer to f ? Defend
your answer.

g.t/ D
a0

2
C a1 cos t C a2 cos 2t C b1 sin t

h.t/ D
a0

2
C a1 cos t C a2 cos 2t C b1 sin t C b2 sin 2t

T 15. Refer to the data in Exercise 19 in Section 6.6, concerning
the takeoff performance of an airplane. Suppose the possible
measurement errors become greater as the speed of the air-
plane increases, and let W be the diagonal weighting matrix
whose diagonal entries are 1, 1, 1, .9, .9, .8, .7, .6, .5, .4,
.3, .2, and .1. Find the cubic curve that fits the data with
minimum weighted least-squares error, and use it to estimate
the velocity of the plane when t D 4:5 seconds.

T 16. Let f4 and f5 be the fourth-order and fifth-order Fourier
approximations in C Œ0; 2�� to the square wave function in
Exercise 10. Produce separate graphs of f4 and f5 on the
interval Œ0; 2��, and produce a graph of f5 on Œ�2�; 2��.

STUDY GUIDE offers additional
resources for mastering orthogonal
projections.

Solutions to Practice Problems

1. Compute

hq1; q2i D

Z 2

�2

1�t dt D
1

2
t2

ˇ̌̌̌2
�2

D 0

hq1; q3i D

Z 2

�2

1� .3t2
� 4/ dt D .t3

� 4t/

ˇ̌̌̌2
�2

D 0

hq2; q3i D

Z 2

�2

t � .3t2
� 4/ dt D

�
3

4
t4
� 2t2

�ˇ̌̌̌2
�2

D 0

y 5 3 2 2 sin t
y 5 f (t)

t

3

9

23
2p

y

p

First- and third-order
approximations to f .t/.

2. The third-order Fourier approximation to f is the best approximation in C Œ0; 2��

to f by functions (vectors) in the subspace spanned by 1, cos t , cos 2t , cos 3t ,
sin t , sin 2t , and sin 3t . But f is obviously in this subspace, so f is its own best
approximation:

f .t/ D 3 � 2 sin t C 5 sin 2t � 6 cos 2t

For the first-order approximation, the closest function to f in the subspace W D

Spanf1; cos t; sin tg is 3 � 2 sin t . The other two terms in the formula for f .t/ are
orthogonal to the functions in W , so they contribute nothing to the integrals that
give the Fourier coefficients for a first-order approximation.

CHAPTER 6 PROJECTS
Chapter 6 projects are available online.

A. The QR Method for Finding Eigenvalues: This project shows
how the QR factorization of a matrix may be used to calculate
the eigenvalues of the matrix.

B. Finding the Roots of a Polynomial with Eigenvalues: This
project shows how the real roots of a polynomial can be
calculated by finding the eigenvalues of a particular matrix.
These eigenvalues will be found by the QR method.
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CHAPTER 6 SUPPLEMENTARY EXERCISES
The statements in Exercises 1–19 refer to vectors in Rn (or Rm/

with the standard inner product.Mark each statement True or False
(T/F). Justify each answer.

1. (T/F) The length of every vector is a positive number.

2. (T/F) A vector v and its negative, �v, have equal lengths.

3. (T/F) The distance between u and v is ku � vk.

4. (T/F) If r is any scalar, then krvk D rkvk.

5. (T/F) If two vectors are orthogonal, they are linearly indepen-
dent.

6. (T/F) If x is orthogonal to both u and v, then x must be
orthogonal to u � v.

7. (T/F) If kuC vk2 D kuk2 C kvk2, then u and v are orthogo-
nal.

8. (T/F) If ku � vk2 D kuk2 C kvk2, then u and v are orthogo-
nal.

9. (T/F) The orthogonal projection of y onto u is a scalar
multiple of y.

10. (T/F) If a vector y coincides with its orthogonal projection
onto a subspace W , then y is in W .

11. (T/F) The set of all vectors in Rn orthogonal to one fixed
vector is a subspace of Rn.

12. (T/F) If W is a subspace of Rn, then W and W ? have no
vectors in common.

13. (T/F) If fv1; v2; v3g is an orthogonal set and if c1, c2, and c3

are scalars, then fc1v1; c2v2; c3v3g is an orthogonal set.

14. (T/F) If a matrix U has orthonormal columns, then
U U T D I .

15. (T/F) A square matrix with orthogonal columns is an orthog-
onal matrix.

16. (T/F) If a square matrix has orthonormal columns, then it also
has orthonormal rows.

17. (T/F) IfW is a subspace, then k projW vk2 C kv � projW vk2 D
kvk2.

18. (T/F) A least-squares solution of Ax D b is the vector AOx in
ColA closest to b, so that kb � AOx k � kb � Axk for all x.

19. (T/F) The normal equations for a least-squares solution of
Ax D b are given by Ox D .ATA/�1AT b.

20. Let fv1; : : : ; vpg be an orthonormal set. Verify the following
equality by induction, beginning with p D 2. If x D c1v1C

� � � C cpvp , then kxk2 D jc1j
2 C � � � C jcpj

2

21. Let fv1; : : : ; vpg be an orthonormal set in Rn. Verify the
following inequality, called Bessel’s inequality, which is true
for each x in Rn:

kxk2 � jx�v1j
2 C jx�v2j

2 C � � � C jx�vpj
2

22. Let U be an n � n orthogonal matrix. Show that if
fv1; : : : ; vng is an orthonormal basis for Rn, then so is
fU v1; : : : ; U vng.

23. Show that if an n � n matrix U satisfies .U x/ � .U y/ D x�y
for all x and y in Rn, then U is an orthogonal matrix.

24. Show that if U is an orthogonal matrix, then any real eigen-
value of U must be˙1.

25. A Householder matrix, or an elementary reflector, has the
form Q D I � 2uuT where u is a unit vector. (See Exercise
13 in the Supplementary Exercises for Chapter 2.) Show that
Q is an orthogonal matrix. Show that Qv D �v if v is in
Spanfug and Qv D v if v is in .Spanfug/?. Hense Spanfug
is the eigenspace of Q corresponding to the eigenvalue �1

and .Spanfug/? is the eigenspace of Q corresponding to the
eigenvalue 1. (Elementary reflectors are often used in com-
puter programs to produce a QR factorization of amatrixA. If
A has linearly independent columns, then left-multiplication
by a sequence of elementary reflectors can produce an upper
triangular matrix.)

26. Let T W Rn ! Rn be a linear transformation that preserves
lengths; that is, kT .x/k D kxk for all x in Rn.

a. Show that T also preserves orthogonality; that is,
T .x/�T .y/ D 0 whenever x�y D 0.

b. Show that the standard matrix of T is an orthogonal
matrix.

27. a. Let fv1; v2; : : : ; vpg be linearly independent set of vectors
in Rn that is not necessarily orthogonal. Describe how
to find the best approximation to z in Rn by vectors in
W D Spanfv1; v2; : : : ; vpg without first constructing an
orthogonal basis for W .

b. Let z D

24 6

7

8

35, v1 D

24 2

�5

1

35 and v2 D

24 4

�1

2

35. Find the
best approximation to z by vectors in Span fv1; v2g using
part (a) and using the orthogonal basis found in Exercise 3
in Section 6.4. Compare.

28. Let A be an m � n matrix such that the matrix AT A is invert-
ible. Let Ox1 and Ox2 be the leastsquares solutions of equations
Ax D b1 and Ax D b2 respectively. Show that c1 Ox1 C c2 Ox2

is the least-squares solution of Ax D c1b1 C c2b2 for any
choice of scalars c1 and c2.

29. If a, b, and c are distinct numbers, then the following sys-
tem is inconsistent because the graphs of the equations are
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parallel planes. Show that the set of all least-squares solu-
tions of the system is precisely the plane whose equation is
x � 2y C 5´ D .aC b C c/=3.

x � 2y C 5´ D a

x � 2y C 5´ D b

x � 2y C 5´ D c

30. Consider the problem of finding an eigenvalue of an n � n

matrixAwhen an approximate eigenvector v is known. Since
v is not exactly correct, the equation

Av D �v .1/

will probably not have a solution. However, � can be esti-
mated by a least-squares solution when (1) is viewed prop-
erly. Think of v as an n � 1 matrix V , think of � as a vector
in R1, and denote the vector Av by the symbol b. Then (1)
becomes b D �V , which may also be written as V � D b.
Find the least-squares solution of this system of n equations in
the one unknown �, and write this solution using the original
symbols. The resulting estimate for � is called a Rayleigh
quotient.

31. Use the steps below to prove the following relations among
the four fundamental subspaces determined by an m � n

matrix A.
RowA D .NulA/?; ColA D .NulAT /?

a. Show that RowA is contained in .NulA/?. (Show that if
x is in RowA, then x is orthogonal to every u in NulA.)

b. Suppose rankA D r . Find dimNulA and dim .NulA/?,
and then deduce from part (a) that RowA D .NulA/?.
[Hint: Study the exercises for Section 6.3.]

c. Explain why ColA D .NulAT /?.

32. Explain why an equation Ax D b has a solution if and only if
b is orthogonal to all solutions of the equation ATx D 0.

Exercises 33 and 34 concern the (real) Schur factorization of an
n � nmatrixA in the formA D URU T , whereU is an orthogonal
matrix and R is an n � n upper triangular matrix.1

33. Show that if A admits a (real) Schur factorization, A D

URU T , then A and R have the same characteristic polyno-
mial. Deduce that A has n real eigenvalues, counting multi-
plicities.

34. a. Let A be an n � n diagonalizable matrix such that
A D PDP�1 for some invertible matrix P and some
diagonal matrix D. Show that P admits a QR factor-
ization and use this factorization to find a (real) Schur
factorization of A.

1 If complex numbers are allowed, every n� n matrix A admits
a (complex) Schur factorization, A D URU�1, where R is upper
triangular and U�1 is the conjugate transpose of U . This very
useful fact is discussed in Matrix Analysis, by Roger A. Horn and
Charles R. Johnson (Cambridge: Cambridge University Press, 1985),
pp. 79–100.

b. Find a (real) Schur factorization for A D

�
�2 12

�1 5

�
[Hint: Use Exercise 4 in Section 5.3.]

c. Find a (real) Schur factorization forA D

24 2 2 1

1 3 1

1 2 2

35
[Hint: Use Exercise 5 in Section 5.3.]

T When the right side of an equation Ax D b is changed
slightly—say, toAx D bC�b for some vector�b—the solution
changes from x to xC�x, where �x satisfies A.�x/ D �b. The
quotient k�bk=kbk is called the relative change in b (or the
relative error in bwhen�b represents possible error in the entries
of b/. The relative change in the solution is k�xk=kxk. When
A is invertible, the condition number of A, written as cond.A/,
produces a bound on how large the relative change in x can be:

k�xk
kxk

� cond.A/�
k�bk
kbk

.2/

In Exercises 35–38, solve Ax D b and A.�x/ D �b, and show
that the inequality (2) holds in each case. (See the discussion of
ill-conditioned matrices in Exercises 49–51 in Section 2.3.)

T 35. A D

�
4:5 3:1

1:6 1:1

�
, b D

�
19:249

6:843

�
, �b D

�
:001

�:003

�
T 36. A D

�
4:5 3:1

1:6 1:1

�
, b D

�
:500

�1:407

�
, �b D

�
:001

�:003

�

T 37. A D

2664
7 �6 �4 1

�5 1 0 �2

10 11 7 �3

19 9 7 1

3775, b D
2664

:100

2:888

�1:404

1:462

3775,

�b D 10�4

2664
:49

�1:28

5:78

8:04

3775

T 38. A D

2664
7 �6 �4 1

�5 1 0 �2

10 11 7 �3

19 9 7 1

3775, b D
2664

4:230

�11:043

49:991

69:536

3775,

�b D 10�4

2664
:27

7:76

�3:77

3:93

3775
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7 Symmetric Matrices
and Quadratic
Forms

Introductory Example

MULTICHANNEL IMAGE PROCESSING
Around the world in little more than 80 minutes, the two
Landsat satellites streak silently across the sky in near
polar orbits, recording images of terrain and coastline,
in swaths 185 kilometers wide. Every 16 days, each
satellite passes over almost every square kilometer of the
earth’s surface, so any location can be monitored every
8 days.

The Landsat images are useful for many purposes.
Developers and urban planners use them to study the rate
and direction of urban growth, industrial development, and
other changes in land usage. Rural countries can analyze
soil moisture, classify the vegetation in remote regions, and
locate inland lakes and streams. Governments can detect
and assess damage from natural disasters, such as forest
fires, lava flows, floods, and hurricanes. Environmental
agencies can identify pollution from smokestacks and
measure water temperatures in lakes and rivers near power
plants.

Sensors aboard the satellite acquire seven
simultaneous images of any region on earth to be studied.
The sensors record energy from separate wavelength
bands—three in the visible light spectrum and four in
infrared and thermal bands. Each image is digitized
and stored as a rectangular array of numbers, each
number indicating the signal intensity at a corresponding
small point (or pixel) on the image. Each of the seven
images is one channel of a multichannel or multispectral
image.

The seven Landsat images of one fixed region typically
contain much redundant information, since some features
will appear in several images. Yet other features, because of
their color or temperature, may reflect light that is recorded
by only one or two sensors. One goal of multichannel
image processing is to view the data in a way that
extracts information better than studying each image
separately.

Principal component analysis is an effective way
to suppress redundant information and provide in only
one or two composite images most of the information
from the initial data. Roughly speaking, the goal is to
find a special linear combination of the images, that is,
a list of weights that at each pixel combine all seven
corresponding image values into one new value. The
weights are chosen in a way that makes the range of light
intensities—the scene variance—in the composite image
(called the first principal component) greater than that in
any of the original images. Additional component images
can also be constructed by criteria that will be explained in
Section 7.5.

Principal component analysis is illustrated in the
photos on the next page, taken over Railroad Valley,
Nevada. Images from three Landsat spectral bands are
shown in (a)–(c). The total information in the three bands
is rearranged in the three principal component images in
(d)–(f). The first component (d) displays (or “explains”)
93.5% of the scene variance present in the initial data.

441
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In this way, the three-channel initial data have been
reduced to one-channel data, with a loss in some sense of
only 6.5% of the scene variance.

Earth Satellite Corporation of Rockville, Maryland,
which kindly supplied the photos shown here, is

experimenting with images from 224 separate spectral
bands. Principal component analysis, essential for such
massive data sets, typically reduces the data to about 15
usable principal components.

Symmetric matrices arise more often in applications, in one way or another, than any
other major class of matrices. The theory is rich and beautiful, depending in an essential
way on both diagonalization from Chapter 5 and orthogonality from Chapter 6. The
diagonalization of a symmetric matrix, described in Section 7.1, is the foundation for the
discussion in Sections 7.2 and 7.3 concerning quadratic forms. Section 7.3, in turn, is
needed for the final two sections on the singular value decomposition and on the image
processing described in the introductory example. Throughout the chapter, all vectors
and matrices have real entries.
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7.1 Diagonalization of Symmetric Matrices
A symmetricmatrix is a matrixA such thatAT = A. Such a matrix is necessarily square.
Its main diagonal entries are arbitrary, but its other entries occur in pairs—on opposite
sides of the main diagonal.

EXAMPLE 1 Of the following matrices, only the first three are symmetric:

Symmetric:
�

1 0

0 �3

�
;

24 0 �1 0

�1 5 8

0 8 �7

35;

24 a b c

b d e

c e f

35
Nonsymmetric:

�
1 �3

3 0

�
;

24 1 �4 0

�6 1 �4

0 �6 1

35;

24 5 4 3 2

4 3 2 1

3 2 1 0

35
To begin the study of symmetric matrices, it is helpful to review the diagonalization

process of Section 5.3.

EXAMPLE 2 If possible, diagonalize the matrix A D

24 6 �2 �1

�2 6 �1

�1 �1 5

35.
SOLUTION The characteristic equation of A is

0 D ��3
C 17�2

� 90�C 144 D �.� � 8/.� � 6/.� � 3/

Standard calculations produce a basis for each eigenspace:

� D 8 W v1 D

24�1

1

0

35I � D 6 W v2 D

24�1

�1

2

35I � D 3 W v3 D

24 1

1

1

35
These three vectors form a basis for R3. In fact, it is easy to check that fv1; v2; v3g is an
orthogonal basis for R3. Experience from Chapter 6 suggests that an orthonormal basis
might be useful for calculations, so here are the normalized (unit) eigenvectors.

u1 D

24�1=
p

2

1=
p

2

0

35 ; u2 D

24�1=
p

6

�1=
p

6

2=
p

6

35; u3 D

24 1=
p

3

1=
p

3

1=
p

3

35
Let

P D

24�1=
p

2 �1=
p

6 1=
p

3

1=
p

2 �1=
p

6 1=
p

3

0 2=
p

6 1=
p

3

35 ; D D

24 8 0 0

0 6 0

0 0 3

35
Then A D PDP�1, as usual. But this time, since P is square and has orthonormal
columns, P is an orthogonal matrix, and P�1 is simply P T . (See Section 6.2.)

Theorem 1 explains why the eigenvectors in Example 2 are orthogonal—they cor-
respond to distinct eigenvalues.
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THEOREM 1 If A is symmetric, then any two eigenvectors from different eigenspaces are
orthogonal.

PROOF Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say, �1

and �2. To show that v1 � v2 D 0, compute

�1v1 � v2 D .�1v1/T v2 D .Av1/T v2 Since v1 is an eigenvector

D .vT
1 AT /v2 D vT

1 .Av2/ Since AT D A

D vT
1 .�2v2/ Since v2 is an eigenvector

D �2vT
1 v2 D �2v1 � v2

Hence .�1 � �2/v1 � v2 D 0. But �1 � �2 ¤ 0, so v1 � v2 D 0.

The special type of diagonalization in Example 2 is crucial for the theory of sym-
metric matrices. An n � n matrix A is said to be orthogonally diagonalizable if there
are an orthogonal matrix P (with P�1 D P T ) and a diagonal matrix D such that

A D PDPT
D PDP�1 (1)

Such a diagonalization requires n linearly independent and orthonormal eigenvec-
tors. When is this possible? If A is orthogonally diagonalizable as in (1), then

AT
D .PDPT /T

D P T T DT P T
D PDPT

D A

Thus A is symmetric! Theorem 2 below shows that, conversely, every symmetric matrix
is orthogonally diagonalizable. The proof is much harder and is omitted; the main idea
for a proof will be given after Theorem 3.

THEOREM 2 An n � n matrix A is orthogonally diagonalizable if and only if A is a symmetric
matrix.

This theorem is rather amazing, because the work in Chapter 5 would suggest that
it is usually impossible to tell when a matrix is diagonalizable. But this is not the case
for symmetric matrices.

The next example treats a matrix whose eigenvalues are not all distinct.

EXAMPLE 3 Orthogonally diagonalize the matrix A D

24 3 �2 4

�2 6 2

4 2 3

35, whose
characteristic equation is

0 D ��3
C 12�2

� 21� � 98 D �.� � 7/2.�C 2/

SOLUTION The usual calculations produce bases for the eigenspaces:

� D 7 W v1 D

24 1

0

1

35; v2 D

24�1=2

1

0

35 I � D �2 W v3 D

24 �1

�1=2

1

35
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Although v1 and v2 are linearly independent, they are not orthogonal. Recall from

Section 6.2 that the projection of v2 onto v1 is
v2 � v1

v1 � v1

v1, and the component of v2

orthogonal to v1 is

z2 D v2 �
v2 � v1

v1 � v1

v1 D

24�1=2

1

0

35 � �1=2

2

24 1

0

1

35 D 24�1=4

1

1=4

35
Then fv1; z2g is an orthogonal set in the eigenspace for � D 7. (Note that z2 is a linear
combination of the eigenvectors v1 and v2, so z2 is in the eigenspace. This construction
of z2 is just the Gram–Schmidt process of Section 6.4.) Since the eigenspace is two-
dimensional (with basis v1; v2/, the orthogonal set fv1; z2g is an orthogonal basis for the
eigenspace, by the Basis Theorem. (See Section 2.9 or 4.5.)

Normalize v1 and z2 to obtain the following orthonormal basis for the eigenspace
for � D 7:

u1 D

24 1=
p

2

0

1=
p

2

35 ; u2 D

24�1=
p

18

4=
p

18

1=
p

18

35
An orthonormal basis for the eigenspace for � D �2 is

u3 D
1

k2v3k
2v3 D

1

3

24�2

�1

2

35 D 24�2=3

�1=3

2=3

35
By Theorem 1, u3 is orthogonal to the other eigenvectors u1 and u2. Hence fu1; u2; u3g

is an orthonormal set. Let

P D Œ u1 u2 u3 � D

264 1=
p

2 �1=
p

18 �2=3

0 4=
p

18 �1=3

1=
p

2 1=
p

18 2=3

375 ; D D

24 7 0 0

0 7 0

0 0 �2

35
Then P orthogonally diagonalizes A, and A D PDP�1.

In Example 3, the eigenvalue 7 has multiplicity two and the eigenspace is two-
dimensional. This fact is not accidental, as the next theorem shows.

The Spectral Theorem
The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the
following description of the eigenvalues is called a spectral theorem.

THEOREM 3 The Spectral Theorem for Symmetric Matrices

An n � n symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue � equals the multiplicity
of � as a root of the characteristic equation.

c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corre-
sponding to different eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.
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Part (a) follows from Exercise 28 in Section 5.5. Part (b) follows easily from part
(d). (See Exercise 37.) Part (c) is Theorem 1. Because of (a), a proof of (d) can be given
using Exercise 38 and the Schur factorization discussed in Supplementary Exercise 34
in Chapter 6. The details are omitted.

Spectral Decomposition
SupposeA D PDP�1, where the columns of P are orthonormal eigenvectors u1; : : : ; un

of A and the corresponding eigenvalues �1; : : : ; �n are in the diagonal matrix D. Then,
since P�1 D P T ,

A D PDPT
D
�
u1 � � � un

�264 �1 0
: : :

0 �n

375
264 uT

1
:::

uT
n

375
D
�

�1u1 � � � �nun

�264 uT
1
:::

uT
n

375
Using the column–row expansion of a product (Theorem 10 in Section 2.4), we can write

A D �1u1uT
1 C �2u2uT

2 C � � � C �nunuT
n (2)

This representation of A is called a spectral decomposition of A because it breaks
up A into pieces determined by the spectrum (eigenvalues) of A. Each term in (2) is
an n � n matrix of rank 1. For example, every column of �1u1uT

1 is a multiple of u1.
Furthermore, each matrix ujuT

j is a projection matrix in the sense that for each x in
Rn, the vector .ujuT

j /x is the orthogonal projection of x onto the subspace spanned by
uj . (See Exercise 41.)

EXAMPLE 4 Construct a spectral decomposition of the matrix A that has the or-
thogonal diagonalization

A D

�
7 2

2 4

�
D

�
2=
p

5 �1=
p

5

1=
p

5 2=
p

5

��
8 0

0 3

��
2=
p

5 1=
p

5

�1=
p

5 2=
p

5

�
SOLUTION Denote the columns of P by u1 and u2. Then

A D 8u1uT
1 C 3u2uT

2

To verify this decomposition of A, compute

u1uT
1 D

�
2=
p

5

1=
p

5

��
2=
p

5 1=
p

5
�
D

�
4=5 2=5

2=5 1=5

�
u2uT

2 D

�
�1=
p

5

2=
p

5

��
�1=
p

5 2=
p

5
�
D

�
1=5 �2=5

�2=5 4=5

�
and

8u1uT
1 C 3u2uT

2 D

�
32=5 16=5

16=5 8=5

�
C

�
3=5 �6=5

�6=5 12=5

�
D

�
7 2

2 4

�
D A
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Numerical Notes

When A is symmetric and not too large, modern high-performance computer al-
gorithms calculate eigenvalues and eigenvectors with great precision. They apply
a sequence of similarity transformations to A involving orthogonal matrices. The
diagonal entries of the transformedmatrices converge rapidly to the eigenvalues of
A. (See the Numerical Notes in Section 5.2.) Using orthogonal matrices generally
prevents numerical errors from accumulating during the process. When A is
symmetric, the sequence of orthogonal matrices combines to form an orthogonal
matrix whose columns are eigenvectors of A.

A nonsymmetric matrix cannot have a full set of orthogonal eigenvectors, but
the algorithm still produces fairly accurate eigenvalues. After that, nonorthogonal
techniques are needed to calculate eigenvectors.

Practice Problems

1. Show that if A is a symmetric matrix, then A2 is symmetric.

2. Show that if A is orthogonally diagonalizable, then so is A2.

7.1 Exercises
Determine which of the matrices in Exercises 1–6 are symmetric.

1.
�

4 3

3 �8

�
2.

�
4 �3

�3 �4

�

3.
�

3 5

3 7

�
4.

24 1 3 5

3 1 �6

5 4 1

35
5.

24�2 4 5

4 �2 3

5 3 �2

35 6.

24 2 1 1 2

3 3 3 2

1 1 2 1

35
Determine which of thematrices in Exercises 7–12 are orthogonal.
If orthogonal, find the inverse.

7.
�

1=
p

2 �1=
p

2

1=
p

2 1=
p

2

�
8.

�
1 2

2 �1

�

9.
�
�3=5 4=5

4=5 3=5

�
10.

24 2=3 1=3 �2=3

�2=3 2=3 �1=3

1=3 2=3 2=3

35
11.

24�2=3 1=3 2=3

0 2=3 �1=3

5=3 2=3 4=3

35

12.

2664
1=2 1=2 1=2 1=2

1=
p

12 1=
p

12 1=
p

12 �3=
p

12

1=
p

6 1=
p

6 �2=
p

6 0

1=
p

2 �1=
p

2 0 0

3775
Orthogonally diagonalize the matrices in Exercises 13–22, giv-
ing an orthogonal matrix P and a diagonal matrix D. To save

you time, the eigenvalues in Exercises 17–22 are the following:
(17) �5, 5, 8; (18) 1, 2, 5; (19) 8, �1; (20) �3, 15; (21) 3, 5, 9;
(22) 4, 6.

13.
�

4 1

1 4

�
14.

�
2 �3

�3 2

�

15.
�

5 6

6 10

�
16.

�
5 �4

�4 11

�

17.

24 1 1 6

1 6 1

6 1 1

35 18.

24 2 �1 1

�1 4 �1

1 �1 2

35

19.

24 4 �2 4

�2 7 2

4 2 4

35 20.

24 5 �8 4

�8 5 �4

4 �4 �1

35

21.

2664
5 4 1 1

4 5 1 1

1 1 5 4

1 1 4 5

3775 22.

2664
5 0 1 0

0 5 0 1

1 0 5 0

0 1 0 5

3775

23. Let A D

24 5 �1 �1

�1 5 �1

�1 �1 5

35 and v D

24 1

1

1

35. Verify that 3 is
an eigenvalue ofA and v is an eigenvector. Then orthogonally
diagonalize A.
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24. Let A D

24 3 �1 1

�1 3 �1

1 �1 3

35, v1 D

24�1

0

1

35, and v2 D24 1

�1

1

35. Verify that v1 and v2 are eigenvectors of A. Then

orthogonally diagonalize A.

In Exercises 25–32, mark each statement True or False (T/F).
Justify each answer.

25. (T/F) An n � n matrix that is orthogonally diagonalizable
must be symmetric.

26. (T/F) There are symmetric matrices that are not orthogo-
nally diagonalizable.

27. (T/F) An orthogonal matrix is orthogonally diagonalizable.

28. (T/F) If B D PDP T , where P T D P�1 and D is a diago-
nal matrix, then B is a symmetric matrix.

29. (T/F) For a nonzero v in Rn, the matrix vvT is called a
projection matrix.

30. (T/F) If AT D A and if vectors u and v satisfy Au D 3u and
Av D 4v, then u � v D 0.

31. (T/F) An n � n symmetric matrix has n distinct real
eigenvalues.

32. (T/F) The dimension of an eigenspace of a symmetric matrix
is sometimes less than the multiplicity of the corresponding
eigenvalue.

33. Show that if A is an n � n symmetric matrix, then (Ax/�y D
x�.Ay/ for all x; y in Rn.

34. Suppose A is a symmetric n � n matrix and B is any n �m

matrix. Show that BTAB , BTB , and BBT are symmetric
matrices.

35. Suppose A is invertible and orthogonally diagonalizable.
Explain why A�1 is also orthogonally diagonalizable.

36. Suppose A and B are both orthogonally diagonalizable and
AB D BA. Explain why AB is also orthogonally diagonaliz-
able.

37. Let A D PDP�1, where P is orthogonal and D is diagonal,
and let � be an eigenvalue of A of multiplicity k. Then
� appears k times on the diagonal of D. Explain why the
dimension of the eigenspace for � is k.

38. SupposeA D PRP�1, whereP is orthogonal andR is upper
triangular. Show that if A is symmetric, then R is symmetric
and hence is actually a diagonal matrix.

39. Construct a spectral decomposition of A from Example 2.

40. Construct a spectral decomposition of A from Example 3.

41. Let u be a unit vector in Rn, and let B D uuT .

a. Given any x in Rn, compute Bx and show that Bx is
the orthogonal projection of x onto u, as described in
Section 6.2.

b. Show that B is a symmetric matrix and B2 D B .

c. Show that u is an eigenvector of B . What is the corre-
sponding eigenvalue?

42. Let B be an n � n symmetric matrix such that B2 = B . Any
such matrix is called a projection matrix (or an orthogonal
projection matrix). Given any y in Rn, let Oy D By and
z D y � Oy.
a. Show that z is orthogonal to Oy.

b. Let W be the column space of B . Show that y is the sum
of a vector inW and a vector inW ?. Why does this prove
that By is the orthogonal projection of y onto the column
space of B?

Orthogonally diagonalize the matrices in Exercises 43–46. To
practice the methods of this section, do not use an eigenvector
routine from your matrix program. Instead, use the program to find
the eigenvalues, and, for each eigenvalue �, find an orthonormal
basis for Nul.A � �I/, as in Examples 2 and 3.

T 43.

2664
6 2 9 �6

2 6 �6 9

9 �6 6 2

�6 9 2 6

3775

T 44.

2664
:63 �:18 �:06 �:04

�:18 :84 �:04 :12

�:06 �:04 :72 �:12

�:04 :12 �:12 :66

3775

T 45.

2664
:31 :58 :08 :44

:58 �:56 :44 �:58

:08 :44 :19 �:08

:44 �:58 �:08 :31

3775

T 46.

266664
8 2 2 �6 9

2 8 2 �6 9

2 2 8 �6 9

�6 �6 �6 24 9

9 9 9 9 �21

377775
Solutions to Practice Problems

1. .A2/T D .AA/T D ATAT , by a property of transposes. By hypothesis, AT D A. So
.A2/T D AA D A2, which shows that A2 is symmetric.

2. IfA is orthogonally diagonalizable, thenA is symmetric, by Theorem 2. By Practice
Problem 1, A2 is symmetric and hence is orthogonally diagonalizable (Theorem 2).
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7.2 Quadratic Forms
Until now, our attention in this text has focused on linear equations, except for the sums
of squares encountered in Chapter 6 when computing xTx. Such sums and more general
expressions, called quadratic forms, occur frequently in applications of linear algebra
to engineering (in design criteria and optimization) and signal processing (as output
noise power). They also arise, for example, in physics (as potential and kinetic energy),
differential geometry (as normal curvature of surfaces), economics (as utility functions),
and statistics (in confidence ellipsoids). Some of the mathematical background for such
applications flows easily from our work on symmetric matrices.

A quadratic form on Rn is a function Q defined on Rn whose value at a vector x
in Rn can be computed by an expression of the form Q.x/ D xTAx, where A is an n � n

symmetric matrix. The matrix A is called the matrix of the quadratic form.
The simplest example of a nonzero quadratic form is Q.x/ D xTIx D kxk2. Exam-

ples 1 and 2 show the connection between any symmetric matrix A and the quadratic
form xTAx.

EXAMPLE 1 Let x D
�

x1

x2

�
. Compute xTAx for the following matrices:

a. A D

�
4 0

0 3

�
b. A D

�
3 �2

�2 7

�
SOLUTION

a. xTAx D Œ x1 x2 �

�
4 0

0 3

��
x1

x2

�
D Œ x1 x2 �

�
4x1

3x2

�
D 4x2

1 C 3x2
2 .

b. There are two�2 entries inA.Watch how they enter the calculations. The .1; 2/-entry
in A is in boldface type.

xTAx D Œ x1 x2 �

�
3 �2
�2 7

��
x1

x2

�
D Œ x1 x2 �

�
3x1 � 2x2

�2x1 C 7x2

�
D x1.3x1 � 2x2/C x2.�2x1 C 7x2/

D 3x2
1 � 2x1x2 � 2x2x1 C 7x2

2

D 3x2
1 � 4x1x2 C 7x2

2

The presence of �4x1x2 in the quadratic form in Example 1(b) is due to the �2

entries off the diagonal in the matrix A. In contrast, the quadratic form associated with
the diagonal matrix A in Example 1(a) has no x1x2 cross-product term.

EXAMPLE 2 For x inR3, letQ.x/ D 5x2
1 C 3x2

2 C 2x2
3 � x1x2 C 8x2x3. Write this

quadratic form as xTAx.

SOLUTION The coefficients of x2
1 , x2

2 , x2
3 go on the diagonal of A. To make A sym-

metric, the coefficient of xi xj for i ¤ j must be split evenly between the .i; j /- and
.j; i/-entries in A. The coefficient of x1x3 is 0. It is readily checked that

Q.x/ D xTAx D Œ x1 x2 x3 �

24 5 �1=2 0

�1=2 3 4

0 4 2

3524 x1

x2

x3

35
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EXAMPLE 3 Let Q.x/ D x2
1 � 8x1x2 � 5x2

2 . Compute the value of Q.x/ for x D�
�3

1

�
,
�

2

�2

�
, and

�
1

�3

�
.

SOLUTION
Q.�3; 1/ D .�3/2

� 8.�3/.1/ � 5.1/2
D 28

Q.2;�2/ D .2/2
� 8.2/.�2/ � 5.�2/2

D 16

Q.1;�3/ D .1/2
� 8.1/.�3/ � 5.�3/2

D �20

In some cases, quadratic forms are easier to use when they have no cross-product
terms—that is, when the matrix of the quadratic form is a diagonal matrix. Fortunately,
the cross-product term can be eliminated by making a suitable change of variable.

Change of Variable in a Quadratic Form
If x represents a variable vector in Rn, then a change of variable is an equation of the
form

x D P y; or equivalently; y D P�1x (1)

where P is an invertible matrix and y is a new variable vector in Rn. Here y is the
coordinate vector of x relative to the basis of Rn determined by the columns of P . (See
Section 4.4.)

If the change of variable (1) is made in a quadratic form xTAx, then

xTAx D .P y/TA.P y/ D yTP TAP y D yT.P TAP /y (2)

and the new matrix of the quadratic form is P TAP . Since A is symmetric, Theorem 2
guarantees that there is an orthogonalmatrix P such that P TAP is a diagonal matrix D,
and the quadratic form in (2) becomes yTDy. This is the strategy of the next example.

EXAMPLE 4 Make a change of variable that transforms the quadratic form in Ex-
ample 3 into a quadratic form with no cross-product term.

SOLUTION The matrix of the quadratic form in Example 3 is

A D

�
1 �4

�4 �5

�
The first step is to orthogonally diagonalize A. Its eigenvalues turn out to be � D 3 and
� D �7. Associated unit eigenvectors are

� D 3 W

"
2=
p

5

�1=
p

5

#
I � D �7 W

"
1=
p

5

2=
p

5

#
These vectors are automatically orthogonal (because they correspond to distinct eigen-
values) and so provide an orthonormal basis for R2. Let

P D

"
2=
p

5 1=
p

5

�1=
p

5 2=
p

5

#
; D D

�
3 0

0 �7

�
Then A D PDP�1 and D D P�1AP D P TAP , as pointed out earlier. A suitable change
of variable is

x D P y; where x D
�

x1

x2

�
and y D

�
y1

y2

�
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Then
x2

1 � 8x1x2 � 5x2
2 D xTAx D .P y/TA.P y/

D yTP TAPy D yTDy

D 3y2
1 � 7y2

2

To illustrate the meaning of the equality of quadratic forms in Example 4, we can
compute Q.x/ for x D .2;�2/ using the new quadratic form. First, since x D P y,

y D P�1x D P T x

so

y D

"
2=
p

5 �1=
p

5

1=
p

5 2=
p

5

#�
2

�2

�
D

"
6=
p

5

�2=
p

5

#
Hence

3y2
1 � 7y2

2 D 3.6=
p

5/2
� 7.�2=

p
5/2
D 3.36=5/ � 7.4=5/

D 80=5 D 16

This is the value of Q.x/ in Example 3 when x D .2;�2/. See Figure 1.

R

R2

R2

160
Multiplication

by P

x

y

yTDy

xTAx

FIGURE 1 Change of variable in xTAx.

Example 4 illustrates the following theorem. The proof of the theorem was essen-
tially given before Example 4.

THEOREM 4 The Principal Axes Theorem

Let A be an n � n symmetric matrix. Then there is an orthogonal change of
variable, x D P y, that transforms the quadratic form xTAx into a quadratic form
yTDy with no cross-product term.

The columns ofP in the theorem are called the principal axes of the quadratic form
xTAx. The vector y is the coordinate vector of x relative to the orthonormal basis of Rn

given by these principal axes.

A Geometric View of Principal Axes
Suppose Q.x/ D xTAx, where A is an invertible 2 � 2 symmetric matrix, and let c be a
constant. It can be shown that the set of all x in R2 that satisfy

xTAx D c (3)
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either corresponds to an ellipse (or circle), a hyperbola, two intersecting lines, or a single
point, or contains no points at all. If A is a diagonal matrix, the graph is in standard
position, such as in Figure 2. If A is not a diagonal matrix, the graph of equation (3) is

x1

x2

a

5 1,  a . b . 0
a2 b2

x2 x2
21

b

x1

x2

a

b

— —1

Ellipse

5 1,  a . b . 0
a2 b2

x2 x2
21— —2

Hyperbola

FIGURE 2 An ellipse and a hyperbola in standard position.

rotated out of standard position, as in Figure 3. Finding the principal axes (determined
by the eigenvectors of A) amounts to finding a new coordinate system with respect to
which the graph is in standard position.

(a) 5x2 2 4x1x2 1 5x2 5 48

x1

x2 y1y2

1

1

1 2

x2

(b) x2 2 8x1x2 2 5x2 5 16

x1

y1

y2

11

1 2

FIGURE 3 An ellipse and a hyperbola not in standard position.

The hyperbola in Figure 3(b) is the graph of the equation xTAx D 16, whereA is the
matrix in Example 4. The positive y1-axis in Figure 3(b) is in the direction of the first
column of the matrix P in Example 4, and the positive y2-axis is in the direction of the
second column of P .

EXAMPLE 5 The ellipse in Figure 3(a) is the graph of the equation 5x2
1 � 4x1x2 C

5x2
2 D 48. Find a change of variable that removes the cross-product term from the

equation.

SOLUTION The matrix of the quadratic form is A D

�
5 �2

�2 5

�
. The eigenvalues of

A turn out to be 3 and 7, with corresponding unit eigenvectors

u1 D

"
1=
p

2

1=
p

2

#
; u2 D

"
�1=
p

2

1=
p

2

#
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Let P D Œ u1 u2 � D

"
1=
p

2 �1=
p

2

1=
p

2 1=
p

2

#
. Then P orthogonally diagonalizes A, so the

change of variable x D P y produces the quadratic form yT Dy D 3y2
1 C 7y2

2 . The new
axes for this change of variable are shown in Figure 3(a).

Classifying Quadratic Forms
When A is an n � n matrix, the quadratic form Q.x/ D xTAx is a real-valued function
with domain Rn. Figure 4 displays the graphs of four quadratic forms with domain R2.
For each point x D .x1; x2/ in the domain of a quadratic form Q, the graph displays the
point .x1; x2; ´/ where ´ D Q.x/. Notice that except at x D 0, the values of Q.x/ are
all positive in Figure 4(a) and all negative in Figure 4(d). The horizontal cross-sections
of the graphs are ellipses in Figures 4(a) and 4(d) and hyperbolas in Figure 4(c).

(a)  z 5 3x2 1 7x2

x2
x1

x3

1 2 (b)  z 5 3x2
1

x1 x2

x3

(c)  z 5 3x2 2 7x2

x2x1

x3

21 (d)  

x3

x2x1

z 523x2 2 7x2
21

FIGURE 4 Graphs of quadratic forms.

The simple 2 � 2 examples in Figure 4 illustrate the following definitions.

DEFINITION A quadratic form Q is

a. positive definite if Q.x/ > 0 for all x ¤ 0,

b. negative definite if Q.x/ < 0 for all x ¤ 0,

c. indefinite if Q.x/ assumes both positive and negative values.

Also, Q is said to be positive semidefinite if Q.x/ � 0 for all x, and to be negative
semidefinite if Q.x/ � 0 for all x. The quadratic forms in parts (a) and (b) of Figure 4
are both positive semidefinite, but the form in (a) is better described as positive definite.

Theorem 5 characterizes some quadratic forms in terms of eigenvalues.

THEOREM 5 Quadratic Forms and Eigenvalues

Let A be an n � n symmetric matrix. Then a quadratic form xTAx is

a. positive definite if and only if the eigenvalues of A are all positive,

b. negative definite if and only if the eigenvalues of A are all negative, or

c. indefinite if and only if A has both positive and negative eigenvalues.
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PROOF By the Principal Axes Theorem, there exists an orthogonal change of variable

x2

x1

x3

Positive definite

x D P y such that

Q.x/ D xTAx D yTDy D �1y2
1 C �2y2

2 C � � � C �ny2
n (4)

where �1; : : : ; �n are the eigenvalues of A. Since P is invertible, there is a one-to-
one correspondence between all nonzero x and all nonzero y. Thus the values of Q.x/

for x ¤ 0 coincide with the values of the expression on the right side of (4), which
is obviously controlled by the signs of the eigenvalues �1; : : : ; �n, in the three ways
described in the theorem.

EXAMPLE 6 Is Q.x/ D 3x2
1 C 2x2

2 C x2
3 C 4x1x2 C 4x2x3 positive definite?

SOLUTION Because of all the plus signs, this form “looks” positive definite. But the
matrix of the form isx2

x1

x3

Negative definite

x2

x1

x3

Indefinite

A D

24 3 2 0

2 2 2

0 2 1

35
and the eigenvalues of A turn out to be 5, 2, and �1. So Q is an indefinite quadratic
form, not positive definite.

The classification of a quadratic form is often carried over to the matrix of the form.
Thus a positive definite matrix A is a symmetric matrix for which the quadratic form
xTAx is positive definite. Other terms, such as positive semidefinite matrix, are defined
analogously.

Numerical Notes

A fast way to determine whether a symmetric matrix A is positive definite is
to attempt to factor A in the form A D RTR, where R is upper triangular with
positive diagonal entries. (A slightly modified algorithm for an LU factorization
is one approach.) Such a Cholesky factorization is possible if and only if A is
positive definite. See Supplementary Exercise 23 at the end of Chapter 7.

Practice Problem

Describe a positive semidefinite matrix A in terms of its eigenvalues.

7.2 Exercises

1. Compute the quadratic form xTAx, when A D

�
3 1=4

1=4 1

�
and

a. x D
�

x1

x2

�
b. x D

�
8

1

�
c. x D

�
1

4

�

2. Compute the quadratic form xTAx, for A D

24 4 1 0

1 1 3

0 3 0

35
and

a. x D

24x1

x2

x3

35 b. x D

24�3

�1

4

35 c. x D

2641=
p

5

1=
p

5

1=
p

5

375
3. Find the matrix of the quadratic form. Assume x is in R2.

a. 4x2
1 � 6x1x2 C 5x2

2 b. 5x2
1 C 4x1x2

4. Find the matrix of the quadratic form. Assume x is in R2.

a. 7x2
1 C 18x1x2 � 7x2

2 b. 8x1x2
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5. Find the matrix of the quadratic form. Assume x is in R3.

a. 5x2
1 C 3x2

2 � 7x2
3 � 4x1x2 C 6x1x3 � 2x2x3

b. 8x1x2 C 10x1x3 � 6x2x3

6. Find the matrix of the quadratic form. Assume x is in R3.

a. 5x2
1 � 3x2

2 C 7x2
3 C 8x1x2 � 4x1x3

b. 6x2
3 � 4x1x2 � 2x2x3

7. Make the change of variable, x D P y, that transforms the
quadratic form x2

1 C 12x1x2 C x2
2 into a quadratic form with

no cross-product terms. Give P and the new quadratic form.

8. Let A be the matrix of the quadratic form

7x2
1 C 5x2

2 C 9x2
3 � 8x1x2 C 8x1x3

It can be shown that the eigenvalues of A are 1, 7, and 13.
Find an orthogonal matrix P such that the change of variable
x D P y transforms xTAx into a quadratic form with no cross-
product term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9–18. Then make a
change of variable, x D P y that transform the quadratic form into
one with no cross-product terms. Write the new quadratic form.
Construct P using the methods of Section 7.1.

9. 6x2
1 � 4x1x2 C 3x2

2 10. 3x2
1 C 8x1x2 � 3x2

2

11. 4x2
1 � 8x1x2 � 2x2

2 12. �2x2
1 � 4x1x2 � 2x2

2

13. x2
1 � 4x1x2 C 4x2

2 14. 5x2
1 C 12x1x2

T 15. �3x2
1 � 7x2

2 � 10x2
3 � 10x2

4 C 4x1x2 C 4x1x3C

4x1x4 C 6x3x4

T 16. 4x2
1 C 4x2

2 C 4x2
3 C 4x2

4 C 8x1x2 C 8x3x4 � 6x1x4C

6x2x3

T 17. 11x2
1 C 11x2

2 C 11x2
3 C 11x2

4 C 16x1x2 � 12x1x4C

12x2x3 C 16x3x4

T 18. 2x2
1 C 2x2

2 � 6x1x2 � 6x1x3 � 6x1x4 � 6x2x3�

6x2x4 � 2x3x4

19. What is the largest possible value of the quadratic
form 4x2

1 C 9x2
2 if x D .x1; x2/ and xTx D 1, that is, if

x2
1 C x2

2 D 1? (Try some examples of x)

20. What is the largest possible value of the quadratic form
7x2

1 � 5x2
2 if x

Tx D 1?

In Exercises 21–30,matrices are n � n and vectors are inRn. Mark
each statement True or False (T/F). Justify each answer.

21. (T/F) The matrix of a quadratic form is a symmetric matrix.

22. (T/F) The expression kxk2 is not a quadratic form.

23. (T/F) A quadratic form has no cross-product terms if and
only if the matrix of the quadratic form is a diagonal matrix.

24. (T/F) If A is symmetric and P is an orthogonal matrix,
then the change of variable x D P y transforms xTAx into a
quadratic form with no cross-product term.

25. (T/F) The principal axes of a quadratic form xTAx are eigen-
vectors of A.

26. (T/F) If the eigenvalues of a symmetric matrix A are all
positive, then the quadratic form xTAx is positive definite.

27. (T/F) A positive definite quadratic form Q satisfies Q.x/ >

0 for all x in Rn.

28. (T/F) An indefinite quadratic form is neither positive
semidefinite nor negative semidefinite.

29. (T/F) A Cholesky factorization of a symmetric matrix A has
the form A D RTR, for an upper triangular matrix R with
positive diagonal entries.

30. (T/F) IfA is symmetric and the quadratic form xTAx has only
negative values for x ¤ 0, then the eigenvalues of A are all
positive.

Exercises 31 and 32 show how to classify a quadratic form

Q.x/ D xTAx, whenA D

�
a b

b d

�
and detA ¤ 0, without find-

ing the eigenvalues of A.

31. If �1 and �2 are the eigenvalues of A, then the characteristic
polynomial of A can be written in two ways: det.A � �I/

and .� � �1/.� � �2/. Use this fact to show that �1 C �2 D

aC d (the diagonal entries of A) and �1�2 D detA.

32. Verify the following statements:

a. Q is positive definite if detA > 0 and a > 0.

b. Q is negative definite if detA > 0 and a < 0.

c. Q is indefinite if detA < 0.

33. Show that if B is m � n, then BTB is positive semidefinite;
and ifB is n � n and invertible, thenBTB is positive definite.

34. Show that if an n � n matrix A is positive definite, then there
exists a positive definite matrixB such thatA D BTB . [Hint:
Write A D PDPT , with P T D P�1. Produce a diagonal ma-
trix C such that D D C TC , and let B D PCP T . Show that
B works.]

35. LetA andB be symmetric n � nmatrices whose eigenvalues
are all positive. Show that the eigenvalues of AC B are all
positive. [Hint: Consider quadratic forms.]

36. Let A be an n � n invertible symmetric matrix. Show that
if the quadratic form xTAx is positive definite, then so is the
quadratic form xTA�1x. [Hint: Consider eigenvalues.]

STUDY GUIDE offers additional
resources on diagonalization and
quadratic forms.
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Solution to Practice Problem

Make an orthogonal change of variable x D P y, and write

xTAx D yT Dy D �1y2
1 C �2y2

2 C � � � C �ny2
n

as in equation (4). If an eigenvalue—say, �i—were negative, then xTAx would be
negative for the x corresponding to y D ei (the i th column of In). So the eigenvalues
of a positive semidefinite quadratic form must all be nonnegative. Conversely, if the
eigenvalues are nonnegative, the expansion above shows that xTAx must be positive
semidefinite.

x2
x1

x3

Positive semidefinite

7.3 Constrained Optimization
Engineers, economists, scientists, and mathematicians often need to find the maximum
or minimum value of a quadratic form Q.x/ for x in some specified set. Typically, the
problem can be arranged so that x varies over the set of unit vectors. This constrained op-
timization problem has an interesting and elegant solution. Example 6 and the discussion
in Section 7.5 will illustrate how such problems arise in practice.

The requirement that a vector x in Rn be a unit vector can be stated in several
equivalent ways:

kxk D 1; kxk2 D 1; xTx D 1

and
x2

1 C x2
2 C � � � C x2

n D 1 (1)

The expanded version (1) of xTx D 1 is commonly used in applications.
When a quadratic formQ has no cross-product terms, it is easy to find themaximum

and minimum of Q.x/ for xTx D 1.

EXAMPLE 1 Find themaximum andminimum values ofQ.x/ D 9x2
1 C 4x2

2 C 3x2
3

subject to the constraint xTx D 1.

SOLUTION Since x2
2 and x2

3 are nonnegative, note that

4x2
2 � 9x2

2 and 3x2
3 � 9x2

3

and hence

Q.x/ D 9x2
1 C 4x2

2 C 3x2
3

� 9x2
1 C 9x2

2 C 9x2
3

D 9.x2
1 C x2

2 C x2
3/

D 9

whenever x2
1 C x2

2 C x2
3 D 1. So the maximum value ofQ.x/ cannot exceed 9 when x is

a unit vector. Furthermore, Q.x/ D 9 when x D .1; 0; 0/. Thus 9 is the maximum value
of Q.x/ for xTx D 1.

To find the minimum value of Q.x/, observe that

9x2
1 � 3x2

1 ; 4x2
2 � 3x2

2

and hence
Q.x/ � 3x2

1 C 3x2
2 C 3x2

3 D 3.x2
1 C x2

2 C x2
3/ D 3

whenever x2
1 C x2

2 C x2
3 D 1. Also, Q.x/ D 3 when x1 D 0, x2 D 0, and x3 D 1. So 3

is the minimum value of Q.x/ when xTx D 1.
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It is easy to see in Example 1 that the matrix of the quadratic form Q has eigen-
values 9, 4, and 3 and that the greatest and least eigenvalues equal, respectively, the
(constrained) maximum and minimum of Q.x/. The same holds true for any quadratic
form, as we shall see.

EXAMPLE 2 Let A D

�
3 0

0 7

�
, and let Q.x/ D xTAx for x in R2. Figure 1 dis-

plays the graph of Q. Figure 2 shows only the portion of the graph inside a cylinder;
the intersection of the cylinder with the surface is the set of points .x1; x2; ´/ such
that ´ D Q.x1; x2/ and x2

1 C x2
2 D 1. The “heights” of these points are the constrained

values of Q.x/. Geometrically, the constrained optimization problem is to locate the
highest and lowest points on the intersection curve.

The two highest points on the curve are 7 units above the x1x2-plane, occurring
where x1 D 0 and x2 D ˙1. These points correspond to the eigenvalue 7 of A and
the eigenvectors x D .0; 1/ and �x D .0;�1/. Similarly, the two lowest points on the
curve are 3 units above the x1x2-plane. They correspond to the eigenvalue 3 and the
eigenvectors .1; 0/ and .�1; 0/.

8

11

(0, 1, 7)

(1, 0, 3)

11

z

8

z

x2
x1

11 x2
x1

FIGURE 1 ´ D 3x2
1 C 7x2

2 . FIGURE 2 The intersection of
´ D 3x2

1 C 7x2
2 and the cylinder

x2
1 C x2

2 D 1.

Every point on the intersection curve in Figure 2 has a ´-coordinate between 3 and
7, and for any number t between 3 and 7, there is a unit vector x such that Q.x/ D t .
In other words, the set of all possible values of xTAx, for kxk D 1, is the closed interval
3 � t � 7.

It can be shown that for any symmetric matrix A, the set of all possible values of
xTAx, for kxk D 1, is a closed interval on the real axis. (See Exercise 13.) Denote the
left and right endpoints of this interval by m and M , respectively. That is, let

m D min fxTAx W kxk D 1g; M D max fxTAx W kxk D 1g (2)

Exercise 12 asks you to prove that if � is an eigenvalue ofA, thenm � � �M . The next
theorem says that m and M are themselves eigenvalues of A, just as in Example 2.1

1 The use of minimum and maximum in (2), and least and greatest in the theorem, refers to the natural
ordering of the real numbers, not to magnitudes.
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THEOREM 6 LetA be a symmetric matrix, and definem andM as in (2). ThenM is the greatest
eigenvalue �1 of A and m is the least eigenvalue of A. The value of xTAx is M

when x is a unit eigenvector u1 corresponding to M . The value of xTAx is m when
x is a unit eigenvector corresponding to m.

PROOF Orthogonally diagonalize A as PDP�1. We know that

xTAx D yTDy when x D P y (3)

Also,
kxk D kP yk D kyk for all y

because P TP D I and kP yk2 D .P y/T .P y/ D yTP TP y D yTy D kyk2. In particular,
kyk D 1 if and only if kxk D 1. Thus xTAx and yTDy assume the same set of values as
x and y range over the set of all unit vectors.

To simplify notation, suppose that A is a 3 � 3 matrix with eigenvalues a � b � c.
Arrange the (eigenvector) columns of P so that P D Œ u1 u2 u3 � and

D D

24 a 0 0

0 b 0

0 0 c

35
Given any unit vector y in R3 with coordinates y1, y2, y3, observe that

ay2
1 D ay2

1

by2
2 � ay2

2

cy2
3 � ay2

3

and obtain these inequalities:

yTDy D ay2
1 C by2

2 C cy2
3

� ay2
1 C ay2

2 C ay2
3

D a.y2
1 C y2

2 C y2
3/

D akyk2 D a

Thus M � a, by definition of M . However, yTDy D a when y D e1 D .1; 0; 0/, so in
fact M D a. By (3), the x that corresponds to y D e1 is the eigenvector u1 of A, because

x D P e1 D
�
u1 u2 u3

�24 1

0

0

35 D u1

Thus M D a D eT
1 De1 D uT

1Au1, which proves the statement about M . A similar ar-
gument shows that m is the least eigenvalue, c, and this value of xTAx is attained when
x D P e3 D u3.

EXAMPLE 3 Let A D

24 3 2 1

2 3 1

1 1 4

35. Find the maximum value of the quadratic

form xTAx subject to the constraint xTx D 1, and find a unit vector at which this maxi-
mum value is attained.
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SOLUTION By Theorem 6, the desired maximum value is the greatest eigenvalue of
A. The characteristic equation turns out to be

0 D ��3
C 10�2

� 27�C 18 D �.� � 6/.� � 3/.� � 1/

The greatest eigenvalue is 6.
The constrained maximum of xTAx is attained when x is a unit eigenvector for

� D 6. Solve .A � 6I /x D 0 and find an eigenvector

24 1

1

1

35. Set u1 D

24 1=
p

3

1=
p

3

1=
p

3

35.
In Theorem 7 and in later applications, the values of xTAx are computed with addi-

tional constraints on the unit vector x.

THEOREM 7 Let A; �1, and u1 be as in Theorem 6. Then the maximum value of xTAx subject
to the constraints

xTx D 1; xTu1 D 0

is the second greatest eigenvalue, �2, and this maximum is attained when x is an
eigenvector u2 corresponding to �2.

Theorem 7 can be proved by an argument similar to the one above in which the
theorem is reduced to the case where the matrix of the quadratic form is diagonal. The
next example gives an idea of the proof for the case of a diagonal matrix.

EXAMPLE 4 Find the maximum value of 9x2
1 C 4x2

2 C 3x2
3 subject to the con-

straints xTx D 1 and xTu1 D 0, where u1 D .1; 0; 0/. Note that u1 is a unit eigenvector
corresponding to the greatest eigenvalue � D 9 of the matrix of the quadratic form.

SOLUTION If the coordinates of x are x1, x2, x3, then the constraint xTu1 D 0 means
simply that x1 D 0. For such a unit vector, x2

2 C x2
3 D 1, and

9x2
1 C 4x2

2 C 3x2
3 D 4x2

2 C 3x2
3

� 4x2
2 C 4x2

3

D 4.x2
2 C x2

3/

D 4

Thus the constrained maximum of the quadratic form does not exceed 4. And this value
is attained for x D .0; 1; 0/, which is an eigenvector for the second greatest eigenvalue
of the matrix of the quadratic form.

EXAMPLE 5 Let A be the matrix in Example 3 and let u1 be a unit eigenvector
corresponding to the greatest eigenvalue of A. Find the maximum value of xTAx subject
to the conditions

xTx D 1; xTu1 D 0 (4)

SOLUTION From Example 3, the second greatest eigenvalue of A is � D 3. Solve
.A � 3I /x D 0 to find an eigenvector, and normalize it to obtain

u2 D

24 1=
p

6

1=
p

6

�2=
p

6

35
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The vector u2 is automatically orthogonal to u1 because the vectors correspond to differ-
ent eigenvalues. Thus the maximum of xTAx subject to the constraints in (4) is 3, attained
when x D u2.

The next theorem generalizes Theorem 7 and, together with Theorem 6, gives a
useful characterization of all the eigenvalues of A. The proof is omitted.

THEOREM 8 Let A be a symmetric n � n matrix with an orthogonal diagonalization
A D PDP�1, where the entries on the diagonal of D are arranged so that
�1 � �2 � � � � � �n and where the columns of P are corresponding unit eigen-
vectors u1; : : : ; un. Then for k D 2; : : : ; n, the maximum value of xTAx subject to
the constraints

xTx D 1; xTu1 D 0; : : : ; xTuk�1 D 0

is the eigenvalue �k , and this maximum is attained at x D uk .

Theorem 8 will be helpful in Sections 7.4 and 7.5. The following application re-
quires only Theorem 6.

EXAMPLE 6 During the next year, a county government is planning to repair x

hundred miles of public roads and bridges and to improve y hundred acres of parks and
recreation areas. The countymust decide how to allocate its resources (funds, equipment,
labor, etc.) between these two projects. If it is more cost effective to work simultaneously
on both projects rather than on only one, then x and y might satisfy a constraint such as

4x2
C 9y2

� 36

See Figure 3. Each point .x; y/ in the shaded feasible set represents a possible public
works schedule for the year. The points on the constraint curve, 4x2 C 9y2 D 36, use
the maximum amounts of resources available.

y
Parks and
recreation

4x2 1 9y2 5 36

Feasible
set

2

3
Road and bridge repair

x

FIGURE 3 Public works schedules.

In choosing its public works schedule, the county wants to consider the opinions of
the county residents. To measure the value, or utility, that the residents would assign to
the various work schedules .x; y/, economists sometimes use a function such as

q.x; y/ D xy

The set of points .x; y/ at which q.x; y/ is a constant is called an indifference curve.
Three such curves are shown in Figure 4. Points along an indifference curve correspond
to alternatives that county residents as a group would find equally valuable.2 Find the
public works schedule that maximizes the utility function q.

2 Indifference curves are discussed in Michael D. Intriligator, Ronald G. Bodkin, and Cheng Hsiao,
Econometric Models, Techniques, and Applications (Upper Saddle River, NJ: Prentice Hall, 1996).
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y

Parks and
recreation

1.4

4x2 1 9y2 5 36
(indifference curves)

q (x, y) 5 4
q (x, y) 5 3

q (x, y) 5 2
Road and bridge repair

2.1
x

FIGURE 4 The optimum public works schedule
is .2:1; 1:4/.

SOLUTION The constraint equation 4x2 C 9y2 D 36 does not describe a set of unit
vectors, but a change of variable can fix that problem. Rewrite the constraint in the form�x

3

�2

C

�y

2

�2

D 1

and define

x1 D
x

3
; x2 D

y

2
; that is; x D 3x1 and y D 2x2

Then the constraint equation becomes

x2
1 C x2

2 D 1

and the utility function becomes q.3x1; 2x2/ D .3x1/.2x2/ D 6x1x2. Let x D
�

x1

x2

�
.

Then the problem is to maximize Q.x/ D 6x1x2 subject to xTx D 1. Note that Q.x/ D

xTAx, where

A D

�
0 3

3 0

�

The eigenvalues ofA are˙3, with eigenvectors

"
1=
p

2

1=
p

2

#
for � D 3 and

"
�1=
p

2

1=
p

2

#
for

� D �3. Thus the maximum value of Q.x/ D q.x1; x2/ is 3, attained when x1 D 1=
p

2

and x2 D 1=
p

2.
In terms of the original variables, the optimum public works schedule is x D 3x1 D

3=
p

2 � 2:1 hundred miles of roads and bridges and y D 2x2 D
p

2 � 1:4 hundred
acres of parks and recreational areas. The optimum public works schedule is the point
where the constraint curve and the indifference curve q.x; y/ D 3 just meet. Points
.x; y/ with a higher utility lie on indifference curves that do not touch the constraint
curve. See Figure 4.

Practice Problems

1. Let Q.x/ D 3x2
1 C 3x2

2 C 2x1x2. Find a change of variable that transforms Q into
a quadratic form with no cross-product term, and give the new quadratic form.

2. With Q as in Problem 1, find the maximum value of Q.x/ subject to the constraint
xTx D 1, and find a unit vector at which the maximum is attained.



462 CHAPTER 7 Symmetric Matrices and Quadratic Forms

7.3 Exercises
In exercises 1 and 2, find the change of variable x D P y that
transforms the quadratic form xTAx into yTDy as shown.

1. 5x2
1 C 4x2

2 C 3x2
3 C 4x1x2 C 4x2x3 D 7y2

1 C 4y2
2 C y2

3

2. 5x2
1 C 5x2

2 C 3x2
3 C 10x1x2 C 4x1x3C4x2x3D11y2

1C2y2
2

Hint: x and y must have the same number of coordinates, so the
quadratic form shown here must have a coefficient of zero for y2

3 .

In exercises 3–6, find (a) the maximum value of Q.x/ subject to
the constraint xTx D 1, (b) a unit vector u where this maximum is
attained, and (c) the maximum of Q.x/ subject to the constraints
xTx D 1 and xTu D 0.

3. Q.x/ D 5x2
1 C 4x2

2 C 3x2
3 C 4x1x2 C 4x2x3

(See Exercise 1.)

4. Q.x/ D 5x2
1C5x2

2C3x2
3C10x1x2C4x1x3C4x2x3

(See Exercise 2.)

5. Q.x/ D x2
1 C x2

2 � 12x1x2

6. Q.x/ D 4x2
1 C 7x2

2 C 4x1x2

7. Let Q.x/ D �3x2
1 � 4x2

2 C 4x1x2 � 4x2x3. Find a unit vec-
tor x in R3 at which Q.x/ is maximized, subject to xTx D 1.
[Hint: The eigenvalues of the matrix of the quadratic form Q

are 1, �2, and �6.]

8. Let Q.x/ D 4x2
1 C 7x2

2 C 4x2
3 � 4x1x2 C 8x1x3 C 4x2x3.

Find a unit vector x in R3 at which Q.x/ is maximized,
subject to xTx D 1. [Hint: The eigenvalues of the matrix of
the quadratic form Q are 8 and �1.]

9. Find the maximum value of Q.x/ D 8x2
1 C 6x2

2 � 2x1x2

subject to the constraint x2
1 C x2

2 D 1 (Do not go on to find a
vector where the maximum is attained.)

10. Find the maximum value of Q.x/ D �5x2
1 C 7x2

2 � 2x1x2

subject to the constraint x2
1 C x2

2 D 1 (Do not go on to find a
vector where the maximum is attained.)

11. Suppose x is a unit eigenvector of a matrix A corresponding
to an eigenvalue 3. What is the value of xTAx?

12. Let � be any eigenvalue of a symmetric matrix A. Justify the
statement made in this section thatm � � �M , wherem and
M are defined as in (2). [Hint: Find an x such that � D xTAx.]

13. Let A be an n � n symmetric matrix, let M and m denote the
maximum and minimum values of the quadratic form xTAx,
where xT x D 1; and denote corresponding unit eigenvectors
by u1 and un. The following calculations show that given any
number t between M and m, there is a unit vector x such that
t D xTAx. Verify that t D .1 � ˛/mC ˛M for some number
˛ between 0 and 1. Then let x D

p
1 � ˛un C

p
˛u1, and

show that xTx D 1 and xTAx D t .

In Exercises 14–17, follow the instructions given for Exercises
3–6.

T 14. 3x1x2 C 5x1x3 C 7x1x4 C 7x2x3 C 5x2x4 C 3x3x4

T 15. 4x2
1�6x1x2�10x1x3�10x1x4�6x2x3�6x2x4�2x3x4

T 16. �6x2
1�10x2

2�13x2
3�13x2

4�4x1x2�4x1x3�4x1x4C6x3x4

T 17. x1x2 C 3x1x3 C 30x1x4 C 30x2x3 C 3x2x4 C x3x4

Solutions to Practice Problems

1. Thematrix of the quadratic form isA D

�
3 1

1 3

�
. It is easy to find the eigenvalues,

4 and 2, and corresponding unit eigenvectors,

"
1=
p

2

1=
p

2

#
and

"
�1=
p

2

1=
p

2

#
. So the

desired change of variable is x D P y, whereP D

"
1=
p

2 �1=
p

2

1=
p

2 1=
p

2

#
. (A common

1
1 x2

x1

4

z

The maximum value of Q.x/

subject to xT x D 1 is 4.

error here is to forget to normalize the eigenvectors.) The new quadratic form is
yTDy D 4y2

1 C 2y2
2 .

2. The maximum of Q.x/, for a unit vector x, is 4 and the maximum is attained at

the unit eigenvector
�

1=
p

2

1=
p

2

�
. [A common incorrect answer is

�
1

0

�
. This vector

maximizes the quadratic form yTDy instead of Q.x/.]
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7.4 The Singular Value Decomposition
The diagonalization theorems in Sections 5.3 and 7.1 play a part in many interesting ap-
plications. Unfortunately, as we know, not all matrices can be factored as A D PDP�1

with D diagonal. However, a factorization A D QDP�1 is possible for any m � n

matrix A! A special factorization of this type, called the singular value decomposition,
is one of the most useful matrix factorizations in applied linear algebra.

The singular value decomposition is based on the following property of the ordinary
diagonalization that can be imitated for rectangular matrices: The absolute values of the
eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks
certain vectors (the eigenvectors). If Ax D �x and kxk D 1, then

kAxk D k�xk D j�j kxk D j�j (1)

If �1 is the eigenvalue with the greatest magnitude, then a corresponding unit eigenvector
v1 identifies a direction in which the stretching effect of A is greatest. That is, the length
of Ax is maximized when x D v1, and kAv1k D j�1j, by (1). This description of v1

and j�1j has an analogue for rectangular matrices that will lead to the singular value
decomposition.

EXAMPLE 1 IfA D

�
4 11 14

8 7 �2

�
, then the linear transformation x 7!Axmaps

the unit sphere fx W kxk D 1g in R3 onto an ellipse in R2, shown in Figure 1. Find a unit
vector x at which the length kAxk is maximized, and compute this maximum length.

x1

x2
Multiplication

by A

(3, 29)

(18, 6)

x3

x2

x1

FIGURE 1 A transformation from R3 to R2.

SOLUTION The quantity kAxk2 is maximized at the same x that maximizes kAxk, and
kAxk2 is easier to study. Observe that

kAxk2 D .Ax/T .Ax/ D xTATAx D xT.ATA/x

Also, ATA is a symmetric matrix, since .ATA/T D ATAT T D ATA. So the problem now
is to maximize the quadratic form xT.ATA/x subject to the constraint kxk D 1. By The-
orem 6 in Section 7.3, the maximum value is the greatest eigenvalue �1 of ATA. Also,
the maximum value is attained at a unit eigenvector of ATA corresponding to �1.

For the matrix A in this example,

ATA D

24 4 8

11 7

14 �2

35� 4 11 14

8 7 �2

�
D

24 80 100 40

100 170 140

40 140 200

35
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The eigenvalues of ATA are �1 D 360, �2 D 90, and �3 D 0. Corresponding unit eigen-
vectors are, respectively,

v1 D

24 1=3

2=3

2=3

35; v2 D

24�2=3

�1=3

2=3

35; v3 D

24 2=3

�2=3

1=3

35
The maximum value of kAxk2 is 360, attained when x is the unit vector v1. The vector
Av1 is a point on the ellipse in Figure 1 farthest from the origin, namely

Av1 D

�
4 11 14

8 7 �2

�24 1=3

2=3

2=3

35 D � 18

6

�
For kxk D 1, the maximum value of kAxk is kAv1k D

p
360 D 6

p
10.

Example 1 suggests that the effect of A on the unit sphere in R3 is related to the
quadratic form xT .ATA/x. In fact, the entire geometric behavior of the transformation
x 7! Ax is captured by this quadratic form, as we shall see.

The Singular Values of an m � n Matrix
LetA be anm � nmatrix. ThenATA is symmetric and can be orthogonally diagonalized.
Let fv1; : : : ; vng be an orthonormal basis for Rn consisting of eigenvectors of ATA, and
let �1; : : : ; �n be the associated eigenvalues of ATA. Then, for 1 � i � n,

kAvik
2
D .Avi /

TAvi D vT
i ATAvi

D vT
i .�ivi / Since vi is an eigenvector of ATA

D �i Since vi is a unit vector (2)

So the eigenvalues of ATA are all nonnegative. By renumbering, if necessary, we may
assume that the eigenvalues are arranged so that

�1 � �2 � � � � � �n � 0

The singular values of A are the square roots of the eigenvalues of ATA, denoted by
�1; : : : ; �n, and they are arranged in decreasing order. That is, �i D

p
�i for 1 � i � n.

By equation (2), the singular values of A are the lengths of the vectors Av1; : : : ; Avn.

EXAMPLE 2 Let A be the matrix in Example 1. Since the eigenvalues of ATA are
360, 90, and 0, the singular values of A are

�1 D
p

360 D 6
p

10; �2 D
p

90 D 3
p

10; �3 D 0

From Example 1, the first singular value of A is the maximum of kAxk over all unit
vectors, and themaximum is attained at the unit eigenvector v1. Theorem 7 in Section 7.3
shows that the second singular value of A is the maximum of kAxk over all unit vectors
that are orthogonal to v1, and this maximum is attained at the second unit eigenvector,
v2 (Exercise 22). For the v2 in Example 1,

Av2 D

�
4 11 14

8 7 �2

�24�2=3

�1=3

2=3

35 D � 3

�9

�
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This point is on the minor axis of the ellipse in Figure 1, just as Av1 is on the major axis.
(See Figure 2.) The first two singular values of A are the lengths of the major and minor
semiaxes of the ellipse.

The fact that Av1 and Av2 are orthogonal in Figure 2 is no accident, as the next
theorem shows.

Av1

Av2

x2

x1

FIGURE 2
THEOREM 9 Suppose fv1; : : : ; vng is an orthonormal basis of Rn consisting of eigenvectors of

ATA, arranged so that the corresponding eigenvalues ofATA satisfy �1 � � � � � �n,
and suppose A has r nonzero singular values. Then fAv1; : : : ; Avrg is an orthog-
onal basis for ColA, and rankA D r .

PROOF Because vi and �j vj are orthogonal for i ¤ j ,

.Avi /
T .Avj / D vT

i ATAvj D vT
i .�j vj / D 0

Thus fAv1; : : : ; Avng is an orthogonal set. Furthermore, since the lengths of the vec-
tors Av1; : : : ; Avn are the singular values of A, and since there are r nonzero singular
values, Avi ¤ 0 if and only if 1 � i � r . So Av1; : : : ; Avr are linearly independent
vectors, and they are in ColA. Finally, for any y in ColA—say, y D Ax—we can write
x D c1v1 C � � � C cnvn, and

y D Ax D c1Av1 C � � � C crAvr C crC1AvrC1 C � � � C cnAvn

D c1Av1 C � � � C crAvr C 0C � � � C 0

Thus y is in Span fAv1; : : : ; Avrg, which shows that fAv1; : : : ; Avrg is an orthogonal
basis for ColA. Hence rankA D dimColA D r .

Numerical Notes

In some cases, the rank of A may be very sensitive to small changes in the entries
of A. The obvious method of counting the number of pivot columns in A does
not work well if A is row reduced by a computer. Roundoff error often creates an
echelon form with full rank.

In practice, the most reliable way to estimate the rank of a large matrix A is to
count the number of nonzero singular values. In this case, extremely small nonzero
singular values are assumed to be zero for all practical purposes, and the effective
rank of the matrix is the number obtained by counting the remaining nonzero
singular values.1

1 In general, rank estimation is not a simple problem. For a discussion of the subtle issues involved, see
Philip E. Gill, Walter Murray, and Margaret H. Wright, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley, 1991), Sec. 5.8.
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The Singular Value Decomposition
The decomposition of A involves an m � n “diagonal” matrix † of the form

† D

�
D 0

0 0

�
� m � r rows

(3)

6 n � r columns

where D is an r � r diagonal matrix for some r not exceeding the smaller of m and n.
(If r equals m or n or both, some or all of the zero matrices do not appear.)

THEOREM 10 The Singular Value Decomposition

Let A be an m � n matrix with rank r . Then there exists an m � n matrix † as
in (3) for which the diagonal entries in D are the first r singular values of A,
�1 � �2 � � � � � �r > 0, and there exist an m �m orthogonal matrix U and an
n � n orthogonal matrix V such that

A D U †V T

Any factorization A D U †V T , with U and V orthogonal, † as in (3), and positive
diagonal entries in D, is called a singular value decomposition (or SVD) of A. The
matrices U and V are not uniquely determined by A, but the diagonal entries of †

are necessarily the singular values of A. See Exercise 19. The columns of U in such
a decomposition are called left singular vectors of A, and the columns of V are called
right singular vectors of A.

PROOF Let �i and vi be as in Theorem 9, so that fAv1; : : : ; Avrg is an orthogonal basis
for ColA. Normalize each Avi to obtain an orthonormal basis fu1; : : : ; urg, where

ui D
1

kAvik
Avi D

1

�i

Avi

and

Avi D �iui .1 � i � r/ (4)

Now extend fu1; : : : ; urg to an orthonormal basis fu1; : : : ; umg of Rm, and let

U D Œ u1 u2 � � � um � and V D Œ v1 v2 � � � vn �

By construction, U and V are orthogonal matrices. Also, from (4),

AV D Œ Av1 � � � Avr 0 � � � 0 � D Œ �1u1 � � � �rur 0 � � � 0 �

Let D be the diagonal matrix with diagonal entries �1; : : : ; �r , and let † be as in
(3) above. Then
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U † D Œ u1 u2 � � � um �

2666664
�1 0

�2 0
: : :

0 �r

0 0

3777775
D Œ �1u1 � � � �rur 0 � � � 0 �

D AV

Since V is an orthogonal matrix, U †V T D AV V T D A.

The next two examples focus attention on the internal structure of a singular value
decomposition. An efficient and numerically stable algorithm for this decomposition
would use a different approach. See the Numerical Note at the end of the section.

EXAMPLE 3 Use the results of Examples 1 and 2 to construct a singular value

decomposition of A D

�
4 11 14

8 7 �2

�
.

SOLUTION A construction can be divided into three steps.

Step 1. Find an orthogonal diagonalization of ATA. That is, find the eigenvalues ofSTUDY GUIDE offers additional
resources for learning to compute
an SVD.

ATA and a corresponding orthonormal set of eigenvectors. IfA had only two columns, the
calculations could be done by hand. Larger matrices usually require a matrix program.
However, for the matrix A here, the eigendata for ATA are provided in Example 1.

Step 2. Set up V and†.Arrange the eigenvalues ofATA in decreasing order. In Example
1, the eigenvalues are already listed in decreasing order: 360, 90, and 0. The correspond-
ing unit eigenvectors, v1, v2, and v3, are the right singular vectors ofA. Using Example 1,
construct

V D Œ v1 v2 v3 � D

24 1=3 �2=3 2=3

2=3 �1=3 �2=3

2=3 2=3 1=3

35
The square roots of the eigenvalues are the singular values:

�1 D 6
p

10; �2 D 3
p

10; �3 D 0

The nonzero singular values are the diagonal entries ofD. The matrix† is the same size
as A, with D in its upper left corner and with 0’s elsewhere.

D D

"
6
p

10 0

0 3
p

10

#
; † D Œ D 0 � D

"
6
p

10 0 0

0 3
p

10 0

#
Step 3. Construct U. When A has rank r , the first r columns of U are the normalized
vectors obtained from Av1; : : : ; Avr . In this example, A has two nonzero singular val-
ues, so rankA D 2. Recall from equation (2) and the paragraph before Example 2 that
kAv1k D �1 and kAv2k D �2. Thus

u1 D
1

�1

Av1 D
1

6
p

10

�
18

6

�
D

"
3=
p

10

1=
p

10

#

u2 D
1

�2

Av2 D
1

3
p

10

�
3

�9

�
D

"
1=
p

10

�3=
p

10

#
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Note that fu1; u2g is already a basis for R2. Thus no additional vectors are needed for
U , and U D Œ u1 u2 �. The singular value decomposition of A is

A D

"
3=
p

10 1=
p

10

1=
p

10 �3=
p

10

# "
6
p

10 0 0

0 3
p

10 0

# 24 1=3 2=3 2=3

�2=3 �1=3 2=3

2=3 �2=3 1=3

35
" " "

U † V T

EXAMPLE 4 Find a singular value decomposition of A D

24 1 �1

�2 2

2 �2

35.
SOLUTION First, compute ATA D

�
9 �9

�9 9

�
. The eigenvalues of ATA are 18 and 0,

with corresponding unit eigenvectors

v1 D

"
1=
p

2

�1=
p

2

#
; v2 D

"
1=
p

2

1=
p

2

#
These unit vectors form the columns of V :

V D Œ v1 v2 � D

"
1=
p

2 1=
p

2

�1=
p

2 1=
p

2

#
The singular values are �1 D

p
18 D 3

p
2 and �2 D 0. Since there is only one nonzero

singular value, the “matrix” D may be written as a single number. That is, D D 3
p

2.
The matrix † is the same size as A, with D in its upper left corner:

† D

24D 0

0 0

0 0

35 D 24 3
p

2 0

0 0

0 0

35
To construct U , first construct Av1 and Av2:

Av1 D

24 2=
p

2

�4=
p

2

4=
p

2

35; Av2 D

24 0

0

0

35
As a check on the calculations, verify that kAv1k D �1 D 3

p
2. Of course, Av2 D 0

because kAv2k D �2 D 0. The only column found for U so far is

u1 D
1

3
p

2
Av1 D

24 1=3

�2=3

2=3

35
The other columns of U are found by extending the set fu1g to an orthonormal basis for
R3. In this case, we need two orthogonal unit vectors u2 and u3 that are orthogonal to u1.
(See Figure 3.) Each vector must satisfy uT

1 x D 0, which is equivalent to the equation
x1 � 2x2 C 2x3 D 0. A basis for the solution set of this equation is

u1

v1

v1

Av1

1
x1

x2

x2

x1

x3

u3

u2

1

FIGURE 3

w1 D

24 2

1

0

35; w2 D

24�2

0

1

35
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(Check that w1 and w2 are each orthogonal to u1.) Apply the Gram–Schmidt process
(with normalizations) to fw1;w2g, and obtain

u2 D

24 2=
p

5

1=
p

5

0

35 ; u3 D

24�2=
p

45

4=
p

45

5=
p

45

35
Finally, set U D Œ u1 u2 u3 �, take † and V T from above, and write

A D

24 1 �1

�2 2

2 �2

35 D 24 1=3 2=
p

5 �2=
p

45

�2=3 1=
p

5 4=
p

45

2=3 0 5=
p

45

3524 3
p

2 0

0 0

0 0

35" 1=
p

2 �1=
p

2

1=
p

2 1=
p

2

#

Applications of the Singular Value Decomposition
The SVD is often used to estimate the rank of a matrix, as noted above. Several other nu-
merical applications are described briefly below, and an application to image processing
is presented in Section 7.5.

EXAMPLE 5 (The Condition Number) Most numerical calculations involving an
equation Ax D b are as reliable as possible when the SVD of A is used. The two
orthogonal matrices U and V do not affect lengths of vectors or angles between vectors
(Theorem 7 in Section 6.2). Any possible instabilities in numerical calculations are
identified in †. If the singular values of A are extremely large or small, roundoff errors
are almost inevitable, but an error analysis is aided by knowing the entries in † and V .

If A is an invertible n � n matrix, then the ratio �1=�n of the largest and smallest
singular values gives the condition number ofA. Exercises 50–52 in Section 2.3 showed
how the condition number affects the sensitivity of a solution of Ax D b to changes (or
errors) in the entries of A. (Actually, a “condition number” of A can be computed in
several ways, but the definition given here is widely used for studying Ax D b.)

EXAMPLE 6 (Bases for Fundamental Subspaces) Given an SVD for an m � n

matrixA, let u1; : : : ; um be the left singular vectors, v1; : : : ; vn the right singular vectors,
and �1; : : : ; �n the singular values, and let r be the rank of A. By Theorem 9,

fu1; : : : ; urg (5)

is an orthonormal basis for ColA.
Recall from Theorem 3 in Section 6.1 that .ColA/? D NulAT . Hence

furC1; : : : ; umg (6)

is an orthonormal basis for NulAT .
Since kAvik D �i for 1 � i � n, and �i is 0 if and only if i > r , the vectors

vrC1; : : : ; vn span a subspace of NulA of dimension n � r . By the Rank Theorem,
dimNulA D n � rankA. It follows that

fvrC1; : : : ; vng (7)

is an orthonormal basis for NulA, by the Basis Theorem (in Section 4.5).



470 CHAPTER 7 Symmetric Matrices and Quadratic Forms

From (5) and (6), the orthogonal complement of NulAT is ColA. Interchanging A

and AT , note that .NulA/? D ColAT D RowA. Hence, from (7),

fv1; : : : ; vrg (8)

is an orthonormal basis for RowA.
Figure 4 summarizes (5)–(8), but shows the orthogonal basis f�1u1; : : : ; �rurg for

ColA instead of the normalized basis, to remind you that Avi D �iui for 1 � i � r .
Explicit orthonormal bases for the four fundamental subspaces determined by A are
useful in some calculations, particularly in constrained optimization problems.

Col A

u1

v1

Av1

x1

x2

x1

x3

u3

Nul 
A 

Row A 

Col A'

x2

u2

The fundamental subspaces in
Example 4.

vr 1 1

Col A 5 Row ATRow A

Multiplication

by A

Nul AT

Nul A vn 2 1

vn

um

vr
0 0

ur 1 1

srur 

s2u2 

s1u1 v1 
v2

... .. .

...

...

. . .

FIGURE 4 The four fundamental subspaces and the
action of A.

The four fundamental subspaces and the concept of singular values provide the final
statements of the InvertibleMatrix Theorem. (Recall that statements aboutAT have been
omitted from the theorem to avoid nearly doubling the number of statements.) The other
statements were given in Sections 2.3, 2.9, 3.2, 4.5, and 5.2.

THEOREM The Invertible Matrix Theorem (concluded)

Let A be an n � n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix:

s. .ColA/? D f0g.

t. .NulA/? D Rn.

u. RowA D Rn.

v. A has n nonzero singular values.

EXAMPLE 7 (Reduced SVD and the Pseudoinverse of A) When † contains rows
or columns of zeros, a more compact decomposition of A is possible. Using the notation
established above, let r D rankA, and partition U and V into submatrices whose first
blocks contain r columns:

U D Œ Ur Um�r �; where Ur D Œ u1 � � � ur �

V D Œ Vr Vn�r �; where Vr D Œ v1 � � � vr �
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Then Ur is m � r and Vr is n � r . (To simplify notation, we consider Um�r or Vn�r

even though one of them may have no columns.) Then partitioned matrix multiplication
shows that

A D Œ Ur Um�r �

"
D 0

0 0

#"
V T

r

V T
n�r

#
D UrDV T

r (9)

This factorization of A is called a reduced singular value decomposition of A. Since
the diagonal entries in D are nonzero, D is invertible. The following matrix is called the
pseudoinverse (also, theMoore–Penrose inverse) of A:

AC D VrD
�1U T

r (10)

Supplementary Exercises 28–30 at the end of the chapter explore some of the properties
of the reduced singular value decomposition and the pseudoinverse.

EXAMPLE 8 (Least-Squares Solution) Given the equation Ax D b, use the pseu-
doinverse of A in (10) to define

Ox D ACb D VrD
�1U T

r b

Then, from the SVD in (9),

AOx D .UrDV T
r /.VrD

�1U T
r b/

D UrDD
�1U T

r b Because V T
r Vr D Ir

D UrU
T
r b

It follows from (5) that UrU
T
r b is the orthogonal projection Ob of b onto ColA. (See

Theorem 10 in Section 6.3.) Thus Ox is a least-squares solution of Ax D b. In fact, this Ox
has the smallest length among all least-squares solutions ofAx D b. See Supplementary
Exercise 30.

Numerical Notes

Examples 1–4 and the exercises illustrate the concept of singular values and
suggest how to perform calculations by hand. In practice, the computation of ATA

should be avoided, since any errors in the entries of A are squared in the entries
of ATA. There exist fast iterative methods that produce the singular values and
singular vectors of A accurately to many decimal places.

Practice Problems

1. Given a singular value decomposition, A D U †V T , find an SVD of AT . How are
the singular values of A and AT related?

2. For any n � n matrix A, use the SVD to show that there is an n � n orthogonal
matrix Q such that ATA D QT .ATA/Q.

Remark: Practice Problem 2 establishes that for any n � n matrix A, the matrices AAT

and ATA are orthogonally similar.
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7.4 Exercises
Find the singular values of the matrices in Exercises 1–4.

1.
�

1 0

0 �3

�
2.

�
�3 0

0 0

�

3.
�

2 3

0 2

�
4.

�
3 0

8 3

�
Find an SVD of each matrix in Exercises 5–12. [Hint: In Exer-

cise 11, one choice for U is

24�1=3 2=3 2=3

2=3 �1=3 2=3

2=3 2=3 �1=3

35. In Exer-
cise 12, one column of U can be

264 1=
p

6

�2=
p

6

1=
p

6

375.
5.

�
�2 0

0 0

�
6.

�
�3 0

0 �2

�

7.
�

2 �1

2 2

�
8.

�
4 6

0 4

�

9.

24 3 �3

0 0

1 1

35 10.

24 7 1

5 5

0 0

35

11.

24�3 1

6 �2

6 �2

35 12.

24 1 1

0 1

�1 1

35
13. Find the SVD of A D

�
3 2 2

2 3 �2

�
[Hint:Work with AT .]

14. In Exercise 7, find a unit vector x at which Ax has maximum
length.

15. Suppose the factorization below is an SVD of a matrix A,
with the entries in U and V rounded to two decimal places.

A D

24 :40 �:78 :47

:37 �:33 �:87

�:84 �:52 �:16

3524 7:10 0 0

0 3:10 0

0 0 0

35
�

24 :30 �:51 �:81

:76 :64 �:12

:58 �:58 :58

35
a. What is the rank of A?

b. Use this decomposition of A, with no calculations, to
write a basis for ColA and a basis for NulA. [Hint: First
write the columns of V .]

16. Repeat Exercise 15 for the following SVD of a 3 � 4

matrix A:

A D

24�:86 �:11 �:50

:31 :68 �:67

:41 �:73 �:55

3524 12:48 0 0 0

0 6:34 0 0

0 0 0 0

35
�

2664
:66 �:03 �:35 :66

�:13 �:90 �:39 �:13

:65 :08 �:16 �:73

�:34 :42 �:84 �:08

3775
In Exercises 17–24, A is an m � n matrix with a singular value
decomposition A D U †V T , where U is an m �m orthogonal
matrix,† is anm � n “diagonal”matrix with r positive entries and
no negative entries, and V is an n � n orthogonal matrix. Justify
each answer.

17. Show that if A is square, then j detAj is the product of the
singular values of A.

18. Suppose A is square and invertible. Find a singular value
decomposition of A�1.

19. Show that the columns of V are eigenvectors of ATA, the
columns of U are eigenvectors of AAT , and the diagonal
entries of † are the singular values of A. [Hint: Use the SVD
to compute ATA and AAT .]

20. Show that if P is an orthogonal m �m matrix, then PA has
the same singular values as A.

21. Justify the statement in Example 2 that the second singular
value of a matrix A is the maximum of kAxk as x varies
over all unit vectors orthogonal to v1, with v1 a right singular
vector corresponding to the first singular value of A. [Hint:
Use Theorem 7 in Section 7.3.]

22. Show that if A is an n � n positive definite matrix, then an
orthogonal diagonalization A D PDPT is a singular value
decomposition of A.

23. LetU D Œ u1 � � � um � and V D Œ v1 � � � vn �, where the
ui and vi are as in Theorem 10. Show that

A D �1u1vT
1 C �2u2vT

2 C � � � C �rurvT
r :

24. Using the notation of Exercise 23, show that AT uj D �j vj

for 1 � j � r D rankA.

25. Let T W Rn ! Rm be a linear transformation. Describe how
to find a basis B for Rn and a basis C for Rm such that the
matrix for T relative to B and C is an m � n “diagonal”
matrix.

Compute an SVD of each matrix in Exercises 26 and 27. Report
the final matrix entries accurate to two decimal places. Use the
method of Examples 3 and 4.

26. A D

2664
�18 13 �4 4

2 19 �4 12

�14 11 �12 8

�2 21 4 8

3775
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T 27. A D

2664
6 �8 �4 5 �4

2 7 �5 �6 4

0 �1 �8 2 2

�1 �2 4 4 �8

3775
T 28. Compute the singular values of the 4 � 4 matrix in Exercise

9 in Section 2.3, and compute the condition number �1=�4.

T 29. Compute the singular values of the 5 � 5 matrix in Exercise
10 in Section 2.3, and compute the condition number �1=�5.

Solutions to Practice Problems

1. If A D U †V T , where † is m � n, then AT D .V T /T †T U T D V †T U T . This is
an SVD of AT because V and U are orthogonal matrices and †T is an n �m

“diagonal” matrix. Since † and †T have the same nonzero diagonal entries, A and
AT have the same nonzero singular values. [Note: If A is 2 � n, then AAT is only
2 � 2 and its eigenvalues may be easier to compute (by hand) than the eigenvalues
of ATA.]

2. Use the SVD to write A D U †V T , where U and V are n � n orthogonal matrices
and † is an n � n diagonal matrix. Notice that U T U D I D V T V and †T D †,
since U and V are orthogonal matrices and † is a diagonal matrix. Substituting the
SVD for A into AAT and ATA results in

AAT
D U †V T .U †V T /T

D U †V T V †T U T
D U ††T U T

D U †2U T ;

and

ATA D .U †V T /T U †V T
D V †T U T U †V T

D V †T †V T
D V †2V T :

Let Q D V U T . Then

QT .AT A/QD .V U T /T .V †2V T /.V U T /DU V T V †2V T V U T

DU †2U T
DAAT :

7.5 Applications to Image Processing and Statistics
The satellite photographs in this chapter’s introduction provide an example of multidi-
mensional, or multivariate, data—information organized so that each datum in the data
set is identified with a point (vector) in Rn. The main goal of this section is to explain a
technique, called principal component analysis, used to analyze such multivariate data.
The calculations will illustrate the use of orthogonal diagonalization and the singular
value decomposition.

Principal component analysis can be applied to any data that consist of lists of
measurements made on a collection of objects or individuals. For instance, consider a
chemical process that produces a plastic material. To monitor the process, 300 samples
are taken of the material produced, and each sample is subjected to a battery of eight
tests, such as melting point, density, ductility, tensile strength, and so on. The laboratory
report for each sample is a vector in R8, and the set of such vectors forms an 8 � 300

matrix, called the matrix of observations.
Loosely speaking, we can say that the process control data are eight-dimensional.

The next two examples describe data that can be visualized graphically.

EXAMPLE 1 An example of two-dimensional data is given by a set of weights and
heights of N college students. Let Xj denote the observation vector in R2 that lists the
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weight and height of the j th student. If w denotes weight and h height, then the matrix
of observations has the form �

w1 w2 � � � wN

h1 h2 � � � hN

�
6 6 6
X1 X2 XN

The set of observation vectors can be visualized as a two-dimensional scatter plot. See
Figure 1.

h

w

FIGURE 1 A scatter plot of observation
vectors X1; : : : ;XN .

EXAMPLE 2 The first three photographs of Railroad Valley, Nevada, shown in the
chapter introduction can be viewed as one image of the region, with three spectral
components, because simultaneous measurements of the region were made at three
separate wavelengths. Each photograph gives different information about the same
physical region. For instance, the first pixel in the upper-left corner of each photograph
corresponds to the same place on the ground (about 30 meters by 30 meters). To each
pixel there corresponds an observation vector in R3 that lists the signal intensities for
that pixel in the three spectral bands.

Typically, the image is 2000 � 2000 pixels, so there are 4million pixels in the image.
The data for the image form a matrix with 3 rows and 4 million columns (with columns
arranged in any convenient order). In this case, the “multidimensional” character of the
data refers to the three spectral dimensions rather than the two spatial dimensions that
naturally belong to any photograph. The data can be visualized as a cluster of 4 million
points in R3, perhaps as in Figure 2.

x2

x1

x3

FIGURE 2

A scatter plot of spectral data for a
satellite image.

Mean and Covariance
To prepare for principal component analysis, let ŒX1 � � � XN � be a p �N matrix of
observations, such as described above. The sample mean,M, of the observation vectors
X1; : : : ;XN is given by

M D
1

N
.X1 C � � � C XN /

For the data in Figure 1, the sample mean is the point in the “center” of the scatter plot.
For k D 1; : : : ; N , let

OXk D Xk �M

The columns of the p �N matrix

B D Œ OX1
OX2 � � � OXN �



7.5 Applications to Image Processing and Statistics 475

have a zero sample mean, andB is said to be inmean-deviation form. When the sample
mean is subtracted from the data in Figure 1, the resulting scatter plot has the form in

ĥ

ŵ

FIGURE 3

Weight–height data in
mean-deviation form.

Figure 3.
The (sample) covariance matrix is the p � p matrix S defined by

S D
1

N � 1
BBT

Since any matrix of the form BBT is positive semidefinite, so is S . (See Exercise 33 in
Section 7.2 with B and BT interchanged.)

EXAMPLE 3 Three measurements are made on each of four individuals in a random
sample from a population. The observation vectors are

X1 D

24 1

2

1

35; X2 D

24 4

2

13

35; X3 D

24 7

8

1

35; X4 D

24 8

4

5

35
Compute the sample mean and the covariance matrix.

SOLUTION The sample mean is

M D
1

4

0@24 1

2

1

35C 24 4

2

13

35C 24 7

8

1

35C 24 8

4

5

351A D 1

4

24 20

16

20

35 D 24 5

4

5

35
Subtract the sample mean from X1; : : : ;X4 to obtain

OX1 D

24�4

�2

�4

35; OX2 D

24�1

�2

8

35; OX3 D

24 2

4

�4

35; OX4 D

24 3

0

0

35
and

B D

24�4 �1 2 3

�2 �2 4 0

�4 8 �4 0

35
The sample covariance matrix is

S D
1

3

24�4 �1 2 3

�2 �2 4 0

�4 8 �4 0

35
2664
�4 �2 �4

�1 �2 8

2 4 �4

3 0 0

3775
D

1

3

24 30 18 0

18 24 �24

0 �24 96

35 D 24 10 6 0

6 8 �8

0 �8 32

35
To discuss the entries in S D Œsij �, letX represent a vector that varies over the set of

observation vectors and denote the coordinates ofX by x1; : : : ; xp . Then x1, for example,
is a scalar that varies over the set of first coordinates of X1; : : : ;XN . For j D 1; : : : ; p,
the diagonal entry sjj in S is called the variance of xj .

The variance of xj measures the spread of the values of xj . (See Exercise 13.) In
Example 3, the variance of x1 is 10 and the variance of x3 is 32. The fact that 32 is more
than 10 indicates that the set of third entries in the response vectors contains a wider
spread of values than the set of first entries.
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The total variance of the data is the sum of the variances on the diagonal of S . In
general, the sum of the diagonal entries of a square matrix S is called the trace of the
matrix, written tr.S/. Thus

ftotal varianceg D tr.S/

The entry sij in S for i ¤ j is called the covariance of xi and xj . Observe that
in Example 3, the covariance between x1 and x3 is 0 because the .1; 3/-entry in S is 0.
Statisticians say that x1 and x3 are uncorrelated. Analysis of the multivariate data in
X1; : : : ;XN is greatly simplified when most or all of the variables x1; : : : ; xp are uncor-
related, that is, when the covariance matrix ofX1; : : : ;XN is diagonal or nearly diagonal.

Principal Component Analysis
For simplicity, assume that the matrix ŒX1 � � � XN � is already in mean-deviation
form. The goal of principal component analysis is to find an orthogonal p � p matrix
P D Œ u1 � � � up � that determines a change of variable, X D PY, or26664

x1

x2

:::

xp

37775 D �u1 u2 � � � up

�
26664

y1

y2

:::

yp

37775
with the property that the new variables y1; : : : ; yp are uncorrelated and are arranged in
order of decreasing variance.

The orthogonal change of variableX D PYmeans that each observation vectorXk

receives a “new name,”Yk , such thatXk D PYk . Notice thatYk is the coordinate vector
of Xk with respect to the columns of P , and Yk D P�1Xk D P TXk for k D 1; : : : ; N .

It is not difficult to verify that for any orthogonal P , the covariance matrix of
Y1; : : : ;YN is P TSP (Exercise 11). So the desired orthogonal matrix P is one that
makes P TSP diagonal. Let D be a diagonal matrix with the eigenvalues �1; : : : ; �p

of S on the diagonal, arranged so that �1 � �2 � � � � � �p � 0, and let P be an
orthogonal matrix whose columns are the corresponding unit eigenvectors u1; : : : ; up .
Then S D PDPT and P TSP D D.

The unit eigenvectors u1; : : : ; up of the covariance matrix S are called the principal
components of the data (in the matrix of observations). The first principal component
is the eigenvector corresponding to the largest eigenvalue of S , the second principal
component is the eigenvector corresponding to the second largest eigenvalue, and so on.

The first principal component u1 determines the new variable y1 in the following
way. Let c1; : : : ; cp be the entries in u1. Since uT

1 is the first row of P T , the equation
Y D P TX shows that

y1 D uT
1 X D c1x1 C c2x2 C � � � C cpxp

Thus y1 is a linear combination of the original variables x1; : : : ; xp , using the entries in
the eigenvector u1 as weights. In a similar fashion, u2 determines the variable y2, and
so on.

EXAMPLE 4 The initial data for the multispectral image of Railroad Valley
(Example 2) consisted of 4 million vectors in R3. The associated covariance matrix is1

S D

24 2382:78 2611:84 2136:20

2611:84 3106:47 2553:90

2136:20 2553:90 2650:71

35
1Data for Example 4 and Exercises 5 and 6 were provided by Earth Satellite Corporation, Rockville,
Maryland.
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Find the principal components of the data, and list the new variable determined by the
first principal component.

SOLUTION The eigenvalues of S and the associated principal components (the unit
eigenvectors) are

�1 D 7614:23 �2 D 427:63 �3 D 98:10

u1 D

24 :5417

:6295

:5570

35 u2 D

24�:4894

�:3026

:8179

35 u3 D

24 :6834

�:7157

:1441

35
Using two decimal places for simplicity, the variable for the first principal component is

y1 D :54x1 C :63x2 C :56x3

This equation was used to create photograph (d) in the chapter introduction. The
variables x1, x2, and x3 are the signal intensities in the three spectral bands. The values
of x1, converted to a gray scale between black and white, produced photograph (a).
Similarly, the values of x2 and x3 produced photographs (b) and (c), respectively. At
each pixel in photograph (d), the gray scale value is computed from y1, a weighted
linear combination of x1; x2; and x3. In this sense, photograph (d) “displays” the first
principal component of the data.

In Example 4, the covariance matrix for the transformed data, using variables y1,
y2, and y3, is

D D

24 7614:23 0 0

0 427:63 0

0 0 98:10

35
Although D is obviously simpler than the original covariance matrix S , the merit
of constructing the new variables is not yet apparent. However, the variances of the
variables y1, y2, and y3 appear on the diagonal of D, and obviously the first variance in
D is much larger than the other two. As we shall see, this fact will permit us to view the
data as essentially one-dimensional rather than three-dimensional.

Reducing the Dimension of Multivariate Data
Principal component analysis is potentially valuable for applications in which most of
the variation, or dynamic range, in the data is due to variations in only a few of the new
variables, y1; : : : ; yp .

It can be shown that an orthogonal change of variables, X D PY, does not change
the total variance of the data. (Roughly speaking, this is true because left-multiplication
by P does not change the lengths of vectors or the angles between them. See Exercise
12.) This means that if S D PDPT , then�

total variance
of x1; : : : ; xp

�
D

�
total variance
of y1; : : : ; yp

�
D tr.D/ D �1 C � � � C �p

The variance of yj is �j , and the quotient �j = tr.S/ measures the fraction of the total
variance that is “explained” or “captured” by yj .
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EXAMPLE 5 Compute the various percentages of variance of the Railroad Valley
multispectral data that are displayed in the principal component photographs, (d)–(f),
shown in the chapter introduction.

SOLUTION The total variance of the data is

tr.D/ D 7614:23C 427:63C 98:10 D 8139:96

[Verify that this number also equals tr.S/.] The percentages of the total variance
explained by the principal components are

First component Second component Third component

7614:23

8139:96
D 93:5%

427:63

8139:96
D 5:3%

98:10

8139:96
D 1:2%

In a sense, 93.5% of the information collected by Landsat for the Railroad Valley region
is displayed in photograph (d), with 5.3% in (e) and only 1.2% remaining for (f).

The calculations in Example 5 show that the data have practically no variance in
the third (new) coordinate. The values of y3 are all close to zero. Geometrically, the
data points lie nearly in the plane y3 D 0, and their locations can be determined fairly
accurately by knowing only the values of y1 and y2. In fact, y2 also has relatively small
variance, which means that the points lie approximately along a line, and the data are
essentially one-dimensional. See Figure 2, in which the data resemble a popsicle stick.

Characterizations of Principal Component Variables
If y1; : : : ; yp arise from a principal component analysis of a p �N matrix of obser-
vations, then the variance of y1 is as large as possible in the following sense: If u is
any unit vector and if y D uTX, then the variance of the values of y as X varies over
the original data X1; : : : ;XN turns out to be uT Su. By Theorem 8 in Section 7.3, the
maximum value of uT Su, over all unit vectors u, is the largest eigenvalue �1 of S , and
this variance is attained when u is the corresponding eigenvector u1. In the same way,
Theorem 8 shows that y2 has maximum possible variance among all variables y D uTX
that are uncorrelated with y1. Likewise, y3 has maximum possible variance among all
variables uncorrelated with both y1 and y2, and so on.

Numerical Notes

The singular value decomposition is the main tool for performing principal com-
ponent analysis in practical applications. If B is a p �N matrix of observations
in mean-deviation form, and if A D

�
1=
p

N � 1
�
BT , then ATA is the covariance

matrix, S . The squares of the singular values of A are the p eigenvalues of S , and
the right singular vectors of A are the principal components of the data.

As mentioned in Section 7.4, iterative calculation of the SVD ofA is faster and
more accurate than an eigenvalue decomposition of S . This is particularly true,
for instance, in the hyperspectral image processing (with p D 224) mentioned in
the chapter introduction. Principal component analysis is completed in seconds
on specialized workstations.
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Practice Problems

The following table lists the weights and heights of five boys:

Boy #1 #2 #3 #4 #5

Weight (lb) 120 125 125 135 145

Height (in.) 61 60 64 68 72

1. Find the covariance matrix for the data.

2. Make a principal component analysis of the data to find a single size index that
explains most of the variation in the data.

7.5 Exercises
In Exercises 1 and 2, convert the matrix of observations to mean-
deviation form, and construct the sample covariance matrix.

1.
�

19 22 6 3 2 20

12 6 9 15 13 5

�
2.

�
1 5 2 6 7 3

3 11 6 8 15 11

�
3. Find the principal components of the data for Exercise 1.

4. Find the principal components of the data for Exercise 2.

T 5. A Landsat image with three spectral components was made
of Homestead Air Force Base in Florida (after the base was
hit by Hurricane Andrew in 1992). The covariance matrix of
the data is shown below. Find the first principal component
of the data, and compute the percentage of the total variance
that is contained in this component.

S D

24 164:12 32:73 81:04

32:73 539:44 249:13

81:04 249:13 189:11

35
T 6. The covariance matrix below was obtained from a Landsat

image of the Columbia River in Washington, using data from
three spectral bands. Let x1, x2, x3 denote the spectral com-
ponents of each pixel in the image. Find a new variable of the
form y1 D c1x1 C c2x2 C c3x3 that has maximum possible
variance, subject to the constraint that c2

1 C c2
2 C c2

3 D 1.
What percentage of the total variance in the data is explained
by y1?

S D

24 29:64 18:38 5:00

18:38 20:82 14:06

5:00 14:06 29:21

35
7. Let x1; x2 denote the variables for the two-dimensional

data in Exercise 1. Find a new variable y1 of the form
y1 D c1x1 C c2x2, with c2

1 C c2
2 D 1, such that y1 has maxi-

mum possible variance over the given data. How much of the
variance in the data is explained by y1?

8. Repeat Exercise 7 for the data in Exercise 2.

9. Suppose three tests are administered to a random sample
of college students. Let X1; : : : ;XN be observation vectors
in R3 that list the three scores of each student, and for
j D 1; 2; 3, let xj denote a student’s score on the j th exam.
Suppose the covariance matrix of the data is

S D

24 5 2 0

2 6 2

0 2 7

35
Let y be an “index” of student performance, with y D

c1x1 C c2x2 C c3x3 and c2
1 C c2

2 C c2
3 D 1. Choose c1; c2; c3

so that the variance of y over the data set is as large as
possible. [Hint: The eigenvalues of the sample covariance
matrix are � D 3; 6, and 9.]

T 10. Repeat Exercise 9 with S D

24 5 4 2

4 11 4

2 4 5

35.
11. Given multivariate data X1; : : : ;XN (in Rp/ in mean-

deviation form, let P be a p � p matrix, and define
Yk D P TXk for k D 1; : : : ; N .

a. Show thatY1; : : : ;YN are in mean-deviation form. [Hint:
Let w be the vector in RN with a 1 in each entry. Then
Œ X1 � � � XN �w D 0 (the zero vector in Rp/.]

b. Show that if the covariance matrix of X1; : : : ;XN is S ,
then the covariance matrix of Y1; : : : ;YN is P TSP .

12. LetX denote a vector that varies over the columns of a p �N

matrix of observations, and let P be a p � p orthogonal
matrix. Show that the change of variable X D PY does not
change the total variance of the data. [Hint: By Exercise 11,
it suffices to show that tr .P T SP / D tr .S/. Use a property
of the trace mentioned in Exercise 27 in Section 5.4.]

13. The sample covariance matrix is a generalization of a formula
for the variance of a sample of N scalar measurements, say,
t1; : : : ; tN . If m is the average of t1; : : : ; tN , then the sample
variance is given by

1

N � 1

nX
kD1

.tk �m/2 .1/
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Show how the sample covariance matrix, S , defined prior to
Example 3, may be written in a form similar to (1). [Hint:
Use partitionedmatrixmultiplication to writeS as 1=.N � 1/

times the sum of N matrices of size p � p. For 1 � k � N ,
write Xk �M in place of OXk .]

Solutions to Practice Problems

1. First arrange the data in mean-deviation form. The sample mean vector is easily

seen to beM D
�

130

65

�
. SubtractM from the observation vectors (the columns in

the table) and obtain

B D

�
�10 �5 �5 5 15

�4 �5 �1 3 7

�
Then the sample covariance matrix is

S D
1

5 � 1

�
�10 �5 �5 5 15

�4 �5 �1 3 7

�266664
�10 �4

�5 �5

�5 �1

5 3

15 7

377775
D

1

4

�
400 190

190 100

�
D

�
100:0 47:5

47:5 25:0

�
2. The eigenvalues of S are (to two decimal places)

�1 D 123:02 and �2 D 1:98

The unit eigenvector corresponding to �1 is u D
�

:900

:436

�
. (Since S is 2 � 2, the

computations can be done by hand if a matrix program is not available.) For the size
index, set

y D :900 Ow C :436 Oh

where Ow and Oh are weight and height, respectively, in mean-deviation form. The
variance of this index over the data set is 123.02. Because the total variance is
tr.S/ D 100C 25 D 125, the size index accounts for practically all (98.4%) of the
variance of the data.
The original data for Practice Problem 1 and the line determined by the first
principal component u are shown in Figure 4. (In parametric vector form, the line

h

120

55

60

65

70

75

130 140 150
w

Pounds

Inches

FIGURE 4 An orthogonal regression line determined by the
first principal component of the data.
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is x DMC tu.) It can be shown that the line is the best approximation to the data,
in the sense that the sum of the squares of the orthogonal distances to the line is
minimized. In fact, principal component analysis is equivalent to what is termed
orthogonal regression, but that is a story for another day.

CHAPTER 7 PROJECTS
Chapter 7 projects are available online.

A. Conic Sections and Quadric Surfaces: This project shows
how quadratic forms and the Principal Axes Theorem may
be used to classify conic sections and quadric surfaces.

B. Extrema for Functions of Several Variables: This project
shows how quadratic forms may be used to investigate max-
imum and minimum values of functions of several variables.

CHAPTER 7 SUPPLEMENTARY EXERCISES
Mark each statement True or False. Justify each answer. In each
part, A represents an n � n matrix.

1. (T/F) If A is orthogonally diagonalizable, then A is
symmetric.

2. (T/F) If A is an orthogonal matrix, then A is symmetric.

3. (T/F) If A is an orthogonal matrix, then kAxk D kxk for all
x in Rn.

4. (T/F) The principal axes of a quadratic form xTAx can be the
columns of any matrix P that diagonalizes A.

5. (T/F) If P is an n � n matrix with orthogonal columns, then
P T D P�1.

6. (T/F) If every coefficient in a quadratic form is positive, then
the quadratic form is positive definite.

7. (T/F) If xTAx > 0 for some x, then the quadratic form xTAx
is positive definite.

8. (T/F) By a suitable change of variable, any quadratic form
can be changed into one with no cross-product term.

9. (T/F) The largest value of a quadratic form xTAx, for
kxk D 1, is the largest entry on the diagonal of A.

10. (T/F) The maximum value of a positive definite quadratic
form xTAx is the greatest eigenvalue of A.

11. (T/F) A positive definite quadratic form can be changed into
a negative definite form by a suitable change of variable
x D Pu, for some orthogonal matrix P .

12. (T/F) An indefinite quadratic form is one whose eigenvalues
are not definite.

13. (T/F) If P is an n � n orthogonal matrix, then the change
of variable x D Pu transforms xTAx into a quadratic form
whose matrix is P�1AP.

14. (T/F) If U is m � n with orthogonal columns, then U U T x
is the orthogonal projection of x onto ColU .

15. (T/F) If B is m � n and x is a unit vector in Rn, then
kBxk � �1, where �1 is the first singular value of B .

16. (T/F) A singular value decomposition of an m � n matrix
B can be written as B D P †Q, where P is an m �m

orthogonal matrix, Q is an n � n orthogonal matrix, and † is
an m � n “diagonal” matrix.

17. (T/F) If A is n � n, then A and ATA have the same singular
values.

18. Let fu1; : : : ; ung be an orthonormal basis for Rn, and let
�1; : : : ; �n be any real scalars. Define

A D �1u1uT
1 C � � � C �nunuT

n

a. Show that A is symmetric.

b. Show that �1; : : : ; �n are the eigenvalues of A.

19. Let A be an n � n symmetric matrix of rank r . Explain why
the spectral decomposition of A represents A as the sum of
r rank 1 matrices.

20. Let A be an n � n symmetric matrix.

a. Show that .ColA/? D NulA. [Hint: See Section 6.1.]

b. Show that each y in Rn can be written in the form y D
OyC z, with Oy in ColA and z in NulA.

21. Show that if v is an eigenvector of an n � n matrix A and v
corresponds to a nonzero eigenvalue of A, then v is in ColA.
[Hint: Use the definition of an eigenvector.]

22. Let A be an n � n symmetric matrix. Use Exercise 21 and
an eigenvector basis for Rn to give a second proof of the
decomposition in Exercise 20(b).

23. Prove that an n � n matrix A is positive definite if and only
if A admits a Cholesky factorization, namely A D RTR for



482 CHAPTER 7 Symmetric Matrices and Quadratic Forms

some invertible upper triangular matrix R whose diagonal
entries are all positive. [Hint: Use a QR factorization and
Exercise 34 in Section 7.2.]

24. a. Show that if A is positive definite, then A has an LU
factorization, A D LU , where U has positive pivots on
its diagonal.

b. Show that if A has an LU factorization, A D LU , where
U has positive pivots on its diagonal, then A is positive
definite.

c. Find an LU factorisation ofA D

24 9 27 18

27 82 51

18 51 49

35 and

use it to obtain a Cholesky factorization of A. Compare
with Exercise 6.

If A is m � n, then the matrix G D ATA is called the Gram matrix
of A. In this case, the entries of G are the inner products of the
columns of A. (See Exercises 25 and 26.)

25. a. Show that the Gram matrix of any matrix A is positive
semidefinite, with the same rank as A. (See the Exercises
in Section 6.5.)

b. Show that if the columns of A are linearly independent,
then G is invertible. Explain how the Gram matrix can
be used in this case to compute the orthogonal projection
onto ColA.

26. Show that if an n � n matrix G is positive semidefinite and
has rank r , then G is the Gram matrix of some r � n matrix
A. This is called a rank-revealing factorization of G. [Hint:
Consider the spectral decomposition of G, and first write G

as BBT for an n � r matrix B .]

27. Every complex number ´ can be written in polar form
´ D r.cos' C i sin'/ where r is a nonnegative number
and cos' C i sin' is a complex number of modulus 1 (see
Appendix B for details).

a. Prove that any n � n matrix A admits a polar decomposi-
tion of the form A D PQ, where P is an n � n positive
semidefinite matrix with the same rank as A and where
Q is an n � n orthogonal matrix. [Hint: Use a singular
value decomposition,A D U †V T , and observe thatA D
.U †U T /.U V T /.]

b. Let A D

�
2 −1

2 2

�
. Find a polar decomposition A D

PQ. [Hint: Use Exercise 7 in Section 7.4.]

Polar decomposition is used, for instance, in mechanical en-
gineering to model the deformation of a material. The matrix
P describes the stretching or compression of the material (in

the directions of the eigenvectors of P ), and Q describes
the rotation of the material in space. Polar decomposition
is also used in computer graphics as it provides a matrix
factorization with an orthogonal matrix better suited than the
one in a QR factorization for example.

Exercises 28–30 concern an m � n matrix A with a reduced sin-
gular value decomposition, A D UrDV T

r , and the pseudoinverse
AC D VrD�1U T

r .

28. Verify the properties of AC:

a. For each y in Rm, AACy is the orthogonal projection of
y onto ColA.

b. For each x in Rn, ACAx is the orthogonal projection of x
onto RowA.

c. AACA D A and ACAAC D AC.

29. Suppose the equation Ax D b is consistent, and let
xC D ACb. By Exercise 31 in Section 6.3, there is exactly
one vector p in RowA such thatAp D b. The following steps
prove that xC D p and xC is the minimum length solution of
Ax D b.
a. Show that xC is in RowA. [Hint:Write b as Ax for some

x, and use Exercise 28.]

b. Show that xC is a solution of Ax D b.

c. Show that if u is any solution of Ax D b, then
kxCk � kuk, with equality only if u D xC.

30. Given any b inRm, adapt Exercise 28 to show thatACb is the
least-squares solution of minimum length. [Hint: Consider
the equation Ax D Ob, where Ob is the orthogonal projection
of b onto ColA.]

T In Exercises 31 and 32, construct the pseudoinverse ofA. Begin
by using a matrix program to produce the SVD of A, or, if that is
not available, begin with an orthogonal diagonalization of ATA.
Use the pseudoinverse to solve Ax D b, for b D .6;�1;�4; 6/,
and let Ox be the solution. Make a calculation to verify that Ox
is in RowA. Find a nonzero vector u in NulA, and verify that
kOxk < kOxC uk, which must be true by Exercise 29(c).

T 31. A D

2664
�3 �3 �6 6 1

�1 �1 �1 1 �2

0 0 �1 1 �1

0 0 �1 1 �1

3775

T 32. A D

2664
4 0 �1 �2 0

�5 0 3 5 0

2 0 �1 �2 0

6 0 �3 �6 0

3775



8 The Geometry
of Vector Spaces

Introductory Example

THE PLATONIC SOLIDS
In the city of Athens in 387 B.C., the Greek philosopher
Plato founded an Academy, sometimes referred to as the
world’s first university. While the curriculum included
astronomy, biology, political theory, and philosophy, the
subject closest to his heart was geometry. Indeed, inscribed
over the doors of his academy were these words: “Let no
one destitute of geometry enter my doors.”

The Greeks were greatly impressed by geometric
patterns such as the regular solids. A polyhedron is called
regular if its faces are congruent regular polygons and all
the angles at the vertices are equal. As early as 100 years
before Plato, the Pythagoreans knew at least three of the
regular solids: the tetrahedron (4 triangular faces), the cube
(6 square faces), and the octahedron (8 triangular faces).
(See Figure 1.) These shapes occur naturally as crystals of
common minerals. There are only five such regular solids,
the remaining two being the dodecahedron (12 pentagonal
faces) and the icosahedron (20 triangular faces).

Plato discussed the basic theory of these five solids in
the dialogue Timaeus, and since then they have carried his
name: the Platonic solids.

For centuries there was no need to envision geometric
objects in more than three dimensions. But nowadays
mathematicians regularly deal with objects in vector spaces

having four, five, or even hundreds of dimensions. It is not
necessarily clear what geometrical properties one might
ascribe to these objects in higher dimensions.

For example, what properties do lines have in 2-space
and planes have in 3-space that would be useful in
higher dimensions? How can one characterize such
objects? Sections 8.1 and 8.4 provide some answers.
The hyperplanes of Section 8.4 will be important for
understanding the multidimensional nature of the linear
programming problems in Chapter 9.

What would the analogue of a polyhedron “look like”
inmore than three dimensions?A partial answer is provided
by two-dimensional projections of the four-dimensional
object, created in a manner analogous to two-dimensional
projections of a three-dimensional object. Section 8.5
illustrates this idea for the four-dimensional “cube” and
the four-dimensional “simplex.”

The study of geometry in higher dimensions not
only provides new ways of visualizing abstract algebraic
concepts, but also creates tools that may be applied in R3.
For instance, Sections 8.2 and 8.6 include applications to
computer graphics, and Section 8.5 outlines a proof (in
Exercise 28) that there are only five regular polyhedra
in R3.

483
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FIGURE 1 The five Platonic solids.

Most applications in earlier chapters involved algebraic calculations with subspaces and
linear combinations of vectors. This chapter studies sets of vectors that can be visualized
as geometric objects such as line segments, polygons, and solid objects. Individual vec-
tors are viewed as points. The concepts introduced here are used in computer graphics,
linear programming (in Chapter 9), and other areas of mathematics.1

Throughout the chapter, sets of vectors are described by linear combinations, but
with various restrictions on theweights used in the combinations. For instance, in Section
8.1, the sum of the weights is 1, while in Section 8.3, the weights are positive and sum
to 1. The visualizations are in R2 or R3, of course, but the concepts also apply to Rn and
other vector spaces.

8.1 Affine Combinations
An affine combination of vectors is a special kind of linear combination. Given vec-
tors (or “points”) v1; v2; : : : ; vp in Rn and scalars c1; : : : ; cp , an affine combination of
v1; v2; : : : ; vp is a linear combination

c1v1 C � � � C cpvp

such that the weights satisfy c1 C � � � C cp D 1.

DEFINITION The set of all affine combinations of points in a set S is called the affine hull (or
affine span) of S , denoted by affS .

1 See Foley, van Dam, Feiner, and Hughes, Computer Graphics—Principles and Practice, 2nd edition
(Boston: Addison-Wesley, 1996), pp. 1083–1112. That material also discusses coordinate-free “affine
spaces.”



8.1 Affine Combinations 485

The affine hull of a single point v1 is just the set fv1g, since it has the form c1v1 where
c1 D 1. The affine hull of two distinct points is often written in a special way. Suppose
y D c1v1 C c2v2 with c1 C c2 D 1. Write t in place of c2, so that c1 D 1 � c2 D 1 � t .
Then the affine hull of fv1; v2g is the set

y D .1 � t /v1 C tv2; with t in R (1)

This set of points includes v1 (when t D 0) and v2 (when t D 1). If v2 D v1, then (1)
again describes just one point. Otherwise, (1) describes the line through v1 and v2. To
see this, rewrite (1) in the form

y D v1 C t.v2 � v1/ D pC tu; with t in R

where p is v1 and u is v2 � v1. The set of all multiples of u is Span fug, the line through
u and the origin. Adding p to each point on this line translates Span fug into the line
through p parallel to the line through u and the origin. See Figure 1. (Compare this
figure with Figure 5 in Section 1.5.)

tu

p 1 tu

p

u

FIGURE 1

Figure 2 uses the original points v1 and v2, and displays aff fv1; v2g as the line
through v1 and v2.

v2

t(v2 2 v1)
aff{v1, v2}

y 5 v1 1 t(v2 2 v1)

v1

v2 2 v1

FIGURE 2

Notice that while the point y in Figure 2 is an affine combination of v1 and v2, the
point y � v1 equals t .v2 � v1/, which is a linear combination (in fact, a multiple) of
v2 � v1. This relation between y and y � v1 holds for any affine combination of points,
as the following theorem shows.

THEOREM 1 A point y in Rn is an affine combination of v1; : : : ; vp in Rn if and only if y � v1

is a linear combination of the translated points v2 � v1; : : : ; vp � v1:

PROOF If y � v1 is a linear combination of v2 � v1; : : : ; vp � v1; there exist weights
c2; : : : ; cp such that

y � v1 D c2.v2 � v1/C � � � C cp.vp � v1/ (2)
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Then
y D .1 � c2 � � � � � cp/v1 C c2v2 C � � � C cpvp (3)

and the weights in this linear combination sum to 1. So y is an affine combination of
v1; : : : ; vp . Conversely, suppose

y D c1v1 C c2v2 C � � � C cpvp (4)

where c1 C � � � C cp D 1. Since c1 D 1 � c2 � � � � � cp , equation (4) may be written
as in (3), and this leads to (2), which shows that y � v1 is a linear combination of
v2 � v1; : : : ; vp � v1:

In the statement of Theorem 1, the point v1 could be replaced by any of the other
points in the list v1; : : : ; vp: Only the notation in the proof would change.

EXAMPLE 1 Let v1 D

�
1

2

�
, v2 D

�
2

5

�
, v3 D

�
1

3

�
, v4 D

�
�2

2

�
, and y D

�
4

1

�
.

If possible, write y as an affine combination of v1; v2; v3, and v4.

SOLUTION Compute the translated points

v2 � v1 D

�
1

3

�
; v3 � v1 D

�
0

1

�
; v4 � v1 D

�
�3

0

�
; y � v1 D

�
3

�1

�
To find scalars c2, c3, and c4 such that

c2.v2 � v1/C c3.v3 � v1/C c4.v4 � v1/ D y � v1 (5)

row reduce the augmented matrix having these points as columns:�
1 0 �3 3

3 1 0 �1

�
�

�
1 0 �3 3

0 1 9 �10

�
This shows that equation (5) is consistent, and the general solution is c2 D 3c4 C 3,
c3 D �9c4 � 10, with c4 free. When c4 D 0,

y � v1 D 3.v2 � v1/ � 10.v3 � v1/C 0.v4 � v1/

and
y D 8v1 C 3v2 � 10v3

As another example, take c4 D 1. Then c2 D 6 and c3 D �19, so

y � v1 D 6.v2 � v1/ � 19.v3 � v1/C 1.v4 � v1/

and
y D 13v1 C 6v2 � 19v3 C v4

While the procedure in Example 1 works for arbitrary points v1; v2; : : : ; vp in Rn,
the question can be answered more directly if the chosen points vi are a basis for Rn.
For example, let B D fb1; : : : ; bng be such a basis. Then any y in Rn is a unique linear
combination of b1; : : : ; bn. This combination is an affine combination of the b’s if and
only if the weights sum to 1. (These weights are just the B-coordinates of y, as in
Section 4.4.)
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EXAMPLE 2 Let b1 D

244

0

3

35, b2 D

240

4

2

35, b3 D

245

2

4

35, p1 D

242

0

0

35, and p2 D

241

2

2

35.
The set B D fb1; b2; b3g is a basis for R3. Determine whether the points p1 and p2 are
affine combinations of the points in B.

SOLUTION Find the B-coordinates of p1 and p2. These two calculations can be com-
bined by row reducing the matrix Œ b1 b2 b3 p1 p2 �, with two augmented columns:

24 4 0 5 2 1

0 4 2 0 2

3 2 4 0 2

35 �
26664

1 0 0 �2 2
3

0 1 0 �1 2
3

0 0 1 2 � 1
3

37775
Read column 4 to build p1, and read column 5 to build p2:

p1 D �2b1 � b2 C 2b3 and p2 D
2
3
b1 C

2
3
b2 �

1
3
b3

The sum of the weights in the linear combination for p1 is �1, not 1, so p1 is not an
affine combination of the b’s. However, p2 is an affine combination of the b’s, because
the sum of the weights for p2 is 1.

DEFINITION A set S is affine if p; q 2 S implies that .1 � t/pC tq 2 S for each real number t .

Geometrically, a set is affine if whenever two points are in the set, the entire line
through these points is in the set. (If S contains only one point, p, then the line through
p and p is just a point, a “degenerate” line.) Algebraically, for a set S to be affine,
the definition requires that every affine combination of two points of S belong to S .
Remarkably, this is equivalent to requiring that S contain every affine combination of
an arbitrary number of points of S .

THEOREM 2 A set S is affine if and only if every affine combination of points of S lies in S .
That is, S is affine if and only if S D affS .

Remark: See the remark prior to Theorem 5 in Chapter 3 regarding mathematical induc-
tion.

PROOF Suppose that S is affine and use induction on the number m of points of S

occurring in an affine combination. When m is 1 or 2, an affine combination of m points
of S lies in S , by the definition of an affine set. Now, assume that every affine combina-
tion of k or fewer points of S yields a point in S , and consider a combination of k C 1

points. Take vi in S for i D 1; : : : ; k C 1, and let y D c1v1 C � � � C ckvk C ckC1vkC1,
where c1 C � � � C ckC1 D 1. Since the ci ’s sum to 1, at least one of them must not be
equal to 1. By reindexing the vi and ci , if necessary, we may assume that ckC1 ¤ 1. Let
t D c1 C � � � C ck . Then t D 1 � ckC1 ¤ 0, and

y D .1 � ckC1/
�c1

t
v1 C � � � C

ck

t
vk

�
C ckC1vkC1 (6)

By the induction hypothesis, the point z D .c1=t/v1 C � � � C .ck=t/vk is in S , since the
coefficients sum to 1. Thus (6) displays y as an affine combination of two points in S ,
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and so y 2 S . By the principle of induction, every affine combination of such points
lies in S . That is, affS � S . But the reverse inclusion, S � affS , always applies. Thus,
when S is affine, S D affS . Conversely, if S D affS , then affine combinations of two
(or more) points of S lie in S , so S is affine.

The next definition provides terminology for affine sets that emphasizes their close
connection with subspaces of Rn.

DEFINITION A translate of a set S inRn by a vector p is the set S C p D fsC p W s 2 Sg.2 A flat
in Rn is a translate of a subspace of Rn. Two flats are parallel if one is a translate
of the other. The dimension of a flat is the dimension of the corresponding parallel
subspace. The dimension of a set S , written as dim S , is the dimension of the
smallest flat containing S . A line in Rn is a flat of dimension 1. A hyperplane in
Rn is a flat of dimension n � 1.

InR3, the proper subspaces3 consist of the origin 0, the set of all lines through 0, and
the set of all planes through 0. Thus the proper flats in R3 are points (zero-dimensional),
lines (one-dimensional), and planes (two-dimensional), which may or may not pass
through the origin.

The next theorem shows that these geometric descriptions of lines and planes in R3

(as translates of subspaces) actually coincide with their earlier algebraic descriptions as
sets of all affine combinations of two or three points, respectively.

THEOREM 3 A nonempty set S is affine if and only if it is a flat.

Remark: Notice the key role that definitions play in this proof. For example, the first
part assumes that S is affine and seeks to show that S is a flat. By definition, a flat is a
translate of a subspace. By choosing p in S and defining W D S C .�p/, the set S is
translated to the origin and S D W C p. It remains to show that W is a subspace, for
then S will be a translate of a subspace and hence a flat.

PROOF Suppose that S is affine. Let p be any fixed point in S and let

W D S C .�p/; so that S D W C p

To show that S is a flat, it suffices to show that W is a subspace of Rn. Since p is in S ,
the zero vector is in W . To show that W is closed under sums and scalar multiples, it
suffices to show that if u1 and u2 are elements of W, then u1 C tu2 is in W for every
real t . That is, we want to show that u1 C tu2 is in S C .�p/. Since u1 and u2 are in W ,
there exist s1 and s2 in S such that

u1 D s1 � p and u2 D s2 � p

It follows that

u1 C tu2 D s1 � pC t .s2 � p/

D s1 C ts2 � tp � p

2 If p D 0, then the translate is just S itself. See Figure 4 in Section 1.5.
3A subset A of a set B is called a proper subset of B if A 6D B . The same condition applies to proper
subspaces and proper flats in Rn: they are not equal to Rn.
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Regrouping the first three terms, we find that s1 C ts2 � tp is in S since the coefficients
sum to 1 and S is affine. (See Theorem 2.) So u1 C tu2 is in S � p D W . This shows
that W is a subspace of Rn. Thus S is a flat, because S D W C p.

Conversely, suppose that S is a flat. That is, S D W C p for some p inRn and some
subspace W . To show that S is affine, it suffices to show that for any pair s1 and s2 of
points in S , the line through s1 and s2 lies in S . By the definition of W , there exist u1

and u2 in W such that
s1 D u1 C p and s2 D u2 C p

So, for each real t we have

.1 � t /s1 C ts2 D .1 � t/.u1 C p/C t .u2 C p/

D .1 � t/u1 C .1 � t/pC tu2 C tp

D .1 � t/u1 C tu2 C p

SinceW is a subspace, .1 � t /u1 C tu2 is inW and so .1 � t /s1 C ts2 is inW C p D S .
Thus, S is affine.

Theorem 3 provides a geometric way to view the affine hull of a set: it is the flat that
consists of all the affine combinations of points in the set. For instance, Figure 3 shows
the points studied in Example 2. Although the set of all linear combinations of b1, b2,
and b3 is all of R3, the set of all affine combinations is only the plane through b1, b2,
and b3. Note that p2 (from Example 2) is in the plane through b1, b2, and b3, while p1

is not in that plane. Also, see Exercise 22.
The next example takes a fresh look at a familiar set—the set of all solutions of a

system Ax D b.

EXAMPLE 3 Suppose that the solutions of an equation Ax D b are all of the form

x3

x1

x2p1

p2

5

5
5

b3
b2

b1

FIGURE 3

x D x3uC p, where u D

24 2

�3

1

35 and p D

24 4

0

�3

35. Recall from Section 1.5 that this set

is parallel to the solution set of Ax D 0, which consists of all points of the form x3u.
Find points v1 and v2 such that the solution set of Ax D b is aff fv1; v2g.

SOLUTION The solution set is a line through p in the direction of u, as in Figure 1.
Since aff fv1; v2g is a line through v1 and v2, identify two points on the line x D x3uC p.
Two simple choices appear when x3 D 0 and x3 D 1. That is, take v1 D p and v2 D

uC p, so that

v2 D uC p D

24 2

�3

1

35C 24 4

0

�3

35 D 24 6

�3

�2

35
In this case, the solution set is described as the set of all affine combinations of the form

x D .1 � x3/

24 4

0

�3

35C x3

24 6

�3

�2

35
Earlier, Theorem 1 displayed an important connection between affine combinations

and linear combinations. The next theorem provides another view of affine combinations,
which forR2 andR3 is closely connected to applications in computer graphics, discussed
in the next section (and in Section 2.7).
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DEFINITION For v in Rn, the standard homogeneous form of v is the point Qv D
�
v
1

�
in RnC1.

THEOREM 4 A point y in Rn is an affine combination of v1; : : : ; vp in Rn if and only if the
homogeneous form of y is in Span fQv1; : : : ; Qvpg. In fact, y D c1v1 C � � � C cpvp ,
with c1 C � � � C cp D 1, if and only if Qy D c1 Qv1 C � � � C cp Qvp .

PROOF A point y is in aff fv1; : : : ; vpg if and only if there exist weights c1; : : : ; cp such
that �

y
1

�
D c1

�
v1

1

�
C c2

�
v2

1

�
C � � � C cp

�
vp

1

�
This happens if and only if Qy is in Span fQv1; Qv2; : : : ; Qvpg.

EXAMPLE 4 Let v1 D

24 3

1

1

35, v2 D

24 1

2

2

35, v3 D

24 1

7

1

35, and p D 24 4

3

0

35. Use Theo-
rem 4 to write p as an affine combination of v1, v2, and v3, if possible.

SOLUTION Row reduce the augmented matrix for the equation

x1 Qv1 C x2 Qv2 C x3 Qv3 D Qp

To simplify the arithmetic, move the fourth row of 1’s to the top (equivalent to three row
interchanges). After this, the number of arithmetic operations here is basically the same
as the number needed for the method using Theorem 1.

Œ Qv1 Qv2 Qv3 Qp � �

2664
1 1 1 1

3 1 1 4

1 2 7 3

1 2 1 0

3775 �
2664

1 1 1 1

0 �2 �2 1

0 1 6 2

0 1 0 �1

3775
� � � � �

2664
1 0 0 1:5

0 1 0 �1

0 0 1 :5

0 0 0 0

3775
By Theorem 4, 1:5v1 � v2 C :5v3 D p. See Figure 4, which shows the plane that con-
tains v1, v2, v3, and p (together with points on the coordinate axes).

Practice Problem

Plot the points v1 D

�
1

0

�
, v2 D

�
�1

2

�
, v3 D

�
3

1

�
, and p D

�
4

3

�
on graph paper,

and explain why p must be an affine combination of v1, v2, and v3. Then find the affine
combination for p. [Hint:What is the dimension of aff fv1, v2, v3g‹�
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155

3

x3

v2

v1 v3

p

x1

x2

FIGURE 4

8.1 Exercises
In Exercises 1–4, write y as an affine combination of the other
points listed, if possible.

1. v1 D

�
1

2

�
, v2 D

�
�2

2

�
, v3 D

�
0

4

�
, v4 D

�
3

7

�
, y D

�
5

3

�

2. v1 D

�
1

1

�
, v2 D

�
�1

2

�
, v3 D

�
3

2

�
, y D

�
5

7

�

3. v1 D

24�3

1

1

35, v2 D

24 0

4

�2

35, v3 D

24 4

�2

6

35, y D 24 17

1

5

35

4. v1 D

24 1

2

0

35, v2 D

24 2

�6

7

35, v3 D

24 4

3

1

35, y D 24�3

4

�4

35

In Exercises 5 and 6, let b1 D

24 2

1

1

35, b2 D

24 1

0

�2

35, b3 D

24 2

�5

1

35,
and S D fb1; b2; b3g. Note that S is an orthogonal basis for R3.
Write each of the given points as an affine combination of the
points in the set S , if possible. [Hint: Use Theorem 5 in Section
6.2 instead of row reduction to find the weights.]

5. a. p1 D

24 3

8

4

35 b. p2 D

24 6

�3

3

35 c. p3 D

24 0

�1

�5

35

6. a. p1 D

24 0

�19

�5

35 b. p2 D

24 1:5

�1:3

�:5

35 c. p3 D

24 5

�4

0

35

7. Let

v1 D

2664
1

0

3

0

3775; v2 D

2664
2

�1

0

4

3775; v3 D

2664
�1

2

1

1

3775;

p1 D

2664
5

�3

5

3

3775; p2 D

2664
�9

10

9

�13

3775; p3 D

2664
4

2

8

5

3775;

and S D fv1; v2; v3g. It can be shown that S is linearly inde-
pendent.

a. Is p1 in SpanS? Is p1 in affS?

b. Is p2 in SpanS? Is p2 in affS?

c. Is p3 in SpanS? Is p3 in affS?

8. Repeat Exercise 7 when

v1 D

2664
1

0

3

�2

3775; v2 D

2664
2

1

6

�5

3775; v3 D

2664
3

0

12

�6

3775;

p1 D

2664
4

�1

15

�7

3775; p2 D

2664
�5

3

�8

6

3775; and p3 D

2664
1

6

�6

�8

3775:

9. Suppose that the solutions of an equation Ax D b are all of

the form x D x3uC p, where u D
�

4

�2

�
and p D

�
�3

0

�
.

Find points v1 and v2 such that the solution set of Ax D b is
aff fv1; v2g.

10. Suppose that the solutions of an equation Ax D b are all of

the form x D x3uC p, where u D

24 5

1

�2

35 and p D

24 1

�3

4

35.
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Find points v1 and v2 such that the solution set of Ax D b is
aff fv1; v2g.

In Exercises 11–20, mark each statement True or False (T/F).
Justify each answer.

11. (T/F) The set of all affine combinations of points in a set S is
called the affine hull of S .

12. (T/F) If S D fxg, then aff S is the empty set.

13. (T/F) If fb1; : : : ; bkg is a linearly independent subset of Rn

and if p is a linear combination of b1; : : : ; bk , then p is an
affine combination of b1; : : : ; bk .

14. (T/F) A set is affine if and only if it contains its affine hull.

15. (T/F) The affine hull of two distinct points is called a line.

16. (T/F) A flat of dimension 1 is called a line.

17. (T/F) A flat is a subspace.

18. (T/F) A flat of dimension 2 is called a hyperplane.

19. (T/F) A plane in R3 is a hyperplane.

20. (T/F) A flat through the origin is a subspace.

21. Suppose fv1; v2; v3g is a basis for R3. Show that Span
fv2 � v1; v3 � v1g is a plane in R3. [Hint: What can you say
about u and v when Span fu; vg is a plane?]

22. Show that if fv1; v2; v3g is a basis for R3, then aff fv1; v2; v3g

is the plane through v1; v2, and v3.

23. Let A be an m � n matrix and, given b in Rm, show that the
set S of all solutions Ax D b is an affine subset of Rn.

24. Let v 2 Rn and let k 2 R. Prove thatS D fx 2 Rn W x � v D kg

is an affine subset of Rn.

25. Choose a set S of three points such that aff S is the plane in
R3 whose equation is x3 D 5. Justify your work.

26. Choose a set S of four distinct points in R3 such that aff S is
the plane 2x1 C x2 � 3x3 D 12. Justify your work.

27. Let S be an affine subset of Rn, suppose f W Rn ! Rm is a
linear transformation, and let f .S/ denote the set of images
ff .x/ W x 2 Sg. Prove that f .S/ is an affine subset of Rm.

28. Let f W Rn ! Rm be a linear transformation, let T be an
affine subset of Rm, and let S D fx 2 Rn W f .x/ 2 T g. Show
that S is an affine subset of Rn.

In Exercises 29–34, prove the given statement about subsetsA and
B of Rn, or provide the required example in R2. A proof for an
exercisemay use results from earlier exercises (as well as theorems
already available in the text).

29. If A � B and B is affine, then aff A � B .

30. If A � B , then aff A � aff B .

31. [.affA/ [ .affB/� � aff .A [ B/. [Hint: To show that
D [E � F , show that D � F and E � F .]

32. Find an example in R2 to show that equality need not hold in
the statement of Exercise 31. [Hint: Consider sets A and B ,
each of which contains only one or two points.]

33. aff .A \ B/ � .aff A \ aff B/.

34. Find an example in R2 to show that equality need not hold in
the statement of Exercise 33.

Solution to Practice Problem

Since the points v1, v2, and v3 are not collinear (that is, not on a single line),
aff fv1; v2; v3g cannot be one-dimensional. Thus, aff fv1; v2; v3gmust equal R2. To find
the actual weights used to express p as an affine combination of v1, v2, and v3, first
compute

v2 � v1 D

�
�2

2

�
; v3 � v1 D

�
2

1

�
; and p � v1 D

�
3

3

�
To write p � v1 as a linear combination of v2 � v1 and v3 � v1, row reduce the matrix

x1

x2

p

v3
v1

v2

having these points as columns:�
�2 2 3

2 1 3

�
�

"
1 0 1

2

0 1 2

#
Thus p � v1 D

1
2
.v2 � v1/C 2.v3 � v1/, which shows that

p D
�
1 � 1

2
� 2

�
v1 C

1
2
v2 C 2v3 D �

3
2
v1 C

1
2
v2 C 2v3

This expresses p as an affine combination of v1, v2, and v3, because the coefficients
sum to 1.
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Alternatively, use the method of Example 4 and row reduce:

�
v1 v2 v3 p
1 1 1 1

�
�

24 1 1 1 1

1 �1 3 4

0 2 1 3

35 �
264 1 0 0 � 3

2

0 1 0 1
2

0 0 1 2

375
This shows that p D � 3

2
v1 C

1
2
v2 C 2v3.

8.2 Affine Independence
This section continues to explore the relation between linear concepts and affine con-
cepts. Consider first a set of three vectors in R3, say S D fv1; v2; v3g. If S is linearly
dependent, then one of the vectors is a linear combination of the other two vectors. What
happens when one of the vectors is an affine combination of the others? For instance,
suppose that

v3 D .1 � t /v1 C tv2; for some t in R.

Then
.1 � t/v1 C tv2 � v3 D 0:

This is a linear dependence relation because not all the weights are zero. But more is
true—the weights in the dependence relation sum to 0:

.1 � t /C t C .�1/ D 0:

This is the additional property needed to define affine dependence.

DEFINITION An indexed set of points fv1; : : : ; vpg inRn is affinely dependent if there exist real
numbers c1; : : : ; cp , not all zero, such that

c1 C � � � C cp D 0 and c1v1 C � � � C cpvp D 0 (1)

Otherwise, the set is affinely independent.

An affine combination is a special type of linear combination, and affine dependence
is a restricted type of linear dependence. Thus, each affinely dependent set is automati-
cally linearly dependent.

A set fv1g of only one point (even the zero vector) must be affinely independent
because the required properties of the coefficients ci cannot be satisfied when there is
only one coefficient. For fv1g, the first equation in (1) is just c1 D 0, and yet at least one
(the only one) coefficient must be nonzero.

Exercise 21 asks you to show that an indexed set fv1; v2g is affinely dependent if
and only if v1 D v2. The following theorem handles the general case and shows how
the concept of affine dependence is analogous to that of linear dependence. Parts (c) and
(d) give useful methods for determining whether a set is affinely dependent. Recall from
Section 8.1 that if v is in Rn, then the vector Qv in RnC1 denotes the homogeneous form
of v.
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THEOREM 5 Given an indexed set S D fv1; : : : ; vpg in Rn, with p � 2, the following state-
ments are logically equivalent. That is, either they are all true statements or they
are all false.

a. S is affinely dependent.

b. One of the points in S is an affine combination of the other points in S .

c. The set fv2 � v1; : : : ; vp � v1g in Rn is linearly dependent.
d. The set fQv1; : : : ; Qvpg of homogeneous forms in RnC1 is linearly dependent.

PROOF Suppose statement (a) is true, and let c1; : : : ; cp satisfy (1). By renaming the
points if necessary, one may assume that c1 ¤ 0 and divide both equations in (1) by c1,
so that 1C .c2=c1/C � � � C .cp=c1/ D 0 and

v1 D .�c2=c1/v2 C � � � C .�cp=c1/vp (2)

Note that the coefficients on the right side of (2) sum to 1. Thus (a) implies (b). Now,
suppose that (b) is true. By renaming the points if necessary, one may assume that
v1 D c2v2 C � � � C cpvp , where c2 C � � � C cp D 1. Then

.c2 C � � � C cp/v1 D c2v2 C � � � C cpvp (3)

and
c2.v2 � v1/C � � � C cp.vp � v1/ D 0 (4)

Not all of c2; : : : ; cp can be zero because they sum to 1. So (b) implies (c).
Next, if (c) is true, then there exist weights c2; : : : ; cp , not all zero, such that (4)

holds. Rewrite (4) as (3) and set c1 D �.c2 C � � � C cp/. Then c1 C � � � C cp D 0. Thus,
(3) shows that (1) is true. So (c) implies (a), which proves that (a), (b), and (c) are
logically equivalent. Finally, (d) is equivalent to (a) because the two equations in (1)
are equivalent to the following equation involving the homogeneous forms of the points
in S :

c1

�
v1

1

�
C � � � C cp

�
vp

1

�
D

�
0
0

�
In statement (c) of Theorem 5, v1 could be replaced by any of the other points in

the list v1; : : : ; vp . Only the notation in the proof would change. So, to test whether a
set is affinely dependent, subtract one point in the set from the other points, and check
whether the translated set of p � 1 points is linearly dependent.

EXAMPLE 1 The affine hull of two distinct points p and q is a line. If a third point
r is on the line, then fp; q; rg is an affinely dependent set. If a point s is not on the line
through p and q, then these three points are not collinear and fp; q; sg is an affinely
independent set. See Figure 1.

p

aff{p, q}
q

r s

FIGURE 1 fp; q; rg is affinely dependent.
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EXAMPLE 2 Let v1 D

24 1

3

7

35, v2 D

24 2

7

6:5

35, v3 D

24 0

4

7

35, and S D fv1; v2; v3g.

Determine whether S is affinely independent.

SOLUTION Compute v2 � v1 D

24 1

4

�:5

35 and v3 � v1 D

24�1

1

0

35. These two points

are not multiples and hence form a linearly independent set, S 0. So all statements in
Theorem 5 are false, and S is affinely independent. Figure 2 shows S and the translated
set S 0. Notice that SpanS 0 is a plane through the origin and affS is a parallel plane
through v1, v2, and v3. (Only a portion of each plane is shown here, of course.)

x3

v1

v2

v3

x1

x2

v2 2 v1

aff{v1, v2, v3}

Span{v2 2 v1, v3 2 v1}

v3 2 v1

FIGURE 2 An affinely independent set
fv1; v2; v3g.

EXAMPLE 3 Let v1 D

24 1

3

7

35, v2 D

24 2

7

6:5

35, v3 D

24 0

4

7

35, and v4 D

24 0

14

6

35, and let
S D fv1; : : : ; v4g. Is S affinely dependent?

SOLUTION Compute v2 � v1 D

24 1

4

�:5

35, v3 � v1 D

24�1

1

0

35, and v4 � v1 D

24�1

11

�1

35,
and row reduce the matrix:24 1 �1 �1

4 1 11

�:5 0 �1

35 � 24 1 �1 �1

0 5 15

0 �:5 �1:5

35 � 24 1 �1 �1

0 5 15

0 0 0

35
Recall from Section 4.5 (or Section 2.8) that the columns are linearly dependent be-
cause not every column is a pivot column; so v2 � v1; v3 � v1, and v4 � v1 are linearly
dependent. By statement (c) in Theorem 5, fv1; v2; v3; v4g is affinely dependent. This
dependence can also be established using (d) in Theorem 5 instead of (c).

The calculations in Example 3 show that v4 � v1 is a linear combination of v2 � v1

and v3 � v1, which means that v4 � v1 is in Span fv2 � v1; v3 � v1g. By Theorem 1 in
Section 8.1, v4 is in aff fv1; v2; v3g. In fact, complete row reduction of the matrix in
Example 3 would show that

v4 � v1 D 2.v2 � v1/C 3.v3 � v1/ (5)

v4 D �4v1 C 2v2 C 3v3 (6)
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See Figure 3.

v3 2 v1

v4 2 v1

x3

v1

v2

v3

x1

v2 2 v1

aff{v1, v2, v3}

v4

x2

FIGURE 3 v4 is in the plane aff fv1; v2; v3g.

Figure 3 shows grids on both Spanfv2 � v1; v3 � v1g and aff fv1; v2; v3g. The grid
on aff fv1; v2; v3g is based on (5). Another “coordinate system” can be based on (6), in
which the coefficients �4, 2, and 3 are called affine or barycentric coordinates of v4.

Barycentric Coordinates
The definition of barycentric coordinates depends on the following affine version of the
Unique Representation Theorem in Section 4.4. See Exercise 25 in this section for the
proof.

THEOREM 6 Let S D fv1; : : : ; vkg be an affinely independent set in Rn. Then each p in affS

has a unique representation as an affine combination of v1; : : : ; vk . That is, for
each p there exists a unique set of scalars c1; : : : ; ck such that

p D c1v1 C � � � C ckvk and c1 C � � � C ck D 1 (7)

DEFINITION Let S D fv1; : : : ; vkg be an affinely independent set. Then for each point p in
affS , the coefficients c1; : : : ; ck in the unique representation (7) of p are called
the barycentric (or, sometimes, affine) coordinates of p.

Observe that (7) is equivalent to the single equation�
p
1

�
D c1

�
v1

1

�
C � � � C ck

�
vk

1

�
(8)

involving the homogeneous forms of the points. Row reduction of the augmented matrix�
Qv1 � � � Qvk Qp

�
for (8) produces the barycentric coordinates of p.

EXAMPLE 4 Let a D
�

1

7

�
, b D

�
3

0

�
, c D

�
9

3

�
, and p D

�
5

3

�
. Find the barycen-

tric coordinates of p determined by the affinely independent set fa; b; cg.
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SOLUTION Row reduce the augmented matrix of points in homogeneous form, mov-
ing the last row of ones to the top to simplify the arithmetic:

�
Qa Qb Qc Qp

�
D

24 1 3 9 5

7 0 3 3

1 1 1 1

35 � 24 1 1 1 1

1 3 9 5

7 0 3 3

35
�

2664 1 0 0 1
4

0 1 0 1
3

0 0 1 5
12

3775
The coordinates are 1

4
, 1

3
, and 5

12
, so p D 1

4
aC 1

3
bC 5

12
c.

Barycentric coordinates have both physical and geometric interpretations. They
were originally defined by A. F. Moebius in 1827 for a point p inside a triangular
region with vertices a, b, and c. He wrote that the barycentric coordinates of p are
three nonnegative numbers ma; mb, and mc such that p is the center of mass of a system
consisting of the triangle (with nomass) andmassesma,mb, andmc at the corresponding
vertices. The masses are uniquely determined by requiring that their sum be 1. This view
is still useful in physics today.1

Figure 4 gives a geometric interpretation to the barycentric coordinates in Example
4, showing the triangle �abc and three small triangles �pbc, �apc, and �abp. The
areas of the small triangles are proportional to the barycentric coordinates of p. In fact,

area.�pbc/ D
1

4
� area.�abc/

area.�apc/ D
1

3
� area.�abc/

area.�abp/ D
5

12
� area.�abc/

(9)

a

b

cparea 5 t · area(Dabc)

area 5 s · area(Dabc)

area 5 r · area(Dabc)

FIGURE 4 p D raC sbC tc. Here, r D 1
4
,

s D 1
3
, t D 5

12
.

The formulas in Figure 4 are verified in Exercises 29–31. Analogous equalities for
volumes of tetrahedrons hold for the case when p is a point inside a tetrahedron in R3,
with vertices a, b, c, and d.

When a point is not inside the triangle (or tetrahedron), some of the barycentric
coordinates will be negative. The case of a triangle is illustrated in Figure 5, for vertices

1 See Exercise 37 in Section 1.3. In astronomy, however, “barycentric coordinates” usually refer to ordinary
R3 coordinates of points in what is now called the International Celestial Reference System, a Cartesian
coordinate system for outer space, with the origin at the center of mass (the barycenter) of the solar system.
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a, b, c, and coordinate values r; s; t , as above. The points on the line through b and c, for
instance, have r D 0 because they are affine combinations of only b and c. The parallel
line through a identifies points with r D 1.

a

b

cp

r 5
 1

r 5
 0

s 5 1

s 5 0

FIGURE 5 Barycentric coordinates
for points in aff fa; b; cg.

Barycentric Coordinates in Computer Graphics
When working with geometric objects in a computer graphics program, a designer may
use a “wire-frame” approximation to an object at certain key points in the process of
creating a realistic final image. For instance, if the surface of part of an object consists
of small flat triangular surfaces, then a graphics program can easily add color, lighting,
and shading to each small surface when that information is known only at the vertices.
Barycentric coordinates provide the tool for smoothly interpolating the vertex infor-
mation over the interior of a triangle. The interpolation at a point is simply the linear
combination of the vertex values using the barycentric coordinates as weights.

Colors on a computer screen are often described by RGB coordinates. A triple
.r; g; b/ indicates the amount of each color—red, green, and blue—with the parameters
varying from 0 to 1. For example, pure red is .1; 0; 0/, white is .1; 1; 1/, and black is
.0; 0; 0/.

EXAMPLE 5 Let v1 D

24 3

1

5

35, v2 D

24 4

3

4

35, v3 D

24 1

5

1

35, and p D

24 3

3

3:5

35. The
colors at the vertices v1, v2, and v3 of a triangle are magenta .1; 0; 1/, light magenta
.1; :4; 1/, and purple .:6; 0; 1/, respectively. Find the interpolated color at p. See
Figure 6.

v2

v3

v1

FIGURE 6 Interpolated colors.

SOLUTION First, find the barycentric coordinates of p. Here is the calculation using
homogeneous forms of the points, with the first step moving row 4 to row 1:

�
Qv1 Qv2 Qv3 Qp

�
�

2664
1 1 1 1

3 4 1 3

1 3 5 3

5 4 1 3:5

3775 �
2664

1 0 0 :25

0 1 0 :50

0 0 1 :25

0 0 0 0

3775
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So p D :25v1 C :5v2 C :25v3. Use the barycentric coordinates of p to make a linear
combination of the color data. The RGB values for p are

:25

24 1

0

1

35C :50

24 1

:4

1

35C :25

24 :6

0

1

35 D 24 :9

:2

1

35 red
green
blue

One of the last steps in preparing a graphics scene for display on a computer screen
is to remove “hidden surfaces” that should not be visible on the screen. Imagine the
viewing screen as consisting of, say, a million pixels, and consider a ray or “line of
sight” from the viewer’s eye through a pixel and into the collection of objects that make
up the 3D display. The color and other information displayed in the pixel on the screen
should come from the object that the ray first intersects. See Figure 7.When the objects in
the graphics scene are approximated by wire frames with triangular patches, the hidden
surface problem can be solved using barycentric coordinates.

FIGURE 7 A ray from the eye through the screen to the
nearest object.

The mathematics for finding the ray-triangle intersections can also be used to
perform extremely realistic shading of objects. Currently, this ray-tracing method is
too slow for real-time rendering, but recent advances in hardware implementation may
change that in the future.2

EXAMPLE 6 Let

v1 D

24 1

1

�6

35; v2 D

24 8

1

�4

35; v3 D

24 5

11

�2

35; a D

24 0

0

10

35; b D

24 :7

:4

�3

35;

and x.t/ D aC tb for t � 0. Find the point where the ray x.t/ intersects the plane that
contains the triangle with vertices v1, v2, and v3. Is this point inside the triangle?

SOLUTION The plane is aff fv1; v2; v3g. A typical point in this plane may be written
as .1 � c2 � c3/v1 C c2v2 C c3v3 for some c2 and c3. (The weights in this combination
sum to 1.) The ray x.t/ intersects the plane when c2, c3, and t satisfy

.1 � c2 � c3/v1 C c2v2 C c3v3 D aC tb

2 See Joshua Fender and Jonathan Rose, “A High-Speed Ray Tracing Engine Built on a Field-Programmable
System,” in Proc. Int. Conf on Field-Programmable Technology, IEEE (2003). (A single processor can
calculate 600 million ray-triangle intersections per second.)
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Rearrange this as c2.v2 � v1/C c3.v3 � v1/C t .�b/ D a � v1. In matrix form,

�
v2 � v1 v3 � v1 �b

�24 c2

c3

t

35 D a � v1

For the specific points given here,

v2 � v1 D

24 7

0

2

35; v3 � v1 D

24 4

10

4

35; a � v1 D

24�1

�1

16

35
Row reduction of the augmented matrix above produces

24 7 4 �:7 �1

0 10 �:4 �1

2 4 3 16

35 � 24 1 0 0 :3

0 1 0 :1

0 0 1 5

35
Thus c2 D :3, c3 D :1, and t D 5. Therefore, the intersection point is

x.5/ D aC 5b D

24 0

0

10

35C 5

24 :7

:4

�3

35 D 24 3:5

2:0

�5:0

35
Also,

x.5/ D .1 � :3 � :1/v1 C :3v2 C :1v3

D :6

24 1

1

�6

35C :3

24 8

1

�4

35C :1

24 5

11

�2

35 D 24 3:5

2:0

�5:0

35
The intersection point is inside the triangle because the barycentric weights for x.5/ are
all positive.

Practice Problems

1. Describe a fast way to determine when three points are collinear.

2. The points v1 D

�
4

1

�
, v2 D

�
1

0

�
, v3 D

�
5

4

�
, and v4 D

�
1

2

�
form an affinely

dependent set. Find weights c1; : : : ; c4 that produce an affine dependence relation
c1v1 C � � � C c4v4 D 0, where c1 C � � � C c4 D 0 and not all ci are zero. [Hint: See
the end of the proof of Theorem 5.]
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8.2 Exercises
In Exercises 1–6, determine if the set of points is affinely depen-
dent. (See Practice Problem 2.) If so, construct an affine depen-
dence relation for the points.

1.
�

3

�3

�
,
�

0

6

�
,
�

2

0

�
2.

�
2

1

�
,
�

5

4

�
,
�
�3

�2

�

3.

24 1

2

�1

35, 24�2

�4

8

35, 24 2

�1

11

35, 24 0

15

�9

35
4.

24�2

5

3

35, 24 0

�3

7

35, 24 1

�2

�6

35, 24�2

7

�3

35
5.

24 1

0

�2

35, 24 0

1

1

35, 24�1

5

1

35, 24 0

5

�3

35
6.

24 1

3

1

35, 24 0

�1

�2

35, 24 2

5

2

35, 24 3

5

0

35
In Exercises 7 and 8, find the barycentric coordinates of p with
respect to the affinely independent set of points that precedes it.

7.

2664
1

�1

2

1

3775,
2664

2

1

0

1

3775,
2664

1

2

�2

0

3775, p =
2664

5

4

�2

2

3775

8.

2664
0

1

�2

1

3775,
2664

1

1

0

2

3775,
2664

1

4

�6

5

3775, p =
2664
�1

1

�4

0

3775
In Exercises 9–18mark each statement True or False (T/F). Justify
each answer.

9. (T/F) If v1; : : : ; vp are in Rn and if the set fv1 � v2; v3 �

v2; : : : ; vp � v2g is linearly dependent, then fv1; : : : ; vpg is
affinely dependent. (Read this carefully.)

10. (T/F) If fv1; : : : ; vpg is an affinely dependent set in Rn, then
the set fQv1; : : : ; Qvpg in RnC1 of homogeneous forms may be
linearly independent.

11. (T/F) If v1; : : : ; vp are in Rn and if the set of homogeneous
forms fQv1; : : : ; Qvpg in RnC1 is linearly independent, then
fv1; : : : ; vpg is affinely dependent.

12. (T/F) If v1; v2; v3, and v4 are in R3 and if the set
fv2 � v1; v3 � v1; v4 � v1g is linearly independent, then
fv1; : : : ; v4g is affinely independent.

13. (T/F) A finite set of points fv1; : : : ; vkg is affinely dependent
if there exist real numbers c1; : : : ; ck , not all zero, such that
c1 C � � � C ck D 1 and c1 v1 C � � � C ck vk D 0.

14. (T/F) Given S D fb1; : : : ; bkg in Rn, each p in aff S has a
unique representation as an affine combination of b1; : : : ; bk .

15. (T/F) If S D fv1; : : : ; vpg is an affinely independent set in
Rn and if p in Rn has a negative barycentric coordinate
determined by S , then p is not in aff S .

16. (T/F) When color information is specified at each vertex
v1; v2; v3 of a triangle in R3, then the color may be inter-
polated at a point p in aff fv1; v2; v3g using the barycentric
coordinates of p.

17. (T/F) If v1; v2; v3; a, and b are in R3 and if a ray aC tb for
t � 0 intersects the triangle with vertices v1; v2, and v3, then
the barycentric coordinates of the intersection point are all
nonnegative.

18. (T/F) If T is a triangle in R2 and if a point p is on an edge
of the triangle, then the barycentric coordinates of p (for this
triangle) are not all positive.

19. Explain why any set of five or more points in R3 must be
affinely dependent.

20. Show that a set fv1; : : : ; vpg inRn is affinely dependent when
p � nC 2.

21. Use only the definition of affine dependence to show that an
indexed set fv1; v2g in Rn is affinely dependent if and only if
v1 D v2.

22. The conditions for affine dependence are stronger than those
for linear dependence, so an affinely dependent set is auto-
matically linearly dependent. Also, a linearly independent set
cannot be affinely dependent and therefore must be affinely
independent. Construct two linearly dependent indexed sets
S1 and S2 in R2 such that S1 is affinely dependent and S2

is affinely independent. In each case, the set should contain
either one, two, or three nonzero points.

23. Let v1 D

�
�1

2

�
, v2 D

�
0

4

�
, v3 D

�
2

0

�
, and let S D

fv1; v2; v3g.

a. Show that the set S is affinely independent.

b. Find the barycentric coordinates of p1 D

�
2

3

�
,

p2 D

�
1

2

�
, p3 D

�
�2

1

�
, p4 D

�
1

�1

�
, and p5 D

�
1

1

�
,

with respect to S .

c. Let T be the triangle with vertices v1, v2, and v3. When
the sides of T are extended, the lines divide R2 into seven
regions. See Figure 8. Note the signs of the barycentric
coordinates of the points in each region. For example, p5

is inside the triangle T and all its barycentric coordinates
are positive. Point p1 has coordinates .�;C;C/. Its third
coordinate is positive because p1 is on the v3 side of the
line through v1 and v2. Its first coordinate is negative
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because p1 is opposite the v1 side of the line through v2

and v3. Point p2 is on the v2v3 edge of T . Its coordinates
are .0;C;C/. Without calculating the actual values, de-
termine the signs of the barycentric coordinates of points
p6, p7, and p8 as shown in Figure 8.

y

x

p1

v1 p2

v2

p3

p4

p5

p6

p7

p8

v3

FIGURE 8

24. Let v1 D

�
0

1

�
, v2 D

�
1

5

�
, v3 D

�
4

3

�
, p1 D

�
3

5

�
,

p2 D

�
5

1

�
, p3 D

�
2

3

�
, p4 D

�
�1

0

�
, p5 D

�
0

4

�
,

p6 D

�
1

2

�
, p7 D

�
6

4

�
, and S D fv1; v2; v3g.

a. Show that the set S is affinely independent.

b. Find the barycentric coordinates of p1, p2, and p3 with
respect to S .

c. On graph paper, sketch the triangle T with vertices v1,
v2, and v3, extend the sides as in Figure 8, and plot the
points p4, p5, p6, and p7. Without calculating the actual
values, determine the signs of the barycentric coordinates
of points p4, p5, p6, and p7.

25. Prove Theorem 6 for an affinely independent set
S D fv1; : : : ; vkg in Rn. [Hint: One method is to mimic the
proof of Theorem 8 in Section 4.4.]

26. Let T be a tetrahedron in “standard” position, with three
edges along the three positive coordinate axes in R3,
and suppose the vertices are ae1, be2, ce3, and 0, where
Œ e1 e2 e3 � D I3. Find formulas for the barycentric coor-
dinates of an arbitrary point p in R3.

27. Let fp1; p2; p3g be an affinely dependent set of points in Rn

and let f W Rn ! Rm be a linear transformation. Show that
ff .p1/; f .p2/; f .p3/g is affinely dependent in Rm.

28. Suppose that fp1; p2; p3g is an affinely independent set in Rn

and q is an arbitrary point in Rn. Show that the translated set
fp1 C q; p2 C q; p3 C qg is also affinely independent.

In Exercises 29–32, a, b, and c are noncollinear points in R2 and
p is any other point in R2. Let �abc denote the closed triangular
region determined by a; b, and c, and let �pbc be the region
determined by p, b, and c. For convenience, assume that a, b, and
c are arranged so that det Œ Qa Qb Qc � is positive, where Qa, Qb, and
Qc are the standard homogeneous forms for the points.

29. Show that the area of �abc is det Œ Qa Qb Qc �=2. [Hint: Con-
sult Sections 3.2 and 3.3, including the Exercises.]

30. Let p be a point on the line through a and b. Show that
det Œ Qa Qb Qp � D 0.

31. Let p be any point in the interior of �abc, with barycentric
coordinates .r; s; t/, so that

�
Qa Qb Qc

�24 r

s

t

35 D Qp
Use Exercise 29 and a fact about determinants (Chapter 3) to
show that

r D (area of �pbc/=(area of �abc/

s D (area of �apc/=(area of �abc/

t D (area of �abp/=(area of �abc/

32. Take q on the line segment from b to c and consider the line
through q and a, whichmay be written as p D .1 � x/qC xa
for all real x. Show that, for each x, det Œ Qp Qb Qc � D

x � det Œ Qa Qb Qc �. From this and earlier work, conclude that
the parameter x is the first barycentric coordinate of p. How-
ever, by construction, the parameter x also determines the
relative distance between p and q along the segment from
q to a. (When x D 1, p D a.) When this fact is applied to
Example 5, it shows that the colors at vertex a and the point q
are smoothly interpolated as p moves along the line between
a and q.

33. Let v1 D

24 1

3

�6

35, v2 D

24 7

3

�5

35, v3 D

24 3

9

�2

35; a D

24 0

0

9

35;

b D

24 1:4

1:5

�3:1

35, and x.t/ D aC tb for t � 0. Find the point

where the ray x.t/ intersects the plane that contains the
triangle with vertices v1, v2, and v3. Is this point inside the
triangle?

34. Repeat Exercise 33 with v1 D

24 1

2

�4

35, v2 D

24 8

2

�5

35,
v3 D

24 3

10

�2

35, a D 24 0

0

8

35; and b D

24 :9

2:0

�3:7

35.
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Solutions to Practice Problems

1. From Example 1, the problem is to determine if the points are affinely dependent.
Use the method of Example 2 and subtract one point from the other two. If one of
these two new points is a multiple of the other, the original three points lie on a line.

2. The proof of Theorem 5 essentially points out that an affine dependence relation
among points corresponds to a linear dependence relation among the homogeneous
forms of the points, using the same weights. So, row reduce:

�
Qv1 Qv2 Qv3 Qv4

�
D

24 4 1 5 1

1 0 4 2

1 1 1 1

35 � 24 1 1 1 1

4 1 5 1

1 0 4 2

35
�

24 1 0 0 �1

0 1 0 1:25

0 0 1 :75

35
View this matrix as the coefficient matrix for Ax D 0 with four variables. Then x4

is free, x1 D x4, x2 D �1:25x4, and x3 D �:75x4. One solution is x1 D x4 D 4,
x2 D �5, and x3 D �3. A linear dependence among the homogeneous forms is
4Qv1 � 5Qv2 � 3Qv3 C 4Qv4 D 0. So 4v1 � 5v2 � 3v3 C 4v4 D 0.

Another solution method is to translate the problem to the origin by subtracting
v1 from the other points, find a linear dependence relation among the translated
points, and then rearrange the terms. The amount of arithmetic involved is about
the same as in the approach shown above.

8.3 Convex Combinations
Section 8.1 considered special linear combinations of the form

c1v1 C c2v2 C � � � C ckvk ; where c1 C c2 C � � � C ck D 1

This section further restricts the weights to be nonnegative.

DEFINITION A convex combination of points v1; v2; : : : ; vk inRn is a linear combination of the
form

c1v1 C c2v2 C � � � C ckvk

such that c1 C c2 C � � � C ck D 1 and ci � 0 for all i . The set of all convex
combinations of points in a set S is called the convex hull of S , denoted by convS .

The convex hull of a single point v1 is just the set fv1g, the same as the affine hull.
In other cases, the convex hull is properly contained in the affine hull. Recall that the
affine hull of distinct points v1 and v2 is the line

y D .1 � t /v1 C tv2; with t in R

Because the weights in a convex combination are nonnegative, the points in conv fv1; v2g

may be written as
y D .1 � t/v1 C tv2; with 0 � t � 1

which is the line segment between v1 and v2, hereafter denoted by v1v2.
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If a set S is affinely independent and if p 2 affS , then p 2 convS if and only if
the barycentric coordinates of p are nonnegative. Example 1 shows a special situation in
which S is much more than just affinely independent.

EXAMPLE 1 Let

v1 D

2664
3

0

6

�3

3775; v2 D

2664
�6

3

3

0

3775; v3 D

2664
3

6

0

3

3775; p1 D

2664
0

3

3

0

3775; p2 D

2664
�10

5

11

�4

3775;

and S D fv1; v2; v3g. Note that S is an orthogonal set. Determine whether p1 is in
SpanS , affS , and convS . Then do the same for p2.

SOLUTION If p1 is at least a linear combination of the points in S , then the weights
are easily found, because S is an orthogonal set. Let W be the subspace spanned by S .
A calculation as in Section 6.3 shows that the orthogonal projection of p1 onto W is p1

itself:

projW p1 D
p1 �v1

v1 �v1

v1 C
p1 �v2

v2 �v2

v2 C
p1 �v3

v3 �v3

v3

D
18

54
v1 C

18

54
v2 C

18

54
v3

D
1

3

2664
3

0

6

�3

3775C 1

3

2664
�6

3

3

0

3775C 1

3

2664
3

6

0

3

3775 D
2664

0

3

3

0

3775 D p1

This shows that p1 is in SpanS . Also, since the coefficients sum to 1, p1 is in affS . In
fact, p1 is in convS , because the coefficients are also nonnegative.

For p2, a similar calculation shows that projW p2 ¤ p2. Since projW p2 is the closest
point in SpanS to p2, the point p2 is not in SpanS . In particular, p2 cannot be in affS

or convS .

Recall that a set S is affine if it contains all lines determined by pairs of points in S .
When attention is restricted to convex combinations, the appropriate condition involves
line segments rather than lines.

DEFINITION A set S is convex if for each p; q 2 S , the line segment pq is contained in S .

Intuitively, a set S is convex if every two points in the set can “see” each other
without the line of sight leaving the set. Figure 1 illustrates this idea.

Convex Convex Not convex

FIGURE 1

The next result is analogous to Theorem 2 for affine sets.
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THEOREM 7 A set S is convex if and only if every convex combination of points of S lies in S .
That is, S is convex if and only if S D convS .

PROOF The argument is similar to the proof of Theorem 2. The only difference is
in the induction step. When taking a convex combination of k C 1 points, consider
y D c1v1 C � � � C ckvk C ckC1vkC1, where c1 C � � � C ckC1 D 1 and 0 � ci � 1 for all
i . If ckC1 D 1, then y D vkC1, which belongs to S , and there is nothing further to prove.
If ckC1 < 1, let t D c1 C � � � C ck . Then t D 1 � ckC1 > 0 and

y D .1 � ckC1/
�c1

t
v1 C � � � C

ck

t
vk

�
C ckC1vkC1 (1)

By the induction hypothesis, the point z D .c1=t/v1 C � � � C .ck=t/vk is in S , since the
nonnegative coefficients sum to 1. Thus equation (1) displays y as a convex combination
of two points in S . By the principle of induction, every convex combination of such
points lies in S .

Theorem 9 below provides a more geometric characterization of the convex hull
of a set. It requires a preliminary result on intersections of sets. Recall from Section
4.1 (Exercise 40) that the intersection of two subspaces is itself a subspace. In fact, the
intersection of any collection of subspaces is itself a subspace. A similar result holds for
affine sets and convex sets.

THEOREM 8 Let fS˛ W ˛ 2 Ag be any collection of convex sets. Then \˛2AS˛ is convex. If
fTˇ W ˇ 2 Bg is any collection of affine sets, then \ˇ2BTˇ is affine.

PROOF If p and q are in \S˛ , then p and q are in each S˛ . Since each S˛ is convex,
the line segment between p and q is in S˛ for all ˛ and hence that segment is contained
in \S˛ . The proof of the affine case is similar.

THEOREM 9 For any set S , the convex hull of S is the intersection of all the convex sets that
contain S .

PROOF Let T denote the intersection of all the convex sets containing S . Since convS

is a convex set containing S , it follows that T � convS . On the other hand, let C be
any convex set containing S . Then C contains every convex combination of points of
C (Theorem 7), and hence also contains every convex combination of points of the
subset S . That is, convS � C . Since this is true for every convex set C containing S ,
it is also true for the intersection of them all. That is, convS � T .

Theorem 9 shows that convS is in a natural sense the “smallest” convex set con-
taining S . For example, consider a set S that lies inside some large rectangle in R2, and
imagine stretching a rubber band around the outside of S . As the rubber band contracts
around S , it outlines the boundary of the convex hull of S . Or to use another analogy,
the convex hull of S fills in all the holes in the inside of S and fills out all the dents in
the boundary of S .
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EXAMPLE 2

a. The convex hulls of sets S and T in R2 are shown below.

S conv S T conv T

b. Let S be the set consisting of the standard basis forR3; S D fe1; e2; e3g. Then convS

is a triangular surface in R3, with vertices e1, e2, and e3. See Figure 2.

EXAMPLE 3 Let S D

��
x

y

�
W x � 0 and y D x2

�
. Show that the convex hull of

S is the union of the origin and
��

x

y

�
W x > 0 and y � x2

�
. See Figure 3.

SOLUTION Every point in convS must lie on a line segment that connects two points
of S . The dashed line in Figure 3 indicates that, except for the origin, the positive y-
axis is not in convS , because the origin is the only point of S on the y-axis. It may
seem reasonable that Figure 3 does show convS , but how can you be sure that the point

e1

0

e2

e3 x2

x3

x1

FIGURE 2

.10�2; 104/, for example, is on a line segment from the origin to a point on the curve
in S?

Consider any point p in the shaded region of Figure 3, say

p D
�

a

b

�
; with a > 0 and b � a2

The line through 0 and p has the equation y D .b=a/t for t real. That line intersects S

where t satisfies .b=a/t D t2, that is, when t D b=a. Thus, p is on the line segment from

0 to
�

b=a

b2=a2

�
, which shows that Figure 3 is correct.

x

y

y 5 x2

FIGURE 3 The following theorem is basic in the study of convex sets. It was first proved by
Constantin Caratheodory in 1907. If p is in the convex hull of S , then, by definition, p
must be a convex combination of points ofS . But the definitionmakes no stipulation as to
howmany points of S are required to make the combination. Caratheodory’s remarkable
theorem says that in an n-dimensional space, the number of points of S in the convex
combination never has to be more than nC 1.

THEOREM 10 (Caratheodory) If S is a nonempty subset of Rn, then every point in convS can
be expressed as a convex combination of nC 1 or fewer points of S .

PROOF Given p in convS , one may write p D c1v1 C � � � C ckvk , where vi 2 S;

c1 C � � � C ck D 1, and ci � 0, for some k and i D 1; : : : ; k. The goal is to show that
such an expression exists for p with k � nC 1.
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If k > nC 1, then fv1; : : : ; vkg is affinely dependent, by Exercise 20 in Section 8.2.
Thus there exist scalars d1; : : : ; dk , not all zero, such that

kX
iD1

divi D 0 and
kX

iD1

di D 0

Consider the two equations

c1v1 C c2v2 C � � � C ckvk D p

and
d1v1 C d2v2 C � � � C dkvk D 0

By subtracting an appropriate multiple of the second equation from the first, we now
eliminate one of the vi terms and obtain a convex combination of fewer than k elements
of S that is equal to p.

Since not all of the di coefficients are zero, wemay assume (by reordering subscripts
if necessary) that dk > 0 and that ck=dk � ci =di for all those i for which di > 0. For
i D 1; : : : ; k, let bi D ci � .ck=dk/di . Then bk D 0 and

kX
iD1

bi D

kX
iD1

ci �
ck

dk

kX
iD1

di D 1 � 0 D 1

Furthermore, each bi � 0. Indeed, if di � 0, then bi � ci � 0. If di > 0, then bi D

di .ci =di � ck=dk/ � 0. By construction,

k�1X
iD1

bivi D

kX
iD1

bivi D

kX
iD1

�
ci �

ck

dk

di

�
vi

D

kX
iD1

civi �
ck

dk

kX
iD1

divi D

kX
iD1

civi D p

Thus p is now a convex combination of k � 1 of the points v1; : : : ; vk . This process may
be repeated until p is expressed as a convex combination of at most nC 1 of the points
of S .

The following example illustrates the calculations in the proof above.

EXAMPLE 4 Let

v1 D

�
1

0

�
; v2 D

�
2

3

�
; v3 D

�
5

4

�
; v4 D

�
3

0

�
; p D

"
10
3
5
2

#
;

and S D fv1; v2; v3; v4g. Then

1
4
v1 C

1
6
v2 C

1
2
v3 C

1
12
v4 D p (2)

Use the procedure in the proof of Caratheodory’s Theorem to express p as a convex
combination of three points of S .

SOLUTION The set S is affinely dependent. Use the technique of Section 8.2 to obtain
an affine dependence relation

�5v1 C 4v2 � 3v3 C 4v4 D 0 (3)
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Next, choose the points v2 and v4 in (3), whose coefficients are positive. For each
point, compute the ratio of the coefficients in equations (2) and (3). The ratio for v2 is
1
6
� 4 D 1

24
, and that for v4 is 1

12
� 4 D 1

48
. The ratio for v4 is smaller, so subtract 1

48

times equation (3) from equation (2) to eliminate v4:�
1
4
C

5
48

�
v1 C

�
1
6
�

4
48

�
v2 C

�
1
2
C

3
48

�
v3 C

�
1
12
�

4
48

�
v4 D p

17
48
v1 C

4
48
v2 C

27
48
v3 D p

This result cannot, in general, be improved by decreasing the required number of
points. Indeed, given any three non-collinear points in R2, the centroid of the triangle
formed by them is in the convex hull of all three, but is not in the convex hull of any two.

Practice Problems

1. Let v1 D

24 6

2

2

35, v2 D

24 7

1

5

35, v3 D

24�2

4

�1

35, p1 D

24 1

3

1

35, and p2 D

24 3

2

1

35, and let

S D fv1; v2; v3g. Determine whether p1 and p2 are in convS .

2. Let S be the set of points on the curve y D 1=x for x > 0. Explain geometrically
why convS consists of all points on and above the curve S .

8.3 Exercises

1. In R2, let S D

��
0

y

�
W 0 � y < 1

�S��
2

0

��
. Describe (or

sketch) the convex hull of S .

2. Describe the convex hull of the set S of points
�

x

y

�
in R2

that satisfy the given conditions. Justify your answers. (Show
that an arbitrary point p in S belongs to convS .)

a. y D 1=x and x � 1=2

b. y D sin x

c. y D x1=2 and x � 0

3. Consider the points in Exercise 5 in Section 8.1. Which of p1,
p2, and p3 are in convS?

4. Consider the points in Exercise 6 in Section 8.1. Which of p1,
p2, and p3 are in convS?

5. Let

v1 D

24�1

�3

4

35; v2 D

24 0

�3

1

35; v3 D

24 1

�1

4

35; v4 D

24 1

1

�2

35;

p1 D

24 1

�1

2

35; p2 D

24 0

�2

2

35;

and S D fv1; v2; v3; v4g. Determine whether p1 and p2 are in
convS .

6. Let v1 D

2664
2

0

�1

2

3775, v2 D

2664
0

�2

2

1

3775, v3 D

2664
�2

1

0

2

3775, p1 D

26664
�1

2

�
3
2

5
2

37775,

p2 D

26664
�

1
2

0
1
4

7
4

37775, p3 D

26664
6

�4

1

�1

37775, and p4 D

2664
�1

�2

0

4

3775, and let S be

the orthogonal set fv1; v2; v3g. Determine whether each pi is
in SpanS , affS , or convS .
a. p1 b. p2 c. p3 d. p4

Exercises 7–10 use the terminology from Section 8.2.

7. a. Let T D

��
�1

0

�
;

�
2

3

�
;

�
4

1

��
, and let

p1 D

�
2

1

�
; p2 D

�
3

2

�
; p3 D

�
2

0

�
; and p4 D

�
0

2

�
:

Find the barycentric coordinates of p1, p2, p3, and p4 with
respect to T .

b. Use your answers in part (a) to determine whether each of
p1; : : : ; p4 in part (a) is inside, outside, or on the edge of
convT , a triangular region.
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8. Repeat Exercise 7 for T D

��
2

0

�
;

�
0

5

�
;

�
�1

1

��
and

p1 D

�
2

1

�
; p2 D

�
1

1

�
; p3 D

"
1
1
3

#
; and p4 D

�
1

0

�
:

9. Let S D fv1; v2; v3; v4g be an affinely independent set. Con-
sider the points p1; : : : ; p5 whose barycentric coordinates
with respect to S are given by .2; 0; 0;�1/,

�
0; 1

2
; 1

4
; 1

4

�
,�

1
2
; 0; 3

2
;�1

�
,
�

1
3
; 1

4
; 1

4
; 1

6

�
, and

�
1
3
; 0; 2

3
; 0
�
, respectively. De-

termine whether each of p1; : : : ; p5 is inside, outside, or on
the surface of convS , a tetrahedron. Are any of these points
on an edge of convS?

10. Repeat Exercise 9 for the points q1; : : : ; q5 whose barycen-
tric coordinates with respect to S are given by

�
1
8
; 1

4
; 1

8
; 1

2

�
,�

3
4
;� 1

4
; 0; 1

2

�
,
�
0; 3

4
; 1

4
; 0
�
, .0;�2; 0; 3/, and

�
1
3
; 1

3
; 1

3
; 0
�
, re-

spectively.

In Exercises 11–16, mark each statement True or False (T/F).
Justify each answer.

11. (T/F) If y D c1 v1 C c2 v2 C c3 v3 and c1 C c2 C c3 D 1,
then y is a convex combination of v1; v2, and v3.

12. (T/F)A set is convex if x, y 2 S implies that the line segment
between x and y is contained in S .

13. (T/F) If S is a nonempty set, then conv S contains some
points that are not in S .

14. (T/F) If S and T are convex sets, then S \ T is also convex.

15. (T/F) If S is a nonempty subset of R5 and y 2 conv S , then
there exist distinct points v1; : : : ; v6 in S such that y is a
convex combination of v1; : : : ; v6.

16. (T/F) If S and T are convex sets, then S [ T is also convex.

17. Let S be a convex subset of Rn and suppose that
f W Rn ! Rm is a linear transformation. Prove that the set
f .S/ D ff .x/ W x 2 Sg is a convex subset of Rm.

18. Let f W Rn ! Rm be a linear transformation and let
T be a convex subset of Rm. Prove that the set
S D fx 2 Rn W f .x/ 2 T g is a convex subset of Rn.

19. Let v1 D

�
1

0

�
, v2 D

�
1

2

�
, v3 D

�
4

2

�
, v4 D

�
4

0

�
, and

p D
�

2

1

�
. Confirm that

p D 1
3
v1 C

1
3
v2 C

1
6
v3 C

1
6
v4 and v1 � v2 C v3 � v4 D 0:

Use the procedure in the proof of Caratheodory’s Theorem to
express p as a convex combination of three of the vi ’s. Do
this in two ways.

20. Repeat Exercise 19 for points v1 D

�
�1

0

�
, v2 D

�
0

3

�
,

v3 D

�
3

1

�
, v4 D

�
1

�1

�
, and p D

�
1

2

�
, given that

p D 1
121

v1 C
72
121

v2 C
37
121

v3 C
1
11
v4

and

10v1 � 6v2 C 7v3 � 11v4 D 0:

In Exercises 21–24, prove the given statement about subsets A

and B of Rn. A proof for an exercise may use results of earlier
exercises.

21. If A � B and B is convex, then convA � B .

22. If A � B , then convA � convB .

23. a. Œ.convA/ [ .convB/� � conv .A [ B/

b. Find an example inR2 to show that equality need not hold
in part (a).

24. a. conv .A \ B/ � Œ.convA/ \ .convB/�

b. Find an example inR2 to show that equality need not hold
in part (a).

25. Let p0, p1, and p2 be points in Rn, and define f0.t/ D

.1 � t/p0 C tp1, f1.t/ D .1 � t/p1 C tp2, and g.t/ D

(1 � t )f0.t/C t f1.t/ for 0 � t � 1. For the points as shown
below, draw a picture that shows f0

�
1
2

�
, f1

�
1
2

�
, and g

�
1
2

�
.

p1 p2

p0

26. Repeat Exercise 25 for f0

�
3
4

�
, f1

�
3
4

�
, and g

�
3
4

�
.

27. Let g.t/ be defined as in Exercise 25. Its graph is called
a quadratic Bézier curve, and it is used in some computer
graphics designs. The points p0, p1, and p2 are called the
control points for the curve. Compute a formula for g.t/

that involves only p0, p1, and p2. Then show that g.t/ is in
conv fp0; p1; p2g for 0 � t � 1.

28. Given control points p0, p1, p2, and p3 in Rn, let g1.t/

for 0 � t � 1 be the quadratic Bézier curve from Exer-
cise 27 determined by p0, p1, and p2, and let g2.t/ be
defined similarly for p1, p2, and p3. For 0 � t � 1, define
h.t/ D .1 � t/g1.t/C tg2.t/. Show that the graph of h.t/

lies in the convex hull of the four control points. This curve
is called a cubic Bézier curve, and its definition here is one
step in an algorithm for constructing Bézier curves (discussed
later in Section 8.6). A Bézier curve of degree k is determined
by k C 1 control points, and its graph lies in the convex hull
of these control points.
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Solutions to Practice Problems

1. The points v1, v2, and v3 are not orthogonal, so compute

v2 � v1 D

24 1

�1

3

35; v3 � v1 D

24�8

2

�3

35; p1 � v1 D

24�5

1

�1

35; and p2 � v1 D

24�3

0

�1

35
Augment the matrix Œ v2 � v1 v3 � v1 � with both p1 � v1 and p2 � v1, and row
reduce: 24 1 �8 �5 �3

�1 2 1 0

3 �3 �1 �1

35 �
2664 1 0 1

3
1

0 1 2
3

1
2

0 0 0 � 5
2

3775
The third column shows that p1 � v1 D

1
3
.v2 � v1/C 2

3
.v3 � v1/, which leads to

p1 D 0v1 C
1
3
v2 C

2
3
v3. Thus p1 is in convS . In fact, p1 is in conv fv2; v3g.

The last column of the matrix shows that p2 � v1 is not a linear combination of
v2 � v1 and v3 � v1. Thus p2 is not an affine combination of v1, v2, and v3, so p2

cannot possibly be in convS .
An alternative method of solution is to row reduce the augmented matrix of

homogeneous forms:

�
Qv1 Qv2 Qv3 Qp1 Qp2

�
�

266664
1 0 0 0 0

0 1 0 1
3

0

0 0 1 2
3

0

0 0 0 0 1

377775
2. If p is a point above S , then the line through p with slope �1 will intersect S at two

points before it reaches the positive x- and y-axes.

8.4 Hyperplanes
Hyperplanes play a special role in the geometry ofRn because they divide the space into
two disjoint pieces, just as a plane separates R3 into two parts and a line cuts through
R2. The key to working with hyperplanes is to use simple implicit descriptions, rather
than the explicit or parametric representations of lines and planes used in the earlier work
with affine sets.1

An implicit equation of a line inR2 has the form ax C by D d . An implicit equation
of a plane in R3 has the form ax C by C c´ D d . Both equations describe the line or
plane as the set of all points at which a linear expression (also called a linear functional)
has a fixed value, d .

DEFINITION A linear functional on Rn is a linear transformation f from Rn into R. For each
scalar d in R, the symbol Œf :d� denotes the set of all x in Rn at which the value of
f is d . That is,

1 Parametric representations were introduced in Section 1.5.
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Œf :d� is the set fx 2 Rn
W f .x/ D dg

The zero functional is the transformation such that f .x/ D 0 for all x in Rn. All
other linear functionals on Rn are said to be nonzero.

EXAMPLE 1 In R2, the line x � 4y D 13 is a hyperplane in R2, and it is the set of
points at which the linear functional f .x; y/ D x � 4y has the value 13. That is, the line
is the set Œf :13�.

EXAMPLE 2 In R3, the plane 5x � 2y C 3´ D 21 is a hyperplane, the set of points
at which the linear functional g.x; y; ´/ D 5x � 2y C 3´ has the value 21. This hyper-
plane is the set Œg:21�.

If f is a linear functional on Rn, then the standard matrix of this linear transforma-
tion f is a 1 � n matrix A, say A D Œ a1 a2 � � � an �. So

Œf :0� is the same as fx 2 Rn
W Ax D 0g D NulA (1)

If f is a nonzero functional, then rankA D 1, and dim NulA D n � 1, by the Rank
Theorem.2 Thus, the subspace Œf W 0� has dimension n � 1 and so is a hyperplane. Also,
if d is any number in R, then

Œf :d� is the same as fx 2 Rn
W Ax D dg (2)

Recall from Theorem 6 in Section 1.5 that the set of solutions ofAx D b is obtained
by translating the solution set of Ax D 0, using any particular solution p of Ax D b.
When A is the standard matrix of the transformation f , this theorem says that

Œf :d� D Œf W 0�C p for any p in Œf W d� (3)

Thus the sets Œf W d� are hyperplanes parallel to Œf W 0�. See Figure 1.

p

[ f : d ]

[ f : 0]

FIGURE 1 Parallel hyperplanes,
with f .p/ D d .

When A is a 1 � n matrix, the equation Ax D d may be written with an inner
product n�x, using n in Rn with the same entries as A. Thus, from (2),

Œf :d� is the same as fx 2 Rn
W n�x D dg (4)

2 See Theorem 14 in Section 2.9 or Theorem 14 in Section 4.5.
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Then Œf :0� D fx 2 Rn W n�x D 0g, which shows that Œf :0� is the orthogonal comple-
ment of the subspace spanned by n. In the terminology of calculus and geometry for R3,
n is called a normal vector to Œf :0�. (A “normal” vector in this sense need not have unit
length.) Also, n is said to be normal to each parallel hyperplane Œf :d�, even though
n�x is not zero when d ¤ 0.

Another name for Œf :d� is a level set of f , and n is sometimes called the gradient
of f when f .x/ D n�x for each x.

EXAMPLE 3 Let n D
�

3

4

�
and v D

�
1

�6

�
, and let H D fx W n�x D 12g, so

H D Œf :12�, where f .x; y/ D 3x C 4y. Thus H is the line 3x C 4y D 12. Find
an implicit description of the parallel hyperplane (line) H1 D H C v.

SOLUTION First, find a point p in H1. To do this, find a point in H and add v to

it. For instance,
�

0

3

�
is in H , so p D

�
1

�6

�
C

�
0

3

�
D

�
1

�3

�
is in H1. Now, compute

n�p D �9. This shows thatH1 D Œf : � 9�. See Figure 2, which also shows the subspace
H0 D fx W n�x D 0g.

n

y

4

4

24

24
x

v

v

v

H 5 [ f : 12]

H0 5 [ f : 0]

H1 5 [ f : 29]

FIGURE 2

The next three examples show connections between implicit and explicit descrip-
tions of hyperplanes. Example 4 begins with an implicit form.

EXAMPLE 4 InR2, give an explicit description of the line x � 4y D 13 in paramet-
ric vector form.

SOLUTION This amounts to solving a nonhomogeneous equationAx D b, whereA D

Œ 1 �4 � and b is the number 13 in R. Write x D 13C 4y, where y is a free variable.
In parametric form, the solution is

x D
�

x

y

�
D

�
13C 4y

y

�
D

�
13

0

�
C y

�
4

1

�
D pC yq; y 2 R

Converting an explicit description of a line into implicit form is more involved. The
basic idea is to construct Œf :0� and then find d for Œf :d�.
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EXAMPLE 5 Let v1 D

�
1

2

�
and v2 D

�
6

0

�
, and let L1 be the line through v1 and

v2. Find a linear functional f and a constant d such that L1 D Œf :d�.

SOLUTION The line L1 is parallel to the translated line L0 through v2 � v1 and the
origin. The defining equation for L0 has the form

Œ a b �

�
x

y

�
D 0 or n�x D 0; where n D

�
a

b

�
(5)

Since n is orthogonal to the subspace L0, which contains v2 � v1, compute

v2 � v1 D

�
6

0

�
�

�
1

2

�
D

�
5

�2

�
and solve �

a b
�� 5

�2

�
D 0

By inspection, a solution is Œ a b � D Œ 2 5 �. Let f .x; y/ D 2x C 5y. From (5),
L0 D Œf :0�, and L1 D Œf :d� for some d . Since v1 is on line L1, d D f .v1/ D

2.1/C 5.2/ D 12. Thus, the equation for L1 is 2x C 5y D 12. As a check, note that
f .v2/ D f .6; 0/ D 2.6/C 5.0/ D 12, so v2 is on L1, too.

EXAMPLE 6 Let v1 D

24 1

1

1

35, v2 D

24 2

�1

4

35, and v3 D

24 3

1

2

35. Find an implicit de-
scription Œf :d� of the plane H1 that passes through v1, v2, and v3.

SOLUTION H1 is parallel to a plane H0 through the origin that contains the translated
points

v2 � v1 D

24 1

�2

3

35 and v3 � v1 D

24 2

0

1

35
Since these two points are linearly independent, H0 D Span fv2 � v1; v3 � v1g. Let

n D

24 a

b

c

35 be the normal to H0. Then v2 � v1 and v3 � v1 are each orthogonal to n.

That is, .v2 � v1/�n D 0 and .v3 � v1/�n D 0. These two equations form a system
whose augmented matrix can be row reduced:

�
1 �2 3

�24 a

b

c

35 D 0;
�

2 0 1
�24 a

b

c

35 D 0;

�
1 �2 3 0

2 0 1 0

�
Row operations yield a D .� 2

4
/c, b D . 5

4
/c, with c free. Set c D 4, for instance. Then

n D

24�2

5

4

35 and H0 D Œf :0�, where f .x/ D �2x1 C 5x2 C 4x3.

The parallel hyperplane H1 is Œf :d�. To find d , use the fact that v1 is in H1,
and compute d D f .v1/ D f .1; 1; 1/ D �2.1/C 5.1/C 4.1/ D 7. As a check, com-
pute f .v2/ D f .2;�1; 4/ D �2.2/C 5.�1/C 4.4/ D 16 � 9 D 7. Observe f .v3/ D

7 also.
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The procedure in Example 6 generalizes to higher dimensions. However, for the
special case of R3, one can also use the cross-product formula to compute n, using a
symbolic determinant as a mnemonic device:

n D .v2 � v1/ � .v3 � v1/

D

ˇ̌̌̌
ˇ̌ 1 2 i
�2 0 j

3 1 k

ˇ̌̌̌
ˇ̌ D ˇ̌̌̌�2 0

3 1

ˇ̌̌̌
i �

ˇ̌̌̌
1 2

3 1

ˇ̌̌̌
jC

ˇ̌̌̌
1 2

�2 0

ˇ̌̌̌
k

D �2iC 5jC 4k D

24�2

5

4

35
If only the formula for f is needed, the cross-product calculation may be written as

an ordinary determinant:

f .x1; x2; x3/ D

ˇ̌̌̌
ˇ̌ 1 2 x1

�2 0 x2

3 1 x3

ˇ̌̌̌
ˇ̌ D ˇ̌̌̌�2 0

3 1

ˇ̌̌̌
x1 �

ˇ̌̌̌
1 2

3 1

ˇ̌̌̌
x2 C

ˇ̌̌̌
1 2

�2 0

ˇ̌̌̌
x3

D �2x1 C 5x2 C 4x3

So far, every hyperplane examined has been described as Œf :d� for some linear
functional f and some d in R, or equivalently as fx 2 Rn W n�x D dg for some n in Rn.
The following theorem shows that every hyperplane has these equivalent descriptions.

THEOREM 11 A subset H of Rn is a hyperplane if and only if H D Œf :d� for some nonzero
linear functional f and some scalar d in R. Thus, if H is a hyperplane, there exist
a nonzero vector n and a real number d such that H D fx W n�x D dg.

PROOF Suppose that H is a hyperplane, take p 2 H , and let H0 D H � p. Then H0

is an .n � 1/-dimensional subspace. Next, take any point y that is not in H0. By the
Orthogonal Decomposition Theorem in Section 6.3,

y D y1 C n

where y1 is a vector in H0 and n is orthogonal to every vector in H0. The function f

defined by
f .x/ D n�x for x 2 Rn

is a linear functional, by properties of the inner product. Now, Œf :0� is a hyperplane that
contains H0, by construction of n. It follows that

H0 D Œf :0�

[Argument: H0 contains a basis S of n � 1 vectors, and since S is in the .n � 1/-
dimensional subspace Œf :0�, S must also be a basis for Œf :0�, by the Basis Theorem.]
Finally, let d D f .p/ D n�p. Then, as in (3) shown earlier,

Œf :d� D Œf :0�C p D H0 C p D H

The converse statement that Œf :d� is a hyperplane follows from (1) and (3) above.
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Many important applications of hyperplanes depend on the possibility of “separat-
ing” two sets by a hyperplane. Intuitively, this means that one of the sets is on one side
of the hyperplane and the other set is on the other side. The following terminology and
notation will help to make this idea more precise.

TOPOLOGY IN Rn: TERMS AND FACTS

For any point p in Rn and any real ı > 0, the open ball B.p; ı/ with center p and
radius ı is given by

B.p; ı/ D fx W kx � pk < ıg

Given a set S in Rn, a point p is an interior point of S if there exists a ı > 0

such that B.p; ı/ � S . If every open ball centered at p intersects both S and the
complement of S , then p is called a boundary point of S . A set is open if it
contains none of its boundary points. (This is equivalent to saying that all of its
points are interior points.) A set is closed if it contains all of its boundary points.
(If S contains some but not all of its boundary points, then S is neither open nor
closed.) A set S is bounded if there exists a ı > 0 such that S � B.0; ı/. A set
in Rn is compact if it is closed and bounded.

Theorem: The convex hull of an open set is open, and the convex hull of a
compact set is compact. (The convex hull of a closed set need not be closed. See
Exercise 33.)

EXAMPLE 7 Let

S D conv
��
�2

2

�
;

�
�2

�2

�
;

�
2

�2

�
;

�
2

2

��
; p1 D

�
�1

0

�
; and p2 D

�
2

1

�
;

as shown in Figure 3. Then p1 is an interior point since B
�
p1; 3

4

�
� S . The point p2 is a

boundary point since every open ball centered at p2 intersects bothS and the complement
of S . The set S is closed since it contains all its boundary points. The set S is bounded
since S � B.0; 3/. Thus S is also compact.

Notation: If f is a linear functional, then f .A/ � d means f .x/ � d for each x 2 A.

x

S

B(0, 3)

y

p1

p2

FIGURE 3

The set S is closed and bounded.
Corresponding notations will be used when the inequalities are reversed or when they
are strict.

DEFINITION The hyperplane H D Œf :d� separates two sets A and B if one of the following
holds:

(i) f .A/ � d and f .B/ � d , or

(ii) f .A/ � d and f .B/ � d .

If in the conditions above all the weak inequalities are replaced by strict inequalities,
then H is said to strictly separate A and B .

Notice that strict separation requires that the two sets be disjoint, while mere sep-
aration does not. Indeed, if two circles in the plane are externally tangent, then their
common tangent line separates them (but does not separate them strictly).
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Although it is necessary that two sets be disjoint in order to strictly separate them,
this condition is not sufficient, even for closed convex sets. For example, let

A D

��
x

y

�
W x �

1

2
and

1

x
� y � 2

�
and B D

��
x

y

�
W x � 0 and y D 0

�
Then A and B are disjoint closed convex sets, but they cannot be strictly separated
by a hyperplane (line in R2). See Figure 4. Thus the problem of separating (or strictly
separating) two sets by a hyperplane is more complex than it might at first appear.

2

2 4

y

x

A

B

FIGURE 4 Disjoint closed convex sets.

There are many interesting conditions on the sets A and B that imply the existence
of a separating hyperplane, but the following two theorems are sufficient for this section.
The proof of the first theorem requires quite a bit of preliminary material,3 but the second
theorem follows easily from the first.

THEOREM 12 Suppose A and B are nonempty convex sets such that A is compact and B is
closed. Then there exists a hyperplane H that strictly separates A and B if and
only if A \ B D ¿.

THEOREM 13 Suppose A and B are nonempty compact sets. Then there exists a hyperplane that
strictly separates A and B if and only if .convA/ \ .convB/ D ¿.

PROOF Suppose that .convA/ \ .convB/ D ¿. Since the convex hull of a compact
set is compact, Theorem 12 ensures that there is a hyperplane H that strictly separates
convA and convB . Clearly, H also strictly separates the smaller sets A and B .

Conversely, suppose the hyperplaneH D Œf :d� strictly separatesA andB .Without
loss of generality, assume that f .A/ < d and f .B/ > d . Let x D c1x1 C � � � C ckxk be
any convex combination of elements of A. Then

f .x/ D c1f .x1/C � � � C ckf .xk/ < c1d C � � � C ckd D d

since c1 C � � � C ck D 1. Thus f .convA/ < d . Likewise, f .convB/ > d , so H D

Œf :d� strictly separates convA and convB . By Theorem 12, convA and convB must
be disjoint.

3A proof of Theorem 12 is given in Steven R. Lay, Convex Sets and Their Applications (New York: John
Wiley & Sons, 1982; Mineola, NY: Dover Publications, 2007), pp. 34–39.
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EXAMPLE 8 Let

a1 D

24 2

1

1

35; a2 D

24�3

2

1

35; a3 D

24 3

4

0

35; b1 D

24 1

0

2

35; and b2 D

24 2

�1

5

35;

and letA D fa1; a2; a3g andB D fb1; b2g. Show that the hyperplaneH D Œf :5�, where
f .x1; x2; x3/ D 2x1 � 3x2 C x3, does not separate A and B . Is there a hyperplane par-
allel to H that does separate A and B? Do the convex hulls of A and B intersect?

SOLUTION Evaluate the linear functional f at each of the points in A and B:

f .a1/ D 2; f .a2/ D �11; f .a3/ D �6; f .b1/ D 4; and f .b2/ D 12

Since f .b1/ D 4 is less than 5 and f .b2/ D 12 is greater than 5, points of B lie on both
sides of H D Œf :5� and so H does not separate A and B .

Since f .A/ < 3 and f .B/ > 3, the parallel hyperplane Œf :3� strictly separates A

and B . By Theorem 13, .convA/ \ .convB/ D ¿.
Caution: If there were no hyperplane parallel to H that strictly separated A and B ,

this would not necessarily imply that their convex hulls intersect. It might be that some
other hyperplane not parallel to H would strictly separate them.

Practice Problem

Let p1 D

24 1

0

2

35, p2 D

24�1

2

1

35, n1 D

24 1

1

�2

35, and n2 D

24�2

1

3

35; let H1 be the hyper-

plane (plane) in R3 passing through the point p1 and having normal vector n1; and let
H2 be the hyperplane passing through the point p2 and having normal vector n2. Give
an explicit description of H1 \H2 by a formula that shows how to generate all points
in H1 \H2.

8.4 Exercises

1. Let L be the line in R2 through the points
�
�1

4

�
and

�
3

1

�
.

Find a linear functional f and a real number d such that
L D Œf :d�.

2. Let L be the line in R2 through the points
�

1

4

�
and

�
�2

�1

�
.

Find a linear functional f and a real number d such that
L D Œf :d�.

In Exercises 3 and 4, determine whether each set is open or closed
or neither open nor closed.

3. a. f.x; y/ W y > 0g

b. f.x; y/ W x D 2 and 1 � y � 3g

c. f.x; y/ W x D 2 and 1 < y < 3g

d. f.x; y/ W xy D 1 and x > 0g

e. f.x; y/ W xy � 1 and x > 0g

4. a. f.x; y/ W x2 C y2 D 1g

b. f.x; y/ W x2 C y2 > 1g

c. f.x; y/ W x2 C y2 � 1 and y > 0g

d. f.x; y/ W y � x2g

e. f.x; y/ W y < x2g

In Exercises 5 and 6, determine whether or not each set is compact
and whether or not it is convex.

5. Use the sets from Exercise 3.

6. Use the sets from Exercise 4.

In Exercises 7–10, let H be the hyperplane through the listed
points. (a) Find a vector n that is normal to the hyperplane. (b) Find
a linear functional f and a real number d such that H D Œf :d�.

7.

24 1

1

3

35, 24 2

4

1

35, 24�1

�2

5

35 8.

24 1

�2

1

35, 24 4

�2

3

35, 24 7

�4

4

35
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9.

2664
1

0

1

0

3775,
2664

2

3

1

0

3775,
2664

1

2

2

0

3775,
2664

1

1

1

1

3775

10.

2664
1

2

0

0

3775,
2664

2

2

�1

�3

3775,
2664

1

3

2

7

3775,
2664

3

2

�1

�1

3775

11. Let p D

2664
1

�3

1

2

3775, n D
2664

2

1

5

�1

3775, v1 D

2664
0

1

1

1

3775, v2 D

2664
�2

0

1

3

3775,
and v3 D

2664
1

4

0

4

3775, and let H be the hyperplane in R4 with

normal n and passing through p. Which of the points v1, v2,
and v3 are on the same side of H as the origin, and which are
not?

12. Let a1 D

24 2

�1

5

35, a2 D

24 3

1

3

35, a3 D

24�1

6

0

35, b1 D

24 0

5

�1

35,
b2 D

24 1

�3

�2

35, b3 D

24 2

2

1

35, and n D

24 3

1

�2

35, and let

A D fa1; a2; a3g and B D fb1; b2; b3g. Find a hyperplane H

with normal n that separates A and B . Is there a hyperplane
parallel to H that strictly separates A and B?

13. Let p1 D

2664
2

�3

1

2

3775, p2 D

2664
1

2

�1

3

3775, n1 D

2664
1

2

4

2

3775, and

n2 D

2664
2

3

1

5

3775; let H1 be the hyperplane in R4 through p1 with

normal n1; and let H2 be the hyperplane through p2 with
normal n2. Give an explicit description of H1 \H2. [Hint:
Find a point p in H1 \H2 and two linearly independent
vectors v1 and v2 that span a subspace parallel to the 2-
dimensional flat H1 \H2.]

14. Let F1 and F2 be 4-dimensional flats in R6, and suppose that
F1 \ F2 ¤ ¿. What are the possible dimensions of F1 \ F2?

In Exercises 15–20, write a formula for a linear functional f and
specify a number d , so that Œf :d� is the hyperplane H described
in the exercise.

15. LetA be the 1 � 4matrix
�
1 �3 4 �2

�
and let b D 5. Let

H D fx in R4 W Ax D bg.

16. Let A be the 1 � 5 matrix
�
2 5 �3 0 6

�
. Note that

NulA is in R5. Let H D NulA.

17. Let H be the plane in R3 spanned by the rows of B D�
1 3 5

0 2 4

�
. That is, H D RowB . [Hint: How is H

related to NulB? See Section 6.1.]

18. Let H be the plane in R3 spanned by the rows of B D�
1 4 �5

0 �2 8

�
. That is, H D RowB .

19. Let H be the column space of the matrix B D

24 1 0

4 2

�7 �6

35.
That is, H D ColB . [Hint: How is ColB related to NulBT ?
See Section 6.1.]

20. Let H be the column space of the matrix B D

24 1 0

5 2

�4 �4

35.
That is, H D ColB .

In Exercises 21–28, mark each statement True or False (T/F).
Justify each answer.

21. (T/F) A linear transformation from R to Rn is called a linear
functional.

22. (T/F) If d is a real number and f is a nonzero linear func-
tional defined on Rn, then Œf W d� is a hyperplane in Rn.

23. (T/F) If f is a linear functional defined on Rn, then there
exists a real number k such that f .x/ D kx for all x in Rn.

24. (T/F) Given any vector n and any real number d , the set
fx W n � x D dg is a hyperplane.

25. (T/F) If a hyperplane strictly separates sets A and B , then
A \ B D ;.

26. (T/F) If A and B are nonempty disjoint sets such that A is
compact and B is closed, then there exists a hyperplane that
strictly separates A and B .

27. (T/F) IfA andB are closed convex sets andA \ B D ;, then
there exists a hyperplane that strictly separates A and B .

28. (T/F) If there exists a hyperplane H such that H does
not strictly separate two sets A and B , then .convA/ \

.convB/ ¤ ;.

29. Let v1 D

�
1

1

�
, v2 D

�
3

0

�
, v3 D

�
5

3

�
, and p D

�
4

1

�
. Find

a hyperplane Œf :d� (in this case, a line) that strictly separates
p from conv fv1; v2; v3g.

30. Repeat Exercise 29 for v1 D

�
1

2

�
, v2 D

�
5

1

�
, v3 D

�
4

4

�
,

and p D
�

2

3

�
.

31. Let p D
�

4

1

�
, let A D fx W jjxjj � 3g, and let B D

fx W jjx � pjj � 1g. Find a hyperplane Œf :d� that strictly
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separates A and B . [Hint: Note that the point v D :75p is
neither in A nor in B].

32. Let p D
�

6

1

�
, q D

�
2

3

�
, A D fx W jjx � pjj � 1g, and B D

fx W jjx � qjj � 3g. Find a hyperplane Œf :d� that strictly sep-
arates A and B .

33. Give an example of a closed subset S of R2 such that convS

is not closed.

34. Give an example of a compact set A and a closed set B in R2

such that .convA/ \ .convB/ D ¿ but A and B cannot be
strictly separated by a hyperplane.

35. Prove that the open ball B.p; ı/ D fx W kx � pk < ıg is a
convex set. [Hint: Use the Triangle Inequality.]

36. Prove that the convex hull of a bounded set is bounded.

Solution to Practice Problem

First, compute n1 � p1 D �3 and n2 � p2 D 7. The hyperplane H1 is the solution set
of the equation x1 C x2 � 2x3 D �3, and H2 is the solution set of the equation
�2x1 C x2 C 3x3 D 7. Then

H1 \H2 D fx W x1 C x2 � 2x3 D �3 and �2x1 C x2 C 3x3 D 7g

This is an implicit description of H1 \H2. To find an explicit description, solve the
system of equations by row reduction:�

1 1 �2 �3

�2 1 3 7

�
�

"
1 0 � 5

3
�

10
3

0 1 � 1
3

1
3

#

Thus x1 D �
10
3
C

5
3
x3, x2 D

1
3
C

1
3
x3, x3 D x3. Let p D

2664�
10
3

1
3

0

3775 and v D

2664
5
3

1
3

1

3775. The
general solution can be written as x D pC x3v. Thus H1 \H2 is the line through p in
the direction of v. Note that v is orthogonal to both n1 and n2.

8.5 Polytopes
This section studies geometric properties of an important class of compact convex sets
called polytopes. These sets arise in all sorts of applications, including game theory,
linear programming, and more general optimization problems, such as the design of
feedback controls for engineering systems.

A polytope in Rn is the convex hull of a finite set of points. In R2, a polytope
is simply a polygon. In R3, a polytope is called a polyhedron. Important features of
a polyhedron are its faces, edges, and vertices. For example, the cube has 6 square
faces, 12 edges, and 8 vertices. The following definitions provide terminology for higher
dimensions as well as R2 and R3. Recall that the dimension of a set in Rn is the dimen-
sion of the smallest flat that contains it. Also, note that a polytope is a special type of
compact convex set, because a finite set in Rn is compact and the convex hull of this set
is compact, by the theorem in the topology terms and facts box in Section 8.4.

DEFINITION Let S be a compact convex subset of Rn. A nonempty subset F of S is called a
(proper) face of S if F ¤ S and there exists a hyperplane H D Œf :d� such that
F D S \H and either f .S/ � d or f .S/ � d . The hyperplane H is called a
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supporting hyperplane to S . If the dimension of F is k, then F is called a k-face
of S .

IfP is a polytope of dimension k, thenP is called a k-polytope. A 0-face ofP

is called a vertex (plural: vertices), a 1-face is an edge, and a .k � 1/-dimensional
face is a facet of S .

EXAMPLE 1 Suppose S is a cube in R3. When a plane H is translated through
R3 until it just touches (supports) the cube but does not cut through the interior of the
cube, there are three possibilities for H \ S , depending on the orientation of H . (See
Figure 1.)

H \ S may be a 2-dimensional square face (facet) of the cube.

H \ S may be a 1-dimensional edge of the cube.

H \ S may be a 0-dimensional vertex of the cube.

H ù S is 2-dimensional. H ù S is 1-dimensional. H ù S is 0-dimensional.

S S S

H

H
H

FIGURE 1

Most applications of polytopes involve the vertices in some way, because they have
a special property that is identified in the following definition.

DEFINITION Let S be a convex set. A point p in S is called an extreme point of S if p is not
in the interior of any line segment that lies in S . More precisely, if x; y 2 S and
p 2 xy, then p D x or p D y. The set of all extreme points of S is called the profile
of S .

A vertex of any compact convex set S is automatically an extreme point of S .
This fact is proved during the proof of Theorem 14. In working with a polytope, say
P D conv fv1; : : : ; vkg for v1; : : : ; vk in Rn, it is usually helpful to know that v1; : : : ; vk

are the extreme points of P . However, such a list might contain extraneous points. For
example, some vector vi could be the midpoint of an edge of the polytope. Of course,
in this case vi is not really needed to generate the convex hull. The following definition
describes the property of the vertices that will make them all extreme points.

DEFINITION The set fv1; : : : ; vkg is a minimal representation of the polytope P if P D

conv fv1; : : : ; vkg and for each i D 1; : : : ; k; vi 62 conv fvj W j ¤ ig.
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Every polytope has a minimal representation. For if P D conv fv1; : : : ; vkg and
if some vi is a convex combination of the other points, then vi may be deleted from
the set of points without changing the convex hull. This process may be repeated until
the minimal representation is left. It can be shown that the minimal representation is
unique.

THEOREM 14 SupposeM D fv1; : : : ; vkg is the minimal representation of the polytope P . Then
the following three statements are equivalent:

a. p 2M .

b. p is a vertex of P .

c. p is an extreme point of P .

PROOF (a)) (b) Suppose p 2M and let Q D conv fv W v 2M and v ¤ pg. It fol-
lows from the definition of M that p 62 Q, and since Q is compact, Theorem 13 implies
the existence of a hyperplane H 0 that strictly separates fpg and Q. Let H be the hyper-
plane through p parallel to H 0. See Figure 2.

Then Q lies in one of the closed half-spaces HC bounded by H and so P � HC.
Thus H supports P at p. Furthermore, p is the only point of P that can lie on H , so
H \ P D fpg and p is a vertex of P .

(b)) (c) Let p be a vertex of P . Then there exists a hyperplaneH D Œf W d� such
thatH \ P D fpg and f .P / � d . If pwere not an extreme point, then there would exist
distinct points x and y in P such that p D .1 � c/xC cy with 0 < c < 1. That is,

H H'

p Q

FIGURE 2

.1 � c/x D p � cy and .1 � c/f .x/ D d � cf .y/ since f .p/ D d

It follows that

f .x/ D
d � cf .y/

1 � c
� d since f .x/ � d

But then d � cf .y/ � d.1 � c/ and cf .y/ � d � d.1 � c/ D cd , so f .y/ � d . On the

other hand, y 2 P , so f .y/ � d . It follows that f .y/ D d and that y 2 H \ P . This
contradicts the fact that p is a vertex. So pmust be an extreme point. (Note that this part
of the proof does not depend onP being a polytope. It holds for any compact convex set.)

(c)) (a) It is clear that any extreme point of P must be a member of M .

EXAMPLE 2 Recall that the profile of a set S is the set of extreme points of S .
Theorem 14 shows that the profile of a polygon inR2 is the set of vertices. (See Figure 3.)
The profile of a closed ball is its boundary. An open set has no extreme points, so its
profile is empty. A closed half-space has no extreme points, so its profile is empty.

FIGURE 3
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Exercise 24 asks you to show that a point p in a convex set S is an extreme point
of S if and only if, when p is removed from S , the remaining points still form a convex
set. It follows that if S� is any subset of S such that convS� is equal to S , then S� must
contain the profile of S . The sets in Example 2 show that in general S� may have to be
larger than the profile of S . It is true, however, that when S is compact, we may actually
take S� to be the profile of S , as Theorem 15 will show. Thus every nonempty compact
convex set S has an extreme point, and the set of all extreme points is the smallest subset
of S whose convex hull is equal to S .

THEOREM 15 Let S be a nonempty compact convex set. Then S is the convex hull of its profile
(the set of extreme points of S ).

PROOF The proof is by induction on the dimension of the set S .1

One important application of Theorem 15 is the following theorem. It is one of the
key theoretical results in the development of linear programming. Linear functionals
are continuous, and continuous functions always attain their maximum and minimum
on a compact set. The significance of Theorem 16 is that for compact convex sets, the
maximum (and minimum) is actually attained at an extreme point of S .

THEOREM 16 Let f be a linear functional defined on a nonempty compact convex set S . Then
there exist extreme points Ov and Ow of S such that

f .Ov/ D max
v2S

f .v/ and f . Ow/ D min
v2S

f .v/

PROOF Assume that f attains its maximum m on S at some point v0 in S . That is,
f .v0/ D m. We wish to show that there exists an extreme point in S with the same
property. By Theorem 15, v0 is a convex combination of the extreme points of S . That
is, there exist extreme points v1; : : : ; vk of S and nonnegative c1; : : : ; ck such that

v0 D c1v1 C � � � C ckvk with c1 C � � � C ck D 1

If none of the extreme points of S satisfies f .v/ D m, then

f .vi / < m for i D 1; : : : ; k

since m is the maximum of f on S . But then, because f is linear,

m D f .v0/ D f .c1v1 C � � � C ckvk/

D c1f .v1/C � � � C ckf .vk/

< c1mC � � � C ckm D m.c1 C � � � C ck/ D m

This contradiction implies that some extreme point Ov of S must satisfy f .Ov/ D m.
The proof for Ow is similar.

1 The details may be found in Steven R. Lay, Convex Sets and Their Applications (New York: John Wiley &
Sons, 1982; Mineola, NY: Dover Publications, 2007), p. 43.
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EXAMPLE 3 Given points p1 D

�
�1

0

�
, p2 D

�
3

1

�
, and p3 D

�
1

2

�
in R2, let S D

conv fp1; p2; p3g. For each linear functional f , find the maximum value m of f on the
set S , and find all points x in S at which f .x/ D m.

a. f1.x1; x2/ D x1 C x2 b. f2.x1; x2/ D �3x1 C x2 c. f3.x1; x2/ D x1 C 2x2

SOLUTION By Theorem 16, the maximum value is attained at one of the extreme
points of S . So to find m, evaluate f at each extreme point and select the largest value.

a. f1.p1/ D �1, f1.p2/ D 4, and f1.p3/ D 3, so m1 D 4. Graph the line f1.x1; x2/ D

m1, that is, x1 C x2 D 4, and note that x D p2 is the only point in S at which f1.x/ D

4. See Figure 4(a).

b. f2.p1/ D 3, f2.p2/ D �8, and f2.p3/ D �1, som2 D 3. Graph the line f2.x1; x2/ D

m2, that is, �3x1 C x2 D 3, and note that x D p1 is the only point in S at which
f2.x/ D 3. See Figure 4(b).

c. f3.p1/ D �1, f3.p2/ D 5, and f3.p3/ D 5, so m3 D 5. Graph the line f3.x1; x2/ D

m3, that is, x1 C 2x2 D 5. Here, f3 attains its maximum value at p2, at p3, and at
every point in the convex hull of p2 and p3. See Figure 4(c).

(a) x1 1 x2 5 4 (b) 23x1 1 x2 5 3 (c) x1 1 2x2 5 5

p3

p1

p2

222 4

2

4

x1

x2

222 4

2

4

x1

x2

222 4

2

4

x1

x2

S

p3

p1

p2S

p3

p1

p2S

FIGURE 4

The situation illustrated in Example 3 forR2 also applies in higher dimensions. The
maximum value of a linear functional f on a polytope P occurs at the intersection of
a supporting hyperplane and P . This intersection is either a single extreme point of P ,
or the convex hull of 2 or more extreme points of P . In either case, the intersection is a
polytope, and its extreme points form a subset of the extreme points of P .

By definition, a polytope is the convex hull of a finite set of points. This is an explicit
representation of the polytope since it identifies points in the set. A polytope may also
be represented implicitly as the intersection of a finite number of closed half-spaces.
Example 4 illustrates this in R2.

EXAMPLE 4 Let

p1 D

�
0

1

�
; p2 D

�
1

0

�
; and p3 D

�
3

2

�
in R2, and let S D conv fp1; p2; p3g. Simple algebra shows that the line through p1 and
p2 is given by x1 C x2 D 1, and S is on the side of this line where

x1 C x2 � 1 or, equivalently, � x1 � x2 � �1:

Similarly, the line through p2 and p3 is x1 � x2 D 1, and S is on the side where

x1 � x2 � 1
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Also, the line through p3 and p1 is �x1 C 3x2 D 3, and S is on the side where

�x1 C 3x2 � 3

See Figure 5. It follows that S can be described as the solution set of the system of linear
inequalities

�x1 � x2 � �1

x1 � x2 � 1

�x1 C 3x2 � 3

This system may be written as Ax � b, where

A D

24�1 �1

1 �1

�1 3

35; x D
�

x1

x2

�
; and b D

24�1

1

3

35:

Note that an inequality between two vectors, such as Ax and b, applies to each of the
corresponding coordinates in those vectors.

2x1 1 3x2 5 3

x1 1 x2 5 1

x1 2 x2 5 1

p3

p2

p1 S

4222

x2

x1

4

2

FIGURE 5

In Chapter 9, it will be necessary to replace an implicit description of a polytope by
a minimal representation of the polytope, listing all the extreme points of the polytope.
In simple cases, a graphical solution is feasible. The following example shows how to
handle the situation when several points of interest are too close to identify easily on a
graph.

EXAMPLE 5 Let P be the set of points in R2 that satisfy Ax � b, where

A D

24 1 3

1 1

3 2

35 and b D

24 18

8

21

35
and x � 0. Find the minimal representation of P .

SOLUTION The condition x � 0 places P in the first quadrant of R2, a typical con-
dition in linear programming problems. The three inequalities in Ax � b involve three
boundary lines:

.1/ x1 C 3x2 D 18 .2/ x1 C x2 D 8 .3/ 3x1 C 2x2 D 21

All three lines have negative slopes, so a general idea of the shape of P is easy to
visualize. Even a rough sketch of the graphs of these lines will reveal that .0; 0/, .7; 0/,
and .0; 6/ are vertices of the polytope P .
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What about the intersections of the lines (1), (2), and (3)? Sometimes it is clear
from the graph which intersections to include. But if not, then the following algebraic
procedure will work well:

When an intersection point is found that corresponds to two inequalities, test it in
the other inequalities to see whether the point is in the polytope.

The intersection of (1) and (2) is p12 D .3; 5/. Both coordinates are nonnegative, so
p12 satisfies all inequalities except possibly the third inequality. Test this:

3.3/C 2.5/ D 19 < 21

This intersection point satisfies the inequality for (3), so p12 is in the polytope.
The intersection of (2) and (3) is p23 D .5; 3/. This satisfies all inequalities except

possibly the inequality for (1). Test this:

1.5/C 3.3/ D 14 < 18

This shows that p23 is in the polytope.
Finally, the intersection of (1) and (3) is p13 D

�
27
7

; 33
7

�
. Test this in the inequality

for (2):
1
�

27
7

�
C 1

�
33
7

�
D

60
7
� 8:6 > 8

Thus p13 does not satisfy the second inequality, which shows that p13 is not in P . In
conclusion, the minimal representation of the polytope P is��

0

0

�
;

�
7

0

�
;

�
3

5

�
;

�
5

3

�
;

�
0

6

��
:

The remainder of this section discusses the construction of two basic polytopes inR3

(and higher dimensions). The first appears in linear programming problems, the subject
of Chapter 9. Both polytopes provide opportunities to visualize R4 in a remarkable way.

Simplex
A simplex is the convex hull of an affinely independent finite set of vectors. To construct
a k-dimensional simplex (or k-simplex), proceed as follows:

0-simplex S0: a single point fv1g

1-simplex S1: conv.S0 [ fv2g/, with v2 not in affS0

2-simplex S2: conv.S1 [ fv3g/, with v3 not in affS1

:::

k-simplex Sk : conv.Sk�1 [ fvkC1g/; with vkC1 not in affSk�1

The simplex S1 is a line segment. The triangle S2 comes from choosing a point v3 that
is not in the line containing S1 and then forming the convex hull with S1. (See Figure 6.)
The tetrahedron S3 is produced by choosing a point v4 not in the plane of S2 and then
forming the convex hull with S2.

Before continuing, consider some of the patterns that are appearing. The triangle S2

has three edges. Each of these edges is a line segment like S1. Where do these three line
segments come from? One of them is S1. One of them comes by joining the endpoint
v2 to the new point v3. The third comes from joining the other endpoint v1 to v3. You
might say that each endpoint in S1 is stretched out into a line segment in S2.
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S 0

v1

v1 v1 v1 v4

v2 v2 v3 v2 v3

S 1 S 2 S 3

FIGURE 6

The tetrahedron S3 in Figure 6 has four triangular faces. One of these is the original
triangle S2, and the other three come from stretching the edges of S2 out to the new point
v4. Notice too that the vertices ofS2 get stretched out into edges inS3. The other edges in
S3 come from the edges inS2. This suggests how to “visualize” the four-dimensionalS4.

The construction of S4, called a pentatope, involves forming the convex hull of S3

with a point v5 not in the 3-space of S3. A complete picture is impossible, of course,
but Figure 7 is suggestive: S4 has five vertices, and any four of the vertices determine
a facet in the shape of a tetrahedron. For example, the figure emphasizes the facet with
vertices v1, v2, v4, and v5 and the facet with vertices v2, v3, v4, and v5. There are five
such facets. Figure 7 identifies all ten edges of S4, and these can be used to visualize the
ten triangular faces.

Figure 8 shows another representation of the 4-dimensional simplex S4. This time
the fifth vertex appears “inside” the tetrahedron S3. The highlighted tetrahedral facets
also appear to be “inside” S3.

v4

v3

v5

v2

v1

v4

v3

v5

v2

v1 v4

v3

v5

v2

v1

FIGURE 7 The 4-dimensional simplex S4 projected onto R2, with two
tetrahedral facets emphasized.
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v1 v3

v2
v5

v4

v1 v3

v2
v5

v4

v1 v3

v2

v4

v1 v3

v2
v5

v4

FIGURE 8 The fifth vertex of S4 is “inside” S3.

Hypercube

Let Ii D 0ei be the line segment from the origin 0 to the standard basis vector ei in Rn.
Then for k such that 1 � k � n, the vector sum2

C k
D I1 C I2 C � � � C Ik

is called a k-dimensional hypercube.
To visualize the construction of C k , start with the simple cases. The hypercube C 1

is the line segment I1. If C 1 is translated by e2, the convex hull of its initial and final
positions describes a square C 2. (See Figure 9.) Translating C 2 by e3 creates the cube
C 3. A similar translation of C 3 by the vector e4 yields the 4-dimensional hypercube C 4.

C 1 C 2 C 3

FIGURE 9 Constructing the cube C 3.

Again, this is hard to visualize, but Figure 10 shows a 2-dimensional projection of
C 4. Each of the edges ofC 3 is stretched into a square facet ofC 4. And each of the square

2 The vector sum of two sets A and B is defined by AC B D fc W c D aC b for some a 2 A and b 2 Bg.
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FIGURE 10 C 4 projected onto R2.

(a) (b) (c)

FIGURE 11 Three of the cubic facets of C 4.

faces of C 3 is stretched into a cubic facet of C 4. Figure 11 shows three facets of C 4.
Part (a) highlights the cube that comes from the left square face of C 3. Part (b) shows
the cube that comes from the front square face of C 3. And part (c) emphasizes the cube
that comes from the top square face of C 3.

Figure 12 shows another representation of C 4 in which the translated cube is placed
“inside” C 3. This makes it easier to visualize the cubic facets of C 4, since there is less
distortion.

FIGURE 12 The translated image of
C 3 is placed “inside” C 3 to obtain C 4.

Altogether, the 4-dimensional cube C 4 has eight cubic facets. Two come from the
original and translated images of C 3, and six come from the square faces of C 3 that are
stretched into cubes. The square 2-dimensional faces of C 4 come from the square faces
of C 3 and its translate, and the edges of C 3 that are stretched into squares. Thus there
are 2 � 6C 12 D 24 square faces. To count the edges, take 2 times the number of edges
in C 3 and add the number of vertices in C 3. This makes 2 � 12C 8 D 32 edges in C 4.
The vertices in C 4 all come from C 3 and its translate, so there are 2 � 8 D 16 vertices.

One of the truly remarkable results in the study of polytopes is the following for-
mula, first proved by Leonard Euler (1707–1783). It establishes a simple relationship
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between the number of faces of different dimensions in a polytope. To simplify the
statement of the formula, let fk.P / denote the number of k-dimensional faces of an
n-dimensional polytope P .3

Euler’s formula:
n�1X
kD0

.�1/kfk.P / D 1C .�1/n�1

In particular, when n D 3; v � e C f D 2, where v, e, and f denote the number of
vertices, edges, and facets (respectively) of P .

Practice Problem

Find the minimal representation of the polytope P defined by the inequalities Ax � b

and x � 0, when A D

24 1 3

1 2

2 1

35 and b D

24 12

9

12

35.
8.5 Exercises

1. Given points p1 D

�
1

0

�
, p2 D

�
2

3

�
, and p3 D

�
�1

2

�
inR2,

let S D conv fp1; p2; p3g. For each linear functional f, find
the maximum value m of f on the set S , and find all points
x in S at which f .x/ D m.
a. f .x1; x2/ D x1 � x2 b. f .x1; x2/ D x1 C x2

c. f .x1; x2/ D �3x1 C x2

2. Given points p1 D

�
0

�1

�
, p2 D

�
2

1

�
, and p3 D

�
1

2

�
inR2,

let S D conv fp1; p2; p3g. For each linear functional f, find
the maximum value m of f on the set S , and find all points
x in S at which f .x/ D m.
a. f .x1; x2/ D x1 C x2 b. f .x1; x2/ D x1 � x2

c. f .x1; x2/ D �2x1 C x2

3. Repeat Exercise 1 where m is the minimum value of f on S

instead of the maximum value.

4. Repeat Exercise 2 where m is the minimum value of f on S

instead of the maximum value.

In Exercises 5–8, find the minimal representation of the polytope
defined by the inequalities Ax � b and x � 0.

5. A D

�
1 2

3 1

�
, b D

�
10

15

�
6. A D

�
2 3

4 1

�
, b D

�
18

16

�

7. A D

24 1 3

1 1

4 1

35, b D 24 18

10

28

35

8. A D

24 2 1

1 1

1 2

35, b D 24 8

6

7

35
9. Let S D f.x; y/ W x2 C .y � 1/2 � 1g [ f.3; 0/g. Is the ori-

gin an extreme point of convS? Is the origin a vertex of
convS?

10. Find an example of a closed convex set S in R2 such that its
profile P is nonempty but convP ¤ S .

11. Find an example of a bounded convex set S in R2 such that
its profile P is nonempty but convP ¤ S .

12. a. Determine the number of k-faces of the 5-dimensional
simplex S5 for k D 0; 1; : : : ; 4. Verify that your answer
satisfies Euler’s formula.

b. Make a chart of the values of fk.Sn/ for n D 1; : : : ; 5 and
k D 0; 1; : : : ; 4. Can you see a pattern? Guess a general
formula for fk.Sn/.

13. a. Determine the number of k-faces of the 5-dimensional
hypercubeC 5 for k D 0; 1; : : : ; 4. Verify that your answer
satisfies Euler’s formula.

b. Make a chart of the values of fk.C n/ for n D 1; : : : ; 5 and
k D 0; 1; : : : ; 4. Can you see a pattern? Guess a general
formula for fk.C n/.

14. Suppose v1; : : : ; vk are linearly independent vectors in
Rn .1 � k � n/. Then the setXk D conv f˙v1; : : : ;˙vkg is
called a k-crosspolytope.
a. Sketch X1 and X2.

3A proof when n D 3 is presented in Steven R. Lay, Convex Sets and Their Applications (New York:
John Wiley & Sons, 1982; Mineola, NY: Dover Publications, 2007), p. 131.
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b. Determine the number of k-faces of the 3-dimensional
crosspolytope X3 for k D 0; 1; 2. What is another name
for X3?

c. Determine the number of k-faces of the 4-dimensional
crosspolytope X4 for k D 0; 1; 2; 3. Verify that your an-
swer satisfies Euler’s formula.

d. Find a formula for fk.Xn/, the number of k-faces of Xn,
for 0 � k � n � 1.

15. A k-pyramid P k is the convex hull of a .k � 1/-polytope
Q and a point x 62 affQ. Find a formula for each of the
following in terms of fj .Q/; j D 0; : : : ; n � 1.

a. The number of vertices of P n: f0.P n/.

b. The number of k-faces of P n:fk.P n/, for 1� k� n � 2.

c. The number of .n � 1/-dimensional facets of P n:
fn�1.P n/.

In Exercises 16–23, mark each statement True or False (T/F).
Justify each answer.

16. (T/F) A polytope is the convex hull of a finite set of points.

17. (T/F) A cube in R3 has exactly five facets.

18. (T/F) Let p be an extreme point of a convex set S . If u, v 2 S ,
p 2 uv, and p ¤ u, then p D v.

19. (T/F) A point p is an extreme point of a polytope P if and
only if p is a vertex of P .

20. (T/F) If S is a nonempty convex subset of Rn, then S is the
convex hull of its profile.

21. (T/F) If S is a nonempty compact convex set and a linear
functional attains its maximum at a point p, then p is an
extreme point of S .

22. (T/F) The 4-dimensional simplex S4 has exactly five facets,
each of which is a 3-dimensional tetrahedron.

23. (T/F)A 2-dimensional polytope always has the same number
of vertices and edges.

24. Let v be an element of the convex set S . Prove that v is an
extreme point of S if and only if the set fx 2 S W x ¤ vg is
convex.

25. If c 2 R and S is a set, define cS D fcx W x 2 Sg. Let S

be a convex set and suppose c > 0 and d > 0. Prove that
cS C dS D .c C d/S .

26. Find an example to show that the convexity of S is necessary
in Exercise 25.

27. If A and B are convex sets, prove that AC B is convex.

28. A polyhedron (3-polytope) is called regular if all its facets
are congruent regular polygons and all the angles at the
vertices are equal. Supply the details in the following proof
that there are only five regular polyhedra.

a. Suppose that a regular polyhedron has r facets, each of
which is a k-sided regular polygon, and that s edges
meet at each vertex. Letting v and e denote the numbers
of vertices and edges in the polyhedron, explain why
kr D 2e and sv D 2e.

b. Use Euler’s formula to show that
1

s
C

1

k
D

1

2
C

1

e
.

c. Find all the integral solutions of the equation in part
(b) that satisfy the geometric constraints of the problem.
(How small can k and s be?)

For your information, the five regular polyhedra are the tetra-
hedron (4, 6, 4), the cube (8, 12, 6), the octahedron (6, 12,
8), the dodecahedron (20, 30, 12), and the icosahedron (12,
30, 20). (The numbers in parentheses indicate the numbers of
vertices, edges, and faces, respectively.)

Solution to Practice Problem

The matrix inequality Ax � b yields the following system of inequalities:

(a) x1 C 3x2 � 12

(b) x1 C 2x2 � 9

(c) 2x1 C x2 � 12

The condition x � 0, places the polytope in the first quadrant of the plane. One vertex
is .0; 0/. The x1-intercepts of the three lines (when x2 D 0) are 12, 9, and 6, so .6; 0/ is
a vertex. The x2-intercepts of the three lines (when x1 D 0) are 4, 4.5, and 12, so .0; 4/

is a vertex.
How do the three boundary lines intersect for positive values of x1 and x2? The

intersection of (a) and (b) is at pab D .3; 3/. Testing pab in (c) gives 2.3/C 1.3/ D

9 < 12, so pab is in P . The intersection of (b) and (c) is at pbc D .5; 2/. Testing pbc
in (a) gives 1.5/C 3.2/ D 11 < 12, so pbc is in P . The intersection of (a) and (c) is
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at pac D .4:8; 2:4/. Testing pac in (b) gives 1.4:8/C 2.2:4/ D 9:6 > 9. So pac is not
in P .

Finally, the five vertices (extreme points) of the polytope are .0; 0/, .6; 0/, .5; 2/

.3; 3/, and .0; 4/. These points form the minimal representation of P . This is displayed
graphically in Figure 13.

(a)

(c)

(b)

P

4 8 12

4

8

12

x2

x1

FIGURE 13

8.6 Curves and Surfaces
For thousands of years, builders used long thin strips of wood to create the hull of a boat.
In more recent times, designers used long, flexible metal strips to lay out the surfaces of
cars and airplanes. Weights and pegs shaped the strips into smooth curves called natural
cubic splines. The curve between two successive control points (pegs or weights) has a
parametric representation using cubic polynomials. Unfortunately, such curves have the
property that moving one control point affects the shape of the entire curve, because of
physical forces that the pegs and weights exert on the strip. Design engineers had long
wanted local control of the curve—in which movement of one control point would affect
only a small portion of the curve. In 1962, a French automotive engineer, Pierre Bézier,
solved this problem by adding extra control points and using a class of curves now called
by his name.

Bézier Curves
The curves described in this section play an important role in computer graphics as
well as engineering. For example, they are used in Adobe Illustrator and Macromedia
Freehand, and in application programming languages such as OpenGL. These curves
permit a program to store exact information about curved segments and surfaces in a
relatively small number of control points. All graphics commands for the segments and
surfaces have only to be computed for the control points. The special structure of these
curves also speeds up other calculations in the “graphics pipeline” that creates the final
display on the viewing screen.

Exercises in Section 8.3 introduced quadratic Bézier curves and showed onemethod
for constructing Bézier curves of higher degree. The discussion here focuses on quadratic
and cubic Bézier curves, which are determined by three or four control points, denoted
by p0, p1, p2, and p3. These points can be in R2 or R3, or they can be represented by
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homogeneous forms in R3 or R4. The standard parametric descriptions of these curves,
for 0 � t � 1, are

w.t/ D .1 � t/2p0 C 2t.1 � t/p1 C t2p2 (1)

x.t/ D .1 � t/3p0 C 3t.1 � t /2p1 C 3t2.1 � t /p2 C t3p3 (2)

Figure 1 shows two typical curves. Usually, the curves pass through only the initial and
terminal control points, but a Bézier curve is always in the convex hull of its control
points. (See Exercises 25–28 in Section 8.3.)

p1 p2

p0

p1 p2

p0 p3

FIGURE 1 Quadratic and cubic Bézier curves.

Bézier curves are useful in computer graphics because their essential properties are
preserved under the action of linear transformations and translations. For instance, if
A is a matrix of appropriate size, then from the linearity of matrix multiplication, for
0 � t � 1,

Ax.t/ D AŒ.1 � t /3p0 C 3t.1 � t /2p1 C 3t2.1 � t/p2 C t3p3�

D .1 � t /3Ap0 C 3t.1 � t/2Ap1 C 3t2.1 � t/Ap2 C t3Ap3

The new control points are Ap0; : : : ; Ap3. Translations of Bézier curves are considered
in Exercise 1.

The curves in Figure 1 suggest that the control points determine the tangent lines
to the curves at the initial and terminal control points. Recall from calculus that for any
parametric curve, say y.t/, the direction of the tangent line to the curve at a point y.t/ is
given by the derivative y0.t/, called the tangent vector of the curve. (This derivative is
computed entry by entry.)

EXAMPLE 1 Determine how the tangent vector of the quadratic Bézier curve w.t/

is related to the control points of the curve, at t D 0 and t D 1.

SOLUTION Write the weights in equation (1) as simple polynomials

w.t/ D .1 � 2t C t2/p0 C .2t � 2t2/p1 C t2p2

Then, because differentiation is a linear transformation on functions,

w0.t/ D .�2C 2t/p0 C .2 � 4t/p1 C 2tp2

So

w0.0/ D �2p0 C 2p1 D 2.p1 � p0/

w0.1/ D �2p1 C 2p2 D 2.p2 � p1/

The tangent vector at p0, for instance, points from p0 to p1, but it is twice as long
as the segment from p0 to p1. Notice that w0.0/ D 0 when p1 D p0. In this case,
w.t/ D .1 � t2/p1 C t2p2, and the graph of w.t/ is the line segment from p1 to p2.
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Connecting Two Bézier Curves
Two basic Bézier curves can be joined end to end, with the terminal point of the first
curve x.t/ being the initial point p2 of the second curve y.t/. The combined curve is
said to have G0 geometric continuity (at p2) because the two segments join at p2. If the
tangent line to curve 1 at p2 has a different direction than the tangent line to curve 2, then
a “corner,” or abrupt change of direction, may be apparent at p2. See Figure 2.

p2

p3 p4

p1

p0

FIGURE 2 G0 continuity at p2.

To avoid a sharp bend, it usually suffices to adjust the curves to have what is called
G1 geometric continuity, where both tangent vectors at p2 point in the same direction.
That is, the derivatives x0.1/ and y0.0/ point in the same direction, even though their
magnitudes may be different. When the tangent vectors are actually equal at p2, the
tangent vector is continuous at p2, and the combined curve is said to have C 1 continuity,
or C 1 parametric continuity. Figure 3 shows G1 continuity in (a) and C 1 continuity
in (b).

2

0
20 4 6 8 10 12 14

(a) (b)

p1

p0

p2 p3

p4

p1

p0

p2 p3

p4

FIGURE 3 (a) G1 continuity and (b) C 1 continuity.

EXAMPLE 2 Let x.t/ and y.t/ determine two quadratic Bézier curves, with control
points fp0; p1; p2g and fp2; p3; p4g, respectively. The curves are joined at p2 D x.1/ D

y.0/.

a. Suppose the combined curve has G1 continuity (at p2). What algebraic restriction
does this condition impose on the control points? Express this restriction in geometric
language.

b. Repeat part (a) for C 1 continuity.

SOLUTION

a. From Example 1, x0.1/ D 2.p2 � p1/. Also, using the control points for y.t/ in
place of w.t/, Example 1 shows that y0.0/ D 2.p3 � p2/. G1 continuity means that
y0.0/ D kx0.1/ for some positive constant k. Equivalently,

p3 � p2 D k.p2 � p1/; with k > 0 (3)
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Geometrically, (3) implies that p2 lies on the line segment from p1 to p3. To
prove this, let t D .k C 1/�1, and note that 0 < t < 1. Solve for k to obtain
k D .1 � t/=t . When this expression is used for k in (3), a rearrangement shows
that p2 D .1 � t/p1 C tp3, which verifies the assertion about p2.

b. C 1 continuity means that y0.0/ D x0.1/. Thus 2.p3 � p2/ D 2.p2 � p1/, so
p3 � p2 D p2 � p1, and p2 D .p1 C p3/=2. Geometrically, p2 is the midpoint of the
line segment from p1 to p3. See Figure 3.

Figure 4 shows C 1 continuity for two cubic Bézier curves. Notice how the point
joining the two segments lies in the middle of the line segment between the adjacent
control points.

p1

p0

x(t)
y(t)

p2

p3
p4

p5

p6

FIGURE 4 Two cubic Bézier curves.

Two curves have C 2 (parametric) continuity when they have C 1 continuity and the
second derivatives x00.1/ and y00.0/ are equal. This is possible for cubic Bézier curves,
but it severely limits the positions of the control points. Another class of cubic curves,
called B-splines, always have C 2 continuity because each pair of curves share three
control points rather than one. Graphics figures using B-splines have more control points
and consequently require more computations. Some exercises for this section examine
these curves.

Surprisingly, if x.t/ and y.t/ join at p3, the apparent smoothness of the curve at p3 is
usually the same for bothG1 continuity andC 1 continuity. This is because themagnitude
of x0.t/ is not related to the physical shape of the curve. The magnitude reflects only the
mathematical parameterization of the curve. For instance, if a new vector function z.t/
equals x.2t/, then the point z.t/ traverses the curve from p0 to p3 twice as fast as the
original version, because 2t reaches 1 when t is :5. But, by the chain rule of calculus,
z0.t/ D 2 � x0.2t/, so the tangent vector to z.t/ at p3 is twice the tangent vector to x.t/

at p3.
In practice, many simple Bézier curves are joined to create graphics objects. Type-

setting programs provide one important application, because many letters in a type font
involve curved segments. Each letter in a PostScript® font, for example, is stored as a
set of control points, along with information on how to construct the “outline” of the
letter using line segments and Bézier curves. Enlarging such a letter basically requires
multiplying the coordinates of each control point by one constant scale factor. Once
the outline of the letter has been computed, the appropriate solid parts of the letter are
filled in. Figure 5 illustrates this for a character in a PostScript font. Note the control
points.
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Q
FIGURE 5 A PostScript character.

Matrix Equations for Bézier Curves
Since a Bézier curve is a linear combination of control points using polynomials as
weights, the formula for x.t/ may be written as

x.t/ D
�
p0 p1 p2 p3

�2664
.1 � t /3

3t.1 � t /2

3t2.1 � t /

t3

3775
D
�
p0 p1 p2 p3

�2664
1 � 3t C 3t2 � t3

3t � 6t2 C 3t3

3t2 � 3t3

t3

3775
D
�
p0 p1 p2 p3

�2664
1 �3 3 �1

0 3 �6 3

0 0 3 �3

0 0 0 1

3775
2664

1

t

t2

t3

3775
The matrix whose columns are the four control points is called a geometry matrix, G.
The 4 � 4 matrix of polynomial coefficients is the Bézier basis matrix, MB . If u.t/ is
the column vector of powers of t , then the Bézier curve is given by

x.t/ D GMBu.t/ (4)

Other parametric cubic curves in computer graphics are written in this form, too. For
instance, if the entries in the matrix MB are changed appropriately, the resulting curves
are B-splines. They are “smoother” than Bézier curves, but they do not pass through any
of the control points. A Hermite cubic curve arises when the matrix MB is replaced by
a Hermite basis matrix. In this case, the columns of the geometry matrix consist of the
starting and ending points of the curves and the tangent vectors to the curves at those
points.1

The Bézier curve in equation (4) can also be “factored” in another way, to be used
in the discussion of Bézier surfaces. For convenience later, the parameter t is replaced

1 The term basis matrix comes from the rows of the matrix that list the coefficients of the blending
polynomials used to define the curve. For a cubic Bézier curve, the four polynomials are .1� t /3,
3t.1� t/2, 3t2.1� t /, and t3. They form a basis for the space P3 of polynomials of degree 3 or less. Each
entry in the vector x.t/ is a linear combination of these polynomials. The weights come from the rows of the
geometry matrix G in (4).
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by a parameter s:

x.s/ D u.s/T M T
B

2664
p0

p1

p2

p3

3775 D �1 s s2 s3
�2664

1 0 0 0

�3 3 0 0

3 �6 3 0

�1 3 �3 1

3775
2664
p0

p1

p2

p3

3775
D
�
.1 � s/3 3s.1 � s/2 3s2.1 � s/ s3

�2664
p0

p1

p2

p3

3775 (5)

This formula is not quite the same as the transpose of the product on the right of
(4), because x.s/ and the control points appear in (5) without transpose symbols. The
matrix of control points in (5) is called a geometry vector. This should be viewed as a
4 � 1 block (partitioned) matrix whose entries are column vectors. The matrix to the left
of the geometry vector, in the second part of (5), can be viewed as a block matrix, too,
with a scalar in each block. The partitioned matrix multiplication makes sense, because
each (vector) entry in the geometry vector can be left-multiplied by a scalar as well as
by a matrix. Thus, the column vector x.s/ is represented by (5).

Bézier Surfaces
A 3D bicubic surface patch can be constructed from a set of four Bézier curves. Consider
the four geometry matrices �

p11 p12 p13 p14

��
p21 p22 p23 p24

��
p31 p32 p33 p34

��
p41 p42 p43 p44

�
and recall from equation (4) that a Bézier curve is produced when any one of these
matrices is multiplied on the right by the following vector of weights:

MBu.t/ D

2664
.1 � t/3

3t.1 � t/2

3t2.1 � t/

t3

3775
Let G be the block (partitioned) 4 � 4 matrix whose entries are the control points pij

displayed above. Then the following product is a block 4 � 1 matrix, and each entry is
a Bézier curve:

GMBu.t/ D

2664
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

3775
2664

.1 � t/3

3t.1 � t/2

3t2.1 � t/

t3

3775
In fact,

GMBu.t/ D

2664
.1 � t/3p11 C 3t.1 � t /2p12 C 3t2.1 � t /p13 C t3p14

.1 � t/3p21 C 3t.1 � t /2p22 C 3t2.1 � t /p23 C t3p24

.1 � t/3p31 C 3t.1 � t /2p32 C 3t2.1 � t /p33 C t3p34

.1 � t/3p41 C 3t.1 � t /2p42 C 3t2.1 � t /p43 C t3p44

3775
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Now fix t . Then GMBu.t/ is a column vector that can be used as a geometry vector
in equation (5) for a Bézier curve in another variable s. This observation produces the
Bézier bicubic surface:

x.s; t/ D u.s/T M T
B GMBu.t/; where 0 � s; t � 1 (6)

The formula for x.s; t/ is a linear combination of the sixteen control points. If one
imagines that these control points are arranged in a fairly uniform rectangular array,
as in Figure 6, then the Bézier surface is controlled by a web of eight Bézier curves, four
in the “s-direction” and four in the “t -direction.” The surface actually passes through
the four control points at its “corners.” When it is in the middle of a larger surface, the
sixteen-point surface shares its twelve boundary control points with its neighbors.

p41

p31

p21 p11
p12

p13

p14p24

p34

p44

p43

p42

p32

p33

p23

p22

FIGURE 6 Sixteen control points for a Bézier
bicubic surface patch.

Approximations to Curves and Surfaces
In CAD programs and in programs used to create realistic computer games, the designer
often works at a graphics workstation to compose a “scene” involving various geometric
structures. This process requires interaction between the designer and the geometric
objects. Each slight repositioning of an object requires new mathematical computations
by the graphics program. Bézier curves and surfaces can be useful in this process because
they involve fewer control points than objects approximated by many polygons. This
dramatically reduces the computation time and speeds up the designer’s work.

After the scene composition, however, the final image preparation has different
computational demands that aremore easilymet by objects consisting of flat surfaces and
straight edges, such as polyhedra. The designer needs to render the scene, by introducing
light sources, adding color and texture to surfaces, and simulating reflections from the
surfaces.

Computing the direction of a reflected light at a point p on a surface, for instance,
requires knowing the directions of both the incoming light and the surface normal—the
vector perpendicular to the tangent plane at p. Computing such normal vectors is much
easier on a surface composed of, say, tiny flat polygons than on a curved surface whose
normal vector changes continuously as p moves. If p1, p2, and p3 are adjacent ver-
tices of a flat polygon, then the surface normal is just plus or minus the cross product
.p2 � p1/ � .p2 � p3/. When the polygon is small, only one normal vector is needed for
rendering the entire polygon. Also, two widely used shading routines, Gouraud shading
and Phong shading, both require a surface to be defined by polygons.

As a result of these needs for flat surfaces, the Bézier curves and surfaces from the
scene composition stage now are usually approximated by straight line segments and
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polyhedral surfaces. The basic idea for approximating a Bézier curve or surface is to
divide the curve or surface into smaller pieces, with more and more control points.

Recursive Subdivision of Bézier Curves and Surfaces
Figure 7 shows the four control points p0; : : : ; p3 for a Bézier curve, along with control
points for two new curves, each coinciding with half of the original curve. The “left”
curve begins at q0 D p0 and ends at q3, at the midpoint of the original curve. The “right”
curve begins at r0 D q3 and ends at r3 D p3.

p0 5 q0

q3 5 r0

p3 5 r3

p1 p2
r1

r2q1

q2

FIGURE 7 Subdivision of a Bézier curve.

Figure 8 shows how the new control points enclose regions that are “thinner” than
the region enclosed by the original control points. As the distances between the control
points decrease, the control points of each curve segment also move closer to a line
segment. This variation-diminishing property of Bézier curves depends on the fact that
a Bézier curve always lies in the convex hull of the control points.

p0 5 q0

q3 5 r0

p3 5 r3

p1 p2
r1

r2q1

q2

FIGURE 8 Convex hulls of the control points.

The new control points are related to the original control points by simple formulas.
Of course, q0 D p0 and r3 D p3. The midpoint of the original curve x.t/ occurs at x.:5/

when x.t/ has the standard parameterization,

x.t/ D .1 � 3t C 3t2
� t3/p0 C .3t � 6t2

C 3t3/p1 C .3t2
� 3t3/p2 C t3p3 (7)

for 0 � t � 1. Thus, the new control points q3 and r0 are given by

q3 D r0 D x.:5/ D 1
8
.p0 C 3p1 C 3p2 C p3/ (8)

The formulas for the remaining “interior” control points are also simple, but the deriva-
tion of the formulas requires some work involving the tangent vectors of the curves. By
definition, the tangent vector to a parameterized curve x.t/ is the derivative x0.t/. This
vector shows the direction of the line tangent to the curve at x.t/. For the Bézier curve
in (7),

x0.t/ D .�3C 6t � 3t2/p0 C .3 � 12t C 9t2/p1 C .6t � 9t2/p2 C 3t2p3

for 0 � t � 1. In particular,

x0.0/ D 3.p1 � p0/ and x0.1/ D 3.p3 � p2/ (9)
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Geometrically, p1 is on the line tangent to the curve at p0, and p2 is on the line tangent
to the curve at p3. See Figure 8. Also, from x0.t/, compute

x0.:5/ D 3
4
.�p0 � p1 C p2 C p3/ (10)

Let y.t/ be the Bézier curve determined by q0; : : : ; q3, and let z.t/ be the Bézier curve
determined by r0; : : : ; r3. Since y.t/ traverses the same path as x.t/ but only gets to x.:5/

as t goes from 0 to 1, y.t/ D x.:5t/ for 0 � t � 1. Similarly, since z.t/ starts at x.:5/

when t D 0, z.t/ D x.:5C :5t/ for 0 � t � 1. By the chain rule for derivatives,

y0.t/ D :5x0.:5t/ and z0.t/ D :5x0.:5C :5t/ for 0 � t � 1 (11)

From (9) with y0.0/ in place of x0.0/, from (11) with t D 0, and from (9), the control
points for y.t/ satisfy

3.q1 � q0/ D y0.0/ D :5x0.0/ D 3
2
.p1 � p0/ (12)

From (9) with y0.1/ in place of x0.1/, from (11) with t D 1, and from (10),

3.q3 � q2/ D y0.1/ D :5x0.:5/ D 3
8
.�p0 � p1 C p2 C p3/ (13)

Equations (8), (9), (10), (12), and (13) can be solved to produce the formulas for
q0; : : : ; q3 shown in Exercise 17. Geometrically, the formulas are displayed in Figure 9.
The interior control points q1 and r2 are the midpoints, respectively, of the segment
from p0 to p1 and the segment from p2 to p3. When the midpoint of the segment from
p1 to p2 is connected to q1, the resulting line segment has q2 in the middle!

q0 5 p0

q3 5 r0

p3 5 r3

p1 p2
r1

r2q1

q2

(p1 1 p2)1
2

FIGURE 9 Geometric structure of new control points.

This completes one step of the subdivision process. The “recursion” begins, and
both new curves are subdivided. The recursion continues to a depth at which all curves
are sufficiently straight. Alternatively, at each step the recursion can be “adaptive” and
not subdivide one of the two new curves if that curve is sufficiently straight. Once the
subdivision completely stops, the endpoints of each curve are joined by line segments,
and the scene is ready for the next step in the final image preparation.

A Bézier bicubic surface has the same variation-diminishing property as the Bézier
curves that make up each cross-section of the surface, so the process described above
can be applied in each cross-section. With the details omitted, here is the basic strategy.
Consider the four “parallel” Bézier curves whose parameter is s, and apply the subdi-
vision process to each of them. This produces four sets of eight control points; each set
determines a curve as s varies from 0 to 1. As t varies, however, there are eight curves,
each with four control points. Apply the subdivision process to each of these sets of four
points, creating a total of 64 control points. Adaptive recursion is possible in this setting,
too, but there are some subtleties involved.2

2 See Foley, van Dam, Feiner, and Hughes, Computer Graphics—Principles and Practice, 2nd Ed. (Boston:
Addison-Wesley, 1996), pp. 527–528.
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Practice Problems

A spline usually refers to a curve that passes through specified points. A B-spline,
however, usually does not pass through its control points. A single segment has the
parametric form

x.t/ D 1
6

�
.1 � t /3p0 C .3t3

� 6t2
C 4/p1

C .�3t3
C 3t2

C 3t C 1/p2 C t3p3

� (14)

for 0 � t � 1, where p0, p1, p2, and p3 are the control points.When t varies from 0 to 1,
x.t/ creates a short curve that lies close to p1p2. Basic algebra shows that the B-spline
formula can also be written as

x.t/ D 1
6

�
.1 � t /3p0 C .3t.1 � t/2

� 3t C 4/p1

C .3t2.1 � t/C 3t C 1/p2 C t3p3

� (15)

This shows the similarity with the Bézier curve. Except for the 1=6 factor at the front,
the p0 and p3 terms are the same. The p1 component has been increased by �3t C 4

and the p2 component has been increased by 3t C 1. These components move the curve
closer to p1p2 than the Bézier curve. The 1=6 factor is necessary to keep the sum of the
coefficients equal to 1. Figure 10 compares a B-spline with a Bézier curve that has the
same control points.

FIGURE 10 A B-spline segment and a Bézier curve.

1. Show that the B-spline does not begin at p0, but x.0/ is in conv fp0; p1; p2g.
Assuming that p0, p1, and p2 are affinely independent, find the affine coordinates of
x.0/ with respect to fp0; p1; p2g.

2. Show that the B-spline does not end at p3, but x.1/ is in conv fp1; p2; p3g. Assuming
that p1, p2, and p3 are affinely independent, find the affine coordinates of x.1/ with
respect to fp1; p2; p3g.

8.6 Exercises
1. Suppose a Bézier curve is translated to x.t/C b. That is, for

0 � t � 1, the new curve is

x.t/ D .1 � t/3p0 C 3t.1 � t/2p1

C 3t2.1 � t/p2 C t3p3 C b

Show that this new curve is again a Bézier curve. [Hint:
Where are the new control points?]

2. The parametric vector form of a B-spline curve was defined
in the Practice Problems as

x.t/ D 1
6

�
.1 � t/3p0 C .3t.1 � t /2 � 3t C 4/p1

C.3t2.1 � t /C 3t C 1/p2 C t3p3

�
for 0 � t � 1,

where p0, p1, p2, and p3 are the control points.

a. Show that for 0 � t � 1, x.t/ is in the convex hull of the
control points.

b. Suppose that a B-spline curve x.t/ is translated to x.t/C

b (as in Exercise 1). Show that this new curve is again a
B-spline.

3. Let x.t/ be a cubic Bézier curve determined by points p0, p1,
p2, and p3.

a. Compute the tangent vector x0.t/. Determine how x0.0/

and x0.1/ are related to the control points, and give ge-
ometric descriptions of the directions of these tangent
vectors. Is it possible to have x0.1/ D 0?

b. Compute the second derivative x00.t/ and determine how
x00.0/ and x00.1/ are related to the control points. Draw a
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figure based on Figure 10, and construct a line segment
that points in the direction of x00.0/. [Hint: Use p1 as the
origin of the coordinate system.]

4. Let x.t/ be the B-spline in Exercise 2, with control points p0,
p1, p2, and p3.

a. Compute the tangent vector x0.t/ and determine how the
derivatives x0.0/ and x0.1/ are related to the control points.
Give geometric descriptions of the directions of these
tangent vectors. Explore what happens when both x0.0/

and x0.1/ equal 0. Justify your assertions.

b. Compute the second derivative x00.t/ and determine how
x00.0/ and x00.1/ are related to the control points. Draw a
figure based on Figure 10, and construct a line segment
that points in the direction of x00.1/. [Hint: Use p2 as the
origin of the coordinate system.]

5. Let x.t/ and y.t/ be cubic Bézier curves with control points
fp0; p1; p2; p3g and fp3; p4; p5; p6g, respectively, so that x.t/

and y.t/ are joined at p3. The following questions refer to
the curve consisting of x.t/ followed by y.t/. For simplicity,
assume that the curve is in R2.

a. What condition on the control points will guarantee that
the curve has C 1 continuity at p3? Justify your answer.

b. What happens when x0.1/ and y0.0/ are both the zero
vector?

6. A B-spline is built out of B-spline segments, described in
Exercise 2. Let p0; : : : ; p4 be control points. For 0 � t � 1,
let x.t/ and y.t/ be determined by the geometry matrices
Œ p0 p1 p2 p3 � and Œ p1 p2 p3 p4 �, respectively.
Notice how the two segments share three control points.
The two segments do not overlap, however—they join at a
common endpoint, close to p2.

a. Show that the combined curve hasG0 continuity—that is,
x.1/ D y.0/.

b. Show that the curve has C 1 continuity at the join point,
x.1/. That is, show that x0.1/ D y0.0/.

7. Let x.t/ and y.t/ be Bézier curves from Exercise 5, and sup-
pose the combined curve has C 2 continuity (which includes
C 1 continuity) at p3. Set x

00.1/ D y00.0/ and show that p5 is
completely determined by p1, p2, and p3. Thus, the points
p0; : : : ; p3 and the C 2 condition determine all but one of the
control points for y.t/.

8. Let x.t/ and y.t/ be segments of a B-spline as in Exer-
cise 6. Show that the curve has C 2 continuity (as well as
C 1 continuity) at x.1/. That is, show that x00.1/ D y00.0/.
This higher-order continuity is desirable in CAD applica-
tions such as automotive body design, since the curves and
surfaces appear much smoother. However, B-splines require
three times the computation of Bézier curves, for curves
of comparable length. For surfaces, B-splines require nine
times the computation of Bézier surfaces. Programmers often

choose Bézier surfaces for applications (such as an airplane
cockpit simulator) that require real-time rendering.

9. A quartic Bézier curve is determined by five control points,
p0, p1, p2; p3, and p4:

x.t/ D .1 � t/4p0 C 4t.1 � t/3p1 C 6t2.1 � t/2p2

C 4t3.1 � t /p3 C t4p4 for 0 � t � 1

Construct the quartic basis matrix MB for x.t/.

10. The “B” in B-spline refers to the fact that a segment x.t/ may
be written in terms of a basis matrix, MS , in a form similar to
a Bézier curve. That is,

x.t/ D GMSu.t/ for 0 � t � 1

whereG is the geometry matrix Œ p0 p1 p2 p3 � and u.t/

is the column vector .1; t; t2; t3/. In a uniform B-spline, each
segment uses the same basis matrix, but the geometry matrix
changes. Construct the basis matrix MS for x.t/.

In Exercises 11–16, mark each statement True or False (T/F).
Justify each answer.

11. (T/F) The cubic Bézier curve is based on four control points.

12. (T/F) The essential properties of Bézier curves are
preserved under the action of linear transformations, but not
translations.

13. (T/F)Given a quadratic Bézier curve x.t/ with control points
p0; p1, and p2, the directed line segment p1 � p0 (from p0 to
p1) is the tangent vector to the curve at p0.

14. (T/F) When two Bézier curves x.t/ and y.t/ are joined at
the point where x.1/ D y.0/, the combined curve has G0

continuity at that point.

15. (T/F)When two quadratic Bézier curves with control points
fp0; p1; p2g and fp2; p3; p4g are joined at p2, the combined
Bézier curve will have C 1 continuity at p2 if p2 is the mid-
point of the line segment between p1 and p3.

16. (T/F) The Bézier basis matrix is a matrix whose columns are
the control points of the curve.

Exercises 17–19 concern the subdivision of a Bézier curve shown
in Figure 7. Let x.t/ be the Bézier curve, with control points
p0; : : : ; p3, and let y.t/ and z.t/ be the subdividing Bézier curves
as in the text, with control points q0; : : : ; q3 and r0; : : : ; r3, respec-
tively.

17. a. Use equation (12) to show that q1 is the midpoint of the
segment from p0 to p1.

b. Use equation (13) to show that

8q2 D 8q3 C p0 C p1 � p2 � p3:

c. Use part (b), equation (8), and part (a) to show that q2 is
the midpoint of the segment from q1 to the midpoint of the
segment from p1 to p2. That is, q2 D

1
2
Œq1 C

1
2
.p1 C p2/�.
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18. a. Justify each equal sign:

3.r3 � r2/ D z0.1/ D :5x0.1/ D 3
2
.p3 � p2/:

b. Show that r2 is the midpoint of the segment from p2 top3.

c. Justify each equal sign: 3.r1 � r0/ D z0.0/ D :5x0.:5/.

d. Use part (c) to show that 8r1 D �p0 � p1 C p2 C p3 C

8r0.

e. Use part (d), equation (8), and part (a) to show that r1 is
the midpoint of the segment from r2 to the midpoint of the
segment from p1 to p2. That is, r1 D

1
2
Œr2 C

1
2
.p1 C p2/�.

19. Sometimes only one half of a Bézier curve needs further
subdividing. For example, subdivision of the “left” side is
accomplished with parts (a) and (c) of Exercise 17 and equa-
tion (8). When both halves of the curve x.t/ are divided, it
is possible to organize calculations efficiently to calculate
both left and right control points concurrently, without using
equation (8) directly.

a. Show that the tangent vectors y0.1/ and z0.0/ are equal.

b. Use part (a) to show that q3 (which equals r0/ is the
midpoint of the segment from q2 to r1.

c. Using part (b) and the results of Exercises 17 and 18, write
an algorithm that computes the control points for both
y.t/ and z.t/ in an efficient manner. The only operations
needed are sums and division by 2.

20. Explain why a cubic Bézier curve is completely determined
by x.0/, x0.0/, x.1/, and x0.1/.

21. TrueType® fonts, created by Apple Computer and Adobe
Systems, use quadratic Bézier curves, while PostScript®

fonts, created by Microsoft, use cubic Bézier curves. The
cubic curves provide more flexibility for typeface design,
but it is important to Microsoft that every typeface using
quadratic curves can be transformed into one that uses cubic
curves. Suppose that w.t/ is a quadratic curve, with control
points p0, p1, and p2.

a. Find control points r0, r1, r2, and r3 such that the cubic
Bézier curve x.t/ with these control points has the prop-
erty that x.t/ and w.t/ have the same initial and terminal
points and the same tangent vectors at t D 0 and t D 1.
(See Exercise 20.)

b. Show that if x.t/ is constructed as in part (a), then
x.t/ D w.t/ for 0 � t � 1.

22. Use partitioned matrix multiplication to compute the follow-
ing matrix product, which appears in the alternative formula
(5) for a Bézier curve:2664

1 0 0 0

�3 3 0 0

3 �6 3 0

�1 3 �3 1

3775
2664
p0

p1

p2

p3

3775

Solutions to Practice Problems

1. From equation (14) with t D 0, x.0/ 6D p0 because

x.0/ D 1
6
Œp0 C 4p1 C p2� D 1

6
p0 C

2
3
p1 C

1
6
p2:

The coefficients are nonnegative and sum to 1, so x.0/ is in conv fp0; p1; p2g, and
the affine coordinates with respect to fp0; p1; p2g are

�
1
6
; 2

3
; 1

6

�
.

2. From equation (14) with t D 1, x.1/ 6D p3 because

x.1/ D 1
6
Œp1 C 4p2 C p3� D 1

6
p1 C

2
3
p2 C

1
6
p3:

The coefficients are nonnegative and sum to 1, so x.1/ is in conv fp1; p2; p3g, and
the affine coordinates with respect to fp1; p2; p3g are

�
1
6
; 2

3
; 1

6

�
.

CHAPTER 8 PROJECT
The Chapter 8 project is available online.

A. Affine Combinations: This project explores affine combina-
tions of a given set of points.
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CHAPTER 8 SUPPLEMENTARY EXERCISES
In Exercises 1–21, mark each statement True or False (T/F).
Justify each answer.

1. (T/F) Given v1, v2; : : : ; vp in Rn and scalars c1; : : : ; cp , an
affine combination of v1, v2; : : : ; vp is a linear combination
c1v1 C � � � C cpvp such that the weights satisfy c1 C � � � C

cp D 1.

2. (T/F) The affine hull of two points v1 and v2 is the set of all
points y D tv1 C .1 � t /v2, with t in R.

3. (T/F) A hyperplane is a 4-dimensional flat.

4. (T/F) Two flats are parallel if their intersection is empty.

5. (T/F) Every subspace is a flat.

6. (T/F) Every subspace is an affine set.

7. (T/F) Every affinely dependent set is linearly dependent.

8. (T/F) Every affinely independent set is linearly independent.

9. (T/F) The barycentric coordinates of a point inR2 are always
nonnegative.

10. (T/F) Let S D fv1; : : : ; vkg be an affinely independent set in
Rn. Then each point p in Rn has a unique representation as
an affine combination of v1; : : : ; vk .

11. (T/F) A convex combination of points fv1; v2; : : : ; vkg in Rn

is a linear combination of the form c1v1 C c2v2 C � � � C ckvk

such that c1 C c2 C � � � C ck D 1 and ci � 0 for all i .

12. (T/F) If a set S is affinely independent and if p 2 aff S , then
p 2 convS if and only if the barycentric coordinates of pwith
respect to S are nonnegative.

13. (T/F) The line segment between x and y is the set of all points
of the form .1 � t/xC ty, where t is in R.

14. (T/F) Every affine set is a convex set.

15. (T/F) For some Rn; the dimension of a hyperplane can be the
same as the dimension of a line.

16. (T/F) For someRn; the dimension of a hyperplane can be less
than the dimension of a line.

17. (T/F) Suppose A and B are nonempty compact convex sets.
Then there exists a hyperplane that strictly separatesA andB

if and only if A \ B D ¿.

18. (T/F) A polytope can be the convex hull of infinitely many
points.

19. (T/F) Every nonempty compact convex set S has an extreme
point, and the set of all extreme points is the smallest subset
of S whose convex hull is equal to S .

20. (T/F) If w.t/ is a quadratic Bézier curve with control points
p0, p1, and p2, then w0.0/ has the same direction as the

tangent to the curve at p0 and w
0.1/ has the same direction

as the tangent to the curve at p1.

21. (T/F) When two Bézier curves are connected with G1 geo-
metric continuity, then the tangent vectors for the two curves
at the common control point have the same direction.

22. If S D fv1; : : : ; vkg is an affinely independent subset of Rn;

prove that k � nC 1.

23. Suppose that F and G are k-dimensional flats .0 � k �

n � 1/ in Rn with F � G. Prove that F D G.

24. Prove or give a counterexample: A set S is convex if and
only if for each p, q in S , the set of points of the form
.1 � t/pC tq, where 0 < t < 1, is contained in S .

25. Let V be a k-dimensional subspace .0 � k � n � 1/ of Rn

and let F1 D x1 C V and F2 D x2 C V for vectors x1, x2 in
Rn. Prove that either F1 D F2 or F1 \ F2 D ¿. Thus two
parallel flats either coincide or are disjoint.

26. Let f be a nonzero linear functional on Rn and suppose
H D Œf W 7�. If p 2 Rn, f .p/ D 2, and H1 D H C 3p, then
find d such that H1 D Œf W d�.

27. Let V be an .n � 1/-dimensional subspace ofRn and suppose
p 2 Rn but p … V . Prove that each vector x inRn has a unique
representation as x D vC cp, where v 2 V and c 2 R.

28. If m is the maximum value of the linear functional f on the
convex set S , and p, q are points in S such that f .p/ D

f .q/ D m, show that f .x/ D m for all x in pq.

29. If B.p; •/ is the open ball with center p and radius • in Rn,
prove that œB.p; •/ D B.œp; œ•/, where • > 0 and œ > 0.
This means that dilations and nonzero contractions map cir-
cles in R2 onto circles and balls in Rn onto balls.

30. In R4; let v1 D .1;�1; 2;�1/, v2 D .2;�1; 2; 0/, v3 D

.1; 0; 2; 0/, and v4 D .1; 0; 3; 1/.

a. Show that the set fv1; v2; v3; v4g is affinely independent.

b. Let A D aff fv1; v2; v3; v4g and B D Œf W 3�, where f is
the linear functional defined by f .x1; x2; x3; x4/ D x1 C

x2 C x3 � x4. Prove that A D B . Hint: Use Exercise 23.

Exercises 31–35 deal with the following concepts: A point p is
called a positive combination of the points v1; : : : ; vk if p D
c1v1 C � � � C ckvk , with all ci � 0. The set of all positive com-
binations of points of a set S is called the positive hull of S and
is denoted by pos S .

31. Let S D f.�1; 1/; .1; 1/g in R2. Describe the set pos S

geometrically.

32. Observe that in Exercise 31 we have posS \ affS D convS .
Show that this is not true in general by verifying the fol-
lowing example: Let T D fv1; v2; v3g, where v1 D .0; 1/,
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v2 D .1; 1/, and v3 D .1; 0/. And let p D .3; 2/. Show that
p 2 pos T \ aff T , but p … conv T .

33. What special property does set S in Exercise 31 have that
makes pos S \ aff S D conv S?

34. Let S be a nonempty subset of Rn. Show that pos S D

pos .conv S/.

35. Let S be a nonempty convex subset of Rn. Prove x 2 pos S

if and only if x D œs for some � � 0 and some x in S .
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Introductory Example

THE BERLIN AIRLIFT
After World War II, the city of Berlin was an “island”
surrounded by the Soviet zone of occupied Germany. The
city was divided into four sections, with the British, French,
and Americans having jurisdiction overWest Berlin and the
Soviets over East Berlin. But the Russians were eager for
the other three nations to abandon Berlin. After months of
harassment, on June 24, 1948, they imposed a blockade on
West Berlin, cutting off all access by land and rail. With a
civilian population of about 2.5 million people, the isolated
western sectors became dependent on reserve stocks and
airlift replacements.

Four days later, the first American planes landed in
Berlin with supplies of food, and “Operation Vittles” had
begun. At first the airlift seemed doomed to failure because
the needs of the city were overwhelming. The Russians
had cut off all electricity and coal shipments, and the city

was literally under siege. But the Western Allies responded
by flying in thousands of tons of food, coal, medicine,
and other supplies on a daily basis. In May 1949, Stalin
relented, and the blockade was lifted. The airlift, however,
continued for another four months.

The Berlin Airlift was unbelievably successful in using
relatively few aircraft to deliver an enormous amount
of supplies. The design and conduct of this operation
required intensive planning and calculations, which led
to the theoretical development of linear programming, and
the invention of the simplex method by George Dantzig.
The potential of this new tool was quickly recognized by
business and industry, where it is now used to allocate
resources, plan production, schedule workers, organize
investment portfolios, formulate marketing strategies, and
perform many other tasks involving optimization.

There are many situations in business, politics, economics, military strategy, and other
areas where one tries to optimize a certain benefit. This may involve maximizing a profit
or the payoff in a contest or minimizing a cost or other loss. This chapter presents two
mathematical models that deal with optimization problems. The fundamental results
in both cases depend on properties of convex sets and hyperplanes. Section 9.1 intro-
duces the theory of games and develops strategies based on probability. Sections 9.2–9.4
explore techniques of linear programming and use them to solve a variety of problems,
including matrix games larger than those in Section 9.1.

545
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9.1 Matrix Games
The theory of games analyzes competitive phenomena and seeks to provide a basis for
rational decision-making. Its growing importance was highlighted in 1994 when the
Nobel Prize in Economics was awarded to John Harsanyi, John Nash, and Reinhard
Selten, for their pioneering work in the theory of noncooperative games.1

The games in this section are matrix games whose various outcomes are listed in
a payoff matrix. Two players in a game compete according to a fixed set of rules. Player
R (for row) has a choice of m possible moves (or choices of action), and player C (for
column) has n moves. By convention, the payoff matrix A D Œaij � lists the amounts
that the row player R wins from the column player C , depending on the choices R and
C make. Entry aij shows the amount R wins when R chooses action i and C chooses
action j . A negative value for aij indicates a loss for R, the amount R has to pay to C .
The games are often called two-person zero-sum games because the algebraic sum of
the amounts gained by R and C is zero.

EXAMPLE 1 Each player has a supply of pennies, nickels, and dimes. At a given
signal, both players display (or “play”) one coin. If the displayed coins are not the same,
then the player showing the higher-valued coin gets to keep both. If they are both pennies
or both nickels, then playerC keeps both; but if they are both dimes, then playerR keeps
them. Construct a payoff matrix, using p for display of a penny, n for a nickel, and d for
a dime.

SOLUTION Each player has three choices, p, n, and d , so the payoff matrix is 3 � 3:

Player R

p

n

d

Player C

p n d24 35
Consider a row for R and fill in what R receives (or pays), depending on the choice C

makes. First, suppose R plays a penny. If C also plays a penny, R loses 1 cent, because
the coins match. The .1; 1/ entry is �1. If C plays either a nickel or a dime, R also loses
1 cent, because C displays the higher-valued coin. This information goes in row 1:

Player R

p

n

d

Player C

p n d24�1 �1 �1
35

Next, suppose R plays a nickel. If C plays a penny, R wins the penny. Otherwise, R

loses the nickel, because either C matches the nickel or shows the higher-value dime.
Finally, when R plays a dime, R gains either a penny or a nickel, whichever is shown

1 The popular 2002 movie A Beautiful Mind tells a poignant story of the life of John Nash.
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by C , because R’s dime is of higher value. Also, when both players display a dime, R

wins the dime from C because of the special rule for that case.

Player R

p

n

d

Player C

p n d24�1 �1 �1

1 �5 �5

1 5 10

35
By looking at the payoff matrix in Example 1, the players discover that some plays

are better than others. Both players know thatR is likely to choose a row that has positive
entries, whileC is likely to choose a column that has negative entries (a payment fromR

toC ). PlayerR notes that every entry in row 3 is positive and chooses to play a dime. No
matter what C may do, the worst that can happen to R is to win a penny. Player C notes
that every column contains a positive entry and thereforeC cannot be certain of winning
anything. So player C chooses to play a penny, which will minimize the potential loss.

From a mathematical point of view, what has each player done? Player R has found
the minimum of each row (the worst that could happen for that play) and has chosen the
row for which this minimum is largest. (See Figure 1.) That is, R has computed

max
i

�
min

j
aij

�

21

1

1

21

5

25

21

10

25

21

1

1 5 10

25

Player C Row minima

Player R 

Column maxima

Max of the minima

Min of the maxima  

FIGURE 1

Observe that for C , a large positive payment to R is worse than a small positive
payment. Thus C has found the maximum of each column (the worst that can happen to
C for that play) and has chosen the column for which this maximum is smallest. Player
C has found

min
j

h
max

i
aij

i
For this payoff matrix Œaij �,

max
i

min
j

aij D min
j

max
i

aij D 1

DEFINITION If the payoffmatrix of a matrix game contains an entry aij that is both the minimum
of row i and the maximum of column j , then aij is called a saddle point.

In Example 1, the entry a31 is a saddle point for the payoff matrix. As long as both
players continue to seek their best advantage, playerRwill always display a dime (row 3)
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and player C will always display a penny (column 1). Some games may have more than
one saddle point.

The situation is not quite so simple in the next example.

EXAMPLE 2 Again suppose that each player has a supply of pennies, nickels, and
dimes to play, but this time the payoff matrix is given as follows:

10

0

1

p

d

n

25

210

1

5

25

21

p           n          d
25

210

10 1 5

21

Player C 
Row minima

Player R 

Column maxima

Max of the minima

Min of the maxima  

If player R reasons as in the first example and looks at the row minima, R will choose
to play a nickel, thereby maximizing the minimum gain (in this case a loss of 1). Player
C , looking at the column maxima (the greatest payment to R), will also select a nickel
to minimize the loss to R.

Thus, as the game begins, R and C both continue to play a nickel. After a while,
however, C begins to reason, “If R is going to play a nickel, then I’ll play a dime so
that I can win a penny.” However, when C starts to play a dime repeatedly, R begins to
reason, “If C is going to play a dime, then I’ll play a penny so that I can win a nickel.”
Once R has done this, C switches to a nickel (to win a nickel) and then R starts playing
a nickel : : : and so on. It seems that neither player can develop a winning strategy.

Mathematically speaking, the payoff matrix for the game in Example 2 does not
have a saddle point. Indeed,

max
i

min
j

aij D �1

while
min

j
max

i
aij D 1

This means that neither player can play the same coin repeatedly and be assured of opti-
mizing the winnings. In fact, any predictable strategy can be countered by the opponent.
But is it possible to formulate some combination of plays that over the long run will
produce an optimal return? The answer is yes (as Theorem 3 later will show), when
each move is made at random, but with a certain probability attached to each possible
choice.

Here is a way to imagine how playerR could develop a strategy for playing a matrix
game. Suppose thatR has a device consisting of a horizontal metal arrowwhose center of
gravity is supported on a vertical rod in the middle of a flat circular region. The region is
cut into pie-shaped sectors, one for each of the rows in the payoff matrix. Player R gives
the arrow an initial spin and waits for it to come to rest. The position of the arrowhead
at rest determines one play for R in the matrix game.

If the area of the circle is taken as 1 unit, then the areas of the various sectors sum to
1, and these areas give the relative frequencies, or probabilities, of selecting the various
plays in the matrix game, when the game is played many times. For instance, if there
are five sectors of equal area and if the arrow is spun many times, player R will select
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each of the five plays about 1=5 of the time. This strategy is specified by the vector in
R5 whose entries all equal 1=5. If the five sectors of the circle are unequal in size, then
in the long run some game plays will be chosen more frequently than the others. The
corresponding strategy for R is specified by a vector in R5 that lists the areas of the five
sectors.

DEFINITION A probability vector in Rm is a vector x in Rm whose entries are nonnegative and
sum to 1. Such an x has the form

x D

264 x1

:::

xm

375 ; xi � 0 for i D 1; : : : ; m and
mX

iD1

xi D 1

Let A be an m � n payoff matrix for a game. The strategy space for player R is
the set of all probability vectors in Rm, and the strategy space for player C is the
set of all probability vectors in Rn. A point in a strategy space is called a strategy.
If one entry in a strategy is 1 (and the other entries are zeros), the strategy is called
a pure strategy.

The pure strategies in Rm are the standard basis vectors for Rm, e1; : : : ; em. In gen-
eral, each strategy x is a linear combination, x1e1 C � � � C xmem, of these pure strategies
with nonnegative weights that sum to 1.2

Suppose now thatR and C are playing them � nmatrix gameA D Œaij �, where aij

is the entry in the i th row and the j th column of A. There are mn possible outcomes of
the game, depending on the row R chooses and the column C chooses. Suppose R uses
strategy x and C uses strategy y, where

x D

264 x1

:::

xm

375 and y D

264 y1

:::

yn

375
SinceR plays the first rowwith probability x1 andC plays the first columnwith probabil-
ity y1 and since their choices aremade independently, it can be shown that the probability
is x1y1 that R chooses the first row and C chooses the first column. Over the course of
many games, the expected payoff to R for this outcome is a11x1y1 for one game. A
similar computation holds for each possible pair of choices that R and C can make. The
sum of the expected payoffs toR over all possible pairs of choices is called the expected
payoff, E.x; y/, of the game to player R for strategies x and y. That is,

E.x; y/ D

mX
iD1

nX
jD1

xi aij yj D xTAy

Roughly speaking, the number E.x; y/ is the average amount that C will pay to R

per game, when R and C play a large number of games using the strategies x and y,
respectively.

2More precisely, each strategy is a convex combination of the set of pure strategies—that is, a point in the
convex hull of the set of standard basis vectors. This fact connects the theory of convex sets to the study of
matrix games. The strategy space for R is an .m� 1/-dimensional simplex in Rm, and the strategy space for
C is an .n� 1/-dimensional simplex in Rn. See Sections 8.3 and 8.5 for definitions.
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Let X denote the strategy space for R and Y the strategy space for C . If R were to
choose a particular strategy, say Qx, and if C were to discover this strategy, then C would
certainly choose y to minimize

E.Qx; y/ D QxTAy

The value of using strategy Qx is the number v.Qx/ defined by

v.Qx/ D min
y2Y

E.Qx; y/ D min
y2Y

QxTAy (1)

Since QxTA is a 1 � n matrix, the mapping y 7! E.Qx; y/ D QxTAy is a linear functional on
the strategy space Y . From this, it can be shown that E.Qx; y/ attains its minimum when
y is one of the pure strategies, e1; : : : ; en, for C .3

Recall that Aej is the j th column of the matrix A, usually denoted by aj . Since the
minimum in (1) is attained when y D ej for some j , (1) may be written, with x in place
of Qx, as

v.x/ D min
j

E.x; ej / D min
j

xTAej D min
j

xTaj D min
j

x�aj (2)

That is, v.x/ is the minimum of the inner product of x with each of the columns of A.
The goal of R is to choose x to maximize v.x/.

DEFINITION The number vR, defined by

vR D max
x2X

v.x/ D max
x2X

min
y2Y

E.x; y/ D max
x2X

min
j

x�aj

with the notation as described above, is called the value of the game to row player
R. A strategy Ox for R is called optimal if v.Ox/ D vR.

Of course, E.x; y/ may exceed vR for some x and y if C plays poorly. Thus, Ox is
optimal for R if E.Ox; y/ � vR for all y 2 Y. This value vR can be thought of as the most
that player R can be sure to receive from C , independent of what player C may do.

A similar analysis for player C , using the pure strategies for x, shows that a partic-
ular strategy y will have a value v.y/ given by

v.y/ D max
x2X

E.x; y/ D max
i

E.ei ; y/ D max
i

rowi .A/y (3)

because eT
iA D rowi .A/: That is, the value of strategy y to C is the maximum of the

inner product of y with each of the rows of A. The number vC , defined by

vC D min
y2Y

v.y/ D min
y2Y

max
i

rowi .A/y

is called the value of the game to column player C . This is the least that C will have
to lose regardless of what R may do. A strategy Oy for C is called optimal if v.Oy/ D vC .
Equivalently, Oy is optimal if E.x; Oy/ � vC for all x in X .

3A linear functional on Y is a linear transformation from Y into R. The pure strategies are the extreme
points of the strategy space for a player. The stated result follows directly from Theorem 16 in Section 8.5.
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THEOREM 1 In any matrix game, vR � vC .

PROOF For any x in X , the definition v.x/ D miny2Y E.x; y/ implies that v.x/ �

E.x; y/ for each y in Y . Also, since v.y/ is the maximum of E.x; y/ over all x, v.y/ �

E.x; y/ for each individual x. These two inequalities show that

v.x/ � E.x; y/ � v.y/

for all x 2 X and for all y 2 Y . For any fixed y, the left inequality above implies that
maxx2X v.x/ � E.x; y/. Similarly, for each x, E.x; y/ � miny2Y v.y/: Thus,

max
x2X

v.x/ � min
y2Y

v.y/

which proves the theorem.

EXAMPLE 3 Let A D

24 10 �5 5

1 1 �1

0 �10 �5

35, x D
2664

1
4

1
2

1
4

3775, and y D

2664
1
4

1
4

1
2

3775, where A

comes from Example 2. Compute E.x; y/ and verify that this number lies between v.x/

and v.y/.

SOLUTION Compute

E.x; y/ D xTAy D
�

1
4

1
2

1
4

�24 10 �5 5

1 1 �1

0 �10 �5

35
2664

1
4

1
4

1
2

3775
D
�

1
4

1
2

1
4

�2664
15
4

0

�5

3775 D � 5
16

Next, from (2), v.x/ is the minimum of E.x; ej / for 1 � j � 3. So compute

E.x; e1/ D 10
4
C

1
2
C 0 D 3

E.x; e2/ D � 5
4
C

1
2
�

10
4
D �

13
4

E.x; e3/ D 5
4
�

1
2
�

5
4
D �

1
2

Then v.x/ D min
˚
3;� 13

4
;� 1

2

	
D �

13
4

< � 5
16
D E.x; y/. Similarly, E.e1; y/ D 15

4
,

E.e2; y/ D 0, andE.e3; y/ D �5, and so v.y/ D max
˚

15
4

; 0;�5
	
D

15
4
. ThusE.x; y/�

v.y/, as expected.

In Theorem 1, the proof that vR � vC was simple. A fundamental result in game
theory is that vR D vC , but this is not easy to prove. The first proof by John vonNeumann
in 1928 was technically difficult. Perhaps the best-known proof depends strongly on
certain properties of convex sets and hyperplanes. It appeared in the classic 1944 book
Theory of Games and Economic Behavior, by von Neumann and Oskar Morgenstern.4

4More precisely, the proof involves finding a hyperplane that strictly separates the origin 0 from the convex
hull of fa1; : : : ; an; e1; : : : ; emg, where a1; : : : ; an are the columns of A and e1; : : : ; em are the standard basis
vectors in Rm. The details are in Steven R. Lay, Convex Sets and Their Applications (New York: John Wiley
& Sons, 1982; Mineola, NY: Dover Publications, 2007), pp. 159–163.
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THEOREM 2 Minimax Theorem

In any matrix game, vR D vC . That is,

max
x2X

min
y2Y

E.x; y/ D min
y2Y

max
x2X

E.x; y/

DEFINITION The common value v D vR D vC is called the value of the game. Any pair of
optimal strategies .Ox; Oy/ is called a solution to the game.

When .Ox; Oy/ is a solution to the game, vR D v.Ox/ � E.Ox; Oy/ � v.Oy/ D vC , which
shows that E.Ox; Oy/ D v.

The next theorem is the main theoretical result of this section. A proof can be based
either on theMinimax Theorem or on the theory of linear programming (in Section 9.4).5

THEOREM 3 Fundamental Theorem for Matrix Games

In anymatrix game, there are always optimal strategies. That is, everymatrix game
has a solution.

2�n Matrix Games
When a game matrix A has 2 rows and n columns, an optimal row strategy and vR are
fairly easy to compute. Suppose

A D

�
a11 a12 � � � a1n

a21 a22 � � � a2n

�
The objective of player R is to choose x in R2 to maximize v.x/. Since x has only two
entries, the strategy space X for R may be parameterized by a variable t , with a typical

x in X having the form x.t/ D

�
1 � t

t

�
for 0 � t � 1. From formula (2), v.x.t// is the

minimum of the inner product of x.t/ with each of the columns of A. That is,

v.x.t// D min
�
x.t/T

�
a1j

a2j

�
W j D 1; : : : ; n

�
D min

˚
a1j .1 � t/C a2j t W j D 1; : : : ; n

	
(4)

5 The proof based on the Minimax Theorem goes as follows: The function v.x/ is continuous on the compact
set X , so there exists a point Ox in X such that

v.Ox/ D max
x2X

v.x/ D vR

Similarly, there exists Oy in Y such that

v.Oy/ D min
y2Y

v.y/ D vC

According to the Minimax Theorem, vR D vC D v.
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Thus v.x.t// is the minimum value of n linear functions of t . When these functions are
graphed on one coordinate system for 0 � t � 1, the graph of ´ D v.x.t// as a function
of t becomes evident, and the maximum value of v.x.t// is easy to find. The process is
illustrated best by an example.

EXAMPLE 4 Consider the game whose payoff matrix is

A D

�
1 5 3 6

4 0 1 2

�
a. On a t -´ coordinate system, sketch the four lines ´ D a1j .1 � t /C a2j t for 0 �

t � 1, and darken the line segments that correspond to the graph of ´ D v.x.t//,
from (4).

b. Identify the highest point M D .t; ´/ on the graph of v.x.t//. The ´-coordinate of
M is the value vR of the game for R, and the t -coordinate determines an optimal
strategy Ox.t/ for R.

SOLUTION

a. The four lines are
´ D 1 � .1 � t /C 4 � t D 3t C 1

´ D 5 � .1 � t /C 0 � t D �5t C 5

´ D 3 � .1 � t /C 1 � t D �2t C 3

´ D 6 � .1 � t /C 2 � t D �4t C 6

See Figure 2. Notice that the line ´ D a1j � .1 � t /C a2j � t goes through the points
.0; a1j / and .1; a2j /. For instance, the line ´ D 6 � .1 � t /C 2 � t for column 4 goes
through the points .0; 6/ and .1; 2/. The heavy polygonal path in Figure 2 represents
v.x/ as a function of t , because the ´-coordinate of a point on this path is theminimum
of the corresponding ´-coordinates of points on the four lines in Figure 2.

t
1

3

2

column 2
column 3

column 4

column 1

1

M

0

z

6

5

4

2
5

11
5

FIGURE 2

b. The highest point,M , on the graph of v.x/ is the intersection of the lines correspond-
ing to the first and third columns of A. The coordinates of M are

�
2
5
; 11

5

�
.6 The value

6 Solve the equations for columns 1 and 3 simultaneously:

(column 1) ´ D 3t C 1

(column 3) ´ D �2t C 3

�
) t D

2

5
; ´ D

11

5
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of the game for R is 11
5

: This value is attained at t D 2
5
, so the optimal strategy for

R is Ox D

"
1 � 2

5

2
5

#
D

"
3
5

2
5

#
.

For any 2 � n matrix game, Example 4 illustrates the method for finding an optimal
solution for playerR. Theorem 3 guarantees that there also exists an optimal strategy for
playerC , and the value of the game is the same for C as forR. With this value available,
an analysis of the graphical solution for R, as in Figure 2, will reveal how to produce an
optimal strategy Oy for C . The next theorem supplies the key information about Oy.

THEOREM 4 Let Ox and Oy be optimal strategies for an m � n matrix game whose value is v, and
suppose that

Ox D Ox1e1 C � � � C Oxmem in Rm (5)

Then Oy is a convex combination of the pure strategies ej in Rn for which
E.Ox; ej / D v. In addition, Oy satisfies the equation

E.ei ; Oy/ D v (6)

for each i such that Oxi ¤ 0:

PROOF Write Oy D Oy1e1 C � � � C Oynen in Rn, and note that v D E.Ox; Oy/ D v.Ox/ �

E.Ox; ej / for j D 1; : : : ; n. So there exist nonnegative numbers "j such that

E.Ox; ej / D v C "j .j D 1; : : : ; n/

Then

v D E.Ox; Oy/ D E.Ox; Oy1e1 C � � � C Oynen/

D

nX
jD1

Oyj E.Ox; ej / D

nX
jD1

Oyj .v C "j /

D v C

nX
jD1

Oyj "j

because the Oyj sum to 1. This equality is possible only if Oyj D 0whenever "j > 0. Thus
Oy is a linear combination of the ej for which "j D 0. For such j , E.Ox; ej / D v:

Next, observe that E.ei ; Oy/ � v.Oy/ D E.Ox; Oy/ for i D 1; : : : ; m. So there exist
nonnegative numbers ıi such that

E.ei ; Oy/C ıi D v .i D 1; : : : ; m/ (7)

Then, using (5) gives

v D E.Ox; Oy/ D

mX
iD1

Oxi E.ei ; Oy/

D

mX
iD1

Oxi .v � ıi / D v �

mX
iD1

Oxi ıi

since the Oxi sum to 1. This equality is possible only if ıi D 0 when Oxi ¤ 0: By (7),
E.ei ; Oy/ D v for each i such that Oxi ¤ 0:
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EXAMPLE 5 The value of the game in Example 4 is 11
5
, attained when Ox D

"
3
5

2
5

#
.

Use this fact to find an optimal strategy for the column player C .

SOLUTION The ´-coordinate of the maximum point M in Figure 2 is the value of
the game, and the t -coordinate identifies the optimal strategy x. 2

5
/ D Ox: Recall that the

´-coordinates of the lines in Figure 2 represent E.x.t/; ej / for j D 1; : : : ; 4. Only the
lines for columns 1 and 3 pass through the point M , which means that

E.Ox; e1/ D 11
5

and E.Ox; e3/ D 11
5

while E.Ox; e2/ and E.Ox; e4/ are greater than 11
5
. By Theorem 4, the optimal column

strategy Oy for C is a linear combination of the pure strategies e1 and e3 in R2. Thus, Oy
has the form

Oy D c1

2664
1

0

0

0

3775C c3

2664
0

0

1

0

3775 D
2664

c1

0

c3

0

3775
where c1 C c3 D 1. Since both coordinates of the optimal Ox are nonzero, Theorem 4
shows that E.e1; Oy/ D 11

5
and E.e2; Oy/ D 11

5
. Each condition, by itself, determines Oy.

For example,

E.e1; Oy/ D eT
1AOy D

�
1 0

�� 1 5 3 6

4 0 1 2

�2664
c1

0

c3

0

3775 D c1 C 3c3 D
11
5

Substitute c3 D 1 � c1, and obtain c1 C 3.1 � c1/ D 11
5
, c1 D

2
5
and c3 D

3
5
. The

optimal strategy for C is Oy D

266664
2
5

0
3
5

0

377775.

Reducing the Size of a Game
The generalm � nmatrix game can be solved using linear programming techniques, and
Section 9.4 describes one method for doing this. In some cases, however, a matrix game
can be reduced to a “smaller” game whose matrix has only two rows. If this happens,
the graphical method of Examples 4 and 5 is available.

DEFINITION Given a and b in Rn, with entries ai and bi , respectively, vector a is said to
dominate vector b if ai � bi for all i D 1; : : : ; n and ai > bi for at least one i .
If a dominates b, then b is said to be recessive to a.

Suppose that in the matrix game A, row r dominates row s. This means that for R

the pure strategy of choosing row r is at least as good as the pure strategy of choosing
row s, no matter what C may choose, and for some choice by C; r is better than s.
It follows that the recessive row s (the “smaller” one) can be ignored by R without
hurting R’s expected payoff. A similar analysis applies to the columns of A, in which
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case the dominating “larger” column is ignored. These observations are summarized in
the following theorem.

THEOREM 5 Let A be an m � n matrix game. If row s in the matrix A is recessive to some
other row, then let A1 be the .m � 1/ � n matrix obtained by deleting row s from
A. Similarly, if column t of matrix A dominates some other column, let A2 be
the m � .n � 1/ matrix obtained by deleting column t from A. In either case, any
optimal strategy of the reduced matrix game A1 or A2 will determine an optimal
strategy for A.

EXAMPLE 6 Use the process described in Theorem 5 to reduce the followingmatrix
game to a smaller size. Then find the value of the game and optimal strategies for both
players in the original game.

A D

24 7 1 6 7

8 3 1 0

4 5 3 3

35
SOLUTION Since the first column dominates the third, player C will never want to
use the first pure strategy. So delete column 1 and obtain24 � 1 6 7

� 3 1 0

� 5 3 3

35
In this matrix, row 2 is recessive to row 3. Delete row 2 and obtain24 � 1 6 7

� � � �

� 5 3 3

35
This reduced 2 � 3 matrix can be reduced further by dropping the last column, since it
dominates column 2. Thus, the original matrix game A has been reduced to

B D

�
1 6

5 3

�
when A D

24 7 1 6 7

8 3 1 0

4 5 3 3

35 (8)

and any optimal strategy for B will produce an optimal strategy for A, with zeros as
entries corresponding to deleted rows or columns.

A quick check of matrix B shows that the game has no saddle point (because 3 is
the max of the row minima and 5 is the min of the column maxima). So the graphical
solution method is needed. Figure 3 shows the lines corresponding to the two columns
of B , whose equations are ´ D 4t C 1 and ´ D �3t C 6. They intersect where t D 5

7
I

the value of the game is 27
7
, and the optimal row strategy for matrix B is

Ox D x. 5
7
/ D

"
1 � 5

7

5
7

#
D

"
2
7

5
7

#
Since the game has no saddle point, the optimal column strategy must be a linear

combination of the two pure strategies. Set Oy D c1e1 C c2e2, and use the second part of
Theorem 4 to write

27
7
D E.e1; Oy/ D

�
1 0

�� 1 6

5 3

��
c1

c2

�
D c1 C 6c2 D .1 � c2/C 6c2
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t
1

3

column 2

column 1

1

M

0

z

6

5

5
7

27
7

FIGURE 3

Solving gives 5c2 D
20
7
, c2 D

4
7
, and c1 D 1 � c2 D

3
7
. Thus Oy D

"
3
7

4
7

#
. As a check,

compute E.e2; Oy/ D 5. 3
7
/C 3. 4

7
/ D 27

7
D v.

The final step is to construct the solution for matrix A from the solution for matrix
B (given by Ox and Oy above). Look at the matrices in (8) to see where the extra zeros go.
The row and column strategies for A are, respectively,

Ox D

264 2
7

0
5
7

375 and Oy D

266664
0
3
7
4
7

0

377775
Practice Problem

Find the optimal strategies and the value of the matrix game24�3 4 1 3

2 2 �1 0

1 5 2 3

35

9.1 Exercises
In Exercises 1–4, write the payoff matrix for each game.

1. Player R has a supply of dimes and quarters. Player R

chooses one of the coins, and playerC must guess which coin
R has chosen. If the guess is correct, C takes the coin. If the
guess is incorrect, C gives R an amount equal to R’s chosen
coin.

2. Players R and C each show one, two, or three fingers. If the
total number N of fingers shown is even, then C pays N

dollars to R. If N is odd, R pays N dollars to C .

3. In the traditional Japanese children’s game janken (or “rock,
scissors, paper”), at a given signal, each of two players shows
either no fingers (rock), two fingers (scissors), or all five

(paper). Rock beats scissors, scissors beats paper, and paper
beats rock. In the case of a tie, there is no payoff. In the case
of a win, suppose the winner collects 5 yen.

4. PlayerR has three cards: a red 3, a red 6, and a black 7. Player
C has two cards: a red 4 and a black 9. They each show one
of their cards. If the cards are the same color, R receives the
larger of the two numbers. If the cards are of different colors,
C receives the sum of the two numbers.

Find all saddle points for the matrix games in Exercises 5–8.

5.
�

4 3

1 �1

�
6.

�
2 1 3

4 �2 1

�
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7.

24 5 3 4 3

�2 1 �5 2

4 3 7 3

35 8.

24�2 4 1 �1

3 5 2 2

1 �3 0 2

35
9. Let M be the matrix game having payoff matrix24 1 2 �2

0 1 4

3 �1 1

35. Find E.x; y/, v.x/, and v.y/ when x and y

have the given values.

a. x D

2664
1
3

1
2

1
6

3775 and y D

2664
1
4

1
2

1
4

3775
b. x D

2664
1
4

1
2

1
4

3775 and y D

2664
1
2

1
4

1
4

3775
10. Let M be the matrix game having payoff matrix24 2 0 1 �1

�1 1 �2 0

1 �2 2 1

35. Find E.x; y/, v.x/, and v.y/ when

x and y have the given values.

a. x D

264 1
3

0
2
3

375 and y D

266664
1
4
1
2

0
1
4

377775

b. x D

2664
1
2

1
4

1
4

3775 and y D

2666664
0

1
4

1
2

1
4

3777775
In Exercises 11–18, find the optimal row and column strategies
and the value of each matrix game.

11.
�

3 �2

0 1

�
12.

�
2 �2

�3 6

�
13.

�
3 5

4 1

�
14.

�
3 5 3 2

�1 9 1 8

�

15.
�

4 6 2 0

1 3 2 5

�
16.

24 5 �1 1

4 2 3

�2 �3 1

35

17.

2664
0 1 �1 4 3

1 �1 3 �1 �3

2 �1 4 0 �2

�1 0 �2 5 1

3775

18.

2664
6 4 5 5

0 4 2 7

6 3 5 2

2 5 3 7

3775
19. A certain army is engaged in guerrilla warfare. It has two

ways of getting supplies to its troops: it can send a convoy

up the river road or it can send a convoy overland through
the jungle. On a given day, the guerrillas can watch only one
of the two roads. If the convoy goes along the river and the
guerrillas are there, the convoy will have to turn back and 4
army soldiers will be lost. If the convoy goes overland and
encounters the guerrillas, half the supplies will get through,
but 7 army soldiers will be lost. Each day a supply convoy
travels one of the roads, and if the guerrillas are watching the
other road, the convoy gets through with no losses. Set up and
solve the following as matrix games, with R being the army.

a. What is the optimal strategy for the army if it wants to
maximize the amount of supplies it gets to its troops?
What is the optimal strategy for the guerrillas if they want
to prevent the most supplies from getting through? If these
strategies are followed, what portion of the supplies gets
through?

b. What is the optimal strategy for the army if it wants to
minimize its casualties? What is the optimal strategy for
the guerrillas if they want to inflict maximum losses on
the army? If these strategies are followed, what portion of
the supplies gets through?

20. Suppose in Exercise 19 that whenever the convoy goes over-
land two soldiers are lost to land mines, whether they are
attacked or not. Thus, if the army encounters the guerrillas,
there will be 9 casualties. If it does not encounter the guerril-
las, there will be 2 casualties.

a. Find the optimal strategies for the army and the guerrillas
with respect to the number of army casualties.

b. In part (a), what is the “value” of the game? What does
this represent in terms of the troops?

In Exercises 21–30, mark each statement True or False (T/F).
Justify each answer.

21. (T/F) The payoff matrix for a matrix game indicates what R

wins for each combination of moves.

22. (T/F) If aij is a saddle point, then aij is the smallest entry in
row i and the largest entry in column j .

23. (T/F) With a pure strategy, a player makes the same choice
each time the game is played.

24. (T/F) Each pure strategy is an optimal strategy.

25. (T/F) The value �.x/ of a particular strategy x to player R is
equal to the maximum of the inner product of x with each of
the columns of the payoff matrix.

26. (T/F) The value �R of the game to player R is the maximum
of the values of the various possible strategies for R.

27. (T/F)TheMinimax Theorem says that everymatrix game has
a solution.

28. (T/F) The Fundamental Theorem for Matrix Games shows
how to solve every matrix game.
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29. (T/F) If row s is recessive to some other row in payoff matrix
A, then row s will not be used (that is, have probability zero)
in an optimal strategy for (row) player R.

30. (T/F) If column t dominates some other column in a payoff
matrix A, then column t will not be used (that is, have prob-
ability zero) in an optimal strategy for (column) player C .

31. Find the optimal strategies and the value of the game in
Example 2.

32. Bill and Wayne are playing a game in which each player has
a choice of two colors: red or blue. The payoff matrix with
Bill as the row player is given below.

red
blue

red blue�
�1 2

3 �4

�
For example, this means that if both people choose red, then
Bill pays Wayne one unit.

a. Using the same payoffs for Bill and Wayne, write the
matrix that shows the winnings with Wayne as the row
player.

b. If A is the matrix with Bill as the row player, write your
answer to (a) in terms of A.

33. Consider the matrix game A D

�
a b

c d

�
, where A has no

saddle point.

a. Find a formula for the optimal strategies Ox for R and Oy for
C . What is the value of the game?

b. Let J D

�
1 1

1 1

�
, and let ˛ and ˇ be real numbers

with ˛ ¤ 0. Use your answer in part (a) to show that the
optimal strategies for the matrix game B D ˛AC ˇJ are
the same as for A. In particular, note that the optimal
strategies for A and AC ˇJ are the same.

34. Let A be a matrix game having value v. Find an example to
show that E.x; y/ D v does not necessarily imply that x and
y are optimal strategies.

Solution to Practice Problem

The first row is recessive to the third row, so the first rowmay be eliminated. The second
and fourth columns dominate the first and third columns, respectively. Deletion of the
second and fourth columns leaves the matrix B as

B D

�
2 �1

1 2

�
when A D

24�3 4 1 3

2 2 �1 0

1 5 2 3

35
The game for B has no saddle point, but a graphical analysis will work.
The two columns of B determine the two lines shown below, whose equations are
´ D 2 � .1 � t/C 1 � t and ´ D �1 � .1 � t/C 2 � t .

t

22

1

21

z

3
4

5
4

These lines intersect at the point
�

3
4
; 5

4

�
. The value of the game is 5

4
, and the optimal

row strategy for the matrix game B is

Ox D x
�

3
4

�
D

"
1 � 3

4

3
4

#
D

"
1
4

3
4

#

By Theorem 4, the optimal column strategy, Oy D
�

c1

c2

�
, satisfies two equations

E.e1; Oy/ D 5
4
and E.e2; Oy/ D 5

4
, because Ox is a linear combination of both e1 and e2.
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Solution to Practice Problem (Continued)

Each of these equations determines Oy. For example,

5

4
D E.e1; Oy/ D

�
1 0

�� 2 �1

1 2

��
c1

c2

�
D 2c1 � c2 D 2c1 � .1 � c1/ D 3c1 � 1

Thus, c1 D
3
4
; and so c2 D

1
4
; and Oy D

"
3
4

1
4

#
: As a check, compute

E.e2; Oy/ D
�

0 1
�� 2 �1

1 2

�" 3
4

1
4

#
D
�

1 2
�" 3

4

1
4

#
D

5
4

This solves the game forB . The optimal row strategy Ox forA needs a 0 in the first entry
(for the deleted first row); the optimal column strategy Oy for A needs 0’s in entries 2
and 4 (for the two deleted columns). Thus

Ox D

2664 0

1
4

3
4

3775 and Oy D

266664
3
4

0

1
4

0

377775

9.2 Linear Programming Geometric Method
Since the 1950s, the variety and size of industrial linear programming problems have
grown along with the dramatic increase in computing power. Still, at their core, linear
programming problems have a concise mathematical description, discussed in this sec-
tion. The final example in the section presents a geometric view of linear programming
that is important for visualizing the algebraic approach needed for larger problems.

Generally speaking, a linear programming problem involves a system of linear
inequalities in variables x1; : : : ; xn and a linear functional f fromRn intoR. The system
typically has many free variables, and the problem is to find a solution x that maximizes
or minimizes f .x/:

EXAMPLE 1 The Shady-Lane grass seed company blends two types of seed mix-
tures, EverGreen and QuickGreen. Each bag of EverGreen contains 3 pounds of fescue
seed, 1 pound of rye seed, and 1 pound of bluegrass seed. Each bag of QuickGreen
contains 2 pounds of fescue seed, 2 pounds of rye seed, and 1 pound of bluegrass seed.
The company has 1,200 pounds of fescue seed, 800 pounds of rye seed, and 450 pounds
of bluegrass seed available to put into its mixtures. The company makes a profit of $2 on
each bag of EverGreen and $3 on each bag of QuickGreen that it produces. Set up the
mathematical problem that determines the number of bags of each mixture that Shady-
Lane should make in order to maximize its profit.

SOLUTION The phrase “maximize : : : profit” identifies the goal or objective of the
problem. The first step, then, is to create a formula for the profit. Begin by naming the
quantities that can vary. Let x1 be the number of bags of EverGreen and x2 the number
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of bags of QuickGreen that are produced. Since the profit on each bag of EverGreen is
$2 and the profit on each bag of QuickGreen is $3, the total profit (in dollars) is

2x1 C 3x2 (profit function)

The next step is to write inequalities or equalities that x1 and x2 must satisfy, one for each
of the ingredients that are in limited supply. Notice that each bag of EverGreen requires
3 pounds of fescue seed and each bag ofQuickGreen requires 2 pounds of fescue seed. So
the total amount of fescue seed required is 3x1 C 2x2 pounds. Since only 1,200 pounds
are available, x1 and x2 must satisfy

3x1 C 2x2 � 1;200 (fescue)

Similarly, EverGreen needs 1 pound of rye seed per bag, QuickGreen needs 2 pounds
per bag, and only 800 pounds of rye seed are available. Thus, the total amount of rye
seed required is x1 C 2x2, and x1 and x2 must satisfy

x1 C 2x2 � 800 (rye)

As for the bluegrass seed, EverGreen requires 1 pound per bag and QuickGreen requires
1 pound per bag. Since 450 pounds are available,

x1 C x2 � 450 (bluegrass)

Of course, x1 and x2 cannot be negative, so x1 and x2 must also satisfy

x1 � 0 and x2 � 0

The problem is summarized mathematically as

Maximize 2x1 C 3x2 (profit function)

subject to 3x1 C 2x2 � 1;200 (fescue)

x1 C 2x2 � 800 (rye)

x1 C x2 � 450 (bluegrass)

and x1 � 0; x2 � 0:

EXAMPLE 2 An oil refining company has two refineries that produce three grades
of unleaded gasoline. Each day refinery A produces 12,000 gallons of regular, 4,000
gallons of premium, and 1,000 gallons of super, at a cost of $3,500. Each day refinery B
produces 4,000 gallons of regular, 4,000 gallons of premium, and 5,000 gallons of super,
at a cost of $3,000. An order is received for 48,000 gallons of regular, 32,000 gallons of
premium, and 20,000 gallons of super. Set up a mathematical problem that determines
the number of days each refinery should operate in order to fill the order at the least cost.

SOLUTION Suppose that refinery A operates x1 days and refinery B operates x2 days.
The cost of doing this is 3;500x1 C 3;000x2 dollars. The problem is to find a production
schedule .x1; x2/ that minimizes this cost and also ensures that the required gasoline is
produced.

Since refinery A produces 12,000 gallons of regular each day and refinery B
produces 4,000 gallons of regular each day, the total produced is 12;000x1 C 4;000x2.
The total should be at least 48,000 gallons. That is,

12;000x1 C 4,000x2 � 48;000
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Similarly, for the premium,

4;000x1 C 4;000x2 � 32;000

and, for the super,
1;000x1 C 5;000x2 � 20;000

As in Example 1, x1 and x2 cannot be negative, so x1 � 0 and x2 � 0.
The problem is summarized mathematically as

Minimize 3;500x1 C 3;000x2 (cost function)

subject to 12;000x1 C 4;000x2 � 48;000 (regular)

4;000x1 C 4;000x2 � 32;000 (premium)

1;000x1 C 5;000x2 � 20;000 (super)

and x1 � 0; x2 � 0:

The examples show how a linear programming problem involves finding the maxi-
mum (or minimum) of a linear function, called the objective function, subject to certain
linear constraints. In many situations, the constraints take the form of linear inequalities
and the variables are restricted to nonnegative values. Here is a precise statement of the
so-called canonical form of a linear programming problem.

DEFINITION
Given b D

264 b1

:::

bm

375 in Rm, c D

264 c1

:::

cn

375 in Rn, and an m � n matrix A D
�

aij

�
, the

canonical linear programming problem is the following:

Find an n-tuple x D

264 x1

:::

xn

375 in Rn to maximize

f .x1; : : : ; xn/ D c1x1 C c2x2 C � � � C cnxn

subject to the constraints

a11x1 C a12x2 C � � � C a1nxn � b1

a21x1 C a22x2 C � � � C a2nxn � b2

:::

am1x1 C am2x2 C � � � C amnxn � bm

and
xj � 0 for j D 1; : : : ; n

This may be restated in vector-matrix notation1 as follows:

Maximize f .x/ D cTx (1)

subject to the constraints Ax � b (2)

and x � 0 (3)

where an inequality between two vectors applies to each of their coordinates.
Any vector x that satisfies (2) and (3) is called a feasible solution, and the set

of all feasible solutions, denoted by F , is called the feasible set. A vector x in F

is an optimal solution if f .x/ D maxx2F f .x/.

1 Some authors write cTx as c � x, using the dot product.
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The canonical statement of the problem is really not as restrictive as it might seem.
To minimize a function h.x/, replace it with the problem of maximizing the function
�h.x/. A constraint inequality of the sort

ai1x1 C � � � C ainxn � bi

can be replaced by
�ai1x1 � � � � � ainxn � �bi

An equality constraint
ai1x1 C � � � C ainxn D bi

can be replaced by two inequalities

ai1x1 C � � � C ainxn � bi

�ai1x1 � � � � � ainxn � �bi

With an arbitrary canonical linear programming problem, two things can go wrong.
If the constraint inequalities are inconsistent, then F is the empty set. If the objective
function takes on arbitrarily large values inF , then the desired maximum does not exist.
In the former case, the problem is said to be infeasible; in the latter case, the problem is
called unbounded.

EXAMPLE 3 The problem

Maximize 5x

subject to x � 3

�x � �4

x � 0

is infeasible, since there is no x such that x � 3 and x � 4.

EXAMPLE 4 The problem

Maximize 5x

subject to �x � 3

x � 0

is unbounded. The values of 5x may be arbitrarily large, as x is only required to satisfy
x � 0 (and x � �3).

Fortunately, these are the only two things that can go wrong.

THEOREM 6 If the feasible set F is nonempty and if the objective function is bounded above
on F , then the canonical linear programming problem has at least one optimal
solution. Furthermore, at least one of the optimal solutions is an extreme point of
F .2

2 The feasible set is the solution of a system of linear inequalities. Geometrically, this corresponds to the
intersection of a finite number of (closed) half-spaces, sometimes called a polyhedral set. Intuitively, the
extreme points correspond to the “corner points,” or vertices, of this polyhedral set. The notion of an extreme
point is discussed more fully in Section 8.5.

A proof of Theorem 6 is in Steven R. Lay, Convex Sets and Their Applications (New York: John
Wiley & Sons, 1982; Mineola, NY: Dover Publications, 2007), p. 171.
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Theorem 6 describes when an optimal solution exists, and it suggests a possible
technique for finding one. That is, evaluate the objective function at each of the extreme
points of F and select the point that gives the largest value. This works well in simple
cases such as the next two examples. The geometric approach is limited to two or three
dimensions, but it provides an important visualization of the nature of the solution set
and how the objective function interacts with the feasible set to identify extreme points.

EXAMPLE 5 Maximize f .x1; x2/ D 2x1 C 3x2

subject to x1 � 30

x2 � 20

x1 C 2x2 � 54

and x1 � 0; x2 � 0:

SOLUTION Figure 1 shows the shaded pentagonal feasible set, obtained by graphing
each of the constraint inequalities. (For simplicity, points in this section are displayed as
ordered pairs or triples.) There are five extreme points, corresponding to the five vertices
of the feasible set. They are found by solving the appropriate pairs of linear equations.
For example, the extreme point .14; 20/ is found by solving the linear system x1 C

2x2 D 54 and x2 D 20. The table below shows the value of the objective function at
each extreme point. Evidently, the maximum is 96 at x1 D 30 and x2 D 12.

x1(0, 0) (30, 0)

(30, 12)

(0, 20) (14, 20)

x2

(0, 0)
(30, 0)
(30, 12)
(14, 20)
(0, 20)

0
60
96
88
60

(x1, x2) 2x113x2

FIGURE 1

Another geometric technique that can be used when the problem involves two
variables is to graph several level lines for the objective function. These are parallel
lines, and the objective function has a constant value on each line. (See Figure 2.) The

x1

f (x1, x2) 5 30 f (x1, x2) 5 60

f (x1, x2) 5 96

x2

FIGURE 2
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values of the objective function f .x1; x2/ increase as .x1; x2/ moves from left to right.
The level line farthest to the right that still intersects the feasible set is the line through
the vertex .30; 12/. Thus, the point .30; 12/ yields the maximum value of f .x1; x2/ over
the feasible set.

EXAMPLE 6 Maximize f .x1; x2; x3/ D 2x1 C 3x2 C 4x3

subject to x1 C x2 C x3 � 50

x1 C 2x2 C 4x3 � 80

and x1 � 0; x2 � 0; x3 � 0:

SOLUTION Each of the five inequalities above determines a “half-space” in R3—a
plane together with all points on one side of the plane. The feasible set of this linear
programming problem is the intersection of these half-spaces, which is a convex set in
the first octant of R3.

When the first inequality is changed to an equality, the graph is a plane that intercepts

x1

x2

x3

50

0
50

50

FIGURE 3

each coordinate axis 50 units from the origin and determines the equilateral triangular
region shown in Figure 3. Since .0; 0; 0/ satisfies the inequality, so do all the other points
“below” the plane. In a similar fashion, the second (in)equality determines a triangular
region on a plane (shown in Figure 4) that passes somewhat closer to the origin. The two
planes intersect in a line that contains segment EB .

The quadrilateral surface BCDE forms a boundary of the feasible set, because it
is below the equilateral triangular region. Beyond EB, however, the two planes change
position relative to the origin, so the planar region ABE forms another bounding surface
for the feasible set. The vertices of the feasible set are the points A, B , C , D, E, and 0
(the origin). See Figure 5, which has all sides of the feasible set shaded except the large
“top” piece. To find the coordinates of B , solve the system

x1

x2

x3

E
B

80

20

0 40

FIGURE 4 8̂<̂
:

x1 C x2 C x3 D 50

x1 C 2x2 C 4x3 D 80

x3 D 0

)

(
x1 C x2 D 50

x1 C 2x2 D 80

x1

x2

x3

40 500

D

50
A

(40, 0, 10) E B (20, 30, 0)

80

20

50

C

FIGURE 5
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Obtain x2 D 30, and find that B is .20; 30; 0/. For E, solve8̂<̂
:

x1 C x2 C x3 D 50

x1 C 2x2 C 4x3 D 80

x2 D 0

)

(
x1 C x3 D 50

x1 C 4x3 D 80

Obtain x3 D 10, and find that E D .40; 0; 10/.
Now that the feasible set and its extreme points are clearly seen, the next step is

to examine the objective function f .x1; x2; x3/ D 2x1 C 3x2 C 4x3. The sets on which
f is constant are planes, rather than lines, all having .2; 3; 4/ as a normal vector to the
plane. This normal vector has a direction different from the normal vectors .1; 1; 1/ and
.1; 2; 4/ to the two faces BCDE and ABE. So the level sets of f are not parallel to any
of the bounding surfaces of the feasible set. Figure 6 shows just the feasible set and a
level set on which f has the value 120. This plane passes through C , E, and the point
.30; 20; 0/ on the edge of the feasible set between A and B , which shows that the vertex
B is “above” this level plane. In fact, f .20; 30; 0/ D 130. Thus the unique solution of
the linear programming problem is at B D .20; 30; 0/.

x1

x2

x3

C
400

D

A

(40, 0, 10) E 
B (20, 30, 0)

(30, 20, 0)

50

20

f (x1, x2, x3) 5 120

FIGURE 6

Practice Problems

1. Consider the following problem:

Maximize 2x1 C x2

subject to x1 � 2x2 � �8

3x1 C 2x2 � 24

and x1 � 0; x2 � 0:

Write this problem in the form of a canonical linear programming problem: Maxi-
mize cTx subject to Ax � b and x � 0. Specify A, b, and c.

2. Graph the feasible set for Practice Problem 1.

3. Find the extreme points of the feasible set in Practice Problem 2.

4. Use the answer to Practice Problem 3 to find the solution to the linear programming
problem in Practice Problem 1.
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9.2 Exercises
1. Betty plans to invest a total of $12,000 in mutual funds, cer-

tificates of deposit (CDs), and a high-yield savings account.
Because of the risk involved in mutual funds, she wants to
invest no more in mutual funds than the sum of her CDs and
savings. She also wants the amount in savings to be at least
half the amount in CDs. Her expected returns are 11% on
the mutual funds, 8% on the CDs and 6% on savings. How
much money should Betty invest in each area in order to have
the largest return on her investments? Set this up as a linear
programming problem in the following form: Maximize cTx
subject to Ax � b and x � 0. Do not find the solution.

2. A dog breeder decides to feed his dogs a combination of two
dog foods: Pixie Power and Misty Might. He wants the dogs
to receive four nutritional factors each month. The amounts
of these factors (a, b, c, and d) contained in 1 bag of each dog
food are shown in the following chart, together with the total
amounts needed.

a b c d

Pixie Power 3 2 1 2

Misty Might 2 4 3 1

Needed 28 30 20 25

The costs per bag are $50 for Pixie Power and $40 for Misty
Might. Howmany bags of each dog food should be blended to
meet the nutritional requirements at the lowest cost? Set this
up as a linear programming problem in the following form:
Minimize cTx subject to Ax � b and x � 0. Do not find the
solution.

In Exercises 3–6, find vectors b and c and matrix A so that each
problem is set up as a canonical linear programming problem:
Maximize cTx subject to Ax � b and x � 0. Do not find the
solution.

3. Maximize 3x1 C 4x2 � 2x3

subject to x1 C 2x2 � 20

3x2 C 5x3 � 10

and x1 � 0; x2 � 0; x3 � 0:

4. Maximize 3x1 C x2 C 5x3

subject to 5x1 C 7x2 C x3 � 25

2x1 C 3x2 C 4x3 D 40

and x1 � 0; x2 � 0; x3 � 0:

5. Minimize 7x1 � 3x2 C x3

subject to x1 � 4x2 � 35

x2 � 2x3 D 20

and x1 � 0; x2 � 0; x3 � 0:

6. Minimize x1 C 5x2 � 2x3

subject to 2x1 C x2 C 4x3 � 27

x1 � 6x2 C 3x3 � 40

and x1 � 0; x2 � 0; x3 � 0:

In Exercises 7–10, solve the linear programming problems.

7. Maximize 80x1 C 65x2

subject to 2x1 C x2 � 32

x1 C x2 � 18

x1 C 3x2 � 24

and x1 � 0; x2 � 0:

8. Minimize 5x1 C 3x2

subject to 2x1 C 5x2 � 10

3x1 C x2 � 6

x1 C 7x2 � 7

and x1 � 0; x2 � 0:

9. Maximize 2x1 C 7x2

subject to �2x1 C x2 � �4

x1 � 2x2 � �4

and x1 � 0; x2 � 0:

10. Maximize 5x1 C 12x2

subject to x1 � x2 � 3

�x1 C 2x2 � �4

and x1 � 0; x2 � 0:

In Exercises 11–14, mark each statement True or False (T/F).
Justify each answer.

11. (T/F) In a canonical linear programming problem, a nonneg-
ative vector x is a feasible solution if it satisfies Ax � b.

12. (T/F) If a canonical linear programming problem does not
have an optimal solution, then either the objective function is
not bounded on the feasible set F or F is the empty set.

13. (T/F) A vector x is an optimal solution of a canonical linear
programming problem if f .x/ is equal to the maximum value
of the linear functional f on the feasible set F .

14. (T/F) If x is an optimal solution of a canonical linear pro-
gramming problem, then x is an extreme point of the feasible
set.

15. Solve the linear programming problem in Example 1.

16. Solve the linear programming problem in Example 2.

17. The Benri Company manufactures two kinds of kitchen gad-
gets: invertible widgets and collapsible whammies. The pro-
duction process is divided into three departments: fabricating,
packing, and shipping. The hours of labor required for each
operation and the hours available in each department each day
are shown below.

Widgets Whammies Time available

Fabricating 5.0 2.0 200

Packing 0.2 0.4 16

Shipping 0.2 0.2 10
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Suppose that the profit on each widget is $20 and the profit
on each whammy is $26. How many widgets and how many
whammies should be made each day to maximize the com-
pany’s profit?

Exercises 18–21 use the notion of a convex set, studied in Section
8.3. A set S in Rn is convex if, for each p and q in S , the line
segment between p and q lies in S . [This line segment is the set of
points of the form .1 � t /pC tq for 0 � t � 1.]

18. Let F be the feasible set of all solutions x of a linear pro-
gramming problem Ax � b with x � 0. Assume that F is
nonempty. Show thatF is a convex set inRn. [Hint:Consider
points p and q in F and t such that 0 � t � 1. Show that
.1 � t /pC tq is in F .]

19. Let v D
�

a

b

�
and x D

�
x1

x2

�
. The inequality ax1 C bx2 � c

for some real number c may be written as vTx � c. The set S

of all x that satisfy this inequality is called a closed half-space
of R2. Show that S is convex. [See the Hint for Exercise 18.]

20. The feasible set in Example 5 is the intersection of five
closed half-spaces. By Exercise 19, these half-spaces are
convex sets. Show that the intersection of any five convex
sets S1; : : : ; S5 in Rn is a convex set.

21. If c is in Rn and if f is defined on Rn by f .x/ D cTx,
then f is called a linear functional, and for any real number
d , fx W f .x/ D dg is called a level set of f . (See level sets
in Figure 2 of Example 5.) Show that any such level set is
convex.

Solutions to Practice Problems

1. The first inequality has the wrong direction, so multiply by �1. This gives the
following problem:

Maximize 2x1 C x2

subject to �x1 C 2x2 � 8

3x1 C 2x2 � 24

and x1 � 0; x2 � 0:

This corresponds to the canonical form

Maximize cTx subject to Ax � b and x � 0

when

b D
�

8

24

�
; x D

�
x1

x2

�
; c D

�
2

1

�
; and A D

�
�1 2

3 2

�
2. To graph the inequality �x1 C 2x2 � 8, first graph the corresponding equality
�x1 C 2x2 D 8. The intercepts are easy to find: .0; 4/ and .�8; 0/. Figure 7 shows
the straight line through these two points.

The graph of the inequality consists of this line together with all points on one
side of the line. To determine which side, pick a point not on the line to see if its
coordinates satisfy the inequality. For example, try the origin, .0; 0/. The inequality

�.0/C 2.0/ � 8

is a true statement. Thus the origin and all other points below the line satisfy the
inequality. As another example, substituting the coordinates of the point .0; 8/ into
the inequality produces a false statement:

�.0/C 2.8/ � 8

Thus .0; 8/ and all other points above the line do not satisfy the inequality. Figure 7
shows small arrows beneath the graph of �x1 C 2x2 D 8, to indicate which side is
to be included.

For the inequality
3x1 C 2x2 � 24
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FIGURE 7 Graph of �x1 C 2x2 � 8.

draw the graph of 3x1 C 2x2 D 24, using the intercepts .0; 12/ and .8; 0/ or two
other convenient points. Since .0; 0/ satisfies the inequality, the feasible set is on
the side of the line containing the origin. The inequality x1 � 0 gives the right half-
plane, and the inequality x2 � 0 gives the upper half-plane. All of these are graphed
in Figure 8, and their common solution is the shaded feasible set.

x2

x1

16

8

8 1628

28

FIGURE 8 Graph of the feasible set.

3. There are four extreme points in the feasible set:

1. The origin: .0; 0/

2. The x2-intercept of the first equality: .0; 4/

3. The x1-intercept of the second equality: .8; 0/

4. The intersection of the two equalities.

For the fourth extreme point, solve the system of equations �x1 C 2x2 D 8 and
3x1 C 2x2 D 24 to obtain x1 D 4 and x2 D 6.

4. To find the maximum value of the objective function 2x1 C x2, evaluate it at each
of the four extreme points of the feasible set.

2x1 C x2

.0; 0/

.0; 4/

.8; 0/

.4; 6/

2.0/C 1.0/ D 0

2.0/C 1.4/ D 4

2.8/C 1.0/ D 16

2.4/C 1.6/ D 14

 max

The maximum value is 16, attained when x1 D 8 and x2 D 0.
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9.3 Linear Programming Simplex Method
Transportation problems played an important role in the early days of linear program-
ming, including the Berlin Airlift described in this chapter’s Introductory Example. They
are evenmore important today. The first example is simple, but it suggests how a problem
of this type could involve hundreds, if not thousands, of variables and equations.

EXAMPLE 1 A retail sales company has two warehouses and four stores. A partic-
ular model of outdoor hot tub is sold at all four stores, and each store has placed an
order with company headquarters for a certain number of these hot tubs. Headquarters
determines that the warehouses have enough hot tubs and can ship them immediately.
The distances from the warehouses to the stores vary, and the cost of transporting a hot
tub from a warehouse to a store depends on the distance. The problem is to decide on
a shipping schedule that minimizes the total cost of shipping. Let xij be the number of
units (hot tubs) to ship from warehouse i to store j.

Warehouse 1 Warehouse 2

Store 2 Store 3

Store 1 Store 4

x11 x24

x14

x21

x12 x23

x22 x13

Let a1 and a2 be the numbers of units available at warehouses 1 and 2, and let
r1; : : : ; r4 be the numbers of units requested by the various stores. Then the xij must
satisfy the equations

x11 C x12 C x13 C x14 � a1

x21 C x22 C x23 C x24 � a2

x11 C x21 D r1

x12 C x22 D r2

x13 C x23 D r3

x14 C x24 D r4

and xij � 0 for i D 1; 2 and j D 1; : : : ; 4. If the cost of shipping one unit from
warehouse i to store j is cij , then the problem is to minimize the function

c11x11 C c12x12 C c13x13 C c14x14 C c21x21 C c22x22 C c23x23 C c24x24

subject to the four equalities and ten inequalities listed above.

The simplex method, discussed below, can easily handle problems the size of
Example 1. To introduce the method, however, this section focuses mainly on the
canonical linear programming problem from Section 9.2, in which the objective function
must be maximized. Here is an outline of the steps in the simplex method.
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1. Select an extreme point x of the feasible set F .

2. Consider all the edges of F that join at x. If the objective function f cannot be
increased by moving along any of these edges, then x is an optimal solution.

3. If f can be increased by moving along one or more of the edges, then follow the path
that gives the largest increase and move to the extreme point ofF at the opposite end.

4. Repeat the process, beginning at step 2.

Since the value of f increases at each step, the path will not go through the same extreme
point twice. Since there are only a finite number of extreme points, this process will
end at an optimal solution (if there is one) in a finite number of steps. If the problem is
unbounded, then eventually the path will reach an unbounded edge at step 3 along which
f increases without bound.

The next five examples concern canonical linear programming problems in which
each of the entries in the m-tuple b is positive:

Maximize f .x/ D cTx

subject to the constraints Ax � b and x � 0

Here c and x are in Rn, A is an m � n matrix, and b is in Rm.
The simplex method begins by changing each constraint inequality into an equality.

This is done by adding one new variable to each inequality. These new variables are not
part of the final solution; they appear only in the intermediate calculations.

DEFINITION A slack variable is a nonnegative variable that is added to the smaller side of an
inequality to convert it to an equality.

EXAMPLE 2 Change the inequality

5x1 C 7x2 � 80

into the equality
5x1 C 7x2 C x3 D 80

by adding the slack variable x3. Note that x3 D 80 � .5x1 C 7x2/ � 0.

If A is m � n, the addition of m slack variables in Ax � b produces a linear system
with m equations and nCm variables. A solution to this system is called a basic
solution if no more than m of the variables are nonzero. As in Section 9.2, a solution
to the system is called feasible if each variable is nonnegative. Thus, in a basic feasible
solution, each variable must be nonnegative and at most m of them can be positive.
Geometrically, these basic feasible solutions correspond to the extreme points of the
feasible set.

EXAMPLE 3 Find a basic feasible solution for the system

2x1 C 3x2 C 4x3 � 60

3x1 C x2 C 5x3 � 46

x1 C 2x2 C x3 � 50
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SOLUTION Add slack variables to obtain a system of three equations:

2x1 C 3x2 C 4x3 C x4 D 60

3x1 C x2 C 5x3 C x5 D 46

x1 C 2x2 C x3 C x6 D 50

(1)

There were three inequalities in the original system, so a basic solution of (1) has at most
three nonzero values for the variables. The following simple solution is called the basic
feasible solution associated with (1):

x1 D x2 D x3 D 0; x4 D 60; x5 D 46; and x6 D 50

This solution corresponds to the extreme point 0 in the feasible set (in R3).

It is customary to refer to the nonzero variables x4, x5, and x6 in system (1) as basic
variables because each has a coefficient of 1 and occurs in only one equation.1 The basic
variables are said to be “in” the solution of (1). The variables x1, x2, and x3 are said to
be “out” of the solution. In a linear programming problem, this particular solution would
probably not be optimal since only the slack variables are nonzero.

A standard procedure in the simplex method is to change the role a variable plays
in a solution. For example, although x2 is out of the solution in (1), it can be introduced
“into” a solution by using elementary row operations. The goal is to pivot on the x2

entry in the third equation of (1) to create a new system in which x2 appears only in the
third equation.2

First, divide the third equation in (1) by the coefficient of x2 to obtain a new third
equation:

1
2
x1 C x2 C

1
2
x3 C

1
2
x6 D 25

Second, to equations 1 and 2 of (1) add multiples of this new equation that will eliminate
x2 from those equations. This produces the system

1
2
x1 C

5
2
x3 C x4 �

3
2
x6 D �15

5
2
x1 C

9
2
x3 C x5 �

1
2
x6 D 21

1
2
x1 C x2 C

1
2
x3 C

1
2
x6 D 25

The basic solution associated with this new system is

x1 D x3 D x6 D 0; x2 D 25; x4 D �15; x5 D 21

The variable x2 has come into the solution, and the variable x6 has gone out. Unfortu-
nately, this basic solution is not feasible since x4 < 0. This lack of feasibility was caused
by an improper choice of a pivot equation. The next paragraph shows how to avoid this
problem.

1 This terminology generalizes that used in Section 1.2, where basic variables also had to correspond to pivot
positions in a matrix echelon form. Here, the goal is not to solve for basic variables in terms of free variables,
but to obtain a particular solution of the system when the nonbasic (free) variables are zero.
2 To “pivot” on a particular term here means to transform its coefficient into a 1 and then use it to eliminate
corresponding terms in all the other equations, not just the equations below it, as was done in Section 1.2.
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In general, consider the system

a11x1 C � � � C a1kxk C � � � C a1nxn D b1

:::

ai1x1 C � � � C aikxk C � � � C ainxn D bi

:::

am1x1 C � � � C amkxk C � � � C amnxn D bn

and suppose the next step is to bring the variable xk into the solution by using equation
p to pivot on entry apkxk . The basic solution corresponding to the resulting system will
be feasible if the following two conditions are satisfied:

1. The coefficient apk of xk must be positive. (When the pth equation is divided by apk ,
the new bp term must be positive.)

2. The ratio bp=apk must be the smallest among all the ratios bi =aik for which aik > 0.
(This will guarantee that when the pth equation is used to eliminate the xk term from
the i th equation, the resulting bi term will be positive.)

EXAMPLE 4 Determine which row to use as a pivot in order to bring x2 into the
solution in Example 3.

SOLUTION Compute the ratios bi =ai2:

b1

a12

D
60

3
D 20;

b2

a22

D 46; and
b3

a32

D
50

2
D 25

Since the first ratio is the smallest, pivot on the x2 term in the first equation. This produces
the system

2
3
x1 C x2 C

4
3
x3 C

1
3
x4 D 20

7
3
x1 C

11
3

x3 �
1
3
x4 C x5 D 26

�
1
3
x1 �

5
3
x3 �

2
3
x4 C x6 D 10

Now the basic feasible solution is

x1 D x3 D x4 D 0; x2 D 20; x5 D 26; x6 D 10

Amatrix format greatly simplifies calculations of this type. For instance, system (1)
in Example 3 is represented by the augmented matrix

x1 x2 x3 x4 x5 x62642

3

1

i3
1

2

4

5

1

1

0

0

0

1

0

0

0

1

60

46

50

375
The variables are used as column labels, with the slack variables in color. Recall that the
basic feasible solution associated with this matrix is

x1 D x2 D x3 D 0; x4 D 60; x5 D 46; x6 D 50

The circled 3 in the x2 column indicates that this entry will be used as a pivot to bring
x2 into the solution. (The ratio calculations in Example 4 identified this entry as the
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appropriate pivot.) Complete row reduction in column 2 produces the new matrix that
corresponds to the new system in Example 4:

x1 x2 x3 x4 x5 x626664
2
3

7
3

�
1
3

1

0

0

4
3

11
3

�
5
3

1
3

�
1
3

�
2
3

0

1

0

0

0

1

20

26

10

37775
As in Example 4, the new basic feasible solution is

x1 D x3 D x4 D 0; x2 D 20; x5 D 26; x6 D 10

The preceding discussion has prepared the way for a full demonstration of the
simplex method, based on the constraints in Example 3. At each step, the objective
function in Example 5 will drive the choice of which variable to bring into the solution
of the system.

EXAMPLE 5 Maximize 25x1 C 33x2 C 18x3

subject to 2x1 C 3x2 C 4x3 � 60

3x1 C x2 C 5x3 � 46

x1 C 2x2 C x3 � 50

and xj � 0 for j D 1; : : : ; 3.

SOLUTION First, add slack variables, as before. Then change the objective function
25x1 C 33x2 C 18x3 into an equation by introducing a new variable M given by M D

25x1 C 33x2 C 18x3. Now the goal is to maximize the variable M , where M satisfies
the equation

�25x1 � 33x2 � 18x3 CM D 0

The original problem is now restated as follows: Among all the solutions of the system
of equations

2x1 C 3x2 C 4x3 C x4 D 60

3x1 C x2 C 5x3 C x5 D 46

x1 C 2x2 C x3 C x6 D 50

�25x1 � 33x2 � 18x3 CM D 0

find a solution for which xj � 0 (j D 1; : : : ; 6) and for which M is as large as possible.
The augmented matrix for this new system is called the initial simplex tableau. It

is written with two ruled lines in the matrix:

x1 x2 x3 x4 x5 x6 M266664
2

3

1

�25

3

1

2

�33

4

5

1

�18

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

60

46

50

0

377775
The horizontal line above the bottom row isolates the equation corresponding to the
objective function. This last row will play a special role in what follows. (The bottom
row is used only to decide which variable to bring into the solution. Pivot positions are
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never chosen from the bottom row.) The column headings for the slack variables are in
color, as a reminder that at the end of the calculations only the original variables are part
of the final solution of the problem.

Look in rows 1 to 3 of the tableau above to find the basic feasible solution. The
columns of the 3 � 3 identity matrix in these three rows identify the basic variables—
namely, x4, x5, and x6. The basic solution is

x1 D x2 D x3 D 0; x4 D 60; x5 D 46; x6 D 50; M D 0

This solution is not optimal, however, since only the slack variables are nonzero.
However, the bottom row implies that

M D 25x1 C 33x2 C 18x3

The value ofM will rise when any of the variables x1, x2, or x3 rises. Since the coefficient
of x2 is the largest of the three coefficients, bringing x2 into the solution will cause the
greatest increase in M .

To bring x2 into the solution, follow the pivoting procedure outlined earlier. In the
tableau above, compare the ratios bi =ai2 for each row except the last. They are 60=3,
46=1, and 50=2. The smallest is 60=3, so the pivot should be the entry 3 that is circled
in the first row.

x1 x2 x3 x4 x5 x6 M266664
2

3

1

�25

i3
1

2

�33

4

5

1

�18

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

60

46

50

0

377775
The result of the pivot operation is

x1 x2 x3 x4 x5 x6 M26666664
2
3

7
3

�
1
3

�3

1

0

0

0

4
3

11
3

�
5
3

26

1
3

�
1
3

�
2
3

11

0

1

0

0

0

0

1

0

0

0

0

1

20

26

10

660

37777775
(2)

Now the columns of the 3 � 3 identity matrix are in columns 2, 5, and 6 of the tableau.
So the basic feasible solution is

x1 D x3 D x4 D 0; x2 D 20; x5 D 26; x6 D 10; M D 660

Thus M has increased from 0 to 660. To see if M can be increased further, look at the
bottom row of the tableau and solve the equation for M :

M D 660C 3x1 � 26x3 � 11x4 (3)

Since each of the variables xj is nonnegative, the value of M will increase only if x1

increases (from 0). (Since the coefficients of x3 and x4 are both negative at this point,
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increasing one of them would decrease M .) So x1 needs to come into the solution.
Compare the ratios (of the augmented column to column 1):

20
2
3

D 30 and
26
7
3

D
78

7

The second ratio is smaller, so the next pivot should be 7
3
in row 2.

x1 x2 x3 x4 x5 x6 M26666664
2
3n7
3

�
1
3

�3

1

0

0

0

4
3

11
3

�
5
3

26

1
3

�
1
3

�
2
3

11

0

1

0

0

0

0

1

0

0

0

0

1

20

26

10

660

37777775
After pivoting, the resulting tableau is

x1 x2 x3 x4 x5 x6 M26666664
0

1

0

0

1

0

0

0

2
7

11
7

�
8
7

215
7

3
7

�
1
7

�
5
7

74
7

�
2
7

3
7

1
7

9
7

0

0

1

0

0

0

0

1

88
7

78
7

96
7

4854
7

37777775
The corresponding basic feasible solution is

x3 D x4 D x5 D 0; x1 D
78
7

; x2 D
88
7

; x6 D
96
7

; M D 4854
7

The bottom row shows that

M D 4854
7
�

215
7

x3 �
74
7

x4 �
9
7
x5

The negative coefficients of the variables here show that M can be no larger than 4854
7

(because x3, x4, and x5 are nonnegative), so the solution is optimal. The maximum value
of 25x1 C 33x2 C 18x3 is 4854

7
, and this maximum occurs when x1 D

78
7
, x2 D

88
7
, and

x3 D 0. The variable x3 is zero because in the optimal solution x3 is a free variable,
not a basic variable. Note that the value of x6 is not part of the solution of the original
problem, because x6 is a slack variable. The fact that the slack variables x4 and x5 are
zero means that the first two inequalities listed at the beginning of this example are both
equalities at the optimal values of x1, x2, and x3.

Example 5 is worth reading carefully several times. In particular, notice that a
negative entry in the bottom row of any xj column will become a positive coefficient
when that equation is solved for M , indicating that M has not reached its maximum.
See tableau (2) and equation (3).

In summary, here is the simplexmethod for solving a canonicalmaximizing problem
when each entry in the vector b is positive.
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THE SIMPLEX ALGORITHM FOR A CANONICAL LINEAR
PROGRAMMING PROBLEM

1. Change the inequality constraints into equalities by adding slack variables.
Let M be a variable equal to the objective function, and below the constraint
equations write an equation of the form

� (objective function)CM D 0

2. Set up the initial simplex tableau. The slack variables (and M ) provide the
initial basic feasible solution.

3. Check the bottom row of the tableau for optimality. If all the entries to the left
of the vertical line are nonnegative, then the solution is optimal. If some are
negative, then choose the variable xk for which the entry in the bottom row is
as negative as possible.3

4. Bring the variable xk into the solution. Do this by pivoting on the positive
entry apk for which the nonnegative ratio bi =aik is the smallest. The new basic
feasible solution includes an increased value for M .

5. Repeat the process, beginning at step 3, until all the entries in the bottom row
are nonnegative.

Two things can go wrong in the simplex algorithm. At step 4, there might be a
negative entry in the bottom row of the xk column, but no positive entry aik above
it. In this case, it will not be possible to find a pivot to bring xk into the solution.
This corresponds to the case where the objective function is unbounded and no optimal
solution exists.

The second potential problem also occurs at step 4. The smallest ratio bi =aik may
occur in more than one row. When this happens, the next tableau will have at least one
basic variable equal to zero, and in subsequent tableaus the value of M may remain
constant. Theoretically it is possible for an infinite sequence of pivots to occur and fail
to lead to an optimal solution. Such a phenomenon is called cycling. Fortunately, cycling
occurs only rarely in practical applications. In most cases, one may arbitrarily choose
either row with a minimum ratio as the pivot.

EXAMPLE 6 A health food store sells two different mixtures of nuts. A box of the
first mixture contains 1 pound of cashews and 1 pound of peanuts. A box of the second
mixture contains 1 pound of filberts and 2 pounds of peanuts. The store has available 30
pounds of cashews, 20 pounds of filberts, and 54 pounds of peanuts. Suppose the profit
on each box of the first mixture is $2 and on each box of the second mixture is $3. If the
store can sell all of the boxes it mixes, how many boxes of each mixture should be made
in order to maximize the profit?

3 The goal of step 3 is to produce the greatest increase possible in the value of M . This happens when only
one variable xk satisfies the conditions. Suppose, however, that the most negative entry in the bottom row
appears in both columns j and k. Step 3 says that either xj or xk should be brought into the solution, and
that is correct. Occasionally, a few computations can be avoided by first using step 4 to compute the
“smallest ratio” for both columns j and k, and then choosing the column for which this “smallest ratio” is
larger. This situation will arise in Section 9.4.



578 CHAPTER 9 Optimization

SOLUTION Let x1 be the number of boxes of the first mixture, and let x2 be the number
of boxes of the second mixture. The problem can be expressed mathematically as

Maximize 2x1 C 3x2

subject to x1 � 30 (cashews)

x2 � 20 (filberts)

x1 C 2x2 � 54 (peanuts)

and x1 � 0; x2 � 0:

This turns out to be the same problem solved graphically in Example 5 of Section 9.2.
When it is solved by the simplex method, the basic feasible solution from each tableau
corresponds to an extreme point of the feasible region. See Figure 1.

x1

(0, 20)

(0, 0) (30, 0)

(30, 12)

x2

(14, 20)

FIGURE 1

To construct the initial tableau, add slack variables and rewrite the objective function
as an equation. The problem now is to find a nonnegative solution to the system

x1 C x3 D 30

x2 C x4 D 20

x1 C 2x2 C x5 D 54

�2x1 � 3x2 CM D 0

for which M is a maximum. The initial simplex tableau is

x1 x2 x3 x4 x5 M266664
1

0

1

�2

0

1

2

�3

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

30

20

54

0

377775
The basic feasible solution, where x1, x2, and M are 0, corresponds to the extreme point
.x1; x2/ D .0; 0/ of the feasible region in Figure 1. In the bottom row of the tableau, the
most negative entry is �3, so the first pivot should be in the x2 column. The ratios 20=1

x1(0, 0)

x2

and 54=2 show that the pivot should be the 1 in the x2 column:

x1 x2 x3 x4 x5 M266664
1

0

1

�2

0i1
2

�3

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

30

20

54

0

377775
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After pivoting, the tableau becomes

x1 x2 x3 x4 x5 M266664
1

0i1
�2

0

1

0

0

1

0

0

0

0

1

�2

3

0

0

1

0

0

0

0

1

30

20

14

60

377775
The basic feasible solution is now

x1 D x4 D 0; x2 D 20; x3 D 30; x5 D 14; M D 60

The new solution is at the extreme point .x1; x2/ D .0; 20/ in Figure 1. The �2 in the
bottom row of the tableau shows that the next pivot is in column 1, which produces

x1

(0, 20)

x2

x1 x2 x3 x4 x5 M266664
0

0

1

0

0

1

0

0

1

0

0

0

i2
1

�2

�1

�1

0

1

2

0

0

0

1

16

20

14

88

377775
This time x1 D 14 and x2 D 20, so the solution has moved across to the extreme point
.14; 20/ in Figure 1, and the objective function has increased from 60 to 88. Finally, the
�1 in the bottom row shows that the next pivot is in column 4. Pivoting on the 2 in the
first row produces the final tableau:

x1

x2

(14, 20)

x1 x2 x3 x4 x5 M26666664
0

0

1

0

0

1

0

0

1
2

�
1
2

1

1
2

1

0

0

0

�
1
2

1
2

0

3
2

0

0

0

1

8

12

30

96

37777775
Since all the entries in the bottom row are nonnegative, the solution now is optimal, with
x1 D 30 and x2 D 12, corresponding to the extreme point .30; 12/. The maximum profit
of $96 is attained by making 30 boxes of the first mixture and 12 boxes of the second.
Note that although x4 is part of the basic feasible solution for this tableau, its value is
not included in the solution of the original problem, because x4 is a slack variable.

x1

(30, 12)

x2

Minimization Problems
So far, each canonical maximizing problem involved a vector b whose coordinates were
positive. But what happens when some of the coordinates of b are zero or negative? And
what about a minimizing problem?

If some of the coordinates of b are zero, then it is possible for cycling to occur
and the simplex method to fail to terminate at an optimal solution. As mentioned earlier,
however, cycling does not generally happen in practical applications, and so the presence
of zero entries in the right-hand column seldom causes difficulty in the operation of the
simplex method.

The case when one of the coordinates of b is negative can occur in practice and
requires some special consideration. The difficulty is that all the bi terms must be
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nonnegative in order for the slack variables to provide an initial basic feasible solution.
One way to change a negative bi term into a positive term would be to multiply
the inequality by �1 (before introducing slack variables). But this would change the
direction of the inequality. For example,

x1 � 3x2 C 2x3 � �4

would become
�x1 C 3x2 � 2x3 � 4

Thus a negative bi term causes the same problem as a reversed inequality. Since reversed
inequalities often occur in minimization problems, the following example discusses this
case.

EXAMPLE 7 Minimize x1 C 2x2

subject to x1 C x2 � 14

x1 � x2 � 2

and x1 � 0; x2 � 0:

SOLUTION The minimum of f .x1; x2/ over a set occurs at the same point as the
maximum of �f .x1; x2/ over the same set. However, in order to use the simplex
algorithm, the canonical description of the feasible set must use � signs. So the first
inequality above must be rewritten. The second inequality is already in canonical form.
Thus the original problem is equivalent to the following:

Maximize �x1 � 2x2

subject to �x1 � x2 � �14

x1 � x2 � 2

and x1 � 0; x2 � 0:

To solve this, let M D �x1 � 2x2 and add slack variables to the inequalities, as before.
This creates the linear system

�x1 � x2 C x3 D �14

x1 � x2 C x4 D 2

x1 C 2x2 CM D 0

To find a nonnegative solution to this system for which M is a maximum, construct the
initial simplex tableau:

x1 x2 x3 x4 M264�1

1

1

�1

�1

2

1

0

0

0

1

0

0

0

1

�14

2

0

375
The corresponding basic solution is

x1 D x2 D 0; x3 D �14; x4 D 2; M D 0

However, since x3 is negative, this basic solution is not feasible. Before the standard
simplex method can begin, each term in the augmented column above the horizontal line
must be a nonnegative number. This is accomplished by pivoting on a negative entry.
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In order to replace a negative bi entry by a positive number, find another negative
entry in the same row. (If all the other entries in the row are nonnegative, then the problem
has no feasible solution.) This negative entry is in the column corresponding to the
variable that should now come into the solution. In this example, the first two columns
both have negative entries, so either x1 or x2 should be brought into the solution.

For example, to bring x2 into the solution, select as a pivot the entry ai2 in column 2
for which the ratio bi =ai2 is the smallest nonnegative number. (The ratio is positive when
both bi and ai2 are negative.) In this case, only the ratio .�14/=.�1/ is nonnegative, so
the �1 in the first row must be the pivot. After the pivot operations on column 2, the
resulting tableau is

x1 x2 x3 x4 M264 1

2

�1

1

0

0

�1

�1

2

0

1

0

0

0

1

14

16

�28

375
Now each entry in the augmented column (except the bottom entry) is positive, and the
simplex method can begin. (Sometimes it may be necessary to pivot more than once in
order to make each of these terms nonnegative. See Exercise 19.) The next tableau turns
out to be optimal:

x1 x2 x3 x4 M26664
0

1

0

1

0

0

�
1
2

�
1
2

3
2

�
1
2

1
2

1
2

0

0

1

6

8

�20

37775
The maximum feasible value of �x1 � 2x2 is �20, when x1 D 8 and x2 D 6. So the
minimum value of x1 C 2x2 is 20.

The final example uses the technique of Example 7, but the simplex tableau requires
more preprocessing before the standard maximization operations can begin.

EXAMPLE 8 Minimize 5x1 C 3x2

subject to 4x1 C x2 � 12

x1 C 2x2 � 10

x1 C 4x2 � 16

and x1 � 0; x2 � 0:

SOLUTION Convert the problem into a maximization problem, setting M D �5x1 �

3x2 and reversing the three main constraint inequalities:

�4x1 � x2 � �12; �x1 � 2x2 � �10; �x1 � 4x2 � �16

Add nonnegative slack variables, and construct the initial simplex tableau:

�4x1 � x2 C x3 D �12

�x1 � 2x2 C x4 D �10

�x1 � 4x2 C x5 D �16

5x1 C 3x2 CM D 0

x1 x2 x3 x4 x5 M266664
�4

�1

�1

5

�1

�2

�4

3

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

�12

�10

�16

0

377775
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Before the simplex maximization process can begin, the top three entries in the aug-
mented column must be nonnegative (to make the basic solution feasible). Pivoting on
a negative entry to bring x1 or x2 into the solution will help. Trial and error will work.
However, the fastest method is to compute the usual ratios bi =aij for all negative entries
in rows 1 to 3 of columns 1 and 2. Choose as the pivot the entry with the largest ratio.
That will make all the augmented entries change sign (because the pivot operation will
add multiples of the pivot row to the other rows). In this example, the pivot should be
a31, and the new tableau is

x1 x2 x3 x4 x5 M266664
0

0

1

0

15

2

4

�17

1

0

0

0

0

1

0

0

�4

�1

�1

5

0

0

0

1

52

6

16

�80

377775
Now the simplex maximization algorithm is available. The �17 in the last row shows
that x2 must be brought into the solution. The smallest of the ratios 52=15, 6=2, and
16=4 is 6=2. A pivot on the 2 in column 2 produces

x1 x2 x3 x4 x5 M26666664
0

0

1

0

0

1

0

0

1

0

0

0

�
15
2

1
2

�2

17
2

7
2

�
1
2

1

�
7
2

0

0

0

1

7

3

4

�29

37777775
The � 7

2
in the last row shows that x5 must be brought into the solution. The pivot is 7

2

in column 5, and the new (and final) tableau is

x1 x2 x3 x4 x5 M26666664
0

0

1

0

0

1

0

0

2
7

1
7

�
2
7

1

�
15
7

�
4
7

1
7

1

1

0

0

0

0

0

0

1

2

4

2

�22

37777775
The solution occurs when x1 D 2 (from row 3), x2 D 4, andM D �22, so the minimum
of the original objective function is 22.

The “Simplex” in the Simplex Algorithm
The geometric approach in Section 9.2 focused on the rows of an m � 2 matrix A,
graphing each inequality as a half-space in R2, and viewing the solution set as the
intersection of half-spaces. In higher-dimensional problems, the solution set is again an
intersection of half-spaces, but this geometric view does not lead to an efficient algorithm
for finding the optimal solution.

The simplex algorithm focuses on the columns of A instead of the rows. Suppose
that A is m � n and denote the columns by a1; : : : ; an. The addition of m slack variables
creates an m � .nCm/ system of equations of the form

x1a1 C � � � C xnan C xnC1e1 C � � � C xnCmem D b



9.3 Linear Programming—Simplex Method 583

where x1; : : : ; xnCm are nonnegative and fe1; : : : ; emg is the standard basis for Rm. The
initial basic feasible solution is obtained when x1; : : : ; xn are zero and b1e1 C � � � C

bmem D b: If s D b1 C � � � C bm; then the equation

0C
�

b1

s

�
se1 C � � � C

�
bm

s

�
sem D b

shows that b is in what is called the simplex generated by 0; se1; : : : ; sem. For simplicity,
we say that “b is in an m-dimensional simplex determined by e1; : : : ; em.” This is the
first simplex in the simplex algorithm.4

In general, if v1; : : : ; vm is any basis of Rm, selected from the columns of the
matrix P D Œ a1 � � � an e1 � � � em �, and if b is a linear combination of these vectors with
nonnegative weights, then b is in an m-dimensional simplex determined by v1; : : : ; vm.
A basic feasible solution of the linear programming problem corresponds to a particular
basis from the columns of P . The simplex algorithm changes this basis and hence
the corresponding simplex that contains b, one column at a time. The various ratios
computed during the algorithm drive the choice of columns. Since row operations do not
change the linear dependence relations among the columns, each basic feasible solution
tells how to build b from the corresponding columns of P .

Practice Problem

Use the simplex method to solve the following linear programming problem:

Maximize 2x1 C x2

subject to �x1 C 2x2 � 8

3x1 C 2x2 � 24

and x1 � 0; x2 � 0:

9.3 Exercises
In Exercises 1 and 2, set up the initial simplex tableau for the given
linear programming problem.

1. Maximize 21x1 C 25x2 C 15x3

subject to 2x1 C 7x2 C 10x3 � 20

3x1 C 4x2 C 18x3 � 25

and x1 � 0; x2 � 0; x3 � 0:

2. Maximize 22x1 C 14x2

subject to 3x1 C 5x2 � 30

2x1 C 7x2 � 24

6x1 C x2 � 42

and x1 � 0; x2 � 0:

For each simplex tableau in Exercises 3–6, do the following:

a. Determine which variable should be brought into the solution.

b. Compute the next tableau.

c. Identify the basic feasible solution corresponding to the tableau
in part (b).

d. Determine if the answer in part (c) is optimal.

3. x1 x2 x3 x4 M264 5

3

�4

1

2

�10

1

0

0

0

1

0

0

0

1

20

30

0

375
4. x1 x2 x3 x4 M264�1

1

�5

1

0

0

2

5

3

0

1

0

0

0

1

4

6

17

375
4 If v1; : : : ; vm are linearly independent vectors in Rm, then the convex hull of the set f0; v1; : : : ; vmg is an
m-dimensional simplex, S . (See Section 8.5.) A typical vector in S has the form c00C c1v1 C � � � C cmvm,
where the weights are nonnegative and sum to one. (Equivalently, vectors in S have the form
c1v1 C � � � C cmvm, where the weights are nonnegative and their sum is at most one.) Any set formed by
translating such a set S is also called an m-dimensional simplex, but such sets do not appear in the simplex
algorithm.
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5. x1 x2 x3 x4 M264 2

2

�6

3

1

�5

1

0

0

0

1

0

0

0

1

20

16

0

375
6. x1 x2 x3 x4 M264 5

12

2

8

6

�3

1

0

0

0

1

0

0

0

1

80

30

0

375
Exercises 7–12 relate to a canonical linear programming problem
with an m � n coefficient matrix A in the constraint inequality
Ax � b. Mark each statement True or False (T/F). Justify each
answer.

7. (T/F) A slack variable is used to change an equality into an
inequality.

8. (T/F)A solution is called a basic solution ifm or fewer of the
variables are nonzero.

9. (T/F) A solution is feasible if each variable is nonnegative.

10. (T/F) The basic feasible solutions correspond to the extreme
points of the feasible set.

11. (T/F) If one of the coordinates in vector b is negative, then
the problem is infeasible.

12. (T/F) The bottom entry in the right column of a simplex
tableau gives the maximum value of the objective function.

Solve Exercises 13–18 by using the simplex method.

13. Maximize 10x1 C 12x2

subject to 2x1 C 3x2 � 36

5x1 C 4x2 � 55

and x1 � 0; x2 � 0:

14. Maximize 5x1 C 4x2

subject to x1 C 5x2 � 70

3x1 C 2x2 � 54

and x1 � 0; x2 � 0:

15. Maximize 4x1 C 5x2

subject to x1 C 2x2 � 26

2x1 C 3x2 � 30

x1 C x2 � 13

and x1 � 0; x2 � 0:

16. Maximize 2x1 C 5x2 C 3x3

subject to x1 C 2x2 � 28

2x1 C 4x3 � 16

x2 C x3 � 12

and x1 � 0; x2 � 0; x3 � 0:

17. Minimize 12x1 C 5x2

subject to 2x1 C x2 � 32

�3x1 C 5x2 � 30

and x1 � 0; x2 � 0:

18. Minimize 2x1 C 3x2 C 3x3

subject to x1 � 2x2 � �8

2x2 C x3 � 15

2x1 � x2 C x3 � 25

and x1 � 0; x2 � 0; x3 � 0:

19. Solve Example 7 by bringing x1 into the solution (instead of
x2) in the initial tableau.

20. Use the simplex method to solve the linear programming
problem in Section 9.2, Exercise 1.

21. Use the simplex method to solve the linear programming
problem in Section 9.2, Exercise 17.

22. Use the simplex method to solve the linear programming
problem in Section 9.2, Example 1.

Solution to Practice Problem

Introduce slack variables x3 and x4 to rewrite the problem:

Maximize 2x1 C x2

subject to �x1 C 2x2 C x3 D 8

3x1 C 2x2 C x4 D 24

and x1 � 0; x2 � 0:

Then let M D 2x1 C x2, so that �2x1 � x2 CM D 0 provides the bottom row in the
initial simplex tableau.

x1 x2 x3 x4 M264�1i3
�2

2

2

�1

1

0

0

0

1

0

0

0

1

8

24

0

375
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Bring x1 into the solution (because of the �2 entry in the bottom row), and pivot on
the second row (because it is the only row with a positive entry in the first column).
The second tableau turns out to be optimal, since all the entries in the bottom row are
positive. Remember that the slack variables (in color) are never part of the solution.

x1 x2 x3 x4 M26664
0

1

0

8
3

2
3

1
3

1

0

0

1
3

1
3

2
3

0

0

1

16

8

16

37775
The maximum value is 16, when x1 D 8 and x2 D 0. Note that this problemwas solved
geometrically in the Practice Problem for Section 9.2.

9.4 Duality
Associated with each canonical (maximization) linear programming problem is a related
minimization problem, called the dual problem. In this setting, the canonical problem is
called the primal problem. This section describes the dual problem and how it is solved,
along with an interesting economic interpretation of the dual variables. The section
concludes by showing how any matrix game can be solved using the primal and dual
versions of a suitable linear programming problem.

Given vectors c in Rn and b in Rm, and given an m � n matrix A, the canonical
(primal) problem is to find x in Rn so as to maximize f .x/ D cTx subject to the
constraints Ax � b and x � 0. The dual (minimization) problem is to find y in Rm so as
to minimize g.y/ D bTy subject to AT y � c and y � 0:

Primal Problem P Dual Problem P�

Maximize f .x/ D cT x
subject to Ax � b

x � 0

Minimize g.y/ D bT y
subject to AT y � c

y � 0

Observe that in forming the dual problem, the ci coefficients of xi in the objec-
tive function of the primal problem become the constants on the right-hand side of
the constraint inequalities in the dual. Likewise, the numbers in the right-hand side of
the constraint inequalities in the primal problem become the coefficients bj of yj in the
objective function in the dual. Also, note that the direction of the constraint inequalities
is reversed fromAx � b toATy � c. In both cases, the variables x and y are nonnegative.

EXAMPLE 1 Find the dual of the following primal problem:

Maximize 5x1 C 7x2

subject to 2x1 C 3x2 � 25

7x1 C 4x2 � 16

x1 C 9x2 � 21

and x1 � 0; x2 � 0:
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SOLUTION
Minimize 25y1 C 16y2 C 21y3

subject to 2y1 C 7y2 C y3 � 5

3y1 C 4y2 C 9y3 � 7

and y1 � 0; y2 � 0; y3 � 0:

Suppose that the dual problem above is rewritten as a canonical maximization
problem:

Maximize h.y/ D �bTy
subject to �ATy � �c and y � 0:

Then the dual of this problem is

Minimize F.w/ D �cTw
subject to .�AT /Tw � �b and w � 0:

In canonical form, this minimization problem is equivalent to

Maximize G.w/ D cTw
subject to Aw � b and w � 0:

If w is replaced by x, this problem is precisely the primal problem. So the dual of the
dual problem is the original primal problem.

Theorem 7 below is a fundamental result in linear programming. As with the
Minimax Theorem in game theory, the proof depends on certain properties of convex
sets and hyperplanes.1

THEOREM 7 The Duality Theorem

Let P be a (primal) linear programming problem with feasible set F , and let P �

be the dual problem with feasible set F �.

a. If F and F � are both nonempty, then P and P � both have optimal solutions,
say Nx and Ny, respectively, and f .Nx/ D g.Ny/.

b. If one of the problems P or P � has an optimal solution Nx or Ny, respectively,
then so does the other, and f .Nx/ D g.Ny/.

EXAMPLE 2 Set up and solve the dual to the problem in Example 5 of Section 9.2.

SOLUTION The original problem is to

Maximize f .x1; x2/ D 2x1 C 3x2

subject to x1 � 30

x2 � 20

x1 C 2x2 � 54

and x1 � 0; x2 � 0:

1 If the equation Ax D b has no nonnegative solution, then the sets fbg and S D fz 2 Rm W z D Ax, x � 0g
are disjoint. It is not hard to show that S is a closed convex set, so Theorem 12 in Chapter 8 implies that
there exists a hyperplane strictly separating fbg and S . This hyperplane plays a key role in the proof. For
details, see Steven R. Lay, Convex Sets and Their Applications (New York: John Wiley & Sons, 1982;
Mineola, NY: Dover Publications, 2007), pp. 174–178.
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Calculations in Example 5 of Section 9.2 showed that the optimal solution of this

problem is Nx D
�

30

12

�
with f .Nx/ D 96. The dual problem is to

Minimize g.y1; y2; y3/ D 30y1 C 20y2 C 54y3

subject to y1 C y3 � 2

y2 C 2y3 � 3

and y1 � 0; y2 � 0; y3 � 0:

The simplex method could be used here, but the geometric method of Section 9.2
is not too difficult. Graphs of the constraint inequalities (Figure 1) reveal that F �

has three extreme points and that Ny D

264 1
2

0
3
2

375 is the optimal solution. Indeed, g.Ny/ D

30. 1
2
/C 20.0/C 54. 3

2
/ D 96, as expected.

y2

y3

y1

 y2 1 2y35 3

y1
1 y3

 5 2

(0, 0, 2)

(2, 3, 0)

(   , 0,    )1
2

3
2

(0, 0, 2)

(   , 0,    )
(2, 3, 0)

108

96

120

y g(y)

1
2

3
2

FIGURE 1 The minimum of g.y1; y2; y3/ D 30y1 C 20y2 C 54y3.

Example 2 illustrates another important property of duality and the simplex method.
Recall that Example 6 of Section 9.3 solved this same maximizing problem using the
simplex method. Here is the final tableau:

x1 x2 x3 x4 x5 M26666664
0

0

1

0

0

1

0

0

1
2

�
1
2

1

1
2

1

0

0

0

�
1
2

1
2

0

3
2

0

0

0

1

8

12

30

96

37777775
Notice that the optimal solution to the dual problem appears in the bottom row. The
variables x3, x4, and x5 are the slack variables for the first, second, and third equations,
respectively. The bottom entry in each of these columns gives the optimal solution Ny D264 1

2

0
3
2

375 to the dual problem. This is not a coincidence, as the following theorem shows.
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THEOREM 7 The Duality Theorem (Continued)

Let P be a (primal) linear programming problem and let P � be its dual problem.
Suppose P (or P �) has an optimal solution.

c. If either P or P � is solved by the simplex method, then the solution of its dual
is displayed in the bottom row of the final tableau in the columns associated
with the slack variables.

EXAMPLE 3 Set up and solve the dual to the problem in Example 5 in Section 9.3.

SOLUTION The primal problem P is to

Maximize f .x1; x2; x3/ D 25x1 C 33x2 C 18x3

subject to 2x1 C 3x2 C 4x3 � 60

3x1 C x2 C 5x3 � 46

x1 C 2x2 C x3 � 50

and x1 � 0; x2 � 0; x3 � 0:

The dual problem P � is to

Minimize g.y1; y2; y3/ D 60y1 C 46y2 C 50y3

subject to 2y1 C 3y2 C y3 � 25

3y1 C y2 C 2y3 � 33

4y1 C 5y2 C y3 � 18

and y1 � 0; y2 � 0; y3 � 0:

The final tableau for the solution of the primal problem was found to be

x1 x2 x3 x4 x5 x6 M26666664
0

1

0

0

1

0

0

0

2
7

11
7

�
8
7

215
7

3
7

�
1
7

�
5
7

74
7

�
2
7

3
7

1
7

9
7

0

0

1

0

0

0

0

1

88
7

78
7

96
7

4854
7

37777775
The slack variables are x4, x5, and x6. They give the optimal solution to the dual problem
P �. Thus,

y1 D
74
7

; y2 D
9
7
; and y3 D 0

Note that the optimal value of the objective function in the dual problem is

g
�

74
7

; 9
7
; 0
�
D 60

�
74
7

�
C 46

�
9
7

�
C 50.0/ D 4854

7

This agrees with the optimal value of the objective function in the primal problem.

The variables in the dual problem have useful economic interpretations. For ex-
ample, consider the problem of mixing nuts studied in Example 5 of Section 9.2 and
Example 6 of Section 9.3:

Maximize f .x1; x2/ D 2x1 C 3x2

subject to x1 � 30 (cashews)
x2 � 20 (filberts)

x1 C 2x2 � 54 (peanuts)
and x1 � 0; x2 � 0:
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Recall that x1 is the number of boxes of the first mixture and x2 is the number of boxes
of the second mixture. Example 2 displayed the following dual problem:

Minimize g.y1; y2; y3/ D 30y1 C 20y2 C 54y3

subject to y1 C y3 � 2

y2 C 2y3 � 3

and y1 � 0; y2 � 0; y3 � 0:

If Nx and Ny are optimal solutions of these problems, then by the Duality Theorem, the
maximum profit f .Nx/ satisfies the equation

f .Nx/ D g.Ny/ D 30 Ny1 C 20 Ny2 C 54 Ny3

Suppose, for example, that the amount of cashews available was increased from 30
pounds to 30C h pounds. Then the profit would increase by h Ny1:Likewise, if the amount
of cashews was decreased by h pounds, then the profit would decrease by h Ny1. So Ny1

represents the value (per pound) of increasing or decreasing the amount of cashews
available. This is usually referred to as the marginal value of the cashews. Similarly,
Ny2 and Ny3 are the marginal values of the filberts and peanuts, respectively. These values
indicate how much the company might be willing to pay for additional supplies of the
various nuts.2

EXAMPLE 4 The final simplex tableau for the problem of mixing nuts was found
(in Example 6 of Section 9.3) to be

x1 x2 x3 x4 x5 M26666664
0

0

1

0

0

1

0

0

1
2

�
1
2

1

1
2

1

0

0

0

�
1
2

1
2

0

3
2

0

0

0

1

8

12

30

96

37777775

so the optimal solution of the dual is Ny D

264 1
2

0
3
2

375. Thus the marginal value of the cashews
is 1

2
, the marginal value of the filberts is 0, and the marginal value of the peanuts is 3

2
:

Note that the optimal production schedule Nx D
�

30

12

�
uses only 12 of the 20 pounds

of filberts. (This corresponds to the slack variable x4 for the filbert constraint inequality
having value 8 in the final tableau.) This means that not all the available filberts are used,
so there is no increase in profit from increasing the number of filberts available. That is,
their marginal value is zero.

Linear Programming and Matrix Games
LetA be anm � n payoff matrix for a matrix game, as in Section 9.1, and assume at first
that each entry inA is positive. Let u inRm and v inRn be the vectors whose coordinates

2 The other entries in the final tableau can also be given an economic interpretation. See Saul I. Gass, Linear
Programming Methods and Applications, 5th Ed. (Danvers, MA: Boyd & Fraser Publishing, 1985), pp.
173–177. Also see Goldstein, Schneider, and Siegel, Finite Mathematics and Its Applications, 6th Ed.
(Upper Saddle River, NJ: Prentice Hall, 1998), pp. 166–185.
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are all equal to one, and consider the following linear programming problem P and its
dual P �. (Notice that the roles of x and y are reversed, with x in Rm and y in Rn.)

P W Maximize vTy P � W Minimize uTx
subject to Ay � u subject to ATx � v

y � 0 x � 0

The primal problem P is feasible since y D 0 satisfies the constraints. The dual
problem P � is feasible since all the entries in AT are positive and v is a vector of 1’s.
By the Duality Theorem, there exist optimal solutions Ny and Nx such that vT Ny D uT Nx. Set

� D vT
Ny D uT

Nx

Since the entries in A and u are positive, the inequality Ay � u has a nonzero solution
y with y � 0. As a result, the � for the primal problem is positive. Let

Oy D Ny=� and Ox D Nx=�

It can be shown (Exercise 29) that Oy is the optimal mixed strategy for the column player
C and Ox is the optimal mixed strategy for the row player R. Furthermore, the value of
the game is equal to 1=�.

Finally, if the payoff matrix A has some entries that are not positive, add a fixed
number, say k, to each entry to make the entries all positive. This will not change the
optimal mixed strategies for the two players, and it will add an amount k to the value of
the game. [See Exercise 33(b) in Section 9.1.]

EXAMPLE 5 Solve the game whose payoff matrix is A D

�
�2 1 2

3 2 0

�
.

SOLUTION To produce a matrix B with positive entries, add 3 to each entry:

B D

�
1 4 5

6 5 3

�
The optimal strategy for the column playerC is found by solving the linear programming
problem

Maximize y1 C y2 C y3

subject to y1 C 4y2 C 5y3 � 1

6y1 C 5y2 C 3y3 � 1

and y1 � 0; y2 � 0; y3 � 0:

Introduce slack variables y4 and y5, let M be the objective function, and construct the
initial simplex tableau:

y1 y2 y3 y4 y5 M264 1

6

�1

4

5

�1

5

3

�1

1

0

0

0

1

0

0

0

1

1

1

0

375
The three �1 entries in the bottom row are equal, so any of columns 1 to 3 can be the
first pivot column. Choose column 1 and check the ratios bi =ai1. To bring variable y1

into the solution, pivot on the 6 in the second row.

y1 y2 y3 y4 y5 M26664
0

1

0

19
6

5
6

�
1
6

9
2

1
2

�
1
2

1

0

0

�
1
6

1
6

1
6

0

0

1

5
6

1
6

1
6

37775
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In the bottom row, the third entry is the most negative, so bring y3 into the solution. The
ratios bi =ai3 are 5

6
= 9

2
D

5
27
and 1

6
= 1

2
D

1
3
D

9
27
. The first ratio is smaller, so pivot on the

9
2
in the first row.

y1 y2 y3 y4 y5 M26664
0

1

0

19
27

13
27

5
27

1

0

0

2
9

�
1
9

1
9

�
1
27

5
27

4
27

0

0

1

5
27

2
27

7
27

37775
The optimal solution of the primal problem is

Ny1 D
2
27

; Ny2 D 0; Ny3 D
5
27

; with � D Ny1 C Ny2 C Ny3 D
7
27

The corresponding optimal mixed strategy for C is

Oy D y=� D

26664
2
7

0

5
7

37775
The optimal solution of the dual problem comes from the bottom entries under the slack
variables

Nx1 D
1
9
D

3
27

and Nx2 D
4
27

; with � D Nx1 C Nx2 D
7
27

which shows that the optimal mixed strategy for R is

Ox D x=� D

24 3
7

4
7

35
The value of the game with payoff matrix B is v D 1

�
D

27
7

; so the value of the original
matrix game A is 27

7
� 3 D 6

7
.

Although matrix games are usually solved via linear programming, it is interesting
that a linear programming problem can be reduced to a matrix game. If the programming
problem has an optimal solution, then this solution is reflected in the solution of the
matrix game. Suppose the problem is to maximize cTx subject to Ax � b and x � 0,
where A is m � n with m � n. Let

M D

24 0 A �b
�AT 0 c
bT

�cT 0

35 and s D

24 Ny
Nx
´

35
and suppose thatM represents a matrix game and s is an optimal column strategy forM .
The .nCmC 1/ � .nCmC 1/ matrix M is skew-symmetric; that is, M T D �M .
It can be shown that in this case the optimal row strategy equals the optimal column
strategy, the value of the game is 0, and the maximum of the entries in the vector M s is
0. Observe that

M s D

24 0 A �b
�AT 0 c
bT

�cT 0

3524 Ny
Nx
´

35 D 24 ANx � ´b
�AT NyC ´c
bT

Ny � cT Nx

35 � 24 0
0
0

35
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Thus ANx � ´b, ATy � ´c; and bT
Ny � cT Nx. Since the column strategy s is a probability

vector, ´ � 0. It can be shown that if ´ > 0, then Nx=´ is an optimal solution for the
primal (maximization) problem for Ax � b, and Ny=´ is an optimal solution for the dual
problem forATy � c. Also, if ´ D 0, then the primal and dual problems have no optimal
solutions.

In conclusion, the simplex method is a powerful tool in solving linear programming
problems. Because a fixed procedure is followed, it lends itself well to using a computer
for the tedious calculations involved. The algorithm presented here is not optimal for
a computer, but many computer programs implement variants of the simplex method,
and some programs even seek integer solutions. New methods developed in recent years
take shortcuts through the interior of the feasible region instead of going from extreme
point to extreme point. They are somewhat faster in certain situations (typically involving
thousands of variables and constraints), but the simplexmethod is still the approachmost
widely used.

Practice Problems

The following questions relate to the Shady-Lane grass seed company from Example
1 in Section 9.2. The canonical linear programming problem can be stated as follows:

Maximize 2x1 C 3x2

subject to 3x1 C 2x2 � 1200 (fescue)
x1 C 2x2 � 800 (rye)
x1 C x2 � 450 (bluegrass)

and x1 � 0; x2 � 0:

1. State the dual problem.

2. Find the optimal solution to the dual problem, given that the final tableau in the
simplex method for solving the primal problem is

x1 x2 x3 x4 x5 M26664
0

0

1

0

0

1

0

0

1

0

0

0

1

1

�1

1

�4

�1

1

1

0

0

0

1

200

350

100

1250
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3. What are the marginal values of fescue, rye, and bluegrass at the optimal solution?

9.4 Exercises
In Exercises 1–4, state the dual of the given linear programming
problem.

1. Exercise 13 in Section 9.3 2. Exercise 14 in Section 9.3

3. Exercise 15 in Section 9.3 4. Exercise 16 in Section 9.3

In Exercises 5–8, use the final tableau in the solution of the given
exercise to solve its dual.

5. Exercise 13 in Section 9.3 6. Exercise 14 in Section 9.3

7. Exercise 15 in Section 9.3 8. Exercise 16 in Section 9.3

Exercises 9–16 relate to a primal linear programming problem of
finding x in Rn so as to maximize f .x/ D cT x subject to Ax � b
and x � 0. Mark each statement True or False (T/F). Justify each
answer.

9. (T/F) The dual problem is to minimize y in Rm subject to
Ay � c and y � 0.

10. (T/F) The dual of the dual problem is the original primal
problem.
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11. (T/F) If both the primal and the dual problems are feasible,
then they both have optimal solutions.

12. (T/F) If either the primal or the dual problem has an optimal
solution, then they both do.

13. (T/F) If x is an optimal solution to the primal problem and Oy is
a feasible solution to the dual problem such that g.Oy/ D f .x/,
then g.Oy/ is an optimal solution to the dual problem.

14. (T/F) If the primal problem has an optimal solution, then the
final tableau in the simplex method also gives the optimal
solution to the dual problem.

15. (T/F) If a slack variable is in an optimal solution, then the
marginal value of the item corresponding to its equation is
positive.

16. (T/F) When a linear programming problem and its dual are
used to solve a matrix game, the vectors u and v are unit.

Sometimes a minimization problem has inequalities only of the
“�” type. In this case, replace the problem by its dual. (Multiply-
ing the original inequalities by �1 to reverse their direction will
not work, because the basic solution of the initial simplex tableau
in this case will be infeasible.) In Exercises 17–20, use the simplex
method to solve the dual, and from this solve the original problem
(the dual of the dual).

17. Minimize 16x1 C 10x2 C 20x3

subject to x1 C x2 C 3x3 � 4

2x1 C x2 C 2x3 � 5

and x1 � 0; x2 � 0; x3 � 0:

18. Minimize 10x1 C 14x2

subject to x1 C 2x2 � 3

2x1 C x2 � 4

3x1 C x2 � 2

and x1 � 0; x2 � 0:

19. Solve Exercise 2 in Section 9.2.

20. Solve Example 2 in Section 9.2.

Exercises 21 and 22 refer to Exercise 17 in Section 9.2. This
exercise was solved using the simplex method in Exercise 21
of Section 9.3. Use the final simplex tableau for that exercise to
answer the following questions.

21. What is the marginal value of additional labor in the fabri-
cating department? Give an economic interpretation to your
answer.

22. If an extra hour of labor were available, to which department
should it be allocated? Why?

Solve the matrix games in Exercises 23 and 24 by using linear
programming.

23.

24 2 0

�4 5

�1 3

35 24.

24 1 �2

0 1

�3 2

35
25. Solve the matrix game in Exercise 9 in Section 9.1 using

linear programming. This game and the one in Exercise 10
cannot be solved by the methods of Section 9.1.

26. Solve the matrix game in Exercise 10 in Section 9.1 using
linear programming.

27. Bob wishes to invest $35,000 in stocks, bonds, and gold
coins. He knows that his rate of return will depend on the
economic climate of the country, which is, of course, difficult
to predict. After careful analysis, he determines the annual
profit in dollars he would expect per hundred dollars on each
type of investment, depending on whether the economy is
strong, stable, or weak:

Strong Stable Weak

Stocks 4 1 �2

Bonds 1 3 0

Gold �1 0 4

How should Bob invest his money in order to maximize his
profit regardless of what the economy does? That is, consider
the problem as a matrix game in which Bob, the row player,
is playing against the “economy.” What is the expected value
of his portfolio at the end of the year?

28. Let P be a (primal) linear programming problem with feasi-
ble set F , and let P � be the dual problem with feasible set
F �. Prove the following:

a. If x is in F and y is in F �, then f .x/ � g.y/. [Hint:
Write f .x/ as xTc and g.y/ as yT b. Then begin with the
inequality c � ATy.]

b. If f .Ox/ D g.Oy/ for some Ox in F and Oy in F �, then Ox is an
optimal solution to P and Oy is an optimal solution to P �.

29. Let A be an m � n matrix game. Let Ny and Nx be the optimal
solutions to the related primal and dual linear programming
problems, respectively, as in the discussion prior to Example
5. Let� D uT Nx D vT Ny, and define Ox D Nx=� and Oy D Ny=�. Let
R and C , respectively, denote the row and column players.

a. Show that Ox and Oy are mixed strategies for R and C ,
respectively.

b. If y is any mixed strategy forC , show thatE.Ox, y/ � 1=�.

c. If x is any mixed strategy forR, show thatE.x, Oy/ � 1=�.

d. Conclude that Ox and Oy are optimal mixed strategies for R

and C , respectively, and that the value of the game is 1=�.
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Solutions to Practice Problems

1. Minimize 1200y1 C 800y2 C 450y3

subject to 3y1 C y2 C y3 � 2

2y1 C 2y2 C y3 � 3

and y1 � 0; y2 � 0; y3 � 0:

2. The slack variables are x3, x4, and x5. The bottom row entries in these columns
of the final simplex tableau give the optimal solution to the dual problem. Thus

Ny D

24 0

1

1

35.
3. Slack variable x3 comes from the constraint inequality for fescue. This corresponds

to variable y1 in the dual problem, so the marginal value of fescue is 0. Similarly,
x4 and x5 come from rye and bluegrass, respectively, so their marginal values are
both equal to 1.

CHAPTER 9 PROJECT
The Chapter 9 project is available online. A. Cycling: This project investigates cycling in the Simplex

Method.

CHAPTER 9 SUPPLEMENTARY EXERCISES
In Exercises 1–24, mark each statement True or False (T/F).
Justify each answer.

1. (T/F) A negative entry aij in a payoff matrix indicates the
amount player R has to pay player C when R choses action
i and C choses action j .

2. (T/F) Every payoff matrix has at least one saddle point.

3. (T/F) If x is a vector whose entries sum to 1, then x is a
probability vector.

4. (T/F) If x is a pure strategy in a matrix game, then all the
coordinates in x have the same value.

5. (T/F) Each strategy for playerR in a matrix game is a convex
combination of the set of pure strategies for R.

6. (T/F) If A is an m � n payoff matrix, then the strategy space
for R is the set of all probability vectors in Rn.

7. (T/F) A strategy Ox for row player R is optimal if the value of
Ox is equal to the value of the game to R.

8. (T/F) If A is the payoff matrix for a matrix game, then the
value of strategy x to playerR, denoted v.x/, is the minimum
of the inner product of x with each of the columns of A.

9. (T/F) If Ox and Oy are optimal strategies for an m � n matrix
game whose value is v, then Oy is a convex combination of the
pure strategies ej in Rn for which E.Ox; ej / D v.

10. (T/F) If A is the payoff matrix for a 2 � n matrix game, then
the value of strategy x.t/ to player R, denoted v.x.t//, is the
maximum value of n linear functions of t .

11. (T/F) If a canonical linear programming problem has a fea-
sible solution but no optimal solution, then the objective
function must be unbounded on the feasible set.

12. (T/F) If x is an extreme point of the feasible set of a canonical
linear programming problem, then x is an optimal solution.

13. (T/F) If the objective function in a canonical linear program-
ming problem takes on arbitrarily large values in the feasible
set, then the problem is infeasible.

14. (T/F) If a canonical linear programming problem is un-
bounded, then it must be feasible.

15. (T/F) If the feasible set of a canonical linear programming
problem is unbounded, then the program has no optimal
solution.

16. (T/F) The simplex method of solving a canonical linear
programming problem begins by changing each constraint
inequality into an equality.

17. (T/F) If A is m � n, then it will require n slack variables to
change Ax � b into a system of linear equations.

18. (T/F) In following the simplex method, when a variable goes
“out” of a basic feasible solution, it stays out.
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19. (T/F) In order to begin the standard simplex method, each
term in the augmented column above the horizontal line must
be a nonnegative number.

20. (T/F) When setting up the initial simplex tableau for a
canonical linear programming problem, the coefficients of the
objective function go in the bottom row.

21. (T/F) In setting up the dual linear programming problem, the
matrixA in the primal problem is replaced byA�1 in the dual
problem.

22. (T/F) If a primal linear programming problem has an optimal
solution, then its dual program is bounded.

23. (T/F) Let P be a maximizing linear programming problem
and let P � be its dual. If P has an optimal solution, then the
maximum value of the objective function of P in its feasible
set is equal to the minimum value of the objective function of
P � in its feasible set.

24. (T/F) Let A be an m � n matrix game where all the entries
in A are positive. Let Ny and Nx be the optimal solutions to
the related primal and dual linear programming problems,
respectively, as defined in Section 9.4. If � is equal to the sum
of the coordinates in Nx, then the value of the matrix game is
equal to �.

25. Consider the following problem:

Maximize �x1 C 2x2

subject to �x1 C x2 � 1

x2 � 2

and x1 � 0, x2 � 0.

a. Graph the feasible set F .

b. Find the extreme points of F .

c. Draw some level lines of the objective function to show
that the objective function is bounded on F even though
F is not bounded.

d. Find an optimal solution to the problem.

26. Use the simplex method to find an optimal solution to the
problem in Exercise 25.

27. Consider the following problem:

Maximize x1 C x2

subject to �x1 C x2 � 1

x2 � 2

and x1 � 0, x2 � 0.

Note that this has the same constraint inequalities as Exer-
cise 25 (and hence the same feasible set), but the objective
function is different.

a. Draw the feasible set and some level lines for this new
objective function to show that it is not bounded on F .

b. Evaluate the objective function at each of the extreme
points.

28. Try to use the simplex method to solve the problem in Exer-
cise 27. Explain why it doesn’t work.

29. Consider the following problem:
Maximize 3x1 C 4x2

subject to x1 � x2 � 4

�2x1 C 5x2 � �10

and x1 � 0, x2 � 0.

a. Set up the initial simplex tableau.

b. Try to apply the simplex method and explain why it does
not work.

c. Graph the constraint inequalities and explain how they
relate to your answer to part b.

30. The bottom row of the final tableau for a linear programming
problemwill have zeros as entries in the columns correspond-
ing to the basic variables that are “in” the solution. There may
also be zeros in some of the other columns in this bottom row.
When this happens, the optimal solution will not be unique
since these other variables could be brought into the solution
without changing the value of the objective function.

a. Find all of the optimal solutions to the following problem:

Maximize 4x1 C 5x2 � x3

Subject to x1 C 2x2 � x3 � 16

x1 C x2 � 12

2x1 C 2x2 C x3 � 36

and x1 � 0, x2 � 0, x3 � 0.

b. Describe the set of solutions geometrically.

31. Consider the matrix game having payoff matrix A D�
�1 2 3

4 3 �2

�
. Find the optimal mixed strategies and the

value of the game by using the method of Example 4 in
Section 9.1.

32. Find the optimal mixed strategies and the value of the game
in Exercise 31 by using linear programming as in Example 5
in Section 9.4.



10 Finite-State
Markov Chains

..Introductory Example

GOOGLING MARKOV CHAINS
Google means many things: it is an internet search engine,
the company that produces the search engine, and a
verb meaning to search on the Internet for a piece of
information. Although it may seem hard to believe, there
was a time before people could “google” to find the
capital of Botswana, or a recipe for deviled eggs, or other
vitally important matters. Users of the internet depend
on trustworthy search engines—the amount of available
information is so vast that the searcher relies on the search
engine not only to find those webpages that contain the
terms of the search, but also to return first those webpages
most likely to be relevant to the search. Early search engines
had no good way of determining which pages were more
likely to be relevant. Searchers had to check the returned
pages one by one, which was a tedious and frustrating
process. This situation improved markedly in 1998, when
search engines began to use the information contained in
the hyperlinked structure of the World Wide Web to help to
rank pages. Foremost among this new generation of search
engines was Google, a project of two computer science
graduate students at Stanford University: Sergey Brin and
Lawrence Page.

Brin and Page reasoned that a webpage was important
if it had hyperlinks to it from other important pages. They
used the idea of the random surfer: a web surfer moving
from webpage to webpage merely by choosing at random
which hyperlink to follow. The motion of the surfer among
the webpages can be modeled using Markov chains, which
were introduced in Section 5.9. The pages that this random
surfer visits more often ought to be more important, and
thus more relevant, if their content matches the terms of a
search. Although Brin and Page did not know it at the time,
they were attempting to find the steady-state vector for a
particular Markov chain whose transition matrix modeled
the hyperlinked structure of the web. After some important
modifications of this impressively large matrix (detailed in
Section 10.2), a steady-state vector can be found, and its
entries can be interpreted as the amount of time a random
surfer will spend at each webpage. The calculation of this
steady-state vector is the basis for Google’s PageRank
algorithm.

So the next time you google the capital of Botswana,
know that you are using the results of this chapter to find
just the right webpage.

Even though the number of webpages is huge, it is still finite. When the link structure
of the World Wide Web is modeled by a Markov chain, each webpage is a state of the
Markov chain. This chapter continues the study of Markov chains begun in Section 5.9,

C-1
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focusing on those Markov chains with a finite number of states. Section 10.1 introduces
useful terminology and develops some examples of Markov chains: signal transmission
models, diffusion models from physics, and random walks on various sets. Random
walks on directed graphs will have particular application to the PageRank algorithm.
Section 10.2 defines the steady-state vector for a Markov chain. Although every Markov
chain has a steady-state vector, not every Markov chain converges to a steady-state
vector. When the Markov chain converges to a steady-state vector, that vector can be
interpreted as telling the amount of time the chain will spend in each state. This in-
terpretation is necessary for the PageRank algorithm, so the conditions under which a
Markov chain converges to a steady-state vector will be developed. The model for the
link structure of the World Wide Web will then be modified to meet these conditions,
forming what is called the Google matrix. Sections 10.3 and 10.4 discuss Markov chains
that do not converge to steady-state vectors. These Markov chains can be used to model
situations in which the chain eventually becomes confined to one state or a set of states.
Section 10.5 introduces the fundamental matrix. This matrix can be used to calculate
the expected number of steps it takes the chain to move from one state to another, as
well as the probability that the chain ends up confined to a particular state. In Section
10.6, the fundamental matrix is applied to a model for run production in baseball: the
number of batters in a half inning and the state in which the half inning ends will be of
vital importance in calculating the expected number of runs scored.

..
10.1 Introduction and Examples

Recall from Section 5.9 that a Markov chain is a mathematical model for movement
between states. A process starts in one of these states and moves from state to state. The
moves between states are called steps or transitions. The terms “chain” and “process”
are used interchangeably, so the chain can be said to move between states and to be “at
a state” or “in a state” after a certain number of steps.

The state of the chain at any given step is not known; what is known is the probability
that the chain moves from state j to state i in one step. This probability is called a
transition probability for the Markov chain. The transition probabilities are placed in
a matrix called the transition matrix P for the chain by entering the probability of a
transition from state j to state i at the .i; j /-entry of P . So if there were m states named
1, 2; : : : m, the transition matrix would be the m �m matrix

P D

From:

1 j m26664
:::

#

pij � � � !

37775
To:

1

i

m

The probabilities that the chain is in each of the possible states after n steps are
listed in a state vector xn. If there are m possible states, the state vector would be

xn D

26666664

a1

:::

aj

:::

am

37777775  � Probability that the chain is at state j after n steps
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State vectors are probability vectors since their entries must sum to 1. The state vector
x0 is called the initial probability vector.

Notice that the j th column of P is a probability vector—its entries list the proba-
bilities of a move from state j to the states of the Markov chain. The transition matrix
is thus a stochastic matrix since all of its columns are probability vectors.

The state vectors for the chain are related by the equation

xnC1 D P xn (1)

for n D 1; 2; : : :. Notice that Equation (1) may be used to show that

xn D P nx0 (2)

Thus any state vector xn may be computed from the initial probability vector x0 and an
appropriate power of the transition matrix P .

This chapter concerns itself with Markov chains with a finite number of states—that
is, those chains for which the transition matrix P is of finite size. To use a finite-state
Markov chain to model a process, the process must have the following properties, which
are implied by Equations (1) and (2).

1. Since the values in the vector xnC1 depend only on the transition matrix P and on
xn, the state of the chain before time n must have no effect on its state at time nC 1

and beyond.

2. Since the transitionmatrixP does not changewith time, the probability of a transition
from one state to another must not depend on how many steps the chain has taken.

Even with these restrictions, Markov chains may be used to model an amazing variety
of processes. Here is a sampling.

Signal Transmission
Consider the problem of transmitting a signal along a telephone line or by radio waves.
Each piece of data must pass through a multistage process to be transmitted, and at each
stage there is a probability that a transmission error will cause the data to be corrupted.
Assume that the probability of an error in transmission is not affected by transmission
errors in the past and does not depend on time, and that the number of possible pieces
of data is finite. The transmission process may then be modeled by a Markov chain. The
object of interest is the probability that a piece of data goes through the entire multistage
process without error. Here is an example of such a model.

EXAMPLE 1 Suppose that each bit of data is either a 0 or a 1, and at each stage there
is a probability p that the bit will pass through the stage unchanged. Thus the probability
is 1 � p that the bit will be transposed. The transmission process is modeled by aMarkov
chain, with states 0 and 1 and transition matrix

P D

From:

0 1�
p

1 � p

1 � p

p

� To:

0

1

It is often easier to visualize the action of a Markov chain by representing its transition
probabilities graphically, as in Figure 1. The points are the states of the chain, and the
arrows represent the transitions.

Suppose that p D :99. Find the probability that the signal 0 will still be a 0 after a
two-stage transmission process.
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1 2 p

p p

1 2 p 

10

FIGURE 1 Transition diagram for signal
transmission.

SOLUTION Since the signal begins as 0, the probability that the chain begins at 0 is

100%, or 1; that is, the initial probability vector is x0 D

�
1

0

�
. To find the probability of

a two-step transition, compute

x2 D P 2x0 D

�
:99 :01

:01 :99

�2�
1

0

�
D

�
:9802 :0198

:0198 :9802

��
1

0

�
D

�
:9802

:0198

�
The probability that the signal 0 will still be a 0 after the two-stage process is thus
:9802. Notice that this is not the same as the probability that the 0 is transmitted without
error; that probability would be .:99/2 D :9801. Our analysis includes the very small
probability that the 0 is erroneously changed to 1 in the first step, then back to 0 in the
second step of transmission.

Diffusion
Consider two compartments filled with different gases that are separated only by a mem-
brane that allows molecules of each gas to pass from one container to the other. The two
gases will then diffuse into each other over time, so that each container will contain
some mixture of the gases. The major question of interest is what mixture of gases is in
each container at a time after the containers are joined. A famous mathematical model
for this process was described originally by the physicists Paul and Tatyana Ehrenfest.
Since their preferred term for “container” was urn, the model is called the Ehrenfest
urn model for diffusion.

Label the two urns A and B, and place k molecules of gas in each urn. At each time
step, select one of the 2k molecules at random and move it from its urn to the other urn,
and keep track of the number of molecules in urn A. This process can be modeled by
a finite-state Markov chain: the number of molecules in urn A after nC 1 time steps
depends only on the number in urn A after n time steps, the transition probabilities do
not change with time, and the number of states is finite.

EXAMPLE 2 For this example, let k D 3. Then the two urns contain a total of 6

molecules, and the possible states for the Markov chain are 0, 1, 2, 3, 4, 5, and 6. Notice
first that if there are 0 molecules in urn A at time n, then there must be 1 molecule in
urn A at time nC 1, and if there are 6 molecules in urn A at time n, then there must be
5 molecules in urn A at time nC 1. In terms of the transition matrix P , this means that
the columns in P corresponding to states 0 and 6 are

p0 D

2666666664

0

1

0

0

0

0

0

3777777775
and p6 D

2666666664

0

0

0

0

0

1

0

3777777775
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If there are i molecules in urn A at time n, with 0 < i < 6, then there must be either
i � 1 or i C 1 molecules in urn A at time nC 1. In order for a transition from i to i � 1

molecules to occur, one of the i molecules in urn A must be selected to move; this event
happens with probability i=6. Likewise, a transition from i to i C 1 molecules occurs
when one of the 6 � i molecules in urn B is selected, and this occurs with probability
.6 � i/=6. Allowing i to range from 1 to 5 creates the columns of P corresponding to
these states, and the transition matrix for the Ehrenfest urn model with k D 3 is thus

P D

0 1 2 3 4 5 62666666664

0

1

0

0

0

0

0

1=6

0

5=6

0

0

0

0

0

1=3

0

2=3

0

0

0

0

0

1=2

0

1=2

0

0

0

0

0

2=3

0

1=3

0

0

0

0

0

5=6

0

1=6

0

0

0

0

0

1

0

3777777775

0

1

2

3

4

5

6

Figure 2 shows a transition diagram of this Markov chain. Other models for diffusion
will be considered in the Exercises for this section.

1

1

0 1
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5
6
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1
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1
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1
3

1
3

1
6

1
6

FIGURE 2 Transition diagram of the Ehrenfest urn model.

Random Walks on f1, : : : , ng
Molecular motion has long been an important issue in physics. Einstein and others inves-
tigated Brownian motion, which is a mathematical model for the motion of a molecule
exposed to collisions with other molecules. The analysis of Brownianmotion turns out to
be quite complicated, but a discrete version of Brownian motion called a random walk
provides an introduction to this important model. Think of the states f1; 2; : : : ; ng as
lying on a line. Place a molecule at a point that is not on the end of the line. At each step
the molecule moves left one unit with probability p and right one unit with probability
1 � p. See Figure 3. The molecule thus “walks randomly” along the line. If p D 1=2,
the walk is called simple, or unbiased. If p ¤ 1=2, the walk is said to be biased.

......

p p p p

1 2 p 1 2 p 1 2 p 1 2 p 

k 2 2 k 2 1 k k 1 1 k 1 2

FIGURE 3 A graphical representation of a random walk.

The molecule must move to either the left or the right at the states 2; : : : ; n � 1, but
it cannot do this at the endpoints 1 and n. The molecule’s possible movements at the
endpoints 1 and n must be specified. One possibility is to have the molecule stay at an
endpoint forever once it reaches either end of the line. This is called a random walk
with absorbing boundaries, and the endpoints 1 and n are called absorbing states.
Another possibility is to have the molecule bounce back one unit when an endpoint is
reached. This is called a random walk with reflecting boundaries.
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EXAMPLE 3 A randomwalk on f1; 2; 3; 4; 5gwith absorbing boundaries has a tran-
sition matrix of

P D

1 2 3 4 526666664
1

0

0

0

0

p

0

1 � p

0

0

0

p

0

1 � p

0

0

0

p

0

1 � p

0

0

0

0

1

37777775
1

2

3

4

5

since the molecule at state 1 has probability 1 of staying at state 1, and a molecule at state
5 has probability 1 of staying at state 5. A random walk on f1; 2; 3; 4; 5g with reflecting
boundaries has a transition matrix of

P D

1 2 3 4 526666664
0

1

0

0

0

p

0

1 � p

0

0

0

p

0

1 � p

0

0

0

p

0

1 � p

0

0

0

1

0

37777775
1

2

3

4

5

since the molecule at state 1 has probability 1 of moving to state 2, and a molecule at
state 5 has probability 1 of moving to state 4.

In addition to their use in physics, random walks also occur in problems related to
gambling and its more socially acceptable variants: the stock market and the insurance
industry.

EXAMPLE 4 Consider a very simple casino game. A gambler (who still has some
money left with which to gamble) flips a fair coin and calls heads or tails. If the gambler
is correct, he wins a dollar; if he is wrong, he loses a dollar. Suppose that the gambler
will quit the game when he has either won n dollars or lost all of his money.

Suppose that n D 7 and the gambler starts with $4. Notice that the gambler’s win-
nings move either up or down $1 for each coin flip, and once the gambler’s winnings
reach 0 or 7, they do not change any more since the gambler has quit the game. Thus
the gambler’s winnings may be modeled by a random walk on f0; 1; 2; 3; 4; 5; 6; 7gwith
absorbing boundaries. Since a move up or down is equally likely in this case, p D 1=2

and the walk is simple.

Random Walks on Graphs
It is useful to perform random walks on geometrical objects other than the one-dimen-
sional line. For example, a graph is a collection of points and lines connecting some of
the points. The points of a graph are called vertices, and the lines connecting the vertices
are called the edges. In Figure 4, the vertices are labeled with the numbers 1 through 7.

To define a simple random walk on a graph, allow the chain to move from vertex
to vertex on the graph. At each step, the chain is equally likely to move along any of
the edges attached to the vertex. For example, if the molecule is at state 5 in Figure 4, it
has probability 1=2 of moving to state 2 and probability 1=2 of moving to state 6. This
Markov chain is called a simple random walk on a graph.

1

3
42

5 6

7

FIGURE 4

A graph with seven vertices.
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EXAMPLE 5 The simple randomwalk on the graph in Figure 4 has transition matrix

P D

1 2 3 4 5 6 72666666666664

0

1=2

1=2

0

0

0

0

1=3

0

1=3

0

1=3

0

0

1=4

1=4

0

1=4

0

1=4

0

0

0

1

0

0

0

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

0

0

0

0

0

1

0

3777777777775

1

2

3

4

5

6

7

Find the probability that the chain in Figure 4 moves from state 6 to state 2 in exactly
three steps.

SOLUTION Compute

x3 D P 3x0 D P 3

2666666664

0

0

0

0

0

1

0

3777777775
D

2666666664

:0833

:0417

:4028

0

:2778

0

:1944

3777777775
Thus the probability of moving from state 6 to state 2 in exactly three steps is :0417.

Sometimes interpreting a random process as a randomwalk on a graph can be useful.

EXAMPLE 6 Suppose a mouse runs through the five-room maze at left in Figure 5.
The mouse moves to a different room at each time step.When the mouse is in a particular
room, it is equally likely to choose any of the doors out of the room. Note that a Markov
chain can model the motion of the mouse. Find the probability that a mouse starting in
room 3 returns to that room in exactly five steps.

1 2

3

5

4

1 2

3

5

4

FIGURE 5 Five-room maze with overlaid
graph.

SOLUTION A graph is overlaid on the maze, as shown at right in Figure 5. Notice
that the motion of the mouse is identical to a simple random walk on the graph, so the
transition matrix is

P D

1 2 3 4 526666664
0

1=2

1=2

0

0

1=3

0

1=3

1=3

0

1=4

1=4

0

1=4

1=4

0

1=3

1=3

0

1=3

0

0

1=2

1=2

0

37777775
1

2

3

4

5
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and

x5 D P 5x0 D P 5

266664
0

0

1

0

0

377775 D
266664

:1507

:2143

:2701

:2143

:1507

377775
Thus the probability of a return to room 3 in exactly five steps is :2701.

Another interesting object on which to walk randomly is a directed graph. A di-
rected graph is a graph in which the vertices are joined not by lines but by arrows. See
Figure 6.

To perform a simple random walk on a directed graph, allow the chain to move
from vertex to vertex on the graph but only in the directions allowed by the arrows. At
each step the walker is equally likely to move away from its current state along any of
the arrows pointing away from the vertex. For example, if the molecule is at state 6 in
Figure 6, it has probability 1=3 of moving to state 3, state 5, or state 7.

The PageRank algorithm that Google uses to rank the importance of pages on the
World Wide Web (see Introductory Example page C-1) begins with a simple random

1

3
42

5 6

7

FIGURE 6

A directed graph with seven
vertices.

walk on a directed graph. The Web is modeled as a directed graph in which the vertices
are the pages and an arrow is drawn from page j to page i if there is a hyperlink from
page j to page i . A person surfs randomly in the following way: when the surfer gets to
a page, he or she chooses a link from the page so that it is equally probable to choose any
of the possible “outlinks.” The surfer then follows the link to arrive at another page. The
person surfing in this way is performing a simple random walk on the directed graph
that is the World Wide Web.

EXAMPLE 7 Consider a set of seven pages hyperlinked by the directed graph in
Figure 6. If the random surfer starts at page 5, find the probability that the surfer will be
at page 3 after four clicks.

SOLUTION The transition matrix for the simple random walk on the directed graph is

P D

1 2 3 4 5 6 72666666666664

0

0

1

0

0

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

0

0

0

0

1

0

0

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

0

0

0

0

0

0

1

3777777777775

1

2

3

4

5

6

7

Notice that there are no arrows coming from either state 4 or state 7 in Figure 6. If the
surfer clicks on a link to either of these pages, there is no link to click on next. (Using
the “Back” key is not allowed: the state of the chain before time n must have no effect
on its state at time nC 1 and beyond.) For this reason, the transition probabilities p44

and p77 are set equal to 1—the chain must stay at state 4 or state 7 forever once it enters
either of these states. Computing x4 gives
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x4 D P 4x0 D

2666666664

:1319

:0833

:0880

:1389

:2199

:0833

:2546

3777777775
so the probability of being at page 3 after exactly four clicks is :0880.

States 4 and 7 are absorbing states for the Markov chain in the previous example.
In technical terms, they are called dangling nodes and are quite common on the Web;
data pages in particular usually have no links leading from them. Dangling nodes will
appear in the next section, where the PageRank algorithm will be explained.

As noted in Section 5.9, themost interesting questions aboutMarkov chains concern
their long-term behavior—that is, the behavior of xn as n increases. This study will
occupy a large portion of this chapter. The foremost issues in our study will be whether
the sequence of vectors fxng is converging to some limiting vector as n increases, and
how to interpret this limiting vector if it exists. Convergence to a limiting vector will be
addressed in the next section.

.....

Practice Problems

.

1. Fill in the missing entries in the stochastic matrix.

P D

24 :1 � :2

� :3 :3

:6 :2 �

35
2. In the signal transmission model in Example 1, suppose that p D :97. Find the

probability that the signal “1” will be a “0” after a three-stage transmission process.

10.1 Exercises
In Exercises 1 and 2, determine whether P is a stochastic matrix.
If P is not a stochastic matrix, explain why not.

1. a. P D

�
:3 :4

:7 :6

�
b. P D

�
:3 :7

:4 :6

�

2. a. P D

�
1 :5

0 :5

�
b. P D

�
:2 1:1

:8 �:1

�
In Exercises 3 and 4, compute x3 in two ways: by computing x1

and x2, and by computing P 3.

3. P D

�
:6 :5

:4 :5

�
, x0 D

�
1

0

�

4. P D

�
:3 :8

:7 :2

�
, x0 D

�
:5

:5

�
In Exercises 5 and 6, the transition matrix P for a Markov chain
with states 0 and 1 is given. Assume that in each case the chain
starts in state 0 at time n D 0. Find the probability that the chain
will be in state 1 at time n.

5. P D

�
1=3 3=4

2=3 1=4

�
, n D 3

6. P D

�
:4 :2

:6 :8

�
, n D 5

In Exercises 7 and 8, the transition matrix P for a Markov chain
with states 0, 1, and 2 is given. Assume that in each case the chain
starts in state 0 at time n D 0. Find the probability that the chain
will be in state 1 at time n.

7. P D

24 1=3 1=4 1=2

1=3 1=2 1=4

1=3 1=4 1=4

35, n D 2

8. P D

24 :1 :2 :4

:6 :3 :4

:3 :5 :2

35, n D 3

9. Consider a pair of Ehrenfest urns labeled A and B. There are
currently 3 molecules in urn A and 1 in urn B. What is the
probability that the exact same situation will apply after
a. 4 selections? b. 5 selections?
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10. Consider a pair of Ehrenfest urns labeled A and B. There are
currently no molecules in urn A and 5 in urn B. What is the
probability that the exact same situation will apply after
a. 4 selections? b. 5 selections?

11. Consider an unbiased random walk on the set f1; 2; 3; 4g.
What is the probability of moving from 2 to 3 in exactly 3
steps if the walk has
a. reflecting boundaries? b. absorbing boundaries?

12. Consider a biased random walk on the set f1; 2; 3; 4g with
probability p D :2 of moving to the left. What is the proba-
bility of moving from 2 to 3 in exactly 3 steps if the walk has
a. reflecting boundaries? b. absorbing boundaries?

In Exercises 13 and 14, find the transition matrix for the simple
random walk on the given graph.

13. 1 2

4 3

5

14. 1 2

34

In Exercises 15 and 16, find the transition matrix for the simple
random walk on the given directed graph.

15. 1 2

3 4

16. 1 4

2 5

3

In Exercises 17 and 18, suppose a mouse wanders through the
given maze. The mouse must move into a different room at each
time step and is equally likely to leave the room through any of the
available doorways.

17. The mouse is placed in room 2 of the maze shown.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 3 moves?

3

4 5

1 2

18. The mouse is placed in room 3 of the maze shown below.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 4 moves?

1 2 3

54

In Exercises 19 and 20, suppose a mouse wanders through the
given maze, some of whose doors are “one-way”: they are just
large enough for the mouse to squeeze through in only one direc-
tion. The mouse still must move into a different room at each time
step if possible. When faced with accessible openings into two or
more rooms, the mouse chooses them with equal probability.

19. The mouse is placed in room 1 of the following maze.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 4 moves?

1 32

4 65

20. The mouse is placed in room 1 of the maze shown.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 3 moves?

3

4 5

1 2

In Exercises 21–26, mark each statement True or False. Justify
each answer.

21. (T/F) The columns of a transition matrix for a Markov chain
must sum to 1.

22. (T/F)The rows of a transitionmatrix for aMarkov chainmust
sum to 1.

23. (T/F) The transition matrix P may change over time.

24. (T/F) If fxng is a Markov chain, then xnC1 must depend only
on the transition matrix and xn.

25. (T/F) The .i; j /-entry in a transition matrix P gives the
probability of a move from state j to state i .

26. (T/F) The .i; j /-entry in P 3 gives the probability of a move
from state i to state j in exactly three time steps.
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27. The weather in Charlotte, North Carolina, can be classified
as sunny, cloudy, or rainy on a given day. Climate data from
2003 reveal that

� If a day is sunny, then the next day will be sunny with
probability .65, cloudy with probability .1, and rainy
with probability .25.

� If a day is cloudy, then the next day will be sunny with
probability .25, cloudy with probability .25, and rainy
with probability .5.

� If a day is rainy, then the next day will be sunny with
probability .25, cloudy with probability .15, and rainy
with probability .60.

Suppose it is cloudy on Monday. Use a Markov chain to find
the probabilities of the different kinds of weather on Friday.

28. Suppose that whether it rains in Charlotte tomorrow depends
on the weather conditions for today and yesterday. Climate
data from 2003 show that

� If it rained yesterday and today, then it will rain
tomorrow with probability .58.

� If it rained yesterday but not today, then it will rain
tomorrow with probability .29.

� If it rained today but not yesterday, then it will rain
tomorrow with probability .47.

� If it did not rain yesterday or today, then it will rain
tomorrow with probability .31.

Even though the weather depends on the last two days in this
case, we can create a Markov chain model using the states

1 it rained yesterday and today
2 it rained yesterday but not today
3 it rained today but not yesterday
4 it did not rain yesterday or today

So, for example, the probability of a transition from state 1 to
state 1 is :58, and the transition from state 1 to state 3 is 0.

a. Complete the creation of the transition matrix for this
Markov chain.

b. If it rains on Tuesday and is clear on Wednesday, what is
the probability of no rain on the next weekend?

29. Consider a set of four webpages hyperlinked by the directed
graph in Exercise 15. If a random surfer starts at page 1, what
is the probability that the surfer will be at each of the pages
after 3 clicks?

30. Consider a set of five webpages hyperlinked by the directed
graph in Exercise 16. If a random surfer starts at page 2, what
is the probability that the surfer will be at each of the pages
after 4 clicks?

31. Consider a model for signal transmission in which data is sent
as two-bit bytes. Then there are four possible bytes, 00, 01,
10, and 11, which are the states of the Markov chain. At each
stage there is a probability p that each bit will pass through
the stage unchanged.

a. Construct the transition matrix for the model.

b. Suppose that p D :99. Find the probability that the signal
“01” will still be “01” after a three-stage transmission.

32. Consider a model for signal transmission in which data is
sent as three-bit bytes. Construct the transition matrix for the
model.

33. Another version of the Ehrenfest model for diffusion starts
with k molecules of gas in each urn. One of the 2k molecules
is picked at random just as in the Ehrenfest model in the
text. The chosen molecule is then moved to the other urn
with a fixed probability p and is placed back in its urn with
probability 1 � p. (Note that the Ehrenfest model in the text
is this model with p D 1.)

a. Let k D 3. Find the transition matrix for this model.

b. Let k D 3 and p D 1=2. If there are currently no
molecules in urn A, what is the probability that there will
be 3 molecules in urn A after 5 selections?

34. Another model for diffusion is called the Bernoulli-Laplace
model. Two urns (urn A and urn B) contain a total of 2k

molecules. In this case, k of the molecules are of one type
(called type I molecules) and k are of another type (type II
molecules). In addition, k molecules must be in each urn at
all times. At each time step, a pair of molecules is selected,
one from urn A and one from urn B, and these molecules
change urns. Let the Markov chain model the number of type
I molecules in urn A (which is also the number of type II
molecules in urn B).

a. Suppose that there are j type I molecules in urn A with
0 < j < k. Explain why the probability of a transition to
j � 1 type I molecules in urn A is .j=k/2, and why the
probability of a transition to j C 1 type I molecules in
urn A is ..k � j /=k/2.

b. Let k D 5. Use the result in part (a) to set up the transition
matrix for the Markov chain that models the number of
type I molecules in urn A.

c. Let k D 5 and begin with all type I molecules in urn A.
What is the distribution of type I molecules after 3 time
steps?

35. To win a game in tennis, one player must score four points
and must also score at least two points more than his or
her opponent. Thus if the two players have scored an equal
number of points (four or more), which is called “deuce” in
tennis jargon, one player must then score two points in a row
to win the game. Suppose that players A and B are playing
a game of tennis that is at deuce. If A wins the next point
it is called “advantage A,” while if B wins the point it is
“advantage B.” If the game is at advantage A and player A
wins the next point, then player A wins the game. If player B
wins the point at advantage A, the game is back at deuce.

a. Suppose the probability of player A winning any point is
p. Model the progress of a tennis game starting at deuce
using a Markov chain with the following five states.
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1 deuce
2 advantage A
3 advantage B
4 A wins the game
5 B wins the game

Find the transition matrix for this Markov chain.

b. Let p D :6. Find the probability that the game will be at
“advantage B” after three points starting at deuce.

36. Volleyball uses two different scoring systems in which a team
must win by at least two points. In both systems, a rally begins
with a serve by one of the teams and ends when the ball goes
out of play or touches the floor or a player commits a fault.
The team that wins the rally gets to serve for the next rally.
Games are played to 15, 25, or 30 points.

a. In rally point scoring, the team that wins a rally is awarded
a point no matter which team served for the rally. Assume
that team A has probability p of winning a rally for
which it serves, and that team B has probability q of
winning a rally for which it serves.Model the progress of a
volleyball game using a Markov chain with the following
six states.

1 tied – A serving
2 tied – B serving
3 A ahead by 1 point – A serving
4 B ahead by 1 point – B serving
5 A wins the game
6 B wins the game

Find the transition matrix for this Markov chain.

b. Suppose that team A and team B are tied 15–15 in a 15-
point game and that team A is serving. Let p D q D :6.
Find the probability that the gamewill not be finished after
three rallies.

c. In side out scoring, the team that wins a rally is awarded a
point only when it served for the rally. Assume that team
A has probability p of winning a rally for which it serves,
and that team B has probability q of winning a rally for
which it serves. Model the progress of a volleyball game
using a Markov chain with the following eight states.

1 tied – A serving
2 tied – B serving
3 A ahead by 1 point – A serving
4 A ahead by 1 point – B serving
5 B ahead by 1 point – A serving
6 B ahead by 1 point – B serving
7 A wins the game
8 B wins the game

Find the transition matrix for this Markov chain.

d. Suppose that team A and team B are tied 15–15 in a 15-
point game and that team A is serving. Let p D q D :6.
Find the probability that the gamewill not be finished after
three rallies.

37. Suppose that P is a stochastic matrix all of whose entries are
greater than or equal to p. Show that all of the entries in P n

are greater than or equal to p for n D 1; 2; : : :.

.....

Solutions to Practice Problems

.

1. Since a stochastic matrix must have columns that sum to 1,

P D

24 :1 :5 :2

:3 :3 :3

:6 :2 :5

35
2. The transition matrix for the model is

P D

�
:97 :03

:03 :97

�
Since the signal begins as “1,” the initial probability vector is

x0 D

�
0

1

�
To find the probability of a three-step transition, compute

x2 D P 3x0 D

�
:9153 :0847

:0847 :9153

��
0

1

�
D

�
:0847

:9153

�
The probability of a change to “0” is thus :0847.
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..
10.2 The Steady-State Vector and Google’s PageRank

As was seen in Section 5.9, the most interesting aspect of a Markov chain is its long-
range behavior: the behavior of xn as n increases without bound. In many cases, the
sequence of vectors fxng is converging to a vector that is called the steady-state vector
for the Markov chain. This section will review how to compute the steady-state vector
of a Markov chain, explain how to interpret this vector if it exists, and offer an expanded
version of Theorem 11 in Section 5.9, which describes the circumstances under which
fxng converges to a steady-state vector. This theorem will be applied to the Markov
chain model used for the World Wide Web in the previous section and will show how
the PageRank method for ordering the importance of webpages is derived.

Steady-State Vectors
In many cases, the Markov chain xn and the matrix P n change very little for large values
of n.

EXAMPLE 1 To begin, recall Example 3 in Section 5.9. That example concerned

a Markov chain with transition matrix P D

24 :5 :2 :3

:3 :8 :3

:2 0 :4

35 and initial probability

vector x0 D

24 1

0

0

35. The vectors xn were seen to be converging to the vector q D

24 :3

:6

:1

35.
This result may be written as lim

n!1
xn D q. Increasing powers of the transition matrix P

may also be computed, as follows:

P 2
D

24 :3700 :2600 :3300

:4500 :7000 :4500

:1800 :0400 :2200

35 P 3
D

24 :3290 :2820 :3210

:5250 :6500 :5250

:1460 :0680 :1540

35
P 4
D

24 :3133 :2914 :3117

:5625 :6250 :5625

:1242 :0836 :1258

35 P 5
D

24 :3064 :2958 :3061

:5813 :6125 :5813

:1123 :0917 :1127

35
P 10
D

24 :3002 :2999 :3002

:5994 :6004 :5994

:1004 :0997 :1004

35 P 15
D

24 :3000 :3000 :3000

:6000 :6000 :6000

:1000 :1000 :1000

35
so the sequence of matrices fP ng also seems to be converging to a matrix as n increases,
and this matrix has the unusual property that all of its columns equal q. The example
also showed that Pq D q. This equation forms the definition of the steady-state vector
and is a straightforward way to calculate it.

DEFINITION If P is a stochastic matrix, then a steady-state vector (or equilibrium vector or
invariant probability vector) for P is a probability vector q such that

Pq D q

Exercises 40 and 41 will show that every stochastic matrix P has a steady-state
vector q. Notice that 1 must be an eigenvalue of any stochastic matrix, and the steady-
state vector is a probability vector that also an eigenvector of P associated with the
eigenvalue 1.
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Although the definition of the steady-state vector makes the calculation of q
straightforward, it has the major drawback that there are Markov chains that have a
steady-state vector q but for which lim

n!1
xn ¤ q: the definition is not sufficient for xn

to converge. Examples 3 to 5 will show different ways in which xn can fail to converge.
Later in this section, the conditions under which lim

n!1
xn D q will be restated. For now,

consider what q means when lim
n!1

xn D q, as it does in the previous example. When

lim
n!1

xn D q, there are two ways to interpret this vector.

� Since xn is approximately equal to q for large n, the entries in q approximate the
probability that the chain is in each state after n time steps. Thus in the previous
example, no matter what the value of the initial probability vector is, after many
steps the probability that the chain will be in state 1 is approximately q1 D :3.
Likewise, the probability that the chain will be in state 2 in the distant future is
approximately q2 D :6, and the probability that the chain will be in state 3 in
the distant future is approximately q3 D :1. So the entries in q give long-run
probabilities.

� When N is large, q approximates xn for almost all values of n � N . Thus the
entries in q approximate the proportion of time steps that the chain spends in
each state. In the previous example the chain will end up spending :3 of the time
steps in state 1, :6 of the time steps in state 2, and :1 of the time steps in state 3.
So the entries in q give the proportion of the time steps spent in each state, which
are called the occupation times for each state.

EXAMPLE 2 For an application of computing q, consider the mouse-in-the-maze
example (Example 6, Section 10.1). In this example, the position of a mouse in a five-
roommaze is modeled by a Markov chain with states f1; 2; 3; 4; 5g and transition matrix

P D

1 2 3 4 5266664
0

1=2

1=2

0

0

1=3

0

1=3

1=3

0

1=4

1=4

0

1=4

1=4

0

1=3

1=3

0

1=3

0

0

1=2

1=2

0

377775
1

2

3

4

5

The steady-state vector may be computed by solving the system Pq D q, which is
equivalent to the homogeneous system .P � I /q D 0. Row reduction yields266664

�1 1=3 1=4 0 0 0

1=2 �1 1=4 1=3 0 0

1=2 1=3 �1 1=3 1=2 0

0 1=3 1=4 �1 1=2 0

0 0 1=4 1=3 �1 0

377775 �
266664

1 0 0 0 �1 0

0 1 0 0 �3=2 0

0 0 1 0 �2 0

0 0 0 1 �3=2 0

0 0 0 0 0 0

377775
so a general solution is

q5

266664
1

3=2

2

3=2

1

377775
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Letting q5 be the reciprocal of the sum of the entries in the vector results in the steady-
state vector

q D
1

7

266664
1

3=2

2

3=2

1

377775 D
266664

1=7

3=14

2=7

3=14

1=7

377775 �
266664

:142857

:214286

:285714

:214286

:142857

377775
There are again two interpretations for q: long-run probabilities and occupation times.
After many moves, the probability that the mouse will be in room 1 at a given time is
approximately 1/7 no matter where the mouse began its journey. Put another way, the
mouse is expected to be in room 1 for 1/7 (or about 14.3%) of the time.

Again notice that taking high powers of the transitionmatrixP givesmatriceswhose
columns are converging to q; for example,

P 10
D

266664
:144169 :141561 :142613 :144153 :142034

:212342 :216649 :214286 :211922 :216230

:285226 :285714 :286203 :285714 :285226

:216230 :211922 :214286 :216649 :212342

:142034 :144153 :142613 :141561 :144169

377775
The columns of P 10 are very nearly equal to each other, and each column is also nearly
equal to q.

Interpreting the Steady-State Vector
As noted previously, every stochastic matrix will have a steady-state vector, but in some
cases steady-state vectors cannot be interpreted as vectors of long-run probabilities or
of occupation times. The following examples show some difficulties.

EXAMPLE 3 Consider an unbiased random walk on f1; 2; 3; 4; 5g with absorbing
boundaries. The transition matrix is

P D

1 2 3 4 5266664
1

0

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

0

1

377775
1

2

3

4

5

Notice that only two long-term possibilities exist for this chain: it must end up in state 1
or state 5. Thus the probability that the chain is in state 2, 3, or 4 becomes smaller and
smaller as n increases, as P n illustrates:

P 20
D

266664
1 :74951 :49951 :24951 0

0 :00049 0 :00049 0

0 0 :00098 0 0

0 :00049 0 :00049 0

0 :24951 :49951 :74951 1

377775

P 30
D

266664
1 :749985 :499985 :249985 0

0 :000015 0 :000015 0

0 0 :000030 0 0

0 :000015 0 :000015 0

0 :249985 :499985 :749985 1

377775
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It seems that P n converges to the matrix266664
1 :75 :5 :25 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 :25 :5 :75 1

377775
as n increases. But the columns of this matrix are not equal; the probability of ending
up either at 1 or at 5 depends on where the chain begins. Although the chain has steady-
state vectors, they cannot be interpreted as in Example 1. Exercise 35 confirms that if
0 � q � 1 the vector 266664

q

0

0

0

1 � q

377775
is a steady-state vector forP . This matrix then has an infinite number of possible steady-
state vectors, which shows in another way that xn cannot be expected to have convergent
behavior that does not depend on x0.

EXAMPLE 4 Consider an unbiased random walk on f1; 2; 3; 4; 5g with reflecting
boundaries. The transition matrix is

P D

1 2 3 4 5266664
0

1

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1

0

377775
1

2

3

4

5

If the chain xn starts at state 1, notice that it can return to 1 only when n is even, while the
chain can be at state 2 only when n is odd. In fact, the chain must be at an even-numbered
site when n is odd and at an odd-numbered site when n is even. If the chain were to start at
state 2, however, this situation would be reversed: the chain must be at an odd-numbered
site when n is odd and at an even-numbered site when n is even. Therefore, P n cannot
converge to a unique matrix since P n looks very different depending on whether n is
even or odd, as shown:

P 20
D

266664
:2505 0 :2500 0 :2495

0 :5005 0 :4995 0

:5000 0 :5000 0 :5000

0 :4995 0 :5005 0

:2495 0 :2500 0 :2505

377775

P 21
D

266664
0 :2502 0 :2498 0

:5005 0 :5000 0 :4995

0 :5000 0 :5000 0

:4995 0 :5000 0 :5005

0 :2498 0 :2502 0

377775
Even thoughP n does not converge to a unique matrix,P does have a steady-state vector.
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In fact, 266664
1=8

1=4

1=4

1=4

1=8

377775
is a steady-state vector for P (see Exercise 36). This vector can be interpreted as giving
long-run probabilities and occupation times in a sense that will be made precise in
Section 10.4.

EXAMPLE 5 Consider a Markov chain on f1; 2; 3; 4; 5g with transition matrix

P D

1 2 3 4 5266664
1=4

1=4

1=2

0

0

1=3

1=3

1=3

0

0

1=2

1=4

1=4

0

0

0

0

0

1=3

2=3

0

0

0

3=4

1=4

377775
1

2

3

4

5

If this Markov chain begins at state 1, 2, or 3, then it must always be at one of those
states. Likewise if the chain starts at state 4 or 5, then it must always be at one of those
states. The chain splits into two separate chains, each with its own steady-state vector.
In this case P n converges to a matrix whose columns are not equal. The vectors266664

4=11

3=11

4=11

0

0

377775 and

266664
0

0

0

9=17

8=17

377775
both satisfy the definition of steady-state vector (Exercise 37). The first vector gives the
limiting probabilities if the chain starts at state 1, 2, or 3, and the second does the same
for states 4 and 5.

Regular Matrices
Examples 1 and 2 show that in some cases a Markov chain xn with transition matrix P

has a steady-state vector q for which

lim
n!1

P n
D
�
q q � � � q

�
In these cases, q can be interpreted as a vector of long-run probabilities or occupation
times for the chain. These probabilities or occupation times do not depend on the initial
probability vector; that is, for any probability vector x0,

lim
n!1

P nx0 D lim
n!1

xn D q

Notice also that q is the only probability vector that is also an eigenvector ofP associated
with the eigenvalue 1.

Examples 3, 4, and 5 do not have such a steady-state vector q. In Examples 3 and
5, the steady-state vector is not unique; in all three examples the matrix P n does not
converge to a matrix with equal columns as n increases. The goal is then to find some
property of the transition matrix P that leads to these different behaviors, and to show
that this property causes the differences in behavior.
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A little calculation shows that in Examples 3, 4, and 5, every matrix of the form P k

has some zero entries. In Examples 1 and 2, however, some power of P has all positive
entries. As was mentioned in Section 5.9, this is exactly the property that is needed.

DEFINITION A stochastic matrix P is regular if some power P k contains only strictly positive
entries.

Since the matrix P k contains the probabilities of a k-step move from one state to
another, a Markov chain with a regular transition matrix has the property that, for some
k, it is possible to move from any state to any other in exactly k steps. The following
theorem expands on the content of Theorem 11 in Section 5.9. One idea must be defined
before the theorem is presented. The limit of a sequence of m � n matrices is the m � n

matrix (if one exists) whose .i; j /-entry is the limit of the .i; j /-entries in the sequence
of matrices. With that understanding, here is the theorem.

THEOREM 1 If P is a regular m �m transition matrix with m � 2, then the following state-
ments are all true.

a. There is a stochastic matrix … such that lim
n!1

P n
D ….

b. Each column of … is the same probability vector q.

c. For any initial probability vector x0, lim
n!1

P nx0 D q.

d. The vector q is the unique probability vector that is an eigenvector of P

associated with the eigenvalue 1.

e. All eigenvalues � of P other than 1 have j�j < 1.

A proof of Theorem 1 is given in Appendix 1. Theorem 1 is a special case of the
Perron-Frobenius Theorem, which is used in applications of linear algebra to economics,
graph theory, and systems analysis. Theorem 1 shows that a Markov chain with a regular
transition matrix has the properties found in Examples 1 and 2. For example, since the
transition matrix P in Example 1 is regular, Theorem 1 justifies the conclusion that P n

converges to a stochastic matrix all of whose columns equal q D

24 :3

:6

:1

35, as numerical
evidence seemed to indicate.

PageRank and the Google Matrix
In Section 10.1, the notion of a simple random walk on a graph was defined. The World
Wide Web can be modeled as a directed graph, with the vertices representing the web-
pages and the arrows representing the links between webpages. Let P be the huge
transition matrix for this Markov chain. If the matrix P were regular, then Theorem
1 would show that there is a steady-state vector q for the chain, and that the entries in q
can be interpreted as occupation times for each state. In terms of the model, the entries
in qwould tell what fraction of the random surfer’s time was spent at each webpage. The
founders of Google, Sergey Brin and Lawrence Page, reasoned that “important” pages
had links coming from other “important” pages. Thus the random surfer would spend
more time at more important pages and less time at less important pages. But the amount
of time spent at each page is just the occupation time for each state in the Markov chain.
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This observation is the basis for PageRank, which is the model that Google uses to
rank the importance of all webpages it catalogs:

The importance of a webpage may be measured by the relative size of the
corresponding entry in the steady-state vector q for an appropriately chosen
Markov chain.

Unfortunately, a simple random walk on the directed graph model for the Web is
not the appropriate Markov chain, because the matrix P is not regular. Thus Theorem
1 will not apply. For example, consider the seven-page Web modeled in Section 10.1
using the directed graph in Figure 1. The transition matrix is

1

3
42

5 6

7

FIGURE 1

A seven-page Web.
P D

1 2 3 4 5 6 72666666666664

0

0

1

0

0

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

0

0

0

0

1

0

0

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

0

0

0

0

0

0

1

3777777777775

1

2

3

4

5

6

7

Pages 4 and 7 are dangling nodes, and so are absorbing states for the chain. Just as
in Example 3, the presence of absorbing states implies that the state vectors xn do not
approach a unique limit as n!1. To handle dangling nodes, an adjustment is made
to P :

ADJUSTMENT 1: If the surfer reaches a dangling node, the surfer will pick any page
in the Web with equal probability and will move to that page. In terms of the transition
matrix P , if state j is an absorbing state, replace column j of P with the vector26664

1=n

1=n
:::

1=n

37775
where n is the number of rows (and columns) in P .

In the seven-page example, the transition matrix is now

P� D

1 2 3 4 5 6 72666666666664

0

0

1

0

0

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

0

1=7

1=7

1=7

1=7

1=7

1=7

1=7

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

1=7

1=7

1=7

1=7

1=7

1=7

1=7

3777777777775

1

2

3

4

5

6

7

Yet even this adjustment is not sufficient to ensure that the transition matrix is
regular: while dangling nodes are no longer possible, it is still possible to have “cycles”
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of pages. If page j linked only to page i and page i linked only to page j, a random
surfer entering either page would be condemned to spend eternity linking from page i

to page j and back again. Thus the columns of P k
� corresponding to these pages would

always have zeros in them, and the transition matrix P� would not be regular. Another
adjustment is needed.

ADJUSTMENT 2: Let p be a number between 0 and 1. Assume the surfer is now at
page j. With probability p the surfer will pick from among all possible links from page
j with equal probability and will move to that page. With probability 1 � p, the surfer
will pick any page in theWeb with equal probability and will move to that page. In terms
of the transition matrix P�, the new transition matrix will be

G D pP� C .1 � p/K

where K is an n � n matrix all of whose columns are126664
1=n

1=n
:::

1=n

37775
ThematrixG is called theGooglematrix, andG is now a regular matrix since all entries
in G1 D G are positive. Although any value of p between 0 and 1 is allowed, Google is
said to use a value of p D :85 for their PageRank calculations. In the seven-page Web
example, the Google matrix is thus

G D :85

2666666664

0 1=2 0 1=7 0 0 1=7

0 0 1=3 1=7 1=2 0 1=7

1 0 0 1=7 0 1=3 1=7

0 0 1=3 1=7 0 0 1=7

0 1=2 0 1=7 0 1=3 1=7

0 0 1=3 1=7 1=2 0 1=7

0 0 0 1=7 0 1=3 1=7

3777777775

C :15

2666666664

1=7 1=7 1=7 1=7 1=7 1=7 1=7

1=7 1=7 1=7 1=7 1=7 1=7 1=7

1=7 1=7 1=7 1=7 1=7 1=7 1=7

1=7 1=7 1=7 1=7 1=7 1=7 1=7

1=7 1=7 1=7 1=7 1=7 1=7 1=7

1=7 1=7 1=7 1=7 1=7 1=7 1=7

1=7 1=7 1=7 1=7 1=7 1=7 1=7

3777777775

D

2666666664

:021429 :446429 :021429 :142857 :021429 :021429 :142857

:021429 :021429 :304762 :142857 :446429 :021429 :142857

:871429 :021429 :021429 :142857 :021429 :304762 :142857

:021429 :021429 :304762 :142857 :021429 :021429 :142857

:021429 :446429 :021429 :142857 :021429 :304762 :142857

:021429 :021429 :304762 :142857 :446429 :021429 :142857

:021429 :021429 :021429 :142857 :021429 :304762 :142857

3777777775
1 PageRank really uses a K that has all its columns equal to a probability vector v, which could be linked to
an individual searcher or group of searchers. This modification also makes it easier to police the Web for
websites attempting to generate Web traffic. See Google’s PageRank and Beyond: The Science of Search
Engine Rankings by Amy N. Langville and Carl D. Meyer (Princeton: Princeton University Press, 2006) for
more information.
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It is now possible to find the steady-state vector by the methods of this section:

q D

2666666664

:116293

:168567

:191263

:098844

:164054

:168567

:092413

3777777775
so the most important page according to PageRank is page 3, which has the largest entry
in q. The complete ranking is 3, 2 and 6, 5, 1, 4, and 7.

.....

.... Numerical Note

.

The computation of q is not a trivial task, since the Google matrix has more than 8
billion rows and columns. Google uses a version of the power method introduced
in Section 5.8 to compute q. While the power method was used in that section to
estimate the eigenvalues of a matrix, it can also be used to provide estimates for
eigenvectors. Since q is an eigenvector of G corresponding to the eigenvalue 1,
the power method applies. It turns out that only between 50 and 100 iterations of
the method are needed to get the vector q to the accuracy that Google needs for
its rankings. It still takes days for Google to compute a new q, which it does every
month.

.....

Practice Problem

.

1. Consider the Markov chain on f1; 2; 3g with transition matrix

P D

24 1=2 0 1=2

1=2 1=2 0

0 1=2 1=2

35
a. Show that P is a regular matrix.

b. Find the steady-state vector for this Markov chain.

c. What fraction of the time does this chain spend in state 2? Explain your answer.

10.2 Exercises
In Exercises 1 and 2, consider a Markov chain on f1; 2g with the
given transition matrix P . In each exercise, use two methods to
find the probability that, in the long run, the chain is in state 1.
First, raise P to a high power. Then directly compute the steady-
state vector.

1. P D

�
:2 :4

:8 :6

�
2. P D

�
1=4 2=3

3=4 1=3

�

In Exercises 3 and 4, consider a Markov chain on f1; 2; 3g with
the given transition matrix P . In each exercise, use two methods
to find the probability that, in the long run, the chain is in state 1.

First, raise P to a high power. Then directly compute the steady-
state vector.

3. P D

24 1=3 1=4 0

1=3 1=2 1

1=3 1=4 0

35 4. P D

24 :1 :2 :3

:2 :3 :4

:7 :5 :3

35
In Exercises 5 and 6, find the matrix to which P n converges as n

increases.

5. P D

�
1=4 2=3

3=4 1=3

�
6. P D

24 1=4 3=5 0

1=4 0 1=3

1=2 2=5 2=3

35
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In Exercises 7 and 8, determine whether the given matrix is
regular. Explain your answer.

7. P D

24 1=3 0 1=2

1=3 1=2 1=2

1=3 1=2 0

35

8. P D

2664
1=2 0 1=3 0

0 2=5 0 3=7

1=2 0 2=3 0

0 3=5 0 4=7

3775
9. Consider a pair of Ehrenfest urns with a total of 4 molecules

divided between them.

a. Find the transition matrix for the Markov chain that mod-
els the number of molecules in urn A, and show that this
matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

10. Consider a pair of Ehrenfest urns with a total of 5 molecules
divided between them.

a. Find the transition matrix for the Markov chain that mod-
els the number of molecules in urn A, and show that this
matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

11. Consider an unbiased random walk with reflecting bound-
aries on f1; 2; 3; 4g.

a. Find the transition matrix for the Markov chain and show
that this matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

12. Consider a biased random walk with reflecting boundaries on
f1; 2; 3; 4g with probability p D :2 of moving to the left.

a. Find the transition matrix for the Markov chain and show
that this matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

In Exercises 13 and 14, consider a simple random walk on the
given graph. In the long run, what fraction of the time will the
walk be at each of the various states?

13. 1 2

4 3

5

14. 1 2

34

In Exercises 15 and 16, consider a simple random walk on the
given directed graph. In the long run, what fraction of the time
will the walk be at each of the various states?

15. 1 2

3 4

16. 1 4

2 5

3

17. Consider the mouse in the following maze from Section 10.1,
Exercise 17.

3

4 5

1 2

The mouse must move into a different room at each time step
and is equally likely to leave the room through any of the
available doorways. If you go away from themaze for a while,
what is the probability that the mouse will be in room 3 when
you return?

18. Consider the mouse in the following maze from Section 10.1,
Exercise 18.

1 2 3

54

What fraction of the time does it spend in room 3?

19. Consider the mouse in the following maze, which includes
“one-way” doors, from Section 10.1, Exercise 19.

1 32

4 65

Show that

q D

26666664

0

0

0

0

0

1

37777775
is a steady-state vector for the associated Markov chain, and
interpret this result in terms of the mouse’s travels through
the maze.
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20. Consider the mouse in the following maze, which includes
“one-way” doors.

3

4 5

1 2

What fraction of the time does the mouse spend in each of the
rooms in the maze?

In Exercises 21–26, mark each statement True or False. Justify
each answer.

21. (T/F) Every stochastic matrix has a steady-state vector.

22. (T/F) Every stochastic matrix is regular.

23. (T/F) If its transition matrix is regular, then the steady-state
vector gives information on long-run probabilities of the
Markov chain.

24. (T/F) If P is a regular stochastic matrix, then P n approaches
a matrix with equal columns as n increases.

25. (T/F) If � D 1 is an eigenvalue of a matrix P , then P is
regular.

26. (T/F) If lim
n!1

xn D q, then the entries in qmay be interpreted

as occupation times.

27. Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 27. Over the course of
a year, about how many days in Charlotte are sunny, cloudy,
and rainy according to the model?

28. Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 28. Over the course of
a year, about how many days in Charlotte are rainy according
to the model?

In Exercises 29 and 30, consider a set of webpages hyperlinked by
the given directed graph. Find the Google matrix for each graph
and compute the PageRank of each page in the set.

29. 1 2 5

3 4

30. 1 4

2 5 6

3

31. A genetic trait is often governed by a pair of genes, one inher-
ited from each parent. The genes may be of two types, often

labeled A and a. An individual then may have three different
pairs: AA, Aa (which is the same as aA), or aa. In many cases
theAA andAa individuals cannot be otherwise distinguished;
in these cases gene A is dominant and gene a is recessive.
Likewise, an AA individual is called dominant and an aa
individual is called recessive. An Aa individual is called a
hybrid.

a. Show that if a dominant individual is mated with a hybrid,
the probability of an offspring being dominant is 1=2 and
the probability of an offspring being a hybrid is 1=2.

b. Show that if a recessive individual is mated with a hybrid,
the probability of an offspring being recessive is 1=2 and
the probability of an offspring being a hybrid is 1=2.

c. Show that if a hybrid individual is mated with another
hybrid, the probability of an offspring being dominant is
1=4, the probability of an offspring being recessive is 1=4,
and the probability of an offspring being a hybrid is 1=2.

32. Consider beginning with an individual of known type and
mating it with a hybrid, then mating an offspring of this
mating with a hybrid, and so on. At each step, an offspring is
mated with a hybrid. The type of the offspring can bemodeled
by a Markov chain with states AA, Aa, and aa.

a. Find the transition matrix for this Markov chain.

b. If the mating process in Exercise 31 is continued for an
extended period of time, what percent of the offspring will
be of each type?

33. Consider the variation of the Ehrenfest urn model of diffusion
studied in Section 10.1, Exercise 33, where one of the 2k

molecules is chosen at random and is then moved between
the urns with a fixed probability p.

a. Let k D 3 and suppose that p D 1=2. Show that the tran-
sitionmatrix for theMarkov chain that models the number
of molecules in urn A is regular.

b. Let k D 3 and suppose that p D 1=2. In what state will
this chain spend the most steps, and what fraction of the
steps will the chain spend at this state?

c. Does the answer to part (b) change if a different value of
p with 0 < p < 1 is used?

34. Consider the Bernoulli-Laplace diffusion model studied in
Section 10.1, Exercise 34.

a. Let k D 5 and show that the transition matrix for the
Markov chain that models the number of type I molecules
in urn A is regular.

b. Let k D 5. In what state will this chain spend the most
steps, and what fraction of the steps will the chain spend
at this state?

35. Let 0 � q � 1. Show that

266664
q

0

0

0

1 � q

377775 is a steady-state vector

for the Markov chain in Example 3.
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36. Consider the Markov chain in Example 4.

a. Show that

266664
1=8

1=4

1=4

1=4

1=8

377775 is a steady-state vector for thisMarkov

chain.

b. Compute the average of the entries in P 20 and P 21 given
in Example 4. What do you find?

37. Show that

266664
4=11

3=11

4=11

0

0

377775 and

266664
0

0

0

9=17

8=17

377775 are steady-state vectors

for the Markov chain in Example 5. If the chain is equally
likely to begin in each of the states, what is the probability of
being in state 1 after many steps?

38. Let 0 � p, q � 1, and define

P D

�
p 1 � q

1 � p q

�
a. Show that 1 and p C q � 1 are eigenvalues of P .

b. By Theorem 1, for what values of p and q will P fail to
be regular?

c. Find a steady-state vector for P .

39. Let 0 � p, q � 1, and define

P D

24 p q 1 � p � q

q 1 � p � q p

1 � p � q p q

35
a. For what values of p and q is P a regular stochastic

matrix?

b. Given that P is regular, find a steady-state vector for P .

40. Let A be an m �m stochastic matrix, let x be in Rm, and let
y D Ax. Show that

jy1j C � � � C jymj � jx1j C � � � C jxmj

with equality holding if and only if all of the nonzero entries
in x have the same sign.

41. Show that every stochastic matrix has a steady-state vector
using the following steps.

a. Let P be a stochastic matrix. By Theorem 10 in Section
5.9, � D 1 is an eigenvalue for P . Let v be an eigenvector
of P associated with � D 1. Use Exercise 40 to conclude
that the nonzero entries in v must have the same sign.

b. Show how to produce a steady-state vector for P from v.

42. Consider a simple random walk on a finite connected graph.
(A graph is connected if it is possible to move from any vertex
of the graph to any other along the edges of the graph.)

a. Explain why this Markov chain must have a regular tran-
sition matrix.

b. Use the results of Exercises 13 and 14 to hypothesize
a formula for the steady-state vector for such a Markov
chain.

43. By Theorem 1(e), all eigenvalues � of a regular matrix other
than 1 have the property that j�j < 1; that is, the eigen-
value 1 is a strictly dominant eigenvalue. Suppose that P

is an n � n regular matrix with eigenvalues �1 D 1, : : : ,
�n ordered so that j�1j > j�2j � j�3j � : : : � j�nj. Suppose
that x0 D c1qC c2v2 C � � � C cnvn is a linear combination of
eigenvectors of P .

a. Use Equation (2) in Section 5.8 to derive an expression
for xk D P kx0.

b. Use the result of part (a) to derive an expression for
xk � c1q, and explain how the value of j�2j affects the
speed with which fxkg converges to c1q.

.....

Solution to Practice Problem

.

1. a. Since

P 2
D

24 1=4 1=4 1=2

1=2 1=4 1=4

1=4 1=2 1=4

35
P is regular by the definition with k D 2.

b. Solve the equation Pq D q, which may be rewritten as .P � I /q D 0. Since

P � I D

24�1=2 0 1=2

1=2 �1=2 0

0 1=2 �1=2

35
and row reducing the augmented matrix gives24�1=2 0 1=2 0

1=2 �1=2 0 0

0 1=2 �1=2 0

35 �
24 1 0 �1 0

0 1 �1 0

0 0 0 0

35
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......

the general solution is q3

24 1

1

1

35. Since q must be a probability vector, set q3 D

1=.1C 1C 1/ D 1=3 and compute that

q D
1

3

24 1

1

1

35 D
24 1=3

1=3

1=3

35
c. The chain will spend 1=3 of its time in state 2 since the entry in q corresponding

to state 2 is 1=3, and we can interpret the entries as occupation times.

..
10.3 Communication Classes

Section 10.2 showed that if the transition matrix for a Markov chain is regular, then xn

converges to a unique steady-state vector for any choice of initial probability vector.
That is, lim

n!1
xn D q, where q is the unique steady-state vector for the Markov chain.

Examples 3, 4, and 5 in Section 10.2 illustrated that, even though every Markov chain
has a steady-state vector, not every Markov chain has the property that lim

n!1
xn D q.

The goal of the next two sections is to study these examples further, and to show that
Examples 3, 4, and 5 in Section 10.2 describe all the ways in which Markov chains fail
to converge to a steady-state vector. The first step is to study which states of the Markov
chain can be reached from other states of the chain.

Communicating States
Suppose that state j and state i are two states of aMarkov chain. If state j can be reached
from state i in a finite number of steps and state i can be reached from state j in a finite
number of steps, then states j and i are said to communicate. If P is the transition
matrix for the chain, then the entries in P k give the probabilities of going from one state
to another in k steps:

P k
D

From:

1 j m26664
:::

#

pij � � � !

37775
To:

1

i

m

and powers of P can be used to make the following definition.

DEFINITION Let i and j be two states of a Markov chain with transition matrix P . Then state
i communicates with state j if there exist nonnegative integers m and n such that
the .j; i/-entry of P m and the .i; j /-entry of P n are both strictly positive. That is,
state i communicates with state j if it is possible to go from state i to state j in m

steps and from state j to state i in n steps.
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This definition implies three properties that will allow the states of a Markov chain
to be placed into groups called communication classes. First, the definition allows the
integers m and n to be zero, in which case the .i; i/-entry of P 0 D I is 1, which is
positive. This ensures that every state communicates with itself. Because both .i; j / and
.j; i/ are included in the definition, it follows that if state i communicates with state
j then state j communicates with state i . Finally, you will show in Exercise 40 that if
state i communicates with state j and state j communicates with state k, then state i

communicates with state k. These three properties are called, respectively, the reflexive,
symmetric, and transitive properties:

a. (Reflexive Property) Each state communicates with itself.

b. (Symmetric Property) If state i communicates with state j , then state j communi-
cates with state i .

c. (Transitive Property) If state i communicates with state j , and state j communicates
with state k, then state i communicates with state k.

A relation with these three properties is called an equivalence relation. The communi-
cation relation is an equivalence relation on the state space for the Markov chain. Using
the properties listed above simplifies determining which states communicate.

EXAMPLE 1 Consider an unbiased random walk with absorbing boundaries on
f1; 2; 3; 4; 5g. Find which states communicate.

SOLUTION The transition matrix P is given below, and Figure 1 shows the transition
diagram for this Markov chain.

P D

1 2 3 4 526666664
1

0

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

0

1

37777775
1

2

3

4

5

11 2 3 14 5

1
2

1
2

1
2

1
2

1
2

1
2

FIGURE 1 Unbiased random walk with absorbing
boundaries.

First note that, by the reflexive property, each state communicates with itself. It is clear
from the diagram that states 2, 3, and 4 communicate with each other. The same conclu-
sion may be reached using the definition by finding that the .2; 3/-, .3; 2/-, .3; 4/-, and
.4; 3/-entries in P are positive, thus states 2 and 3 communicate, as do states 3 and 4.
States 2 and 4 must also communicate by the transitive property. Now consider state 1

and state 5. If the chain starts in state 1, it cannot move to any state other than itself. Thus
it is not possible to go from state 1 to any other state in any number of steps, and state
1 does not communicate with any other state. Likewise, state 5 does not communicate
with any other state. In summary,
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State 1 communicates with state 1.
State 2 communicates with state 2, state 3, and state 4.
State 3 communicates with state 2, state 3, and state 4.
State 4 communicates with state 2, state 3, and state 4.
State 5 communicates with state 5.

Notice that even though states 1 and 5 do not communicate with states 2, 3, and 4, it is
possible to go from these states to either state 1 or state 5 in a finite number of steps: this
is clear from the diagram, or by confirming that the appropriate entries in P , P 2, or P 3

are positive.

In Example 1, the state space f1; 2; 3; 4; 5g can now be divided into the classes f1g,
f2; 3; 4g, and f5g. The states in each of these classes communicate only with the other
members of their class. This division of the state space occurs because the communica-
tion relation is an equivalence relation. The communication relation partitions the state
space into communication classes. Each state in a Markov chain communicates only
with the members of its communication class. For the Markov chain in Example 1, the
communication classes are f1g, f2; 3; 4g, and f5g.

EXAMPLE 2 Consider an unbiased random walk with reflecting boundaries on
f1; 2; 3; 4; 5g. Find the communication classes for this Markov chain.

SOLUTION The transitionmatrixP for this chain, as well asP 2,P 3, andP 4, is shown
below.

P D

1 2 3 4 526666664
0

1

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1

0

37777775
1

2

3

4

5

P 2
D

1 2 3 4 526666664
1=2

0

1=2

0

0

0

3=4

0

1=4

0

1=4

0

1=2

0

1=4

0

1=4

0

3=4

0

0

0

1=2

0

1=2

37777775
1

2

3

4

5

P 3
D

1 2 3 4 526666664
0

3=4

0

1=4

0

3=8

0

1=2

0

1=8

0

1=2

0

1=2

0

1=8

0

1=2

0

3=8

0

1=4

0

3=4

0

37777775
1

2

3

4

5

P 4
D

1 2 3 4 526666664
3=8

0

1=2

0

1=8

0

5=8

0

3=8

0

1=4

0

1=2

0

1=4

0

3=8

0

5=8

0

1=8

0

1=2

0

3=8

37777775
1

2

3

4

5

The transition diagram for this Markov chain is given in Figure 2.
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1
2

FIGURE 2 Unbiased random walk with
reflecting boundaries.

Notice that the .i; j /-entry in at least one of these matrices is positive for any choice
of i and j . Thus every state is reachable from any other state in four steps or fewer,
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and every state communicates with every state. There is only one communication class:
f1; 2; 3; 4; 5g.

EXAMPLE 3 Consider the Markov chain given in Example 5 in Section 10.2. Find
the communication classes for this Markov chain.

SOLUTION The transition matrix for this Markov chain is

P D

1 2 3 4 526666664
1=4

1=4

1=2

0

0

1=3

1=3

1=3

0

0

1=2

1=4

1=4

0

0

0

0

0

1=3

2=3

0

0

0

3=4

1=4

37777775
1

2

3

4

5

and a transition diagram is shown in Figure 3.
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FIGURE 3 Transition diagram for Example 3.

It is impossible to move from any of the states 1, 2, or 3 to either of the states 4 or 5, so
these states must be in separate communication classes. In addition, state 1, state 2, and
state 3 communicate; state 4 and state 5 also communicate. Thus the communication
classes for this Markov chain are f1; 2; 3g and f4; 5g.

The Markov chains in Examples 1 and 3 have more than one communication class,
while theMarkov chain in Example 2 has only one communication class. This distinction
leads to the following definitions.

DEFINITION A Markov chain with only one communication class is irreducible. A Markov
chain with more than one communication class is reducible.

Thus the Markov chains in Examples 1 and 3 are reducible, while the Markov chain in
Example 2 is irreducible. Irreducible Markov chains and regular transition matrices are
connected by the following theorem.

THEOREM 2 If a Markov chain has a regular transition matrix, then it is irreducible.

PROOF Suppose that P is a regular transition matrix for a Markov chain. Then, by
definition, there is a k such that P k is a positive matrix. That is, for any states i and
j , the .i; j /- and .j; i/-elements in P k are strictly positive. Thus there is a positive
probability of moving from i to j and from j to i in exactly k steps, and so i and j
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communicate with each other. Since i and j were arbitrary states and must be in the
same communication class, there can be only one communication class for the chain, so
the Markov chain must be irreducible.

Example 2 shows that the converse of Theorem 2 is not true, because the Markov chain
in this example is irreducible, but its transition matrix is not regular.

EXAMPLE 4 Consider the Markov chain whose transition diagram is given in
Figure 4. Determine whether this Markov chain is reducible or irreducible.

.8 .6

51 1

.2

1

.6

3

2
.3 .1

4

.4

FIGURE 4 Transition diagram for
Example 4.

SOLUTION The diagram shows that states 1 and 2 communicate, as do states 4 and 5.
Notice that states 1 and 2 cannot communicate with states 3, 4, or 5 since the probability
of moving from state 2 to state 3 is 0. Likewise states 4 and 5 cannot communicate with
states 1, 2, or 3 since the probability of moving from state 4 to state 3 is 0. Finally, state
3 cannot communicate with any state other than itself since it is impossible to return to
state 3 from any other state. Thus the communication classes for this Markov chain are
f1; 2g, f3g, and f4; 5g. Since there is more than one communication class, this Markov
chain is reducible.

Mean Return Times
Let q be the steady-state vector for an irreducible Markov chain. It can be shown using
advanced methods in probability theory that the entries in q may be interpreted as
occupation times; that is, qi is the fraction of time steps that the chainwill spend at state i .

For example, consider a Markov chain on f1; 2; 3g with steady-state vector q D

24 :2

:5

:3

35.
In the long run, the chain will spend about half of its steps in state 2. If the chain is
currently in state 2, it should take about two (1=:5) steps to return to state 2. Likewise,
since the chain spends about 1=5 of its time in state 1, it should visit state 1 once every
five steps.

Given a Markov chain and states i and j , a quantity of considerable interest is the
number of steps nij that it will take for the system to first visit state i given that it starts in
state j . The value of nij cannot be known—it could be any positive integer depending
on how the Markov chain evolves. Such a quantity is known as a random variable.
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Since nij is unknowable, the expected value of nij is studied instead. The expected
value of a random variable functions as a type of average value of the random variable.
The following definition will be used in subsequent sections.

DEFINITION The expected value of a random variable X that takes on the values x1; x2; : : : is

EŒX� D x1P.X D x1/C x2P.X D x2/C � � � D

1X
kD1

xkP.X D xk/ (1)

where P.X D xk/ denotes the probability that the random variable X equals the
value xk .

Now let ti i D EŒni i � be the expected value of ni i , which is the expected number
of steps it will take for the system to return to state i given that it starts in state
i . Unfortunately, Equation (1) will not be helpful at this point. Instead, proceeding
intuitively, the system should spend one step in state i for each ti i steps on average.
It seems reasonable to say that the system will, over the long run, spend about 1=ti i of
the time in state i . But that quantity is qi , so the expected number of time steps needed to
return, ormean return time to a state i , is the reciprocal of qi . This informal argument
may be made rigorous using methods from probability theory; see Appendix 2 for a
complete proof.

THEOREM 3 Consider an irreducible Markov chain with a finite state space, let nij be the
number of steps until the chain first visits state i given that the chain starts in
state j , and let ti i D EŒni i �. Then

ti i D
1

qi

(2)

where qi is the entry in the steady-state vector q corresponding to state i .

The previous example matches Equation 2: t11 D 1=:2 D 5, t22 D 1=:5 D 2, and t33 D

1=:3 D 10=3. Recall that the mean return time is an expected value, so the fact that
t33 is not an integer ought not be troubling. Section 10.5 will include a discussion of
tij D EŒnij �, where i ¤ j .

.....

Practice Problem

.

1. Consider the Markov chain on f1; 2; 3; 4g with transition matrix

P D

2664
1=4 1=3 1=2 0

0 1=3 0 1=3

3=4 0 1=2 1=3

0 1=3 0 1=3

3775
Determine the communication classes for this chain.
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10.3 Exercises
In Exercises 1–6, consider a Markov chain with state space
f1; 2; : : : ; ng and the given transition matrix. Find the communica-
tion classes for each Markov chain, and state whether the Markov
chain is reducible or irreducible.

1.

24 1=4 0 1=3

1=2 1 1=3

1=4 0 1=3

35 2.

24 1=4 1=2 1=3

1=2 1=2 1=3

1=4 0 1=3

35

3.

24 1 1=2 1=2

0 1=2 0

0 0 1=2

35

4.

266664
0 0 0 1 1

1=3 0 0 0 0

2=3 0 0 0 0

0 1=4 2=3 0 0

0 3=4 1=3 0 0

377775

5.

26666664

0 0 :4 0 :8 0

0 0 0 :7 0 :5

:3 0 0 0 :2 0

0 :1 0 0 0 :5

:7 0 :6 0 0 0

0 :9 0 :3 0 0

37777775

6.

2666666664

0 1=3 0 2=3 1=2 0 0

1=2 0 1=2 0 0 1=3 0

0 2=3 0 1=3 0 0 2=5

1=2 0 1=2 0 0 0 0

0 0 0 0 0 0 3=5

0 0 0 0 1=2 0 0

0 0 0 0 0 2=3 0

3777777775
7. Consider the mouse in the following maze from Section 10.1,

Exercise 19.

1 32

4 65

Find the communication classes for the Markov chain that
models the mouse’s travels through this maze. Is this Markov
chain reducible or irreducible?

8. Consider the mouse in the following maze from Section 10.1,
Exercise 20.

3

4 5

1 2

Find the communication classes for the Markov chain that
models the mouse’s travels through this maze. Is this Markov
chain reducible or irreducible?

In Exercises 9 and 10, consider the set of webpages hyperlinked
by the given directed graph. Find the communication classes for
the Markov chain that models a random surfer’s progress through
this set of webpages. Use the transition matrix derived from the
graph itself instead of the Google matrix.

9. 1 2 5

3 4

10. 1 4

2 5 6

3

11. Consider an unbiased random walk with reflecting bound-
aries on f1; 2; 3; 4g. Find the communication classes for this
Markov chain and determine whether it is reducible or irre-
ducible.

12. Consider an unbiased random walk with absorbing bound-
aries on f1; 2; 3; 4g. Find the communication classes for this
Markov chain and determine whether it is reducible or irre-
ducible.

In Exercises 13 and 14, consider a simple random walk on the
given graph. Show that the Markov chain is irreducible and calcu-
late the mean return times for each state.

13. 1 2

4 3

5

14. 1 2

34

In Exercises 15 and 16, consider a simple random walk on the
given directed graph. Show that the Markov chain is irreducible
and calculate the mean return times for each state.

15. 1 2

3 4

16. 1 4

2 5

3
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17. Consider the mouse in the following maze from Section 10.1,
Exercise 17.

3

4 5

1 2

If the mouse starts in room 3, how long on average will it take
the mouse to return to room 3?

18. Consider the mouse in the following maze from Section 10.1,
Exercise 18.

1 2 3

54

If the mouse starts in room 2, how long on average will it take
the mouse to return to room 2?

In Exercises 19 and 20, consider the mouse in the following maze
from Section 10.2, Exercise 20.

3

4 5

1 2

19. If the mouse starts in room 1, how long on average will it take
the mouse to return to room 1?

20. If the mouse starts in room 4, how long on average will it take
the mouse to return to room 4?

In Exercises 21–26, mark each statement True or False. Justify
each answer.

21. (T/F) If it is possible to go from state i to state j in n steps,
where n � 0, then states i and j communicate with each
other.

22. (T/F) An irreducible Markov chain must have a regular tran-
sition matrix.

23. (T/F) If a Markov chain is reducible, then it cannot have a
regular transition matrix.

24. (T/F) If the .i; j /- and .j; i/-entries in P k are positive for
some k, then the states i and j communicate with each other.

25. (T/F) The entries in the steady-state vector are the mean
return times for each state.

26. (T/F) If state i communicates with state j and state j

communicates with state k, then state i communicates with
state k.

27. Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 27. About how many
days elapse in Charlotte between rainy days?

28. Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 28. About how many
days elapse in Charlotte between consecutive rainy days?

29. The following set of webpages hyperlinked by the directed
graph was studied in Section 10.2, Exercise 29.

1 2 5

3 4

Consider randomly surfing on this set of webpages using the
Google matrix as the transition matrix.

a. Show that this Markov chain is irreducible.

b. Suppose the surfer starts at page 1. How many mouse
clicks on average must the surfer make to get back to
page 1?

30. The following set of webpages hyperlinked by the directed
graph was studied in Section 10.2, Exercise 30.

1 4

2 5 6

3

Repeat Exercise 29 for this set of webpages.

31. Consider the pair of Ehrenfest urns studied in Section 10.2,
Exercise 9. Suppose that there are now 2 molecules in urn
A. How many steps on average will be needed until there are
again 2 molecules in urn A?

32. Consider the pair of Ehrenfest urns studied in Section 10.2,
Exercise 10. Suppose that urn A is now empty. How many
steps on average will be needed until urn A is again empty?

33. A variation of the Ehrenfest model of diffusion was studied
in Section 10.2, Exercise 33. Consider this model with k D 3

and p D 1=2 and suppose that there are now 3 molecules in
urn A. Howmany draws on average will be needed until there
are again 3 molecules in urn A?

34. Consider the Bernoulli-Laplace model of diffusion studied
in Section 10.2, Exercise 34. Let k D 5. Suppose that all of
the type I molecules are now in urn A. How many draws on
average will be needed until all of the type I molecules are
again in urn A?

35. AMarkov chain model for scoring a tennis game was studied
in Section 10.1, Exercise 35. What are the communication
classes for this Markov chain?
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36. AMarkov chain model for the rally point method for scoring
a volleyball game was studied in Section 10.1, Exercise 36.
What are the communication classes for this Markov chain?

In Exercises 37 and 38, consider the Markov chain on
f1; 2; 3; 4; 5g with transition matrix

P D

266664
0 0 0 1=2 1

1=3 0 0 0 0

2=3 0 0 0 0

0 2=5 1=5 1=2 0

0 3=5 4=5 0 0

377775

37. Show that this Markov chain is irreducible.

38. Suppose the chain starts in state 1. What is the expected
number of steps until it is in state 1 again?

39. How does the presence of dangling nodes in a set of hy-
perlinked webpages affect the communication classes of the
associated Markov chain?

40. Show that the communication relation is transitive. Hint:
Show that the .i; k/-entry of P nCm must be greater than or
equal to the product of the .i; j /-entry of P m and the .j; k/-
entry of P n.

.....

Solution to Practice Problem

.

1. First note that states 1 and 3 communicate with each other, as do states 2 and 4.
However, there is no way to proceed from either state 1 or state 3 to either state 2

or state 4, so the communication classes are f1; 3g and f2; 4g.

..
10.4 Classification of States and Periodicity

The communication classes of a Markov chain have important properties that help
determine whether the state vectors converge to a unique steady-state vector. These
properties are studied in this section, and it will be shown that Examples 3, 4, and 5
in Section 10.2 are examples of all the ways that the state vectors of a Markov chain can
fail to converge to a unique steady-state vector.

Recurrent and Transient States
One way to describe the communication classes is to determine whether it is possible
for the Markov chain to leave the class once it has entered it.

DEFINITION Let C be a communication class of states for a Markov chain, and let j be a state in
C . If there is a state i not inC and k > 0 such that the .i; j /-entry inP k is positive,
then the class C is called a transient class and each state in C is a transient state.
If a communication class is not transient, it is called a recurrent class and each
state in the class is a recurrent state.

Suppose that C is a transient class. Notice that once the system moves from C to
another communication class D, the system can never return to C . This is true because
D cannot contain a state i from which it is possible to move to a state in C . If D did
contain such a state i , then the transitive property of the communication relation would
imply that every state in C communicates with every state in D. This is impossible.

EXAMPLE 1 Consider the Markov chain on f1; 2; 3; 4; 5g studied in Example 4 in
Section 10.3. Its transition diagram is given in Figure 1. Determine whether each of the
communication classes is transient or recurrent.

SOLUTION The communication classes were found to be f1; 2g, f3g, and f4; 5g. First
consider class f3g. There is a positive probability of a transition from state 3 to state 2,



C-34 CHAPTER 10 Finite-State Markov Chains
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FIGURE 1 Transition diagram for
Example 1.

so applying the definition with k D 1 shows that class f3g is a transient class. Now
consider class f1; 2g. The probability of a one-step transition from either state 1 or state
2 to any of states 3, 4, or 5 is zero, and this is also true for any number of steps. If the
system starts in state 1 or 2, it will always stay in state 1 or 2. Class f1; 2g is thus a
recurrent class. A similar argument shows that class f4; 5g is also a recurrent class.

EXAMPLE 2 Consider the randomwalkwith reflecting boundaries studied in Exam-
ple 2 in Section 10.3. Determine whether each of the communication classes is transient
or recurrent.

SOLUTION This Markov chain is irreducible: the single communication class for
this chain is f1; 2; 3; 4; 5g. By the definition, this class cannot be transient. Thus the
communication class must be recurrent.

The result of the preceding example may be generalized to any irreducible Markov
chain.

Remark: All states of an irreducible Markov chain are recurrent.

Suppose that a reducible Markov chain has two transient classes C1 and C2 and no
recurrent classes. Since C1 is transient, there must be a state in C2 that can be reached
from a state in C1. Since C2 is transient, there must be a state in C1 that can be reached
from C2. Thus all states in C1 and C2 communicate, which is impossible. Thus the
Markov chain must have at least one recurrent class. This argument can be generalized
to refer to any reducibleMarkov chain with any number of transient classes, which along
with the previous remark proves the following.

Remark: Every Markov chain must have at least one recurrent class.

EXAMPLE 3 Consider the Markov chain studied in Example 3 in Section 10.3.
Determine whether each of the communication classes is transient or recurrent.

SOLUTION The transition matrix for this Markov chain is

P D

1 2 3 4 526666664
1=4

1=4

1=2

0

0

1=3

1=3

1=3

0

0

1=2

1=4

1=4

0

0

0

0

0

1=3

2=3

0

0

0

3=4

1=4

37777775
1

2

3

4

5
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and the two communication classes are f1; 2; 3g and f4; 5g. The matrixP may be written

as the partitioned matrix P D

�
P1 O

O P2

�
, where

P1 D

1 2 32641=4

1=4

1=2

1=3

1=3

1=3

1=2

1=4

1=4

375 1

2

3

and P2 D

4 5"
1=3

2=3

3=4

1=4

#
4

5

and O is an appropriately sized zero matrix. Using block multiplication,

P k
D

"
P k

1 O

O P k
2

#
for all k > 0. Thus if state j is in one class and state i is in the other class, the .i; j /-
and .j; i/-entries of P k are zero for all k > 0. Thus both classes of this Markov chain
must be recurrent.

EXAMPLE 4 Consider altering the previous example slightly to get a Markov chain
with transition matrix

P D

1 2 3 4 526666664
1=4

1=4

1=2

0

0

1=3

1=3

1=3

0

0

1=2

1=4

1=4

0

0

0

0

0

1=3

2=3

0

0

1=4

1=2

1=4

37777775
1

2

3

4

5

and the transition diagram given in Figure 2. Determine whether each of the communi-
cation classes is transient or recurrent.
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4
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4
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1
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2
3

FIGURE 2 Transition diagram for Example 4.

SOLUTION The communication classes are still f1; 2; 3g and f4; 5g. Now the .3; 5/-
entry is not zero, so f4; 5g is a transient class. The chain must have at least one recurrent
class, so f1; 2; 3g must be that recurrent class. This result may also be proven using

partitioned matrices. Let P D

�
P1 S

O Q

�
, where P1 is as in the previous example,

Q D

4 5"
1=3

2=3

1=2

1=4

#
4

5
and S D

4 52640

0

0

0

0

1=4

375 1

2

3
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The submatrix P1 is a transition matrix in its own right: it describes transitions
within the recurrent class f1; 2; 3g. Matrix S records the probabilities of transitions
from the transient class f4; 5g into the recurrent class f1; 2; 3g. Matrix Q records the
probabilities of transitions within the transient class f4; 5g. Block multiplication now
gives

P k
D

"
P k

1 Sk

O Qk

#

for some nonzero matrix Sk . Since the lower left block is O for all matrices P k , it
is impossible to leave class f1; 2; 3g after entering it, and class f1; 2; 3g is a recurrent
class.

In Examples 3 and 4, the states were ordered so that the members of each class were
grouped together. In Example 4, the recurrent classes were listed first followed by the
transient classes. This ordering was convenient, as it allowed for the use of partitioned
matrices to determine the recurrent and transient classes. It is also possible to use block
multiplication to compute powers of the transition matrix P if the states are reordered
in the manner done in Examples 3 and 4: the states in each communication class are
consecutive, and if there are any transient classes, the recurrent classes are listed first,
followed by the transient classes. A transition matrix with its states thus reordered is
said to be in canonical form. To see how this reordering works, consider the following
example.

EXAMPLE 5 The Markov chain in Example 1 has transition matrix

P D

1 2 3 4 5266664
:8

:2

0

0

0

1

0

0

0

0

0

:3

:6

:1

0

0

0

0

0

1

0

0

0

:4

:6

377775
1

2

3

4

5

and its communication classes are f1; 2g, f3g, and f4; 5g. To place thematrix in canonical
form, reorder the classes f1; 2g, f4; 5g, and f3g; that is, rearrange the states in the order
1, 2, 4, 5, 3. To perform this rearrangement, first rearrange the columns, which produces
the matrix

1 2 3 4 5266664
:8

:2

0

0

0

1

0

0

0

0

0

:3

:6

:1

0

0

0

0

0

1

0

0

0

:4

:6

377775
1

2

3

4

5

rearrange
�����!
columns

1 2 4 5 3266664
:8

:2

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

:4

:6

0

:3

:6

:1

0

377775
1

2

3

4

5

Now rearranging the rows produces the transition matrix in canonical form:

1 2 4 5 3266664
:8

:2

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

:4

:6

0

:3

:6

:1

0

377775
1

2

3

4

5

rearrange
�����!

rows

1 2 4 5 3266664
:8

:2

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

:4

:6

0

0

:3

:1

0

:6

377775
1

2

4

5

3



10.4 Classification of States and Periodicity C-37

The transition matrix may be divided as follows:

P D

1 2 4 5 3266664
:8

:2

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

:4

:6

0

0

:3

:1

0

:6

377775
1

2

4

5

3

D

�
P1 S

O Q

�

In general, suppose thatP is the transition matrix for a reducible Markov chain with
r recurrent classes and one or more transient classes. A canonical form of P is

P D

26664
P1 � � � O
:::

: : :
::: S

O � � � Pr

O Q

37775
HerePi is the transitionmatrix for the i th recurrent class,O is an appropriately sized zero
matrix,Q records transitionswithin the transient classes, andS contains the probabilities
of transitions from the transient classes to the recurrent classes. Since P is a partitioned
matrix, it is relatively easy to take powers of it using block multiplication:

P k
D

26664
P k

1 � � � O
:::

: : :
::: Sk

O � � � P k
r

O Qk

37775
for some matrix Sk . The matrices Q, S , and Sk help to answer questions about the long-
term behavior of the Markov chain that are addressed in Section 10.5.

Periodicity
A final way of classifying states is to examine at what times it is possible for the system
to return to the state in which it begins. Consider the following simple example.

EXAMPLE 6 A Markov chain on f1; 2; 3g has transition matrix

P D

1 2 3240

1

0

0

0

1

1

0

0

35 1

2

3

The transition diagram, which is shown in Figure 3, is quite straightforward. The system

1 2

11

3

1

FIGURE 3

Transition diagram for Example 6.
must return to its starting point in three steps and every time the number of steps is a
multiple of three.

EXAMPLE 7 A Markov chain on f1; 2; 3; 4g has transition matrix

P D

1 2 3 4266664
0

1

0

0

0

0

1=2

1=2

1

0

0

0

0

0

1

0

377775
1

2

3

4
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and the transition diagram shown in Figure 4. If the system starts in state 1, 2, or 3, the
1 2

1

1

3 4

1

1
2

1
2

FIGURE 4

Transition diagram for Example 7.

system may return to its starting point in three steps or in four steps, and may return
every time the number of steps is 3aC 4b for some non-negative integers a and b. It
can be shown that every positive integer greater than 5 may be written in that form, so if
the system starts in state 1, 2, or 3, it may also return to its starting point at any number
of steps greater than 5. If the system starts in state 4, the system may return to its starting
point in four steps or in seven steps, and a similar argument shows that the system may
also return to its starting point at any number of steps greater than 17.

EXAMPLE 8 The unbiased randomwalk on f1; 2; 3; 4; 5gwith reflecting boundaries
has the transition diagram shown in Figure 5. From this diagram, one can see that it will
always take an even number of steps for the system to return to the state in which it
started.

1

1

1 2 3 4 5

1
2

1
2

1
2

1
2

1
2

1
2

FIGURE 5 Unbiased random walk with
reflecting boundaries.

In Examples 6 and 8, the time steps at which the system may return to its initial site are
multiples of a number d : d D 3 for Example 6, d D 2 for Example 8. This number d

is called the period of the state, and is defined as follows.

DEFINITION The period d of a state i of a Markov chain is the greatest common divisor of all
time steps n such that the probability that the Markov chain that started at i visits i

at time step n is strictly positive.

Using a careful analysis of the set of states visited by the Markov chain, it may be
shown that the period of each state in a given communication class is the same, so the
period is a property of communication classes. See Appendix 2 for a proof of this fact,
which leads to the following definition.

DEFINITION The period of a communication class C is the period of each state in C . If a
Markov chain is irreducible, then the period of the chain is the period of its single
communication class. If the period of every communication class (and thus every
state) is d D 1, then the Markov chain is aperiodic.

The reason that the greatest common divisor appears in the definition is to allow a
period to be assigned to all states of all Markov chains. In Example 7, the system may
return to its starting state after any sufficiently large number of steps, so the period of
each state is d D 1. That is, the Markov chain in Example 7 is aperiodic. Notice that this
chain does not exhibit periodic behavior, so the term aperiodic is quite apt. Using the
definition confirms that the period of the Markov chain in Example 6 is d D 3, while
the period of the Markov chain in Example 8 is d D 2. The next theorem describes the
transition matrix of an irreducible and aperiodic Markov chain.
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THEOREM 4 Let P be the transition matrix for an irreducible, aperiodic Markov chain. Then P

is a regular matrix.

PROOF LetP be an n � n transition matrix for an irreducible, aperiodicMarkov chain.
To show that P is regular, a number k must be found for which every entry in P k is
strictly positive. Let 1 � i; j � n. Since the Markov chain is irreducible, there must
be a number a that depends on i and j such that the .i; j /-element in P a is strictly
positive. Since the Markov chain is aperiodic, there is a number b that depends on j

such that the .j; j /-element in P m is strictly positive for all m � b. Now note that since
P aCm D P aP m, the .i; j /-element inP aCm must be greater than or equal to the product
of the .i; j /-element in P a and the .j; j /-element in P m. Thus the .i; j /-element in
P aCm must be strictly positive for all m � b. Now let k be the maximum over all pairs
.i; j / of the quantity aC b. This maximum exists because the state space is finite, and
the .i; j /-element of P k must be strictly positive for all pairs .i; j /. Thus every entry of
P k is strictly positive, and P is a regular matrix.

So, if P is the transition matrix for an irreducible, aperiodic Markov chain, then P

must be regular and Theorem 1 must apply to P . Thus there is a steady-state vector q
for which

lim
n!1

P nx0 D q

for any choice of initial probability vector x0. What can be said about the steady-state
vector q if an irreducible Markov chain has period d > 1? The following result is proven
in more advanced texts in probability theory.

THEOREM 5 Let P be the transition matrix for an irreducible Markov chain with period d > 1,
and let q be the steady-state vector for the Markov chain. Then, for any initial
probability vector x0,

lim
n!1

1

d

�
P nC1

C � � � C P nCd
�
x0 D q

Theorem 5 says that in the case of an irreducible Markov chain with period d > 1, the
vector q is the limit of the average of the probability vectors P nC1x0, P nC2x0, : : : ,
P nCdx0. When a Markov chain is irreducible with period d > 1, the vector q may still
be interpreted as a vector of occupation times.

EXAMPLE 9 The period of the irreducible Markov chain in Example 8 is d D 2, so
the Markov chain has period d > 1. Let n be an even integer. Taking high powers of the
transition matrix P shows that

P n
�!

1 2 3 4 526666664
1=4

0

1=2

0

1=4

0

1=2

0

1=2

0

1=4

0

1=2

0

1=4

0

1=2

0

1=2

0

1=4

0

1=2

0

1=4

37777775
1

2

3

4

5
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and

P nC1
�!

1 2 3 4 526666664
0

1=2

0

1=2

0

1=4

0

1=2

0

1=4

0

1=2

0

1=2

0

1=4

0

1=2

0

1=4

0

1=2

0

1=2

0

37777775
1

2

3

4

5

So for any initial probability vector x0,

lim
n!1

1

2

�
P n
C P nC1

�
x0 D

266664
1=8 1=8 1=8 1=8 1=8

1=4 1=4 1=4 1=4 1=4

1=4 1=4 1=4 1=4 1=4

1=4 1=4 1=4 1=4 1=4

1=8 1=8 1=8 1=8 1=8

377775x0 D

266664
1=8

1=4

1=4

1=4

1=8

377775
But this vector was the steady-state vector for this Markov chain calculated in Exercise
36 in Section 10.2. Theorem 5 is thus confirmed in this case.

The steady-state vector for a reducible Markov chain will be discussed in detail in
the next section.

.....

Practice Problem

.

1. Consider the Markov chain on f1; 2; 3; 4g with transition matrix

P D

2664
1=4 1=3 1=2 0

0 1=3 0 1=3

3=4 0 1=2 1=3

0 1=3 0 1=3

3775
Identify the communication classes of the chain as either recurrent or transient, and
reorder the states to produce a matrix in canonical form.

10.4 Exercises
In Exercises 1–6, consider a Markov chain with state space with
f1; 2; : : : ; ng and the given transition matrix. Identify the commu-
nication classes for each Markov chain as recurrent or transient,
and find the period of each communication class.

1.

24 1=4 0 1=3

1=2 1 1=3

1=4 0 1=3

35 2.

24 1=4 1=2 1=3

1=2 1=2 1=3

1=4 0 1=3

35

3.

24 1 1=2 1=2

0 1=2 0

0 0 1=2

35

4.

266664
0 0 0 1 1

1=3 0 0 0 0

2=3 0 0 0 0

0 1=4 2=3 0 0

0 3=4 1=3 0 0

377775

5.

26666664

0 0 :4 0 :8 0

0 0 0 :7 0 :5

:3 0 0 0 :2 0

0 :1 0 0 0 :5

:7 0 :6 0 0 0

0 :9 0 :3 0 0

37777775

6.

2666666664

0 1=3 0 2=3 1=2 0 0

1=2 0 1=2 0 0 1=3 0

0 2=3 0 1=3 0 0 2=5

1=2 0 1=2 0 0 0 0

0 0 0 0 0 0 3=5

0 0 0 0 1=2 0 0

0 0 0 0 0 2=3 0

3777777775
In Exercises 7–10, consider a simple random walk on the given
directed graph. Identify the communication classes of this Markov
chain as recurrent or transient, and find the period of each commu-
nication class.
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7. 1 2

4 3

8. 1 4

2 5

3

9. 1 2 5

3 4

10. 1 4

2 5 6

3

11. Reorder the states in the Markov chain in Exercise 1 to
produce a transition matrix in canonical form.

12. Reorder the states in the Markov chain in Exercise 2 to
produce a transition matrix in canonical form.

13. Reorder the states in the Markov chain in Exercise 3 to
produce a transition matrix in canonical form.

14. Reorder the states in the Markov chain in Exercise 4 to
produce a transition matrix in canonical form.

15. Reorder the states in the Markov chain in Exercise 5 to
produce a transition matrix in canonical form.

16. Reorder the states in the Markov chain in Exercise 6 to
produce a transition matrix in canonical form.

17. Find the transition matrix for the Markov chain in Exercise 9
and reorder the states to produce a transition matrix in canon-
ical form.

18. Find the transition matrix for theMarkov chain in Exercise 10
and reorder the states to produce a transition matrix in canon-
ical form.

19. Consider the mouse in the following maze from Section 10.1,
Exercise 19.

1 32

4 65

a. Identify the communication classes of this Markov chain
as recurrent or transient.

b. Find the period of each communication class.

c. Find the transition matrix for the Markov chain and
reorder the states to produce a transition matrix in
canonical form.

20. Consider the mouse in the following maze from Section 10.1,
Exercise 20.

3

4 5

1 2

a. Identify the communication classes of this Markov chain
as recurrent or transient.

b. Find the period of each communication class.

c. Find the transition matrix for the Markov chain and re-
order the states to produce a transition matrix in canonical
form.

In Exercises 21–26, mark each statement True or False. Justify
each answer.

21. (T/F) If two states i and j are both recurrent, then they must
belong to the same communication class.

22. (T/F) If state i is recurrent and state i communicates with
state j , then state j is also recurrent.

23. (T/F) All of the states in an irreducible Markov chain are
recurrent.

24. (T/F) If two states of a Markov chain have different periods,
then the Markov chain is reducible.

25. (T/F) Every Markov chain must have at least one transient
class.

26. (T/F) Every Markov chain must have exactly one recurrent
class.

27. Confirm Theorem 5 for the Markov chain in Exercise 7 by
taking powers of the transition matrix (see Example 9).

28. Confirm Theorem 5 for the Markov chain in Exercise 8 by
taking high powers of the transition matrix (see Example 9).

29. Consider the Markov chain on f1; 2; 3gwith transition matrix

P D

24 0 1=2 0

1 0 1

0 1=2 0

35
a. Explain why this Markov chain is irreducible and has

period 2.

b. Find a steady-state vector q for this Markov chain.

c. Find an invertible matrix A and a diagonal matrix D such
that P D ADA�1. (See Section 5.3.)

d. Use the result from part (c) to show that P n may be
written as24 1=4 1=4 1=4

1=2 1=2 1=2

1=4 1=4 1=4

35
C .�1/n

24 1=4 �1=4 1=4

�1=2 1=2 �1=2

1=4 �1=4 1=4

35
e. Use the result from part (d) to confirm Theorem 5 for P .
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30. Follow the plan of Exercise 29 to confirm Theorem 5 for the
Markov chain with transition matrix

P D

24 0 p 0

1 0 1

0 1 � p 0

35
where 0 < p < 1.

31. Confirm Theorem 5 for the Markov chain in Example 6.

32. Matrix multiplication can be used to find the canonical form
of a transition matrix. Consider the matrix P in Example 5
and the matrix

E D

266664
1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

377775
Notice that the rows of E are the rows of the identity matrix
in the order 1, 2, 4, 5, 3.

a. Compute EP and explain what has happened to the
matrix P .

b. Compute PET and explain what has happened to the
matrix P .

c. Compute EPET and explain what has happened to the
matrix P .

33. Let A be an n � n matrix and let E be an n � n matrix
resulting from permuting the rows of In, the n � n identity
matrix. The matrix E is called a permutation matrix.
a. Show that EA is the matrix A with its rows permuted in

exactly the same order that the rows of In were permuted
to form E. Hint: Any permutation of rows can be written
as a sequence of swaps of pairs of rows.

b. Apply the result of part (a) to AT to show that AET is the
matrix A with its columns permuted in exactly the same
order that the rows of In were permuted to form E.

c. Explain why EAET is the matrix A with its rows and
columns permuted in exactly the same order that the rows
of In were permuted to form E.

d. In the process of finding the canonical form of a transition
matrix, does it matter whether the rows of the matrix or
the columns of the matrix are permuted first? Why or why
not?

.....

Solution to Practice Problem

.

1. First note that states 1 and 3 communicate with each other, as do states 2 and 4.
However, there is no way to proceed from either state 1 or state 3 to either state
2 or state 4, so the communication classes are f1; 3g and f2; 4g. Since the chain
stays in class f1; 3g after it enters this class, class f1; 3g is recurrent. Likewise,
there is a positive probability of leaving class f2; 4g at any time, so class f2; 4g

is transient. One ordering of the states that produces a canonical form is 1, 3, 2, 4:
the corresponding transition matrix is

P
rearrange
�����!
columns

1 3 2 4266664
1=4

0

3=4

0

1=2

0

1=2

0

1=3

1=3

0

1=3

0

1=3

1=3

1=3

377775
1

2

3

4

rearrange
�����!

rows

1 3 2 4266664
1=4

3=4

0

0

1=2

1=2

0

0

1=3

0

1=3

1=3

0

1=3

1=3

1=3

377775
1

3

2

4

..
10.5 The Fundamental Matrix

The return time for a state in an irreducible Markov chain was defined in Section 10.3
to be the expected number of steps needed for the system to return to its starting state.
This section studies the expected number of steps needed for a system to pass from
one state to another state, which is called a transit time. Another quantity of interest
is the probability that the system visits one state before it visits another. It is perhaps
surprising that discussing these issues for irreducible Markov chains begins by working
with reducible Markov chains, particularly those with transient states.
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The Fundamental Matrix and Transient States
The first goal is to compute the expected number of visits the system makes to a state i

given that the system starts in state j , where j is a transient state. Suppose that a Markov
chain has at least one transient state. Its transition matrix may be written in canonical
form as

P D

�
R S

O Q

�
Since at least one state is transient, S has at least one nonzero entry. In order for P to be
a stochastic matrix, at least one of the columns of Q must sum to less than 1. The matrix
Q is called a substochastic matrix. It can be shown that

lim
k!1

Qk
D O

for any substochastic matrixQ. This fact implies that if the system is started in a transient
class, it must eventually make a transition to a recurrent class and never visit any state
outside that recurrent class again. The system is thus eventually absorbed by some
recurrent class.

Now let j and i be transient states, and suppose that the Markov chain starts at state
j . Let vij be the number of visits the system makes to state i before the absorption into
a recurrent class. The goal is to calculate EŒvij �, which is the expected value of vij . To
do so, a special kind of random variable called an indicator random variable is useful.
An indicator random variable I is a random variable that is 1 if an event happens and
is 0 if the event does not happen. Symbolically,

I D

(
0 if the event does not happen

1 if the event happens

The expected value of an indicator random variable may be easily calculated:

EŒI � D 0 � P.I D 0/C 1 � P.I D 1/ D P.I D 1/ D P.event happens/ (1)

Returning to the discussion of the number of visits to state i starting at state j , let Ik be
the indicator random variable for the event “the system visits state i at step k.” Then

vij D I0 C I1 C I2 C : : : D

1X
kD0

Ik

since a visit to state i at a particular time will cause 1 to be added to the running total of
visits kept in vij . Using Equation (1), the expected value of vij is

EŒvij � D E

"
1X

kD0

Ik

#
D

1X
kD0

EŒIk� D

1X
kD0

P.Ik D 1/ D

1X
kD0

P.visit to i at step k/

But P.visit to i at step k/ is just the .i; j /-entry in the matrix Qk , so

EŒvij � D

1X
kD0

.Qk/ij

Thus the expected number of times that the system visits state i starting at state j is the
.i; j /-entry in the matrix

I CQCQ2
CQ3

C : : : D

1X
kD0

Qk
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Using the argument given in Section 2.6,

I CQCQ2
CQ3

C : : : D .I �Q/�1

The matrix .I �Q/�1 is called the fundamental matrix of the Markov chain and is
denoted by M . The interpretation of the entries in M is given in the following theorem.

THEOREM 6 Let j and i be transient states of a Markov chain, and let Q be that portion of the
transition matrix that governs movement between transient states.

a. When the chain starts at a transient state j , the .i; j /-entry ofM D .I �Q/�1

is the expected number of visits to the transient state i before absorption into a
recurrent class.

b. When the chain starts at a transient state j , the sum of the entries in column j

of M D .I �Q/�1 is the expected number of time steps until absorption.

An alternative proof of Theorem 6 is given in Appendix 2.

EXAMPLE 1 Consider an unbiased random walk on f1; 2; 3; 4; 5g with absorbing
boundaries. If the system starts in state 3, find the expected number of visits to state 2

before absorption. Also find the expected number of steps until absorption starting at
states 2, 3, and 4.

SOLUTION Placing the states in the order 1, 5, 2, 3, 4 produces a transition matrix in
canonical form:

1 2 3 4 526666664
1

0

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

0

1

37777775
1

2

3

4

5

rearrange
�����!
columns

1 5 2 3 426666664
1

0

0

0

0

0

0

0

0

1

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

37777775
1

2

3

4

5

rearrange
�����!

rows

1 5 2 3 426666664
1

0

0

0

0

0

1

0

0

0

1=2

0

0

1=2

0

0

0

1=2

0

1=2

0

1=2

0

1=2

0

37777775
1

5

2

3

4

The matrix Q and the fundamental matrix M D .I �Q/�1 are

Q D

2 3 4264 0

1=2

0

1=2

0

1=2

0

1=2

0

375 2

3

4

and M D

2 3 42643=2

1

1=2

1

2

1

1=2

1

3=2

375 2

3

4

Starting at state 3, the expected number of visits to state 2 until absorption is the entry
of M whose row corresponds to state 2 and whose column corresponds to state 3. This
value is 1, so the chain will visit state 2 once on the average before being absorbed. The
sum of the column ofM corresponding to state 2 (or state 4) is 3, so the expected number
of steps until absorption is three if starting at state 2 (or state 4). Likewise, the expected
number of steps until absorption starting at state 3 is four.
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Transit Times
Consider the problem of calculating the expected number of steps tj i needed to travel
from state j to state i in an irreducible Markov chain. If the states i and j are the same
state, the value tjj is the expected return time to state j found in Section 10.4. The value
tj i will be called the transit time (or mean first passage time) from state j to state i .
Surprisingly, the insight into transient states provided by Theorem 6 is exactly what is
needed to calculate tj i .

Finding the transit time of aMarkov chain from state j to state i begins by changing
the transition matrix P for the chain. First reorder the states so that state i comes first.
The new matrix has the form �

pi i S

X Q

�
for some matrices S , X , and Q. Next change the first column of the matrix from

�
pi i

X

�
to
�

1

O

�
, where O is a zero vector of appropriate size. In terms of probabilities, it is

now impossible to leave state i after entering it. State i is now an absorbing state for the
Markov chain, and the transition matrix now has the form�

1 S

O Q

�
The expected number of steps tj i that it takes to reach state i after starting at state j may
be calculated using Theorem 6(b): it will be the sum of the column of M corresponding
to state j .

EXAMPLE 2 Consider an unbiased random walk on f1; 2; 3; 4; 5g with reflecting
boundaries. Find the expected number of steps tj 4 required to get to state 4 starting at
any state j ¤ 4 of the chain.

SOLUTION The transition matrix for this Markov chain is

P D

26666664
0 1=2 0 0 0

1 0 1=2 0 0

0 1=2 0 1=2 0

0 0 1=2 0 1

0 0 0 1=2 0

37777775
First reorder the states to list state 4 first, then convert state 4 to an absorbing state.

1 2 3 4 526666664
0

1

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

1

0

37777775
1

2

3

4

5

rearrange
�����!
columns

4 1 2 3 526666664
0

0

1=2

0

1=2

0

1

0

0

0

1=2

0

1=2

0

0

0

1=2

0

1=2

0

0

0

0

1

0

37777775
1

2

3

4

5

rearrange
�����!

rows

4 1 2 3 526666664
0

0

0

1=2

1=2

0

0

1

0

0

0

1=2

0

1=2

0

1=2

0

1=2

0

0

1

0

0

0

0

37777775
4

1

2

3

5
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convert
�����!

state 4

4 1 2 3 526666664
1

0

0

0

0

0

0

1

0

0

0

1=2

0

1=2

0

1=2

0

1=2

0

0

1

0

0

0

0

37777775
4

1

2

3

5

The matrix Q and the fundamental matrix M D .I �Q/�1 are

Q D

1 2 3 5266664
0

1

0

0

1=2

0

1=2

0

0

1=2

0

0

0

0

0

0

377775
1

2

3

5

and M D

1 2 3 5266664
3

4

2

0

2

4

2

0

1

2

2

0

0

0

0

1

377775
1

2

3

5

Summing the columns of M gives t14 D 9, t24 D 8, t34 D 5, and t54 D 1.

Absorption Probabilities
Suppose that a Markov chain has more than one recurrent class and at least one transient
state j . If the chain starts at state j , then the chain will eventually be absorbed into one of
the recurrent classes; the probability that the chain is absorbed into a particular recurrent
class is called the absorption probability for that recurrent class. The fundamental
matrix is used in calculating the absorption probabilities.

To calculate the absorption probabilities, begin by changing the transition matrix for
the Markov chain. First write all recurrent classes as single states i with pi i D 1; that is,
each recurrent class coalesces into an absorbing state. (Exercises 41 and 42 explore the
information that the absorption probabilities give for recurrent classes with more than
one state.) A canonical form for this altered transition matrix is

P D

�
I S

O Q

�
where the identity matrix describes the lack of movement between the absorbing states.

Let j be a transient state and let i be an absorbing state for the changed Markov
chain; to find the probability that the chain starting at j is eventually absorbed by i ,
consider the .i; j /-entry in the matrix P k . This entry is the probability that a system that
starts at state j is at state i after k steps. Since i is an absorbing state, in order for the
system to be at state i , the system must have been absorbed by state i at some step at or
before the kth step. Thus the probability that the system has been absorbed by state i at
or before the kth step is just the .i; j /-entry in the matrix P k , and the probability that the
chain starting at j is eventually absorbed by i is the .i; j /-entry in lim

k!1
P k . Computing

P k using rules for multiplying partitioned matrices (see Section 2.4) gives

P 2
D

�
I S C SQ

O Q2

�
; P 3

D

�
I S C SQC SQ2

O Q3

�
and it may be proved by induction (Exercise 43) that

P k
D

�
I Sk

O Qk

�
where

Sk D S C SQC SQ2
C : : :C SQk�1

D S.I CQCQ2
C : : :CQk�1/
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Since j is a transient state and i is an absorbing state, only the entries in Sk need be
considered. The probability that the chain starting at j is eventually absorbed by i may
thus be found by investigating the matrix

A D lim
k!1

Sk D lim
k!1

S.I CQCQ2
C : : :CQk�1/

D S.I CQCQ2
C : : :/ D SM

where M is the fundamental matrix for the Markov chain with coalesced recurrent
classes. The .i; j /-entry in A is the probability that the chain starting at j is eventually
absorbed by i . The following theorem summarizes these ideas; an alternative proof is
given in Appendix 2.

THEOREM 7 Suppose that the recurrent classes of aMarkov chain are all absorbing states. Let j
be a transient state and let i be an absorbing state of this chain. Then the probability
that the Markov chain starting at state j is eventually absorbed by state i is the
.i; j /-element of the matrix A D SM , where M is the fundamental matrix of the
Markov chain and S is that portion of the transition matrix that governs movement
from transient states to absorbing states.

EXAMPLE 3 Consider the unbiased random walk on f1; 2; 3; 4; 5g with absorbing
boundaries studied in Example 1. Find the probability that the chain is absorbed into
state 1 given that the chain starts at state 4.

SOLUTION Placing the states in the order f1; 5; 2; 3; 4g gives the canonical form of
the transition matrix:

1 5 2 3 426666664
1

0

0

0

0

0

1

0

0

0

1=2

0

0

1=2

0

0

0

1=2

0

1=2

0

1=2

0

1=2

0

37777775
1

5

2

3

4

The matrix Q and the fundamental matrix M D .I �Q/�1 are

Q D

2 3 4264 0

1=2

0

1=2

0

1=2

0

1=2

0

375 2

3

4

and M D

2 3 42643=2

1

1=2

1

2

1

1=2

1

3=2

375 2

3

4

so

A D SM D

"
1=2 0 0

0 0 1=2

#264 3=2 1 1=2

1 2 1

1=2 1 3=2

375 D
2 3 4"

3=4

1=4

1=2

1=2

1=4

3=4

#
1

5

The columns of A correspond to the transient states 2, 3, and 4 in that order, while the
rows correspond to the absorbing states 1 and 5. The probability that the chain that started
at state 4 is absorbed at state 1 is 1=4.

Absorption probabilities may be used to compute the probability that a system
modeled by an irreducible Markov chain visits one state before another.
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EXAMPLE 4 Consider a simple random walk on the graph in Figure 1. What is the
probability that a walker starting at state 1 visits state 4 before visiting state 7?

SOLUTION Changing state 4 and state 7 to absorbing states and then computing the
absorption probabilities starting at state 1will answer this question. Begin by reordering
the states as 4, 7, 1, 2, 3, 5, 6 and rewrite states 4 and 7 as absorbing states:

1

3
42

5 6

7

FIGURE 1

The graph for Example 4.

1 2 3 4 5 6 72666666666664

0

1=2

1=2

0

0

0

0

1=3

0

1=3

0

1=3

0

0

1=4

1=4

0

1=4

0

1=4

0

0

0

1

0

0

0

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

0

0

0

0

0

1

0

3777777777775

1

2

3

4

5

6

7

rearrange
�����!
columns

4 7 1 2 3 5 62666666666664

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1=2

1=2

0

0

0

0

1=3

0

1=3

0

1=3

0

0

1=4

1=4

0

1=4

0

1=4

0

0

1=2

0

0

0

1=2

0

0

0

1=3

0

1=3

0

1=3

3777777777775

1

2

3

4

5

6

7

rearrange
�����!

rows

4 7 1 2 3 5 62666666666664

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1=2

1=2

0

0

0

0

1=3

0

1=3

1=3

0

1=4

0

1=4

1=4

0

0

1=4

0

0

0

1=2

0

0

1=2

0

1=3

0

0

1=3

1=3

0

3777777777775

4

7

1

2

3

5

6

convert
��������!
states 4 and 7

4 7 1 2 3 5 62666666666664

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1=2

1=2

0

0

0

0

1=3

0

1=3

1=3

0

1=4

0

1=4

1=4

0

0

1=4

0

0

0

1=2

0

0

1=2

0

1=3

0

0

1=3

1=3

0

3777777777775

4

7

1

2

3

5

6

The resulting transition matrix is
�

I S

O Q

�
, with

S D

1 2 3 5 6"
0

0

0

0

1=4

0

0

0

0

1=3

#
4

7
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and

Q D

1 2 3 5 626666664
0

1=2

1=2

0

0

1=3

0

1=3

1=3

0

1=4

1=4

0

0

1=4

0

1=2

0

0

1=2

0

0

1=3

1=3

0

37777775
1

2

3

5

6

so

M D .I �Q/�1
D

1 2 3 5 626666664
12=5

12=5

12=5

6=5

6=5

8=5

31=10

34=15

22=15

13=10

6=5

17=10

38=15

14=15

11=10

6=5

11=5

28=15

34=15

8=5

4=5

13=10

22=15

16=15

19=10

37777775
1

2

3

5

6

and

A D SM D

1 2 3 5 6"
3=5

2=5

17=30

13=30

19=30

11=30

7=15

8=15

11=30

19=30

#
4

7

Since the first column of A corresponds to state 1 and the rows correspond to states 4

and 7, respectively, the probability of visiting 4 before visiting 7 is 3=5.

A mathematical model that uses Theorems 6 and 7 appears in Section 10.6.

.....

Practice Problems

.

1. Consider a Markov chain on f1; 2; 3; 4g with transition matrix

P D

266664
1 1=2 0 0

0 1=6 1=2 0

0 1=3 1=6 0

0 0 1=3 1

377775
a. If the Markov chain starts at state 2, find the expected number of steps before

the chain is absorbed.

b. If theMarkov chain starts at state 2, find the probability that the chain is absorbed
at state 1.

2. Consider a Markov chain on f1; 2; 3; 4g with transition matrix

P D

266664
2=3 1=2 0 0

1=3 1=6 1=2 0

0 1=3 1=6 1=2

0 0 1=3 1=2

377775
a. If the Markov chain starts at state 2, find the expected number of steps required

to reach state 4.

b. If the Markov chain starts at state 2, find the probability that state 1 is reached
before state 4.
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10.5 Exercises
In Exercises 1–3, find the fundamental matrix of theMarkov chain
with the given transition matrix. Assume that the state space in
each case is f1; 2; : : : ; ng. If reordering of states is necessary, list
the order in which the states have been reordered.

1.

266664
1 0 1=6 0

0 1 0 1=3

0 0 1=3 2=3

0 0 1=2 0

377775

2.

26666664
1 0 0 1=4 1=5

0 1 0 1=8 1=10

0 0 1 1=8 1=5

0 0 0 1=4 3=10

0 0 0 1=4 1=5

37777775

3.

26666664
1=5 0 1=10 0 1=5

1=5 1 1=5 0 1=5

1=5 0 1=5 0 1=4

1=5 0 1=4 1 1=10

1=5 0 1=4 0 1=4

37777775
In Exercises 4–6, find the matrixA D limn!1 Sn for the Markov
chain with the given transition matrix. Assume that the state space
in each case is f1; 2; : : : ; ng. If reordering of states is necessary,
list the order in which the states have been reordered.

4.

266664
1 0 1=6 0

0 1 0 1=3

0 0 1=3 2=3

0 0 1=2 0

377775

5.

26666664
1 0 0 1=4 1=5

0 1 0 1=8 1=10

0 0 1 1=8 1=5

0 0 0 1=4 3=10

0 0 0 1=4 1=5

37777775

6.

26666664
1=5 0 1=10 0 1=5

1=5 1 1=5 0 1=5

1=5 0 1=5 0 1=4

1=5 0 1=4 1 1=10

1=5 0 1=4 0 1=4

37777775
7. Suppose that the Markov chain in Exercise 1 starts at state 3.

How many visits will the chain make to state 4 on average
before absorption?

8. Suppose that the Markov chain in Exercise 2 starts at state
4. How many steps will the chain take on average before
absorption?

9. Suppose that the Markov chain in Exercise 3 starts at state 1.
Howmany steps will the chain take on average before absorp-
tion?

10. Suppose that the Markov chain in Exercise 4 starts at state 3.
What is the probability that the chain is absorbed at state 1?

11. Suppose that the Markov chain in Exercise 5 starts at state 4.
Find the probabilities that the chain is absorbed at states 1, 2,
and 3.

12. Suppose that the Markov chain in Exercise 6 starts at state 5.
Find the probabilities that the chain is absorbed at states 2

and 4.

13. Consider a simple random walk on the following graph.

1 2

4 3

5

a. Suppose that the walker begins in state 5. What is the
expected number of visits to state 2 before the walker
visits state 1?

b. Suppose again that the walker begins in state 5. What
is the expected number of steps until the walker reaches
state 1?

c. Now suppose that the walker starts in state 1. What is the
probability that the walker reaches state 5 before reaching
state 2?

14. Consider a simple random walk on the following graph.

1 2

34

a. Suppose that the walker begins in state 3. What is the
expected number of visits to state 2 before the walker
visits state 1?

b. Suppose again that the walker begins in state 3. What
is the expected number of steps until the walker reaches
state 1?

c. Now suppose that the walker starts in state 1. What is the
probability that the walker reaches state 3 before reaching
state 2?
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15. Consider a simple random walk on the following directed
graph. Suppose that the walker starts at state 1.

1 2

3 4

a. Howmany visits to state 2 does the walker expect to make
before visiting state 3?

b. How many steps does the walker expect to take before
visiting state 3?

16. Consider a simple random walk on the following directed
graph. Suppose that the walker starts at state 4.

1 4

2 5

3

a. Howmany visits to state 3 does the walker expect to make
before visiting state 2?

b. How many steps does the walker expect to take before
visiting state 2?

17. Consider the mouse in the following maze from Section 10.1,
Exercise 17.

3

4 5

1 2

If the mouse starts in room 2, what is the probability that the
mouse visits room 3 before visiting room 4?

18. Consider the mouse in the following maze from Section 10.1,
Exercise 18.

1 2 3

54

If the mouse starts in room 1, what is the probability that the
mouse visits room 3 before visiting room 4?

19. Consider the mouse in the following maze from Section 10.1,
Exercise 19.

1 32

4 65

If the mouse starts in room 1, howmany steps on average will
it take the mouse to get to room 6?

20. Consider the mouse in the following maze from Section 10.1,
Exercise 20.

3

4 5

1 2

If the mouse starts in room 1, howmany steps on average will
it take the mouse to get to room 5?

In Exercises 21–26, mark each statement True or False. Justify
each answer.

21. (T/F) The .i; j /-element in the fundamental matrix M is the
expected number of visits to the transient state j prior to
absorption, starting at the transient state i .

22. (T/F) The sum of the column j of the fundamental matrix M

is the expected number of time steps until absorption.

23. (T/F) The .j; i/-element in the fundamental matrix gives
the expected number of visits to state i prior to absorption,
starting at state j .

24. (T/F)Transit timesmay be computed directly from the entries
in the transition matrix.

25. (T/F) The probability that the Markov chain starting at state
i is eventually absorbed by state j is the .j; i/-element of the
matrix A D SM , where M is the fundamental matrix of the
Markov chain and S is that portion of the transition matrix
that governs movement from transient states to absorbing
states.

26. (T/F) If A is an m �m substochastic matrix, then the entries
in An approach 0 as n increases.

27. Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 27. If it is sunny
today, what is the probability that the weather will be cloudy
before it is rainy?

28. Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 28. If it rained yester-
day and today, how many days on average will it take before
there are two consecutive days with no rain?

29. Consider a set of webpages hyperlinked by the given directed
graph that was studied in Section 10.2, Exercise 29.
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1 2 5

3 4

If a random surfer starts on page 1, how many mouse clicks
on average will the surfer make before becoming stuck at a
dangling node?

30. Consider a set of webpages hyperlinked by the given directed
graph that was studied in Section 10.2, Exercise 30.

1 4

2 5 6

3

If a random surfer starts on page 3, what is the probability
that the surfer will eventually become stuck on page 1, which
is a dangling node?

Exercises 31–34 concern the Markov chain model for scoring a
tennis match described in Section 10.1, Exercise 35. Suppose that
players A andB are playing a tennismatch, that the probability that
player A wins any point is p D :6, and that the game is currently
at “deuce.”

31. How many more points will the tennis game be expected to
last?

32. Find the probability that player A wins the game.

33. Repeat Exercise 31 if the game is

a. currently at “advantage A.”

b. currently at “advantage B.”

34. Repeat Exercise 32 if the game is

a. currently at “advantage A.”

b. currently at “advantage B.”

Exercises 35–40 concern the twoMarkov chainmodels for scoring
volleyball games described in Section 10.1, Exercise 36. Suppose
that teams A and B are playing a 15-point volleyball game that
is tied 15-15 with team A serving. Suppose that the probability
p that team A wins any rally for which it serves is p D :7, and
the probability q that team B wins any rally for which it serves is
q D :6.

35. Suppose that rally point scoring is being used. How many
more rallies will the volleyball game be expected to last?

36. Suppose that rally point scoring is being used. Find the
probability that team A wins the game.

37. Suppose that side out scoring is being used. How many more
rallies will the volleyball game be expected to last?

38. Suppose that side out scoring is being used. Find the proba-
bility that team A wins the game.

39. Rally point scoring was introduced to make volleyball
matches take less time. Considering the results of Exercises
35 and 37, does using rally point scoring really lead to fewer
rallies being played?

40. Sincep D :7 and q D :6, it seems that teamA is the dominant
team. Does it really matter which scoring system is chosen?
Should the manager of each team have a preference?

41. Consider a Markov chain on f1; 2; 3; 4; 5g with transition
matrix

P D

26666664
1=4 1=2 1=3 0 1=4

3=4 1=2 0 1=3 1=4

0 0 0 1=3 0

0 0 1=3 0 0

0 0 1=3 1=3 1=2

37777775
Find lim

n!1
P n by the following steps.

a. What are the recurrent and transient classes for this chain?

b. Find the limiting matrix for each recurrent class.

c. Determine the long-range probabilities for the Markov
chain starting from each transient state.

d. Use the results of parts (b) and (c) to find lim
n!1

P n.

e. Confirm your answer in part (d) by taking P to a high
power.

42. Consider a Markov chain on f1; 2; 3; 4; 5; 6g with transition
matrix

P D

26666666664

1=3 1=2 0 0 1=2 0

2=3 1=2 0 0 0 0

0 0 1=4 2=3 0 1=2

0 0 3=4 1=3 0 0

0 0 0 0 1=4 1=4

0 0 0 0 1=4 1=4

37777777775
Find lim

n!1
P n by the following steps.

a. What are the recurrent and transient classes for this chain?

b. Find the limiting matrix for each recurrent class.

c. Find the absorption probabilities from each transient state
into each recurrent class.

d. Use the results of parts (b) and (c) to find lim
n!1

P n.

e. Confirm your answer in part (d) by taking P to a high
power.

43. Show that if P D

�
I S

O Q

�
, then P k D

�
I Sk

O Qk

�
,

where

Sk D S C SQC SQ2 C : : :C SQk�1

D S.I CQCQ2 C : : :CQk�1/:
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.....

Solutions to Practice Problems

.

1. a. Since states 1 and 4 are absorbing states, reordering the states as f1; 4; 2; 3g

produces the canonical form

P D

1 4 2 3266664
1

0

0

0

0

1

0

0

1=2

0

1=6

1=3

0

1=3

1=2

1=6

377775
1

4

2

3

So

Q D

2 3"
1=6

1=3

1=2

1=6

#
2

3
and M D

2 3"
30=19

12=19

18=19

30=19

#
2

3

The expected number of steps needed when starting at state 2 before the chain
is absorbed is the sum of the entries in the column of M corresponding to state
2, which is

30

19
C

12

19
D

42

19

b. Using the canonical form of the transition matrix, we see that

S D

2 3"
1=2

0

0

1=3

#
1

4
and A D SM D

2 3"
15=19

4=19

9=19

10=19

#
1

4

The probability that the chain is absorbed at state 1 given that the Markov chain
starts at state 2 is the entry in A whose row corresponds to state 1 and whose
column corresponds to state 2; this entry is 15=19.

2. a. Reorder the states as f4; 1; 2; 3g and make state 4 into an absorbing state to
produce the canonical form

P D

4 1 2 3266664
1

0

0

0

0

2=3

1=3

0

0

1=2

1=6

1=3

1=3

0

1=2

1=6

377775
4

1

2

3

So

Q D

1 2 32642=3

1=3

0

1=2

1=6

1=3

0

1=2

1=6

375 1

2

3

and M D

1 2 326414:25

7:50

3:00

11:25

7:50

3:00

6:75

4:50

3:00

375 1

2

3

The expected number of steps required to reach state 4, starting at state 2, is the
sum of the entries in the column of M corresponding to state 2, which is

11:25C 7:50C 3:00 D 21:75
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.....

Solutions to Practice Problems (Continued)

.

b. Make states 1 and 4 into absorbing states and reorder the states as f1; 4; 2; 3g to
produce the canonical form

P D

1 4 2 3266664
1

0

0

0

0

1

0

0

1=2

0

1=6

1=3

0

1=3

1=2

1=6

377775
1

4

2

3

So

Q D

2 3"
1=6

1=3

1=2

1=6

#
2

3
; M D

2 3"
30=19

12=19

18=19

30=19

#
2

3
;

S D

2 3"
1=2

0

0

1=3

#
1

4
; and A D SM D

2 3"
15=19

4=19

9=19

10=19

#
1

4

Thus the probability that, starting at state 2, state 1 is reached before state 4 is
the entry in A whose row corresponds to state 1 and whose column corresponds
to state 2; this entry is 15=19.

..
10.6 Markov Chains and Baseball Statistics

Markov chains are used to model a wide variety of systems. The examples and exercises
in this chapter have shown howMarkov chains may be used to model various situations.
The final example to be explored is a model for how runners proceed around the bases
in baseball. This model leads to useful measures of expected run production both for a
team and for individual players.

Baseball Modeled by a Markov Chain
Many baseball fans carefully study the statistics of their favorite teams. The teams
themselves use baseball statistics for individual players to determine strategy during
games, and to make hiring decisions.1 This section shows how aMarkov chain is used to
predict the number of earned runs a teamwill score and to compare the offensive abilities
of different players. Some exercises suggest how to use Markov chains to investigate
matters of baseball strategy, such as deciding whether to attempt a sacrifice or a steal.

The Markov chain in this section provides a way to analyze how runs are scored
during one half-inning of a baseball game. The states of the chain are the various
configurations of runners on bases and the number of outs. See Table 1.

The first state in the left column of Table 1 (“no bases occupied, 0 outs”) is the initial
state of the chain, when the baseball half-inning begins (that is, when one team becomes
the team “at bat”). The four states in the far right column describe the various ways the
half-inning can end (when the third out occurs and the teams trade places). Physically,

1 The use of statistical analysis in baseball is called sabermetrics as a tribute to SABR, the Society for
American Baseball Research. An overview of sabermetrics can be found at
http://en.wikipedia.org/wiki/Sabermetrics.
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TABLE 1 The 28 States of a Baseball Markov Chain
Bases Occupied Outs State Left on Base Outs State

None 0 0:0 0 3 0:3

First 0 1:0 1 3 1:3

Second 0 2:0 2 3 2:3

Third 0 3:0 3 3 3:3

First and Second 0 12:0

First and Third 0 13:0

Second and Third 0 23:0

First, Second, and Third 0 123:0

None 1 0:1

First 1 1:1

Second 1 2:1

Third 1 3:1

First and Second 1 12:1

First and Third 1 13:1

Second and Third 1 23:1

First, Second, and Third 1 123:1

None 2 0:2

First 2 1:2

Second 2 2:2

Third 2 3:2

First and Second 2 12:2

First and Third 2 13:2

Second and Third 2 23:2

First, Second, and Third 2 123:2

the half-inning is completed when the third out occurs. Mathematically, the Markov
chain continues in one of the four “final” states. (The model only applies to a game in
which each half-inning is completed.) So, each of these four states is an absorbing state
of the chain. The other 24 states are transient states, because whenever an out is made,
the states with fewer outs can never occur again.

The Markov chain moves from state to state because of the actions of the batters.
The transition probabilities of the chain are the probabilities of possible outcomes of a
batter’s action. For a Markov chain, the transition probabilities must remain the same
from batter to batter, so the model does not allow for variations among batters. This
assumption means that each batter for a team hits as an “average batter” for the team.2

The model also assumes that only the batter determines how the runners move
around the bases. This means that stolen bases, wild pitches, and passed balls are
not considered. Also, errors by the players in the field are not allowed, so the model
only calculates earned runs—runs that are scored without the benefit of fielding errors.
Finally, the model considers only seven possible outcomes at the plate: a single (arriving
safely at first base and stopping there), a double (arriving safely at second base), a triple

2 This unrealistic assumption can be overcome by using a more complicated model that uses different
transition matrices for each batter. Nevertheless, the model presented here can lead to useful information
about the team. Later in the section, the model will be used to evaluate individual players.



C-56 CHAPTER 10 Finite-State Markov Chains

(arriving safely at third base), a home run, a walk (advancing to first base without hitting
the ball), a hit batsman (a pitched ball hits the batter, and the batter advances to first
base), and an “out.” Thus, the model allows no double or triple plays, no sacrifices, and
no sacrifice flies. However, Markov chain models can be constructed that include some
of these excluded events.3

Constructing the Transition Matrix
The 28 � 28 transition matrix for the Markov chain has the canonical form

P D

�
I4 S

O Q

�
(1)

where I4 is the 4 � 4 identity matrix (because the only recurrent states are the four
absorbing states, one of which is entered when the third out occurs), S is a 4 � 24matrix,
and Q is a 24 � 24 substochastic matrix. The columns of S and Q correspond to the
transient states, in the order shown in Table 1. The entries in S describe the transitions
from the 24 transient states (with 0, 1, or 2 outs) to the absorbing states (with 3 outs).
Note that the only way to enter an absorbing state is to come from a state with 2 outs.
Let pO denote the probability that the batter makes an out. Then S may be written in
block form, with three 4 � 8 blocks, as

S D
�

O O X
�

where X D

0:2 1:2 2:2 3:2 12:2 13:2 23:2 123:22664
pO

0

0

0

0

pO

0

0

0

pO

0

0

0

pO

0

0

0

0

pO

0

0

0

pO

0

0

0

pO

0

0

0

0

pO

3775
0:3

1:3

2:3

3:3

(2)

The matrix X describes the transitions from the transient states with 2 outs to the
absorbing states with 3 outs. (For example, columns 2, 3, and 4 ofX list the probabilities
that the batter makes the third out when one runner is on one of the three bases.) The
substochastic matrix Q has the following block form, with 8 � 8 blocks,

Q D

0 1 224A

B

O

O

A

B

O

O

A

35 0

1

2

(3)

The labels on the rows and columns of Q represent the number of outs. The four zero
blocks in Q reflect the facts that the number of outs cannot go from 1 to 0, from 2 to 0

or 1, or from 0 directly to 2 in one step. The matrix A describes how the various base
configurations change when the number of outs does not change.

The entries in A and B depend on how the batter’s action at the plate affects any
runners that may already be on base. The Markov chain model presented here makes the
assumptions shown in Table 2. The exercises consider some alternative assumptions.

The entries in the 8 � 8 matrices A and B are constructed from the probabilities of
the six batting events in Table 2. Denote these probabilities by pW , p1, p2, p3, pH , and
pO , respectively. The notation pO was introduced earlier during the construction of the
matrix S .

3Other models use “play-by-play” data. The number of transitions between states are counted and scaled to
produce a transition matrix. For these models it does not matter how the runners advance, merely that they do.
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TABLE 2 Assumptions about Advancing Runners

Batting Event Outcome

Walk or Hit Batsman The batter advances to first base. A runner on first base advances to
second base. A runner on second base advances to third base only
if first base was also occupied. A runner on third base scores only
if first base and second base were also occupied.

Single The batter advances to first base. A runner on first base advances to
second base. A runner on third base scores. A runner on second
base advances to third base half of the time and scores half of the
time.

Double The batter advances to second base. A runner on first base advances
to third base. A runner on second base scores. A runner on third
base scores.

Triple The batter advances to third base. A runner on first base scores. A
runner on second base scores. A runner on third base scores.

Home Run The batter scores. A runner on first base scores. A runner on second
base scores. A runner on third base scores.

Out No runners advance. The number of outs increases by one.

The 8 � 8 matrix B involves the change of state when the number of outs increases.
In this case, the configuration of runners on the bases does not change (see Table 2). So

B D pOI

where I is the 8 � 8 identity matrix.4

Matrix A concerns the situations in which the batter does not make an out and
either succeeds in reaching one of the bases or hits a home run. The construction of
A is discussed in Example 1 and in the exercises. The labels on the rows and columns
of A correspond to the states in Table 2. Here k is the fixed number of outs: either 0, 1,
or 2.

A D

0:k 1:k 2:k 3:k 12:k 13:k 23:k 123:k266666666664

pH

pW C p1

p2

p3

0

0

0

0

pH

0

0

p3

pW C p1

0

p2

0

pH

:5p1

p2

p3

pW

:5p1

0

0

pH

p1

p2

p3

0

pW

0

0

pH

0

0

p3

:5p1

0

p2

pW C :5p1

pH

0

0

p3

p1

0

p2

pW

pH

:5p1

p2

p3

0

:5p1

0

pW

pH

0

0

p3

:5p1

0

p2

pW C :5p1

377777777775

0:k

1:k

2:k

3:k

12:k

13:k

23:k

123:k

The analysis in Example 1 requires two facts from probability theory. If an event can
occur in two mutually exclusive ways, with probabilities p1 and p2, then the probability
of the event is p1 C p2. The probability that two independent events both occur is the
product of the separate probabilities for each event.

4A batter can make an out in three ways—by striking out, by hitting a fly ball that is caught, or by hitting
a ground ball that is thrown to first base before the batter arrives. When the second or third case occurs, a
runner on a base sometimes can advance one base, but may also make an out and be removed from the bases.
Table 2 excludes these possibilities.
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EXAMPLE 1

a. Justify the transition probabilities for the initial state “no bases occupied.”

b. Justify the transition probabilities for the initial state “second base occupied.”

SOLUTION

a. For the first column of A, the batter either advances to one of the bases or hits a
home run. So the probability that the bases remain unoccupied is pH . The batter
advances to first base when the batter either walks (or is hit by a pitch) or hits a single.
Since the desired outcome can be reached in two different ways, the probability of
success is the sum of the two probabilities—namely, pW C p1. The probabilities of
the batter advancing to second base or third base are, respectively, p2 and p3. All
other outcomes are impossible, because there can be at most one runner on base after
one batter when the starting state has no runners on base.

b. This concerns the third column ofA. The initial state is 2:k (a runner on second base,
k outs). For entry .1; 3/ of A, the probability of a transition “to state 0:k” is required.
Suppose that only second base is occupied and the batter does not make an out. Only
a home run will empty the bases, so the .1; 3/-entry is pH .

Entry .2; 3/: (“to state 1:k”) To leave a player only on first base, the batter must
get to first base and the player on second base must reach home plate successfully.5

From Table 2, the probability of reaching home plate successfully from second base
is :5. Now, assume that these two events are independent, because only the actions
of the batter (and Table 2) influence the outcome. In this case, the probability of both
events happening at the same time is the product of these two probabilities, so the
.2; 3/-entry is :5p1.

Entry .3; 3/: (“to state 2:k”) To leave a player only on second base, the batter
must reach second base (a “double”) and the runner on second base must score. The
second condition, however, is automatically satisfied because of the assumption in
Table 2. So the probability of success in this case is p2. This is the .3; 3/-entry.

Entry .4; 3/: (“to state 3:k”) By an argument similar to that for the .3; 3/-entry,
the .4; 3/-entry is p3.

Entry .5; 3/: (“to state 12:k”) To leave players on first base and second base,
the batter must get to first base and the player on second base must remain there.
However, from Table 2, if the batter hits a single, the runner on second base will at
least get to third base. So, the only way for the desired outcome to occur is for the
batter to get a walk or be hit by a pitch. The .5; 3/-entry is thus pW .

Entry .6; 3/: (“to state 13:k”) This concerns the batter getting to first base and
the runner on second base advancing to third base. This can happen only if the batter
hits a single, with probability p1, and the runner on second base stops at third base,
which happens with probability :5 (by Table 2). Since both events are required, the
.6; 3/-entry is the product :5p1.

Entry .7; 3/: (“to state 23:k”) To leave players on second base and third base, the
batter must hit a double and the runner on second base must advance only to third
base. Table 2 rules this out—when the batter hits a double, the runner on second base
scores. Thus the .7; 3/-entry is zero.

Entry .8; 3/: The starting state has just one runner on base. The next state cannot
have three runners on base, so the .8; 3/-entry is zero.

5 The only other way to make the player on second base “disappear” would be for the player to be tagged out,
but the model does not permit outs for runners on the bases.
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EXAMPLE 2 Batting statistics are often displayed as in Table 3. Use the data in
Table 3 to obtain the transition probabilities for the 2002 Atlanta Braves.

TABLE 3 Atlanta Braves Batting Statistics---2002 Season

Walks Hit Batsman Singles Doubles Triples Home Runs Outs

558 54 959 280 25 164 4067

SOLUTION The sum of the entries in Table 3 is 6107. This is the total number of times
that Atlanta Braves players came to bat during the 2002 baseball season. From the first
two columns, there are 612 walks or hit batsmen. So, pW D 612=6107 D :1002. Of the
6107 times a player came to bat, a player hit a single 959 times, so p1 D 959=6107 D

:1570. Similar calculations provide p2 D :0458, p3 D :0041, pH D :0269, and pO D

:660. These values are placed in the matrices to produce the transition matrix for the
Markov chain.

Applying the Model
Now that the data for the stochastic matrix is available, Theorems 6 and 7 from Section
10.5 can provide information about how many earned runs to expect from the Atlanta
Braves during a typical game. The goal is to calculate how many earned runs the Braves
will score on average in each half-inning. First, observe that since three batters must
make an out to finish one half-inning, the number of runs scored in that half-inning is
given by

Œ# of runs� D Œ# of batters� � Œ# of runners left on base� � 3 (4)

If R is the number of runs scored in the half-inning, B is the number of batters, and L

is the number of runners left on base, Equation (4) becomes

R D B � L � 3 (5)

The quantity of interest is EŒR�, the expected number of earned runs scored. Properties
of expected value indicate that

EŒR� D EŒB� �EŒL� � 3 (6)

Each batter moves the Markov chain ahead one step. So, the expected number of batters
in a half-inning EŒB� is the expected number of steps to absorption (at the third out)
when the chain begins at the initial state “0 bases occupied, 0 outs.” This initial state
corresponds to the fifth column of the transition matrix

P D

�
I4 S

O Q

�
In baseball terms, Theorem 6 shows that

The expected number of players that bat in one half-inning is the sum of the entries
in column 1 of the fundamental matrix M D .I �Q/�1.

Thus EŒB� may be computed. The other quantity needed in Equation (6) is EŒL�,
the expected number of runners left on base in a typical half-inning. This is given by the
following sum:

EŒL� D 0 � P.L D 0/C 1 � P.L D 1/C 2 � P.L D 2/C 3 � P.L D 3/ (7)
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Theorem 7 can provide this information because the recurrent classes for the chain are
just the four absorbing states (at the end of the half-inning). The probabilities needed
in Equation (7) are the probabilities of absorption into the four final states of the half-
inning given that the initial state of the system is “0 bases occupied, 0 outs.” So the
desired probabilities are in column 1 of the matrix SM , where M is the fundamental
matrix of the chain and S D

�
O O X

�
as in Equation (2). The probabilities can

be used to calculate EŒL� using Equation (7), and thus to find EŒR�.

EXAMPLE 3 When the Atlanta Braves data from Example 2 is used to construct the
transition matrix (not shown here), it turns out that the sum of the first column of the
fundamental matrix M is 4:5048, and the first column of the matrix SM is2664

:3520

:3309

:2365

:0805

3775
Compute the number of earned runs the Braves can expect to score per inning based on
their performance in 2002. How many earned runs does the model predict for the entire
season, if the Braves play 1443 2

3
innings, as they did in 2002?

SOLUTION The first column of SM shows that, for example, the probability that the
Braves left no runners on base is :3520. The expected number of runners left on base is

EŒL� D 0.:3520/C 1.:3309/C 2.:2365/C 3.:0805/ D 1:0454

The expected number of batters is EŒB� D 4:5048, the sum of the first column of M:

From Equation (6), the expected number of earned runs EŒR� is

EŒR� D EŒB� �EŒL� � 3 D 4:5048 � 1:0454 � 3 D :4594

The Markov chain model predicts that the Braves should average :4594 earned run per
inning. In 1443 2

3
innings, the total number of earned runs expected is

:4594 � 1443:67 D 663:22

The actual number of earned runs for the Braves in 2002 was 636, so the model’s error
is 27:22 runs, or about 4:3%.

Mathematical models are used by some Major League teams to compare the
offensive profiles of single players. To analyze a player using the Markov chain model,
use the player’s batting statistics instead of a team’s statistics. Compute the expected
number of earned runs that a team of such players would score in an inning. This number
is generally multiplied by 9 to yield what has been termed an “offensive earned run
average.”

EXAMPLE 4 Table 4 shows the career batting statistics for Jose Oquendo, who
played for the New York Mets and St. Louis Cardinals in the 1980s and 1990s. Compute
his offensive earned run average.

TABLE 4 Jose Oquendo Batting Statistics

Walks Hit Batsman Singles Doubles Triples Home Runs Outs

448 5 679 104 24 14 2381
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SOLUTION Construct the transition matrix from this data as described in Example 2,
and then compute M and SM: The sum of the first column of M is 4:6052, so a team
entirely composed of Jose Oquendos would come to bat an average of 4:6052 times per
inning. That is, EŒB� D 4:6052. The first column of SM is2664

:2844

:3161

:2725

:1270

3775
so the expected number of runners left on base is

EŒL� D 0.:2844/C 1.:3161/C 2.:2725/C 3.:1270/ D 1:2421

From Equation (6), the expected number of earned runs is

EŒR� D EŒB� �EŒL� � 3 D 4:6052 � 1:2421 � 3 D :3631

The offensive earned run average for Jose Oquendo is :3631 � 9 D 3:2679. This com-
pares with an offensive earned run average of about 10 for teams composed of the
greatest hitters in baseball history. See the Exercises.

.....

Practice Problems

.

1. Let A be the matrix just before Example 1. Explain why entry .3; 6/ is zero.

2. Explain why entry .6; 3/ of A is :5p1:

10.6 Exercises
In Exercises 1–6, justify the transition probabilities for the given
initial states. See Example 1.

1. First base occupied

2. Third base occupied

3. First and second bases occupied

4. First and third bases occupied

5. Second and third bases occupied

6. First, second, and third bases occupied

7. Major League batting statistics for the 2006 season are shown
in Table 5. Compute the transition probabilities for this data
as was done in Example 2, and find the matrixA for this data.

8. Find the complete transition matrix for the model using the
Major League data in Table 5.

9. It can be shown that the sum of the first column of M for the
2006 Major League data is 4:53933, and that the first column
of SM for the 2006 Major League data is2664

:34973

:33414

:23820

:07793

3775
Find the expected number of earned runs per inning in a
Major League game in 2006.

10. The number of innings batted in the Major Leagues in the
2006 season was 43,257, and the number of earned runs
scored was 21,722. What is the total number of earned runs
scored for the season predicted by the model, and how does
it compare with the actual number of earned runs scored?

TABLE 5 Major League Batting Statistics---2006 Season

Walks Hit Batsman Singles Doubles Triples Home Runs Outs

15;847 1817 29;600 9135 952 5386 122;268
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TABLE 6 Batting Statistics for Leading Batters

Name Walks Hit Batsman Singles Doubles Triples Home Runs Outs

Barry Bonds 2558 106 1495 601 77 762 6912

Babe Ruth 2062 43 1517 506 136 714 5526

Ted Williams 2021 39 1537 525 71 521 5052

11. Batting statistics for three of the greatest batters in Major
League history are shown in Table 6. Compute the transition
probabilities for this data for each player.

12. The sums of the first columns of M for the player data in
Table 6 and the first columns of SM for the player data in
Table 6 given in Table 7. Find and compare the offensive
earned run averages of these players. Which batter does the
model say was the best of these three?

TABLE 7 Model Information for
Batting Statistics

Sum of First First Column
Columns of M of SM

Barry Bonds 5.43012

2664
:281776

:292658

:258525

:167041

3775

Babe Ruth 5.70250

2664
:268150

:295908

:268120

:167822

3775

Ted Williams 5.79929

2664
:233655

:276714

:290207

:199425

3775
13. Consider the second columns of the matrices M and SM ,

which correspond to the “Runner on first, none out” state.

a. What information does the sum of the second column of
M give?

b. What value can you calculate using the second column of
SM ?

c. What would the calculation of expected runs scored using
the data from the second columns mean?

Exercises 14–18 show how the model for run production in the
text can be used to determine baseball strategy. Suppose that you
are managing a baseball team and have access to the matrices M

and SM for your team.

14. The sum of the column of M corresponding to the “Runner
on first, none out” state is 4:53933, and the column of SM

corresponding to the “Runner on first, none out” state is2664
:06107

:35881

:41638

:16374

3775
Your team now has a runner on first and no outs. How many
earned runs do you expect your team to score this inning?

15. The sum of the column of M corresponding to the “Runner
on second, none out” state is 4:53933, and the column of SM

corresponding to the “Runner on second, none out” state is2664
:06107

:47084

:34791

:12018

3775
How many earned runs do you expect your team to score if
there is a runner on second and no outs?

16. The sum of the column of M corresponding to the “Bases
empty, one out” state is 3:02622, and the column of SM

corresponding to the “Bases empty, one out” state is2664
:48513

:31279

:16060

:04148

3775
How many earned runs do you expect your team to score if
the bases are empty and there is one out?

17. Suppose that a runner for your team is on first base with no
outs. You have to decide whether to tell the baserunner to
attempt to steal second base. If the steal is successful, there
will be a runner on second base and no outs. If the runner
is caught stealing, the bases will be empty and there will be
one out. Suppose further that the baserunner has a probability
of p D :8 of stealing successfully. Does attempting a steal in
this circumstance increase or decrease the number of earned
runs your team will score this inning?

18. In the previous exercise, let p be the probability that the
baserunner steals second base successfully. For which values
of p would you as manager call for an attempted steal?
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.....

Solutions to Practice Problems

.

1. For entry .3; 6/ of A, the probability of a transition from state 13:k to state 2:k is
required. Suppose that first and third bases are occupied and that the batter does not
make an out. To leave a player on second base, the batter must hit a double and the
players on first and third base must both reach home plate successfully. This cannot
happen according to the model, so the .3; 6/-entry is 0.

2. For entry .6; 3/ of A, the probability of a transition from state 2:k to state 13:k is
required. Suppose that only second base is occupied and that the batter does not
make an out. To leave players on first base and on third base, the batter must get to
first base, and the player on second base must advance to third. The desired outcome
occurs when the batter hits a single, but the runner from second base will then stop
at third base with probability .5. The .6; 3/-entry is thus :5p1.



Appendix 1
Proof of Theorem 1

Here is a restatement of Theorem 1, which will be proven in this appendix:

THEOREM 1 If P is a regular m �m transition matrix with m � 2, then the following state-
ments are all true.

a. There is a stochastic matrix … such that lim
n!1

P n
D ….

b. Each column of … is the same probability vector q.

c. For any initial probability vector x0, lim
n!1

P nx0 D q.

d. The vector q is the unique probability vector that is an eigenvector of P

associated with the eigenvalue 1.

e. All eigenvalues � of P other than 1 have j�j < 1.

The proof of Theorem 1 requires creation of an order relation for vectors, and begins
with the consideration of matrices whose entries are strictly positive or nonnegative.

DEFINITION If x and y are in Rm, then

a. x > y if xi > yi for i D 1; 2; : : : ; m.

b. x < y if xi < yi for i D 1; 2; : : : ; m.

c. x � y if xi � yi for i D 1; 2; : : : ; m.

d. x � y if xi � yi for i D 1; 2; : : : ; m.

DEFINITION An m � n matrix A is positive if all its entries are positive. An m � n matrix A is
nonnegative if it has no negative entries.

Notice that all stochasticmatrices are nonnegative. The row-vector rule (Section 1.3)
shows that multiplication of vectors by a positive matrix preserves order.

If A is a positive matrix and x > y; then Ax > Ay: (1)

If A is a positive matrix and x � y; then Ax � Ay: (2)

C-65



C-66 APPENDIX 1 Proof of Theorem 1

In addition, multiplication by nonnegative matrices “almost” preserves order in the
following sense.

If A is a nonnegative matrix and x � y; then Ax � Ay: (3)

The first step toward proving Theorem 1 is a lemma that shows how the transpose
of a stochastic matrix acts on a vector.

LEMMA 1 Let P be an m �m stochastic matrix, and let � be the smallest entry in P . Let a
be in Rm; let Ma be the largest entry in a, and let ma be the smallest entry in a.
Likewise, let b D P T a, let Mb be the largest entry in b, and let mb be the smallest
entry in b. Then ma � mb �Mb �Ma and

Mb �mb � .1 � 2�/.Ma �ma/

PROOF Create a new vector c from a by replacing every entry of a by Ma except for
one occurrence of ma. Suppose that this single ma entry lies in the i th row of c. Then
c � a. If the columns of P T are labeled q1, q2, : : : , qm, we have

P T c D
mX

kD1

ckqk

D

mX
kD1

Maqk �Maqi Cmaqi

Since P is a stochastic matrix, each row of P T sums to 1. If we let u be the vector in

Rm consisting of all 1’s, then
mX

kD1

Maqk DMa

mX
kD1

qk DMau, and

mX
kD1

Maqk �Maqi Cmaqi DMau � .Ma �ma/qi

Since each entry in P (and thus P T ) is greater than or equal to �, qi � �u, and

Mau � .Ma �ma/qi �Mau � �.Ma �ma/u D .Ma � �.Ma �ma//u

So
P T c � .Ma � �.Ma �ma//u

But since a � c and P T is nonnegative, Equation (3) gives

b D P T a � P T c � .Ma � �.Ma �ma//u

Thus each entry in b is less than or equal to Ma � �.Ma �ma/. In particular,

Mb �Ma � �.Ma �ma/ (4)

So Mb �Ma. If we now examine the vector �a, we find that the largest entry in �a
is �ma, the smallest is �Ma, and similar results hold for �b D P T.�a/. Applying
Equation (4) to this situation gives

�mb � �ma � �.�ma CMa/ (5)
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so mb � ma. Adding Equations (4) and (5) together gives

Mb �mb �Ma �ma � 2�.Ma �ma/

D .1 � 2�/.Ma �ma/

Proof of Theorem 1 First assume that the transitionmatrixP is a positive stochastic
matrix. As above, let � > 0 be the smallest entry in P . Consider the vector ej where
1 � j � m. Let Mn and mn be the largest and smallest entries in the vector .P T /nej .
Since .P T /nej D P T .P T /n�1ej , Lemma 1 gives

Mn �mn � .1 � 2�/.Mn�1 �mn�1/ (6)

Hence, by induction, it may be shown that

Mn �mn � .1 � 2�/n.M0 �m0/ D .1 � 2�/n

Since m � 2, 0 < � � 1=2. Thus 0 � 1 � 2� < 1, and lim
n!1

.Mn �mn/ D 0. Therefore

the entries in the vector .P T /nej approach the same value, say qj , as n increases. Notice
that since the entries in P T are between 0 and 1, the entries in .P T /nej must also be
between 0 and 1, and so qj must also lie between 0 and 1. Now .P T /nej is the j th

column of .P T /n, which is the j th row of P n. Therefore P n approaches a matrix all
of whose rows are constant vectors, which is another way of saying the columns of P n

approach the same vector q:

lim
n!1

P n
D … D

�
q q � � � q

�
D

26664
q1 q1 � � � q1

q2 q2 � � � q2

:::
:::

: : :
:::

qm qm � � � qm

37775
So Theorem 1(a) is true if P is a positive matrix. Suppose now that P is regular but
not positive; since P is regular, there is a power P k of P that is positive. We need to
show that lim

n!1
.Mn �mn/ D 0; the remainder of the proof follows exactly as above. No

matter the value of n, there is always a multiple of k, say rk, with rk < n � r.k C 1/.
By the proof above, lim

r!1
.Mrk �mrk/ D 0. But Equation (6) applies equally well to

nonnegativematrices, so 0 �Mn �mn �Mrk �mrk , and lim
n!1

Mn �mn D 0, proving

part (a) of Theorem 1.
To prove part (b), it suffices to show that q is a probability vector. To see this, note

that since .P T /n has row sums equal to 1 for any n, .P T /nu D u. Since lim
n!1

.P T /n
D

…T , it must be the case that …T u D u. Thus the rows of …T , and so also the columns
of …, must sum to 1 and q is a probability vector.

The proof of part (c) follows from the definition of matrix multiplication and the
fact that P n approaches … by part (a). Let x0 be any probability vector. Then

lim
n!1

P nx0 D lim
n!1

P n.x1e1 C : : :C xmem/

D x1. lim
n!1

P ne1/C : : :C xm. lim
n!1

P nem/

D x1.…e1/C : : :C xm.…em/ D x1qC : : :C xmq

D .x1 C : : :C xm/q D q

since the entries in x0 sum to 1.
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To prove part (d), we calculate P …. First note that lim
n!1

P nC1
D …. But since

P nC1 D PP n, and lim
n!1

P n
D …, lim

n!1
P nC1

D P …. ThusP … D …, and any column

of this matrix equation gives Pq D q. Thus q is a probability vector that is also an
eigenvector for P associated with the eigenvalue � D 1. To show that this vector is
unique, let v be any eigenvector for P associated with the eigenvalue � D 1, which
is also a probability vector. Then P v D v, and P nv D v for any n. But by part (c),
lim

n!1
P nv D q, which can happen only if v D q. Thus q is unique. Note that this part of

the proof has also shown that the eigenspace associated with the eigenvalue � D 1 has
dimension 1.

To prove part (e), let � ¤ 1 be an eigenvalue of P , and let x be an associated

eigenvector. Assume that
mX

kD1

xk ¤ 0. Since any nonzero scalar multiple of x will also

be an eigenvector associated with �, we may scale the eigenvector x by the reciprocal

of
mX

kD1

xk to form the eigenvector w. Notice that the sum of the entries in w is 1. Then

Pw D �w, so P nw D �nw for any n. By the proof of part (c), lim
n!1

P nw D q since the

entries in w sum to 1. Thus
lim

n!1
�nw D q (7)

Notice that Equation (7) can be true only if � D 1. If j�j � 1 and � ¤ 1, the left side of
Equation (7) diverges; if j�j < 1, the left side of Equation (7) must converge to 0 ¤ q.

This contradicts our assumption, so it must be the case that
mX

kD1

wk D 0. By part (a),

lim
n!1

P nw D …w. Since

…w D
�
q q � � � q

�
w

D w1qC w2qC � � � C wmq

D .w1 C w2 C � � � C wm/q D 0q D 0

then lim
n!1

P nw D 0. Since P nw D �nw and w ¤ 0, lim
n!1

�n
D 0, and j�j < 1.



Appendix 2
Probability

The purpose of this appendix is to provide some information from probability theory
that can be used to develop a formal definition of a Markov chain and to prove some
results from Chapter 10.

Probability

DEFINITION For each event E of the sample space S , the probability of E (denoted P.E/) is
a number that has the following three properties:

a. 0 � P.E/ � 1

b. P.S/ D 1

c. For any sequence of mutually exclusive events E1; E2; : : : ,

P

 
1[

nD1

En

!
D

1X
nD1

P.En/

Properties of Probability

1. P.;/ D 0

2. P.Ec/ D 1 � P.E/

3. P.E [ F / D P.E/C P.F / � P.E \ F /

4. If E and F are mutually exclusive events, P.E [ F / D P.E/C P.F /

DEFINITION The conditional probability of E given F (denoted P.EjF /), is the probability
that E occurs given that F has occurred, is

P.EjF / D
P.E \ F /

P.F /

C-69
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Law of Total Probability

Let F1; F2; : : : be a sequence of mutually exclusive events for which

1[
nD1

Fn D S

Then for any event E in the sample space S ,

P.E/ D

1X
nD1

P.EjFn/P.Fn/

Random Variables and Expectation

DEFINITION A random variable is a real-valued function defined on the sample space S . A
discrete random variable is a random variable that takes on at most a countable
number of possible values.

Only discrete random variables will be considered in this text; random variables that take
on an uncountably infinite set of values are considered in advanced courses in probability
theory. In Section 10.3, the expected value of a discrete random variable was defined.
The expected value of a discrete random variable may also be defined using a function
called the probability mass function.

DEFINITION The probabilitymass functionp of a discrete random variableX is the real-valued
function defined by p.a/ D P.X D a/.

DEFINITION The expected value of a discrete random variable X is

EŒX� D
X

x

xp.x/

where the sum is taken over all x with p.x/ > 0.

Notice that if the random variable takes on the values x1; x2; : : :with positive probability,
then the expected value of the random variable isX

x

xp.x/ D x1P.X D x1/C x2P.X D x2/C � � �

that matches the definition of expected value given in Section 10.3. Using the definition
above, it is straightforward to show that expected value has the following properties.
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Properties of Expected Value

For any real constant k and any discrete random variables X and Y ,

1. EŒkX� D kEŒX�

2. EŒX C k� D EŒX�C k

3. EŒX C Y � D EŒX�CEŒY �

4. If f is a real-valued function, then f .X/ is a discrete random variable, and
EŒf .X/� D

P
x f .x/p.x/, where the sum is taken over all x with p.x/ > 0.

Just as probabilities can be affected by whether an event occurs, so can expected values.

DEFINITION Let X be a discrete random variable and let F be an event in the sample space S .
Then the conditional expected value of X given F is

EŒX jF � D
X

x

xP.X D xjF /

where the sum is taken over all x with p.x/ > 0.

There is a law of total probability for expected value that will be used to prove a result
from Chapter 10. Its statement and its proof follow.

Law of Total Probability for Expected Value

Let F1; F2; : : : be a sequence of mutually exclusive events for which

1[
nD1

Fn D S

Then, for any discrete random variable X ,

EŒX� D

1X
nD1

EŒX jFn�P.Fn/

PROOF LetF1; F2; : : : be a sequence ofmutually exclusive events for which
S1

nD1FnD

S , and let X be a discrete random variable. Then, using the definition of expected value
and the law of total probability,

EŒX� D
X

x

xp.x/ D
X

x

xP.X D x/

D
X

x

x

1X
nD1

P.X D xjFn/P.Fn/

D

1X
nD1

P.Fn/
X

x

xP.X D xjFn/

D

1X
nD1

EŒX jFn�P.Fn/
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Markov Chains
In Section 5.9, a Markov chain was defined as a sequence of vectors. In order to un-
derstand Markov chains from a probabilistic standpoint, it is better to define a Markov
chain as a sequence of random variables. To begin, consider any collection of random
variables. This is called a stochastic process.

DEFINITION A stochastic process fXn W n 2 T g is a collection of random variables.

Notes:

1. The set T is called the index set for the stochastic process. The only set T that
need be considered for this appendix is T D f0; 1; 2; 3; : : :g, so the stochastic process
can be described as the sequence of random variables fX0; X1; X2; : : :g. When T D

f0; 1; 2; 3; : : :g, the index is often identified with time and the stochastic process is
called a discrete-time stochastic process. The random variable Xk is understood to
be the stochastic process at time k.

2. It is assumed that the random variables in a stochastic process have a common range.
This range is called the state space for the stochastic process. The state spaces in
Chapter 10 are all finite, so the random variablesXk are all discrete random variables.
If Xk D i , we will say that i is the state of the process at time k, or that the process
is in state i at time (or step) k.

3. Notice that a stochastic process can be used to model movement between the states
in the state space. For some element ! in the sample space S , the sequence fX0.!/,
X1.!/; : : :g will be a sequence of states in the state space—a sequence that will
potentially be different for each element in S . Usually the dependence on the sample
space is ignored and the stochastic process is treated as a sequence of states, and the
process is said to move (or transition) between those states as time proceeds.

4. Since a stochastic process is a sequence of random variables, the actual state that the
process occupies at any given time cannot be known. The goal therefore is to find the
probability that the process is in a particular state at a particular time. This amounts
to finding the probability mass function of each random variable Xk in the sequence
that is the stochastic process.

5. When a discrete-time stochastic process has a finite state space, the probability mass
function of each random variable Xk can be expressed as a probability vector xk .
These probability vectors were used to define a Markov chain in Section 5.9.

In order for a discrete-time stochastic process fX0; X1; X2; : : :g to be a Markov chain,
the state of the process at time nC 1 can depend only on the state of the process at
time n. This is in contrast with a more general stochastic process, whose state at time
n could depend on the entire history of the process. In terms of conditional probability,
this property is

P.XnC1 D i jX0 D j0; X1 D j1; : : : ; Xn D j / D P.XnC1 D i jXn D j /

The probability on the right side of this equation is called the transition probability from
state j to state i . In general, this transition probability can change depending on the
time n. This is not the case for Markov chains considered in Chapter 10: the transition
probabilities do not change with time, so the transition probability from state j to state
i is

P.XnC1 D i jXn D j / D pij
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A Markov chain with constant transition probabilities is called a time-homogeneous
Markov chain. Thus its definition is as follows.

DEFINITION A time-homogeneous Markov chain is a discrete-time stochastic process whose
transition probabilities satisfy

P.XnC1 D i jX0 D j0; X1 D j1; : : : ; Xn D j / D P.XnC1 D i jXn D j / D pij

for all times n and for all states i and j .

Using this definition, it is clear that, if the number of states is finite, then a transition
matrix can be constructed that has the properties assumed in Section 10.1.

Proofs of Theorems

Mean Return Times

Theorem 3 in Section 10.3 connected the steady-state vector for a Markov chain with
the mean return time to a state of the chain. Here is a statement of this theorem and a
proof that relies on the law of total probability for expected value.

THEOREM 3 Let Xn, n D 1; 2; : : : be an irreducible Markov chain with finite state space S . Let
nij be the number of steps until the chain first visits state i given that the chain
starts in state j , and let ti i D EŒni i �. Then

ti i D
1

qi

where qi is the entry in the steady-state vector q corresponding to state i .

PROOF To find an expression for ti i , first produce an equation involving tij by con-
sidering the first step of the chain X1. There are two possibilities: either X1 D i or
X1 D k ¤ i . If X1 D i , then it took exactly one step to visit state i and

EŒnij jX1 D i � D 1

IfX1 D k ¤ i , the chainwill take one step to reach state k, and then the expected number
of steps the chain will make to first visit state i will be EŒnik � D tik . Thus

EŒnij jX1 D k ¤ i � D 1C tik

By the law of total probability for expected value,

tij D EŒnij �

D
X
k2S

EŒnij jX1 D k�P.X1 D k/

D EŒnij jX1 D i �P.X1 D i/C
X
k¤i

EŒnij jX1 D k�P.X1 D k/



C-74 APPENDIX 2 Probability

D 1 � pij C
X
k¤i

.1C tik/pkj

D pij C
X
k¤i

pkj C
X
k¤i

tikpkj

D 1C
X
k¤i

tikpkj

D 1C
X
k2S

tikpkj � ti i pij

Let T be the matrix whose .i; j /-element is tij , and let D be the diagonal matrix whose
diagonal entries are ti i . Then the final equality above may be written as

Tij D 1C .TP /ij � .DP /ij (1)

If U is an appropriately sized matrix of ones, Equation (1) can be written in matrix form
as

T D U C TP �DP D U C .T �D/P (2)

Multiplying each side of Equation (2) by the steady-state vector q and recalling that
Pq D q gives

T q D UqC .T �D/Pq D UqC .T �D/q D UqC T q �Dq

so
Uq D Dq (3)

Consider the entries in each of the vectors in Equation (3). Since U is a matrix of all 1’s,

Uq D

26664
1 1 � � � 1

1 1 � � � 1
:::

:::
: : :

:::

1 1 � � � 1

37775
26664

q1

q2

:::

qn

37775 D
26664
Pn

kD1 qkPn
kD1 qk

:::Pn
kD1 qk

37775 D
26664

1

1
:::

1

37775
since q is a probability vector. Likewise,

Dq D

26664
t11 0 � � � 0

0 t22 � � � 0
:::

:::
: : :

:::

0 0 � � � tnn

37775
26664

q1

q2

:::

qn

37775 D
26664

t11q1

t22q2

:::

tnnqn

37775
Equating corresponding entries in Uq and Dq gives ti i qi D 1, or

ti i D
1

qi

Periodicity as a Class Property

In Section 10.4 it was stated that if two states belong to the same communication class,
then their periods must be equal. A proof of this result follows.
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THEOREM Let i and j be two states of a Markov chain that are in the same communication
class. Then the periods of i and j are equal.

PROOF Suppose that i and j are in the same communication class for theMarkov chain
X , that state i has period di , and that state j has period dj . To simplify the exposition
of the proof, the notation .ar /ij will be used to refer to the .i; j /-entry in the matrix Ar .
Since i and j are in the same communication class, there exist positive integers m and
n such that .pm/j i > 0 and .pn/ij > 0. Let k be a positive integer such that .pk/jj > 0.
In fact, .plk/jj > 0 for all integers l > 1. Now .pnClkCm/i i > .pn/ij .plk/jj .pm/j i > 0

for all integers l > 1, since a loop from state i to state i in nC lk Cm steps may be
created in many ways, but one way is to proceed from state i to state j in n steps, then to
loop from state j to state j l times using a loop of k steps each time, and then to return
to state i in m steps. Since di is the period of state i , di must divide nC lk Cm for
all integers l > 1. So di divides nC k Cm and nC 2k Cm, and so divides .nC 2k C

m/ � .nC k Cm/ D k. Thus di is a common divisor of the set of all time steps k such
that .pk/jj > 0. Since dj is the greatest common divisor of the set of all time steps k

such that .pk/jj > 0, di � dj . A similar argument shows that di � dj , so di D dj .

The Fundamental Matrix

In Section 10.5, the number of visits vij to a transient state i that a Markov chain makes
starting at the transient state j was studied. Specifically, the expected value EŒvij �

was computed, and the fundamental matrix was defined as the matrix whose .i; j /-
element is mij D EŒvij �. The following theorem restates Theorem 6 in Section 10.5
in an equivalent form and provides a proof that relies on the law of total probability for
expected value.

THEOREM 6 Let j and i be transient states of a Markov chain, and let Q be that portion of
the transition matrix that governs movement between transient states. Let vij be
the number of visits that the chain will make to state i given that the chain starts
in state j , and let mij D EŒvij �. Then the matrix M whose .i; j /-element is mij

satisfies the equation
M D .I �Q/�1

PROOF We produce an equation involving mij by conditioning on the first step of the
chainX1. We consider two cases: i ¤ j and i D j . First assume that i ¤ j and suppose
that X1 D k. Then we see that

EŒvij jX1 D k� D EŒvik � (4)

if i ¤ j . Now assume that i D j . Then the previous analysis is valid, but we must add
one visit to i since the chain was at state i at time 0. Thus

EŒvi i jX1 D k� D 1CEŒvik � (5)

We may combine Equations (4) and (5) by introducing the following symbol, called the
Kronecker delta:

ıij D

(
1 if i D j

0 if i ¤ j
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Notice that ıij is the .i; j /-element in the identity matrix I . We can write Equations (4)
and (5) as

EŒvij jX1 D k� D ıij CEŒvik�

Thus, by the law of total probability for expected value,

mij D EŒvij �

D
X
k2S

EŒvij jX1 D k�P.X1 D k/

D
X
k2S

.ıij CEŒvik�/P.X1 D k/

D ıij

X
k2S

P.X1 D k/C
X
k2S

EŒvik �P.X1 D k/

D ıij C
X
k2S

EŒvik �P.X1 D k/

Now note that if k is a recurrent state, then EŒvik � D 0. Thus we only need to sum over
transient states of the chain:

mij D ıij C
X

k transient

EŒvik �P.X1 D k/

D ıij C
X

k transient

mikqkj

since j and k are transient states and Q is defined in the statement of the theorem. We
may write the final equality above as

mij D Iij C .MQ/ij

or in matrix form as
M D I CMQ (6)

We may rewrite Equation (6) as

M �MQ DM.I �Q/ D I

so .I �Q/ is invertible by the Invertible Matrix Theorem, and M D .I �Q/�1.

Absorption Probabilities

In Section 10.5, the probability that the chain was absorbed into a particular absorbing
state was studied. The Markov chain was assumed to have only transient and absorbing
states, j is a transient state, and i is an absorbing state of the chain. The probability aij

that the chain is absorbed at state i given that the chain starts at state j was calculated,
and it was shown that the matrixAwhose .i; j /-element is aij satisfiesA D SM , where
M is the fundamental matrix and S is that portion of the transition matrix that governs
movement from transient states to absorbing states. The following theorem restates this
result, which was presented as Theorem 7 in Section 10.5. An alternative proof of this
result is given that relies on the law of total probability.
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THEOREM 7 Consider a Markov chain with finite state space whose states are either absorbing
or transient. Suppose that j is a transient state and that i is an absorbing state of
the chain, and let aij be the probability that the chain is absorbed at state i given
that the chain starts in state j . Let A be the matrix whose .i; j /-element is aij .
Then A D SM , where S and M are as defined above.

PROOF We again consider the first step of the chain X1. Let X1 D k. There are three
possibilities: k could be a transient state, k could be i , and k could be an absorbing state
unequal to i . If k is transient, then

P.absorption at i jX1 D k/ D aik

If k D i , then
P.absorption at i jX1 D k/ D 1

while if k is an absorbing state other than i ,

P.absorption at i jX1 D k/ D 0

By the law of total probability,

aij D P.absorption at i/

D
X

k

P.absorption at i jX1 D k/P.X1 D k/

D 1 � P.X1 D i/C
X

k transient

P.absorption at i jX1 D k/P.X1 D k/

D pij C
X

k transient

aikpkj

Since j is transient and i is absorbing, pij D sij . Since in the final sum j and k are both
transient, pkj D qkj . Thus the final equality may be written as

aij D sij C
X

k transient

aikqkj

D sij C .AQ/ij

or, in matrix form, as
A D S C AQ

This equation may be solved for A to find that A D SM .



Chapter 10:
Answers to Selected Exercises

Chapter 10

Section 10.1, page C-9

1. a. Stochastic.
b. Not stochastic. Columns do not sum to 1.

3. x3 D

�
:556

:444

�
5. 109=216

7. 13=36

9. a. :53125 b. 0

11. a. 5=8 b. 1=8

13. P D

266664
0 1=3 0 1=2 1=2

1=3 0 1=2 0 1=2

0 1=3 0 1=2 0

1=3 0 1=2 0 0

1=3 1=3 0 0 0

377775

15. P D

2664
0 0 1 0

1=3 0 0 1=2

1=3 0 0 1=2

1=3 1 0 0

3775

17. a. P D

266664
0 1=3 1=4 1=3 0

1=3 0 1=4 0 1=3

1=3 1=3 0 1=3 1=3

1=3 0 1=4 0 1=3

0 1=3 1=4 1=3 0

377775, x0 D

266664
0

1

0

0

0

377775

b. x3 D

266664
:25926

:11111

:25926

:11111

:25926

377775

19. a. P D

26666664

0 1=3 0 0 0 0

1=2 0 1=2 0 1=3 0

0 1=3 0 0 0 0

1=2 0 0 0 1=3 0

0 1=3 0 1 0 0

0 0 1=2 0 1=3 1

37777775, x0 D

26666664

1

0

0

0

0

0

37777775

b. x4 D

26666664
:12963

0

:12963

0

:43518

:30556

37777775
21. True.

22. False. The columns of a transition matrix for a Markov
chain must sum to 1.

23. False. The transition matrix P cannot change over time.

24. True.

25. True.

26. False. The .i; j /-entry in matrix P 3 gives the probability of
a move from state j to state i in exactly three moves.

27. Sunny with probability :406, cloudy with probability
:145375, rainy with probability :448625.

29. x3 D

2664
1=6

5=18

5=18

5=18

3775

C-79
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31. a. P D

2664
p2 p.1 � p/ p.1 � p/ .1 � p/2

p.1 � p/ p2 .1 � p/2 p.1 � p/

p.1 � p/ .1 � p/2 p2 p.1 � p/

.1 � p/2 p.1 � p/ p.1 � p/ p2

3775 b. :94206

33. a. P D

2666666664

1 � p p=6 0 0 0 0 0

p 1 � p p=3 0 0 0 0

0 5p=6 1 � p p=2 0 0 0

0 0 2p=3 1 � p 2p=3 0 0

0 0 0 p=2 1 � p 5p=6 0

0 0 0 0 p=3 1 � p p

0 0 0 0 0 p=6 1 � p

3777777775
b. :19290

35. a. P D

266664
0 1 � p p 0 0

p 0 0 0 0

1 � p 0 0 0 0

0 p 0 1 0

0 0 1 � p 0 1

377775 b. :192

37. Suppose that P is an m � m stochastic matrix all of whose entries are greater than or equal to p. The proof proceeds by induction.
Notice that the statement to be proven is thus true for n D 1. Assume the statement is true for n, and let B D P n. Then, since

P nC1 D BP , the .i; j /-entry in P nC1 is
mX

kD1

bikpkj . Since bik � p by the induction hypothesis,
mX

kD1

bikpkj � p

mX
kD1

pkj . But

mX
kD1

pkj D 1 since P is a stochastic matrix, so all of the entries in P nC1 are greater than or equal to p.

Section 10.2, page C-21

1. P 10 D

�
:33333 :33333

:66667 :66667

�
q D

�
:33333

:66667

�
The probability is :33333.

3. P 20 D

24 :21429 :21429 :21429

:57143 :57143 :57143

:21429 :21429 :21429

35
q D

24 3=14

4=7

3=14

35 �

24 :21429

:57143

:21429

35
The probability is :21429.

5.
�

8=17 8=17

9=17 9=17

�
7. P is regular since all entries in P 2 are positive.

9. a. The transition matrix is

P D

266664
0 1=4 0 0 0

1 0 1=2 0 0

0 3=4 0 3=4 0

0 0 1=2 0 1

0 0 0 1=4 0

377775
The .0; 0/-entry in P k will be zero if k is odd while the
.0; 1/-entry in P k will be zero if k is even. Thus P is
not regular.

b. Compute that

q D

266664
1=16

1=4

3=8

1=4

1=16

377775
so the chain will spend the most steps in state 2, which
corresponds to both urns containing 2 molecules.

11. a. The transition matrix is

P D

2664
0 1=2 0 0

1 0 1=2 0

0 1=2 0 1

0 0 1=2 0

3775
The .1; 1/-entry in P k will be zero if k is odd while the
.1; 2/-entry in P k will be zero if k is even. Thus P is
not regular.

b. Compute that

q D

2664
1=6

1=3

1=3

1=6

3775
so the chain will spend the most steps in states 2 and 3.

13. q D

2664
1=4

1=4

1=4

1=4

3775 15. q D

2664
3=13

3=13

3=13

4=13

3775
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17. Since q D

266664
:1875

:1875

:25

:1875

:1875

377775, the probability is :25.

19. Since

Pq D

26666664
0 1=3 0 0 0 0

1=2 0 1=2 0 1=3 0

0 1=3 0 0 0 0

1=2 0 0 0 1=3 0

0 1=3 0 1 0 0

0 0 1=2 0 1=3 1

37777775

26666664
0

0

0

0

0

1

37777775

D

26666664

0

0

0

0

0

1

37777775;

q is a steady-state vector for the Markov chain. Room 6 is
an absorbing state for the chain—once the mouse moves
into room 6 it will stay there forever.

21. True.

22. False. See Examples 4 and 5.

23. True.

24. True.

25. False. See Examples 4 and 5.

26. True.

27. To the nearest day, 152 are sunny, 52 are cloudy, and 161

are rainy.

29. The Google matrix and its steady-state vector are

G D

266664
:03 :03 :88 :03 :2

:313333 :03 :03 :455 :2

:313333 :03 :03 :455 :2

:313333 :455 :03 :03 :2

:03 :455 :03 :03 :2

377775 ;

q D

266664
:231535

:208517

:208517

:208517

:142915

377775
and the PageRanks are 1; 2, 3, and 4 (tied); 5.

31. a. If a dominant (AA) individual is mated with a hybrid
(Aa), then the dominant individual will always
contribute an A. One half of the time the hybrid will also
contribute an A, leading to a dominant offspring. The
other half of the time, the hybrid will contribute an a,
yielding a hybrid offspring.

b. If a recessive (aa) individual is mated with a hybrid
(Aa), then the recessive individual will always
contribute an a. One half of the time the hybrid will also
contribute an a, leading to a recessive offspring. The
other half of the time, the hybrid will contribute an A,
yielding a hybrid offspring.

c. If a hybrid (Aa) is mated with another hybrid (Aa), then
a dominant offspring will result when both hybrids
contribute an A, which happens .1=2/.1=2/ D 1=4 of
the time. Likewise a recessive offspring will result when
both hybrids contribute an a, which also happens
.1=2/.1=2/ D 1=4 of the time. Finally, in all other
cases, a hybrid offspring will be produced, which
happens 1 � 1=4 � 1=4 D 1=2 of the time.

33. a. Confirm that all entries in P 6 are strictly positive.

b. Compute that

q D

2666666664

1=64

3=32

15=64

5=16

15=64

3=32

1=64

3777777775
so the chain spends the most steps in state 3, which corresponds to both urns containing 3 molecules. The fraction of steps the
chain spends there is 5=16.

c. Compute that

Pq D

2666666664

1 � p p=6 0 0 0 0 0

p 1 � p p=3 0 0 0 0

0 5p=6 1 � p p=2 0 0 0

0 0 2p=3 1 � p 2p=3 0 0

0 0 0 p=2 1 � p 5p=6 0

0 0 0 0 p=3 1 � p p

0 0 0 0 0 p=6 1 � p

3777777775

2666666664

1=64

3=32

15=64

5=16

15=64

3=32

1=64

3777777775
D

2666666664

1=64

3=32

15=64

5=16

15=64

3=32

1=64

3777777775
D q

so the result of part (b) does not depend on the value of p.
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35. Compute that266664
1 1=2 0 0 0

0 0 1=2 0 0

0 1=2 0 1=2 0

0 0 1=2 0 0

0 0 0 1=2 1

377775
266664

q

0

0

0

1 � q

377775 D

266664
q

0

0

0

1 � q

377775
37. Compute that266664

1=4 1=3 1=2 0 0

1=4 1=3 1=4 0 0

1=2 1=3 1=4 0 0

0 0 0 1=3 3=4

0 0 0 2=3 1=4

377775
266664

4=11

3=11

4=11

0

0

377775 D

266664
4=11

3=11

4=11

0

0

377775
and266664

1=4 1=3 1=2 0 0

1=4 1=3 1=4 0 0

1=2 1=3 1=4 0 0

0 0 0 1=3 3=4

0 0 0 2=3 1=4

377775
266664

0

0

0

9=17

8=17

377775 D

266664
0

0

0

9=17

8=17

377775
If the chain is equally likely to begin in each of the states,
then it begins in state 1, 2, or 3 with probability 3=5, and in
state 4 or 5 with probability 2=5. Since

3

5

266664
4=11

3=11

4=11

0

0

377775 C
2

5

266664
0

0

0

9=17

8=17

377775 D

266664
12=55

9=55

12=55

18=85

16=85

377775
the probability of the chain being in state 1 after many steps
is 12=55.

39. a. The matrix P will be a stochastic matrix if p C q � 1. It
will be a regular stochastic matrix if in addition p ¤ 1

and q ¤ 1.

b. A steady-state vector for P is24 1=3

1=3

1=3

35
41. a. Let v be an eigenvector of P associated with � D 1. Let

P v D y. Then, by Exercise 40,

jy1j C : : : C jymj � jv1j C : : : C jvmj

But P v D v, so y D v and

jy1j C : : : C jymj D jv1j C : : : C jvmj

Since equality holds, each nonzero entry in v must have
the same sign by Exercise 40.

b. By part (a), each nonzero entry in v must have the same
sign. Since v is an eigenvector, v ¤ 0 and so must have
at least one nonzero entry. Thus the sum of the entries in
v will not be zero, so one may define

1

v1 C � � � C vm

v

This vector will also be an eigenvector of P associated
with � D 1, each entry in this vector will be
nonnegative, and the sum of the entries in this vector
will be 1. It is thus a steady-state vector for P .

43. a. Since x0 D c1q C c2v2 C � � � C cnvn and �1 D 1,
Equation (2) indicates that

xk D P kx0 D c1q C c2�k
2v2 C � � � C cn�k

nvn

b. By part (a),

xk � c1q D c2�k
2v2 C � � � C cn�k

nvn

and xk ! c1q since j�i j < 1. Since j�2j is the largest
magnitude eigenvalue remaining, the c2�k

2v2 will be the
largest of the error terms and will thus govern how
quickly fxkg converges to c1q.

Section 10.3, page C-31

1. f1; 3g, f2g; reducible

3. f1g, f2g, f3g; reducible

5. f1; 3; 5g, f2; 4; 6g; reducible

7. f1; 2; 3; 4; 5g, f6g; reducible

9. f1; 2; 3; 4g, f5g

11. f1; 2; 3; 4g; irreducible

13. Every state is reachable from every other state in two steps
or fewer, so the Markov chain is irreducible. The return
times are
State 1: 4
State 2: 4
State 3: 6
State 4: 6
State 5: 6

15. Every state is reachable from every other state in three steps
or fewer, so the Markov chain is irreducible. The return
times are
State 1: 13/3
State 2: 13/3
State 3: 13/3
State 4: 13/4

17. 4 steps.

19. 15=2 steps.

21. False. It must also be possible to go from state j to state i in
a finite number of steps for states i and j to communicate
with each other.

22. False. See Example 2.

23. True.

24. True.

25. False. The reciprocals of the entries in the steady-state
vector are the return times for each state.

26. True.

27. 2:27368 days.
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29. a. Since each entry in G is positive, the Markov chain is
irreducible.

b. 4:31901 mouse clicks.

31. 8=3 steps.

33. 16=5 D 3:2 draws.

35. fdeuce, advantage A, advantage Bg, fA wins the gameg, fB
wins the gameg

37. Every state is reachable from every other state in three steps
or fewer, so the Markov chain is irreducible.

39. Each dangling node forms a separate communication class
for the Markov chain.

Section 10.4, page C-40

1. The communication classes are f1; 3g and f2g. Class f1; 3g

is transient while class f2g is recurrent. All classes have
period 1.

3. The communication classes are f1g, f2g, and f3g. Class f1g

is recurrent while classes f2g and f3g are transient. All
classes have period 1.

5. The communication classes are f1; 3; 5g and f2; 4; 6g. Both
classes are recurrent and have period 2.

7. The communication class is f1; 2; 3; 4g, which must be
recurrent. The class has period 4.

9. The communication classes are f1; 2; 3; 4g, which is
transient, and f5g, which is recurrent. Both classes have
period 1.

11. Ordering the states 2; 1; 3 gives the matrix24 1 1=2 1=3

0 1=4 1=3

0 1=4 1=3

35
13. The matrix is already in canonical form.

15. Ordering the states 1; 3; 5; 2; 4; 6 gives the matrix26666664

0 :4 :8 0 0 0

:3 0 :2 0 0 0

:7 :6 0 0 0 0

0 0 0 0 :7 :5

0 0 0 :1 0 :5

0 0 0 :9 :3 0

37777775
17. The original transition matrix is266664

1=3 0 1 0 0

1=3 0 0 1=2 0

1=3 0 0 1=2 0

0 1=2 0 0 0

0 1=2 0 0 1

377775
Ordering the states 5; 1; 2; 3; 4 gives the matrix266664

1 0 1=2 0 0

0 1=3 0 1 0

0 1=3 0 0 1=2

0 1=3 0 0 1=2

0 0 1=2 0 0

377775

19. a. The communication classes are f1; 2; 3; 4; 5g and f6g.
Class f1; 2; 3; 4; 5g is transient while class f6g is
recurrent.

b. Both classes have period 1.

c. The original transition matrix is26666664

0 1=3 0 0 0 0

1=2 0 1=2 0 1=3 0

0 1=3 0 0 0 0

1=2 0 0 0 1=3 0

0 1=3 0 1 0 0

0 0 1=2 0 1=3 1

37777775
Ordering the states 6; 1; 2; 3; 4; 5 gives the matrix26666664

1 0 0 1=2 0 1=3

0 0 1=3 0 0 0

0 1=2 0 1=2 0 1=3

0 0 1=3 0 0 0

0 1=2 0 0 0 1=3

0 0 1=3 0 1 0

37777775
21. False. A Markov chain can have more than one recurrent

class.

22. True.

23. True.

24. True.

25. False. Every Markov chain must have a recurrent class.

26. False. A Markov chain can have more than one recurrent
class.

27. It is easy to compute that q D

2664
1=4

1=4

1=4

1=4

3775 for the matrix P .

We further find that

P 2 D

2664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

3775;

P 3 D

2664
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

3775; and

P 4 D

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3775 D I

by direct computation. Thus P 5 D P , P 6 D P 2, P 7 D P 3,
P 8 D P 4 D I , and so on. So no matter the value of n, one
of the four matrices P nC1, P nC2, P nC3, and P nC4 will be
P , one will be P 2, one will be P 3, and one will be P 4 D I .
Therefore
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lim
n!1

1

4

�
P nC1

C P nC2
C P nC3

C P nC4
�

D
1

4

�
P C P 2 C P 3 C P 4

�
D

1

4

0BB@
2664

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3775 C

2664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

3775

C

2664
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

3775 C

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3775
1CCA

D

2664
1=4 1=4 1=4 1=4

1=4 1=4 1=4 1=4

1=4 1=4 1=4 1=4

1=4 1=4 1=4 1=4

3775
as promised in Theorem 5.

29. a. It is possible to go from any state to any other state in any even number of steps, so the Markov chain is irreducible with
period 2.

b. q D

24 1=4

1=2

1=4

35
c. One choice is D D

24 1 0 0

0 �1 0

0 0 0

35, A D

24 1 1 �1

2 �2 0

1 1 1

35
d. Compute that

P n D ADnA�1 D

24 1 1 �1

2 �2 0

1 1 1

35 24 1 0 0

0 .�1/n 0

0 0 0

35 24 1=4 1=4 1=4

1=4 �1=4 1=4

�1=2 0 1=2

35
D

1

4

24 1 C .�1/n 1 � .�1/n 1 C .�1/n

2 � 2.�1/n 2 C 2.�1/n 2 � 2.�1/n

1 C .�1/n 1 � .�1/n 1 C .�1/n

35
D

24 1=4 1=4 1=4

1=2 1=2 1=2

1=4 1=4 1=4

35 C .�1/n

24 1=4 �1=4 1=4

�1=2 1=2 �1=2

1=4 �1=4 1=4

35
e. The second terms in the expressions for P n and P nC1 will cancel each other when added, so

.1=2/.P n
C P nC1/ D

24 1=4 1=4 1=4

1=2 1=2 1=2

1=4 1=4 1=4

35
as promised in Theorem 5.

31. It is easy to compute that q D

24 1=3

1=3

1=3

35 for the matrix P .

We further find that P 2 D

24 0 1 0

0 0 1

1 0 0

35 and

P 3 D

24 1 0 0

0 1 0

0 0 1

35 D I by direct computation. Thus

P 4 D P , P 5 D P 2, P 6 D P 3 D I , and so on. So no
matter the value of n, one of the three matrices P nC1,
P nC2, and P nC3 will be P , one will be P 2, and one will be
P 3 D I . Therefore

lim
n!1

1

3

�
P nC1

C P nC2
C P nC3

�
D

1

3

�
P C P 2 C P 3

�
D

1

3

0@24 0 0 1

1 0 0

0 1 0

35 C

24 0 1 0

0 0 1

1 0 0

35
C

24 1 0 0

0 1 0

0 0 1

351A
D

24 1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

35
as promised in Theorem 5.
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33. a. Since any permutation of rows may be written as a
sequence of row swaps, the permutation of rows may be
performed by multiplying A on the left by a sequence of
elementary matrices E1, : : : , Ek . Set E D Ek � � � E1,
then EA will be the matrix A with its rows permuted in
exactly the same order in which the rows of In were
permuted to form E.

b. By part (a), EAT will be the matrix AT with its rows
permuted in exactly the same order in which the rows of
In were permuted to form E. Thus .EAT /T will be the
matrix A with its columns permuted in exactly the same
order in which the rows of In were permuted to form E,
and since .EAT /T D .AT /T ET D AET , the result
follows.

c. The matrix EAET is .EA/ET . By part (a), EA is the
matrix A with its rows permuted in exactly the same
order in which the rows of In were permuted to form E.
Applying part (b) to EA, .EA/ET is the matrix EA

with its columns permuted in exactly the same order in
which the rows of In were permuted to form E. Thus
EAET is the matrix A with its rows and columns
permuted in exactly the same order in which the rows of
In were permuted to form E.

d. Since matrix multiplication is associative,
.EA/ET D E.AET / and it does not matter whether the
rows of matrix A or the columns of matrix A are
permuted first.

Section 10.5, page C-50

1.
�

3 2

3=2 2

�
3. Using reordering 2, 4, 1, 3, 5:24 1075=736 125=368 185=368

25=46 35=23 15=23

105=184 55=92 155=92

35

5.

24 10=21 3=7

5=21 3=14

2=7 5=14

35
7. 3=2

9. 1895=736

11. At state 1: 10=21; at state 2: 5=21; at state 3: 2=7

13. a. 9=11 b. 29=11 c. 3=7

15. a. 1 b. 10=3

17. 5=7

19. 38=5

21. False. The .i; j /-element in the fundamental matrix M is
the expected number of visits to the transient state i prior to
absorption, starting at the transient state j .

22. True.

23. False. See Theorem 6.

24. False. See the discussion prior to Example 2.

25. True.

26. True.

27. 2=7

29. 19=2

31. 3:84615

33. Advantage A: 2:53846

Advantage B: 3:30769

35. 3:01105

37. 3:92932

39. From the results of Exercises 35 and 37, using rally point
scoring led to 3:92932 � 3:01105 D :91827 fewer rallies
being played.

41. a. f1; 2g is a recurrent class; f3; 4; 5g is a transient class.

b. The limiting matrix for f1; 2g is
�

2=5 2=5

3=5 3=5

�
.

c. Since there is only one recurrent class, the probability that the chain is absorbed into f1; 2g is 1. Thus if the chain is started in
any transient state, the probability of being at state 1 after many time steps is 2=5, the probability of being at state 2 after many
time steps is 3=5, and the probability of being at state 3, 4, or 5 after many time steps is 0.

d. Since the i th column of lim
n!1

P n gives the long-range probabilities for the chain started at state i ,

lim
n!1

P n
D

266664
2=5 2=5 2=5 2=5 2=5

3=5 3=5 3=5 3=5 3=5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

377775 e. P 50 �

266664
:4 :4 :4 :4 :4

:6 :6 :6 :6 :6

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

377775
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43. The result is trivially true if n D 1. Assume that the result is

true for n D k; that is, P k D

�
I Sk

O Qk

�
, where

Sk D S
�
I C Q C Q2 C � � � C Qk�1

�
. Then

P kC1 D P kP

D

�
I Sk

O Qk

� �
I S

O Q

�
D

�
I S C SkQ

O QkC1

�
But

S C SkQ D S C S.I C Q C Q2 C � � � C Qk�1/Q

D S C S.Q C Q2 C � � � C Qk/

D S.I C Q C Q2 C � � � C Qk/

D SkC1

and the result is proven by induction.

Section 10.6, page C-61

1. This concerns the second column of A. The initial state is
1:k (a runner on first base, k outs). For entry .1; 2/ of A, the
probability of a transition “to state 0:k” is required. Suppose
that only first base is occupied and the batter does not make
an out. Only a home run will empty the bases, so the
.1; 2/-entry is pH .

Entry .2; 2/: (“to state 1:k”) To leave a player on first
base, the batter must get to first base and the player on first
base must reach home plate successfully. This cannot
happen according to the model, so the .2; 2/-entry is 0.

Entry .3; 2/: (“to state 2:k”) To leave a player on
second base, the batter must get to second base and the
player on first base must reach home plate successfully.
This cannot happen according to the model, so the
.3; 2/-entry is 0.

Entry .4; 2/: (“to state 3:k”) To leave a player on third
base, the batter must get to third base and the player on first
base must reach home plate successfully. This can happen
only if the batter hits a triple, so the .4; 2/-entry is p3.

Entry .5; 2/: (“to state 12:k”) To leave players on first
base and second base, the batter must get to first base and
the player on first base must advance to second. The desired
outcome occurs when the batter either hits a single, gets a
walk, or is hit by a pitch. The .5; 2/-entry is thus pW C p1.

Entry .6; 2/: (“to state 13:k”) This concerns the batter
getting to first base and the runner on first base advancing to
third base. This cannot happen according to the model, so
the .6; 2/-entry is 0.

Entry .7; 2/: (“to state 23:k”) To leave players on
second base and third base, the batter must hit a double and
the runner on first base must advance only to third base.
Thus the .7; 2/-entry is p2.

Entry .8; 2/: (“to state 123:k”) The starting state has
just one runner on base. The next state cannot have three
runners on base, so the .8; 2/-entry is 0.

3. This concerns the fifth column of A. The initial state is 12:k
(runners on first base and second base, k outs). For entry
.1; 5/ of A, the probability of a transition “to state 0:k” is
required. Suppose that first and second bases are occupied
and the batter does not make an out. Only a home run will
empty the bases, so the .1; 5/-entry is pH .

Entry .2; 5/: (“to state 1:k”) To leave a player on first
base, the batter must get to first base and both players on
base must reach home plate successfully. This cannot
happen according to the model, so the .2; 5/-entry is 0.

Entry .3; 5/: (“to state 2:k”) To leave a player on
second base, the batter must get to second base and both
players on base must reach home plate successfully. This
cannot happen according to the model, so the .3; 5/-entry
is 0.

Entry .4; 5/: (“to state 3:k”) To leave a player on third
base, the batter must get to third base and the players on
base must reach home plate successfully. This can happen
only if the batter hits a triple, so the .4; 5/-entry is p3.

Entry .5; 5/: (“to state 12:k”) To leave players on first
base and second base, the batter must get to first base, the
player on first base must advance to second base, and the
player on second base must reach home plate successfully.
The desired outcome occurs when the batter hits a single,
but the runner from second will then reach home with
probability :5. The .5; 5/-entry is thus :5p1.

Entry .6; 5/: (“to state 13:k”) This concerns the batter
getting to first base and the runner on first base advancing to
third base. This cannot happen according to the model, so
the .6; 5/-entry is 0.

Entry .7; 5/: (“to state 23:k”) To leave players on
second base and third base, the batter must hit a double, in
which case the runner on first base must advance to third
base and the runner on second base must reach home. Thus
the .7; 5/-entry is p2.

Entry .8; 5/: (“to state 123:k”) To leave runners on
first, second, and third bases, the batter must reach first and
the two runners must each advance one base. This happens
when the batter is walked, is hit by a pitch, or hits a single
but the runner on second base does not reach home. Thus
the .8; 5/-entry is pW C :5p1.

5. This concerns the seventh column of A. The initial state is
23:k (runners on second and third bases, k outs). For entry
.1; 7/ of A, the probability of a transition “to state 0:k” is
required. Suppose that second and third bases are occupied
and the batter does not make an out. Only a home run will
empty the bases, so the .1; 7/-entry is pH .

Entry .2; 7/: (“to state 1:k”) To leave a player on first
base, the batter must get to first base and the players on
second base and third base must reach home plate
successfully. The desired outcome occurs when the batter
hits a single, but the runner from second will then reach
home with probability :5. Thus the .2; 7/-entry is :5p1.

Entry .3; 7/: (“to state 2:k”) To leave a player on
second base, the batter must reach second base (a “double”)
and the runners on second and third bases must score. The
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second condition, however, is automatically satisfied
because of the assumption in Table 2. So the probability of
success in this case is p2. This is the .3; 7/-entry.

Entry .4; 7/: (“to state 3:k”) By an argument similar to
that for the .3; 6/-entry, the .4; 7/-entry is p3.

Entry .5; 7/: (“to state 12:k”) To leave players on first
base and second base, the batter must get to first base and
the player on second base must remain there while the
runner on third base reaches home. This is impossible, so
the .5; 7/-entry is 0.

Entry .6; 7/: (“to state 13:k”) This concerns the batter
getting to first base and the runner on second base advancing
to third base while the runner on third base reaches home.

This can happen only if the batter hits a single, with
probability p1, and the runner on second base stops at third
base, which happens with probability :5 (by Table 2). Since
both events are required, the .6; 7/-entry is the product :5p1.

Entry .7; 7/: (“to state 23:k”) To leave players on
second base and third base, the batter must hit a double and
the runner on second base must advance only to third base.
This cannot happen, so the .7; 7/-entry is 0.

Entry .8; 7/: (“to state 123:k”) To leave runners on
first, second, and third bases, the batter must reach first base
and the two runners must each fail to advance one base.
This happens when the batter is walked or is hit by a pitch.
Thus the .8; 7/-entry is pW .

7. pW D :0954785, p1 D :159996, p2 D :049377, p3 D :00514581, pH D :0291127, pO D :66089. Thus

A D
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0
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9. The sum of the first column of M shows that
EŒB� D 4:53933. The first column of SM allows EŒL� to
be computed:

EŒL� D 0.:34973/ C 1.:33414/ C 2.:23820/ C 3.:07793/

D 1:04433

Thus

EŒR� D EŒB� � EŒL� � 3

D 4:53933 � 1:04433 � 3 D :495

11. Bonds: pW D :212933, p1 D :119495, p2 D :0480377,
p3 D :00615458, pH D :0609064, pO D :552474.

Ruth: pW D :2004, p1 D :144421, p2 D :0481721,
p3 D :0129474, pH D :0679741, pO D :526085.

Williams: pW D :210936, p1 D :157383, p2 D :0537579,
p3 D :00727012, pH D :0533484, pO D :517305.

13. a. The sum of the second column of M will tell the
expected number of batters that will come to the plate
starting with a runner on first and none out.

b. The second column of SM will give the probabilities of
leaving 0, 1, 2, or 3 runners on base starting with a
runner on first and none out. Thus the expected number

of runners left on base starting with a runner on first and
none out could be calculated.

c. The expected number of runs scored using the second
column data will give the expected number of runs
scored starting with a runner on first and none out.

15. The sum of the column of M is 4:53933. One batter has
already reached base, so EŒB� D 1 C 4:53933 D 5:53933.
The column of SM allows EŒL� to be computed:

EŒL� D 0.:06107/ C 1.:47084/ C 2.:34791/ C 3.:12108/

D 1:52990

Thus

EŒR� D EŒB� � EŒL� � 3

D 5:53933 � 1:52990 � 3 D 1:00943

17. If the baserunner does not attempt a steal, you expect to
score :85654 runs by Exercise 14. If the runner attempts a
steal and succeeds, you expect to score 1:00943 runs by
Exercise 15. If the runner attempts a steal and does not
succeed, you expect to score :26779 runs by Exercise 16.
Thus the expected number of runs scored if a steal is
attempted is 1:00943.:8/ C :26779.:2/ D :861102.
Attempting a steal thus increases the expected number of
runs scored.
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Appendix A
Uniqueness of the Reduced
Echelon Form

THEOREM Uniqueness of the Reduced Echelon Form

Each m � n matrix A is row equivalent to a unique reduced echelon matrix U .

PROOF The proof uses the idea from Section 4.3 that the columns of row-equivalent
matrices have exactly the same linear dependence relations.

The row reduction algorithm shows that there exists at least one such matrix U .
Suppose that A is row equivalent to matrices U and V in reduced echelon form. The
leftmost nonzero entry in a row of U is a “leading l.” Call the location of such a leading
1 a pivot position, and call the column that contains it a pivot column. (This definition
uses only the echelon nature of U and V and does not assume the uniqueness of the
reduced echelon form.)

The pivot columns of U and V are precisely the nonzero columns that are not
linearly dependent on the columns to their left. (This condition is satisfied automatically
by a first column if it is nonzero.) Since U and V are row equivalent (both being row
equivalent to A), their columns have the same linear dependence relations. Hence, the
pivot columns ofU and V appear in the same locations. If there are r such columns, then
since U and V are in reduced echelon form, their pivot columns are the first r columns
of the m �m identity matrix. Thus, corresponding pivot columns of U and V are equal.

Finally, consider any nonpivot column of U , say column j. This column is either
zero or a linear combination of the pivot columns to its left (because those pivot columns
are a basis for the space spanned by the columns to the left of column j ). Either case
can be expressed by writing U x D 0 for some x whose j th entry is 1. Then V x D 0,
too, which says that column j of V is either zero or the same linear combination of the
pivot columns of V to its left. Since corresponding pivot columns of U and V are equal,
columns j of U and V are also equal. This holds for all nonpivot columns, so V D U ,
which proves that U is unique.
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Appendix B
Complex Numbers

A complex number is a number written in the form

´ D aC bi

where a and b are real numbers and i is a formal symbol satisfying the relation i2 D �1.
The number a is the real part of ´, denoted by Re ´, and b is the imaginary part of
´, denoted by Im ´. Two complex numbers are considered equal if and only if their
real and imaginary parts are equal. For example, if ´ D 5C .�2/i , then Re ´ D 5 and
Im ´ D �2. For simplicity, we write ´ D 5 � 2i .

A real number a is considered as a special type of complex number, by identifying
a with aC 0i . Furthermore, arithmetic operations on real numbers can be extended to
the set of complex numbers.

The complex number system, denoted by C, is the set of all complex numbers,
together with the following operations of addition and multiplication:

.aC bi/C .c C di/ D .aC c/C .b C d/i (1)

.aC bi/.c C di/ D .ac � bd/C .ad C bc/i (2)

These rules reduce to ordinary addition and multiplication of real numbers when
b and d are zero in (1) and (2). It is readily checked that the usual laws of arithmetic
for R also hold for C. For this reason, multiplication is usually computed by algebraic
expansion, as in the following example.

EXAMPLE 1 .5 � 2i/.3C 4i/ D 15C 20i � 6i � 8i2

D 15C 14i � 8.�1/

D 23C 14i

That is, multiply each term of 5 � 2i by each term of 3C 4i , use i2 D �1, and write
the result in the form aC bi .

Subtraction of complex numbers ´1 and ´2 is defined by

´1 � ´2 D ´1 C .�1/´2

In particular, we write �´ in place of .�1/´.
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The conjugate of ´ D aC bi is the complex number ´ (read as “´ bar”), defined by

´ D a � bi

Obtain ´ from ´ by reversing the sign of the imaginary part.

EXAMPLE 2 The conjugate of�3C 4i is �3 � 4i ; write�3C 4i D �3 � 4i .

Observe that if ´ D aC bi , then

´´ D .aC bi/.a � bi/ D a2
� abi C bai � b2i2

D a2
C b2 (3)

Since ´´ is real and nonnegative, it has a square root. The absolute value (ormodulus)
of ´ is the real number j´j defined by

j´j D
p

´´ D
p

a2 C b2

If ´ is a real number, then ´ D aC 0i , and j´j D
p

a2, which equals the ordinary
absolute value of a.

Some useful properties of conjugates and absolute value are listed below; w and ´

denote complex numbers.

1. ´ D ´ if and only if ´ is a real number.

2. w C ´ D w C ´.

3. w´ D w ´; in particular, r´ D r´ if r is a real number.

4. ´´ D j´j2 � 0.

5. jw´j D jwjj´j.

6. jw C ´j � jwj C j´j.

If ´ ¤ 0, then j´j > 0 and ´ has a multiplicative inverse, denoted by 1=´ or ´�1 and
given by

1

´
D ´�1 D

´

j´j2

Of course, a quotient w=´ simply means w � .1=´/.

EXAMPLE 3 Let w D 3C 4i and ´ D 5 � 2i . Compute ´´, j´j, and w=´.

SOLUTION From equation (3),

´´ D 52
C .�2/2

D 25C 4 D 29

For the absolute value, j´j D
p

´´ D
p

29. To compute w=´, first multiply both the
numerator and the denominator by ´, the conjugate of the denominator. Because of (3),
this eliminates the i in the denominator:

w

´
D

3C 4i

5 � 2i

D
3C 4i

5 � 2i
�
5C 2i

5C 2i

D
15C 6i C 20i � 8

52 C .�2/2

D
7C 26i

29

D
7

29
C

26

29
i
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Geometric Interpretation
Each complex number ´ D aC bi corresponds to a point .a; b/ in the plane R2, as
in Figure 1. The horizontal axis is called the real axis because the points (a; 0) on it
correspond to the real numbers. The vertical axis is the imaginary axis because the
points .0; b/ on it correspond to the pure imaginary numbers of the form 0C bi , or
simply bi . The conjugate of ´ is the mirror image of ´ in the real axis. The absolute
value of ´ is the distance from .a; b/ to the origin.

Imaginary
axis

z  a 1 bi

z  a  bi

a

b

Real axis

5

5 2

FIGURE 1 The complex conjugate is a mirror image.

Addition of complex numbers ´ D aC bi and w D c C di corresponds to vector
addition of .a; b/ and .c; d/ in R2, as in Figure 2.

z

w

Re z

Im z

w 1 z

FIGURE 2 Addition of complex numbers.

To give a graphical representation of complex multiplication, we use polar coordi-
nates in R2. Given a nonzero complex number ´ D aC bi , let ' be the angle between
the positive real axis and the point .a; b/, as in Figure 3 where �� < ' � � . The angle
' is called the argument of ´; we write ' D arg ´. From trigonometry,

a D j´j cos'; b D j´j sin'

w

|z| cos w

|z| sin w
|z|

z

Re z

Im z

FIGURE 3 Polar coordinates of ´.
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and so
´ D aC bi D j´j.cos' C i sin'/

If w is another nonzero complex number, say,

w D jwj .cos# C i sin#/

then, using standard trigonometric identities for the sine and cosine of the sum of two
angles, one can verify that

w´ D jwj j´j Œcos.# C '/C i sin.# C '/� (4)

See Figure 4. A similar formula may be written for quotients in polar form. The formulas
for products and quotients can be stated in words as follows.

w

|z|

zw
wz

Re z

Im z

 1 w

FIGURE 4 Multiplication with polar
coordinates.

The product of two nonzero complex numbers is given in polar form by the product
of their absolute values and the sum of their arguments. The quotient of two nonzero
complex numbers is given by the quotient of their absolute values and the difference
of their arguments.

EXAMPLE 4

a. If w has absolute value 1, then w D cos# C i sin# , where # is the argument of w.
Multiplication of any nonzero number ´ by w simply rotates ´ through the angle # .

b. The argument of i itself is �=2 radians, so multiplication of ´ by i rotates ´ through
an angle of �=2 radians. For example, 3C i is rotated into .3C i/i D �1C 3i .

w

w

p
2

z 5 3 1 i 

iz

i

Re z

Im z

p
21

Multiplication by i.

Powers of a Complex Number
Formula (4) applies when ´ D w D r.cos' C i sin'/. In this case

´2
D r2.cos 2' C i sin 2'/

and
´3
D ´ � ´2

D r.cos' C i sin'/ � r2.cos 2' C i sin 2'/

D r3.cos 3' C i sin 3'/

In general, for any positive integer k,

´k
D rk.cos k' C i sin k'/

This fact is known as De Moivre’s Theorem.
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Complex Numbers and R2

Although the elements ofR2 andC are in one-to-one correspondence, and the operations
of addition are essentially the same, there is a logical distinction between R2 and C. In
R2 we can only multiply a vector by a real scalar, whereas in C we can multiply any
two complex numbers to obtain a third complex number. (The dot product in R2 doesn’t
count, because it produces a scalar, not an element of R2:/ We use scalar notation for
elements in C to emphasize this distinction.

(2, 4)

(21, 2)

(23, 21)

(3, 22)

(4, 0)

2 1 4i

21 1 2i

23 2 i 

3 2 2i

4 1 0i

x2

x1 Re z

Im z

The real plane R2. The complex plane C.
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Glossary

A
adjugate (or classical adjoint): The matrix adjA formed from

a square matrix A by replacing the .i; j /-entry of A by
the .i; j /-cofactor, for all i and j , and then transposing the
resulting matrix.

affine combination: A linear combination of vectors (points in
Rn) in which the sum of the weights involved is 1.

affine dependence relation: An equation of the form c1v1 C

� � � C cpvp D 0, where the weights c1; : : : ; cp are not all
zero, and c1 C � � � C cp D 0.

affine hull (or affine span) of a set S : The set of all affine
combinations of points in S , denoted by affS .

affinely dependent set: A set fv1; : : : ; vpg inRn such that there
are real numbers c1; : : : ; cp , not all zero, such that c1 C � � � C

cp D 0 and c1v1 C � � � C cpvp D 0.

affinely independent set: A set fv1; : : : ; vpg in Rn that is not
affinely dependent.

affine set (or affine subset): A set S of points such that if p and
q are in S , then .1 � t /pC tq 2 S for each real number t .

affine transformation: A mapping T W Rn ! Rm of the form
T .x/ D AxC b, with A an m � n matrix and b in Rm.

algebraic multiplicity: The multiplicity of an eigenvalue as a
root of the characteristic equation.

angle (between nonzero vectors u and v inR2 orR3/: The angle
# between the two directed line segments from the origin to
the points u and v. Related to the scalar product by

u�v D kuk kvk cos#

associative law of multiplication: A.BC/ D .AB/C , for all A,
B , C .

attractor (of a dynamical system in R2/: The origin when all
trajectories tend toward 0.

augmented matrix: A matrix made up of a coefficient matrix
for a linear system and one or more columns to the right.
Each extra column contains the constants from the right side
of a system with the given coefficient matrix.

auxiliary equation: A polynomial equation in a variable r ,
created from the coefficients of a homogeneous difference
equation.

B
back-substitution (with matrix notation): The backward phase

of row reduction of an augmented matrix that transforms an
echelon matrix into a reduced echelon matrix; used to find
the solution(s) of a system of linear equations.

backward phase (of row reduction): The last part of the al-
gorithm that reduces a matrix in echelon form to a reduced
echelon form.

band matrix: A matrix whose nonzero entries lie within a band
along the main diagonal.

barycentric coordinates (of a point p with respect to an affinely
independent set S D fv1; : : : ; vkg): The (unique) set of
weights c1; : : : ; ck such that p D c1v1 C � � � C ckvk and c1 C

� � � C ck D 1. (Sometimes also called the affine coordinates
of p with respect to S .)

basic variable: A variable in a linear system that corresponds
to a pivot column in the coefficient matrix.

basis (for a nontrivial subspace H of a vector space V /: An
indexed set B D fv1; : : : ; vpg in V such that: (i) B is a
linearly independent set and (ii) the subspace spanned by B
coincides with H , that is, H D Span fv1; : : : ; vpg.

B-coordinates of x: See coordinates of x relative to the
basis B.

best approximation: The closest point in a given subspace to a
given vector.

bidiagonal matrix: A matrix whose nonzero entries lie on the
main diagonal and on one diagonal adjacent to the main
diagonal.

block diagonal (matrix): A partitioned matrix A D ŒAij � such
that each block Aij is a zero matrix for i ¤ j .

block matrix: See partitioned matrix.

block matrix multiplication: The row–column multiplication
of partitioned matrices as if the block entries were scalars.
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block upper triangular (matrix): A partitioned matrix
A D ŒAij � such that each block Aij is a zero matrix for
i > j .

boundary point of a set S inRn: A point p such that every open
ball inRn centered at p intersects both S and the complement
of S .

bounded set in Rn: A set that is contained in an open ball
B.0; ı/ for some ı > 0.

B-matrix (for T ): A matrix ŒT �B for a linear transformation
T W V ! V relative to a basis B for V , with the property that
ŒT .x/�B D ŒT �BŒx�B for all x in V.

C
Cauchy–Schwarz inequality: jhu; vij � kuk�kvk for all u, v.

change of basis: See change-of-coordinates matrix.

change-of-coordinates matrix (from a basis B to a basis C): A

matrix P
C B that transforms B-coordinate vectors into C-

coordinate vectors: Œx�C D P
C B Œx�B. If C is the standard

basis for Rn, then P
C B is sometimes written as PB.

characteristic equation (of A): det.A � �I/ D 0.

characteristic polynomial (of A): det.A � �I/ or, in some
texts, det.�I � A/.

Cholesky factorization: A factorization A D RTR, where R is
an invertible upper triangular matrix whose diagonal entries
are all positive.

closed ball (in Rn): A set fx W kx � pk < ıg in Rn, where p is
in Rn and ı > 0.

closed set (in Rn): A set that contains all of its boundary points.

codomain (of a transformation T W Rn ! Rm/: The setRm that
contains the range of T . In general, if T maps a vector space
V into a vector space W, then W is called the codomain
of T.

coefficient matrix: A matrix whose entries are the coefficients
of a system of linear equations.

cofactor: A number Cij D .�1/iCj detAij , called the .i; j /-
cofactor ofA, whereAij is the submatrix formed by deleting
the i th row and the j th column of A.

cofactor expansion: A formula for detA using cofactors asso-
ciated with one row or one column, such as for row 1:

detA D a11C11 C � � � C a1nC1n

column–row expansion: The expression of a product AB

as a sum of outer products: col1.A/ row1.B/C � � � C

coln.A/ rown.B/, where n is the number of columns of A.

column space (of anm � nmatrixA): The set ColA of all linear
combinations of the columns of A. If A D Œa1 � � � an�, then
ColA D Span fa1; : : : ; ang. Equivalently,

ColA D fy W y D Ax for some x in Rn
g

column sum: The sum of the entries in a column of a matrix.

column vector: A matrix with only one column, or a single
column of a matrix that has several columns.

commuting matrices: Two matrices A and B such that
AB D BA.

compact set (in Rn): A set in Rn that is both closed and
bounded.

companion matrix: A special form of matrix whose charac-
teristic polynomial is .�1/np.�/ when p.�/ is a specified
polynomial whose leading term is �n.

complex eigenvalue: A nonreal root of the characteristic equa-
tion of an n � n matrix.

complex eigenvector: A nonzero vector x in Cn such that
Ax D �x, where A is an n � n matrix and � is a complex
eigenvalue.

component of y orthogonal to u (for u ¤ 0): The vector

y �
y�u
u�u

u.

composition of linear transformations: A mapping produced
by applying two or more linear transformations in succes-
sion. If the transformations are matrix transformations, say
left-multiplication by B followed by left-multiplication by
A, then the composition is the mapping x 7! A.Bx/.

condition number (of A): The quotient �1=�n, where �1 is the
largest singular value of A and �n is the smallest singular
value. The condition number isC1 when �n is zero.

conformable for block multiplication: Two partitioned matri-
ces A and B such that the block product AB is defined: The
column partition of A must match the row partition of B.

consistent linear system: A linear system with at least one
solution.

constrained optimization: The problem of maximizing a quan-
tity such as xTAx or kAxk when x is subject to one or more
constraints, such as xTx D 1 or xTv D 0.

consumption matrix: A matrix in the Leontief input–output
model whose columns are the unit consumption vectors for
the various sectors of an economy.

contraction: A mapping x 7! rx for some scalar r , with
0 � r � 1.

controllable (pair of matrices): A matrix pair .A; B/ where A

is n � n, B has n rows, and

rank Œ B AB A2B � � � An�1B � D n

Related to a state-space model of a control system and the
difference equation xkC1 D Axk C Buk .k D 0; 1; : : :/.

convergent (sequence of vectors): A sequence fxkg such that
the entries in xk can be made as close as desired to the entries
in some fixed vector for all k sufficiently large.

convex combination (of points v1; : : : ; vk in Rn): A linear
combination of vectors (points) in which the weights in the
combination are nonnegative and the sum of the weights
is 1.

convex hull (of a set S ): The set of all convex combinations of
points in S , denoted by: convS .
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convex set: A set S with the property that for each p and q in
S , the line segment pq is contained in S .

coordinate mapping (determined by an ordered basis B in a
vector space V ): A mapping that associates to each x in
V its coordinate vector Œx�B.

coordinates of x relative to the basis B D fb1; : : : ; bng: The
weights c1; : : : ; cn in the equation x D c1b1 C � � � C cnbn.

coordinate vector of x relative to B: The vector Œx�B whose
entries are the coordinates of x relative to the basis B.

covariance (of variables xi and xj , for i ¤ j ): The entry sij in
the covariance matrix S for a matrix of observations, where
xi and xj vary over the i th and j th coordinates, respectively,
of the observation vectors.

covariance matrix (or sample covariance matrix): The p � p

matrix S defined by S D .N � 1/�1BBT , where B is a
p �N matrix of observations in mean-deviation form.

Cramer’s rule: A formula for each entry in the solution x of the
equation Ax D b when A is an invertible matrix.

cross-product term: A term cxi xj in a quadratic form, with
i ¤ j .

cube: A three-dimensional solid object bounded by six square
faces, with three faces meeting at each vertex.

D
decoupled system: A difference equation ykC1 D Ayk , or a

differential equation y0.t/ D Ay.t/, in which A is a diagonal
matrix. The discrete evolution of each entry in yk (as a
function of k), or the continuous evolution of each entry
in the vector-valued function y.t/, is unaffected by what
happens to the other entries as k !1 or t !1.

design matrix: The matrix X in the linear model y D Xˇ C �,
where the columns of X are determined in some way by the
observed values of some independent variables.

determinant (of a square matrix A): The number detA defined
inductively by a cofactor expansion along the first row of A.
Also, .�1/r times the product of the diagonal entries in any
echelon form U obtained from A by row replacements and r

row interchanges (but no scaling operations).

diagonal entries (in a matrix): Entries having equal row and
column indices.

diagonalizable (matrix): A matrix that can be written in fac-
tored form as PDP�1, where D is a diagonal matrix and P

is an invertible matrix.

diagonalmatrix: A squarematrixwhose entries not on themain
diagonal are all zero.

difference equation (or linear recurrence relation): An equa-
tion of the form xkC1 D Axk (k D 0; 1; 2; : : :) whose solu-
tion is a sequence of vectors, x0; x1; : : : :

dilation: A mapping x 7! rx for some scalar r , with 1 < r .

dimension:
of a flat S : The dimension of the corresponding parallel

subspace.
of a set S : The dimension of the smallest flat containing S .

of a subspace S : The number of vectors in a basis for S ,
written as dimS .

of a vector space V : The number of vectors in a basis for V,
written as dimV. The dimension of the zero space is 0.

discrete linear dynamical system: A difference equation of the
form xkC1 D Axk that describes the changes in a system
(usually a physical system) as time passes. The physical
system is measured at discrete times, when k D 0; 1; 2; : : : ;

and the state of the system at time k is a vector xk whose
entries provide certain facts of interest about the system.

distance between u and v: The length of the vector u � v,
denoted by dist .u; v/.

distance to a subspace: The distance from a given point (vec-
tor) v to the nearest point in the subspace.

distributive laws: (left) A.B C C / D AB C AC , and (right)
.B C C /A D BAC CA, for all A, B , C .

domain (of a transformation T ): The set of all vectors x for
which T .x/ is defined.

dot product: See inner product.

dynamical system: See discrete linear dynamical system.

E
echelon form (or row echelon form, of a matrix): An echelon

matrix that is row equivalent to the given matrix.

echelon matrix (or row echelon matrix): A rectangular matrix
that has three properties: (1) All nonzero rows are above any
row of all zeros. (2) Each leading entry of a row is in a column
to the right of the leading entry of the row above it. (3) All
entries in a column below a leading entry are zero.

eigenfunctions (of a differential equation x0.t/ D Ax.t/): A
function x.t/ D ve�t , where v is an eigenvector of A and �

is the corresponding eigenvalue.

eigenspace (of A corresponding to �): The set of all solutions
of Ax D �x, where � is an eigenvalue of A. Consists of the
zero vector and all eigenvectors corresponding to �.

eigenvalue (of A): A scalar � such that the equation Ax D �x
has a solution for some nonzero vector x.

eigenvector (of A): A nonzero vector x such that Ax D �x for
some scalar �.

eigenvector basis: A basis consisting entirely of eigenvectors
of a given matrix.

eigenvector decomposition (of x): An equation, x D c1v1C

� � � C cnvn, expressing x as a linear combination of eigen-
vectors of a matrix.

elementary matrix: An invertible matrix that results by per-
forming one elementary row operation on an identity matrix.

elementary row operations: (1) (Replacement) Replace one
row by the sum of itself and a multiple of another row.
(2) Interchange two rows. (3) (Scaling) Multiply all entries
in a row by a nonzero constant.

equal vectors: Vectors in Rn whose corresponding entries are
the same.
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equilibrium prices: A set of prices for the total output of the
various sectors in an economy, such that the income of each
sector exactly balances its expenses.

equilibrium vector: See steady-state vector.

equivalent (linear) systems: Linear systems with the same so-
lution set.

exchange model: See Leontief exchange model.

existence question: Asks, “Does a solution to the system ex-
ist?” That is, “Is the system consistent?” Also, “Does a
solution of Ax D b exist for all possible b?”

expansion by cofactors: See cofactor expansion.

explicit description (of a subspace W of Rn): A parametric
representation of W as the set of all linear combinations of a
set of specified vectors.

extreme point (of a convex set S ): A point p in S such that p is
not in the interior of any line segment that lies in S . (That is,
if x, y are in S and p is on the line segment xy, then p D x
or p D y.)

F
factorization (of A): An equation that expresses A as a product

of two or more matrices.

final demand vector (or bill of final demands): The vector d
in the Leontief input–output model that lists the dollar values
of the goods and services demanded from the various sectors
by the nonproductive part of the economy. The vector d
can represent consumer demand, government consumption,
surplus production, exports, or other external demand.

finite-dimensional (vector space): A vector space that is
spanned by a finite set of vectors.

flat (in Rn): A translate of a subspace of Rn.

flexibility matrix: Amatrix whose j th column gives the deflec-
tions of an elastic beam at specified points when a unit force
is applied at the j th point on the beam.

floating point arithmetic: Arithmetic with numbers repre-
sented as decimals ˙ :d1 � � � dp � 10r , where r is an integer
and the number p of digits to the right of the decimal point
is usually between 8 and 16.

flop: One arithmetic operation .C;�;�; =/ on two real floating
point numbers.

forward phase (of row reduction): The first part of the algo-
rithm that reduces a matrix to echelon form.

Fourier approximation (of order n): The closest point in the
subspace of nth-order trigonometric polynomials to a given
function in C Œ0; 2��.

Fourier coefficients: The weights used to make a trigonometric
polynomial as a Fourier approximation to a function.

Fourier series: An infinite series that converges to a function
in the inner product space C Œ0; 2��, with the inner product
given by a definite integral.

free variable: Any variable in a linear system that is not a basic
variable.

full rank (matrix): An m � n matrix whose rank is the smaller
of m and n.

fundamental set of solutions: A basis for the set of all solutions
of a homogeneous linear difference or differential equation.

fundamental subspaces (determined byA): The null space and
column space of A, and the null space and column space of
AT , with ColAT commonly called the row space of A.

G
Gaussian elimination: See row reduction algorithm.

general least-squares problem: Given anm � nmatrixA and a
vector b inRm, find Ox inRn such that kb � AOxk � kb � Axk
for all x in Rn.

general solution (of a linear system): A parametric description
of a solution set that expresses the basic variables in terms of
the free variables (the parameters), if any. After Section 1.5,
the parametric description is written in vector form.

Givens rotation: A linear transformation fromRn toRn used in
computer programs to create zero entries in a vector (usually
a column of a matrix).

Gram matrix (of A): The matrix ATA.

Gram–Schmidt process: An algorithm for producing an or-
thogonal or orthonormal basis for a subspace that is spanned
by a given set of vectors.

H
homogeneous coordinates: In R3, the representation of

.x; y; ´/ as .X; Y; Z; H/ for any H ¤ 0, where x D X=H ,
y D Y=H , and ´ D Z=H . In R2, H is usually taken as 1,
and the homogeneous coordinates of .x; y/ are written as
.x; y; 1/.

homogeneous equation: An equation of the formAx D 0, pos-
sibly written as a vector equation or as a system of linear
equations.

homogeneous form of (a vector) v in Rn: The point Qv D
�
v
1

�
in RnC1.

Householder reflection: A transformation x 7! Qx, where
Q D I � 2uuT and u is a unit vector .uTu D 1/.

hyperplane (in Rn): A flat in Rn of dimension n � 1. Also: a
translate of a subspace of dimension n � 1.

I
identitymatrix (denoted by I or In): A square matrix with ones

on the diagonal and zeros elsewhere.

ill-conditioned matrix: A square matrix with a large (or pos-
sibly infinite) condition number; a matrix that is singular or
can become singular if some of its entries are changed ever
so slightly.

image (of a vector x under a transformation T ): The vector T .x/

assigned to x by T .
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implicit description (of a subspace W of Rn): A set of one
or more homogeneous equations that characterize the points
of W .

Im x: The vector in Rn formed from the imaginary parts of the
entries of a vector x in Cn.

inconsistent linear system: A linear system with no solution.

indefinite matrix: A symmetric matrix A such that xTAx as-
sumes both positive and negative values.

indefinite quadratic form: A quadratic form Q such that Q.x/

assumes both positive and negative values.

infinite-dimensional (vector space): A nonzero vector space V

that has no finite basis.

inner product: The scalar uTv, usually written as u�v, where u
and v are vectors inRn viewed as n � 1matrices. Also called
the dot product of u and v. In general, a function on a vector
space that assigns to each pair of vectors u and v a number
hu; vi, subject to certain axioms. See Section 6.7.

inner product space: A vector space on which is defined an
inner product.

input–output matrix: See consumption matrix.

input–output model: See Leontief input–output model.

interior point (of a set S in Rn): A point p in S such that for
some ı > 0, the open ball B.p; ı/ centered at p is contained
in S .

intermediate demands: Demands for goods or services that
will be consumed in the process of producing other goods
and services for consumers. If x is the production level and
C is the consumption matrix, then Cx lists the intermediate
demands.

interpolating polynomial: A polynomial whose graph passes
through every point in a set of data points in R2.

invariant subspace (for A): A subspace H such that Ax is in
H whenever x is in H .

inverse (of an n � n matrix A): An n � n matrix A�1 such that
AA�1 D A�1A D In.

inverse power method: An algorithm for estimating an eigen-
value � of a square matrix, when a good initial estimate of �

is available.

invertible linear transformation: A linear transformation
T W Rn ! Rn such that there exists a function S W Rn ! Rn

satisfying both T .S.x// D x and S.T .x// D x for all x
in Rn.

invertible matrix: A square matrix that possesses an inverse.

isomorphic vector spaces: Two vector spaces V and W for
which there is a one-to-one linear transformation T that maps
V onto W .

isomorphism: A one-to-one linear mapping from one vector
space onto another.

K
kernel (of a linear transformation T W V ! W /: The set of x in

V such that T .x/ D 0.

Kirchhoff’s laws: (1) (voltage law) The algebraic sum of the
RI voltage drops in one direction around a loop equals the
algebraic sum of the voltage sources in the same direction
around the loop. (2) (current law) The current in a branch is
the algebraic sum of the loop currents flowing through that
branch.

L
ladder network: An electrical network assembled by connect-

ing in series two or more electrical circuits.

leading entry: The leftmost nonzero entry in a row of a matrix.

least-squares error: The distance kb � AOxk from b to AOx,
when Ox is a least-squares solution of Ax D b.

least-squares line: The line y D Ǒ0 C Ǒ1x that minimizes the
least-squares error in the equation y D Xˇ C �.

least-squares solution (of Ax D b): A vector Ox such that
kb � AOxk � kb � Axk for all x in Rn.

left inverse (of A): Any rectangular matrix C such that
CA D I .

left-multiplication (by A): Multiplication of a vector or matrix
on the left by A.

left singular vectors (of A): The columns of U in the singular
value decomposition A D U †V T .

length (or norm, of v): The scalar kvk D
p
v�v D

p
hv; vi.

Leontief exchange (or closed)model: A model of an economy
where inputs and outputs are fixed, and where a set of prices
for the outputs of the sectors is sought such that the income
of each sector equals its expenditures. This “equilibrium”
condition is expressed as a system of linear equations, with
the prices as the unknowns.

Leontief input–output model (or Leontief production equa-
tion): The equation x D CxC d, where x is production, d
is final demand, and C is the consumption (or input–output)
matrix. The j th column of C lists the inputs that sector j

consumes per unit of output.

level set (or gradient) of a linear functional f on Rn: A set
Œf :d� D fx 2 Rn W f .x/ D dg

linear combination: A sum of scalar multiples of vectors. The
scalars are called the weights.

linear dependence relation: A homogeneous vector equation
where the weights are all specified and at least one weight is
nonzero.

linear equation (in the variables x1; : : : ; xn/: An equation that
can be written in the form a1x1 C a2x2 C � � � C anxn D b,
where b and the coefficients a1; : : : ; an are real or complex
numbers.

linear filter: A linear difference equation used to transform
discrete-time signals.

linear functional (on Rn): A linear transformation f from Rn

into R.

linearly dependent (vectors): An indexed set fv1; : : : ; vpgwith
the property that there exist weights c1; : : : ; cp , not all zero,
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such that c1v1 C � � � C cpvp D 0. That is, the vector equation
c1v1 C c2v2 C � � � C cpvp D 0 has a nontrivial solution.

linearly independent (vectors): An indexed set fv1; : : : ; vpg

with the property that the vector equation c1v1 C

c2v2 C � � � C cpvp D 0 has only the trivial solution,
c1 D � � � D cp D 0.

linear model (in statistics): Any equation of the form
y D Xˇ C �, where X and y are known and ˇ is to be
chosen to minimize the length of the residual vector, �.

linear system: A collection of one or more linear equations
involving the same variables, say, x1; : : : ; xn.

linear transformation T (from a vector space V into a vec-
tor space W ): A rule T that assigns to each vector
x in V a unique vector T .x/ in W , such that (i)
T .uC v/ D T .u/C T .v/ for all u; v in V , and (ii)
T .cu/ D cT .u/ for all u in V and all scalars c. Notation:
T W V ! W ; also, x 7! Axwhen T W Rn ! Rm andA is the
standard matrix for T .

line through p parallel to v: The set fpC tv W t in Rg.

loop current: The amount of electric current flowing through a
loop that makes the algebraic sum of the RI voltage drops
around the loop equal to the algebraic sum of the voltage
sources in the loop.

lower triangular matrix: A matrix with zeros above the main
diagonal.

lower triangular part (of A): A lower triangular matrix whose
entries on the main diagonal and below agree with those inA.

LU factorization: The representation of a matrix A in the form
A D LU where L is a square lower triangular matrix with
ones on the diagonal (a unit lower triangular matrix) and U

is an echelon form of A.

M
magnitude (of a vector): See norm.

main diagonal (of a matrix): The entries with equal row and
column indices.

mapping: See transformation.

Markov chain: A sequence of probability vectors x0, x1,
x2; : : : ; together with a stochastic matrix P such that
xkC1 D P xk for k D 0; 1; 2; : : : :

matrix: A rectangular array of numbers.

matrix equation: An equation that involves at least one matrix;
for instance, Ax D b.

matrix for T relative to bases B and C: A matrix M for
a linear transformation T W V ! W with the property that
ŒT .x/�C DM Œx�B for all x in V, where B is a basis for V and
C is a basis for W. When W D V and C D B, the matrix M

is called the B-matrix for T and is denoted by ŒT �B.

matrix of observations: A p �N matrix whose columns are
observation vectors, each column listing p measurements
made on an individual or object in a specified population
or set.

matrix transformation: A mapping x 7! Ax, where A is an
m � n matrix and x represents any vector in Rn.

maximal linearly independent set (in V ): A linearly indepen-
dent set B in V such that if a vector v in V but not in B is
added to B, then the new set is linearly dependent.

mean-deviation form (of a matrix of observations): A matrix
whose row vectors are in mean-deviation form. For each row,
the entries sum to zero.

mean-deviation form (of a vector): A vector whose entries sum
to zero.

mean square error: The error of an approximation in an inner
product space, where the inner product is defined by a defi-
nite integral.

migration matrix: A matrix that gives the percentage move-
ment between different locations, from one period to the
next.

minimal spanning set (for a subspace H ): A set B that spans
H and has the property that if one of the elements of B is
removed from B, then the new set does not span H .

m � n matrix: A matrix with m rows and n columns.

Moore–Penrose inverse: See pseudoinverse.

multiple regression: A linear model involving several indepen-
dent variables and one dependent variable.

N
nearly singular matrix: An ill-conditioned matrix.

negative definite matrix: A symmetric matrix A such that
xTAx < 0 for all x ¤ 0.

negative definite quadratic form: A quadratic form Q such
that Q.x/ < 0 for all x ¤ 0.

negative semidefinite matrix: A symmetric matrix A such that
xTAx � 0 for all x.

negative semidefinite quadratic form: A quadratic form Q

such that Q.x/ � 0 for all x.

nonhomogeneous equation: An equation of the form Ax D b
with b ¤ 0, possibly written as a vector equation or as a
system of linear equations.

nonsingular (matrix): An invertible matrix.

nontrivial solution: A nonzero solution of a homogeneous
equation or system of homogeneous equations.

nonzero (matrix or vector): A matrix (with possibly only one
row or column) that contains at least one nonzero entry.

norm (or length, of v): The scalar kvk D
p
v�v D

p
hv; vi.

normal equations: The system of equations represented by
ATAx D ATb, whose solution yields all least-squares so-
lutions of Ax D b. In statistics, a common notation is
XTXˇ D XTy.

normalizing (a nonzero vector v): The process of creating a unit
vector u that is a positive multiple of v.

normal vector (to a subspace V of Rn): A vector n in Rn such
that n�x D 0 for all x in V .
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null space (of anm � nmatrixA): The set NulA of all solutions
to the homogeneous equation Ax D 0. NulA D fx W x is in
Rn and Ax D 0g.

O
observation vector: The vector y in the linear model

y D Xˇ C �, where the entries in y are the observed values
of a dependent variable.

one-to-one (mapping): A mapping T W Rn ! Rm such that
each b in Rm is the image of at most one x in Rn.

onto (mapping): A mapping T W Rn ! Rm such that each b in
Rm is the image of at least one x in Rn.

open ball B.p; ı/ inRn: The set fx W kx � pk < ıg inRn, where
ı > 0.

open set S in Rn: A set that contains none of its boundary
points. (Equivalently, S is open if every point of S is an
interior point.)

origin: The zero vector.

orthogonal basis: A basis that is also an orthogonal set.

orthogonal complement (of W /: The set W ? of all vectors
orthogonal to W .

orthogonal decomposition: The representation of a vector y
as the sum of two vectors, one in a specified subspace
W and the other in W ?. In general, a decomposition
y D c1u1 C � � � C cpup , where fu1; : : : ; upg is an orthogonal
basis for a subspace that contains y.

orthogonally diagonalizable (matrix): A matrix A that admits
a factorization, A D PDP�1, with P an orthogonal matrix
.P�1 D P T / and D diagonal.

orthogonal matrix: A square invertible matrix U such that
U�1 D U T .

orthogonal projection of y onto u (or onto the line through u and

the origin, for u ¤ 0): The vector Oy defined by Oy D
y�u
u�u

u.

orthogonal projection of y ontoW: The unique vector Oy in W

such that y � Oy is orthogonal to W . Notation: Oy D projW y.

orthogonal set: A set S of vectors such that u�v D 0 for each
distinct pair u; v in S .

orthogonal toW: Orthogonal to every vector in W .

orthonormal basis: A basis that is an orthogonal set of unit
vectors.

orthonormal set: An orthogonal set of unit vectors.

outer product: A matrix product uvT where u and v are vectors
in Rn viewed as n � 1 matrices. (The transpose symbol is on
the “outside” of the symbols u and v.)

overdetermined system: A system of equations with more
equations than unknowns.

P
parallel flats: Two or more flats such that each flat is a translate

of the other flats.

parallelogram rule for addition: A geometric interpretation of
the sum of two vectors u, v as the diagonal of the parallelo-
gram determined by u, v, and 0.

parameter vector: The unknown vector ˇ in the linear model
y D Xˇ C �.

parametric equation of a line: An equation of the form
x D pC tv (t in R).

parametric equation of a plane: An equation of the form
x D pC suC tv (s, t in R), with u and v linearly
independent.

partitioned matrix (or block matrix): A matrix whose entries
are themselves matrices of appropriate sizes.

permuted lower triangular matrix: A matrix such that a per-
mutation of its rows will form a lower triangular matrix.

permuted LU factorization: The representation of a matrix A

in the form A D LU where L is a square matrix such that
a permutation of its rows will form a unit lower triangular
matrix, and U is an echelon form of A.

pivot: A nonzero number that either is used in a pivot position
to create zeros through row operations or is changed into a
leading 1, which in turn is used to create zeros.

pivot column: A column that contains a pivot position.

pivot position: A position in a matrix A that corresponds to a
leading entry in an echelon form of A.

plane through u, v, and the origin: A set whose parametric
equation is x D suC tv (s, t in R/, with u and v linearly
independent.

polar decomposition (of A): A factorization A D PQ, where
P is an n � n positive semidefinite matrix with the same rank
as A, and Q is an n � n orthogonal matrix.

polygon: A polytope in R2.

polyhedron: A polytope in R3.

polytope: The convex hull of a finite set of points in Rn (a
special type of compact convex set).

positive combination (of points v1; : : : ; vm in Rn): A linear
combination c1v1 C � � � C cmvm, where all ci � 0.

positive definite matrix: A symmetric matrix A such that
xTAx > 0 for all x ¤ 0.

positive definite quadratic form: A quadratic formQ such that
Q.x/ > 0 for all x ¤ 0.

positive hull (of a set S ): The set of all positive combinations
of points in S , denoted by posS .

positive semidefinite matrix: A symmetric matrix A such that
xTAx � 0 for all x.

positive semidefinite quadratic form: A quadratic form Q

such that Q.x/ � 0 for all x.

powermethod: An algorithm for estimating a strictly dominant
eigenvalue of a square matrix.

principal axes (of a quadratic form xTAx): The orthonormal
columns of an orthogonal matrix P such that P�1AP is
diagonal. (These columns are unit eigenvectors of A.) Usu-
ally the columns of P are ordered in such a way that the
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corresponding eigenvalues of A are arranged in decreasing
order of magnitude.

principal components (of the data in a matrix B of
observations): The unit eigenvectors of a sample co-
variance matrix S for B , with the eigenvectors arranged
so that the corresponding eigenvalues of S decrease in
magnitude. IfB is in mean-deviation form, then the principal
components are the right singular vectors in a singular value
decomposition of BT .

probability vector: A vector in Rn whose entries are nonnega-
tive and sum to one.

product Ax: The linear combination of the columns of A using
the corresponding entries in x as weights.

production vector: The vector in the Leontief input–output
model that lists the amounts that are to be produced by the
various sectors of an economy.

profile (of a set S in Rn): The set of extreme points of S .

projection matrix (or orthogonal projection matrix): A sym-
metric matrix B such that B2 D B . A simple example is
B D vvT , where v is a unit vector.

proper subset of a set S: A subset of S that does not equal S

itself.

proper subspace: Any subspace of a vector space V other than
V itself.

pseudoinverse (of A): The matrix VD�1U T , when UDV T is a
reduced singular value decomposition of A.

Q
QR factorization: A factorization of an m � n matrix A with

linearly independent columns, A D QR, where Q is an
m � n matrix whose columns form an orthonormal basis for
ColA, and R is an n � n upper triangular invertible matrix
with positive entries on its diagonal.

quadratic Bézier curve: A curve whose description may be
written in the form g.t/ D .1 � t /f0.t/C t f1.t/ for 0 � t �

1, where f0.t/ D .1 � t /p0 C tp1 and f1.t/ D .1 � t/p1 C

tp2. The points p0, p1, p2 are called the control points for the
curve.

quadratic form: A function Q defined for x in Rn by Q.x/ D

xTAx, where A is an n � n symmetric matrix (called the
matrix of the quadratic form).

R
range (of a linear transformation T ): The set of all vectors of

the form T .x/ for some x in the domain of T .

rank (of a matrix A): The dimension of the column space of A,
denoted by rankA.

Rayleigh quotient: R.x/ D .xTAx/=.xTx/. An estimate of an
eigenvalue of A (usually a symmetric matrix).

recurrence relation: See difference equation.

reduced echelon form (or reduced row echelon form): A
reduced echelon matrix that is row equivalent to a given
matrix.

reduced echelon matrix: A rectangular matrix in echelon form
that has these additional properties: The leading entry in each
nonzero row is 1, and each leading 1 is the only nonzero entry
in its column.

reduced singular value decomposition: A factorization
A D UDV T , for an m � n matrix A of rank r , where U is
m � r with orthonormal columns, D is an r � r diagonal
matrix with the r nonzero singular values of A on its
diagonal, and V is n � r with orthonormal columns.

regression coefficients: The coefficients ˇ0 and ˇ1 in the least-
squares line y D ˇ0 C ˇ1x.

regular solid: One of the five possible regular polyhedrons
in R3: the tetrahedron (4 equal triangular faces), the cube
(6 square faces), the octahedron (8 equal triangular faces),
the dodecahedron (12 equal pentagonal faces), and the icosa-
hedron (20 equal triangular faces).

regular stochastic matrix: A stochastic matrix P such that
some matrix powerP k contains only strictly positive entries.

relative change or relative error (in b/: The quantity
k�bk=kbk when b is changed to bC�b.

repellor (of a dynamical system in R2/: The origin when all
trajectories except the constant zero sequence or function
tend away from 0.

residual vector: The quantity � that appears in the general
linear model: y D Xˇ C �; that is, � D y �Xˇ, the differ-
ence between the observed values and the predicted values
(of y).

Re x: The vector in Rn formed from the real parts of the entries
of a vector x in Cn.

right inverse (of A): Any rectangular matrix C such that
AC D I .

right-multiplication (by A): Multiplication of a matrix on the
right by A.

right singular vectors (ofA): The columns of V in the singular
value decomposition A D U †V T.

roundoff error: Error in floating point arithmetic caused when
the result of a calculation is rounded (or truncated) to the
number of floating point digits stored. Also, the error that
results when the decimal representation of a number such as
1/3 is approximated by a floating point number with a finite
number of digits.

row–column rule: The rule for computing a product AB in
which the .i; j /-entry of AB is the sum of the products of
corresponding entries from row i of A and column j of B .

row equivalent (matrices): Two matrices for which there exists
a (finite) sequence of row operations that transforms one
matrix into the other.

row reduction algorithm: A systematic method using elemen-
tary row operations that reduces a matrix to echelon form or
reduced echelon form.
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row replacement: An elementary row operation that replaces
one row of a matrix by the sum of the row and a multiple of
another row.

row space (of a matrixA): The set RowA of all linear combina-
tions of the vectors formed from the rows of A; also denoted
by ColAT .

row sum: The sum of the entries in a row of a matrix.

row vector: A matrix with only one row, or a single row of a
matrix that has several rows.

row–vector rule for computing Ax: The rule for computing a
product Ax in which the i th entry of Ax is the sum of the
products of corresponding entries from row i of A and from
the vector x.

S
saddle point (of a dynamical system in R2): The origin when

some trajectories are attracted to 0 and other trajectories are
repelled from 0.

same direction (as a vector v): A vector that is a positive
multiple of v.

sample mean: The average M of a set of vectors, X1; : : : ;XN ,
given by M D .1=N /.X1 C � � � C XN /.

scalar: A (real) number used to multiply either a vector or a
matrix.

scalar multiple of u by c: The vector cu obtained by multiply-
ing each entry in u by c.

scale (a vector): Multiply a vector (or a row or column of a
matrix) by a nonzero scalar.

Schur complement: A certain matrix formed from the blocks
of a 2 � 2 partitioned matrix A D ŒAij �. If A11 is invert-
ible, its Schur complement is given by A22 � A21A�1

11 A12.
If A22 is invertible, its Schur complement is given by
A11 � A12A�1

22 A21.

Schur factorization (of A, for real scalars): A factorization
A D URU T of an n � n matrix A having n real eigenvalues,
where U is an n � n orthogonal matrix and R is an upper
triangular matrix.

set spanned by fv1; : : : ; vpg: The set Span fv1; : : : ; vpg.

signal (or discrete-time signal): A doubly infinite sequence of
numbers, fykg; a function defined on the integers; belongs to
the vector space S.

similar (matrices): Matrices A and B such that P�1AP D B ,
or equivalently, A D PBP�1, for some invertible matrix P .

similarity transformation: A transformation that changes A

into P�1AP .

simplex: The convex hull of an affinely independent finite set of
vectors in Rn.

singular (matrix): A square matrix that has no inverse.

singular value decomposition (of an m � n matrix A): A D

U †V T , where U is an m �m orthogonal matrix, V is an
n � n orthogonal matrix, and† is anm � nmatrix with non-
negative entries on the main diagonal (arranged in decreasing

order of magnitude) and zeros elsewhere. If rankA D r , then
† has exactly r positive entries (the nonzero singular values
of A) on the diagonal.

singular values (ofA): The (positive) square roots of the eigen-
values of ATA, arranged in decreasing order of magnitude.

size (of a matrix): Two numbers, written in the form m � n,
that specify the number of rows (m) and columns (n) in the
matrix.

solution (of a linear system involving variables x1; : : : ; xn): A
list .s1; s2; : : : ; sn/ of numbers that makes each equation in
the system a true statement when the values s1; : : : ; sn are
substituted for x1; : : : ; xn, respectively.

solution set: The set of all possible solutions of a linear sys-
tem. The solution set is empty when the linear system is
inconsistent.

Span fv1; : : : ; vpg: The set of all linear combinations of
v1; : : : ; vp . Also, the subspace spanned (or generated) by
v1; : : : ; vp .

spanning set (for a subspace H/: Any set fv1; : : : ; vpg in H

such that H D Span fv1; : : : ; vpg.

spectral decomposition (of A): A representation

A D �1u1uT
1 C � � � C �nunuT

n

where fu1; : : : ; ung is an orthonormal basis of eigenvectors
ofA, and �1; : : : ; �n are the corresponding eigenvalues ofA.

spiral point (of a dynamical system inR2): The origin when the
trajectories spiral about 0.

stage-matrix model: A difference equation xkC1 D Axk where
xk lists the number of females in a population at time k, with
the females classified by various stages of development (such
as juvenile, subadult, and adult).

standard basis: The basis E D fe1; : : : ; eng for Rn consisting
of the columns of the n � n identity matrix, or the basis
f1; t; : : : ; tng for Pn.

standard matrix (for a linear transformation T /: The matrix A

such that T .x/ D Ax for all x in the domain of T .

standard position: The position of the graph of an equation
xTAx D c, when A is a diagonal matrix.

state vector: A probability vector. In general, a vector that de-
scribes the “state” of a physical system, often in connection
with a difference equation xkC1 D Axk .

steady-state vector (for a stochastic matrix P ): A probability
vector q such that Pq D q.

stiffness matrix: The inverse of a flexibility matrix. The j th
column of a stiffness matrix gives the loads that must be
applied at specified points on an elastic beam in order to
produce a unit deflection at the j th point on the beam.

stochastic matrix: A square matrix whose columns are proba-
bility vectors.

strictly dominant eigenvalue: An eigenvalue �1 of a matrix A

with the property that j�1j > j�k j for all other eigenvalues
�k of A.
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submatrix (of A): Any matrix obtained by deleting some rows
and/or columns of A; also, A itself.

subspace: A subset H of some vector space V such that H has
these properties: (1) the zero vector of V is in H ; (2) H

is closed under vector addition; and (3) H is closed under
multiplication by scalars.

supporting hyperplane (to a compact convex set S in Rn): A
hyperplane H D Œf :d� such that H \ S 6D ¿ and either
f .x/ � d for all x in S or f .x/ � d for all x in S .

symmetric matrix: A matrix A such that AT = A.

system of linear equations (or a linear system): A collection
of one or more linear equations involving the same set of
variables, say, x1; : : : ; xn.

T
tetrahedron: A three-dimensional solid object bounded by

four equal triangular faces, with three faces meeting at each
vertex.

total variance: The trace of the covariance matrix S of a matrix
of observations.

trace (of a square matrix A): The sum of the diagonal entries in
A, denoted by trA.

trajectory: The graph of a solution fx0; x1; x2; : : :g of a
dynamical system xkC1 D Axk , often connected by a thin
curve to make the trajectory easier to see. Also, the graph
of x.t/ for t � 0, when x.t/ is a solution of a differential
equation x0.t/ D Ax.t/.

transfer matrix: A matrix A associated with an electrical
circuit having input and output terminals, such that the output
vector is A times the input vector.

transformation (or function, or mapping) T from Rn to
Rm: A rule that assigns to each vector x in Rn a
unique vector T .x/ in Rm. Notation: T W Rn ! Rm. Also,
T W V ! W denotes a rule that assigns to each x in V a
unique vector T .x/ in W .

translation (by a vector p/: The operation of adding p to a
vector or to each vector in a given set.

transpose (of A): An n �m matrix AT whose columns are the
corresponding rows of the m � n matrix A.

trend analysis: The use of orthogonal polynomials to fit data,
with the inner product given by evaluation at a finite set of
points.

triangle inequality: kuC vk � kuk C kvk for all u, v.
triangular matrix: A matrix A with either zeros above or zeros

below the diagonal entries.

trigonometric polynomial: A linear combination of the
constant function 1 and sine and cosine functions such as
cosnt and sinnt .

trivial solution: The solution x D 0 of a homogeneous equation
Ax D 0.

U
uncorrelated variables: Any two variables xi and xj (with

i ¤ j ) that range over the i th and j th coordinates of the

observation vectors in an observation matrix, such that the
covariance sij is zero.

underdetermined system: A system of equations with fewer
equations than unknowns.

uniqueness question: Asks, “If a solution of a system exists, is
it unique—that is, is it the only one?”

unit consumption vector: A column vector in the Leontief
input–output model that lists the inputs a sector needs for
each unit of its output; a column of the consumption matrix.

unit lower triangularmatrix: A square lower triangular matrix
with ones on the main diagonal.

unit vector: A vector v such that kvk D 1.

upper triangular matrix: A matrix U (not necessarily square)
with zeros below the diagonal entries u11; u22; : : : :

V
Vandermonde matrix: An n � n matrix V or its transpose,

when V has the form

V D

2666664
1 x1 x2

1 � � � xn�1
1

1 x2 x2
2 � � � xn�1

2
:::

:::
:::

:::

1 xn x2
n � � � xn�1

n

3777775
variance (of a variable xj ): The diagonal entry sjj in the covari-

ance matrix S for a matrix of observations, where xj varies
over the j th coordinates of the observation vectors.

vector: A list of numbers; a matrix with only one column. In
general, any element of a vector space.

vector addition: Adding vectors by adding corresponding
entries.

vector equation: An equation involving a linear combination of
vectors with undetermined weights.

vector space: A set of objects, called vectors, on which two
operations are defined, called addition and multiplication by
scalars. Ten axioms must be satisfied. See the first definition
in Section 4.1.

vector subtraction: Computing uC .�1/v and writing the re-
sult as u � v.

W
weighted least squares: Least-squares problems with a

weighted inner product such as

hx; yi D w2
1x1y1 C � � � C w2

nxnyn:

weights: The scalars used in a linear combination.

Z
zero subspace: The subspace f0g consisting of only the zero

vector.

zero vector: The unique vector, denoted by 0, such that
uC 0 D u for all u. In Rn, 0 is the vector whose entries are
all zeros.



Answers to Odd-Numbered
Exercises

Chapter 1

Section 1.1, page 34

1. The solution is .x1; x2/ D .�8; 3/, or simply .�8; 3/.

3. .4=7; 9=7/

5. Replace row 2 by its sum with −5 times row 3, and then
replace row 1 by its sum with 4 times row 3.

7. The solution set is empty.

9. No solutions 11. .19;�8; 1/

13. .5; 3;�1/

15.
�8 C 4.1/ D �4

19 C 3.�8/ C 3.1/ D �2

3.19/ C 7.�8/ C 5.1/ D 6

17.
.5/ � 3.�1/ D 8

2.5/ C 2.3/ C 9.�1/ D 7

.3/ C 5.�1/ D �2

19. Consistent

21. The three lines have one point in common.

23. h ¤ 2 25. All h

27–33. Mark a statement True only if the statement is always
true. Giving you the answers here would defeat the purpose
of the true-false questions, which is to help you learn to read
the text carefully. The Study Guide will tell you where to
look for the answers, but you should not consult it until you
have made an honest attempt to find the answers yourself.

35. k C 3g C 2h D 0

37. The row reduction of
�

1 5 f

c d g

�
to�

1 5 f

0 d � 5c g � cf

�
shows that d � 5c must be

nonzero, since f and g are arbitrary. Otherwise, for some
choices of f and g the second row could correspond to an
equation of the form 0 D b, where b is nonzero. Thus
d ¤ 5c.

39. Swap row 1 and row 2; swap row 1 and row 2.

41. Replace row 3 by row 3C (�5) row 1; replace row 3 by row
3C (5) row 1.

43. 4T1 � T2 � T4 D 30

�T1 C 4T2 � T3 D 60

�T2 C 4T3 � T4 D 70

�T1 � T3 C 4T4 D 40

Section 1.2, page 47

1. Reduced echelon form: a and c. Echelon form: b and d.

3.

24 1 0 �1 �2

0 1 2 3

0 0 0 0

35. Pivot cols 1 and 2:
24 1 2 3 4

4 5 6 7

6 7 8 9

35.
5.

�
�

0

�
,
�

�

0 0

�
,
�

0

0 0

�

7.

8<:x1 D �8 � 2x2

x2 is free
x3 D 4

9.

8<:x1 D 6C 5x3

x2 D 5C 6x3

x3 is free

11.

8̂̂<̂
:̂

x1 D
4

3
x2 �

2

3
x3

x2 is free
x3 is free

13.

8̂̂̂̂
<̂
ˆ̂̂:

x1 D �3C 3x5

x2 D 1C 4x5

x3 is free
x4 D �4 � 9x5

x5 is free

A-1



A-2 Answers to Odd-Numbered Exercises

Note: The Study Guide discusses the common mistake
x3 D 0.

15.
x2 � 6x3 D 5

x1 � 2x2 C 7x3 D �4
, verify

5C 6x3 � 6x3 D 5

.6C 5x3/ � 2.5C 6x3/ C 7x3 D �4

17.
3x1 � 4x2 C 2x3 D 0

�9x1 C 12x2 � 6x3 D 0

�6x1 C 8x2 � 4x3 D 0

, verify

3
�

4
3
x2 �

2
3
x3

�
� 4x2 C 2x3 D 0

�9
�

4
3
x2 �

2
3
x3

�
C 12x2 � 6x3 D 0

�6
�

4
3
x2 �

2
3
x3

�
C 8x2 � 4x3 D 0

19. a. Consistent, with a unique solution

b. Inconsistent

21. h D 7=2

23. a. Inconsistent when h D 2 and k ¤ 8

b. A unique solution when h ¤ 2

c. Many solutions when h D 2 and k D 8

25–33. Read the text carefully, and write your answers before
you consult the Study Guide. Remember, a statement is true
only if it is true in all cases.

35. Yes. The system is consistent because with three pivots,
there must be a pivot in the third (bottom) row of the
coefficient matrix. The reduced echelon form cannot
contain a row of the form Œ0 0 0 0 0 1�.

37. If the coefficient matrix has a pivot position in every row,
then there is a pivot position in the bottom row, and there is
no room for a pivot in the augmented column. So, the
system is consistent, by Theorem 2.

39. If a linear system is consistent, then the solution is unique if
and only if every column in the coefficient matrix is a pivot
column; otherwise, there are infinitely many solutions.

41. An underdetermined system always has more variables than
equations. There cannot be more basic variables than there
are equations, so there must be at least one free variable.
Such a variable may be assigned infinitely many different
values. If the system is consistent, each different value of a
free variable will produce a different solution.

43. Yes, a system of linear equations with more equations than
unknowns can be consistent. The following system has a
solution .x1 D x2 D 1/:

x1 C x2 D 2

x1 � x2 D 0

3x1 C 2x2 D 5

45. p.t/ D 4C 8t � t2

Section 1.3, page 58

1.
�
�4

5

�
,
�

5

�4

�
3.

u 1 v 

u 2 v 

2v 

u 2 2v 

22v 

u

v

5. x1

24 4

�3

1

35C x2

24�8

7

0

35 D 24 9

�6

�5

35,
24 4x1

�3x1

2x1

35C 24�8x2

7x2

0

35 D 24 9

�6

�5

35,24 4x1 � 8x2

�3x1 C 7x2

2x1

35 D 24 9

�6

�5

35
4x1 � 8x2 D 9

�3x1 C 7x2 D �6

2x1 D �5

Usually the intermediate steps are not displayed.

7. a D u � 2v, b D 2u � 2v, c D 2u � 3:5v, d D 3u � 4v

9. x1

24 0

4

�1

35C x2

241

6

3

35C x3

24 5

�1

�8

35 D 240

0

0

35
11. Yes, b is a linear combination of a1, a2, and a3.

13. No, b is not a linear combination of the columns of A.

15. Noninteger weights are acceptable, of course, but some
simple choices are 0 � v1 C 0 � v2 D 0, and

1 � v1 C 0 � v2 D

24 7

1

�6

35 ; 0 � v1 C 1 � v2 D

24�5

3

0

35
1 � v1 C 1 � v2 D

24 2

4

�6

35 ; 1 � v1 � 1 � v2 D

24 12

�2

�6

35
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17. h D �17

19. Span fv1; v2g is the set of points on the line through v1

and 0.

21. Hint: Show that
�

2 2 h

�1 1 k

�
is consistent for all h and k.

Explain what this calculation shows about Span fu; vg.

23–31. Before you consult your Study Guide, read the entire
section carefully. Pay special attention to definitions and
theorem statements, and note any remarks that precede or
follow them.

33. a. No, three b. Yes, infinitely many
c. a1 D 1 � a1 C 0 � a2 C 0 � a3

35. a. 5v1 is the output of 5 day’s operation of mine #1.

b. The total output is x1v1 C x2v2, so x1 and x2 should

satisfy x1v1 C x2v2 D

�
150

2825

�
.

c. 1.5 days for mine #1 and 4 days for mine #2

37. .1:3; :9; 0/

39. a.

"
10=3

2

#
b. Add 3.5 g at .0; 1/, add .5 g at .8; 1/, and add 2 g at

.2; 4/.

41. Review Practice Problem 1 and then write a solution. The
Study Guide has a solution.

Section 1.4, page 66

1. The product is not defined because the number of columns
(2) in the 3 � 2 matrix does not match the number of entries
(3) in the vector.

3. Ax D

24 6 5

�4 �3

7 6

35� 1

�3

�
D 1

24 6

�4

7

35 � 3

24 5

�3

6

35
D

24 6

�4

7

35C 24�15

9

�18

35 D 24 �9

5

�11

35, and
Ax D

24 6 5

�4 �3

7 6

35� 1

�3

�
D

24 6.1/C 5.�3/

.�4/.1/C .�3/.�3/

7.1/C 6.�3/

35
D

24 �9

5

�11

35. Show your work here and for Exercises 4–6,

but thereafter perform the calculations mentally.

5. 6

�
7

�4

�
� 9

�
2

�5

�
C 1

�
�9

7

�
� 8

�
3

�2

�
D

�
�9

44

�

7.

2664
4 �5 7

�1 3 �8

7 �5 0

�4 1 2

3775
24x1

x2

x3

35 D
2664

6

�8

0

�7

3775

9. x1

�
4

0

�
C x2

�
1

1

�
C x3

�
�7

6

�
D

�
8

0

�
and�

4 1 �7

0 1 6

�24x1

x2

x3

35 D �8

0

�

11.

24 1 2 4 �2

0 1 5 2

�2 �4 �3 9

35, x D 24x1

x2

x3

35 D 24 0

�3

1

35
13. Yes. (Justify your answer.)

u

u are here

15. The equation Ax D b is not consistent when 2b1 C b2 is
nonzero. (Show your work.) The set of b for which the
equation is consistent is a line through the origin—the set of
all points .b1; b2/ satisfying b2 D �2b1.

17. Only three rows contain a pivot position. The equation
Ax D b does not have a solution for each b in R4, by
Theorem 4.

19. The work in Exercise 17 shows that statement (d) in
Theorem 4 is false. So all four statements in Theorem 4 are
false. Thus, not all vectors in R4 can be written as a linear
combination of the columns of A. Also, the columns of A

do not span R4.

21. The matrix Œv1 v2 v3� does not have a pivot in each row,
so the columns of the matrix do not span R4, by Theorem 4.
That is, fv1; v2; v3g does not span R4.

23–33. Read the text carefully and try to mark each exercise
statement True or False before you consult the Study Guide.
Several parts of Exercises 23–24 are implications of the
form

“If hstatement 1i, then hstatement 2i”

or equivalently,

“hstatement 2i, if hstatement 1i”

Mark such an implication as True if hstatement 2i is true in
all cases when hstatement 1i is true.

35. c1 D �4, c2 D �1, c3 D 3

37. Qx D v, where Q D Œq1 q2 q3� and x D

24x1

x2

x3

35
Note: If your answer is the equation Ax D b, you must
specify what A and b are.

39. Hint: Start with any 3 � 3 matrix B in echelon form that has
three pivot positions.

41. Write your solution before you check the Study Guide.

43. Hint: How many pivot columns does A have? Why?
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45. Given Ax1 D y1 and Ax2 D y2, you are asked to show that
the equation Ax D w has a solution, where w D y1 C y2.
Observe that w D Ax1 C Ax2 and use Theorem 5(a) with x1

and x2 in place of u and v, respectively. That is,
w D Ax1 C Ax2 D A.x1 C x2/. So the vector x D x1 C x2

is a solution of w D Ax.

47. The columns do not span R4.

49. The columns span R4.

51. Delete column 4 of the matrix in Exercise 49. It is also
possible to delete column 3 instead of column 4.

Section 1.5, page 75

1. The system has a nontrivial solution because there is a free
variable, x3.

3. The system has a nontrivial solution because there is a free
variable, x3.

5. x D

24x1

x2

x3

35 D x3

24 5

�2

1

35

7. x D

2664
x1

x2

x3

x4

3775 D x3

2664
�9

4

1

0

3775C x4

2664
8

�5

0

1

3775
9. x D x2

244

1

0

35C x3

24�3

0

1

35
11. Hint: The system derived from the reduced echelon form

is

x1 � 4x2 C 5x6 D 0

x3 � x6 D 0

x5 � 4x6 D 0

0 D 0

The basic variables are x1, x3, and x5. The remaining
variables are free. The Study Guide discusses two mistakes
that are often made on this type of problem.

13.
�

2 �8 6

�1 4 �3

�0@x2

24 4

1

0

35C x3

24 �3

0

1

351A D
x2

�
2 �8 6

�1 4 �3

�24 4

1

0

35C
x3

�
2 �8 6

�1 4 �3

�24 �3

0

1

35
D x2

�
0

0

�
C x3

�
0

0

�
D

�
0

0

�

15.

2664
1 �4 �2 0 3 �5

0 0 1 0 0 �1

0 0 0 0 1 �4

0 0 0 0 0 0

3775
0BBBBBB@x2

26666664
4

1

0

0

0

0

37777775C x4

26666664
0

0

0

1

0

0

37777775C x6

26666664
�5

0

1

0

4

1

37777775

1CCCCCCA

D x2

2664
1 �4 �2 0 3 �5

0 0 1 0 0 �1

0 0 0 0 1 �4

0 0 0 0 0 0

3775
26666664

4

1

0

0

0

0

37777775C

x4

2664
1 �4 �2 0 3 �5

0 0 1 0 0 �1

0 0 0 0 1 �4

0 0 0 0 0 0

3775
26666664

0

0

0

1

0

0

37777775C

x6

2664
1 �4 �2 0 3 �5

0 0 1 0 0 �1

0 0 0 0 1 �4

0 0 0 0 0 0

3775
26666664
�5

0

1

0

4

1

37777775
D x2

2664
0

0

0

0

3775C x4

2664
0

0

0

0

3775C x6

2664
0

0

0

0

3775 D
2664

0

0

0

0

3775

17. x D

24 5

�2

0

35C x3

24 4

�7

1

35 D pC x3q: Geometrically, the

solution set is the line through

24 5

�2

0

35 parallel to

24 4

�7

1

35.

19. x D

24x1

x2

x3

35 D 24�2

1

0

35C x3

24 5

�2

1

35. The solution set is the
line through

24�2

1

0

35, parallel to the line that is the solution
set of the homogeneous system in Exercise 5.

21. Let u D

24�9

1

0

35 ; v D

244

0

1

35 ; p D

24�2

0

0

35. The solution of
the homogeneous equation is x D x2uC x3v, the plane
through the origin spanned by u and v. The solution set of
the nonhomogeneous system is x D pC x2uC x3v, the
plane through p parallel to the solution set of the
homogeneous equation.

23. x D aC tb, where t represents a parameter, or

x D
�

x1

x2

�
D

�
�2

0

�
C t

�
�5

3

�
, or

�
x1 D �2 � 5t

x2 D 3t
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25. x D pC t.q � p/ D

�
2

�5

�
C t

�
�5

6

�
27–35. It is important to read the text carefully and write your

answers. After that, check the Study Guide, if necessary.

37. Avh D A.w � p/ D Aw � Ap D b � b D 0

39. When A is the 3 � 3 zero matrix, every x in R3 satisfies
Ax D 0. So the solution set is all vectors in R3.

41. a. When A is a 3 � 3 matrix with three pivot positions, the
equation Ax D 0 has no free variables and hence has no
nontrivial solution.

b. With three pivot positions, A has a pivot position in each
of its three rows. By Theorem 4 in Section 1.4, the
equation Ax D b has a solution for every possible b.
The word “possible” in the exercise means that the only
vectors considered in this case are those in R3, because
A has three rows.

43. a. When A is a 3 � 2 matrix with two pivot positions, each
column is a pivot column. So the equation Ax D 0 has
no free variables and hence no nontrivial solution.

b. With two pivot positions and three rows, A cannot have
a pivot in every row. So the equation Ax D b cannot
have a solution for every possible b (in R3), by Theorem
4 in Section 1.4.

45. One answer: x D
�

3

�1

�
47. Your example should have the property that the sum of the

entries in each row is zero. Why?

49. One answer is A D

�
1 �4

1 �4

�
. The Study Guide shows how

to analyze the problem in order to construct A. If b is any
vector not a multiple of the first column of A, then the
solution set of Ax D b is empty and thus cannot be formed
by translating the solution set of Ax D b. This does not
contradict Theorem 6, because that theorem applies when
the equation Ax D b has a nonempty solution set.

51. If c is a scalar, then A.cu/ D cAu, by Theorem 5(b) in
Section 1.4. If u satisfies Ax D 0, then Au D 0,
cAu D c � 0 D 0, and so A.cu/ D 0.

Section 1.6, page 82

1. The general solution is pGoods D :875pServices; with pServices

free. One equilibrium solution is pServices D 1000 and
pGoods D 875. Using fractions, the general solution could be
written pGoods D .7=8/pServices, and a natural choice of
prices might be pServices D 80 and pGoods D 70. Only the
ratio of the prices is important. The economic equilibrium is
unaffected by a proportional change in prices.

3. a. Distribution of
Output From

C&M F&P Mach.
Output # # # Input Purchased By

.2 .8 .4 ! C&M

.3 .1 .4 ! F&P

.5 .1 .2 ! Mach.

b.

24 :8 �:8 �:4 0

�:3 :9 �:4 0

�:5 �:1 :8 0

35
c. pChemicals D 141:7, pFuels D 91:7, pMachinery D 100. To

two significant figures, pChemicals D 140; pFuels D 92;

pMachinery D 100.

5. B2S3 C 6H2O! 2H3BO3 C 3H2S

7. 3NaHCO3C H3C6H5O7 ! Na3C6H5O7 C 3H2OC 3CO2

9. 15PbN6 C 44CrMn2O8 !

5Pb3O4 C 22Cr2O3 C 88MnO2 C 90NO

11.

8̂̂<̂
:̂

x1 D 20 � x3

x2 D 60C x3

x3 is free
x4 D 60

The largest value of x3 is 20.

13. a.

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

x1 D x3 � 40

x2 D x3 C 10

x3 is free
x4 D x6 C 50

x5 D x6 C 60

x6 is free

b.

8̂̂<̂
:̂

x2 D 50

x3 D 40

x4 D 50

x5 D 60

Section 1.7, page 89

Justify your answers to Exercises 1–22.

1. Lin. dep. 3. Lin. indep.

5. Lin. indep. 7. Lin. depen.

9. a. h D 4 b. h D 4

11. h D 6 13. All h

15. Lin. depen. 17. Lin. depen. 19. Lin. indep.

21–27. Read through the definitions, examples, and theorems
for this section before you consult the Study Guide.

29.

24 � �

0 �

0 0

35 31.

2664
�

0

0 0

0 0

3775 and

2664
0

0 0

0 0

0 0

3775
33. All five columns of the 7 � 5 matrix A must be pivot

columns. Otherwise, the equation Ax D 0 would have a free
variable, in which case the columns of A would be linearly
dependent.

35. A: Any 3 � 2 matrix with two nonzero columns such that
neither column is a multiple of the other. In this case, the
columns are linearly independent, and so the equation
Ax D 0 has only the trivial solution.
B: Any 3 � 2 matrix with one column a multiple of the
other.
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37. x D

24 1

1

�1

35
39. True, by Theorem 7. (The Study Guide adds another

justification.)

41. False. The vector v1 could be the zero vector.

43. True. A linear dependence relation among v1, v2, v3 may be
extended to a linear dependence relation among v1, v2, v3,
v4 by placing a zero weight on v4.

45. You should be able to work this important problem without
help. Write your solution before you consult the Study
Guide.

47. B D

2664
8 �3 2

�9 4 �7

6 �2 4

5 �1 10

3775. Other choices are possible.
49. Each column of A that is not a column of B is in the set

spanned by the columns of B .

Section 1.8, page 97

1.
�

2

�6

�
;

�
2a

2b

�
3. x D

243

1

2

35, unique solution

5. x D

243

1

0

35, not unique 7. a D 6; b D 4

9. x D x3

2664
9

4

1

0

3775C x4

2664
�7

�3

0

1

3775
11. Yes, because the system represented by ŒA b � is

consistent.

13.

x1

x2

u

v

T(v)

T(u)

A reflection through the origin

15.

x1

x2

u

v T(v)

T(u)

A projection onto the x2-axis.

17.
�

15

20

�
;

�
4

�20

�
;

�
19

0

�
19.

�
13

7

�
;

�
2x1 � x2

5x1 C 6x2

�
21–29. If you consult your Study Guide before you make a good

effort to answer the true-false questions, you will destroy
most of their value.

31.

x1

x2

u

cu

T (cu)
T(u)

T(u)

T(u 1 v)

u 1 v

x1

x2

T(v)

v
u

33. Hint: Show that the image of a line (that is, the set of
images of all points on a line) can be represented by the
parametric equation of a line.

35. a. The line through p and q is parallel to q � p. (See
Exercises 25 and 26 in Section 1.5.) Since p is on the
line, the equation of the line is x D pC t .q � p/.
Rewrite this as x D p � tpC tq and x D .1 � t/pC tq.

b. Consider x D .1 � t /pC tq for t such that 0 � t � 1.
Then, by linearity of T , for 0 � t � 1

T .x/ D T ..1 � t /pC tq/ D .1 � t/T .p/C tT .q/ (�)

If T .p/ and T .q/ are distinct, then (*) is the equation for
the line segment between T .p/ and T .q/, as shown in
part (a). Otherwise, the set of images is just the single
point T .p/, because

.1 � t/T .p/C tT .q/ D .1 � t/T .p/C tT .p/ D T .p/

37. a. When b D 0; f .x/ D mx. In this case, for all x; y in R
and all scalars c and d ,

f .cx C dy/ D m.cx C dy/ D mcx Cmdy

D c.mx/C d.my/ D c �f .x/C d �f .y/

This shows that f is linear.

b. When f .x/ D mx C b, with b nonzero,
f .0/ D m.0/C b D b ¤ 0.
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c. In calculus, f is called a “linear function” because the
graph of f is a line.

39. Hint: Since fv1; v2; v3g is linearly dependent, you can write
a certain equation and work with it.

41. One possibility is to show that T does not map the zero
vector into the zero vector, something that every linear
transformation does do: T .0; 0/ D .0; 4; 0/.

43. Take u and v in R3 and let c and d be scalars. Then

cuC dv D .cu1 C dv1; cu2 C dv2; cu3 C dv3/

The transformation T is linear because

T .cuC dv/ D .cu1 C dv1; cu2 C dv2;�.cu3 C dv3//

D .cu1 C dv1; cu2 C dv2;�cu3 � dv3/

D .cu1; cu2;�cu3/C .dv1; dv2;�dv3/

D c.u1; u2;�u3/C d.v1; v2;�v3/

D cT .u/C dT .v/

45. All multiples of .7; 9; 0; 2/

47. Yes. One choice for x is .4; 7; 1; 0/.

Section 1.9, page 106

1.

2664
2 �5

1 2

2 0

1 0

3775 3.
�

0 1

�1 0

�
5.
�

1 0

�2 1

�

7.
�
�1=
p

2 1=
p

2

1=
p

2 1=
p

2

�
9.
�

0 �1

�1 3

�
11. The described transformation T maps e1 into �e1 and maps

e2 into �e2. A rotation through � radians also maps e1 into
�e1 and maps e2 into �e2. Since a linear transformation is
completely determined by what it does to the columns of the
identity matrix, the rotation transformation has the same
effect as T on every vector in R2.

13.

x1

x2

T(e2)
2T(e1)

T(e1)

T(2, 1)

15.

242 0 �3

4 0 0

1 �1 1

35 17.

2664
0 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

3775
19.

�
1 �5 4

0 1 �6

�
21. x D

�
7

�4

�
23–31. Read the text carefully, and write your answers before

you consult the Study Guide. Remember, a statement is true
only if it is true in all cases.

Justify your answers to Exercises 33–35.

33. Not one-to-one and does not map R4 onto R4

35. Not one-to-one but maps R3 onto R2

37.

2664
� �

0 �

0 0

0 0 0

3775
39. n. (Explain why, and then check the Study Guide).

41. Hint: If ej is the j th column of In, then Bej is the j th
column of B .

43. Hint: Is it possible that m > n? What about m < n?

45. No. (Explain why.)

47. No. (Explain why.)

Section 1.10, page 115

1. a. x1

2664
110

4

20

2

3775C x2

2664
130

3

18

5

3775 D
2664

295

9

48

8

3775, where x1 is the

number of servings of Cheerios and x2 is the number of
servings of 100% Natural Cereal.

b.

2664
110 130

4 3

20 18

2 5

3775� x1

x2

�
D

2664
295

9

48

8

3775. Mix 1.5 servings of

Cheerios together with 1 serving of 100%Natural Cereal.

3. a. She should mix .99 serving of Mac and Cheese, 1.54
servings of broccoli, and .79 serving of chicken to get
her desired nutritional content.

b. She should mix 1.09 servings of shells and white
cheddar, .88 serving of broccoli, and 1.03 servings of
chicken to get her desired nutritional content. Notice
that this mix contains significantly less broccoli, so she
should like it better.

5. Ri D v,

2664
11 �5 0 0

�5 10 �1 0

0 �1 9 �2

0 0 �2 10

3775
2664

I1

I2

I3

I4

3775 D
2664

50

�40

30

�30

3775
i D

2664
I1

I2

I3

I4

3775 D
2664

3:68

�1:90

2:57

�2:49

3775
7. Ri D v,

2664
12 �7 0 �4

�7 15 �6 0

0 �6 14 �5

�4 0 �5 13

3775
2664

I1

I2

I3

I4

3775 D
2664

40

30

20

�10

3775
i D

2664
I1

I2

I3

I4

3775 D
2664

11:43

10:55

8:04

5:84

3775
9. xkC1 DMxk for k D 0; 1; 2; : : : ; where

M D

�
:93 :05

:07 :95

�
and x0 D

�
800;000

500;000

�
:

The population in 2022 (for k D 2) is x2 D

�
741;720

558;280

�
.
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11. 32 in Pullman, 76 in Spokane, and 212 in Seattle.

13. a. The population of the city decreases. After 7 years, the
populations are about equal, but the city population
continues to decline. After 20 years, there are only
417,000 persons in the city (417,456 rounded off).
However, the changes in population seem to grow
smaller each year.

b. The city population is increasing slowly, and the
suburban population is decreasing. After 20 years, the
city population has grown from 350,000 to about
370,000.

Chapter 1 Supplementary Exercises, page 117

1. F 2. F 3. T 4. F 5. T

6. T 7. F 8. F 9. T 10. F

11. T 12. F 13. T 14. T 15. T

16. T 17. F 18. T 19. F 20. T

21. F 22. F 23. F 24. T 25. T

27. a. Any consistent linear system whose echelon form is24 � � �

0 � �

0 0 0 0

35 or

24 � � �

0 0 �

0 0 0 0

35
or

24 0 � �

0 0 �

0 0 0 0

35
b. Any consistent linear system whose reduced echelon

form is I3.

c. Any inconsistent linear system of three equations in
three variables.

29. a. The solution set: (i) is empty if h D 12 and k ¤ 2; (ii)
contains a unique solution if h ¤ 12; (iii) contains
infinitely many solutions if h D 12 and k D 2.

b. The solution set is empty if k C 3h D 0; otherwise, the
solution set contains a unique solution.

31. a. Set v1 D

24 2

�5

7

35, v2 D

24 �4

1

�5

35, v3 D

24 �2

1

�3

35, and
b D

24 b1

b2

b3

35. “Determine if v1, v2, v3 span R3.”

Solution: No.

b. Set A D

24 2 �4 �2

�5 1 1

7 �5 �3

35. “Determine if the
columns of A span R3.”

c. Define T .x/ D Ax. “Determine if T maps R3 onto R3.”

33.
�

5

6

�
D

4

3

�
2

1

�
C

7

3

�
1

2

�
or
�

5

6

�
D�

8=3

4=3

�
C

�
7=3

14=3

�
34. Hint: Construct a “grid” on the x1x2-plane determined by

a1 and a2.

35. A solution set is a line when the system has one free
variable. If the coefficient matrix is 2 � 3, then two of the
columns should be pivot columns. For instance, take�

1 2 �

0 3 �

�
. Put anything in column 3. The resulting

matrix will be in echelon form. Make one row replacement
operation on the second row to create a matrix not in

echelon form, such as
�

1 2 1

0 3 1

�
�

�
1 2 1

1 5 2

�
.

36. Hint: How many free variables are in the equation Ax D 0?

37. E D

24 1 0 �3

0 1 2

0 0 0

35
39. a. If the three vectors are linearly independent, then a; c;

and f must all be nonzero.

b. The numbers a; : : : ; f can have any values.

40. Hint: List the columns from right to left as v1; : : : ; v4.

41. Hint: Use Theorem 7.

43. Let M be the line through the origin that is parallel to the
line through v1, v2, and v3. Then v2 � v1 and v3 � v1 are
both on M . So one of these two vectors is a multiple of the
other, say v2 � v1 D k.v3 � v1). This equation produces a
linear dependence relation: .k � 1/v1 C v2 � kv3 D 0.

A second solution: A parametric equation of the line is
x D v1 C t.v2 � v1/: Since v3 is on the line, there is some t0
such that v3 D v1 C t0.v2 � v1/ D .1 � t0/v1 C t0v2. So v3

is a linear combination of v1 and v2, and fv1, v2, v3g is
linearly dependent.

45.

24 1 0 0

0 �1 0

0 0 1

35 47. a D 4=5 and b D �3=5

49. a. The vector lists the number of three-, two-, and
one-bedroom apartments provided when x1 floors of
plan A are constructed.

b. x1

24 3

7

8

35C x2

24 4

4

8

35C x3

24 5

3

9

35
c. Use 2 floors of plan A and 15 floors of plan B. Or, use 6

floors of plan A, 2 floors of plan B, and 8 floors of plan
C. These are the only feasible solutions. There are other
mathematical solutions, but they require a negative
number of floors of one or two of the plans, which
makes no physical sense.
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Chapter 2

Section 2.1, page 132

1.
�
�4 0 2

�8 6 �4

�
,
�

3 �5 3

�7 2 �7

�
, not defined,�

1 13

�7 �6

�
3.

�
�1 1

�5 5

�
,
�

12 �3

15 �6

�

5. a. Ab1 D

24 �7

7

12

35, Ab2 D

24 6

�16

�11

35,
AB D

24 �7 6

7 �16

12 �11

35
b. AB D

24 �1.3/C 2.�2/ �1.�4/C 2.1/

5.3/C 4.�2/ 5.�4/C 4.1/

2.3/ � 3.�2/ 2.�4/ � 3.1/

35
D

24 �7 6

7 �16

12 �11

35
7. 3 � 7 9. k D 8

11. AD D

24 2 3 5

2 6 15

2 12 25

35, DA D

24 2 2 2

3 6 9

5 20 25

35
Right-multiplication (that is, multiplication on the right) by
D multiplies each column of A by the corresponding
diagonal entry of D. Left-multiplication by D multiplies
each row of A by the corresponding diagonal entry of D.
The Study Guide tells how to make AB D BA, but you
should try this yourself before looking there.

13. Hint: One of the two matrices is Q.

15–23. Answer the questions before looking in the Study Guide.

25. b1 D

�
5

2

�
, b2 D

�
�3

�2

�
27. The third column of AB is the sum of the first two columns

of AB . Here’s why. Write B D Œ b1 b2 b3 �. By
definition, the third column of AB is Ab3. If b3 D b1 C b2,
then Ab3 D A.b1 C b2/ D Ab1 C Ab2, by a property of
matrix-vector multiplication.

29. The columns of A are linearly dependent. Why?

31. Hint: Suppose x satisfies Ax D 0, and show that x must
be 0.

33. Hint: Use the results of Exercises 31 and 32, and apply the
associative law of multiplication to the product CAD.

35. uT v D vT u D �2aC 3b � 4c,

uvT D

24 �2a �2b �2c

3a 3b 3c

�4a �4b �4c

35 ;

vuT D

24 �2a 3a �4a

�2b 3b �4b

�2c 3c �4c

35
37. Hint: For Theorem 2(b), show that the .i; j /-entry of

A.B C C / equals the .i; j /-entry of AB C AC .

39. Hint: Use the definition of the product ImA and the fact that
Imx D x for x in Rm.

41. Hint: First write the .i; j /-entry of .AB/T , which is the
.j; i/-entry of AB . Then, to compute the .i; j /-entry in
BTAT , use the facts that the entries in row i of BT are
b1i ; : : : ; bni , because they come from column i of B , and
the entries in column j of AT are aj1; : : : ; ajn, because they
come from row j of A.

43. The answer here depends on the choice of matrix program.
For MATLAB, use the help command to read about
zeros, ones, eye, and diag.

45. Display your results and report your conclusions.

47. The matrix S “shifts” the entries in a vector .a; b; c; d; e/ to
yield .b; c; d; e; 0/. S5 is the 5 � 5 zero matrix. So is S6.

49. x D

2664
1

0

1

0

3775

51.
�

1 1 1 1 1 1 2 2 2 2

2 3 16 24 25 26 6 7 19 26

�
Section 2.2, page 142

1.
�

2 �3

�5 8

�
3.

1

3

�
3 3

�7 �8

�
or
�

1 1

�7=3 �8=3

�
5.

�
8 3

5 2

� �
2 �3

�5 8

�
D

�
1 0

0 1

�
7. x1 D 7 and x2 D �18

9. a and b:
�
�9

4

�
,
�

11

�5

�
,
�

6

�2

�
, and

�
13

�5

�
11–19. Write out your answers before checking the Study Guide.

21. The proof can be modeled after the proof of Theorem 5.

23. AB D AC ) A�1AB D A�1AC ) IB D IC )

B D C . No, in general, B and C can be different when A

is not invertible. See Exercise 10 in Section 2.1.

25. D D C�1B�1A�1. Show that D works.

27. A D BCB�1
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29. After you find X D CB � A, show that X is a solution.

31. Hint: Consider the equation Ax D 0.

33. Hint: If Ax D 0 has only the trivial solution, then there are
no free variables in the equation Ax D 0, and each column
of A is a pivot column.

35. Hint: Consider the case a D b D 0. Then consider the

vector
�
�b

a

�
, and use the fact that ad � bc D 0.

37. Hint: For part (a), interchange A and B in the box following
Example 6 in Section 2.1, and then replace B by the identity
matrix. For parts (b) and (c), begin by writing

A D

24 row1.A/

row2.A/

row3.A/

35
39.

�
�7 2

4 �1

�
41.

24 8 3 1

10 4 1

7=2 3=2 1=2

35

43. A�1 D B D

2666664
1 0 0 � � � 0

�1 1 0 0

0 �1 1
:::

: : :
:::

0 0 � � � �1 1

3777775. Hint: For
j D 1; : : : ; n, let aj , bj , and ej denote the j th columns of
A; B , and I , respectively. Use the facts that aj � ajC1 D

ej and bj D ej � ejC1 for j D 1; : : : ; n � 1, and
an D bn D en.

45.

24 3

�6

4

35. Find this by row reducing Œ A e3 �:

47. C D

�
1 1 �1

�1 1 0

�
49. .27, .30, and .23 inch, respectively

51. 12, 1.5, 21.5, and 12 newtons, respectively

Section 2.3, page 148
The abbreviation IMT (here and in the Study Guide) denotes the
Invertible Matrix Theorem (Theorem 8).

1. Invertible, by the IMT. Neither column of the matrix is a
multiple of the other column, so they are linearly
independent. Also, the matrix is invertible by Theorem 4 in
Section 2.2 because the determinant is nonzero.

3. Invertible, by the IMT. The matrix row reduces to24 5 0 0

0 � 7 0

0 0 � 1

35 and has 3 pivot positions.

5. Invertible, by the IMT. The matrix row reduces to24 1 0 5

0 4 7

0 0 9

35 and has three pivot positions.

7. Not invertible, by the IMT. The matrix row reduces to2664
� 1 0 2 1

0 � 3 �1 �2

0 0 7 0

0 0 0 0

3775 and is not row equivalent to I4.

9. The 4 � 4 matrix has four pivot positions, so it is invertible
by the IMT.

11–19. The Study Guide will help, but first try to answer the
questions based on your careful reading of the text.

21. A square upper triangular matrix is invertible if and only if
all the entries on the diagonal are nonzero. Why?

Note: The answers below for Exercises 15–29 mention the IMT.
In many cases, part or all of an acceptable answer could also be
based on results that were used to establish the IMT.

23. If A has two identical columns then its columns are linearly
dependent. Part (e) of the IMT shows that A cannot be
invertible.

25. If A is invertible, so is A�1, by Theorem 6 in Section 2.2.
By (e) of the IMT applied to A�1, the columns of A�1 are
linearly independent.

27. By (e) of the IMT, D is invertible. Thus the equation
Dx D b has a solution for each b in R7, by (g) of the IMT.
Can you say more?

29. The matrix G cannot be invertible, by Theorem 5 in Section
2.2 or by the paragraph following the IMT. So (g) of the
IMT is false and so is (h). The columns of G do not span Rn.

31. Statement (b) of the IMT is false for K, so statements (e)
and (h) are also false. That is, the columns of K are linearly
dependent and the columns do not span Rn.

33. Hint: Use the IMT first.

35. Let W be the inverse of AB . Then ABW D I and
A.BW / D I . Unfortunately, this equation by itself does not
prove that A is invertible. Why not? Finish the proof before
you check the Study Guide.

37. Since the transformation x 7! Ax is not one-to-one,
statement (f) of the IMT is false. Then (i) is also false and
the transformation x 7! Ax does not map Rn onto Rn. Also,
A is not invertible, which implies that the transformation
x 7! Ax is not invertible, by Theorem 9.

39. Hint: If the equation Ax D b has a solution for each b, then
A has a pivot in each row (Theorem 4 in Section 1.4). Could
there be free variables in an equation Ax D b?

41. Hint: First show that the standard matrix of T is invertible.
Then use a theorem or theorems to show that

T�1.x/ D Bx, where B D

�
3 7

4 9

�
.

43. Hint: To show that T is one-to-one, suppose that
T .u/ D T .v/ for some vectors u and v in Rn. Deduce
that u D v. To show that T is onto, suppose y represents
an arbitrary vector in Rn and use the inverse S to produce
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an x such that T .x/ D y. A second proof can be given
using Theorem 9 together with a theorem from
Section 1.9.

45. Hint: Consider the standard matrices of T and U .

47. Given any v in Rn, we may write v D T .x) for some x,
because T is an onto mapping. Then, the assumed
properties of S and U show that S.v/ D S.T .x// D

x and U.v/ D U.T .x// D x. So S.v/ and U.v/ are equal for
each v. That is, S and U are the same function from Rn

into Rn.

49. a. The exact solution of (3) is x1 D 3:94 and
x2 D :49. The exact solution of (4) is
x1 D 2:90 and x2 D 2:00.

b. When the solution of (4) is used as an approximation for
the solution in (3), the error in using the value of 2.90
for x1 is about 26%, and the error in using 2.0 for x2 is
about 308%.

c. The condition number of the coefficient matrix is 3363.
The percentage change in the solution from (3) to (4) is
about 7700 times the percentage change in the right side
of the equation. This is the same order of magnitude as
the condition number. The condition number gives a
rough measure of how sensitive the solution of Ax D b
can be to changes in b. Further information about the
condition number is given at the end of Chapter 6 and in
Chapter 7.

51. cond.A/ � 69;000, which is between 104 and 105. So about
4 or 5 digits of accuracy may be lost. Several experiments
with MATLAB should verify that x and x1 agree to 11 or 12
digits.

53. Some versions of MATLAB issue a warning when asked to
invert a Hilbert matrix of order about 12 or larger using
floating-point arithmetic. The product AA�1 should have
several off-diagonal entries that are far from being zero. If
not, try a larger matrix.

Section 2.4, page 154

1.
�

A B

EAC C EB CD

�
3.
�

Y Z

W X

�
5. Y D B�1 (explain why), X D �B�1A, Z D C

7. X D A�1 (why?), Y D �BA�1, Z D 0 (why?)

9. X D �A21A�1
11 , Y D �A31A�1

11 , B22 D A22 � A21A�1
11 A12

11–13. You can check your answers in the Study Guide.

15. Hint: Suppose A is invertible, and let A�1 D

�
D E

F G

�
.

Show that BD D I and CG D I . This implies that B and
C are invertible. (Explain why!) Conversely, suppose B and
C are invertible. To prove that A is invertible, guess what
A�1 must be and check that it works.

17.
�

A11 A12

A21 A22

�
D�

I 0

A21A�1
11 I

��
A11 0

0 S

��
I A�1

11 A12

0 I

�
with S D A22 � A21A�1

11 A12.

19. GkC1 D
�
Xk xkC1

� � XT
k

xT
kC1

�
D XkXT

k C xkC1xT
kC1

D Gk C xkC1xT
kC1

Only the outer product matrix xkC1xT
kC1

needs to be
computed (and then added to Gk).

21. W.s/ D Im � C.A � sIn/�1B . This is the Schur
complement of A � sIn in the system matrix.

23. a. A2 D

�
1 0

3 �1

��
1 0

3 �1

�
D

�
1C 0 0C 0

3 � 3 0C .�1/2

�
D

�
1 0

0 1

�
b. M 2 D

�
A 0

I �A

��
A 0

I �A

�
D

�
A2 C 0 0C 0

A � A 0C .�A/2

�
D

�
I 0

0 I

�
25. If A1 and B1 are .k C 1/ � .k C 1/ and lower triangular,

then we can write A1 D

�
a 0T

v A

�
and B1 D

�
b 0T

w B

�
,

where A and B are k � k and lower triangular, v and w are
in Rk , and a and b are suitable scalars. Assume that the
product of k � k lower triangular matrices is lower
triangular, and compute the product A1B1. What do you
conclude?

27. Use Example 5 to find the inverse of a matrix of the form

B D

�
B11 0

0 B22

�
, where B11 is p � p, B22 is q � q and

B is invertible. Partition the matrix A, and apply your result
twice to find that

A�1
D

266664
�5 2 0 0 0

3 �1 0 0 0

0 0 1=2 0 0

0 0 0 3 �4

0 0 0 �5=2 7=2

377775
29. a, b. The commands to be used in these exercises

will depend on the matrix program.
c. The algebra needed comes from the block matrix

equation�
A11 0

A21 A22

��
x1

x2

�
D

�
b1

b2

�
where x1 and b1 are in R20 and x2 and b2 are in R30.
Then A11x1 D b1, which can be solved to produce x1.
The equation A21x1 C A22x2 D b2 yields
A22x2 D b2 � A21x1, which can be solved for x2 by row
reducing the matrix ŒA22 c�, where c D b2 � A21x1.
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Section 2.5, page 162

1. Ly D b) y D

24 �7

�2

6

35, U x D y) x D

24 3

4

�6

35

3. y D

24 1

3

3

35, x D 24 �1

3

3

35 5. y D

2664
1

5

1

�3

3775, x D
2664
�2

�1

2

�3

3775
7. LU D

�
1 0

�3=2 1

��
2 5

0 7=2

�

9.

24 1 0 0

�1 1 0

3 2=3 1

3524 3 �1 2

0 �3 12

0 0 �8

35
11.

24 1 0 0

2 1 0

�1=3 1 1

3524 3 �6 3

0 5 �4

0 0 5

35

13.

2664
1 0 0 0

�1 1 0 0

4 5 1 0

�2 �1 0 1

3775
2664

1 3 �5 �3

0 �2 3 1

0 0 0 0

0 0 0 0

3775
15.

24 1 0 0

3 1 0

�1=2 �2 1

3524 2 �4 4 �2

0 3 �5 3

0 0 0 5

35
17. U�1 D

24 1=4 3=8 1=4

0 �1=2 1=2

0 0 1=2

35,
L�1 D

24 1 0 0

1 1 0

�2 0 1

35,
A�1 D

24 1=8 3=8 1=4

�3=2 �1=2 1=2

�1 0 1=2

35
19. Hint: Think about row reducing

�
A I

�
.

21. Hint: Represent the row operations by a sequence of
elementary matrices.

23. a. Denote the rows of D as transposes of column vectors.
Then partitioned matrix multiplication yields

A D CD D
�
c1 � � � c4

�264 dT
1

:::

dT
4

375
D c1dT

1 C � � � C c4dT
4

b. A has 40,000 entries. Since C has 1600 entries and D

has 400 entries, together they occupy only 5% of the
memory needed to store A.

25. Explain why U , D, and V T are invertible. Then use a
theorem on the inverse of a product of invertible matrices.

27. a. i2i1 i2 i3

v3v2v1

1/2 ohm
9/2

ohms

b. i2i1 i2 i3

3/4 ohm
v3v2v1

6
ohms

29. a.
�

1CR2=R1 �R2

�1=R1 �R2=.R1R3/ � 1=R3 1CR2=R3

�
b. A D

�
1 0

�1=6 1

��
1 �12

0 1

��
1 0

�1=36 1

�
i2i1 i2 i3 i3 i4

v3 v4v2v1
36

ohms
6

ohms

12 ohms

31. a. LD

26666666666664

1 0 0 0 0 0 0 0

�:25 1 0 0 0 0 0 0

�:25 �:0667 1 0 0 0 0 0

0 �:2667 �:2857 1 0 0 0 0

0 0 �:2679 �:0833 1 0 0 0

0 0 0 �:2917 �:2921 1 0 0

0 0 0 0 �:2697 �:0861 1 0

0 0 0 0 0 �:2948 �:2931 1

37777777777775

U D

26666666666664

4 �1 �1 0 0 0 0 0

0 3:75 �:25 �1 0 0 0 0

0 0 3:7333 �1:0667 �1 0 0 0

0 0 0 3:4286 �:2857 �1 0 0

0 0 0 0 3:7083 �1:0833 �1 0

0 0 0 0 0 3:3919 �:2921 �1

0 0 0 0 0 0 3:7052 �1:0861

0 0 0 0 0 0 0 3:3868

37777777777775
b. x D .3:9569; 6:5885; 4:2392; 7:3971; 5:6029; 8:7608; 9:4115; 12:0431/

c. A�1 D

26666666666664

:2953 :0866 :0945 :0509 :0318 :0227 :0100 :0082

:0866 :2953 :0509 :0945 :0227 :0318 :0082 :0100

:0945 :0509 :3271 :1093 :1045 :0591 :0318 :0227

:0509 :0945 :1093 :3271 :0591 :1045 :0227 :0318

:0318 :0227 :1045 :0591 :3271 :1093 :0945 :0509

:0227 :0318 :0591 :1045 :1093 :3271 :0509 :0945

:0100 :0082 :0318 :0227 :0945 :0509 :2953 :0866

:0082 :0100 :0227 :0318 :0509 :0945 :0866 :2953

37777777777775
Obtain A�1 directly and then compute A�1 � U�1L�1

to compare the two methods for inverting a matrix.

Section 2.6, page 169

1. C D

24 :10 :60 :60

:30 :20 0

:30 :10 :10

35, �intermediate
demand

�
D

24 60

20

10

35
3. x D

24 40

15

15

35 5. x D
�

110

120

�
7. a.

�
1:6

1:2

�
b.
�

111:6

121:2

�
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9. x D

24 82:8

131:0

110:3

35
11. Hint: Use properties of transposes to obtain

pT D pTC C vT , so that pTx D .pTC C vT /x D
pTCxC vTx. Now compute pTx from the production
equation.

13. x D .99576; 97703; 51231; 131570; 49488, 329554,
13835/. The entries in x suggest more precision in the
answer than is warranted by the entries in d, which appear
to be accurate only to perhaps the nearest thousand. So a
more realistic answer for x might be
x D 1000 � .100; 98; 51; 132; 49; 330; 14/.

15. x.12/ is the first vector whose entries are accurate to the
nearest thousand. The calculation of x.12/ takes about
1260 flops, while row reduction of

�
.I � C / d

�
takes

only about 550 flops. If C is larger than 20 � 20, then fewer
flops are needed to compute x.12/ by iteration than to
compute the equilibrium vector x by row reduction. As the
size of C grows, the advantage of the iterative method
increases. Also, because C becomes more sparse for larger
models of the economy, fewer iterations are needed for
reasonable accuracy.

Section 2.7, page 177

1.

24 1 :25 0

0 1 0

0 0 1

35 3.

24 p2=2 �
p

2=2
p

2
p

2=2
p

2=2 2
p

2

0 0 1

35
5.

24 p3=2 1=2 0

1=2 �
p

3=2 0

0 0 1

35
7.

24 1=2 �
p

3=2 3C 4
p

3
p

3=2 1=2 4 � 3
p

3

0 0 1

35
See the Practice Problem.

9. A.BD/ requires 1600 multiplications. .AB/D requires 808
multiplications. The first method uses about twice as many
multiplications. If D had 20,000 columns, the counts would
be 160,000 and 80,008, respectively.

11. Use the fact that

sec' � tan' sin' D
1

cos'
�
sin2 '

cos'
D cos'

13.
�

A p
0T 1

�
D

�
I p
0T 1

� �
A 0
0T 1

�
. First apply the linear

transformation A, and then translate by p.

15. .9;�3; 2/ 17.

2664
1 0 0 0

0 1=2 �
p

3=2 0

0
p

3=2 1=2 0

0 0 0 1

3775
19. The triangle with vertices at .7; 2; 0/, .7:5; 5; 0/, .5; 5; 0/

21.

24 2:2586 �1:0395 �:3473

�1:3495 2:3441 :0696

:0910 �:3046 1:2777

3524 X

Y

Z

35 D 24 R

G

B

35
Section 2.8, page 184

1. The set is closed under sums but not under multiplication by
a negative scalar. (Sketch an example.)

3. The set is not closed under sums or scalar multiples. The
subset consisting of the points on the line x2 D x1 is a
subspace, so any “counterexample” must use at least one
point not on this line.

5. No. The system corresponding to Œ v1 v2 w � is
inconsistent.

7. a. The three vectors v1; v2, and v3

b. Infinitely many vectors

c. Yes, because Ax D p has a solution.

9. No, because Ap ¤ 0.

11. p D 4 and q D 3. NulA is a subspace of R4 because
solutions of Ax D 0 must have four entries, to match the
columns of A. ColA is a subspace of R3 because each
column vector has three entries.

13. For NulA, choose .1;�2; 1; 0/ or .�1; 4; 0; 1/, for example.
For ColA, select any column of A.

15. Yes. Let A be the matrix whose columns are the vectors
given. Then A is invertible because its determinant is
nonzero, and so its columns form a basis for R2, by the IMT
(or by Example 5). (Other reasons for the invertibility of A

could be given.)

17. Yes. Let A be the matrix whose columns are the vectors
given. Row reduction shows three pivots, so A is invertible.
By the IMT, the columns of A form a basis for R3.

19. No. Let A be the 3 � 2 matrix whose columns are the
vectors given. The columns of A cannot possibly span R3

because A cannot have a pivot in every row. So the columns
are not a basis for R3. (They are a basis for a plane in R3.)

21–29. Read the section carefully, and write your answers
before checking the Study Guide. This section has terms and
key concepts that you must learn now before going on.

31. Basis for ColA:

24 4

6

3

35, 24 5

5

4

35
Basis for NulA:

2664
4

�5

1

0

3775,
2664
�7

6

0

1

3775

33. Basis for ColA:

2664
1

�1

�2

3

3775,
2664

4

2

2

6

3775,
2664
�3

3

5

�5

3775
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Basis for NulA:

266664
2

�2:5

1

0

0

377775,
266664
�7

:5

0

�4

1

377775
35. Construct a nonzero 3 � 3 matrix A, and construct b to be

almost any convenient linear combination of the columns
of A.

37. Hint: You need a nonzero matrix whose columns are
linearly dependent.

39. If ColF ¤ R5, then the columns of F do not span R5.
Since F is square, the IMT shows that F is not invertible
and the equation F x D 0 has a nontrivial solution. That is,
NulF contains a nonzero vector. Another way to describe
this is to write NulF ¤ f0g.

41. If ColQ D R4, then the columns of Q span R4. Since Q is
square, the IMT shows that Q is invertible and the equation
Qx D b has a solution for each b in R4. Also, each solution
is unique, by Theorem 5 in Section 2.2.

43. If the columns of B are linearly independent, then the
equation Bx D 0 has only the trivial (zero) solution. That is,
NulB D f0g.

45. Display the reduced echelon form of A, and select the pivot
columns of A as a basis for ColA. For NulA, write the
solution of Ax D 0 in parametric vector form.

Basis for ColA W

2664
3

�7

�5

3

3775 ;

2664
�5

9

7

�7

3775

Basis for NulA W

266664
�2:5

�1:5

1

0

0

377775 ;

266664
4:5

2:5

0

1

0

377775 ;

266664
�3:5

�1:5

0

0

1

377775
Section 2.9, page 190

1. x D 3b1 C 2b2 D 3

�
1

1

�
C 2

�
2

�1

�
D

�
7

1

�

b2

2b2

b1

2b1

3b1

x
x1

x2

3.
�

7

5

�
5.
�

1=4

�5=4

�
7. Œw�B D

�
2

�1

�
; Œx�B D

�
1:5

:5

�

9. Basis for ColA:

2664
1

�3

2

�4

3775,
2664

2

�1

4

2

3775,
2664
�4

5

�3

7

3775; dimColA D 3

Basis for NulA:

2664
3

1

0

0

3775; dimNulA D 1

11. Basis for ColA:

2664
1

2

�3

3

3775,
2664

2

5

�9

10

3775,
2664

0

4

�7

11

3775 I

dimColA D 3; Basis for NulA:

266664
9

�2

1

0

0

377775,
266664
�5

3

0

�2

1

377775;
dimNulA D 2

13. Columns 1, 3, and 4 of the original matrix form a basis for
H , so dimH D 3.

15. ColA D R5, because A has a pivot in each row and so the
columns of A span R5. NulA cannot equal R3, because
NulA is a subspace of R8. It is true, however, that NulA is
three-dimensional. Reason: the equation Ax D 0 has three
free variables, because A has eight columns and only five of
them are pivot columns.

17–25. See the Study Guide after you write your justifications.

27. The fact that the solution space of Ax D 0 has a basis of
three vectors means that dimNulA D 3. Since a 5 � 7

matrix A has seven columns, the Rank Theorem shows that
rank A D 7 � dimNulA D 4. See the Study Guide for a
justification that does not explicitly mention the Rank
Theorem.

29. A 7 � 6 matrix has six columns. By the Rank Theorem,
dimNulA D 6 � rankA. Since the rank is four,
dimNulA D 2. That is, the dimension of the solution space
of Ax D 0 is two.

31. A 3 � 4 matrix A with a two-dimensional column space has
two pivot columns. The remaining two columns will
correspond to free variables in the equation Ax D 0. So the
desired construction is possible. There are six possible
locations for the two pivot columns, one of which is24 � � �

0 � �

0 0 0 0

35. A simple construction is to take two

vectors in R3 that are obviously not linearly dependent and
place them in a matrix along with a copy of each vector, in
any order. The resulting matrix will obviously have a
two-dimensional column space. There is no need to worry
about whether NulA has the correct dimension, since this is
guaranteed by the Rank Theorem: dimNulA D 4 � rankA.

33. The p columns of A span ColA by definition. If
dimColA D p, then the spanning set of p columns is
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automatically a basis for ColA, by the Basis Theorem. In
particular, the columns are linearly independent.

35. a. Hint: The columns of B span W , and each vector aj is
in W . The vector cj is in Rp because B has p columns.

b. Hint:What is the size of C ?

c. Hint: How are B and C related to A?

37. Your calculations should show that the matrix
Œ v1 v2 x � corresponds to a consistent system. The
B-coordinate vector of x is .�4=3; 7=3/.

Chapter 2 Supplementary Exercises, page 193

1. T 2. F 3. T 4. F

5. F 6. F 7. T 8. T

9. T 10. F 11. T 12. F

13. F 14. T 15. F

17. I

19. A2 D 2A � I . Multiply by A: A3 D 2A2 � A.
Substitute A2 D 2A � I : A3 D 2.2A � I / � A D

3A � 2I .
Multiply by A again: A4 D A.3A � 2I / D 3A2 � 2A.
Substitute the identity A2 D 2A � I again:
A4 D 3.2A � I / � 2A D 4A � 3I .

21.

24 10 �1

9 10

�5 �3

35 23.
�
�3 13

�8 27

�
25. a. p.xi / D c0 C c1xi C � � � C cn�1xn�1

i

D rowi .V /

264 c0

:::

cn�1

375 D rowi .V c/ D yi

b. Suppose x1; : : : ; xn are distinct, and suppose V c D 0 for
some vector c. Then the entries in c are the coefficients
of a polynomial whose value is zero at the distinct points
x1; : : : ; xn. However, a nonzero polynomial of degree
n � 1 cannot have n zeros, so the polynomial must be
identically zero. That is, the entries in c must all be zero.
This shows that the columns of V are linearly
independent.

c. Hint:When x1; : : : ; xn are distinct, there is a vector c
such that V c D y. Why?

27. a. P 2 D .uuT /.uuT / D u.uT u/uT D u.1/uT D P

b. P T D .uuT /T D uT T uT D uuT D P

c. Q2 D .I � 2P /.I � 2P /

D I � I.2P / � 2PI C 2P.2P /

D I � 4P C 4P 2 D I; because of part (a).

29. Left-multiplication by an elementary matrix produces an
elementary row operation:

B � E1B � E2E1B � E3E2E1B D C

So B is row equivalent to C . Since row operations are
reversible, C is row equivalent to B . (Alternatively, show C

being changed into B by row operations using the inverses
of the Ei .)

31. Since B is 4 � 6 (with more columns than rows), its six
columns are linearly dependent and there is a nonzero x
such that Bx D 0. Thus ABx D A0 D 0, which shows that
the matrix AB is not invertible, by the Invertible Matrix
Theorem.

33. To four decimal places, as k increases,

Ak !

24 :2857 :2857 :2857

:4286 :4286 :4286

:2857 :2857 :2857

35 and

Bk !

24 :2022 :2022 :2022

:3708 :3708 :3708

:4270 :4270 :4270

35
or, in rational format,

Ak !

24 2=7 2=7 2=7

3=7 3=7 3=7

2=7 2=7 2=7

35 and

Bk !

24 18=89 18=89 18=89

33=89 33=89 33=89

38=89 38=89 38=89

35
Chapter 3

Section 3.1, page 201

1. 1 3. 0 5. �8 7. 4

9. 24. Start with row 2.

11. �80. Start with column 1 or row 4.

13. 6. Start with row 2 or column 2.

15. 24 17. �10

19. ad � bc, cb � da. Interchanging two rows changes the
sign of the determinant.

21. 9; 6.4C 5k/ � 5.3C 6k/ D 24C 30k � 15 � 30k D 9.
Row replacement does not change a determinant.

23. �8; k.�1/ � .�2k/.22/C 3k.�17/ D �8k. Scaling a row
by a constant k multiplies the determinant by k.

25. 1 27. 1 29. k

31. 1. The matrix is upper or lower triangular, with only 1’s on
the diagonal. The determinant is 1, the product of the
diagonal entries.

33. detEA D det
�

aC kc b C kd

c d

�
D .aC kc/d � .b C kd/c

D ad C kcd � bc � kdc D .C1/.ad � bc/

D .detE/.detA/

35. detEA D det
�

c d

a b

�
D cb � ad D .�1/.ad � bc/

D .detE/.detA/
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37. 2A D

�
12 10

6 8

�
; no

39–41. Hints are in the Study Guide.

43. The area of the parallelogram and the determinant of�
u v

�
both equal 6. If v D

�
x

2

�
for any x, the area is still

6. In each case the base of the parallelogram is unchanged,
and the altitude remains 2 because the second coordinate of
v is always 2.

45. a. yes b. no c. yes d. no

47. In general, det A�1 D 1=det A as long as det A is nonzero.

49. You can check your conjectures when you get to
Section 3.2.

51. b. l l l l I rl lr I lrlr I l lrr I

Section 3.2, page 209

1. Interchanging two rows reverses the sign of the determinant.

3. A row replacement operation does not change the
determinant.

5. �3 7. 0 9. �28 11. �48

13. 6 15. 21 17. 7 19. 14

21. Invertible 23. Not invertible

25. Linearly independent

27–33. See the Study Guide.

35. 81

37. Hint: Show that .detA/.detA�1/ D 1.

39. Hint: Use Theorem 6.

41. Hint: Use Theorem 6 and another theorem.

43. detAB D det
�

6 0

17 4

�
D 24; .detA/.detB/ D 3 � 8 D 24

45. a. �6 b. �250 c. 3 d. �1=2 e. �8

47. detA D .aC e/d � .b C f /c D ad C ed � bc � fc

D .ad � bc/C .ed � fc/ D detB C detC

49. Hint: Compute detA by a cofactor expansion down
column 3.

51. No. det A det A�1 should equal 1.

53. See the Study Guide after you have made a conjecture about
ATA and AAT .

Section 3.3, page 219

1.
�

5=6

�1=6

�
3.
�

4=5

�3=10

�
5.

244=3

2=3

5=3

35
7. s ¤ ˙

p
5; x1 D

12s C 10

3.s2 � 5/
, x2 D

�4s � 24

3.s2 � 5/

9. s ¤ 0, 1; x1 D
�7

3.s � 1/
, x2 D

4s C 3

6s.s � 1/

11. adjA D

24 0 1 0

�5 �1 �5

5 2 10

35, A�1 D
1

5

24 0 1 0

�5 �1 �5

5 2 10

35
13. adjA D

24�1 �1 5

1 �5 1

1 7 �5

35, A�1 D
1

6

24�1 �1 5

1 �5 1

1 7 �5

35
15. adjA D

24�4 0 0

�3 �1 0

�1 �3 4

35, A�1 D
�1

4

24�4 0 0

�3 �1 0

�1 �3 4

35
17. If A D

�
a b

c d

�
, then C11 D d , C12 D �c, C21 D �b,

C22 D a. The adjugate matrix is the transpose of cofactors:

adjA D
�

d �b

�c a

�
Following Theorem 8, we divide by detA; this produces the
formula from Section 2.2.

19. 8 21. 20 23. 31

25. A 3 � 3 matrix A is not invertible if and only if its columns
are linearly dependent (by the Invertible Matrix Theorem).
This happens if and only if one of the columns is in the
plane spanned by the other two columns, which is
equivalent to the condition that the parallelepiped
determined by these columns has zero volume, which in
turn is equivalent to the condition that detA D 0.

27. 18 29. 1
2
j det

�
v1 v2

�
j

31. a. See Example 5. b. 4�abc=3

33. I.

35–37. By now you know to try these before you look in the
Study Guide.

39. In MATLAB, the entries in B � inv.A/ are approximately
10�15 or smaller. See the Study Guide for suggestions that
may save you keystrokes as you work.

41. MATLAB Student Version 4.0 uses 57,771 flops for inv.A/,
and 14,269,045 flops for the inverse formula. The inv(A)
command requires only about 0.4% of the operations for the
inverse formula. The Study Guide shows how to use the
flops command.

Chapter 3 Supplementary Exercises, page 221

1. T 2. T 3. F 4. F

5. F 6. F 7. T 8. T

9. F 10. F 11. T 12. F

13. F 14. T 15. F

The solution for Exercise 17 is based on the fact that if a matrix
contains two rows (or two columns) that are multiples of each
other, then the determinant of the matrix is zero, by Theorem.



Section 4.1 A-17

17. Make two row replacement operations, and then factor out a
common multiple in row 2 and a common multiple in row 3.ˇ̌̌̌
ˇ̌1 a b C c

1 b aC c

1 c aC b

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌1 a b C c

0 b � a a � b

0 c � a a � c

ˇ̌̌̌
ˇ̌

D .b � a/.c � a/

ˇ̌̌̌
ˇ̌1 a b C c

0 1 �1

0 1 �1

ˇ̌̌̌
ˇ̌

D 0

19. �12

21. When the determinant is expanded by cofactors of the first
row, the equation has the form ax C by C c D 0, where at
least one of a and b is not zero. This is the equation of a
line. It is clear that .x1; y1/ and .x2; y2/ are on the line,
because when the coordinates of one of the points are
substituted for x and y, two rows of the matrix are equal
and so the determinant is zero.

23. T �

241 a a2

0 b � a b2 � a2

0 c � a c2 � a2

35. Thus, by Theorem 3,

detT D .b � a/.c � a/ det

241 a a2

0 1 b C a

0 1 c C a

35
D .b � a/.c � a/ det

241 a a2

0 1 b C a

0 0 c � b

35
D .b � a/.c � a/.c � b/

25. AreaD 12. If one vertex is subtracted from all four vertices,
and if the new vertices are 0, v1, v2, and v3, then the
translated figure (and hence the original figure) will be a
parallelogram if and only if one of v1, v2, and v3 is the sum
of the other two vectors.

27. By the Inverse Formula, .adjA/ �
1

detA
A D A�1A D I . By

the Invertible Matrix Theorem, adjA is invertible

.adjA/�1 D
1

detA
A.

29. a. X D CA�1, Y D D � CA�1B . Now use
Exercise 28(c).

b. From part (a), and the property of determinants,

det
�

A B

C D

�
D det ŒA.D � CA�1B/�

D det ŒAD � ACA�1B�

D det ŒAD � CAA�1B�

D det ŒAD � CB�

where the equality AC D CA was used in the third step.

31. First consider the case n D 2, and prove that the result holds
by directly computing the determinants of B and C . Now
assume that the formula holds for all .k � 1/ � .k � 1/

matrices, and let A, B , and C be k � k matrices. Use a
cofactor expansion along the first column and the inductive

hypothesis to find detB . Use row replacement operations on
C to create zeros below the first pivot and produce a
triangular matrix. Find the determinant of this matrix and
add to detB to get the result.

33. Compute:ˇ̌̌̌
ˇ̌1 1 1

1 2 2

1 2 3

ˇ̌̌̌
ˇ̌ D 1;

ˇ̌̌̌
ˇ̌̌̌1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

ˇ̌̌̌
ˇ̌̌̌ D 1;

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ D 1

Conjecture:ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
1 1 1 : : : 1

1 2 2 2

1 2 3 3
:::

: : :
:::

1 2 3 : : : n

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ D 1

To confirm the conjecture, use row replacement operations
to create zeros below the first pivot, then the second pivot,
and so on. The resulting matrix isˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
1 1 1 : : : 1

0 1 1 1

0 0 1 1
:::

: : :
:::

0 0 0 : : : 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

which is an upper triangular matrix with determinant 1.

Chapter 4

Section 4.1, page 232

1. a. uC v is in V because its entries will both be
nonnegative.

b. Example: If u D
�

2

2

�
and c D �1, then u is in V , but

cu is not in V .

3. Example: If u D
�

:5

:5

�
and c D 4, then u is in H , but cu is

not in H .

5. Yes, by Theorem 1, because the set is Span ft2g.

7. No, the set is not closed under multiplication by scalars that
are not integers.

9. H D Span fvg, where v D

241

3

2

35. By Theorem 1, H is a

subspace of R3.
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11. W D Span fu; vg, where u D

246

1

0

35 and v D

247

0

1

35. By
Theorem 1, W is a subspace of R3.

13. a. There are only three vectors in fv1; v2; v3g, and w is not
one of them.

b. There are infinitely many vectors in Span fv1; v2; v3g.
c. w is in Span fv1; v2; v3g.

15. Not a vector space because the zero vector is not in W

17. S D

8̂̂<̂
:̂
2664

1

0

�1

0

3775 ;

2664
�1

1

0

1

3775 ;

2664
0

�1

1

0

3775
9>>=>>;

19. Hint: Use Theorem 1.

Warning: Although the Study Guide has complete solutions for
every odd-numbered exercise whose answer here is only a
“Hint,” you must really try to work the solution yourself.
Otherwise, you will not benefit from the exercise.

21. Yes. The conditions for a subspace are obviously satisfied:
The zero matrix is in H , the sum of two upper triangular
matrices is upper triangular, and any scalar multiple of an
upper triangular matrix is again upper triangular.

23–31. See the Study Guide after you have written your answers.

33. 4 35. a. 8 b. 3 c. 5 d. 4

37. uC .�1/u D 1uC .�1/u Axiom 10
D Œ1C .�1/�u Axiom 8
D 0u D 0 Exercise 35

From Exercise 34, it follows that .�1/u D �u.

39. Any subspace H that contains u and v must also contain all
scalar multiples of u and v and hence must contain all sums
of scalar multiples of u and v. Thus H must contain
Span fu; vg.

41. Hint: For part of the solution, consider w1 and w2 in
H CK, and write w1 and w2 in the form w1 D u1 C v1 and
w2 D u2 C v2, where u1 and u2 are in H , and v1 and v2 are
in K.

43. The reduced echelon form of Œ v1 v2 v3 w � shows that
w D v1 � 3v2 C 5v3.

45. The functions are cos 4t and cos 6t . See Exercise 54 in
Section 4.5.

Section 4.2, page 243

1.

24 3 �5 �3

6 �2 0

�8 4 1

3524 1

3

�4

35 D 240

0

0

35, so w is in NulA.

3.

2664
7

�4

1

0

3775,
2664
�6

2

0

1

3775 5.

266664
2

1

0

0

0

377775,
266664
�4

0

9

1

0

377775

7. W is not a subspace of R3 because the zero vector .0; 0; 0/

is not in W .

9. W is a subspace of R4, by Theorem 2, because W is the set
of solutions of the homogeneous system

a � 2b � 4c D 0

2a � c � 3d D 0

11. W is not a subspace because 0 is not in W . Justification: If
a typical element .b � 2d; 5C d; b C 3d; d/ were zero,
then 5C d D 0 and d D 0, which is impossible.

13. W D ColA for A D

241 �6

0 1

1 0

35, so W is a vector space by

Theorem 3.

15.

2664
0 2 3

1 1 �2

4 1 0

3 �1 �1

3775
17. a. 2 b. 3 19. a. 5 b. 2

21.
�

4

1

�
in NulA,

24 2

�1

1

35 in ColA; and Œ2 �8� is in RowA.

Other answers possible.

23. w is in both NulA and ColA.

25–37. See the Study Guide. By now you should know how to
use it properly.

39. Let x D

24 3

2

�1

35 and A D

24 1 �3 �3

�2 4 2

�1 5 7

35. Then x is in
NulA. Since NulA is a subspace of R3, 10x is in NulA.

41. a. A0 D 0, so the zero vector is in ColA.

b. By a property of matrix multiplication,
AxC Aw D A.xC w/, which shows that AxC Aw is a
linear combination of the columns of A and hence is in
ColA.

c. c.Ax/ D A.cx/, which shows that c.Ax/ is in ColA for
all scalars c.

43. a. For arbitrary polynomials p, q in P2 and any scalar c,

T .pC q/ D

�
.pC q/.0/

.pC q/.1/

�
D

�
p.0/C q.0/

p.1/C q.1/

�
D

�
p.0/

p.1/

�
C

�
q.0/

q.1/

�
D T .p/C T .q/

T .cp/ D

�
cp.0/

cp.1/

�
D c

�
p.0/

p.1/

�
D cT .p/

So T is a linear transformation from P2 into P2.

b. Any quadratic polynomial that vanishes at 0 and 1 must
be a multiple of p.t/ D t.t � 1/. The range of T is R2.



Section 4.4 A-19

45. a. For A, B in M2�2 and any scalar c,

T .AC B/ D .AC B/C .AC B/T

D AC B C AT C BT Transpose property

D .AC AT /C .B C BT / D T .A/C T .B/

T .cA/ D .cA/C .cA/T D cAC cAT

D c.AC AT / D cT .A/

So T is a linear transformation from M2�2 into M2�2.

b. If B is any element in M2�2 with the property that
BT D B , and if A D 1

2
B , then

T .A/ D 1
2
B C

�
1
2
B
�T
D

1
2
B C 1

2
B D B

c. Part (b) showed that the range of T contains all B such
that BT D B . So it suffices to show that any B in the
range of T has this property. If B D T .A/, then by
properties of transposes,

BT
D .AC AT /T

D AT
C AT T

D AT
C A D B

d. The kernel of T is
��

0 b

�b 0

�
W b real

�
.

47. Hint: Check the three conditions for a subspace. Typical
elements of T .U / have the form T .u1/ and T .u2/, where
u1 and u2 are in U .

49. w is in ColA but not in NulA. (Explain why.)

51. The reduced echelon form of A is2664
1 0 1=3 0 10=3

0 1 1=3 0 �26=3

0 0 0 1 �4

0 0 0 0 0

3775
Section 4.3, page 252

1. Yes, the 3 � 3 matrix A D

241 1 1

0 1 1

0 0 1

35 has 3 pivot

positions. By the Invertible Matrix Theorem, A is invertible
and its columns form a basis for R3. (See Example 3.)

3. No, the vectors are linearly dependent and do not span R3.

5. No, the set is linearly dependent because the zero vector is
in the set. However,24 1 �2 0 0

�3 9 0 �3

0 0 0 5

35 � 241 �2 0 0

0 3 0 �3

0 0 0 5

35
The matrix has pivots in each row and hence its columns
span R3.

7. No, the vectors are linearly independent because they are
not multiples. (More precisely, neither vector is a multiple
of the other.) However, the vectors do not span R3. The

matrix

24�2 6

3 �1

0 5

35 can have at most two pivots since it has

only two columns. So there will not be a pivot in each row.

9.

2664
3

5

1

0

3775,
2664
�2

�4

0

1

3775 11.

24�4

1

0

35, 245

0

1

35

13. Basis for NulA:

2664
�6

�5=2

1

0

3775,
2664
�5

�3=2

0

1

3775
Basis for ColA:

24�2

2

�3

35, 24 4

�6

8

35
Basis for Row A:

�
1 0 6 5

�
;
�

0 2 5 3
�

15. fv1; v2; v4g 17. fv1; v2; v3g

19. The three simplest answers are fv1; v2g or fv1; v3g or
fv2; v3g. Other answers are possible.

21–31. See the Study Guide for hints.

33. Hint: Use the Invertible Matrix Theorem.

35. No. (Why is the set not a basis for H?)

37. fcos!t; sin!tg

39. Let A be the n � k matrix Œ v1 � � � vk �. Since A has
fewer columns than rows, there cannot be a pivot position in
each row of A. By Theorem 4 in Section 1.4, the columns of
A do not span Rn and hence are not a basis for Rn.

41. Hint: If fv1; : : : ; vpg is linearly dependent, then there exist
c1; : : : ; cp , not all zero, such that c1v1 C � � � C cpvp D 0.
Use this equation.

43. Neither polynomial is a multiple of the other polynomial, so
fp1; p2g is a linearly independent set in P3.

45. Let fv1; v3g be any linearly independent set in the vector
space V , and let v2 and v4 be linear combinations of v1 and
v3. Then fv1; v3g is a basis for Spanfv1; v2; v3; v4g.

47. You could be clever and find special values of t that produce
several zeros in (5), and thereby create a system of
equations that can be solved easily by hand. Or, you could
use values of t such as t D 0; :1; :2; : : : to create a system of
equations that you can solve with a matrix program.

Section 4.4, page 262

1.
�

3

�7

�
3.

24�4

�1

�9

35 5.
�

8

�5

�
7.

24�1

�1

3

35
9.

�
2 1

�9 8

�
11.

�
6

4

�
13.

24 2

6

�1

35
15–19. The Study Guide has hints.
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21.
�

1

1

�
D 5v1 � 2v2 D 10v1 � 3v2 C v3 (infinitely many

answers)

23. Hint: By hypothesis, the zero vector has a unique
representation as a linear combination of elements of S .

25.
�

7 3

2 1

�
27. Hint: Suppose that Œu�B D Œw�B for some u and w in V , and

denote the entries in Œu�B by c1; : : : ; cn. Use the definition
of Œu�B.

29. One possible approach: First, show that if u1; : : : ; up are
linearly dependent, then Œu1�B; : : : ; Œup�B are linearly
dependent. Second, show that if Œu1�B; : : : ; Œup�B are
linearly dependent, then u1; : : : ; up are linearly dependent.
Use the two equations displayed in the exercise. A slightly
different proof is given in the Study Guide.

31. Linearly independent. (Justify answers to Exercises 31–38.)

33. Linearly dependent

35. a. The coordinate vectors

24 1

�3

5

35, 24�3

5

�7

35, 24�4

5

�6

35, 24 1

0

�1

35
do not span R3. Because of the isomorphism between R3

and P2, the corresponding polynomials do not span P2.

b. The coordinate vectors

240

5

1

35, 24 1

�8

�2

35, 24�3

4

2

35, 24 2

�3

0

35
span R3. Because of the isomorphism between R3 and
P2, the corresponding polynomials span P2.

37. The coordinate vectors

2664
3

7

0

0

3775,
2664

5

1

0

�2

3775,
2664

0

1

�2

0

3775,
2664

1

16

�6

2

3775 are a

linearly dependent subset of R4. Because of the
isomorphism between R4 and P3, the corresponding
polynomials form a linearly dependent subset of P3, and
thus cannot be a basis for P3:

39. Œx�B D

�
�5=3

8=3

�
41.

241:3

0

0:8

35
Section 4.5, page 271

1.

241

1

0

35, 24�2

1

3

35; dim is 2

3.

2664
0

1

0

1

3775,
2664

0

�1

1

2

3775,
2664

2

0

�3

0

3775; dim is 3

5.

2664
1

2

�1

�3

3775,
2664
�4

5

0

7

3775; dim is 2

7. No basis; dim is 0 9. 2 11. 2, 3, 3

13. 3, 2, 2 15. 0, 3, 3

17–25. See the Study Guide.

27. Hint: You need only show that the first four Hermite
polynomials are linearly independent. Why?

29. Œp�B D
�
3; 3;�2; 3

2

�
31. Hint: Suppose S does span V , and use the Spanning Set

Theorem. This leads to a contradiction, which shows that
the spanning hypothesis is false.

33. 3, 4, 4

35. Yes, no. Since ColA is a five-dimensional subspace of R5,
it coincides with R5. The null space cannot be R4, because
the vectors in NulA have 9 entries. NulA is a four-
dimensional subspace of R9, by the Rank Theorem.

37. 2

39. 5, 5. In both cases, the number of pivots cannot exceed the
number of columns or the number of rows.

41. The functions f1; x; x2; : : :g are a linearly independent set
with infinitely many vectors.

43–47. Consult the Study Guide.

49. dimRowA D dim ColA D rankA, so the result follows
from the Rank Theorem.

51. Hint: Since H is a nonzero subspace of a finite-dimensional
space, H is finite-dimensional and has a basis, say,
v1; : : : ; vp . First show that fT .v1/; : : : ; T .vp/g spans T .H/.

53. a. One basis is fv1; v2; v3; e2; e3g. In fact, any two of the
vectors e2; : : : ; e5 will extend fv1; v2; v3g to a basis of R5.

Section 4.6, page 277

1. a.
�

6 9

�2 �4

�
b.
�

0

�2

�
3. (ii)

5. a.

24 4 �1 0

�1 1 1

0 1 �2

35 b.

248

2

2

35
7. P

C B D

�
�3 1

�5 2

�
, P

B C D

�
�2 1

�5 3

�
9. P

C B D

�
9 �2

�4 1

�
, P

B C D

�
1 2

4 9

�
11–13. See the Study Guide.

15. P
C B D

24 1 3 0

�2 �5 2

1 4 3

35, Œ�1C 2t�B D

24 5

�2

1

35
17. a. B is a basis for V .

b. The coordinate mapping is a linear transformation.

c. The product of a matrix and a vector

d. The coordinate vector of v relative to B



Section 4.8 A-21

19. a. P�1
D

1

32

2666666664

32 0 16 0 12 0 10

0 32 0 24 0 20 0

0 0 16 0 16 0 15

0 0 0 8 0 10 0

0 0 0 0 4 0 6

0 0 0 0 0 2 0

0 0 0 0 0 0 1

3777777775
b. P is the change-of-coordinates matrix from C to B. So

P�1 is the change-of-coordinates matrix from B to C,
by equation (5), and the columns of this matrix are the
C-coordinate vectors of the basis vectors in B, by
Theorem 15.

21. Hint: Let C be the basis fv1; v2; v3g. Then the columns of P

are Œu1�C ; Œu2�C , and Œu3�C . Use the definition of
C-coordinate vectors and matrix algebra to compute u1, u2,
and u3. The solution method is discussed in the Study
Guide. Here are the numerical answers:

a. u1 D

24�6

�5

21

35, u2 D

24�6

�9

32

35, u3 D

24�5

0

3

35
b. w1 D

24 28

�9

�3

35, w2 D

24 38

�13

2

35, w3 D

24 21

�7

3

35
Section 4.7, page 284

1. .: : : ; 0; 2; 0; 2; 0; 2; 0; : : :/

3. .: : : ;�2; 2;�2; 3;�1; 3;�1; : : :/

5. ˛

7. �c

9. Verify that the three properties in the definition of a LTI
transformation are satisfied.

11. �

13. Apply T to any signal to get a signal in the range of T .

15–21. See the Study Guide.

23. I � 4
5
S .

25. Show that W satisfies the three properties of a subspace.

27. f� � ˛g; 1

29. Show that W satisfies the three properties of a subspace.

31. fS2m�1.ı/j where m is any integerg. Yes W is an infinite
dimensional subspace. Justify your answer.

Section 4.8, page 292

1. If yk D 2k , then ykC1 D 2kC1 and ykC2 D 2kC2.
Substituting these formulas into the left side of the equation
gives

ykC2 C 2ykC1 � 8yk D 2kC2 C 2 � 2kC1 � 8 � 2k

D 2k.22 C 2 � 2 � 8/

D 2k.0/ D 0 for all k

Since the difference equation holds for all k, 2k is a
solution. A similar calculation works for yk D .�4/k .

3. The signals 2k and .�4/k are linearly independent because
neither is a multiple of the other. For instance, there is no
scalar c such that 2k D c.�4/k for all k. By Theorem 17, the
solution setH of the difference equation in Exercise 1 is two-
dimensional. By the Basis Theorem in Section 4.5, the two
linearly independent signals 2k and .�4/k form a basis forH .

5. If yk D .�3/k , then

ykC2 C 6ykC1 C 9yk D .�3/kC2 C 6.�3/kC1 C 9.�3/k

D .�3/k Œ.�3/2 C 6.�3/C 9�

D .�3/k.0/ D 0 for all k

Similarly, if yk D k.�3/k , then

ykC2 C 6ykC1 C 9yk

D .k C 2/.�3/kC2 C 6.k C 1/.�3/kC1 C 9k.�3/k

D .�3/k Œ.k C 2/.�3/2 C 6.k C 1/.�3/C 9k�

D .�3/k Œ9k C 18 � 18k � 18C 9k�

D .�3/k.0/ for all k

Thus both .�3/k and k.�3/k are in the solution space H

of the difference equation. Also, there is no scalar c such
that k.�3/k D c.�3/k for all k, because c must be chosen
independently of k. Likewise,
there is no scalar c such that .�3/k D ck.�3/k for all k. So
the two signals are linearly independent. Since dimH D 2,
the signals form a basis for H , by the Basis Theorem.

7. Yes 9. Yes

11. No, two
signals cannot span the three-dimensional solution space.

13.
�

1
3

�k
,
�

2
3

�k
15. 5k , .�5/k

17. yk D
1p

5

�
1C
p

5
2

�k

�
1p

5

�
1�
p

5
2

�k

19. Yk D c1.:8/k C c2.:5/k C 10! 10 as k !1

21. yk D c1.�2C
p

3/k C c2.�2 �
p

3/k

23. 7, 5, 4, 3, 4, 5, 6, 6, 7, 8, 9, 8, 7; see figure below.

k

5 original data
5 smoothed data

20 4 6 8 10 12 14

2
4
6
8

10

25. a. ykC1 � 1:01yk D �450, y0 D 10;000

b. MATLAB code:

pay = 450, y = 10000, m = 0
table = [0 ; y]
while y > 450

y = 1.01*y - pay
m = m + 1
table = [table [m ; y] ]

%append new column
end
m, y
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c. At month 26, the last payment is $114.88. The total
paid by the borrower is $11,364.88.

27. k2 C c1.�5/k C c2 29. 2 � 2k C c1 � 4
k C c2 � 2

�k

31. xkC1 D Axk , where

A D

2664
0 1 0 0

0 0 1 0

0 0 0 1

4 �8 3 2

3775 ; xk D

2664
yk

ykC1

ykC2

ykC3

3775
33. The equation holds for all k, so it holds with

k replaced by k � 1, which transforms the equation into

ykC2 C 5ykC1 C 6yk D 0 for all k

The equation is of order 2.

35. For all k, the Casorati matrix C.k/ is not invertible. In
this case, the Casorati matrix gives no information
about the linear independence/dependence of the set of
signals. In fact, neither signal is a multiple of the other,
so they are linearly independent.

Chapter 4 Supplementary Exercises, page 295

1. T 2. T 3. F 4. F 5. T 6. T

7. F 8. F 9. T 10. F 11. F 12. F

13. T 14. F 15. T 16. T 17. F 18. T

19. T

21. The set of all .b1; b2; b3/ satisfying b1 C 2b2 C b3 D 0.

23. The vector p1 is not zero and p2 is not a multiple of p1, so
keep both of these vectors. Since p3 D 2p1 C 2p2, discard
p3. Since p4 has a t2 term, it cannot be a linear combination
of p1 and p2, so keep p4. Finally, p5 D p1 C p4, so discard
p5. The resulting basis is fp1; p2; p4g.

25. You would have to know that the solution set of the
homogeneous system is spanned by two solutions. In this
case, the null space of the 18 � 20 coefficient matrix A is at
most two-dimensional. By the Rank Theorem,
dimColA � 20 � 2 D 18, which means that ColA D R18,
because A has 18 rows, and every equation Ax D b is
consistent.

27. Let A be the standard m � n matrix of the transformation T .

a. If T is one-to-one, then the columns of A are linearly
independent (Theorem 12 in Section 1.9), so
dimNulA D 0. By the Rank Theorem,
dimColA D rankA D n. Since the range of T is ColA,
the dimension of the range of T is n.

b. If T is onto, then the columns of A span Rm (Theorem
12 in Section 1.9), so dimColA D m. By the Rank
Theorem, dimNulA D n � dimColA D n �m. Since
the kernel of T is NulA, the dimension of the kernel of
T is n �m.

29. If S is a finite spanning set for V , then a subset of S—say
S 0—is a basis for V . Since S 0 must span V , S 0 cannot be a

proper subset of S because of the minimality of S . Thus
S 0 D S , which proves that S is a basis for V .

30. a. Hint: Any y in ColAB has the form y D ABx for
some x.

31. By Exercise 12, rankPA � rankA, and
rankA D rankP�1PA � rankPA. Thus
rank PA D rankA.

33. The equation AB D 0 shows that each column of B is in
NulA. Since NulA is a subspace, all linear combinations of
the columns of B are in NulA, so ColB is a subspace of
NulA. By Theorem 12 in Section 4.5,
dimColB � dimNulA. Applying the Rank Theorem, we
find that

n D rankAC dimNulA � rankAC rankB

35. a. Let A1 consist of the r pivot columns in A. The columns
of A1 are linearly independent. So A1 is an m � r with
rank r .

b. By the Rank Theorem applied to A1, the dimension of
Row A is r , so A1 has r linearly independent rows. Use
them to form A2. Then A2 is r � r with linearly
independent rows. By the Invertible Matrix Theorem,
A2 is invertible.

37. Œ B AB A2B � D

240 1 0

1�:9 :81

1 :5 :25

35
�

241�:9 :81

0 1 0

0 0�:56

35
This matrix has rank 3, so the pair .A; B/ is controllable.

39. rank Œ B AB A2B A3B � D 3. The pair .A; B/ is not
controllable.

Chapter 5

Section 5.1, page 304

1. Yes 3. No 5. Yes, � D 0 7. Yes,

24 1

1

�1

35
9. � D 3:

�
0

1

�
; � D 9:

�
3

1

�
11.

�
�1

3

�
13. � D 1:

240

1

0

35; � D 2:

24�1

2

2

35; � D 3:

24�1

1

1

35
15.

24�3

1

0

35, 244

0

1

35 17. 0, 2, �1

19. 0. Justify your answer.

21–29. See the Study Guide, after you have written your
answers.
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31. Hint: Use Theorem 2.

33. Hint: Use the equation Ax D �x to find an equation
involving A�1.

35. Hint: For any �, .A � �I/T D AT � �I . By a theorem
(which one?), AT � �I is invertible if and only if A � �I is
invertible.

37. Let v be the vector in Rn whose entries are all 1’s. Then
Av D sv.

39. Hint: If A is the standard matrix of T , look for a nonzero
vector v (a point in the plane) such that Av D v.

41. a. xkC1 D c1�kC1uC c2�kC1v

b. Axk D A.c1�kuC c2�kv/

D c1�kAuC c2�kAv Linearity

D c1�k�uC c2�k�v u and v are eigenvectors.

D xkC1

43.

x1

x2

v
w

u T(u)

T(w)

T(v)

45. � D 3:

24 5

�2

9

35; � D 13:

24�2

1

0

35, 24�1

0

1

35. You can speed up
your calculations with the program nulbasis discussed in
the Study Guide.

47. � D �2:

266664
�2

7

�5

5

0

377775,
266664

3

7

�5

0

5

377775;

� D 5:

266664
2

�1

1

0

0

377775,
266664
�1

1

0

1

0

377775,
266664

2

0

0

0

1

377775
Section 5.2, page 312

1. �2 � 4� � 45; 9, �5 3. �2 � 2� � 1; 1˙
p

2

5. �2 � 6�C 9; 3 7. �2 � 9�C 32; no real eigenvalues

9. ��3 C 4�2 � 9� � 6 11. ��3 C 12�2 � 44�C 48

13. ��3 C 18�2 � 95�C 150 15. 7, 7, 5, 3

17. 3, 3, 1, 1, 0

19. Hint: The equation given holds for all �.

21–29. The Study Guide has hints.

31. Hint: Find an invertible matrix P so that RQ D P�1AP .

33. In general, the eigenvectors of A are not the same as the
eigenvectors of AT, unless, of course, AT D A.

35. a D 32 W � D 1; 1; 2

a D 31:9 W � D :2958; 1; 2:7042

a D 31:8 W � D �:1279; 1; 3:1279

a D 32:1 W � D 1; 1:5˙ :9747i

a D 32:2 W � D 1I 1:5˙ 1:4663i

Section 5.3, page 319

1.
�

481 �800

240 �399

�
3.
�

ak 0

3.ak � bk/ bk

�

5. � D 5:

241

1

1

35; � D 1:

24 1

0

�1

35, 24 2

�1

0

35
When an answer involves a diagonalization, A D PDP�1, the
factors P and D are not unique, so your answer may differ from
that given here.

7. P D

�
1 0

3 1

�
, D D

�
1 0

0 �1

�
9. Not diagonalizable

11. P D

241 2 1

3 3 1

4 3 1

35, D D

243 0 0

0 2 0

0 0 1

35
13. P D

24�1 2 1

�1 �1 0

1 0 1

35, D D

245 0 0

0 1 0

0 0 1

35
15. P D

24�4 3 �2

�1 1 0

1 0 1

35, D D

243 0 0

0 1 0

0 0 1

35
17. Not diagonalizable

19. P D

2664
1 3 �1 �1

0 2 �1 2

0 0 1 0

0 0 0 1

3775, D D

2664
5 0 0 0

0 3 0 0

0 0 2 0

0 0 0 2

3775
21–27. See the Study Guide.

29. Yes. (Explain why.)

31. No, A must be diagonalizable. (Explain why.)

33. Hint:Write A D PDP�1. Since A is invertible, 0 is not an
eigenvalue of A, so D has nonzero entries on its diagonal.

35. One answer is P1 D

�
1 1

�2 �1

�
, whose columns are

eigenvectors corresponding to the eigenvalues in D1.

37. Hint: Construct a suitable 2 � 2 triangular matrix.
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39. P D

2664
2 2 1 6

1 �1 1 �3

�1 �7 1 0

2 2 0 4

3775,
D D

2664
5 0 0 0

0 1 0 0

0 0 �2 0

0 0 0 �2

3775

41. P D

266664
6 3 2 4 3

�1 �1 �1 �3 �1

�3 �3 �4 �2 �4

3 0 �1 5 0

0 3 4 0 5

377775,

D D

266664
5 0 0 0 0

0 5 0 0 0

0 0 3 0 0

0 0 0 1 0

0 0 0 0 1

377775

Section 5.4, page 326

1.

24 3 �1 0

�5 6 4

0 0 0

35
3.

24 2 0 0

0 3 4

5 0 �6

35
5. 17b1 � 15b2 C 9b3

7.
�

1 8

0 7

�
9. b1 D

�
1

1

�
, b2 D

�
1

3

�
11. b1 D

�
�2

1

�
, b2 D

�
1

1

�
13. a. Ab1 D 2b1, so b1 is an eigenvector of A. However, A

has only one eigenvalue, � D 2, and the eigenspace is
only one-dimensional, so A is not diagonalizable.

b.
�

2 �1

0 2

�
15. a. T .p/ D 3C 3t C 3t2 D 3p so p is an eigenvector of T

with eigenvalue 3.

b. T .p/ D �1 � t � t2 so p is not an eigenvector.

17–19. See the Study Guide.

21. By definition, if A is similar to B , there exists an invertible
matrix P such that P�1AP D B . (See Section 5.2.) Then
B is invertible because it is the product of invertible
matrices. To show that A�1 is similar to B�1, use the
equation P�1AP D B . See the Study Guide.

23. Hint: Review Practice Problem 2.

25. Hint: Compute B.P�1x/.

27. Hint:Write A D PBP�1 D .PB/P�1, and use the trace
property.

29. S.�/ D � so � is an eigenvector of S with eigenvalue 1.

31. M2.˛/ D 0 so ˛ is an eigenvector of M2 with eigenvalue 0.

33. P�1AP D

24 8 3 �6

0 1 3

0 0 �3

35

35. � D 2 W b1 D

2664
0

�3

3

2

3775; � D 4 W b2 D

2664
�30

�7

3

0

3775,
b3 D

2664
39

5

0

3

3775; � D 5 W b4 D

2664
11

�3

4

4

3775;
basis: B D fb1; b2; b3; b4g

Section 5.5, page 334

1. � D 2C i ,
�
�1C i

1

�
; � D 2 � i ,

�
�1 � i

1

�
3. � D 3C 2i ,

�
1 � i

2

�
; � D 3 � 2i ,

�
1C i

2

�
5. � D 2C 2i ,

�
1

2C 2i

�
; � D 2 � 2i ,

�
1

2 � 2i

�
7. � D

p
3˙ i , ' D �=6 radian, r D 2

9. � D �
p

3=2˙ .1=2/i , ' D �5�=6 radians, r D 1

11. � D :1˙ :1i , ' D ��=4 radian, r D
p

2=10

In Exercises 13–20, other answers are possible. Any P that
makes P�1AP equal to the given C or to C T is a satisfactory
answer. First find P ; then compute P�1AP .

13. P D

�
�1 �1

1 0

�
, C D

�
2 �1

1 2

�
15. P D

�
1 1

2 0

�
, C D

�
3 �2

2 3

�
17. P D

�
2 �1

5 0

�
, C D

�
�:6 �:8

:8 �:6

�
19. P D

�
2 �1

2 0

�
, C D

�
:96 �:28

:28 :96

�
21. y D

�
2

�1C 2i

�
D
�1C 2i

5

�
�2 � 4i

5

�
23–25. See the Study Guide.

27. (a) Properties of conjugates and the fact that xT
D xT ;

(b) Ax D Ax and A is real; (c) because xT Ax is a scalar and
hence may be viewed as a 1 � 1 matrix; (d) properties of
transposes; (e) AT D A, definition of q
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29. Hint: First write x D Re xC i.Im x/.

31. P D

2664
1 �1 �2 0

�4 0 0 2

0 0 �3 �1

2 0 4 0

3775, C D

2664
:2 �:5 0 0

:5 :2 0 0

0 0 :3 �:1

0 0 :1 :3

3775
Other choices are possible, but C must equal P�1AP .

Section 5.6, page 343

1. a. Hint: Find c1, c2 such that x0 D c1v1 C c2v2. Use this
representation and the fact that v1 and v2 are

eigenvectors of A to compute x1 D

�
49=3

41=3

�
.

b. In general, xk D 5.3/kv1 � 4. 1
3
/kv2 for k � 0.

3. When p D :2, the eigenvalues of A are .9 and .7, and

xk D c1.:9/k

�
1

1

�
C c2.:7/k

�
2

1

�
! 0 as k !1

The higher predation rate cuts down the owls’ food supply,
and eventually both predator and prey populations perish.

5. If p D :15, the eigenvalues are 1.1 and .6. Since 1:1 > 1,
both populations will grow at 10% per year. An eigenvector
for 1.1 is .2; 3/, so eventually there will be approximately 2
tawny owls to every 3 (thousand) mice.

7. a. The origin is a saddle point because A has one
eigenvalue larger than 1 and one smaller than 1 (in
absolute value).

b. The direction of greatest attraction is given by the
eigenvector corresponding to the eigenvalue 1=3,
namely, v2. All vectors that are multiples of v2 are
attracted to the origin. The direction of greatest
repulsion is given by the eigenvector v1. All multiples of
v1 are repelled.

c. See the Study Guide.

9. Saddle point; eigenvalues: 2, .5; direction of greatest
repulsion: the line through .0; 0/ and .�1; 1/; direction of
greatest attraction: the line through .0; 0/ and .1; 4/

11. Attractor; eigenvalues: .9, .8; greatest attraction: line
through .0; 0/ and .5; 4/

13. Repellor; eigenvalues: 1.2, 1.1; greatest repulsion: line
through .0; 0/ and .3; 4/

15. xk D v1 C :1.:5/k

24 2

�3

1

35C :3.:2/k

24�1

0

1

35! v1 as

k !1

17. a. A D

�
0 1:6

:3 :8

�
b. The population is growing because the largest

eigenvalue of A is 1.2, which is larger than 1 in
magnitude. The eventual growth rate is 1.2, which is
20% per year. The eigenvector .4; 3/ for �1 D 1:2

shows that there will be 4 juveniles for every 3 adults.

c. The juvenile–adult ratio seems to stabilize after about 5
or 6 years. The Study Guide describes how to construct a
matrix program to generate a data matrix whose
columns list the numbers of juveniles and adults each
year. Graphing the data is also discussed.

Section 5.7, page 351

1. x.t/ D
5

2

�
�3

1

�
e4t �

3

2

�
�1

1

�
e2t

3. �
5

2

�
�3

1

�
et C

9

2

�
�1

1

�
e�t . The origin is a saddle point.

The direction of greatest attraction is the line through
.�1; 1/ and the origin. The direction of greatest repulsion is
the line through .�3; 1/ and the origin.

5. �
�

4

5

�
e�3t C 7

�
1

1

�
e�2t . The origin is an attractor. The

direction of greatest attraction is the line through .4; 5/ and
the origin.

7. Set P D

�
4 1

5 1

�
and D D

�
�3 0

0 �2

�
. Then

A D PDP�1. Substituting x D P y into x0 D Ax we have

d

dt
.P y/ D A.P y/

P y0 D PDP�1.P y/ D PDy

Left-multiplying by P�1 gives

y0 D Dy; or
�

y01.t/

y02.t/

�
D

�
�3 0

0 �2

��
y1.t/

y2.t/

�
9. (complex solution):

c1

�
1 � i

1

�
e.�2Ci/t

C c2

�
1C i

1

�
e.�2�i/t

(real solution):

c1

�
cos t C sin t

cos t

�
e�2t
C c2

�
sin t � cos t

sin t

�
e�2t

The trajectories spiral in toward the origin.

11. (complex): c1

�
�3C 3i

2

�
e3it C c2

�
�3 � 3i

2

�
e�3it

(real):

c1

�
�3 cos 3t � 3 sin 3t

2 cos 3t

�
C c2

�
�3 sin 3t C 3 cos 3t

2 sin 3t

�
The trajectories are ellipses about the origin.

13. (complex): c1

�
1C i

2

�
e.1C3i/t C c2

�
1 � i

2

�
e.1�3i/t

(real): c1

�
cos 3t � sin 3t

2 cos 3t

�
et C c2

�
sin 3t C cos 3t

2 sin 3t

�
et

The trajectories spiral out, away from the origin.
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15. x.t/ D c1

24�1

0

1

35e�2t C c2

24�6

1

5

35e�t C c3

24�4

1

4

35et

The origin is a saddle point. A solution with c3 D 0 is
attracted to the origin. A solution with c1 D c2 D 0 is
repelled.

17. (complex):

c1

24�3

1

1

35et C c2

24 23 � 34i

�9C 14i

3

35e.5C2i/t C

c3

24 23C 34i

�9 � 14i

3

35e.5�2i/t

(real): c1

24�3

1

1

35et C c2

24 23 cos 2t C 34 sin 2t

�9 cos 2t � 14 sin 2t

3 cos 2t

35e5t C

c3

24 23 sin 2t � 34 cos 2t

�9 sin 2t C 14 cos 2t

3 sin 2t

35e5t

The origin is a repellor. The trajectories spiral outward,
away from the origin.

19. A D

�
�2 3=4

1 �1

�
,�

v1.t/

v2.t/

�
D

5

2

�
1

2

�
e�:5t �

1

2

�
�3

2

�
e�2:5t

21. A D

�
�1 �8

5 �5

�
,�

iL.t/

vC .t/

�
D

�
�20 sin 6t

15 cos 6t � 5 sin 6t

�
e�3t

Section 5.8, page 358

1. Eigenvector: x4 D

�
1

:2498

�
, or Ax4 D

�
5:9990

1:4995

�
;

� � 5:9990

3. Eigenvector: x4 D

�
:5188

1

�
, or Ax4 D

�
:4594

:9075

�
;

� � :9075

5. x D
�
�:7999

1

�
, Ax D

�
4:0015

�5:0020

�
; estimated

� D �5:0020

7. xk W

�
:75

1

�
;

�
1

:9565

�
;

�
:9932

1

�
;

�
1

:9990

�
;

�
:9998

1

�
�k W 11:5; 12:78; 12:96; 12:9948; 12:9990

9. �5 D 8:4233, �6 D 8:4246; actual value: 8.42443 (accurate
to 5 places)

11. �k W 5:8000; 5:9655; 5:9942; 5:9990 .k D 1; 2; 3; 4/I

R.xk/W 5:9655; 5:9990; 5:99997; 5:9999993

13. Yes, but the sequences may converge very slowly.

15. Hint:Write Ax � ˛x D .A � ˛I /x, and use the fact that
.A � ˛I / is invertible when ˛ is not an eigenvalue of A.

17. �0 D 3:3384, �1 D 3:32119 (accurate to 4 places with
rounding), �2 D 3:3212209. Actual value: 3.3212201
(accurate to 7 places)

19. a. �6 D 30:2887 D �7 to four decimal places. To six
places, the largest eigenvalue is 30.288685, with
eigenvector .:957629; :688937; 1; :943782/.

b. The inverse power method (with ˛ D 0/ produces
��1

1 D :010141, ��1
2 D :010150. To seven places, the

smallest eigenvalue is .0101500, with eigenvector
.�:603972; 1;�:251135; :148953/. The reason for the
rapid convergence is that the next-to-smallest eigenvalue
is near .85.

21. a. If the eigenvalues of A are all less than 1 in magnitude,
and if x ¤ 0, then Akx is approximately an eigenvector
for large k.

b. If the strictly dominant eigenvalue is 1, and if x has a
component in the direction of the corresponding
eigenvector, then fAkxg will converge to a multiple of
that eigenvector.

c. If the eigenvalues of A are all greater than 1 in
magnitude, and if x is not an eigenvector, then the
distance from Akx to the nearest eigenvector will
increase as k !1.

Section 5.9, page 367

1. a. From� N
:7

M
:6

:3 :4

� To
News
Music

b.
�

1

0

�
c. 33%

3. a. From� H
:95

I
:45

:05 :55

� To
Healthy
Ill

b. 15%, 12.5%

c. .925; use x0 D

�
1

0

�
:

5.
�

:4

:6

�
7.

241=4

1=2

1=4

35
9. No, because P k has a zero as its .1; 2/ entry for all k.

11. a.
�

2=3

1=3

�
b. 2/3

13. a.
�

:9

:1

�
b. .10, no

15–19. See the Study Guide.

21. No. q is not a probability vector since its entries do not add
to 1.

23. No. Aq does not equal q.

25. 67%
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27. a. The entries in a column of P sum to 1. A column in the
matrix P � I has the same entries as in P except that
one of the entries is decreased by 1. Hence each column
sum is 0.

b. By (a), the bottom row of P � I is the negative of the
sum of the other rows.

c. By (b) and the Spanning Set Theorem, the bottom row
of P � I can be removed and the remaining .n � 1/

rows will still span the row space. Alternatively, use (a)
and the fact that row operations do not change the row
space. Let A be the matrix obtained from P � I by
adding to the bottom row all the other rows. By (a), the
row space is spanned by the first .n � 1/ rows of A.

d. By the Rank Theorem and (c), the dimension of the
column space of P � I is less than n, and hence the null
space is nontrivial. Instead of the Rank Theorem, you
may use the Invertible Matrix Theorem, since P � I is a
square matrix.

29. a. The product Sx equals the sum of the entries in x. For a
probability vector, this sum must be 1.

b. P D Œ p1 p2 � � � pn �, where the pi are probability
vectors. By matrix multiplication and part (a),

SP D Œ Sp1 Sp2 � � � Spn � D Œ 1 1 � � � 1 � D S

c. By part (b), S.P x/ D .SP /x D Sx D 1. Also, the
entries in P x are nonnegative (because P and x have
nonnegative entries). Hence, by (a), P x is a probability
vector.

31. a. To four decimal places,

P 4 D P 5 D

2664
:2816 :2816 :2816 :2816

:3355 :3355 :3355 :3355

:1819 :1819 :1819 :1819

:2009 :2009 :2009 :2009

3775 ;

q D

2664
:2816

:3355

:1819

:2009

3775
Note that, due to round-off, the column sums are not 1.

b. To four decimal places,

Q80 D

24 :7354 :7348 :7351

:0881 :0887 :0884

:1764 :1766 :1765

35 ;

Q116 D Q117 D

24 :7353 :7353 :7353

:0882 :0882 :0882

:1765 :1765 :1765

35 ;

q D

24 :7353

:0882

:1765

35
c. Let P be an n � n regular stochastic matrix, q the

steady-state vector of P , and e1 the first column of the

identity matrix. Then P ke1 is the first column of P k . By
Theorem 11, P ke1 ! q as k !1. Replacing e1 by the
other columns of the identity matrix, we conclude that
each column of P k converges to q as k !1. Thus
P k ! Œ q q � � � q �.

Chapter 5 Supplementary Exercises, page 369

1. T 2. F 3. T 4. F 5. T

6. T 7. F 8. T 9. F 10. T

11. F 12. F 13. F 14. T 15. F

16. T 17. F 18. T 19. F 20. T

21. T 22. T 23. F

25. a. Suppose Ax D �x, with x ¤ 0. Then
.5I � A/x D 5x � Ax D 5x � �x D .5 � �/x. The
eigenvalue is 5 � �.

b. .5I � 3AC A2/x D 5x � 3Ax C A.Ax/ D 5x � 3�xC
�2x D .5 � 3�C �2/x. The eigenvalue is 5 � 3�C �2.

27. Suppose Ax D �x, with x ¤ 0. Then

p.A/x D .c0I C c1AC c2A2 C � � � C cnAn/x
D c0xC c1AxC c2A2xC � � � C cnAnx
D c0xC c1�xC c2�2xC � � � C cn�nx D p.�/x

So p.�/ is an eigenvalue of the matrix p.A/.

29. If A D PDP�1, then p.A/ D Pp.D/P�1, as shown in
Exercise 28. If the .j; j / entry in D is �, then the .j; j /

entry in Dk is �k , and so the .j; j / entry in p.D/ is p.�/.
If p is the characteristic polynomial of A, then p.�/ D 0 for
each diagonal entry of D, because these entries in D are the
eigenvalues of A. Thus p.D/ is the zero matrix. Thus
p.A/ D P 0P�1 D 0.

31. If I � A were not invertible, then the equation
.I � A/x D 0 would have a nontrivial solution x. Then
x � Ax D 0 and Ax D 1 � x, which shows that A would have
1 as an eigenvalue. This cannot happen if all the eigenvalues
are less than 1 in magnitude. So I � A must be invertible.

33. a. Take x in H . Then x D cu for some scalar c. So
Ax D A.cu/ D c.Au/ D c.�u/ D .c�/u, which shows
that Ax is in H .

b. Let x be a nonzero vector in K. Since K is
one-dimensional, K must be the set of all scalar
multiples of x. If K is invariant under A, then Ax is in K

and hence Ax is a multiple of x. Thus x is an eigenvector
of A.

35. 1, 3, 7

37. Replace a by a � � in the determinant formula from
Exercise 30 in Chapter 3 Supplementary Exercises:

det.A � �I/ D .a � b � �/n�1Œa � �C .n � 1/b�

This determinant is zero only if a � b � � D 0 or
a � �C .n � 1/b D 0. Thus � is an eigenvalue of A if and
only if � D a � b or � D aC .n � 1/b. From the formula
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for det.A � �I/ above, the algebraic multiplicity is n � 1

for a � b and 1 for aC .n � 1/b.

39. det.A � �I/ D .a11 � �/.a22 � �/ � a12a21 D

�2 � .a11 C a22/�C .a11a22 � a12a21/ D

�2 � .trA/�C detA: Use the quadratic formula to solve
the characteristic equation:

� D
trA˙

p
.trA/2 � 4 detA

2

The eigenvalues are both real if and only if the discriminant
is nonnegative, that is, .trA/2 � 4 detA � 0. This inequality

simplifies to .trA/2 � 4 detA and
�
trA

2

�2

� detA:

41. Cp D

�
0 1

�6 5

�
; det.Cp � �I/ D 6 � 5�C �2 D p.�/

43. If p is a polynomial of order 2, then a calculation such as in
Exercise 41 shows that the characteristic polynomial of Cp

is p.�/ D .�1/2p.�/, so the result is true for n D 2.
Suppose the result is true for n D k for some k � 2, and
consider a polynomial p of degree k C 1. Then expanding
det.Cp � �I/ by cofactors down the first column, the
determinant of Cp � �I equals

.��/ det

26664
�� 1 � � � 0

:::
:::

0 1

�a1 �a2 � � � �ak � �

37775C .�1/kC1a0

The k � k matrix shown is Cq � �I , where
q.t/ D a1 C a2t C � � � C ak tk�1 C tk . By the induction
assumption, the determinant of Cq � �I is .�1/kq.�/. Thus

det.Cp � �I/ D .�1/kC1a0 C .��/.�1/kq.�/

D .�1/kC1Œa0 C �.a1 C � � � C ak�k�1 C �k/�

D .�1/kC1p.�/

So the formula holds for n D k C 1 when it holds for
n D k. By the principle of induction, the formula for
det.Cp � �I/ is true for all n � 2.

45. From Exercise 44, the columns of the Vandermonde matrix
V are eigenvectors of Cp , corresponding to the eigenvalues
�1, �2, �3 (the roots of the polynomial p). Since these
eigenvalues are distinct, the eigenvectors form a linearly
independent set, by Theorem 2 in Section 5.1. Thus V has
linearly independent columns and hence is invertible, by the
Invertible Matrix Theorem. Finally, since the columns of V

are eigenvectors of Cp , the Diagonalization Theorem
(Theorem 5 in Section 5.3) shows that V �1CpV is diagonal.

47. If your matrix program computes eigenvalues and
eigenvectors by iterative methods rather than symbolic
calculations, you may have some difficulties. You should
find that AP � PD has extremely small entries and
PDP�1 is close to A. (This was true just a few years ago,
but the situation could change as matrix programs continue

to improve.) If you constructed P from the program’s
eigenvectors, check the condition number of P . This may
indicate that you do not really have three linearly
independent eigenvectors.

Chapter 6

Section 6.1, page 380

1. 5, 4,
4

5
3.

24 3=35

�1=35

�1=7

35 5.
�

8=13

12=13

�

7.
p

35 9.
�
�:6

:8

�
11.

242=
p

94

3=
p

94

9=
p

94

35
13. 5

p
5 15. Not orthogonal 17. Orthogonal

19–27. Refer to the Study Guide after you have written your
answers.

29. Hint: Use Theorems 3 and 2 from Section 2.1.

31. u�v D 0, kuk2 D 26, kvk2 D 129,
kuC vk2 D .�5/2 C .�11/2 C .3/2 D 155 D 26C 129

33. The set of all multiples of
�
�b

a

�
(when v ¤ 0/

35. Hint: Use the definition of orthogonality.

37. Hint: Consider a typical vector w D c1v1 C � � � C cpvp

in W.

39. Hint: If x is in W ?, then x is orthogonal to every vector
in W.

41. State your conjecture and verify it algebraically.

Section 6.2, page 388

1. Not orthogonal 3. Not orthogonal 5. Orthogonal

7. Show u1 �u2 D 0, mention Theorem 4, and observe that two
linearly independent vectors in R2 form a basis. Then obtain

x D 39
13

�
2

�3

�
C

26
52

�
6

4

�
D 3

�
2

�3

�
C

1
2

�
6

4

�
9. Show u1 �u2 D 0, u1 �u3 D 0, and u2 �u3 D 0. Mention

Theorem 4, and observe that three linearly independent
vectors in R3 form a basis. Then obtain

x D 8
2
u1 �

12
18
u2 C

24
36
u3 D 4u1 �

2
3
u2 C

2
3
u3

11.
�
�2

1

�
13. y D

�
�4=5

7=5

�
C

�
14=5

8=5

�
15. y � Oy D

�
:6

�:8

�
, distance is 1

17.

241=
p

3

1=
p

3

1=
p

3

35, 24�1=
p

2

0

1=
p

2

35
19. Orthonormal 21. Orthonormal

23–31. See the Study Guide.
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33. Hint: kU xk2 D .U x/T .U x/. Also, parts (a) and (c) follow
from (b).

35. Hint: You need two theorems, one of which applies only to
square matrices.

37. Hint: If you have a candidate for an inverse, you can check
to see whether the candidate works.

39. Suppose Oy D
y�u
u�u

u. Replace u by cu with c ¤ 0; then

y�.cu/

.cu/� .cu/
.cu/ D

c.y�u/

c2u�u
.c/u D Oy

41. Let L D Spanfug, where u is nonzero, and let
T .x/ D projL x. By definition,

T .x/ D
x�u
u�u

u D .x�u/.u�u/�1u

For x and y in Rn and any scalars c and d , properties of the
inner product (Theorem 1) show that

T .cxC dy/ D Œ.cxC dy/�u�.u�u/�1u

D Œc.x�u/C d.y�u/�.u�u/�1u

D c.x�u/.u�u/�1uC d.y�u/.u�u/�1u

D cT .x/C dT .y/

Thus T is linear.

43. The proof of Theorem 6 shows that the inner products to be
checked are actually entries in the matrix product ATA. A
calculation shows that ATA D 100I4. Since the off-diagonal
entries in ATA are zero, the columns of A are orthogonal.

Section 6.3, page 398

1. x D � 8
9
u1 �

2
9
u2 C

2
3
u3 C 2u4; x D

2664
0

�2

4

�2

3775C
2664

10

�6

�2

2

3775
3.

24�1

4

0

35 5.

24�1

2

6

35 D y

7. y D

2410=3

2=3

8=3

35C 24�7=3

7=3

7=3

35 9. y D

2664
2

4

0

0

3775C
2664

2

�1

3

�1

3775
11.

2664
3

�1

1

�1

3775 13.

2664
�1

�3

�2

3

3775 15.
p

40

17. a. U TU D

�
1 0

0 1

�
,

U U T D

24 8=9 �2=9 2=9

�2=9 5=9 4=9

2=9 4=9 5=9

35
b. projW y D 6u1 C 3u2 D

242

4

5

35, and .U U T /y D

242

4

5

35

19. Any multiple of

24�1=2

0

1=2

35, such as 24�1

0

1

35
21–29.Write your answers before checking the Study Guide.

31. Hint: Use Theorem 3 and the Orthogonal Decomposition
Theorem. For the uniqueness, suppose Ap D b and
Ap1 D b, and consider the equations p D p1 C .p � p1/

and p D pC 0.

33. w D

2664
1

0

0

1

3775M D

2664
1 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 1

3775

35. w D

26666666666664

1

1

1

1

0

0

1

1

1

37777777777775
I

M D

26666666666664

6 �1 �1 �1 0 0 �1 �1 �1

�1 1 0 0 0 0 0 0 0

�1 0 1 0 0 0 0 0 0

�1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

�1 0 0 0 0 0 1 0 0

�1 0 0 0 0 0 0 1 0

�1 0 0 0 0 0 0 0 1

37777777777775
37. U has orthonormal columns, by Theorem 6 in Section 6.2,

because U TU D I4. The closest point to y in ColU is the
orthogonal projection Oy of y onto ColU . From Theorem 10,

Oy D U U Ty D .1:2; :4; 1:2; 1:2; :4; 1:2; :4; :4/

Section 6.4, page 404

1.

24 3

0

�1

35, 24�1

5

�3

35 3.

24 2

�5

1

35, 24 3

3=2

3=2

35

5.

2664
1

�4

0

1

3775,
2664

5

1

�4

�1

3775 7.

24 2=
p

30

�5=
p

30

1=
p

30

35, 242=
p

6

1=
p

6

1=
p

6

35

9.

2664
3

1

�1

3

3775,
2664

1

3

3

�1

3775,
2664
�3

1

1

3

3775 11.

266664
1

�1

�1

1

1

377775,
266664

3

0

3

�3

3

377775,
266664

2

0

2

2

�2

377775
13. R D

�
6 12

0 6

�
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15. Q D

266664
1=
p

5 1=2 1=2

�1=
p

5 0 0

�1=
p

5 1=2 1=2

1=
p

5 �1=2 1=2

1=
p

5 1=2 �1=2

377775,

R D

24p5 �
p

5 4
p

5

0 6 �2

0 0 4

35
17–21. See the Study Guide.

23. Suppose x satisfies Rx D 0; then QRx D Q 0 D 0, and
Ax D 0. Since the columns of A are linearly independent, x
must be zero. This fact, in turn, shows that the columns of R

are linearly independent. Since R is square, it is invertible,
by the Invertible Matrix Theorem.

25. Denote the columns of Q by q1; : : : ; qn. Note that n � m,
because A is m � n and has linearly independent columns.
Use the fact that the columns of Q can be extended to an
orthonormal basis for Rm, say, fq1; : : : ; qmg. (The Study
Guide describes one method.) Let Q0 D

�
qnC1 � � � qm

�
and Q1 D

�
Q Q0

�
. Then, using partitioned matrix

multiplication, Q1

�
R

0

�
D QR D A.

27. Hint: Partition R as a 2 � 2 block matrix.

29. The diagonal entries of R are 20, 6, 10.3923, and 7.0711, to
four decimal places.

Section 6.5, page 412

1. a.
�

6 �11

�11 22

��
x1

x2

�
D

�
�4

11

�
b. Ox D

�
3

2

�
3. a.

�
6 6

6 42

��
x1

x2

�
D

�
6

�6

�
b. Ox D

�
4=3

�1=3

�
5. Ox D

24 5

�3

0

35C x3

24�1

1

1

35 7. 2
p

5

9. a. Ob D

241

1

0

35 b. Ox D
�

2=7

1=7

�

11. a. Ob D

2664
4

�3

1

4

3775 b. Ox D

242=3

2=3

�1

35

13. Au D

24 11

�11

11

35 ; Av D

24 7

�12

7

35,
b � Au D

24 0

2

�6

35 ; b � Av D

24 4

3

�2

35. No, u could not
possibly be a least-squares solution of Ax D b. Why?

15. Ox D
�

4

�1

�
17–25. See the Study Guide.

27. a. If Ax D 0, then ATAx D AT0 D 0. This shows that
NulA is contained in NulATA.

b. If ATAx D 0, then xTATAx D xT0 D 0. So
(Ax/T.Ax/ D 0 (which means that kAxk2 D 0/, and
hence Ax D 0. This shows that NulATA is contained
in NulA.

29. Hint: For part (a), use an important theorem from Chapter 2.

31. By Theorem 14, Ob D AOx D A.ATA/�1AT b. The matrix
A.ATA/�1AT occurs frequently in statistics, where it is
sometimes called the hat-matrix.

33. The normal equations are
�

2 4

4 8

��
x

y

�
D

�
4

8

�
, whose

solution is the set of all .x; y/ such that x C 2y D 2. The
solutions correspond to the points on the line midway
between the lines x C 2y D 1 and x C 2y D 3.

Section 6.6, page 421

1. y D :9C :4x 3. y D 1:1C 1:3x

5. 2.5

7. 2.1, a difference of .1 is reasonable.

9. No. A y-value of 20 is quite far from the other y-values.

11. If two data points have different x-coordinates, then the two
columns of the design matrix X cannot be multiples of each
other and hence are linearly independent. By Theorem 14 in
Section 6.5, the normal equations have a unique solution.

13. a. y D Xˇ C � where y D

266664
2:5

4:3

5:5

6:1

6:1

377775, X D

266664
1 1

2 4

3 9

4 16

5 25

377775,

ˇ D

�
ˇ1

ˇ2

�
, and � D

266664
�1

�2

�3

�4

�5

377775 :

b. y D 2:77x � :31x2

c. y D 5:46

15. y D Xˇ C �, where y D

24 7:9

5:4

�:9

35, X D

24cos 1 sin 1

cos 2 sin 2

cos 3 sin 3

35,
ˇ D

�
A

B

�
, � D

24�1

�2

�3

35
17. ˇ D 1:45 and e D :811; the orbit is an ellipse. The equation

r D ˇ=.1 � e � cos#/ produces r D 1:33 when # D 4:6.

19. a. y D �:8558C 4:7025t C 5:5554t2 � :0274t3

b. The velocity function is
v.t/ D 4:7025C 11:1108t � :0822t2, and
v.4:5/ D 53:0 ft=sec.

21. Hint:Write X and y as in equation (1), and compute XTX

and XTy.
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23. a. The mean of the x-data is Nx D 5:5. The data in
mean-deviation form are .�3:5; 1/, .�:5; 2/, .1:5; 3/,
and .2:5; 3/. The columns of X are orthogonal because
the entries in the second column sum to 0.

b.
�

4 0

0 21

��
ˇ0

ˇ1

�
D

�
9

7:5

�
,

y D 9
4
C

5
14

x� D 9
4
C

5
14

.x � 5:5/

25. Hint: The equation has a nice geometric interpretation.

Section 6.7, page 430

1. a. 3,
p

105, 225 b. All multiples of
�

1

4

�
3. 28 5. 5

p
2, 3
p

3 7. 56
25
C

14
25

t

9. a. Constant polynomial, p.t/ D 5

b. t2 � 5 is orthogonal to p0 and p1; values:
.4;�4;�4; 4/; answer: q.t/ D 1

4
.t2 � 5/

11. 17
5

t

13. Verify each of the four axioms. For instance:

1: hu; vi D .Au/�.Av/ Definition
D .Av/�.Au/ Property of the dot product
D hv; ui Definition

15. hu; cvi D hcv; ui Axiom 1
D chv; ui Axiom 3
D chu; vi Axiom 1

17. Hint: Compute 4 times the right-hand side.

19–23. See the Study Guide.

25. hu; vi D
p

a
p

b C
p

b
p

a D 2
p

ab,
kuk2 D .

p
a/2 C .

p
b/2 D aC b. Since a and b are

nonnegative, kuk D
p

aC b. Similarly, kvk D
p

b C a.
By Cauchy–Schwarz, 2

p
ab �

p
aC b

p
b C a D aC b.

Hence,
p

ab �
aC b

2
.

27. 0 29. 2=
p

5 31. 1, t , 3t2 � 1

33. The new orthogonal polynomials are multiples of
�17t C 5t3 and 72 � 155t2 C 35t4. Scale these
polynomials so their values at �2, �1, 0, 1, and 2 are small
integers.

Section 6.8, page 436

1. y D 2C 3
2
t

3. p.t/ D 4p0 � :1p1 � :5p2 C :2p3

D 4 � :1t � :5.t2 � 2/C :2
�

5
6
t3 �

17
6

t
�

(This polynomial happens to fit the data exactly.)

5. Use the identity

sinmt sinnt D 1
2
Œcos.mt � nt/ � cos.mt C nt/�

7. Use the identity cos2 kt D
1C cos 2kt

2
.

9. � C 2 sin t C sin 2t C 2
3
sin 3t [Hint: Save time by using

the results from Example 4.]

11. 1
2
C

1
2
cos 2t (Why?)

13. Hint: Take functions f and g in C Œ0; 2��, and fix an integer
m � 0. Write the Fourier coefficient of f C g that involves
cosmt , and write the Fourier coefficient that involves
sinmt.m > 0/.

15. The cubic curve is the graph of
g.t/ D �:2685C 3:6095t C 5:8576t2 � :0477t3. The
velocity at t D 4:5 seconds is g0.4:5/ D 53:4 ft=sec. This is
about .7% faster than the estimate obtained in Exercise 19
in Section 6.6.

Chapter 6 Supplementary Exercises, page 439

1. F 2. T 3. T 4. F 5. F 6. T

7. T 8. T 9. F 10. T 11. T 12. F

13. T 14. F 15. F 16. T 17. T 18. F

19. F

20. Hint: If fv1; v2g is an orthonormal set and x D c1v1 C c2v2,
then the vectors c1v1 and c2v2 are orthogonal, and

kxk2 D kc1v1 C c2v2k
2 D kc1v1k

2 C kc2v2k
2

D .jc1jkv1k/
2 C .jc2jkv2k/

2 D jc1j
2 C jc2j

2

(Explain why.) So the stated equality holds for p D 2.
Suppose that the equality holds for p D k, with k � 2, let
fv1; : : : ; vkC1g be an orthonormal set, and consider
x D c1v1 C � � � C ckvk C ckC1vkC1 D uk C ckC1vkC1,
where uk D c1v1 C � � � C ckvk .

21. Given x and an orthonormal set fv1; : : : ; vpg in Rn, let Ox be
the orthogonal projection of x onto the subspace spanned by
v1; : : : ; vp . By Theorem 10 in Section 6.3,

Ox D .x�v1/v1 C � � � C .x�vp/vp

By Exercise 20, kOxk2 D jx�v1j
2 C � � � C jx�vpj

2. Bessel’s
inequality follows from the fact that kOxk2 � kxk2, noted
before the statement of the Cauchy–Schwarz inequality, in
Section 6.7.

23. Suppose .U x/� .U y/ D x�y for all x, y in Rn, and let
e1; : : : ; en be the standard basis for Rn. For
j D 1; : : : ; n; U ej is the j th column of U . Since
kU ej k

2 D .U ej /� .U ej / D ej �ej D 1, the columns of U

are unit vectors; since .U ej /� .U ek/ D ej �ek D 0 for
j ¤ k, the columns are pairwise orthogonal.

25. Hint: Compute QT Q, using the fact that
.uuT /T D uT T uT D uuT .

27. Let W D Span fu; vg. Given z in Rn, let Oz D projW z. Then
Oz is in ColA, where A D

�
u v

�
, say, Oz D AOx for some Ox

in R2. So Ox is a least-squares solution of Ax D z. The
normal equations can be solved to produce Ox, and then Oz is
found by computing AOx.
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29. Hint: Let x D

24x

y

´

35, b D 24a

b

c

35, v D 24 1

�2

5

35, and
A D

24vT

vT

vT

35 D 241 �2 5

1 �2 5

1 �2 5

35. The given set of
equations is Ax D b, and the set of all least-squares
solutions coincides with the set of solutions of
ATAx D AT b (Theorem 13 in Section 6.5). Study this
equation, and use the fact that .vvT /x D v.vT x/ D .vT x/v,
because vT x is a scalar.

31. a. The row–column calculation of Au shows that each row
of A is orthogonal to every u in NulA. So each row of A

is in .NulA/?. Since .NulA/? is a subspace, it must
contain all linear combinations of the rows of A; hence
.NulA/? contains RowA.

b. If rankA D r , then dimNulA D n � r , by the Rank
Theorem. By Exercise 32(c) in Section 6.3,

dimNulAC dim.NulA/? D n

So dim.NulA/? must be r . But RowA is an
r-dimensional subspace of .NulA/?, by the Rank
Theorem and part (a). Therefore, RowA must coincide
with .NulA/?.

c. Replace A by AT in part (b) and conclude that RowAT

coincides with .NulAT /?. Since RowAT D ColA, this
proves (c).

33. If A D URU T with U orthogonal, then A is similar to R

(because U is invertible and U T D U�1/ and so A has the
same eigenvalues as R (by Theorem 4 in Section 5.2),
namely, the n real numbers on the diagonal of R.

35.
k�xk
kxk

D :4618,

cond.A/ �
k�bk
kbk

D 3363 � .1:548 � 10�4/ D :5206.

Observe that k�xk=kxk almost equals cond.A/ times
k�bk=kbk.

37.
k�xk
kxk

D 7:178 � 10�8,
k�bk
kbk

D 2:832 � 10�4. Observe

that the relative change in x is much smaller than the relative
change in b. In fact, since

cond.A/ �
k�bk
kbk

D 23;683 � .2:832 � 10�4/ D 6:707

the theoretical bound on the relative change in x is 6.707
(to four significant figures). This exercise shows that
even when a condition number is large, the relative error
in a solution need not be as large as you might expect.

Chapter 7

Section 7.1, page 447

1. Symmetric 3. Not symmetric 5. Symmetric

7. Orthogonal,
�

:8 :6

:6 �:8

�

9. Orthogonal,
�
�3=5 4=5

4=5 3=5

�
11. Not orthogonal

13. P D

"
�1=
p

2 1=
p

2

1=
p

2 1=
p

2

#
, D D

�
3 0

0 5

�

15. P D

"
1=
p

2 2=
p

13

1=
p

2 3=
p

13

#
, D D

�
1 0

0 14

�

17. P D

264�1=
p

2 1=
p

6 1=
p

3

0 �2=
p

6 1=
p

3

1=
p

2 1=
p

6 1=
p

3

375,
D D

24�5 0 0

0 5 0

0 0 8

35

19. P D

24�1=
p

5 4=
p

45 �2=3

2=
p

5 2=
p

45 �1=3

0 5=
p

45 2=3

35,
D D

24 8 0 0

0 8 0

0 0 �1

35

21. P D

2664
�1=
p

2 0 �1=2 1=2

1=
p

2 0 �1=2 1=2

0 �1=
p

2 1=2 1=2

0 1=
p

2 1=2 1=2

3775,

D D

2664
1 0 0 0

0 1 0 0

0 0 7 0

0 0 0 11

3775

23. P D

264 1=
p

3 �1=
p

2 �1=
p

6

1=
p

3 1=
p

2 �1=
p

6

1=
p

3 0 2=
p

6

375,
D D

24 3 0 0

0 6 0

0 0 6

35
25–31. See the Study Guide.

33. .Ax/�y D .Ax/T y D xT AT y D xT Ay D x�.Ay/, because
AT D A.

35. Hint: Use an orthogonal diagonalization of A, or appeal to
Theorem 2.

37. The Diagonalization Theorem in Section 5.3 says that the
columns of P are (linearly independent) eigenvectors
corresponding to the eigenvalues of A listed on the diagonal
of D. So P has exactly k columns of eigenvectors
corresponding to �. These k columns form a basis for the
eigenspace.
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39. A D 8u1uT
1 C 6u2uT

2 C 3u3uT
3

D 8

24 1=2 �1=2 0

�1=2 1=2 0

0 0 0

35
C 6

24 1=6 1=6 �2=6

1=6 1=6 �2=6

�2=6 �2=6 4=6

35
C 3

24 1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

35
41. Hint: .uuT /x D u.uTx/ D .uTx/u, because uTx is a scalar.

43. P D
1

2

2664
�1 1 1 1

1 1 1 �1

�1 1 �1 �1

1 1 �1 1

3775,
D D

2664
19 0 0 0

0 11 0 0

0 0 5 0

0 0 0 �11

3775

45. P D

2664
1=
p

2 3=
p

50 �2=5 �2=5

0 4=
p

50 �1=5 4=5

0 4=
p

50 4=5 �1=5

1=
p

2 �3=
p

50 2=5 2=5

3775

D D

2664
:75 0 0 0

0 :75 0 0

0 0 0 0

0 0 0 �1:25

3775
Section 7.2, page 454

1. a. 3x2
1 C

1
2
x1x2 C x2

2 b. 197 c. 21

3. a.
�

4 �3

�3 5

�
b.

�
5 2

2 0

�

5. a.

24 5 �2 3

�2 3 �1

3 �1 �7

35 b.

24 0 4 5

4 0 �3

5 �3 0

35
7. x D P y, where P D

�
1=
p

2 �1=
p

2

1=
p

2 1=
p

2

�
,

yT Dy D 7y2
1 � 5y2

2

In Exercises 9–14, other answers (change of variables and new
quadratic form) are possible.

9. x D P y, where P D

�
�2=
p

5 1=
p

5

1=
p

5 2=
p

5

�
,

yT Dy D 7y2
1 C 2y2

2

11. x D P y, where P D

�
1=
p

5 �2=
p

5

2=
p

5 1=
p

5

�
,

yT Dy D �4y2
1 C 6y2

2

13. x D P y, where P D

�
�1=
p

5 2=
p

5

2=
p

5 1=
p

5

�
, yT Dy D 5y2

1

15. Negative definite; eigenvalues are �13, �9, �7, �1

Change of variable: x D P y;

P D

26664
0 �1=2 0 3=

p
12

0 1=2 �2=
p

6 1=
p

12

�1=
p

2 1=2 1=
p

6 1=
p

12

1=
p

2 1=2 1=
p

6 1=
p

12

37775
New quadratic form: �13y2

1 � 9y2
2 � 7y2

3 � y2
4

17. Positive definite; eigenvalues are 1 and 21:

Change of variable: x D P y;

P D
1
p

50

2664
4 3 4 �3

�5 0 5 0

3 �4 3 4

0 5 0 5

3775
New quadratic form: y2

1 C y2
2 C 21y2

3 C 21y2
4

19. 9

21–29. See the Study Guide.

31. Write the characteristic polynomial in two ways:

det.A � �I/ D det
�

a � � b

b d � �

�
D �2 � .aC d/�C ad � b2

and

.� � �1/.� � �2/ D �2 � .�1 C �2/�C �1�2

Equate coefficients to obtain �1 C �2 D aC d and
�1�2 D ad � b2 D detA.

33. Exercise 34 in Section 7.1 showed that BTB is symmetric.
Also, xTBTBx D .Bx/TBx D kBxk2 � 0, so the quadratic
form is positive semidefinite, and we say that the matrix
BTB is positive semidefinite. Hint: To show that BTB is
positive definite when B is square and invertible, suppose
that xTBTBx D 0 and deduce that x D 0.

35. Hint: Show that AC B is symmetric and the quadratic form
xT.AC B/x is positive definite.

Section 7.3, page 462

1. x D P y, where P D

24 2=3 �2=3 1=3

2=3 1=3 �2=3

1=3 2=3 2=3

35.
3. a. 7 b. ˙

24 2=3

2=3

1=3

35 c. 4

5. a. 7 b. ˙

"
�1=
p

2

1=
p

2

#
c. �5
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7. ˙

24 �1=
p

21

�2=
p

21

4=
p

21

35 9. 7C
p

2 11. 3

13. Hint: If m DM , take ˛ D 0 in the formula for x. That is,
let x D un, and verify that xTAx D m. If m < M and if t is
a number between m and M , then 0 � t �m �M �m and
0 � .t �m/=.M �m/ � 1. So let ˛ D .t �m/=.M �m/.
Solve the expression for ˛ to see that t D .1 � ˛/mC ˛M .
As ˛ goes from 0 to 1, t goes from m to M . Construct x as
in the statement of the exercise, and verify its properties.

15. a. 9 b.

2664
�2=
p

6

0

1=
p

6

1=
p

6

3775 c. 3

17. a. 17 b.

2664
1=2

1=2

1=2

1=2

3775 c. 13

Section 7.4, page 472

1. 3, 1 3. 4, 1

The answers in Exercises 5–13 are not the only possibilities.

5.
�
�1 0

0 1

��
2 0

0 0

��
1 0

0 1

�
7.

"
1=
p

5 �2=
p

5

2=
p

5 1=
p

5

#�
3 0

0 2

�
�

"
2=
p

5 1=
p

5

�1=
p

5 2=
p

5

#

9.

24�1 0 0

0 0 1

0 1 0

3524 3
p

2 0

0
p

2

0 0

35
�

"
�1=
p

2 1=
p

2

1=
p

2 1=
p

2

#

11.

24�1=3 2=3 2=3

2=3 �1=3 2=3

2=3 2=3 �1=3

3524p90 0

0 0

0 0

35
�

"
3=
p

10 �1=
p

10

1=
p

10 3=
p

10

#

13.

"
1=
p

2 �1=
p

2

1=
p

2 1=
p

2

#�
5 0 0

0 3 0

�
�

24 1=
p

2 1=
p

2 0

�1=
p

18 1=
p

18 �4=
p

18

�2=3 2=3 1=3

35
15. a. rankA D 2

b. Basis for ColA:

24 :40

:37

�:84

35;

24�:78

�:33

�:52

35

Basis for NulA:

24 :58

�:58

:58

35
(Remember that V T appears in the SVD.)

17. If U is an orthogonal matrix then det U D ˙1: If
A D U †V T and A is square, then so are U , †, and V .
Hence det A D det U det † det V T

D ˙1 det † D ˙�1 � � � �n

19. Hint: Since U and V are orthogonal,

ATA D .U †V T /T U †V T D V †T U T U †V T

D V.†T †/V �1

Thus V diagonalizes ATA. What does this tell you about V ?

21. The right singular vector v1 is an eigenvector for the largest
eigenvalue �1 of AT A. By Theorem 7 in Section 7.3, the
largest eigenvalue, �2, is the maximum of xT .AT A/x over
all unit vectors orthogonal to v1. Since
xT .AT A/x D jjAxjj2, the square root of �2, which is the
second largest eigenvalue, is the maximum of jjAxjj over all
unit vectors orthogonal to v1.

23. Hint: Use a column–row expansion of .U †/V T .

25. Hint: Consider the SVD for the standard matrix of T—say,
A D U †V T D U †V �1. Let B D fv1; : : : ; vng and
C D fu1; : : : ; umg be bases constructed from the columns of
V and U , respectively. Compute the matrix for T relative to
B and C, as in Section 5.4. To do this, you must show that
V �1vj D ej , the j th column of In.

27.

2664
�:57 �:65 �:42 :27

:63 �:24 �:68 �:29

:07 �:63 :53 �:56

�:51 :34 �:29 �:73

3775
�

2664
16:46 0 0 0 0

0 12:16 0 0 0

0 0 4:87 0 0

0 0 0 4:31 0

3775

�

266664
�:10 :61 �:21 �:52 :55

�:39 :29 :84 �:14 �:19

�:74 �:27 �:07 :38 :49

:41 �:50 :45 �:23 :58

�:36 �:48 �:19 �:72 �:29

377775
29. 25.9343, 16.7554, 11.2917, 1.0785, .00037793;

�1=�5 D 68;622

Section 7.5, page 479

1. M D

�
12

10

�
; B D

�
7 10 �6 �9 �10 8

2 �4 �1 5 3 �5

�
;

S D

�
86 �27

�27 16

�
3.

�
:95

�:32

�
for � D 95:2,

�
:32

:95

�
for � D 6:8

5. (.130, .874, .468), 75.9% of the variance



Section 8.1 A-35

7. y1 D :95x1 � :32x2; y1 explains 93.3% of the variance.

9. c1 D 1=3, c2 D 2=3, c3 D 2=3; the variance of y is 9.

11. a. If w is the vector in RN with a 1 in each position, then�
X1 � � � XN

�
w D X1 C � � � C XN D 0

because the Xk are in mean-deviation form. Then�
Y1 � � � YN

�
w

D
�
P TX1 � � � P TXN

�
w By definition

D P T
�
X1 � � � XN

�
w D P T 0 D 0

That is, Y1 C � � � C YN D 0, so the Yk are in
mean-deviation form.

b. Hint: Because the Xj are in mean-deviation form, the
covariance matrix of the Xj is

1=.N � 1/
�
X1 � � � XN

��
X1 � � � XN

�T
Compute the covariance matrix of the Yj , using part (a).

13. If B D
�
OX1 � � � OXN

�
, then

S D
1

N � 1
BBT D

1

N � 1

�
OX1 � � � OXn

�
26664
OX

T

1
:::

OX
T

N

37775
D

1

N � 1

NX
1

OXk
OX

T

k D
1

N � 1

NX
1

.Xk �M/.Xk �M/T

Chapter 7 Supplementary Exercises, page 481

1. T 2. F 3. T 4. F 5. F 6. F

7. F 8. T 9. F 10. F 11. F 12. F

13. T 14. F 15. T 16. T 17. F

19. If rankA D r , then dimNulA D n � r , by the Rank
Theorem. So 0 is an eigenvalue of multiplicity n � r . Hence,
of the n terms in the spectral decomposition of A, exactly
n � r are zero. The remaining r terms (corresponding to the
nonzero eigenvalues) are all rank 1 matrices, as mentioned
in the discussion of the spectral decomposition.

21. If Av D �v for some nonzero �, then
v D ��1Av D A.��1v/, which shows that v is a linear
combination of the columns of A.

23. Hint: If A D RTR, where R is invertible, then A is positive
definite, by Exercise 33 in Section 7.2. Conversely, suppose
that A is positive definite. Then by Exercise 34 in Section
7.2, A D BTB for some positive definite matrix B . Explain
why B admits a QR factorization, and use it to create the
Cholesky factorization of A.

25. If A is m � n and x is in Rn, then xTATAx D .Ax/T .Ax/ D

kAxk2 � 0. Thus ATA is positive semidefinite. By
Exercise 30 in Section 6.5, rankATA D rankA.

27. Hint:Write an SVD of A in the form A D U †V T D PQ,
where P D U †U T and Q D UVT . Show that P is
symmetric and has the same eigenvalues as †. Explain why
Q is an orthogonal matrix.

29. a. If b D Ax, then xC D ACb D ACAx. By
Exercise 28(b), xC is the orthogonal projection of x
onto RowA.

b. From (a) and then Exercise 28(c),
AxC D A.ACAx/ D .AACA/x D Ax D b.

c. Since xC is the orthogonal projection onto RowA, the
Pythagorean Theorem shows that
kuk2 D kxCk2 C ku � xCk2. Part (c) follows
immediately.

31. AC D
1

40
�

266664
�2 �14 13 13

�2 �14 13 13

�2 6 �7 �7

2 �6 7 7

4 �12 �6 �6

377775, Ox D
266664

:7

:7

�:8

:8

:6

377775
The reduced echelon form of

�
A

xT

�
is the same as the

reduced echelon form of A, except for an extra row of zeros.
So adding scalar multiples of the rows of A to xT can
produce the zero vector, which shows that xT is in RowA.

Basis for NulA:

266664
�1

1

0

0

0

377775,
266664

0

0

1

1

0

377775
Chapter 8

Section 8.1, page 491

1. Some possible answers: y D 2v1 � 1:5v2 C :5v3,
y D 2v1 � 2v3 C v4, y D 2v1 C 3v2 � 7v3 C 3v4

3. y D �3v1 C 2v2 C 2v3. The weights sum to 1, so this is an
affine sum.

5. a. p1 D 3b1 � b2 � b3 2 affS since the coefficients sum
to 1.

b. p2 D 2b1 C 0b2 C b3 … affS since the coefficients do
not sum to 1.

c. p3 D �b1 C 2b2 C 0b3 2 affS since the coefficients
sum to 1.

7. a. p1 2 SpanS , but p1 … affS

b. p2 2 SpanS , and p2 2 affS

c. p3 … SpanS , so p3 … affS

9. v1 D

�
�3

0

�
and v2 D

�
1

�2

�
. Other answers are possible.

11–19. See the Study Guide.

21. Span fv2 � v1; v3 � v1g is a plane if and only if
fv2 � v1; v3 � v1g is linearly independent. Suppose c2 and
c3 satisfy c2.v2 � v1/C c3.v3 � v1/ D 0. Show that this
implies c2 D c3 D 0.
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23. Let S D fx W Ax D bg. To show that S is affine, it suffices
to show that S is a flat, by Theorem 3. Let
W D fx W Ax D 0g. Then W is a subspace of Rn, by
Theorem 2 in Section 4.2 (or Theorem 12 in Section 2.8).
Since S D W C p, where p satisfies Ap D b, by Theorem
6 in Section 1.5, S is a translate of W , and hence S is a flat.

25. A suitable set consists of any three vectors that are not
collinear and have 5 as their third entry. If 5 is their third
entry, they lie in the plane ´ D 5. If the vectors are not
collinear, their affine hull cannot be a line, so it must be the
plane.

27. If p; q 2 f .S/, then there exist r; s 2 S such that f .r/ D p
and f .s/ D q. Given any t 2 R, we must show that
z D .1 � t/pC tq is in f .S/. Now use definitions of p and
q, and the fact that f is linear. The complete proof is
presented in the Study Guide.

29. Since B is affine, Theorem 2 implies that B contains all
affine combinations of points of B . Hence B contains all
affine combinations of points of A. That is, affA � B .

31. Since A � .A [ B/, it follows from Exercise 30 that
affA � aff .A [ B/. Similarly, affB � aff .A [ B/, so
ŒaffA [ affB� � aff .A [ B/.

33. To show that D � E \ F , show that D � E and D � F .
The complete proof is presented in the Study Guide.

Section 8.2, page 501

1. Affinely dependent and 2v1 C v2 � 3v3 D 0

3. The set is affinely independent. If the points are called v1,
v2, v3, and v4, then fv1; v2; v3g is a basis for R3 and
v4 D 16v1 C 5v2 � 3v3, but the weights in the linear
combination do not sum to 1.

5. �4v1 C 5v2 � 4v3 C 3v4 D 0

7. The barycentric coordinates are .�2; 4;�1/.

9–17. See the Study Guide.

19. When a set of five points is translated by subtracting, say,
the first point, the new set of four points must be linearly
dependent, by Theorem 8 in Section 1.7, because the four
points are in R3. By Theorem 5, the original set of five
points is affinely dependent.

21. If fv1; v2g is affinely dependent, then there exist c1 and c2,
not both zero, such that c1 C c2 D 0 and c1v1 C c2v2 D 0.
Show that this implies v1 D v2. For the converse, suppose
v1 D v2 and select specific c1 and c2 that show their affine
dependence. The details are in the Study Guide.

23. a. The vectors v2 � v1 D

�
1

2

�
and v3 � v1 D

�
3

�2

�
are

not multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

b. p1 $
�
�

6
8
; 9

8
; 5

8

�
, p2 $

�
0; 1

2
; 1

2

�
, p3 $

�
14
8

;� 5
8
;� 1

8

�
,

p4 $
�

6
8
;� 5

8
; 7

8

�
, p5 $

�
1
4
; 1

8
; 5

8

�
c. p6 is .�;�;C/, p7 is .0;C;�/, and p8 is .C;C;�/.

25. Suppose S D fb1; : : : ; bkg is an affinely independent set.
Then equation (7) has a solution, because p is in affS .
Hence equation (8) has a solution. By Theorem 5, the
homogeneous forms of the points in S are linearly
independent. Thus (8) has a unique solution. Then (7) also
has a unique solution, because (8) encodes both equations
that appear in (7).

The following argument mimics the proof of Theorem 8 in
Section 4.4. If S D fb1; : : : ; bkg is an affinely independent
set, then scalars c1; : : : ; ck exist that satisfy (7), by
definition of affS . Suppose x also has the representation

x D d1b1 C � � � C dkbk and d1 C � � � C dk D 1 (7a)

for scalars d1; : : : ; dk . Then subtraction produces the
equation

0 D x � x D .c1 � d1/b1 C � � � C .ck � dk/bk (7b)

The weights in (7b) sum to 0 because the c’s and the d ’s
separately sum to 1. This is impossible, unless each weight
in (8) is 0, because S is an affinely independent set. This
proves that ci D di for i D 1; : : : ; k.

27. If fp1; p2; p3g is an affinely dependent set, then there exist
scalars c1, c2, and c3, not all zero, such that
c1p1 C c2p2 C c3p3 D 0 and c1 C c2 C c3 D 0. Now use
the linearity of f .

29. Let a D
�

a1

a2

�
, b D

�
b1

b2

�
, and c D

�
c1

c2

�
. Then

det Œ Qa Qb Qc � D det

24a1 b1 c1

a2 b2 c2

1 1 1

35 D
det

24a1 a2 1

b1 b2 1

c1 c2 1

35, by the transpose property of the
determinant (Theorem 5 in Section 3.2). By Exercise 30 in
Section 3.3, this determinant equals 2 times the area of the
triangle with vertices at a, b, and c.

31. If Œ Qa Qb Qc �

24 r

s

t

35 D Qp, then Cramer’s rule gives
r D det Œ Qp Qb Qc �= det Œ Qa Qb Qc �. By Exercise 29, the
numerator of this quotient is twice the area of4pbc, and
the denominator is twice the area of4abc. This proves the
formula for r . The other formulas are proved using
Cramer’s rule for s and t .

33. The intersection point is x.4/ D

�:1

24 1

3

�6

35C :6

24 7

3

�5

35C :5

24 3

9

�2

35 D 24 5:6

6:0

�3:4

35 : It is

not inside the triangle.

Section 8.3, page 508

1. See the Study Guide.

3. None are in conv S .
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5. p1 D �
1
6
v1 C

1
3
v2 C

2
3
v3 C

1
6
v4, so p1 … convS .

p2 D
1
3
v1 C

1
3
v2 C

1
6
v3 C

1
6
v4, so p2 2 convS .

7. a. The barycentric coordinates of p1, p2, p3, and p4 are,
respectively,

�
1
3
; 1

6
; 1

2

�
,
�
0; 1

2
; 1

2

�
,
�

1
2
;� 1

4
; 3

4

�
, and�

1
2
; 3

4
;� 1

4

�
.

b. p3 and p4 are outside convT . p1 is inside convT .
p2 is on the edge v2v3 of convT .

9. p1 and p3 are outside the tetrahedron convS . p2 is on the
face containing the vertices v2, v3, and v4. p4 is inside
convS . p5 is on the edge between v1 and v3.

11–15. See the Study Guide.

17. If p, q 2 f .S/, then there exist r, s 2 S such that f .r/ D p
and f .s/ D q. The goal is to show that the line segment
y D .1 � t/pC tq, for 0 � t � 1, is in f .S/. Use the
linearity of f and the convexity of S to show that
y D f .w/ for some w in S . This will show that y is in f .S/

and that f .S/ is convex.

19. p D 1
6
v1 C

1
2
v2 C

1
3
v4 and p D 1

2
v1 C

1
6
v2 C

1
3
v3.

21. Suppose A � B , where B is convex. Then, since B is
convex, Theorem 7 implies that B contains all convex
combinations of points of B . Hence B contains all convex
combinations of points of A. That is, convA � B .

23. a. Use Exercise 22 to show that convA and convB are
both subsets of conv .A [ B/. This will imply that their
union is also a subset of conv .A [ B/.

b. One possibility is to let A be two adjacent corners of a
square and let B be the other two corners. Then what is
.convA/ [ .convB/, and what is conv .A [ B/?

25.

p1

f0

p0

g

f1
p2

( 1
2)

( 1
2)( 1

2)

27. g.t/ D .1 � t/f0.t/C t f1.t/

D .1 � t/Œ.1 � t/p0 C tp1�C t Œ.1 � t /p1 C tp2�

D .1 � t/2p0 C 2t.1 � t /p1 C t2p2:
The sum of the weights in the linear combination for g is
.1 � t/2 C 2t.1 � t /C t2, which equals
.1 � 2t C t2/C .2t � 2t2/C t2 D 1. The weights are each
between 0 and 1 when 0 � t � 1, so g.t/ is in
conv fp0; p1; p2g.

Section 8.4, page 517

1. f .x1; x2/ D 3x1 C 4x2 and d D 13

3. a. Open b. Closed c. Neither
d. Closed e. Closed

5. a. Not compact, convex

b. Compact, convex

c. Not compact, convex
d. Not compact, not convex
e. Not compact, convex

7. a. n D

24 0

2

3

35 or a multiple

b. f .x/ D 2x2 C 3x3, d D 11

9. a. n D

2664
3

�1

2

1

3775 or a multiple

b. f .x/ D 3x1 � x2 C 2x3 C x4, d D 5

11. v2 is on the same side as 0, v1 is on the other side, and v3 is
in H .

13. One possibility is p D

2664
32

�14

0

0

3775, v1 D

2664
10

�7

1

0

3775,
v2 D

2664
�4

1

0

1

3775.
15. f .x1; x2; x3; x4/ D x1 � 3x2 C 4x3 � 2x4, and d D 5

17. f .x1; x2; x3/ D x1 � 2x2 C x3, and d D 0

19. f .x1; x2; x3/ D �5x1 C 3x2 C x3, and d D 0

21–27. See the Study Guide.

29. f .x1; x2/ D 3x1 � 2x2 with d satisfying 9 < d < 10 is one
possibility.

31. f .x; y/ D 4x C y. A natural choice for d is 12.75, which
equals f .3; :75/. The point .3; :75/ is three-fourths of the
distance between the center of A and the center of B .

33. Exercise 2(a) in Section 8.3 gives one possibility. Or let
S D f.x; y/ W x2y2 D 1 and y > 0g. Then convS is the
upper (open) half-plane.

35. Let x, y 2 B.p; ı/ and suppose z D .1 � t/xC ty, where
0 � t � 1. Then show that

kz � pk D kŒ.1 � t/xC ty� � pk

D k.1 � t/.x � p/C t.y � p/k < ı:

Section 8.5, page 529

1. a. m D 1 at the point p1 b. m D 5 at the point p2

c. m D 5 at the point p3

3. a. m D �3 at the point p3

b. m D 1 on the set conv fp1; p3g

c. m D �3 on the set conv fp1; p2g

5.
��

0

0

�
;

�
5

0

�
;

�
4

3

�
;

�
0

5

��
7.

��
0

0

�
;

�
7

0

�
;

�
6

4

�
;

�
0

6

��
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9. The origin is an extreme point, but it is not a vertex. Explain
why.

11. One possibility is to let S be a square that includes part of
the boundary but not all of it. For example, include just two
adjacent edges. The convex hull of the profile P is a
triangular region.

S conv P 5

13. a. f0.C 5/ D 32, f1.C 5/ D 80, f2.C 5/ D 80,
f3.C 5/ D 40, f4.C 5/ D 10, and
32 � 80C 80 � 40C 10 D 2.

b.
f0 f1 f2 f3 f4

C 1 2

C 2 4 4

C 3 8 12 6

C 4 16 32 24 8

C 5 32 80 80 40 10

For a general formula, see the Study Guide.

15. a. f0.P n/ D f0.Q/C 1

b. fk.P n/ D fk.Q/C fk�1.Q/

c. fn�1.P n/ D fn�2.Q/C 1

17–23. See the Study Guide.

25. Let S be convex and let x 2 cS C dS , where c > 0 and
d > 0. Then there exist s1 and s2 in S such that
x D cs1 C d s2. But then

x D cs1 C d s2 D .c C d/

�
c

c C d
s1 C

d

c C d
s2

�
:

Now show that the expression on the right side is a member
of .c C d/S .

For the converse, pick a typical point in .c C d/S and
show it is in cS C dS .

27. Hint: Suppose A and B are convex. Let x, y 2 AC B . Then
there exist a, c 2 A and b, d 2 B such that x D aC b and
y D cC d. For any t such that 0 � t � 1, show that

w D .1 � t/xC ty D .1 � t/.aC b/C t .cC d/

represents a point in AC B .

Section 8.6, page 540

1. The control points for x.t/C b should be p0 C b, p1 C b,
and p3 C b. Write the Bézier curve through these points,
and show algebraically that this curve is x.t/C b. See the
Study Guide.

3. a. x0.t/ D .�3C 6t � 3t2/p0 C .3 � 12t C 9t2/p1 C

.6t � 9t2/p2 C 3t2p3, so
x0.0/ D �3p0 C 3p1 D 3.p1 � p0/, and
x0.1/ D �3p2 C 3p3 D 3.p3 � p2/. This shows that the
tangent vector x0.0/ points in the direction from p0 to p1

and is three times the length of p1 � p0. Likewise, x
0.1/

points in the direction from p2 to p3 and is three times
the length of p3 � p2. In particular, x

0.1/ D 0 if and
only if p3 D p2.

b. x00.t/ D .6 � 6t/p0 C .�12C 18t/p1

C.6 � 18t/p2 C 6tp3; so that

x00.0/ D 6p0 � 12p1 C 6p2 D 6.p0 � p1/C 6.p2 � p1/

and
x00.1/ D 6p1 � 12p2 C 6p3 D 6.p1 � p2/C 6.p3 � p2/

For a picture of x00.0/, construct a coordinate system
with the origin at p1, temporarily, label p0 as p0 � p1,
and label p2 as p2 � p1. Finally, construct a line from
this new origin through the sum of p0 � p1 and p2 � p1,
extended out a bit. That line points in the direction of
x00.0/.

w 5 (p0 2 p1) 1 (p2 2p1) 5

0 5 p1 p2 2 p1

p0 2 p1 w

1
6

x0(0)

5. a. From Exercise 3(a) or equation (9) in the text,

x0.1/ D 3.p3 � p2/

Use the formula for x0.0/, with the control points from
y.t/, and obtain

y0.0/ D �3p3 C 3p4 D 3.p4 � p3/

For C 1 continuity, 3.p3 � p2/ D 3.p4 � p3/, so
p3 D .p4 C p2/=2, and p3 is the midpoint of the line
segment from p2 to p4.

b. If x0.1/ D y0.0/ D 0, then p2 D p3 and p3 D p4. Thus,
the “line segment” from p2 to p4 is just the point p3.
[Note: In this case, the combined curve is still C 1

continuous, by definition. However, some choices of the
other “control” points, p0, p1, p5, and p6, can produce a
curve with a visible corner at p3, in which case the curve
is not G1 continuous at p3.]

7. Hint: Use x00.t/ from Exercise 3 and adapt this for the
second curve to see that

y00.t/ D 6.1 � t/p3 C 6.�2C 3t/p4 C 6.1 � 3t/p5 C 6tp6
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Then set x00.1/ D y00.0/. Since the curve is C 1 continuous
at p3, Exercise 5(a) says that the point p3 is the midpoint of
the segment from p2 to p4. This implies that
p4 � p3 D p3 � p2. Use this substitution to show that p4

and p5 are uniquely determined by p1, p2, and p3. Only p6

can be chosen arbitrarily.

9. Write a vector of the polynomial weights for x.t/, expand
the polynomial weights, and factor the vector as MBu.t/:266664

1 � 4t C 6t2 � 4t3 C t4

4t � 12t2 C 12t3 � 4t4

6t2 � 12t3 C 6t4

4t3 � 4t4

t4

377775

D

266664
1 �4 6 �4 1

0 4 �12 12 �4

0 0 6 �12 6

0 0 0 4 �4

0 0 0 0 1

377775
266664

1

t

t2

t3

t4

377775 ;

MB D

266664
1 �4 6 �4 1

0 4 �12 12 �4

0 0 6 �12 6

0 0 0 4 �4

0 0 0 0 1

377775
11–15. See the Study Guide.

17. a. Hint: Use the fact that q0 D p0.

b. Multiply the first and last parts of equation (13) by 8
3
and

solve for 8q2.

c. Use equation (8) to substitute for 8q3 and then apply
part (a).

19. a. From equation (11), y0.1/ D :5x0.:5/ D z0.0/.

b. Observe that y0.1/ D 3.q3 � q2/. This follows from
equation (9), with y.t/ and its control points in place of
x.t/ and its control points. Similarly, for z.t/ and its
control points, z0.0/ D 3.r1 � r0/. By part (a),
3.q3 � q2/ D 3.r1 � r0/. Replace r0 by q3, and obtain
q3 � q2 D r1 � q3, and hence q3 D .q2 C r1/=2.

c. Set q0 D p0 and r3 D p3. Compute q1 D .p0 C p1/=2

and r2 D .p2 C p3/=2. Compute m D .p1 C p2/=2.
Compute q2 D .q1 Cm/=2 and r1 D .mC r2/=2.
Compute q3 D .q2 C r1/=2 and set r0 D q3.

21. a. r0 D p0, r1 D
p0 C 2p1

3
, r2 D

2p1 C p2

3
, r3 D p2

b. Hint:Write the standard formula (7) in this section, with
ri in place of pi for i D 0; : : : ; 3, and then replace r0

and r3 by p0 and p2, respectively:

x.t/ D .1 � 3t C 3t2 � t3/p0

C .3t � 6t2 C 3t3/r1

C .3t2 � 3t3/r2 C t3p2

Use the formulas for r1 and r2 from part (a) to examine
the second and third terms in this expression for x.t/.

Chapter 8 Supplementary Exercises, page 543

1. T 2. T 3. F 4. F 5. T 6. T

7. T 8. F 9. F 10. F 11. T 12. T

13. F 14. T 15. T 16. T 17. T 18. T

19. T 20. F 21. T

23. Let y 2 F . Then U D F � y and V D G � y are
k-dimensional subspaces with U � V . Let
B D fx1; : : : ; xkg be a basis for U . Since dim V D k, B is
also a basis for V . Hence U D V , and
F D U C y D V C y D G.

25. Hint: Suppose F1 \ F2 ¤ ¿. Then there exist v1 and v2 in
V such that x1 C v1 D x2 C v2. Use this and the properties
of a subspace to show that for all v in V , x1 C v 2 x2 C V

and x2 C v 2 x1 C V .

27. Hint: Start with a basis for V and expand it by joining p to
get a basis for Rn.

29. Hint: Suppose x 2 �B.p; ı/. This means that there exists
y 2 B.p; ı/ such that x D �y. Use the definition of B.p; ı/

to show that this implies x 2 B.�p; �ı/. The converse is
similar.

31. The positive hull of S is a cone with vertex (0, 0) containing
the positive y axis and with sides on the lines y D ˙x.

33. Hint: It is significant that the set in Exercise 31 consists of
exactly two non-collinear points. Explain why this is
important.

35. Hint: Suppose x 2 pos S . Then x D c1v1 C � � � ckvk , where
vi 2 S and all ci � 0. Let d D

Pk
iD1 ci . Consider two

cases: d D 0 and d ¤ 0.

Chapter 9

Section 9.1, page 557

1.
d
q

d q�
�10

25

10

�25

�
3.

rock
scissors
paper

r s p24 0

�5

5

5

0

�5

�5

5

0

35
5.

�
4 i3
1 �1

�
7.

24 5 i3 4 i3
�2 1 �5 2

4 i3 7 i3
35

9. a. E.x; y/ D 13
12
, v.x/ D min

˚
5
6
; 1; 9

6

	
D

5
6
,

v.y/ D max
˚

3
4
; 3

2
; 1

2

	
D

3
2

b. E.x; y/ D 9
8
, v.x/ D min

˚
1; 3

4
; 7

4

	
D

3
4
,

v.y/ D max
˚

1
2
; 5

4
; 3

2

	
D

3
2
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11. Ox D

"
1
6

5
6

#
, Oy D

"
1
2

1
2

#
, v D 1

2

13. Ox D

"
3
5

2
5

#
, Oy D

"
4
5

1
5

#
, v D 17

5

15. Ox D

"
1
3

2
3

#
or

"
3
5

2
5

#
or any convex combination of these row

strategies, Oy D

2664
0

0

1

0

3775, v D 2

17. Ox D

26664
5
7

0
2
7

0

37775, Oy D

2666664
0
5
7

2
7

0

0

3777775, v D 3
7

19. a. Army: 1=3 river, 2=3 land; guerrillas: 1=3 river,

2=3 land; 2=3 of the supplies get through.

b. Army: 7=11 river, 4=11 land; guerrillas: 7=11 river,

4=11 land; 64=121 of the supplies get through.

21–29. See the Study Guide.

31. Ox D

264
1
6

5
6

0

375, Oy D

264 0
1
2

1
2

375, v D 0

33. Ox D
�

d � c

a � b C d � c
;

a � b

a � b C d � c

�
,

Oy D
�

d � b

a � b C d � c
;

a � c

a � b C d � c

�
,

v D
ad � bc

a � b C d � c

Section 9.2, page 567

1. Let x1 be the amount invested in mutual funds, x2 the
amount in CDs, and x3 the amount in savings. Then

b D

24 12;000

0

0

35, x D 24 x1

x2

x3

35, c D 24 :11

:08

:06

35, and
A D

24 1 1 1

1 �1 �1

0 1 �2

35.
3. b D

�
20

�10

�
, c D

24 3

4

�2

35, A D

�
1 2 0

0 �3 �5

�

5. b D

24�35

20

�20

35, c D 24�7

3

�1

35, A D

24�1 4 0

0 1 �2

0 �1 2

35
7. max D 1360, when x1 D

72
5
and x2 D

16
5

9. unbounded

11–13. See the Study Guide.

15. max profitD $1250, when x1 D 100 bags of EverGreen
and x2 D 350 bags of QuickGreen

17. max profitD $1180, for 20 widgets and 30 whammies

19. Take any p and q in S , with p D
�

x1

x2

�
and q D

�
y1

y2

�
.

Then vT p � c and vT q � c. Take any scalar t such that
0 � t � 1. Then, by the linearity of matrix multiplication
(or the dot product if vT p is written as v�p, and so on),

vT Œ.1 � t /pC tq� D .1 � t /vT pC tvT q
� .1 � t /c C tc D c

because .1 � t / and t are both positive and p and q are in S .
So the line segment between p and q is in S . Since p and q
were any points in S , the set S is convex.

21. Let S D fx W f .x/ D dg, and take p and q in S . Also, take t

with 0 � t � 1, and let x D .1 � t/pC tq. Then

f .x/ D cT x D cT Œ.1 � t /pC tq�

D .1 � t/cT pC tcT q D .1 � t/d C td D d

Thus, x is in S . This shows that S is convex.

Section 9.3, page 583

1. x1 x2 x3 x4 x5 M264 2

3

�21

7

4

�25

10

18

�15

1

0

0

0

1

0

0

0

1

20

25

0

375
3. a. x2

b. x1 x2 x3 x4 M26664
7
2

3
2

11

0

1

0

1

0

0

�
1
2

1
2

5

0

0

1

5

15

150

37775
c. x1 D 0, x2 D 15, x3 D 5, x4 D 0, M D 150

d. optimal

5. a. x1

b. x1 x2 x3 x4 M2640

1

0

2
1
2

�2

1

0

0

�1
1
2

3

0

0

1

4

8

48

375
c. x1 D 8, x2 D 0, x3 D 4, x4 D 0, M D 48

d. not optimal

7–11. See the Study Guide.

13. The maximum is 150, when x1 D 3 and x2 D 10.

15. The maximum is 56, when x1 D 9 and x2 D 4.

17. The minimum is 180, when x1 D 10 and x2 D 12.
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19. The answer matches that in Example 7. The minimum is 20,
when x1 D 8 and x2 D 6.

21. The maximum profit is $1180, achieved by making 20
widgets and 30 whammies each day.

Section 9.4, page 592

1. Minimize 36y1 C 55y2

subject to 2y1 C 5y2 � 10

3y1 C 4y2 � 12

and y1 � 0; y2 � 0:

3. Minimize 26y1 C 30y2 C 13y3

subject to y1 C 2y2 C y3 � 4

2y1 C 3y2 C y3 � 5

and y1 � 0; y2 � 0; y3 � 0:

5. The minimum is M D 150, attained when y1 D
20
7
and

y2 D
6
7
:

7. The minimum is M D 56, attained when y1 D 0, y2 D 1,
and y3 D 2.

9–15. See the Study Guide.

17. The minimum is 43, when x1 D
7
4
, x2 D 0, and x3 D

3
4
:

19. The minimum cost is $670, using 11 bags of Pixie Power
and 3 bags of Misty Might.

21. The marginal value is zero. This corresponds to labor in the
fabricating department being underutilized. That is, at the
optimal production schedule with x1 D 20 and x2 D 30,
only 160 of the 200 available hours in fabricating are
needed. The extra labor is wasted, and so it has value zero.

23. Ox D

26664
2
3

0

1
3

37775, Oy D

24 1
2

1
2

35, v D 1

25. Ox D

26664
2
5

2
5

1
5

37775, Oy D

26664
3
7

3
7

1
7

37775, v D 1

27. Change this “game” into a linear programming problem and
use the simplex method to analyze the game. The expected
value of the game is 38

35
; based on a payoff matrix for an

investment of $100. With $35,000 to invest, Bob “plays”

this game 350 times. Thus, he expects to gain $380, and the
expected value of his portfolio at the end of the year is
$35,380. Using the optimal game strategy, Bob should
invest $11,000 in stocks, $9000 in bonds, and $15,000 in
gold.

29. a. The coordinates of Nx are all nonnegative. From the
definition of u, � is equal to the sum of these
coordinates. It follows that the coordinates of Ox are
nonnegative and sum to 1. Thus, Ox is a mixed strategy
for the row player R. A similar argument holds for Oy and
the column player C.

b. If y is any mixed strategy for C, then

E.Ox; y/ D OxT
Ay D

1

�

�
NxT Ay

�
D

1

�

��
AT Nx

�
�y
�

�
1

�
.v�y/ D

1

�

c. If x is any mixed strategy for R, then

E.x; Oy/ D xT AOy D
1

�

�
xTANy

�
D

1

�
Œx�ANy�

�
1

�
.x�u/ D

1

�

d. Part (b) implies v.Ox/ � 1=�, so vR � 1=�. Part (c)
implies v.Oy/ � 1=� , so vC � 1=�. It follows from the
Minimax Theorem in Section 9.1 that Ox and Oy are
optimal mixed strategies for R and C , respectively, and
that the value of the game is 1=�.

Chapter 9 Supplementary Exercises, page 594

1. T 2. F 3. F 4. F 5. T 6. F

7. T 8. T 9. T 10. F 11. T 12. F

13. F 14. T 15. F 16. T 17. F 18. F

19. T 20. F 21. F 22. T 23. T 24. F

25. b. The extreme points are .0; 0/; .0; 1/, and .1; 2/.

27. f .x1; x2/ D x1 C x2, f .0; 0/ D 0; f .0; 1/ D 1, and
f .1; 2/ D 3

29. Hint: there are no feasible solutions.

31. Ox D

"
3
5
2
5

#
, Oy D

24 1
2

0
1
2

35, and v D 1.
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A
Absolute value, complex number, A2
Absorbing boundaries, random walk, C-5
Abstract vector spaces, 295
Accelerator-multiplier model, 293n
Adjoint, classical, 214
Adjugate matrix, 214
Adobe Illustrator, 531
Affine combinations, 484–485, 487–489,

491–492, 498, 542
definition, 484
of points, 487–488

Affine coordinates. See Barycentric
coordinates

Affine dependence, 493, 500–501, 503, 507
definition, 493
linear dependence and, 501

Affine hull (affine span), 484
geometric view of, 489
of two points, 492, 494

Affine independence, 493
barycentric coordinates, 496
definition, 493

Affine set, 487–488, 504–505, 510
dimension of, 510
intersection of, 505

Affinely dependent, 493–495
Aircraft design, 121, 150–171
Algebraic multiplicity, eigenvalue, 309,

312–313, 334
Algorithms

change-of-coordinates matrix, 258, 262,
264, 275–278, 324

compute a B-matrix, 326
decouple a system, 340
diagonalization, 314–315
Gram–Schmidt process, 400–401
inverse power method, 157, 356–358

Jacobi’s method, 312
LU factorization, 122, 157–160
QR algorithm, 312–313, 357
reduction to first-order system,

292, 294
row–column rule for computing AB, 126,

132, 151–152, 379
row reduction, 37–39
row–vector rule for computing Ax, 64, 66,

126
singular value decomposition, 163, 190,

271, 442, 463, 465–466
solving a linear system, 28
steady-state vector, 364–367
writing solution set in parametric vector

form, 73
Ampere, 111, 350
Analysis of variance, 408, 422
Angles in R2 and R3, 379
Area

approximating, 218
determinants as, 207
ellipse, 219
parallelogram, 215

Argument, of a complex number, A2
Artificial intelligence (AI), 26, 130, 373
Associative law, matrix multiplication, 127
Associative property, matrix addition, 124
Astronomy, barycentric coordinates in, 483,

497n
Attractor, dynamical system, 338, 341,

343–344, 347, 351
Augmented matrix, 28, 30–32, 34–37, 43–48
Auxiliary equation, 289, 291
Average value, 428
Axioms

inner product space, 423
vector space, 225

B
B-coordinate vector, 187, 190, 192, 256, 258,

260, 262–263, 273, 283, 322
B-matrix, 323–327
B-splines, 534–535, 541
Back-substitution, 44, 411
Backward phase, row reduction algorithm, 43
Barycentric coordinates, 496–499, 501–502,

504–509, 543
Baseball statistics, Markov Chains, C-54–C-56

example, C-58–C-61
model application, C-59–C-61
transition matrix, C-56–C-59

Basic variable, pivot column, 44
Basis

change of basis overview, 273–277
Rn, 275

column space, 180–181
coordinate systems, 186, 255, 259, 261
eigenspace, 316, 318, 445
fundamental set of solutions, 291, 345, 348
fundamental subspaces, 379, 439, 469–470
null space, 180–183
orthogonal, 373–374
orthonormal, 386–388
row space, 235, 239
spanning set, 248
standard basis, 181, 247–248
subspace, 179
two views, 251

Basis matrix, 535n
Basis Theorem, 189, 267, 290, 294, 401–402,

445, 469, 514
Beam model, 144
Berlin Airlift, 545
Bessel’s inequality, 438
Best Approximation Theorem, 394–395, 406,

426
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Best approximation
Fourier, 434
P4, 436
to y by elements of W, 394, 399

Bézier bicubic surface, 537, 539
Bézier curves

approximations to, 436–437, 537
connecting two curves, 533
matrix equations, 535–536
overview, 531–532
recursive subdivisions, 538–539

Bézier surfaces
approximations to, 537
overview, 535
recursive subdivisions, 538

Bézier, Pierre, 531
Biased random walk, C-55
Bidiagonal matrix, 164
Blending polynomials, 535n
Block diagonal matrix, 153, 334
Block matrix. See Partitioned matrix
Block multiplication, 150
Block upper triangular matrix, 154
Boeing, 121–122
Boundary condition, 293
Boundary point, 515
Bounded set, 519
Branch current, 113
Branch, network, 82

C
C (language), 66
C, 533
Cn, 331–332
C3, 342
C1 geometric continuity, 533
CAD. See Computer-aided design
Cambridge diet, 105
Capacitor, 254, 346–347, 350, 352
Caratheodory, Constantin, 506
Caratheodory’s theorem, 507, 509
Casorati matrix, 287, 294
Casoratian, 287
Cauchy–Schwarz inequality, 427, 430
Cayley–Hamilton theorem, 370
Center of projection, 175–176, 178
Ceres, 422n
CFD. See Computational fluid dynamics
Change of basis, 273–275
Change of variable

dynamical system, 310
principal component analysis, 441–442,

473–474, 476–479, 481
quadratic form, 449

Change-of-coordinates matrix, 258, 262, 264,
275–278, 295, 324

Characteristic equation, 306–308
Characteristic polynomial, 309–310
Characterization of Linearly Dependent Sets

Theorem, 86, 88
Chemical equation, balancing, 79

Cholesky factorization, 454–455, 461
Classical adjoint, 214
Closed set, 515, 519
Closed (subspace), 521
Codomain, matrix

transformation, 92
Coefficient

correlation coefficient, 380
filter coefficient, 288, 413
Fourier coefficient, 435
of linear equation, 26
regression coefficient, 415
trend coefficient, 433

Coefficient matrix, 28, 33, 47–48, 64, 118, 121
Cofactor expansion, 198–202
Column

augmented, 63, 66, 141, 487, 576,
580–582, 595

determinants, 206
operations, 206
pivot column, 191–192, 249
sum, 167–168, 170, 305
vector, 458

Column–row expansion, 152, 155, 446
Column space

basis, 192
dimension, 268
null space contrast, 235–236
overview, 182
subspaces, 180, 182–183

Comet, orbit, 421–422
Communication classes

equivalence relation, C-26
example, C-26–C-28
fundamental matrix, C-43–C-44
Markov Chains, C-25–C-29
mean return times, C-29–C-31
periodicity, C-37–C-40
properties, C-26
theorem, C-29–C-30
transient states, C-33–C-37

Compact set, 515–516, 519, 522, 552
Complex eigenvalue, 309, 313, 328–333
Complex eigenvector, 328–330, 342, 349
Complex number, A7

absolute value, A5
argument of, A5
conjugate, A4
geometric interpretation, A5–A6
powers of, A6
R2, A6
system, A3

Complex vector, 50n, 226, 330, 342
Complex vector space, 226, 342
Composite transformation, 172–173
Computational fluid dynamics (CFD), 121
Computer-aided design (CAD), 171
Computer graphics

barycentric coordinates, 496–502, 504,
508–509, 543

composite transformation, 172–173

homogeneous coordinates, 172–178
perspective projection, 175–176, 178
three-dimensional graphics, 173
two-dimensional graphics, 474

Condition number, 147, 149
Conjugate, 331, A5
Consistent system of linear equations, 374
Constrained optimization problem, 456–457,

470
Consumption matrix, Leontief input–output

model, 166, 169, 171, 193
Contraction transformation, 95, 103
Control points, 509, 531–532
Control system

control sequence, 296
controllable pair, 296
Schur complement, 154–155
state vector, 155, 296, 360
steady-state response, 335

Controllability matrix, 296
Convergence, 356
Convex combinations, 503–504
Convex hull, 503, 505–506, 508
Convex set, 505–506
Coordinate mapping, 256, 258–259
Coordinate systems

B-coordinate vector, 187, 190, 192
graphical interpretation of coordinates, 256
mapping, 91–92
Rn subspace, 56, 58, 89, 93, 105, 119, 130,

146
unique representation theorem, 255, 496

Coordinate vector, 187, 190, 192, 256–258
Correlation coefficient, 380
Covariance, 474–479
Covariance matrix, 475–476
Cramer’s rule, 212–213, 215

engineering application, 213
inverse formula, 214, 220

Cray supercomputer, 153
Cross product, 449–450
Cross-product formula, 514
Crystallography, 93, 257
Cubic curves

Bézier curve, 509, 531–534
Hermite cubic curve, 535

Current, 80, 111–112
Curve fitting, 421, 509, 534–535, 538
Curves. See Bézier curves

D
Data science, 26, 49, 66, 68, 96, 109
De Moivre’s Theorem, A7
Decomposition

eigenvector, 343, 353
force into component forces, 386
orthogonal, 392, 394
polar, 482
singular value, 163, 190, 271, 463–471
See also Factorization

Decoupled systems, 340, 346, 349
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Deflection vector, 137
Design matrix, 195, 202, 415–417
Determinant, 136, 142

area, 195
cofactor expansion, 198
column operations, 206
Cramer’s rule, 212–213
eigenvalues and characteristic equation of a

square matrix, 306
linear transformation, 217–219
linearity property, 207–208
multiplicative property, 208–209
overview, 196–197
recursive definition, 197
row operations, 203–206
volume, 215–216

Diagonal entries, 122
Diagonal matrix, 122, 134, 163–164
Diagonal matrix Representation Theorem, 324
Diagonalization matrix

matrices whose eigenvalues are not
distinct, 324

orthogonal diagonalization, 467, 473
overview, 314–315
steps, 316–317
sufficient conditions, 317
symmetric matrix, 443–445
theorem, 315

Diagonalization Theorem, 315, 319–320, 463
Diet, linear modeling of weight-loss diet, 109
Difference equation. See Linear difference

equation
Differential equation

decoupled systems, 340, 346, 349
eigenfunction, 346–347
fundamental set of solutions, 345
kernel and range of linear, 240–243
transformation, 242

Diffusion, Markov Chains, C-4–C-5
Digital signal processing, 225, 279, 281
Dilation transformation, 95, 100
Dimension

column space, 268
null space, 268
R3 subspace classification, 267
subspace, 186, 188–189
vector space, 265–267

Dimension of a flat, 488
Dimension of a set, 488, 519
Discrete linear dynamical system, 297
Disjoint closed convex set, 516
Dodecahedron, 483, 530
Domain, matrix transformation, 92
Dot product, 64, 374, 562, 603
Duality

example, 585–592
theorem, 586–588

Dusky-footed wood rat, 336
Dynamical system, 92, 194, 291–293, 297

attractor, 338, 347
decoupling, 314

discrete linear dynamical system, 298
eigenvalue and eigenvector applications,

310–311, 337
evolution, 335
repeller, 338, 341, 343
saddle point, 338–340, 343–344
spiral point, 351
trajectory, 155, 337–338, 341, 347

E
Earth Satellite Corporation, 442, 576n
Echelon form, 37–49, 63, 66, 68–70, 73, 89,

105, 108, 117–120, 145, 157
Echelon matrix, 38, 40, 50, 295, 597
Economics, linear system applications, 25, 77,

109, 113, 122, 170, 279, 449, 545–546
Edge, face of a polyhedron, 483, 519, 530
Effective rank, matrix, 190, 271, 465
Eigenfunction, differential equation, 346
Eigenspace, 300–301, 304–306
Eigenvalue, 299

characteristic equation of a square
matrix, 328
characteristic polynomial, 309–313
determinants, 307–308
finding, 312, 369, 402, 437

complex eigenvalue, 309, 313, 328–333,
341, 349, 351

diagonalization. See Diagonalization,
matrix

differential equations. See Differential
equations

dynamical system applications, 297
interactive estimates

inverse power method, 157, 356–358
power method, 353, 355–358, 363, 369

quadratic form, 441–444
similarity transformation, 309, 447
triangular matrix, 199, 202, 204, 302, 318,

325, 370, 404
Eigenvector, 297

complex eigenvector, 328–330, 342, 349
decomposition, 335
diagonalization. See Diagonalization,

matrix
difference equations, 287
differential equations. See Differential

equations
dynamical system applications, 297
linear independence, 84, 89, 146
linear transformation, 91, 93–96
matrix of linear transformation, 31

Rn, 53, 56–57
similarity of matrix representations, 325
from V into V, 326

row reduction, 37
Eigenvector basis, 315, 318, 340, 349, 481
Election, Markov chain modeling of outcomes,

298, 311, 335, 359–363, 365
Electrical engineering

matrix factorization, 157

minimal realization, 162
Electrical networks, 26, 111
Electronic interactive textbook, 171
Elementary matrix, 138–140, 142

inversion, 141
types, 138

Elementary reflector, 438
Elementary row operation, 30–31, 33–36, 38,

40, 117–118, 139–140
Ellipse, 219, 332, 351, 452

area, 351
singular values, 464
sphere transformation onto ellipse in R2,

463–464
Equal vectors, in R2, 50
Equilibrium price, 78–79, 82
Equilibrium vector. See Steady-state vector
Equivalence relation, 326
Equivalent linear systems, 26
Euler, Leonard, 528
Euler’s formula, 529–530
Evolution, dynamical system, 335
Existence

linear transformation, 45, 63
matrix equation solutions, 63–64
matrix transformation, 92–94
system of linear equations, 62, 70, 75, 77,

80, 82, 87
Existence and Uniqueness Theorem, 46, 70
Extreme point, 520–521

F
Faces of a polyhedron, 483, 519, 526, 528–529
Facet, 520
Factorization

analysis of a dynamical system, 156
block matrices, 151
complex eigenvalue, 309, 313
diagonal, 314
dynamical system, 156
electrical engineering, 50, 109, 160, 213,

328n, 349
See also LU Factorization

Feasible set, 460
Filter coefficient, 288, 413
Filter, linear, 413
Final demand vector, Leontief input–output

model, 165
Finite set, 181, 253
Finite-state Markov Chains. seeMarkov

Chains
Finite-dimensional vector space, 267, 271–273

subspaces, 271–273, 278
First principal component, 441, 476–477, 479
First-order difference equation. See Linear

difference equation
First-order equations, reduction to, 291
Flexibility matrix, 137, 144
Flight control system, 335
Floating point arithmetic, 33
Flop, 45, 49, 158
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Forward phase, row reduction algorithm, 37,
40, 42–43, 46, 48, 205, 597

Fourier approximation, 435–436
Fourier coefficient, 435, 437
Fourier series, 434, 436
Free variable, pivot column, 44
Fundamental matrix

absorption probabilities, C-46–C-49
example, C-45, C-47–C-49
theorem, C-44, C-47
transient states, C-43–C-44
transit times, C-45–C-46

Fundamental set of solutions, 291, 345, 348
differential equations, 345

Fundamental subspace, 379, 439, 469–470

G
Gauss, Carl Friedrich, 37n, 422n
Gaussian elimination, 37n
General least-squares problem, 406, 409, 412,

414
General linear model, 417
General solution, 43–44, 290–291
Geometric continuity, 533
Geometric descriptions

R2, 51–52
Span{u, v}, 56, 87, 90, 381
Span{v}, 56, 70, 180, 401, 495
vector space, 225

Geometric interpretation
complex numbers, A2
orthogonal projection, 384

Geometric method
canonical problem, 562
example, 560–566
linear programming, 560–569
theorem, 563

Geometric point, 51
Geometry of vector space

affine combinations, 484
affine independence, 493, 495, 497, 499,

501
barycentric coordinates, 497–498
convex combinations, 503
curves and surfaces, 531, 533, 535, 537
hyperplanes, 511, 513, 515
polytopes, 519–521, 523, 525

Geometry vector, 536–537
Given rotation, 119
Google Matrix, C-18–C-21
Gouraud shading, 537
Gradient, 512
Gram matrix, 482
Gram–Schmidt process

inner product, 423–426
orthonormal bases, 402, 470
QR factorization, 402
steps, 467, 482, 499

Graphical interpretation, coordinates, 256
Graph, random walk, C-6
Gram–Schmidt Process Theorem, 400

H
Halley’s Comet, 421
Hermite cubic curve, 535
Hermite polynomials, 272
High-end computer graphics boards, 176
High-tech industry, 26, 109
Homogeneous coordinates

three-dimensional graphics, 173
two-dimensional graphics, 171

Homogeneous linear systems
applications, 71
linear difference equations, 286–287, 289
solution, 289

Householder matrix, 438
Householder reflection, 194
Howard, Alan H., 109
Hypercube, 527, 529
Hyperplane, 483, 488, 492, 510–514

I
Icosahedron, 483, 530
Identity matrix, 65, 99–100, 106–107, 118, 122
Identity for matrix multiplication, 122
(i I j )-cofactor, 198–200
Ill-conditioned equations, 439
Ill-conditioned matrix, 147, 410, 439
Imaginary axis, A5
Imaginary numbers, pure, A5
Imaginary part

complex number, A4
complex vector, 330–331

Inconsistent system of linear equations, 374
Indefinite quadratic form, 454–455
Indifference curve, 460–461
Inequality

Bessel’s, 438
Cauchy–Schwarz, 427
triangle, 427

Infinite set, 265n, 272
Infinite-dimensional vector, 266, 272
Infinite dimensional vector space, 284, 322
Initial probability vector, Markov Chains, C-3
Initial value problem, 345, 347, 351
Inner product angles, 374

axioms, 423
C [a, b], 428–429
evaluation, 428
length, 377, 424–425
overview, 374–375, 423
properties, 375
Rn, 423–424
Inner product space, 423–424
best approximation in, 426–427
Cauchy–Schwarz inequality in, 427
definition, 423
Fourier series, 434–437
Gram–Schmidt process, 425–426
lengths in, 424
orthogonality in, 436
trend analysis, 433–434

triangle inequality in, 427
weighted least-squares, 431–433

Input sequence, 288, 296
Inspection, linearly dependent vectors, 84–85
Interchange matrix, 160
Interior point, 116, 153n, 436
Intermediate demand, Leontief input–output

model, 166, 169, 171, 193
International Celestial Reference System, 497n
Interpolated color, 498
Interpolated polynomial, 498, 501–502
Invariant plane, 280
Inverse, matrix, 135–136

algorithm for finding A�1, 140–141
characterization, 145–146
Cramer’s rule, 213–214
elementary matrix, 139–140
flexibility matrix, 137
invertible matrix, 138
linear transformations, invertible, 146–147
Moore–Penrose inverse, 471
partitioned matrix, 153–155
product of invertible matrices, 138
row reduction, 141–142
square matrix, 205
stiffness matrix, 137

Inverse power method, interactive estimates
for eigenvalues, 356

Invertible Matrix Theorem, 122, 145–147, 149
Isomorphic vector space, 260
Isomorphism, 188, 260, 290, 425n
Iterative methods

eigenspace, 353–354
eigenvalues, 309, 353–359
inverse power method, 356–357
Jacobi’s method, 312
power method, 353, 355
QR algorithm, 312–313, 357

J
Jacobian matrix, 338n
Jacobi’s method, 312
Jordan, Wilhem, 37n
Jordan form, 325
Junction, network, 80

K
k-face, 520, 529–530
k-polytope, 520
k-pyramid, 530
Kernel, 240–242
Kirchhoff’s laws, 161

L
Ladder network, 161, 163–164
Laguerre polynomial, 272
Lamberson, R., 297–298
Landsat satellite, 441
LAPACK, 132, 153
Laplace transform, 155, 213
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Leading entry, 37, 39
Leading variable, 43n
Least-squares error, 409–410, 412, 414, 437
Least-squares solution, 374, 391, 406–414,

416–418, 432
alternative calculations, 410
applications

curve fitting, 414, 418
general linear model, 417
least-squares lines, 415, 432
multiple regression, 419–420

general solution, 406
QR factorization, 410
singular value decomposition, 466
weighted least-squares, 424, 431, 436–437

Left distributive law, matrix multiplication,
127

Left-multiplication, 139–140, 211, 258, 322,
438, 477

Left singular vector, 466, 469
Length, vector, 427
Leontief, Wassily, 25, 77–78, 165–167,

169–171, 193
Leontief input–output model

column sum, 166
consumption matrix, 166–170
final demand vector, 165
(I � C )�1

economic importance of entries, 168
formula for, 167

intermediate demand, 165–169
production vector, 96, 165, 167, 170
unit consumption vector, 165

Level set, 512, 566, 568
Line segment, 385
Linear algebraic foundational material, 213
Linear combinations

applications, 53
Ax, 61
vectors in Rn, 53, 58

Linear dependence
characterization of linearly dependent sets,

86, 88
relation, 84–85, 88, 183, 185, 246, 250,

253–254, 493, 503
vector sets

one or two vectors, 85
overview, 91, 396
theorems, 108
two or more vectors, 86, 247, 249

Linear difference equation, 109, 113, 286–291
discrete-time signals, 225–226, 228, 230,

279, 286
eigenvectors, 298
homogeneous equations, 84, 165, 235, 253,

291, 295
nonhomogeneous equations, 291
reduction to systems of first-order
equations, 291
solution sets, 75, 289

Linear equation, 25–26

Linear filter, 413
Linear functional, 510
Linear independence

eigenvector sets, 286
matrix columns, 68, 85
space S of signals, 286
spanning set theorem, 248–249
standard basis, 247
vector sets

one or two vectors, 85
overview, 88, 353
two or more vectors, 86, 247, 249

Linear model, 25
applications

difference equations, 226, 267, 286–287
electrical networks, 26, 111
weight loss diet, 109

general linear model, 417
Linear programming, 26. see also Berlin Airlift

basic solution, 571
cycling, 577
feasible set and solution, 562
feasible solution, 571–572
geometric method, 560–569
infeasible problem, 563
initial simplex tableau., 574
objective function, 562
simplex, 570–585
slack variable, 571
unbounded problem, 563

Linear regression coefficient, 415
Linear system. See System of linear equations
Linear time invariant(LTI), 225

Filter, 288
Transformations, 280–281

Linear transformation, 91
contractions and expansions, 103
determinants, 197
eigenvectors and linear transformation

from V into V, 321, 324, 325, 327
matrix of linear transformation, 305
similarity of matrix representations,

325
existence and uniqueness questions, 31, 37,

45, 101
geometric linear transformation of R2, 101
invertible, 135
one-to-one linear transformation, 106, 147,

259–260, 290, 430
projections, 104
range. See Range reflections
shear transformations, 93–94, 107–108,

172, 178
See alsoMatrix of a linear transformation

Linear trend, 322
Loop current, 111–113
Low-pass filter, 289
Lower triangular matrix, 148, 155, 157, 163,

194
LU factorization, 163, 412, 454

algorithm, 158
electrical engineering, 109, 160, 213, 328

overview, 159
permuted LU factorization, 160, 163

M
Machine learning, 26, 225, 373–374, 414–415
Macromedia Freehand, 531
Main diagonal, 112, 122, 145, 148, 153, 164
Maple, 49n, 311
Mapping. See Transformation
Marginal propensity to consume, 293
Mark II computer, 25
Markov chain, 298, 311, 335

applications to, 359–366
baseball statistics, C-54–C-61
communication classes, C-25–C-41

dangling modes, C-9
distant future prediction, 282–283
election outcomes, 361–362
examples, C-2–C-9
fundamental matrix, C-42–C-51
overview, C-2–C-3
periodicity, C-37–C-40
population modeling, 264–265
signal transmission, C-3–C-4
steady-state vector, C-13–C-15
steady-state vectors, 364–366
steps or transitions, C-2
transit times, C-45–C-46
transitional matrix, C-2
transitional probability, C-2

Mass–spring system, 233, 254
Mathematica, 311
MATLAB, 49n, 115, 149, 163, 221
Matrix, 28

algebra, 121–188
augmented matrix, 28, 30–32, 43, 46, 64
coefficient matrix, 28, 64
determinant. See Determinant
diagonalization. See Diagonalization,

matrix
echelon form, 38–39
equal matrices, 123
inverse. See Inverse, matrix
linear independence of matrix columns, 85
m x nmatrix, 28

multiplication, 94–95, 127–128, 135, 139
notation, 123
partitioned. See Partitioned matrix
pivot column, 38, 40
pivot position, 38–42
power, 129
rank. See Rank, matrix
reduced echelon form, 37–38, 43–45
row equivalent matrices, 31–32
row equivalent, 31, 55n, A1
row operations, 30–31
row reduction, 37–44, 46
size, 28
solving, 28–31
symmetric. See Symmetric matrix
transformations, 92–94, 100
transpose, 129–130
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Matrix equation, 26
AxD b, 61
computation of Ax, 64, 66
existence of solutions, 63–64
properties of Ax, 65–66

Matrix factorization, 122, 156
LU factorization

algorithm, 158–160
overview, 157–158
permuted LU factorization, 160

Matrix games, 546
example, 546–557
expected payoff, 549
linear programming, 589–592
number, 550
payoff matrix, 546–549
probability vector, 549, 592
size reduction, 555–557
slack variable, 571
strategy, pure, 549
theorem, 551–552, 554, 556
two-person zero-sum games, 546
value, 550, 552

Matrix of a linear transformation, 95–101
Matrix multiplication, 156, 172

composition of linear transformation
correspondence, 125

elementary matrix, 138–139
partitioned matrix, 151–152
properties, 127–128
row–column rule, 126–127
warnings, 128

Matrix of observations, 473–474
Matrix program, 49n
Matrix of the quadratic form, 449
Maximum of quadratic form, 456–459
Mean square error, 436
Mean-deviation form, 417, 475
Microchip, 150
Migration matrix, 114, 311, 360
Minimal realization, electrical engineering,

162
Minimal representation, of a polytope, 521,

524–525
Modulus, complex number, A4
Moebius, A. F., 497
Molecular modeling, 173–174
Moore–Penrose inverse, 471
Moving average, 293
Muir, Thomas, 196
Multichannel image, 441
Multiple regression, 419–420
Multiplicity of eigenvalue, 309
Multispectral image, 441, 476
Multivariate data, 473, 476–477, 479
MyLab Math, 226

N
Natural cubic splines, 531
Negative definite quadratic form,

453–454

Negative semidefinite quadratic
form, 453

Network. See Electrical networks
Network flow, linear system applications,

80–82, 111
Node, network, 80
Nonhomogeneous linear systems

linear difference equations, 287, 291
solution, 71–73

Nonlinear dynamical system, 338n
Nonpivot column, A1
Nonsingular matrix, 135
Nontrivial solution, 70, 75
Nonzero entry, 37, 41
Nonzero linear functional, 511
Nonzero row, 37
Nonzero vector, 215
Nonzero vector, 240
Nonzero volume, 308
Norm, vector, 375–376, 424
Normal equation, 407
Normalizing vectors, 376
Null space, matrix

basis, 249–250
column space contrast, 239–240
dimension, 268
explicit description, 237–238, 240
overview, 235–237
subspaces, 181–182

Nullity, 268
Nutrition model, 109

O
Observation vector, 415–416, 421, 474–476,

479–480
Octahedron, 483, 530
Ohm, 111–113, 161–162, 254, 346, 350, 352
Ohms’ law, 111–113, 161
Oil exploration, 25
One-to-one linear transformation, 106, 147,

259–260, 290, 430
Open ball, 515
Open set, 515, 519
OpenGL, 531
Optimal strategies, 552, 554, 556
Optimization, 456–457, 459, 461, 465, 470

duality, 585–594
linear programming, 560–585
matrix games, 546–560

Optimization, constrained. See Constrained
optimization problem

Orbit, 330, 422, 441
Order, polynomial, 535
Ordered n-tuples, 53
Ordered pairs, 50, 564
Orthogonal basis, 388, 391, 393
Orthogonal complement, 378–379, 470, 512
Orthogonal Decomposition Theorem, 392,

394, 402, 407, 425, 514
Orthogonal diagonalization, 446, 460, 467,

472–473, 482

Orthogonal matrix, 389
Orthogonal projection

Best Approximation Theorem, 394–395,
406, 425

Fourier series, 434, 436
geometric interpretation, 212, 215, 383,

385, 393, 497, 601
overview, 393
properties, 394
Rn, 405

Orthogonal set, 382
Orthogonal vector, 377–378
Orthogonality, application of, 373
Orthonormal basis, 386, 388, 395, 399–400,

402
Orthonormal column, 387–389, 391, 395, 399,

405, 438, 443
Orthonormal row, 388, 438
Orthonormal set, 386–387
Over determined system, 48

P
Pn

standard basis, 247–248
vector space, 226

P2, 260
P3, 260
PageRank, C-18–C-21
Parabola, 414, 418, 421–422
Parallel flats, 543
Parallel hyperplanes, 511
Parallelogram

area, 196, 202
law, 227
rule for addition, 52

Parameter vector, 415, 420–421
Parametric

continuity, 533–534
descriptions of solution sets, 44
equations

line, 70, 96
plane, 71

vector form, 71, 73
Parametric descriptions, solution sets, 44, 532
Parametric vector equation, 71–72
Partial pivoting, 42, 160, 163
Partitioned matrix, 120, 150–151, 153, 155

addition, 122
column–row expansion, 152, 155, 446
inverse, 152–154
multiplication, 151–152
scalar multiplication, 150–151

Payoff matrix, 546–547
Periodicity

aperiodic, C-38
definition, C-38
example, C-37–C-38
theorem, C-39–C-40

Permuted lower triangular matrix, 160, 163
Permuted LU factorization, 160, 163
Perspective projection, 175–176, 178
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Pivot, 40, 309
column, 39, 41, 43, 183, 188, 250
partial pivoting, 42
position, 38–42

Pixel, 373
Plane

geometric description, 488
implicit equation, 510

Platonic solids, 483–484
Point mass, 60
Polar coordinates, A5
Polar decomposition, 482
Polygon, 483–484, 519
Polyhedron, 483, 519, 530
Polynomials

blending, 535n
characteristic, 308–309
degree, 228
Hermite, 272
interpolating, 49
Laguerre polynomial, 272
Legendre polynomial, 430
orthogonal, 425, 433
set, 228
trigonometric, 434
zero, 228

Polytopes, 519–531
Population

linear modeling, 113–114
Markov chain modeling, 359–362, 364–365

Positive definite matrix, 454–455, 472
Positive definite quadratic form, 455, 481
Positive semidefinite matrix, 454, 482
Positive semidefinite quadratic form, 456
PostScript fonts, 534
Power, matrix, 129, 365
Powers, of a complex number, 602
Power method, interactive estimates for

eigenvalues, 353–356
Predator–prey model, 336–337
Predicted y-value, 415
Price, equilibrium, 78–79
Principal axes

geometric view, 451–453
quadratic form, 451

Principal component analysis
covariance matrix, 475
first principal component, 476
image processing, 441–442, 474–476
mean-deviation form, 475
multivariate data dimension reduction,

477–478
sample mean, 474–475
second principal component, 476
total variance, 476
variable characterization, 478

Principal Axes Theorem, 451, 454
Principle of Mathematic Induction, 206
Probability vector, 360, 549
Markov Chains, 599
Process control data, 473

Production vector, Leontief input–output
model, 165

Profile, 520, 521
Projection

matrix, 446
transformation, 92, 103, 194
See also Orthogonal projection Proper

subset, 488n
Proof writing, 100, 554
Properties of Determinants

Theorem, 200, 203, 205, 207, 209–211, 307
Pseudoinverse, 470–471, 482
Public work schedules, 460–461

feasible set, 460
indifference curve, 460–461
utility, 460

Pure imaginary numbers, 601
Pythagorean Theorem, 375, 378, 381, 394, 427

Q
QR algorithm, 312–313, 357
QR factorization

Cholesky factorization, 454–455, 481
Gram–Schmidt process, 400–405, 425,

429–430, 433, 445, 469
least-squares solution, 374, 391, 406–410

QR Factorization Theorem, 402
Quadratic Bézier curve, 509, 531–533,

541–543
Quadratic form, 310, 313, 329, 441–442,

449–452
change of variable in, 451
classification, 454
constrained optimization, 456–457, 470
eigenvalues, 402
matrix of, 446
principal axes, 451–452, 454–455, 481

Quadratic Forms and Eigenvalue Theorem,
453

R
Rn

algebraic properties, 53
change of basis, 273–277
dimension of a flat, 488
distance in, 215, 376, 385
eigenvector basis, 315, 318
inner product, 133, 424
linear functional, 510
linear transformations on, 324
orthogonal projection, 391–93
quadratic form. See Quadratic form
subspace

basis, 181–183, 189
column space, 180, 182–183
coordinate systems, 186–188, 258
dimension, 186, 188–189
lines, 180
null space, 180–181
properties, 179

rank, 188–190
span, 180

transformation of Rn to Rm, 91, 99–100,
101–103

vectors in
inner product, 374–375
length, 374–375
linear combinations, 53–54
orthogonal vectors, 377–378
overview, 53

R2

angles in, 379–380
complex numbers, A7
geometric linear transformation, 101
polar coordinates in, A6
vectors in

geometric descriptions, 51
overview, 50–51
parallelogram rule for addition, 52

R3

angles in, 379
sphere transformation onto ellipse in R2,

463
subspace

classification, 266
spanned by a set, 231

vectors in, 53
R4

polytope visualization, 524
subspace, 230–231

R40, 270
Random walks, Markov Chains, C-5–C-9
Range

matrix transformation, 92–93, 238
kernel and range of linear transformation,

235, 240
Rank, matrix

algorithms, 271
estimation, 465n
Invertible Matrix Theorem. See Invertible

Matrix Theorem
overview, 188–189, 270
row space, 239–241

Rank of transformation, 296
Rank Theorem, 189–190, 268–270, 382, 469,

511
application to systems of equations, 270
Ray-tracing, 499
Ray-triangle intersection, 499n
Rayleigh quotient, 358, 439
Real axis, A5
Real part

complex number, A2
complex vector, 323–324

Real vector space, 226n
Reasonable Answers, 33, 46, 48
Rectangular coordinate system, 51, 97
Recurrence relation. See Linear difference

equation
Recurrent states, C-33–C-37
Recursive description, 303
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Reduced echelon matrix, 38, 40, A1
Reduced LU factorization, 163
Reduced row echelon form, 37
Reflecting boundaries, random walk, C-5
Reflections, linear transformations, 102,

389–391
Reflexive properties, C-26
Regression coefficient, 415

line, 415
multiple, 419–420
orthogonal, 481

Regular polyhedron, 483, 530
Regular solid, 483
Regular stochastic matrix, 365
Relative error, 439
Rendering, computer graphics, 176, 537
Repeller, dynamical system, 338, 347
Residual vector, 417
Resistance, 111–112
Reversible row operations, 31
RGB coordinates, 498
Riemann sum, 428
Right distributive law, matrix multiplication,

127
Right multiplication, 211
Right singular vector, 466–469, 472, 478
RLC circuit, 254
Rotation transformation, 96, 101
Roundoff error, 33, 42, 147, 160, 301, 404,

465, 469
Row equivalent matrices, A1
Row operations, matrices, 30–31
Row reduced matrix, 48
Row reduction

algorithm, 40–42, 46, 158
matrix, 37–38, 140–138

Row replacement matrix, 201
Row vector, 64, 66, 106, 126, 239
Row–column rule, matrix multiplication,

126–127, 132–133, 151
Row–vector rule, computation of Ax, 64

S
Saddle point, 338, 340, 547
Sample covariance matrix, 475
Sample mean, 474–475
Samuelson, P. A., 293n
Scalar, 51
Scalar multiple, 50, 119
Scale matrix, 61
Scatter plot, 418
Scene variance, 441–442
Schur complement, 154–155
Schur factorization, 439, 446
Second principal component, 476
Series circuit, 161
Set

affine, 487
bounded, 515
closed, 515–516
compact, 515–516

convex, 504–506
level, 512
open, 515
vector. See Vector set

Shear transformation, 93–94, 107
Shunt circuit, 161
Signal, space of, 188–189, 191–192
Similar matrices, 325, 327, 370
Similarity transformation, 309, 447
Simple random walk, C-5

directed graph, C-8
on graph, C-6

Simplex, 153n, 483, 525–526
Simplex method, 153n25, 545, 570–575

algorithm, 577, 582–583
example, 570–576
feasible solution, 571–572
linear programming, 570–585
minimization problems, 579–582
slack variable, 571

Singular matrix, 135, 146–147
Singular value decomposition (SVD), 163,

190, 271, 442
applications

bases for fundamental subspaces, 469
condition number, 147
least-squares solution, 374
reduced decomposition and

pseudoinverse, 471
internal structure, 467–469
R3 sphere transformation onto ellipse in R2,

463–464
singular values of a matrix, 464–465

Singular Value Decomposition
Theorem, 163

Sink, dynamical system, 347
Size, matrix, 28
Solids, Platonic, 483
Solution, 27–28
Solution set, 27, 43–44, 235, 289–290, 345
Source, dynamical system, 297
Space. See Inner product; Vector space
Span, 56–57, 63

affine, 484
linear independence, 86
orthogonal projection, 374, 384
subspace, 180
subspace spanned by a set, 230

Span{u, v}
geometric description, 51, 56
linear dependence, 84
solution set, 71

Span{v}, geometric description, 51, 56
Spanning set, 181, 186, 231
Spanning Set Theorem, 248–249
Sparse matrix, 206
Spatial dimension, 474
Spectral decomposition, 446
Spectral factorization, 163
Spectral Theorem, 445
Spiral point, dynamical system, 351

Spline, 531
B-spline, 117, 534–535, 540
natural cubic, 507

Spotted owl, 297
Stage-matrix model, 297, 342, 344
Standard basis, 181, 247
Standard matrix, 100, 106
Standard matrix of a linear transformation,

96
Standard position, 452
States

classification, C-33–C-37
example, C-33–C-37

State-space design, 335
Steady-state response, 335
Steady-state vector, 364–366

Google Matrix, C-18–C-21
interpretations, C-15–C-17
Markov Chains, C-13–C-15
PageRank, C-18–C-21
regular matrices, C-17–C-18
theorem, C-18

Stiffness matrix, 137
Stochastic matrix, 360, 364–366, C-3
Strictly dominant eigenvalue, 353
Strictly separate hyperplane, 515–516
Submatrix, 296
Subset, proper, 488n
Subspace

finite-dimensional space, 267–268
properties, 229–230
R3

classification, 266
spanned by a set, 231

Rn vectors
basis, 181–183, 189
column space, 180, 182–183
coordinate systems, 186–188, 258
dimension, 186, 188–189
lines, 180
null space, 181–182
properties, 179
rank, 188–190
span, 180

spanned by a set, 230–232
Sum

matrices, 123
vectors, 51

Sum of squares for error, 406, 424
Superposition principle, 95, 98
Supported hyperplane, 510
Surface normal, 513
Surfaces. See Bézier surfaces
SVD. See Singular value decomposition
Symbolic determinant, 514
Symmetric matrix, 235, 358, 442, 448

diagonalization, 442, 448
Spectral Theorem, 445

spectral decomposition, 424–425
Symmetric properties, C-26
System matrix, 155
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System of linear equations
applications

economics, 77–79
chemical equation balancing, 79–80
network flow, 80–82

back-substitution, 44–45
consistent system, 28, 31–32
equivalent linear systems, 27
existence and uniqueness

questions, 31–33
inconsistent system, 28, 64
matrix notation, 28
overview, 25–27
solution

homogeneous linear systems, 70
nonhomogeneous linear systems, 71–73
nontrivial solution, 70
overview, 27–28
parametric descriptions of solution sets,

44
parametric vector form, 71, 73
row reduced matrix, 43–44
trivial solution, 70

T
Tangent vector, 532–535, 538, 540–543
Tetrahedron, 220, 483, 497, 502, 509, 525,

526, 530
Three-moment equation, 293
Timaeus, 483
Total variance, 476–480
Trace, 109, 327, 371, 476, 479
Trajectory, dynamical system, 337
Transfer function, 155
Transfer matrix, 161–164
Transformation

matrices, 118–121
overview, 88
Rn to Rm, 91, 99–100, 107
shear transformation, 93–94, 107–108, 172,

178
See also Linear transformation Translation,

vector addition, 70
Transient states, C-33–C-37

communication classes, C-33–C-37
fundamental matrix, C-43–C-44

Transitive properties, C-26
Transpose, 129, 132–133

conjugate, 439n
inverse, 129
matrix cofactors, 215
product, 217

Trend analysis, 228, 433, 436
Trend coefficients, 433
Trend function, 433–434, 436

Trend surface, 419
Triangle, barycentric coordinates, 496–497
Triangle inequality, 427, 519
Triangular determinant, 204, 206
Triangular form, 30, 32, 36
Triangular matrix, 148, 154–155, 157, 163,

194, 199, 202, 204, 302, 318, 325,
370, 404–405, 438–439, 455, 482

determinants, 196
eigenvalues, 297
lower. See Lower triangular matrix upper;

Upper triangular matrix
Tridiagonal matrix, 164
Trigonometric polynomial, 434, 437
Trivial solution, 70, 75–76, 84–85, 87, 89–90,

98, 105–106
TrueType font, 542
Two-person zero-sum games, 546

U
Unbiased random walk, C-5
Uncorrelated variable, 476, 478
Underdetermined system, 48–49
Uniform B-spline, 541
Unique Representation Theorem, 255, 496
Uniqueness

existence and uniqueness theorem, 46, 70
linear transformation, 101
matrix transformation, 99
reduced echelon matrix, 14, 16, A1
system of linear equations, 31, 37, 48–49

Unit cell, 257, 263–264
Unit consumption vector, Leontief

input–output model, 165
Unit lower triangular matrix, 157
Unit vector, 376, 380, 382, 386–387, 390, 424,

438, 448
Unstable equilibrium, 343
Upper triangular matrix, 148, 154, 370,

404–405, 438–439, 455, 482
Utility function, 449, 460–461

V
Vandermonde matrix, 194, 371
Variable, 43

leading, 43
uncorrelated, 478
See also Change of variable

Variance, 441–442, 474–475
sample, 479
scene, 441–442
total, 476–478

Variation-diminishing property, Bézier curves,
538–539

Vector, 50
geometric descriptions of span{v}and

span{u, v}, 51, 69, 540–541
inner product. See Inner product length
linear combinations in applications, 57
matrix–vector product. SeeMatrix equation
Rn

linear combinations, 53–54
vectors in, 53

R2

geometric descriptions, 50
parallelogram rule for addition, 52
vectors in, 50

R3, vectors in, 53
space, 179–180
subspace. See Subspace subtraction
sum, 54

Vector equation, 51
Vector space

change of basis, 273
complex, 50n, 226n
dimension of vector space, 272–273
hyperplanes, 492, 510
overview, 215–218
real, 226n, 260, 313, 328n, 342, 351
See also Geometry of vector space; Inner

product
Vertex, face of a polyhedron, 520
Very-large scale integrated microchip, 150
Virtual reality, 174
Volt, 111
Volume

determinants as, 195–196
ellipsoid, 220, 449
tetrahedron, 220, 264

W
Weighted least-squares, 424, 431, 436–437
Weights, 53–55, 58–62, 65, 88, 98, 125, 186
Wire-frame approximation, 498

Z
Zero functional, 511
Zero matrix, 76, 122, 128, 132–134, 156, 163,

168, 233, 235, 305, 370
Zero subspace, 180, 185–186, 188, 229, 266,

392
Zero vector, 53, 56, 70–71, 73, 76, 85, 87–88,

91, 97, 168, 179–181, 185–186, 188,
226–230, 233, 236–237, 239, 241,
245–246, 263, 265–266, 269, 313,
342, 344, 378, 399, 424, 479, 488,
493, 541
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Advice on Reading Linear Algebra

When you are reading linear algebra, you will encounter several different types of
mathematical objects. Here are some conventions that will help you to keep track of which
objects are which.

• Pay attention to case and font. Mathematical objects are usually bold or italic, and
“A,” “A,” “a,” and “a” may be used to represent four different mathematical objects at
the same time, while “A” and “a” are one-letter words.

• Pay attention to subscripts and super scripts, which also give you clues about the objects
you are reading about.

• Repeated letters in the same font and case are significant. An n � n matrix has the
same number of rows as columns, whereas an m � n matrix may or may not have the
same number of rows as columns.

• As you read, it may help to imagine shapes and pictures. I think of a matrix as a large,
wide rectangle full of numbers and a vector as a tall, thin rectangle of numbers.

Finally, read the surrounding text carefully as the type of object you are reading (or writing)
about should be clearly stated, and the conventions in this list are not always followed. When
you are writing by hand, it is particularly important to indicate what each letter represents.

c, k, i , j Italicized lowercase letters usually represent numbers. Pay attention to the
context to determine whether they are integers, real numbers, or complex
numbers.

A; B Italicized capital letters near the beginning of the alphabet are frequently
used to represent matrices.

aij ; bij When a matrix is listed as an italicized capital letter, the entries in the
matrix are frequently represented using the same letter, but in lowercase
italic with two subscripts. The first subscript tells you the row number.
The second subscript tells you the column number. So a23 is the entry in
the second row and third column of matrix A, whereas b31 is the entry in
the third row and first column of the matrix B .

Aij ; Bij When you see an italicized capital letter with two subscripts, you need to
check the surrounding text to see how this notation is being used. For
example, in the context of Section 2.4, a matrix A has been partitioned into
submatrices and A34 donates the submatrix in the third row and fourth
column of this block partitioning. In contrast, in Section 3.1, A34 represents
the matrix that was created by deleting the third row and fourth column
of the matrix A.

E1; E2 When we have a list of matrices, we may use the same italicized capital
letter with a single subscript. A different subscript indicates a different
matrix. The letter E is used for special matrices such as the elementary
matrices introduced in Chapter 2. Other special matrices may also be
represented by the first letter of their description—so a diagonal matrix
might be called D.

(continued)



T An italicized capital T usually represents a linear transformation. If more
than one transformation is needed, then S or U is a frequent second choice.

v; x Vectors are frequently listed in this text with bold, but not italic, letters.
They are often chosen to be near the end of the alphabet; however, b is
used for vectors that represent the right-hand side of equations. In
higher-level linear algebra or math textbooks, they may be italicized, but
not bold. In calculus and physics books, vectors may be written with an
arrow over top of them.

vi ; xi The entries in a vector may be represented using the same letter as the
vector, but these letters will be italicized (not bold), with one subscript.
The subscript describes the position of the entry. For example, v4 is the
fourth entry in the vector v.

v1; v2 This one gets a little tricky too. To list several vectors, bold letters with a
single subscript are often used. Thus, v1, v2, and v3 are three different
vectors, whereas v1, v2, and v3 are the first three entries in a vector named
v. Clearly, we need to move to a different convention if we want to
describe the entries of v2.

ej A bold e is usually associated with the standard basis vectors, with the
subscript indicating which row contains a 1. Thus, e2 is a vector with a 1 in
the second row and zeros in all the other rows. You will have to read the
surrounding text to tell how many zero entries are in e2.

I An italicized I always represents an identity matrix. Sometimes we
indicate its size using a subscript. For example, I3 is the identity matrix
with three rows and columns, while In represents an n � n identity matrix.
But if the letter has not been italicized, I just represents me!

A�1 An n � n matrix with superscript �1 denotes the inverse of that matrix.
When matrix A has an inverse, it has the special property that
A�1A D I D AA�1: What may be different from what you have seen
before is that we do not write 1/A, when A is a matrix.

Ak An n � n matrix with a superscript positive integer works much like the
exponents you have encountered in other math classes. For example,
A1 D A; A2 D A.A/; A3 D A.A/.A/, and so on. We also define A0 D I ,
the identity matrix. For negative superscripts, use the inverse. For example
A�2 D .A�1/2 D A�1.A�1/; A�3 D .A�1/3 D A�1 .A�1/.A�1/, and so on.

AT Be careful. When the superscript is an italicized capital T , it represents the
transpose of the matrix named with the same letter. Thus, AT is the matrix
formed from the matrix A by switching the rows with the columns.

R Letters where parts of the font are double barred represent specific number
or mathematical systems. In particular, R always represents the real
numbers.

(continued)



Rn When we want to represent the set of all vectors of the same size with real
entries, we use R with an integer superscript greater than 1, where the
integer gives the common size of all the vectors. For example, R2 indicates
that we are talking about the set of all vectors with two entries, both of
which are real numbers, and R3 indicates that we are talking about the set
of all vectors with three real number entries. When you encounter an Rn,
you know that all the vectors in the set have n real entries. In this case, you
should look for other objects in the same area described using the letter n

as well.

V An italicized V is usually chosen to represent a vector space, with an
italicized H representing a subspace.

B; C Capital letters in a script font are often used to name a basis.

[v�B A vector inside square brackets with a subscript script letter usually
represents the vector of coefficients formed when writing that vector in
terms of the basis named by the script subscript.

�; � Greek letters frequently represent numbers that are playing the special
role of being eigenvalues.

AB; Ax When two matrices (or a matrix and a vector) are written side-by-side,
the implied operation is matrix multiplication. Remember AB ¤ BA,
most of the time. When a grouping symbol is needed, the preferred choice
is parentheses: A.B C C / or .A/.B C C /.

� In this text, the symbol � is used to identify the size of a matrix. For
example, a 2 � 3 matrix has two rows and three columns. In Chapter 8, �

is used to represent the cross product between two vectors.

� When you see a raised dot, pay attention to the context. A raised dot between
two real numbers represents the usual arithmetic product: 3 � 5 D 15.
When it is used between two vectors, such as in Chapter 6, it indicates the
inner (or dot) product of the two vectors.

? The symbol ?, referred to as the perp symbol, represents orthogonality.
When you see it used as a superscript, it refers to all the vectors orthogonal
to the given vector or set of vectors.

jcj; jjvjj Single bars usually surround a number and indicate absolute value. Double
bars usually surround a vector and represent the length or norm of the
vector.

Warning: This list is just a set of conventions. Always read the surrounding text to see which
objects are being represented by each letter, case, and font.
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