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Barron’s Essential 5
As you review the content in this book to work toward earning that 5 on your AP CALCULUS AB exam, here are five things that
you MUST know above everything else:

1
Learn the basic facts:
• derivatives and antiderivatives of common functions;
• the product, quotient, and chain rules for finding derivatives;
• the midpoint, left and right rectangle, and trapezoid rules for estimating definite integrals;
• the important theorems: Rolle’s theorem, the Mean Value theorem, and especially the Fundamental Theorem of Calculus.
(Barron’s AP Calculus Flash Cards are a great way to study these!)

2
Understand that a derivative is an instantaneous rate of change, and be able to apply that concept to:
• find equations of tangent lines;
• determine where a function is increasing/decreasing, concave up/down, or has maxima, minima, or points of inflection;
• analyze the speed, velocity, and acceleration of an object in motion;
• solve related rates problems, using implicit differentiation when necessary.

3
Understand that integrals represent accumulation functions based on antiderivatives, and be able to apply those
concepts to:
• the average value of a function;
• area and volume;
• position of object in motion and distance traveled;
• total amount when given the rate of accumulation;
• differential equations, including solutions and slope fields.

4
Be able to apply any of the above calculus concepts to functions defined algebraically, graphically, or in tables.



5
Be able to maximize your score on the exam by:
• answering all the multiple-choice questions;
• knowing how and when to use your calculator, and when not to;
• understanding what work you need to show;
• knowing how to explain, interpret, and justify answers when a question requires that.
(The free-response solutions in this book model such answers.)



 

Barron’s Essential 5
As you review the content in this book to work toward earning that 5 on your AP CALCULUS BC exam, here are five things that
you MUST know above everything else:

1
Master the Essential 5 listed for the AB Calculus Exam.  These form the core for questions that determine your AB
subscore, and provide the essential knowledge base you’ll need for questions related to the additional BC topics.

2
Understand how to extend AB Calculus concepts to more advanced situations, including:
• using L’Hôpital’s rule to find limits of indeterminate forms;
• using limits to analyze improper integrals;
• solving logistic differential equations and estimating solutions using Euler’s method;
• finding antiderivatives using integration by parts or partial fractions;
• finding arc lengths.

3
Be able to apply calculus concepts to parametrically defined functions and polar functions.

4
Know how to analyze the position, velocity, speed, acceleration, and distance traveled for an object in motion in two
dimensions by applying calculus concepts to vectors.

5
Understand infinite series. You must be able to:
• determine whether a series converges or diverges;
• use Taylor’s theorem to represent functions as power series;
• determine the interval of convergence for a power series;



• find bounds on the error for estimates based on series.



 

Since this is an eBook and may be veiwed on various devices, please adjust accordingly. All
graphs, equations, and other illustrations may appear differently on each device.

 

This eBook contains hyperlinks that will help you navigate through content, bring you to helpful
resources, and allow you to click between questions and anwers.
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Introduction

 

his book is intended for students who are preparing to take either of the two Advanced Placement
Examinations in Mathematics offered by the College Entrance Examination Board, and for their

teachers. It is based on the May 2012 course description published by the College Board, and covers
the topics listed there for both Calculus AB and Calculus BC.

Candidates who are planning to take the CLEP Examination on Calculus with Elementary
Functions are referred to the section of this Introduction on that examination.

THE COURSES
Calculus AB and BC are both full-year courses in the calculus of functions of a single variable. Both
courses emphasize:

(1) student understanding of concepts and applications of calculus over manipulation and
memorization;

(2) developing the student’s ability to express functions, concepts, problems, and conclusions
analytically, graphically, numerically, and verbally, and to understand how these are related; and

(3) using a graphing calculator as a tool for mathematical investigations and for problem-solving.
Both courses are intended for those students who have already studied college-preparatory

mathematics: algebra, geometry, trigonometry, analytic geometry, and elementary functions (linear,
polynomial, rational, exponential, logarithmic, trigonometric, inverse trigonometric, and piecewise).
The AB topical course outline that follows can be covered in a full high-school academic year even if
some time is allotted to studying elementary functions. The BC course assumes that students already
have a thorough knowledge of all the topics noted above.

TOPICS THAT MAY BE TESTED ON THE CALCULUS AB
EXAM
1.  Functions and Graphs

Rational, trigonometric, inverse trigonometric, exponential, and logarithmic functions.

2.  Limits and Continuity
Intuitive definitions; one-sided limits; functions becoming infinite; asymptotes and graphs;
indeterminate limits of the form  estimating limits using tables or graphs.
Definition of continuity; kinds of discontinuities; theorems about continuous functions; Extreme
Value and Intermediate Value Theorems.

3.  Differentiation
Definition of derivative as the limit of a difference quotient and as instantaneous rate of change;
derivatives of power, exponential, logarithmic, trig and inverse trig functions; product, quotient,



and chain rules; differentiability and continuity; estimating a derivative numerically and
graphically; implicit differentiation; derivative of the inverse of a function; the Mean Value
Theorem; recognizing a given limit as a derivative.

4.  Applications of Derivatives
Rates of change; slope; critical points; average velocity; tangents and normals; increasing and
decreasing functions; using the first and second derivatives for the following: local (relative) max
or min, concavity, inflection points, curve sketching, global (absolute) max or min and
optimization problems; relating a function and its derivatives graphically; motion along a line;
local linearization and its use in approximating a function; related rates; differential equations and
slope fields.

5.  The Definite Integral
Definite integral as the limit of a Riemann sum; area; definition of definite integral; properties of
the definite integral; Riemann sums using rectangles or sums using trapezoids; comparing
approximating sums; average value of a function; Fundamental Theorem of Calculus; graphing a
function from its derivative; estimating definite integrals from tables and graphs; accumulated
change as integral of rate of change.

6.  Integration
Antiderivatives and basic formulas; antiderivatives by substitution; applications of
antiderivatives; separable differential equations; motion problems.

7.  Applications of Integration to Geometry
Area of a region, including between two curves; volume of a solid of known cross section,
including a solid of revolution.

8.  Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a line; other applications involving the
use of integrals of rates as net change or the use of integrals as accumulation functions; average
value of a function over an interval.

9.  Differential Equations
Basic definitions; geometric interpretations using slope fields; solving first-order separable
differential equations analytically; exponential growth and decay.

TOPICS THAT MAY BE TESTED ON THE CALCULUS BC
EXAM

BC ONLY

Any of the topics listed above for the Calculus AB exam may be tested on the BC exam. The
following additional topics are restricted to the BC exam.

1.  Functions and Graphs
Parametrically defined functions; polar functions; vector functions.



2.  Limits and Continuity
No additional topics.

3.  Differentiation
Derivatives of polar, vector, and parametrically defined functions; indeterminate forms;
L’Hôpital’s rule.

4.  Applications of Derivatives
Tangents to parametrically defined curves; slopes of polar curves; analysis of curves defined
parametrically or in polar or vector form.

5.  The Definite Integral
Integrals involving parametrically defined functions.

6.  Integration
By parts; by partial fractions (involving nonrepeating linear factors only); improper integrals.

7.  Applications of Integration to Geometry
Area of a region bounded by parametrically defined or polar curves; arc length.

8.  Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a planar curve; velocity and acceleration
vectors.

9.  Differential Equations
Euler’s method; applications of differential equations, including logistic growth.

10.  Sequences and Series
Definition of series as a sequence of partial sums and of its convergence as the limit of that
sequence; harmonic, geometric, and p-series; integral, ratio, and comparison tests for
convergence; alternating series and error bound; power series, including interval and radius of
convergence; Taylor polynomials and graphs; finding a power series for a function; MacLaurin
and Taylor series; Lagrange error bound for Taylor polynomials; computations using series.

THE EXAMINATIONS
The Calculus AB and BC Examinations and the course descriptions are prepared by committees of
teachers from colleges or universities and from secondary schools. The examinations are intended to
determine the extent to which a student has mastered the subject matter of the course.

Each examination is 3 hours and 15 minutes long, as follows:
Section I has two parts. Part A has 28 multiple-choice questions for which 55 minutes are

allowed. The use of calculators is not permitted in Part A.
Part B has 17 multiple-choice questions for which 50 minutes are allowed. Some of the questions

in Part B require the use of a graphing calculator.
Section II, the free-response section, has a total of six questions in two parts:
Part A has two questions, of which some parts require the use of a graphing calculator. After 30

minutes, however, you will no longer be permitted to use a calculator.  If you finish Part A early,



you will not be permitted to start work on Part B.
Part B has four questions and you are allotted an additional 60 minutes, but you are not allowed

to use a calculator. You may work further on the Part A questions (without your calculator).
The section that follows gives important information on its use (and misuse!) of the graphing

calculator.

THE GRAPHING CALCULATOR: USING YOUR GRAPHING
CALCULATOR ON THE AP EXAM
The Four Calculator Procedures
Each student is expected to bring a graphing calculator to the AP Exam. Different models of
calculators vary in their features and capabilities; however, there are four procedures you must be
able to perform on your calculator:

C1. Produce the graph of a function within an arbitrary viewing window.
C2. Solve an equation numerically.
C3. Compute the derivative of a function numerically.
C4. Compute definite integrals numerically.

Guidelines for Calculator Use
1. On multiple-choice questions in Section I, Part B, you may use any feature or program on

your calculator.  Warning: Don’t rely on it too much! Only a few of these questions require the
calculator, and in some cases using it may be too time-consuming or otherwise disadvantageous.

2. On the free-response questions of Section II Part A:
(a) You may use the calculator to perform any of the four listed procedures. When you do, you

need only write the equation, derivative, or definite integral (called the “setup”) that will produce the
solution, then write the calculator result to the required degree of accuracy (three places after the
decimal point unless otherwise specified). Note especially that a setup must be presented in standard
algebraic or calculus notation, not just in calculator syntax. For example, you must include in your
work the setup  even if you use your calculator to evaluate the integral.

(b) For a solution for which you use a calculator capability other than the four listed above, you
must write down the mathematical steps that yield the answer. A correct answer alone will not earn
full credit.

(c) You must provide mathematical reasoning to support your answer. Calculator results alone
will not be sufficient.

The Procedures Explained
Here is more detailed guidance for the four allowed procedures.

C1. “Produce the graph of a function within an arbitrary viewing window.” Be sure that you
create the graph in the window specified, then copy it carefully onto your exam paper. If no window
is prescribed in the question, clearly indicate the window dimensions you have used.

C2. “Solve an equation numerically” is equivalent to “Find the zeros of a function” or “Find the



point of intersection of two curves.” Remember: you must first show your setup—write the equation
out algebraically; then it is sufficient just to write down the calculator solution.

C3. “Compute the derivative of a function numerically.” When you seek the value of the derivative
of a function at a specific point, you may use your calculator. First, indicate what you are finding—for
example, f ′(6)—then write the numerical answer obtained from your calculator. Note that if you need
to find the derivative itself, rather than its value at a particular point, you must show how you
obtained it and what it is, even though some calculators are able to perform symbolic operations.

C4. “Compute definite integrals numerically.” If, for example, you need to find the area under a
curve, you must first show your setup. Write the complete integral, including the integrand in terms of
a single variable and with the limits of integration. You may then simply write the calculator answer;
you need not compute an antiderivative.

Sample Solutions of Free-Response Questions
The following set of examples illustrates proper use of your calculator on the examination. In all of
these examples, the function is

Viewing window [0,4] × [0,3].
1.  Graph f in [0,4] × [0,3].

Set the calculator window to the dimensions printed in your exam paper.
Graph 

Copy your graph carefully into the window on the exam paper.
2.  Write the local linearization for f(x) near x = 1.

Note that f (1) = 2. Then, using your calculator, evaluate the derivative:
f ′(1) = 1.2

Then write the tangent-line (or local linear) approximation

You need not simplify, as we have, after the last equals sign just above.



3.  Find the coordinates of any maxima of f. Justify your answer.
Since finding a maximum is not one of the four allowed procedures, you must use calculus and

show your work, writing the derivative algebraically and setting it equal to zero to find any
critical numbers:

Then f ′(x) = 0 at x = 2 and at x = −2; but −2 is not in the specified domain.
We analyze the signs of f ′(which is easier here than it would be to use the second-derivative

test) to assure that x = 2 does yield a maximum for f. (Note that the signs analysis alone is not
sufficient justification.)

Since f ′ is positive to the left of x = 2 and negative to the right of x = 2, f does have a maximum
at

—but you may leave f (2) in its unsimplified form, without evaluating to 

You may use your calculator’s maximum-finder to verify the result you obtain analytically, but
that would not suffice as a solution or justification.

4.  Find the x-coordinate of the point where the line tangent to the curve y = f (x) is parallel to the
secant on the interval [0,4].

Since f (0) = 0 and f (4) = 2, the secant passes through (0,0) and (4,2) and has slope 
To find where the tangent is parallel to the secant, we find f ′(x) as in Example 3. We then want

to solve the equation

The last equality above is the setup; we use the calculator to solve the equation: x = 1.458 is the
desired answer.

5.  Estimate the area under the curve y = f (x) using the Trapezoid Rule with four equal subintervals.



You may leave the answer in this form or simplify it to 7.808. If your calculator has a program for
the Trapezoid Rule, you may use it to complete the computation after you have shown the setup as
in the two equations above. If you omit them you will lose credit.

6.  Find the volume of the solid generated when the curve y = f (x) on [0,4] is rotated about the x-axis.
Using disks, we have

Note that the equation above is not yet the setup: the definite integral must be in terms of x alone:

Now we have shown the setup. Using the calculator we can evaluate V:
V = 55.539

A Note About Solutions in This Book
Students should be aware that in this book we sometimes do not observe the restrictions cited above
on the use of the calculator. In providing explanations for solutions to illustrative examples or to
exercises we often exploit the capabilities of the calculator to the fullest. Indeed, students are
encouraged to do just that on any question of Section I, Part B, of the AP examination for which they
use a calculator. However, to avoid losing credit, you must carefully observe the restrictions imposed
on when and how the calculator may be used in answering questions in Section II of the examination.

Additional Notes and Reminders
•  SYNTAX. Learn the proper syntax for your calculator: the correct way to enter operations, functions,
and other commands. Parentheses, commas, variables, or parameters that are missing or entered in the
wrong order can produce error messages, waste time, or (worst of all) yield wrong answers.
•  RADIANS. Keep your calculator set in radian mode. Almost all questions about angles and
trigonometric functions use radians. If you ever need to change to degrees for a specific calculation,
return the calculator to radian mode as soon as that calculation is complete.
•  TRIGONOMETRIC FUNCTIONS. Many calculators do not have keys for the secant, cosecant, or
cotangent function. To obtain these functions, use their reciprocals.

For example, 

Evaluate inverse functions such as arcsin, arccos, and arctan on your calculator. Those function
keys are usually denoted as sin−1, cos−1, and tan−1.

Don’t confuse reciprocal functions with inverse functions. For example:



•  NUMERICAL DERIVATIVES. You may be misled by your calculator if you ask for the derivative of a
function at a point where the function is not differentiable, because the calculator evaluates numerical
derivatives using the difference quotient (or the symmetric difference quotient). For example, if f (x)
= |x|, then f ′(0) does not exist. Yet the calculator may find the value of the derivative as

Remember: always be sure f is differentiable at a before asking for f ′(a).
•  IMPROPER INTEGRALS. Most calculators can compute only definite integrals. Avoid using yours to
obtain an improper integral, such as

•  ROUNDING-OFF ERRORS. To achieve three-place accuracy in a final answer, do not round off
numbers at intermediate steps, since this is likely to produce error-accumulations. If necessary, store
longer intermediate answers internally in the calculator; do not copy them down on paper (storing is
faster and avoids transcription errors). Round off only after your calculator produces the final
answer.
•  ROUNDING THE FINAL ANSWER: UP OR DOWN? In rounding to three decimal places, remember that
whether one rounds down or up depends on the nature of the problem. The mechanical rule followed
in accounting (anything less than 0.0005 is rounded down, anything equal to or greater than 0.0005 is
rounded up) does not apply.

Suppose, for example, that a problem seeks the largest k, to three decimal places, for which a
condition is met, and the unrounded answer is 0.1239 …. Then 0.124 is too large: it does not meet the
condition. The rounded answer must be 0.123. However, suppose that an otherwise identical problem
seeks the smallest k for which a condition is met. In this case 0.1239 meets the condition but 0.1238
does not, so the rounding must be up, to 0.124.
•  FINAL ANSWERS TO SECTION II QUESTIONS. Although we usually express a final answer in this
book in simplest form (often evaluating it on the calculator), this is hardly ever necessary on Section
II questions of the AP Examination. According to the directions printed on the exam, “unless
otherwise specified” (1) you need not simplify algebraic or numerical answers; (2) answers
involving decimals should be correct to three places after the decimal point. However, be aware that
if you try to simplify, you must do so correctly or you will lose credit.
•  USE YOUR CALCULATOR WISELY. Bear in mind that you will not be allowed to use your calculator
at all on Part A of Section I. In Part B of Section I and part of Section II only a few questions will
require one. As repeated often in this section, the questions that require a calculator will not be



identified. You will have to be sensitive not only to when it is necessary to use the calculator but also
to when it is efficient to do so.

The calculator is a marvelous tool, capable of illustrating complicated concepts with detailed
pictures and of performing tasks that would otherwise be excessively time-consuming—or even
impossible. But the completion of calculations and the displaying of graphs on the calculator can be
slow. Sometimes it is faster to find an answer using arithmetic, algebra, and analysis without recourse
to the calculator. Before you start pushing buttons, take a few seconds to decide on the best way to
attack a problem.

GRADING THE EXAMINATIONS
Each completed AP examination paper receives a grade according to the following five-point scale:

5.  Extremely well qualified
4.  Well qualified
3.  Qualified
2.  Possibly qualified
1.  No recommendation

SCORING CHANGE
In 2011 The College Board changed how the AP Calculus exams are scored. There is no penalty
for wrong answers in the multiple-choice section.

Many colleges and universities accept a grade of 3 or better for credit or advanced placement or
both; some also consider a grade of 2, while others require a grade of 4. (Students may check AP
credit policies at individual colleges’ websites.) More than 59 percent of the candidates who took the
2012 Calculus AB Examination earned grades of 3, 4, or 5. More than 82 percent of the 2012 BC
candidates earned 3 or better. More than 356,000 students altogether took the 2012 mathematics
examination.

The multiple-choice questions in Section I are scored by machine. Students should note that the
score will be the number of questions answered correctly.  Since no points can be earned if answers
are left blank and there is no deduction for wrong answers, students should answer every question.
For questions they cannot do, students should try to eliminate as many of the choices as possible and
then pick the best remaining answer.

The problems in Section II are graded by college and high-school teachers called “readers.” The
answers in any one examination booklet are evaluated by different readers, and for each reader all
scores given by preceding readers are concealed, as are the student’s name and school. Readers are
provided sample solutions for each problem, with detailed scoring scales and point distributions that
allow partial credit for correct portions of a student’s answer. Problems in Section II are all counted
equally.

In the determination of the overall grade for each examination, the two sections are given equal
weight. The total raw score is then converted into one of the five grades listed above. Students should
not think of these raw scores as percents in the usual sense of testing and grading. A student who
averages 6 out of 9 points on the Section II questions and performs similarly well on Section I’s
multiple-choice questions will typically earn a 5. Many colleges offer credit for a score of 3,



historically awarded for earning over 40 of 108 possible points.
Students who take the BC examination are given not only a Calculus-BC grade but also a

Calculus-AB subscore grade. The latter is based on the part of the BC examination dealing with
topics in the AB syllabus.

In general, students will not be expected to answer all the questions correctly in either Section I or
II.

Great care is taken by all involved in the scoring and reading of papers to make certain that they
are graded consistently and fairly so that a student’s overall AP grade reflects as accurately as
possible his or her achievement in calculus.

THE CLEP CALCULUS EXAMINATION
Many colleges grant credit to students who perform acceptably on tests offered by the College Level
Examination Program (CLEP). The CLEP calculus examination is one such test.

The College Board’s CLEP Official Study Guide: 16th Edition provides descriptions of all
CLEP examinations, test-taking tips, and suggestions on reference and supplementary materials.
According to the Guide, the calculus examination covers topics usually taught in a one-semester
college calculus course. It is assumed that students taking the exam will have studied college-
preparatory mathematics (algebra, plane and solid geometry, analytic geometry, and trigonometry).

There are 45 multiple-choice questions on the CLEP calculus exam, for which 90 minutes are
allowed. A calculator may not be used during the examination.

Approximately 60 percent of the questions are on limits and differential calculus and about 40
percent on integral calculus. The specific topics that may be tested on the CLEP calculus exam are
essentially those under the heading “Topics That May Be Tested on the Calculus AB Exam.”
(L’Hôpital’s Rule is listed as a CLEP calculus topic but only as a BC topic for the AP exam. Also,
the only topics listed as applications of the definite integral for the CLEP calculus test are “average
value of a function on an interval” and “area.”)

Since any topic that may be tested on the CLEP calculus exam is included in this book on the AP
Exam, a candidate who plans to take the CLEP exam will benefit from a review of the AB topics
covered here. The multiple-choice questions in Part A of Chapter 11 and in Part A of Section I of
each of the four AB Practice Examinations will provide good models for questions on the CLEP
calculus test.

A complete description of the knowledge and skills required and of the specific topics that may be
tested on the CLEP exam can be downloaded from the College Board’s web site at
www.collegeboard.com/clep.

THIS REVIEW BOOK
This book consists of the following parts:

Diagnostic tests for both AB and BC Calculus are practice AP exams. They are followed by
solutions keyed to the corresponding topical review chapter.

Topical Review and Practice includes 10 chapters with notes on the main topics of the Calculus
AB and BC syllabi and with numerous carefully worked-out examples. Each chapter concludes with a
set of multiple-choice questions, usually divided into calculator and no-calculator sections, followed

http://www.collegeboard.com/clep


immediately by answers and solutions.
This review is followed by further practice: (1) Chapter 11, which includes a set of multiple-

choice questions on miscellaneous topics and an answer key; (2) Chapter 12, a set of miscellaneous
free-response problems that are intended to be similar to those in Section II of the AP examinations.
They are followed by solutions.

The next part of the book, titled Practice Examinations: Sections I and II, has three AB and three
BC practice exams that simulate the actual AP examinations. Each is followed by answers and
explanations.

In this book, review material on topics covered only in Calculus BC is preceded by an asterisk
(*), as are both multiple-choice questions and free-response-type problems that are likely to occur
only on a BC Examination.

THE TEACHER WHO USES THIS BOOK WITH A CLASS  may profitably do so in any of several ways. If
the book is used throughout a year’s course, the teacher can assign all or part of each set of multiple-
choice questions and some miscellaneous exercises after the topic has been covered. These sets can
also be used for review purposes shortly before examination time. The Practice Examinations will
also be very helpful in reviewing toward the end of the year. Teachers may also assemble
examinations by choosing appropriate problems from the sample Miscellaneous Practice Questions in
Chapters 11 and 12.

STUDENTS WHO USE THIS BOOK INDEPENDENTLY  will improve their performance by studying the
illustrative examples carefully and trying to complete practice problems before referring to the
solution keys.

Since many FIRST-YEAR MATHEMATICS COURSES IN COLLEGES  follow syllabi much like that proposed
by the College Board for high-school Advanced Placement courses, college students and teachers
may also find the book useful.

FLASH CARDS
Being able to answer AP exam questions quickly and correctly depends in part on knowing many
fundamental facts, such as

•  common math formulas (e.g., area, volume, trig identities);
•  definitions of key terms (e.g., continuous, differentiable, integrable);
•  important theorems (e.g., Mean Value Theorem, Fundamental Theorem of Calculus); and
•  derivatives and antiderivatives of common functions.

Barron’s AP Calculus Flash Cards  (ISBN 9780764194214) provide a great way to study these facts
and more. Over 300 cards will help you learn the most important information you’ll need to know for
the AP Calculus examination.



 

DIAGNOSTIC
TESTS

 

All directions on the Diagnostic Tests reflect those seen on the actual exams. Please record all
answers separately.



 

*Answer Sheets Are For Reference Only.



Diagnostic Test Calculus AB

All questions are linked to their individual answers. Simply click on the question numbers to move
back and forth.

 

SECTION I
Part A  TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination. There are 28 questions
in Part A, for which 55 minutes are allowed. Because there is no deduction for wrong answers,
you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1. 

(A) 3
(B) 1
(C) −3
(D) ∞
(E) 0

2. 

(A) 1
(B) nonexistent
(C) 0
(D) −1
(E) none of these

3. If, for all x, f ′(x) = (x − 2)4 (x − 1)3, it follows that the function f has
(A) a relative minimum at x = 1
(B) a relative maximum at x = 1
(C) both a relative minimum at x = 1 and a relative maximum at x = 2
(D) neither a relative maximum nor a relative minimum



(E) relative minima at x = 1 and at x = 2

4. Let  Which of the following statements is (are) true?

   I. F ′(0) = 5
  II. F(2) < F(6)
III. F is concave upward.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

5. If f (x) = 10x and 101.04  10.96, which is closest to f ′(1)?
(A) 0.24
(B) 0.92
(C) 0.96
(D) 10.5
(E) 24

6. If f is differentiable, we can use the line tangent to f at x = a to approximate values of f near x =
a. Suppose this method always underestimates the correct values. If so, then at x = a, the graph
of f must be
(A) positive
(B) increasing
(C) decreasing
(D) concave upward
(E) concave downward

7. If f (x) = cos x sin 3x, then  is equal to

(A) 

(B) 

(C) 0
(D) 1
(E) 



8.  is equal to

(A) 

(B) ln 
(C)  (ln 2 − 1)

(D) 

(E) ln 2

9. The graph of f ″ is shown below. If f ′(1) = 0, then f ′(x) = 0 at x =

(A) 0
(B) 2
(C) 3
(D) 4
(E) 7

Questions 10 and 11. Use the following table, which shows the values of differentiable functions f
and g.

10. If P(x) = g2 (x), then P ′(3) equals
(A) 4
(B) 6
(C) 9



(D) 12
(E) 18

11. If H(x) = f −1(x), then H ′(3) equals
(A) 

(B) 

(C) 

(D) 

(E) 1

12. The total area of the region bounded by the graph of  and the x-axis is
(A) 

(B) 

(C) 

(D) 

(E) 1

13. The graph of  is concave upward when

(A) x > 3
(B) 1 < x < 3
(C) x > 1
(D) x < 1
(E) x < 3

14. As an ice block melts, the rate at which its mass, M, decreases is directly proportional to the
square root of the mass. Which equation describes this relationship?
(A) 
(B) 
(C) 

(D) 

(E) 

15. The average (mean) value of tan x on the interval from x = 0 to  is



(A) ln 

(B)  ln 2

(C) ln 2
(D) 

(E) 

16. 

(A) −cos (x2) + C
(B) cos (x2) + C
(C) 

(D) 2x cos x2 + C
(E) none of these

17. Water is poured at a constant rate into the conical reservoir shown in the figure. If the depth of
the water, h, is graphed as a function of time, the graph is

(A) decreasing
(B) constant
(C) linear
(D) concave upward
(E) concave downward

18. If  then

(A) f (x) is not continuous at x = 1
(B) f (x) is continuous at x = 1 but f ′(1) does not exist
(C) f ′(1) exists and equals 1
(D) f ′(1) = 2
(E)  does not exist



19. 

(A) −∞
(B) −1
(C) 1
(D) ∞
(E) nonexistent

Questions 20 and 21. The graph below consists of a quarter-circle and two line segments, and
represents the velocity of an object during a 6-second interval.

20. The object’s average speed (in units/sec) during the 6-second interval is
(A) 

(B) 

(C) −1
(D) 

(E) 1

21. The object’s acceleration (in units/sec2) at t = 4.5 is
(A) 0
(B) −1
(C) −2
(D) 

(E) 



22. Which of the following equations can be a solution of the differential equation whose slope
field is shown above?
(A) 2xy = 1
(B) 2x + y = 1

(C) 2x2 + y2 = 1

(D) 2x2 − y2 = 1

(E) y = 2x2 + 1

23. If y is a differentiable function of x, then the slope of the curve of xy2 − 2y + 4y3 = 6 at the point
where y = 1 is
(A) 

(B) 

(C) 

(D) 

(E) 2

24. In the following, L(n) , R(n) , M(n), and T(n) denote, respectively, left, right, midpoint, and
trapezoidal sums with n subdivisions. Which of the following is not equal exactly to 

(A) L(2)
(B) M(2)
(C) T(3)
(D) M(4)
(E) R(6)



25. The table shows some values of a differentiable function f and its derivative f ′:

Find 

(A) 5
(B) 6
(C) 11.5
(D) 14
(E) 17

26. The solution of the differential equation  for which y = −1 when x = 1 is

(A)  for x ≠ 0

(B)  for x > 0

(C) ln y2 = x2 − 1 for all x
(D)  for x ≠ 0

(E)  for x > 0

27. The base of a solid is the region bounded by the parabola y2 = 4x and the line x = 2. Each plane
section perpendicular to the x-axis is a square. The volume of the solid is
(A) 6
(B) 8
(C) 10
(D) 16
(E) 32

28. Which of the following could be the graph of 



 



 

Part B  TIME: 50 MINUTES

Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29. If F(3) = 8 and F ′(3) = −4 then F(3.02) is approximately
(A) −8.08
(B) 7.92
(C) 7.98
(D) 8.02
(E) 8.08

30. An object moving along a line has velocity v(t) = t cos t − ln (t + 2), where 0 ≤ t ≤ 10. How
many times does the object reverse direction?
(A) none
(B) one
(C) two
(D) three
(E) four

Questions 31 and 32. Refer to the graph of f ′ below.

31. f has a local minimum at x =
(A) 0 only



(B) 4 only
(C) 0 and 4
(D) 0 and 5
(E) 0, 4, and 5

32. The graph of f has a point of inflection at x =
(A) 2 only
(B) 3 only
(C) 4 only
(D) 2 and 3 only
(E) 2, 3, and 4

33. For what value of c on 0 < x < 1 is the tangent to the graph of f (x) = ex − x2 parallel to the
secant line on the interval [0,1]?
(A) −0.248
(B) 0.351
(C) 0.500
(D) 0.693
(E) 0.718

34. Find the volume of the solid generated when the region bounded by the y-axis, y = ex, and y = 2
is rotated around the y-axis.
(A) 0.296
(B) 0.592
(C) 2.427
(D) 3.998
(E) 27.577

35. The table below shows the “hit rate” for an Internet site, measured at various intervals during a
day. Use a trapezoid approximation to estimate the total number of people who visited that site.

Time Midnight 6 A.M. 8 A.M. Noon 5 P.M. 8 P.M. Midnight

People per
minute 5 2 3 8 10 16 5

(A) 5280
(B) 10,080



(C) 10,440
(D) 10,560
(E) 15,840

36. The acceleration of a particle moving along a straight line is given by a = 6t. If, when t = 0, its
velocity, v, is 1 and its position, s, is 3, then at any time t
(A) s = t3 + 3

(B) s = t3 + 3t + 1

(C) s = t3 + t + 3
(D) 

(E) 

37. If y = f (x2) and  is equal to

(A) 
(B) 
(C) 
(D) 

(E) none of these

38. Find the area of the first quadrant region bounded by y = x2, y = cos (x), and the y-axis.
(A) 0.292
(B) 0.508
(C) 0.547
(D) 0.667
(E) 0.921

39. If the substitution x = 2t + 1 is used, which of the following is equivalent to 

(A) 

(B) 

(C) 

(D) 

(E) 



40. At noon, an experimenter has 50 grams of a radioactive isotope. At noon 9 days later only 45
grams remain. To the nearest day, how many days after the experiment started will there be only
20 grams?
(A) 54
(B) 59
(C) 60
(D) 75
(E) 78

41. A 26-foot ladder leans against a building so that its foot moves away from the building at the
rate of 3 feet per second. When the foot of the ladder is 10 feet from the building, the top is
moving down at the rate of r feet per second, where r is
(A) 

(B) 

(C) 

(D) 

(E) 

42. If  then F ′(x) =

(A) 

(B) 

(C) 

(D) 

(E) 

43. The graph above shows an object’s acceleration (in ft/sec2). It consists of a quarter-circle and
two line segments. If the object was at rest at t = 5 seconds, what was its initial velocity?



(A) −2 ft/sec
(B) 3 − π ft/sec
(C) 0 ft/sec
(D) π − 3 ft/sec
(E) π + 3 ft/sec

44. Water is leaking from a tank at the rate of R(t) = 5 arc  gallons per hour, where t is the
number of hours since the leak began. How many gallons will leak out during the first day?
(A) 7
(B) 82
(C) 124
(D) 141
(E) 164

45. Find the y-intercept of the line tangent to y = (x3 − 4x2 + 8)ecos x2 at x = 2.
(A) −21.032
(B) −2.081
(C) 0
(D) 4.161
(E) 21.746

 



 

SECTION II

Part A  TIME: 30 MINUTES
   2 PROBLEMS

A graphing calculator is required for some of these problems.
See instructions.

1. When a faulty seam opened at the bottom of an elevated hopper, grain began leaking out onto the
ground. After a while, a worker spotted the growing pile below and began making repairs. The
following table shows how fast the grain was leaking (in cubic feet per minute) at various times
during the 20 minutes it took to repair the hopper.

t (min) 0 4 5 7 10 12 18 20

L(t) (ft3 /min) 4 7 9 8 6 5 2 0

(a) Estimate L ′(15).
(b) Explain in this context what your answer to part a means.
(c) The falling grain forms a conical pile that the worker estimates to be 5 times as far across as it

is deep. The pile was 3 feet deep when the repairs had been half completed. How fast was the
depth increasing then?

(d) Estimate the total amount of grain that leaked out while the repairs were underway.

2. An object in motion along the x-axis has velocity v(t) = (t + et )sin t2 for 1 ≤ t ≤ 3.
(a) Sketch the graph of velocity as a function of time in the window [1,3] × [−15,20].
(b) When is the object moving to the left?
(c) Give one value of t from the interval in part (b) at which the speed of the object is increasing.



Justify your answer.
(d) At t = 1 this object’s position was x = 10. Where is the object when t = 3?

 

Part B  TIME: 60 MINUTES
     4 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.

3. Let h be a function that is even and continuous on the closed interval [−4,4]. The function h and
its derivatives have the properties indicated in the table below. Use this information to sketch a
possible graph of h on [−4,4].

x h(x) h ′(x) h ″(x)

0 − 0 +

0 < x < 1 − + +

1 0 + 0

1 < x < 2 + + −

2 + 0 0

2 < x < 3 + + +

3 + undefined undefined



3 < x < 4 + − −

4. Let C represent the curve determined by  for −2 ≤ x ≤ 11.

(a) Let R represent the region between C and the x-axis. Find the area of R.
(b) Set up, but do not solve, an equation to find the value of k such that the line x = k divides R into

two regions of equal area.
(c) Set up an integral for the volume of the solid generated when R is rotated around the x-axis.

5. Let y = f (x) be the function that has an x-intercept at (2,0) and satisfies the differential equation 

(a) Solve the differential equation, expressing y as a function of x and specifying the domain of the
function.

(b) Find the equation of each horizontal asymptote to the graph of y = f (x).

6. The graph of function f consists of the semicircle and line segment shown in the figure. Define
the area function 

(a) Find A(6) and A(18).
(b) What is the average value of f on the interval 0 ≤ x ≤ 18?
(c) Write the equation of the line tangent to the graph of A at x = 6.
(d) Use this line to estimate the area between f and the x-axis on [0,7].
(e) Give the coordinates of any points of inflection on the graph of A. Justify your answer.

 





 

*Answer Sheets Are For Reference Only.



 

Diagnostic Test Calculus BC

All questions are linked to their individual answers. Simply click on the question numbers to move
back and forth.

SECTION I
Part A  TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. Because there is no
deduction for wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1. 

(A) 3
(B) 1
(C) −3
(D) ∞
(E) 0

2. 

(A) 1
(B) nonexistent
(C) 0
(D) −1
(E) none of these

3. If, for all x, f ′(x) = (x − 2)4 (x − 1)3, it follows that the function f has
(A) a relative minimum at x = 1
(B) a relative maximum at x = 1
(C) both a relative minimum at x = 1 and a relative maximum at x = 1
(D) neither a relative maximum nor a relative minimum



(E) relative minima at x = 1 and at x = 2

4. Let  Which of the following statements is (are) true?

  I. F ′(0) = 5
 II. F(2) < F(6)
III. F is concave upward.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

5. If f (x) = 10x and 101.04  10.96, which is closest to f ′(1)?
(A) 0.24
(B) 0.92
(C) 0.96
(D) 10.5
(E) 24

6. If f is differentiable, we can use the line tangent to f at x = a to approximate values of f near x =
a. Suppose this method always underestimates the correct values. If so, then at x = a, the graph
of f must be
(A) positive
(B) increasing
(C) decreasing
(D) concave upward
(E) concave downward

7. The region in the first quadrant bounded by the x-axis, the y-axis, and the curve of y = e− x is
rotated about the x-axis. The volume of the solid obtained is equal to
(A) π
(B) 2π
(C) 

(D) 

(E) none of these



8.  is equal to

(A) 

(B) ln 
(C) 

(D) 

(E) ln 2

9. 

(A) = 0
(B) = 1
(C) = e
(D) = ∞
(E) does not exist

Questions 10 and 11. Use the table below, which shows the values of differentiable functions f and g.

10. If P(x) = g2 (x), then P ′(3) equals
(A) 4
(B) 6
(C) 9
(D) 12
(E) 18

11. If H(x) = f −1(x), then H ′(3) equals
(A) 

(B) 

(C) 



(D) 

(E) 1

12. 

(A) 1
(B) −1
(C) 2 − e
(D) 

(E) e − 1

13. The graph of  is concave upward when

(A) x > 3
(B) 1 < x < 3
(C) x > 1
(D) x < 1
(E) x < 3

14. As an ice block melts, the rate at which its mass, M, decreases is directly proportional to the
square root of the mass. Which equation describes this relationship?
(A) 
(B) 
(C) 

(D) 

(E) 

15. The length of the curve y = 2x3/2 between x = 0 and x = 1 is equal to

(A) 

(B) 

(C) 

(D) 

(E) none of these



16. If  = kx, and if x = 2 when t = 0 and x = 6 when t = 1, then k equals

(A) ln 4
(B) 8
(C) e3

(D) 3
(E) none of these

17. If y = x2 ln x (x > 0), then y ″ is equal to
(A) 3 + ln x
(B) 3 + 2 ln x
(C) 3 ln x
(D) 3 + 3 ln x
(E) 2 + x + ln x

18. A particle moves along the curve given parametrically by x = tan t and y = 2 sin t. At the instant
when  the particle’s speed equals

(A) 
(B) 
(C) 
(D) 
(E) none of these

19. Suppose  and y = 2 when x = 0. Use Euler’s method with two steps to estimate y at x =

1.
(A) 1
(B) 2
(C) 3
(D) 4
(E) 

Questions 20 and 21. The graph below consists of a quarter-circle and two line segments, and
represents the velocity of an object during a 6-second interval.



20. The object’s average speed (in units/sec) during the 6-second interval is
(A) 

(B) 

(C) −1
(D) 

(E) 1

21. The object’s acceleration (in units/sec2) at t = 4.5 is
(A) 0
(B) −1
(C) −2
(D) 

(E) 

22. Which of the following equations can be a solution of the differential equation whose slope



field is shown above?
(A) 2xy = 1
(B) 2x + y = 1

(C) 2x2 + y2 = 1

(D) 2x2 − y2 = 1

(E) y = 2x2 + 1

23. If y is a differentiable function of x, then the slope of the curve of xy2 − 2y + 4y3 = 6 at the point
where y = 1 is
(A) 

(B) 

(C) 

(D) 

(E) 2

24. For the function f shown in the graph, which has the smallest value on the interval 2 ≤ x ≤ 6?

(A) 

(B) The left Riemann sum with 8 subintervals.
(C) The right Riemann sum with 8 subintervals.
(D) The midpoint Riemann sum with 8 subintervals.
(E) The trapezoidal approximation with 8 subintervals

25. The table shows some values of a differentiable function f and its derivative f ′:



Find 

(A) 5
(B) 6
(C) 11.5
(D) 14
(E) 17

26. The solution of the differential equation  for which y = −1 when x = 1 is

(A) 

(B) 

(C) ln y2 = x2 − 1 for all x
(D) 

(E) 

27. The base of a solid is the region bounded by the parabola y2 = 4x and the line x = 2. Each plane
section perpendicular to the x-axis is a square. The volume of the solid is
(A) 6
(B) 8
(C) 10
(D) 16
(E) 32

28. Which of the following could be the graph of 



 

Part B  TIME: 50 MINUTES

Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29. When partial fractions are used, the decomposition of  is equal to

(A) 

(B) 

(C) 

(D) 

(E) 



30. The region S in the figure above is bounded by y = sec x and y = 4. What is the volume of the
solid formed when S is rotated about the x-axis?
(A) 0.304
(B) 39.867
(C) 53.126
(D) 54.088
(E) 108.177

31. The series

converges
(A) for all real x
(B) if 0  x < 2
(C) if 0 < x  2
(D) only if x = 1
(E) for all x except 0 < x < 2

32. If f (x) is continuous at the point where x = a, which of the following statements may be false?
(A) 

(B) 

(C) f ′(a) exists.
(D) f (a) is defined.
(E) 

33. A Maclaurin polynomial is to be used to approximate y = sin x on the interval − π  x  π.
What is the least number of terms needed to guarantee no error greater than 0.1?



(A) 3
(B) 4
(C) 5
(D) 6
(E) none of these

34. Find the area bounded by the y-axis and the curve defined parametrically by x(t) = 4 − t2, y(t) =
2t.
(A) 6.328
(B) 8.916
(C) 10.667
(D) 12.190
(E) 74.529

35. Which series diverges?

(A) 

(B) 

(C) 

(D) 

(E) 

36. If x = 2t − 1 and y = 3 − 4t2, then  is

(A) 4t
(B) −4t
(C) 

(D) 2(x + 1)
(E) −4(x + 1)

37. For the substitution x = sin θ, which integral is equivalent to 

(A) 

(B) 



(C) 

(D) 

(E) none of these

38. The coefficient of x3 in the Taylor series of ln (1 − x) about x = 0 (the Maclaurin series) is
(A) 

(B) 

(C) 

(D) 0
(E) 

39. The rate at which a rumor spreads across a campus of college students is given by
 where P(T) represents the number of students who have heard the rumor after t

days. If 200 students heard the rumor today (t = 0), how many will have heard it by midnight the
day after tomorrow (t = 2)?
(A) 320
(B) 474
(C) 494
(D) 520
(E) 726

40. Water is poured at a constant rate into the conical reservoir shown above. If the depth of the
water, h, is graphed as a function of time, the graph is
(A) decreasing
(B) constant
(C) linear
(D) concave upward
(E) concave downward



41. A 26-foot ladder leans against a building so that its foot moves away from the building at the
rate of 3 feet per second. When the foot of the ladder is 10 feet from the building, the top is
moving down at the rate of r feet per second, where r is
(A) 

(B) 

(C) 

(D) 

(E) 

42. If  then F ′(x) =

(A) 

(B) 

(C) 

(D) 

(E) 

43. The graph above shows an object’s acceleration (in ft/sec2). It consists of a quarter-circle and
two line segments. If the object was at rest at t = 5 seconds, what was its initial velocity?
(A) −2 ft/sec
(B) 3 − π ft/sec
(C) 0 ft/sec
(D) π − 3 ft/sec
(E) π + 3 ft/sec

44. Water is leaking from a tank at the rate of R(t) = 5 arctan  gallons per hour, where t is the
number of hours since the leak began. How many gallons will leak out during the first day?



(A) 7
(B) 82
(C) 124
(D) 141
(E) 164

45. The first-quandrant area inside the rose r = 3 sin 2θ is approximately
(A) 0.59
(B) 1.50
(C) 1.77
(D) 3.00
(E) 3.53

 

Section II

Part A  TIME: 30 MINUTES
     2 PROBLEMS

A graphing calculator is required for some of these problems.
See instructions.

1.  (a) For what positive values of x does  converge?

(b) How many terms are needed to estimate f (0.5) to within 0.01?
(c) Would an estimate for f (−0.5) using the same number of terms be more accurate, less accurate,

or the same? Explain.

2.  An object in motion along the x-axis has velocity v(t) = (t + et )sin t2 for 1 ≤ t ≤ 3.
(a) Sketch the graph of velocity as a function of time in the window [1,3] × [−15,20].



(b) When is the object moving to the left?
(c) Give one value of t from the interval in part (b) at which the speed of the object is increasing.

Justify your answer.
(d) At t = 1 this object’s position was x = 10. Where is the object when t = 3?

 

Part B  TIME: 60 MINUTES
   4 PROBLEMS

No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.

3.  When a faulty seam opened at the bottom of an elevated hopper, grain began leaking out onto the
ground. After a while, a worker spotted the growing pile below and began making repairs. The
following table shows how fast the grain was leaking (in cubic feet per minute) at various times
during the 20 minutes it took to repair the hopper.

t (min) 0 4 5 7 10 12 18 20



L(t) (ft3 /min) 4 7 9 8 6 5 2 0

(a) Estimate L ′(15).
(b) Explain in this context what your answer to part a means.
(c) The falling grain forms a conical pile that the worker estimates to be 5 times as far across as it

is deep. The pile was 3 feet deep when the repairs had been half completed. How fast was the
depth increasing then?

(d) Estimate the total amount of grain that leaked out while the repairs were underway.

4.  Let f be the function satisfying the differential equation  and passing through (0, −1).

(a) Sketch the slope field for this differential equation at the points shown.

(b) Use Euler’s method with a step size of 0.5 to estimate f (1).
(c) Solve the differential equation, expressing f as a function of x.

5.  Let C represent the arc of the curve determined by P(t) = (9 − t2, 2 t ) between its y-intercepts.
Let R represent the region bounded by C and the y-axis. Set up, but do not evaluate, an integral
in terms of a single variable for:
(a) the area of R;
(b) the length of C;
(c) the volume of the solid generated when R is rotated around the y-axis.

6.  The graph of function f consists of the semicircle and line segment shown in the figure. Define
the area function 



(a) Find A(6) and A(18).
(b) What is the average value of f on the interval 0 ≤ x ≤ 18?
(c) Write the equation of the line tangent to the graph of A at x = 6.
(d) Use this line to estimate the area between f and the x-axis on [0,7].
(e) Give the coordinates of any points of inflection on the graph of A. Justify your answer.

 



 

TOPICAL REVIEW
AND PRACTICE



CHAPTER 1 Functions

Concepts and Skills
In this chapter you will review precalculus topics. Although these topics are not directly tested on
the AP exam, reviewing them will reinforce some basic principles:

• general properties of functions: domain, range, composition, inverse;
• special functions: absolute value, greatest integer; polynomial, rational, trigonometric,
exponential, and logarithmic;

and the BC topics,
• parametrically defined curves  • polar curves

Function
Domain
Range

A. DEFINITIONS
A1. A function f is a correspondence that associates with each element a of a set called the

domain one and only one element b of a set called the range. We write
f (a) = b

to indicate that b is the value of f at a. The elements in the domain are called inputs, and those in the
range are called outputs.

A function is often represented by an equation, a graph, or a table.
A vertical line cuts the graph of a function in at most one point.

EXAMPLE 1
The domain of f (x) = x2 − 2 is the set of all real numbers; its range is the set of all reals greater
than or equal to −2. Note that

EXAMPLE 2



Find the domains of: 

SOLUTIONS:
(a) The domain of  is the set of all reals except x = 1 (which we shorten to “x ≠ 1”).

(b) The domain of 

(c) The domain of  is x  4, x ≠ 0 (which is a short way of writing {x | x is real, x < 0
or 0 < x  4}).

A2. Two functions f and g with the same domain may be combined to yield their sum and
difference: f (x) + g(x) and f (x) − g(x), also written as (f + g) (x) and (f − g) (x), respectively; or
their product and quotient: f (x)g(x) and f (x)/g(x), also written as (fg)(x) and (f/g) (x), respectively.
The quotient is defined for all x in the shared domain except those values for which g(x), the
denominator, equals zero.

EXAMPLE 3
If f (x) = x2 − 4x and g(x) = x + 1, then find 

SOLUTIONS: 

Composition

A3. The composition (or composite) of f with g, written as f (g(x)) and read as “f of g of x,” is the
function obtained by replacing x wherever it occurs in f (x) by g(x). We also write ( f ο g) (x) for f
(g(x)). The domain of (f ο g) (x) is the set of all x in the domain of g for which g(x) is in the domain
of f.

EXAMPLE 4A
If f (x) = 2x − 1 and g(x) = x2, then does f (g(x)) = g(f (x))?

In general, f (g(x)) ≠ g(f (x)).

EXAMPLE 4B
If f (x) = 4x2 − 1 and g(x) =  find f (g(x)) and g(f (x)).
SOLUTIONS: f (g(x)) = 4x − 1 (x ≥ 0); 

Symmetry



A4. A function f is  if, for all x in the domain of f, 

The graph of an odd function is symmetric about the origin; the graph of an even function is symmetric
about the y-axis.

EXAMPLE 5
The graphs of  x3 and g(x) = 3x2 − 1 are shown in Figure N1–1; f (x) is odd, g(x) even.

FIGURE N1–1

A5. If a function f yields a single output for each input and also yields a single input for every
output, then f is said to be one-to-one. Geometrically, this means that any horizontal line cuts the
graph of f in at most one point. The function sketched at the left in Figure N1–1 is one-to-one; the
function sketched at the right is not. A function that is increasing (or decreasing) on an interval I is
one-to-one on that interval.

A6. If f is one-to-one with domain X and range Y, then there is a function f −1, with domain Y and
range X, such that

f −1(y0) = x0  if and only if  f (x0) = y0.

The function f −1 is the inverse of f. It can be shown that f −1 is also one-to-one and that its inverse is
f. The graphs of a function and its inverse are symmetric with respect to the line y = x.

To find the inverse of y = f (x),
interchange x and y,

then solve for y.

EXAMPLE 6
Find the inverse of the one-to-one function f (x) = x3 − 1.

SOLUTION:



FIGURE N1–2

Note that the graphs of f and f −1 in Figure N1–2 are mirror images, with the line y = x as the
mirror.

A7. The zeros of a function f are the values of x for which f (x) = 0; they are the x-intercepts of the
graph of y = f (x).

EXAMPLE 7

Find zeros of f (x) = x4 − 2x2.

SOLUTION: The zeros are the x’s for which x4 − 2x2 = 0. The function has three zeros, since x4

− 2x2 = x2 (x2 − 2) equals zero if x = 0, , or 

B. SPECIAL FUNCTIONS
The absolute-value function f (x) = |x| and the greatest-integer function g(x) = [x] are sketched in
Figure N1–3.

FIGURE N1–3

EXAMPLE 8
A function f is defined on the interval [−2, 2] and has the graph shown in Figure N1–4.



(a) Sketch the graph of y = |f (x)|.
(b) Sketch the graph of y = f (|x|).
(c) Sketch the graph of y = − f (x).
(d) Sketch the graph of y = f (−x).

FIGURE N1–4

SOLUTIONS: The graphs are shown in Figures N1–4a through N1–4d.

FIGURE N1–4a

FIGURE N1–4b



FIGURE N1–4c

FIGURE N1–4d

Note that graph (c) of y = − f (x) is the reflection of y = f (x) in the x-axis, whereas graph (d) of y
= f (−x) is the reflection of y = f (x) in the y-axis. How do the graphs of |f (x)| and f (|x|) compare
with the graph of f (x)?

EXAMPLE 9
Let f (x) = x3 − 3 x2 + 2. Graph the following functions on your calculator in the window [−3,3] ×
[−3,3]: (a) y = f (x);  (b) y = |f (x)|;  (c) y = f (|x|).
SOLUTIONS:
(a) y = f (x)

See Figure N1–5a.



FIGURE N1–5a

(b) y = |f (x)|
See Figure N1–5b.

FIGURE N1–5b

(c) y = f (|x|)
 See Figure N1–5c.

FIGURE N1–5c

Note how the graphs for (b) and (c) compare with the graph for (a).

C. POLYNOMIAL AND OTHER RATIONAL FUNCTIONS
C1. Polynomial Functions.
A polynomial function is of the form

f (x) = a0 xn + a1 xn − 1 + a2 xn − 2 + · · · + an − 1 x + an,

where n is a positive integer or zero, and the ak’s, the coefficients, are constants. If a0 ≠ 0, the degree



of the polynomial is n.
A linear function, f (x) = mx + b, is of the first degree; its graph is a straight line with slope m, the

constant rate of change of f (x) (or y) with respect to x, and b is the line’s y-intercept.
A quadratic function, f (x) = ax2 + bx + c, has degree 2; its graph is a parabola that opens up if a

> 0, down if a < 0, and whose axis is the line 

A cubic, f (x) = a0 x3 + a1 x2 + a2 x + a3, has degree 3; calculus enables us to sketch its graph
easily; and so on. The domain of every polynomial is the set of all reals.

C2. Rational Functions.
A rational function is of the form

where P(x) and Q(x) are polynomials. The domain of f is the set of all reals for which Q(x) ≠ 0.

D. TRIGONOMETRIC FUNCTIONS
The fundamental trigonometric identities, graphs, and reduction formulas are given in the Appendix.

D1. Periodicity and Amplitude.
The trigonometric functions are periodic. A function f is periodic if there is a positive number p such
that f (x + p) = f (x) for each x in the domain of f. The smallest such p is called the period of f. The
graph of f repeats every p units along the x-axis. The functions sin x, cos x, csc x, and sec x have
period 2π; tan x and cot x have period π.

The function f (x) = A sin bx has amplitude A and period  g(x) = tan cx has period 

EXAMPLE 10
Consider the function f (x) =  cos (kx).

(a) For what value of k does f have period 2?
(b) What is the amplitude of f for this k ?
SOLUTIONS:
(a) Function f has period  since this must equal 2, we solve the equation  getting k = π.

(b) It follows that the amplitude of f that equals  has a value of 

EXAMPLE 11
Consider the function 

Find (a) the period and (b) the maximum value of f.
(c) What is the smallest positive x for which f is a maximum?
(d) Sketch the graph.



SOLUTIONS:
(a) The period of f is  or 6.

(b) Since the maximum value of −sin x is −(−1) or +1, the maximum value of f is 3 + 1 or 4.
(c)  equals +1 when  that is, when  Solving yields 

(d) We graph  in [−5,8] × [0,5]:

FIGURE N1–6

D2. Inverses.
Inverse trig functions

We obtain inverses of the trigonometric functions by limiting the domains of the latter so each
trigonometric function is one-to-one over its restricted domain. For example, we restrict

The graphs of f (x) = sin x on  and of its inverse f −1(x) = sin−1 x are shown in Figure N1–7. The
inverse trigonometric function sin−1 x is also commonly denoted by arcsin x, which denotes the angle
whose sine is x. The graph of sin−1 x is, of course, the reflection of the graph of sin x in the line y = x.



FIGURE N1–7

Also, for other inverse trigonometric functions,

y = cos−1 x (or arccos x) has domain −1  x  1 and range 0  y  π;

y = tan−1 x (or arctan x) has domain the set of reals and range 

Note also that

E. EXPONENTIAL AND LOGARITHMIC FUNCTIONS
E1. Exponential Functions.
The following laws of exponents hold for all rational m and n, provided that a > 0, a ≠ 1:

The exponential function f (x) = ax (a > 0, a ≠ 1) is thus defined for all real x; its domain is the set
of positive reals. The graph of y = ax, when a = 2, is shown in Figure N1–8.

Of special interest and importance in the calculus is the exponential function f (x) = ex, where e is
an irrational number whose decimal approximation to five decimal places is 2.71828.

E2. Logarithmic Functions.
Since f (x) = ax is one-to-one, it has an inverse, f −1(x) = log a x, called the logarithmic function with
base a. We note that

y = loga x if and only if ay = x.

The domain of log a x is the set of positive reals; its range is the set of all reals. It follows that the
graphs of the pair of mutually inverse functions y = 2x and y = log2 x are symmetric to the line y = x,



as can be seen in Figure N1–8.

FIGURE N1–8

The logarithmic function log a x (a > 0, a ≠ 1) has the following properties:

The logarithmic base e is so important and convenient in calculus that we use a special symbol:
log e x = ln x.

Logarithms with base e are called natural logarithms. The domain of ln x is the set of positive reals;
its range is the set of all reals. The graphs of the mutually inverse functions ln x and ex are given in the
Appendix.

F. PARAMETRICALLY DEFINED FUNCTIONS
BC ONLY

If the x- and y-coordinates of a point on a graph are given as functions f and g of a third variable, say
t, then

x = f (t),  y = g(t)
are called parametric equations and t is called the parameter. When t represents time, as it often
does, then we can view the curve as that followed by a moving particle as the time varies.

Examples 12–18 are BC ONLY.

EXAMPLE 12
Find the Cartesian equation of, and sketch, the curve defined by the parametric equations

x = 4 sin t,  y = 5 cos t  (0  t  2π).
SOLUTION: We can eliminate the parameter t as follows:



Since sin2 t + cos2 t = 1, we have

The curve is the ellipse shown in Figure N1–9.

FIGURE N1–9

Note that, as t increases from 0 to 2π, a particle moving in accordance with the given parametric
equations starts at point (0, 5) (when t = 0) and travels in a clockwise direction along the ellipse,
returning to (0, 5) when t = 2π.

EXAMPLE 13
Given the pair of parametric equations,

x = 1 − t,  y =  (t  0),
write an equation of the curve in terms of x and y, and sketch the graph.
SOLUTION: We can eliminate t by squaring the second equation and substituting for t in the
first; then we have

y2 = t  and  x = 1 − y2.

We see the graph of the equation x = 1 − y2 on the left in Figure N1–10. At the right we see only
the upper part of this graph, the part defined by the parametric equations for which t and y are
both restricted to nonnegative numbers.



FIGURE N1–10

The function defined by the parametric equations here is y = F(x) =  whose graph is at the
right above; its domain is x  1 and its range is the set of nonnegative reals.

EXAMPLE 14
A satellite is in orbit around a planet that is orbiting around a star. The satellite makes 12 orbits
each year. Graph its path given by the parametric equations

x = 4 cos t + cos 12t,
y = 4 sin t  + sin 12t. 

SOLUTION: Shown below is the graph of the satellite’s path using the calculator’s parametric
mode for 0 ≤ t ≤ 2π.

FIGURE N1–11

EXAMPLE 15
Graph x = y2 − 6y + 8.
SOLUTION: We encounter a difficulty here. The calculator is constructed to graph y as a function
o f x: it accomplishes this by scanning horizontally across the window and plotting points in
varying vertical positions. Ideally, we want the calculator to scan down the window and plot
points at appropriate horizontal positions. But it won’t do that.

One alternative is to interchange variables, entering x as Y1 and y as X, thus entering Y1, = X2 −
6X + 8. But then, during all subsequent processing we must remember that we have made this



interchange.

Less risky and more satisfying is to switch to parametric mode: Enter x = t2 − 6t + 8 and y = t.
Then graph these equations in [−10,10] × [−10,10], for t in [−10,10], See Figure N1–12.

FIGURE N1–12

EXAMPLE 16
Let f (x) = x3 + x; graph f −1(x).

SOLUTION: Recalling that f −1 interchanges x and y, we use parametric mode to graph

 f: x = t, y = t3 + t
and f −1: x = t3 + t, y = t.

Figure N1–13 shows both f (x) and f −1(x).

FIGURE N1–13

Parametric equations give rise to vector functions, which will be discussed in connection with
motion along a curve in Chapter 4.

G. POLAR FUNCTIONS
Polar coordinates of the form (r, ) identify the location of a point by specifying , an angle of rotation
from the positive x-axis, and r, a distance from the origin, as shown in Figure N1–14.



FIGURE N1–14

A polar function defines a curve with an equation of the form r = f ( ). Some common polar functions
include:

EXAMPLE 17
Consider the polar function r = 2 + 4 sin .
(a) For what values of  in the interval [0,2π] does the curve pass through the origin?
(b) For what value of  in the interval [0,π/2] does the curve intersect the circle r = 3?
SOLUTION:

(a) At the origin r = 0, so we want 2 + 4 sin  = 0. Solving for  yields  which occurs at

(b) The curves r = 2 + 4 sin  and r = 3 intersect when 2 + 4 sin  = 3, or  From the
calculator we find  = arcsin 

FIGURE N1–15



A polar function may also be expressed parametrically:
x = r cos ,  y = sin 

In this form, the curve r = 2 + 4 sin  from Example 17 would be defined by:
x( ) = (2 + 4 sin ) cos , y( ) = (2 + 4 sin ) sin 

EXAMPLE 18
Find the (x, y) coordinates of the point on r = 1 + cos  where 

Chapter Summary
This chapter has reviewed some important precalculus topics. These topics are not directly tested on
the AP exam; rather, they represent basic principles important in calculus. These include finding the
domain, range and inverse of a function; and understanding the properties of polynomial and rational
functions, trigonometric and inverse trig functions, and exponential and logarithmic functions.

For BC students, this chapter also reviewed parametrically defined functions.

Practice Exercises

Directions: Answer these questions without using your calculator.

1. If f (x) = x3 − 2x − 1, then f (−2) =
(A) −17
(B) −13
(C) −5
(D) −1
(E) 3

2. The domain of  is

(A) all x ≠ 1
(B) all x ≠ 1, −1
(C) all x ≠ −1
(D) x  1



(E) all reals

3. The domain of  is

(A) all x ≠ 0, 1
(B) x  2, x ≠ 0, 1
(C) x  2
(D) x  2
(E) x > 2

4. If f (x) = x3 − 3x2 − 2x + 5 and g(x) = 2, then g(f (x)) =

(A) 2x3 − 6x2 − 2x + 10

(B) 2x2 − 6 x + 1
(C) −6
(D) −3
(E) 2

5. With the functions and choices as in Question 4, which choice is correct for f (g(x))?

6. If f (x) = x3 + Ax2 + Bx − 3 and if f (1) = 4 and f (−1) = −6, what is the value of 2A + B ?
(A) 12
(B) 8
(C) 0
(D) −2
(E) It cannot be determined from the given information.

7. Which of the following equations has a graph that is symmetric with respect to the origin?
(A)

(B) y = 2x4 + 1

(C) y = x3 + 2x
(D) y = x3 + 2
(E) 

8. Let g be a function defined for all reals. Which of the following conditions is not sufficient to
guarantee that g has an inverse function?
(A) g(x) = ax + b, a ≠ 0.
(B) g is strictly decreasing.



(C) g is symmetric to the origin.
(D) g is strictly increasing.
(E) g is one-to-one.

9. Let y = f (x) = sin (arctan x). Then the range of f is
(A) {y | 0 < y  1}
(B) {y | − 1 < y < 1}
(C) {y|−1  y  1}
(D) 

(E) 

10. Let g(x) = |cos x − 1|. The maximum value attained by g on the closed interval [0, 2π] is for x
equal to
(A) −1
(B) 0
(C) 

(D) 2
(E) π

11. Which of the following functions is not odd?
(A) f (x) = sin x
(B) f (x) = sin 2x
(C) f (x) = x3 + 1
(D) 

(E) 

12. The roots of the equation f (x) = 0 are 1 and −2. The roots of f (2x) = 0 are
(A) 1 and −2
(B) 

(C) 

(D) 2 and −4
(E) −2 and 4

13. The set of zeros of f (x) = x3 + 4x2 + 4x is



(A) {−2}
(B) {0,−2}
(C) {0,2}
(D) {2}
(E) {2,−2}

14. The values of x for which the graphs of y = x + 2 and y2 = 4x intersect are
(A) −2 and 2
(B) −2
(C) 2
(D) 0
(E) none of these

15. The function whose graph is a reflection in the y-axis of the graph of f (x) = 1 − 3x is

(A) g(x) = 1 − 3−x

(B) g(x) = 1 + 3x

(C) g(x) = 3x − 1
(D) g(x) = log3 (x − 1)

(E) g(x) = log3 (1 − x)

16. Let f (x) have an inverse function g(x). Then f (g(x)) =
(A) 1
(B) x
(C) 

(D) f (x) · g(x)
(E) none of these

17. The function f (x) = 2x3 + x − 5 has exactly one real zero. It is between
(A) −2 and −1
(B) −1 and 0
(C) 0 and 1
(D) 1 and 2
(E) 2 and 3



18. The period of f (x) =  is

(A) 

(B) 

(C) 

(D) 3
(E) 6

19. The range of y = f (x) = ln (cos x) is
(A) {y | − ∞ < y  0}
(B) {y | 0 < y  1}
(C) {y | −1 < y < 1}
(D) 

(E) {y | 0  y  1}

20. If  then b =

(A) 

(B) 

(C) 

(D) 3
(E) 9

21. Let f −1 be the inverse function of f (x) = x3 + 2. Then f −1(x) =
(A) 

(B) (x + 2)3

(C) (x − 2)3

(D) 
(E) 

22. The set of x-intercepts of the graph of f (x) = x3 − 2x2 − x + 2 is
(A) {1}
(B) {−1,1}
(C) {1,2}



(D) {−1,1,2}
(E) {−1,−2,2}

23. If the domain of f is restricted to the open interval  then the range of f (x) = etan x is

(A) the set of all reals
(B) the set of positive reals
(C) the set of nonnegative reals
(D) {y | 0 < y  1}
(E) none of these

24. Which of the following is a reflection of the graph of y = f (x) in the x-axis?
(A) y = −f (x)
(B) y = f (−x)
(C) y = |f (x)|
(D) y = f (|x|)
(E) y = −f (−x)

25. The smallest positive x for which the function  is a maximum is

(A) 

(B) π
(C) 

(D) 3π
(E) 6π

26. 

(A) −1

(B) 

(C) 

(D) 

(E) 1

27. If f −1(x) is the inverse of f (x) = 2e−x, then f −1(x) =
(A) 



(B) 

(C) 

(D) 
(E) ln (2 − x)

28. Which of the following functions does not have an inverse function?
(A) 

(B) y = x3 + 2
(C) 

(D) 

(E) y = ln (x − 2) (where x >2)

29. Suppose that f (x) = ln x for all positive x and g(x) = 9 − x2 for all real x. The domain of f
(g(x)) is
(A) {x | x  3}
(B) {x | |x|  3}
(C) {x | |x| > 3}
(D) {x | |x| < 3}
(E) {x | 0 < x < 3}

30. Suppose (as in Question 29) that f (x) = ln x for all positive x and g(x) = 9 − x2 for all real x.
The range of y = f (g(x)) is
(A) {y | y > 0}
(B) {y | 0 < y  ln 9}
(C) {y | y  ln 9}
(D) {y | y < 0}
(E) none of these

31. The curve defined parametrically by x(t) = t2 + 3 and y(t) = t2 + 4 is part of a(n)
(A) line
(B) circle
(C) parabola
(D) ellipse
(E) hyperbola



BC ONLY

32. Which equation includes the curve defined parametrically by x(t) = cos2 (t) and y(t) = 2 sin (t)?
(A) x2 + y2 = 4

(B) x2 + y2 = 1

(C) 4x2 + y2 = 4

(D) 4x + y2 = 4

(E) x + 4y2 = 1

BC ONLY

33. Find the smallest value of  in the interval [0,2π] for which the rose r = 2 cos(5 ) passes
through the origin.
(A) 0
(B) 

(C) 

(D) 

(E) 

BC ONLY

34. For what value of  in the interval [0,π] do the polar curves r = 3 and r = 2 + 2 cos  intersect?
(A) 

(B) 

(C) 

(D) 

(E) 

BC ONLY

35. On the interval [0,2π] there is one point on the curve r =  − 2 cos  whose x-coordinate is 2.
Find the y-coordinate there.
(A) −4.594
(B) −3.764
(C) 1.979



(D) 4.263
(E) 5.201

BC ONLY



CHAPTER 2 Limits and Continuity

Concepts and Skills
In this chapter, you will review

• general properties of limits;
• how to find limits using algebraic expressions, tables, and graphs;
• horizontal and vertical asymptotes;
• continuity;
• removable, jump, and infinite discontinuities;
• and some important theorems, including the Squeeze Theorem, the Extreme Value Theorem,
and the Intermediate Value Theorem.

A. DEFINITIONS AND EXAMPLES
The number L is the limit of the function f (x) as x approaches c if, as the values of x get arbitrarily
close (but not equal) to c, the values of f (x) approach (or equal) L. We write

In order for  to exist, the values of f must tend to the same number L as x approaches c from
either the left or the right. We write
One-sided limits

for the left-hand limit of f at c (as x approaches c through values less than c), and

for the right-hand limit of f at c (as x approaches c through values greater than c).

EXAMPLE 1
The greatest-integer function g(x) = [x], shown in Figure N2–1, has different left-hand and right-
hand limits at every integer. For example,

This function, therefore, does not have a limit at x = 1 or, by the same reasoning, at any other
integer.



FIGURE N2–1

However, [x] does have a limit at every nonintegral real number. For example,

EXAMPLE 2
Suppose the function y = f (x), graphed in Figure N2–2, is defined as follows:

Determine whether limits of f, if any, exist at
(a) x = −2,
(b) x = 0,
(c) x = 2,
(d) x = 4.



FIGURE N2–2

SOLUTIONS:
(a)  so the right-hand limit exists at x = −2, even though f is not defined at x = −2.

(b)  does not exist. Although f is defined at x = 0 (f (0) = 2), we observe that 
whereas  For the limit to exist at a point, the left-hand and right-hand limits must be
the same.

(c)  This limit exists because  Indeed, the limit exists at x = 2
even though it is different from the value of f at 2 (f (2) = 0).

(d)  so the left-hand limit exists at x = 4.

EXAMPLE 3
Prove that 

SOLUTION: The graph of |x| is shown in Figure N2–3.
We examine both left- and right-hand limits of the absolute-value function as x → 0. Since

it follows that 

Since the left-hand and right-hand limits both equal 0, 

Note that  if c > 0 but equals −c if c < 0.



FIGURE N2–3

DEFINITION
The function f (x) is said to become infinite (positively or negatively) as x approaches c if f (x) can
be made arbitrarily large (positively or negatively) by taking x sufficiently close to c. We write

Since for the limit to exist it must be a finite number, neither of the preceding limits exists.
This definition can be extended to include x approaching c from the left or from the right. The

following examples illustrate these definitions.

EXAMPLE 4
Describe the behavior of  near x = 0 using limits.

SOLUTION: The graph (Figure N2–4) shows that:

FIGURE N2–4



EXAMPLE 5
Describe the behavior of  near x = 1 using limits.

SOLUTION: The graph (Figure N2–5) shows that:

FIGURE N2–5

Remember that none of the limits in Examples 4 and 5 exists!
DEFINITION
We write

if the difference between f (x) and L can be made arbitrarily small by making x sufficiently large
positively (or negatively).

In Examples 4 and 5, note that 

EXAMPLE 6
From the graph of  (Figure N2–6), describe the behavior of h using limits.

SOLUTION:



FIGURE N2–6

DEFINITION
The theorems that follow in §C of this chapter confirm the conjectures made about limits of functions
from their graphs.

Finally, if the function f (x) becomes infinite as x becomes infinite, then one or more of the
following may hold:

END BEHAVIOR OF POLYNOMIALS
Every polynomial whose degree is greater than or equal to 1 becomes infinite as x does. It becomes
positively or negatively infinite, depending only on the sign of the leading coefficient and the degree
of the polynomial.

EXAMPLE 7
For each function given below, describe 

(a) f (x) = x3 − 3x2 + 7x + 2
SOLUTION: 

(b) g(x) = −4x4 + 1,000,000x3 + 100
SOLUTION: 

(c) h(x) = −5x3 + 3x2 −4π + 8
SOLUTION: 
(d) k(x) = π − 0.001x
SOLUTION: 
It’s easy to write rules for the behavior of a polynomial as x becomes infinite!

B. ASYMPTOTES



Horizontal asymptote

The line y = b is a horizontal asymptote of the graph of y = f (x) if

The graph of  (Figure N2–4) has the x-axis (y = 0) as the horizontal asymptote.
So does the graph of  (Figure N2–5).
The graph of  has the line y = 1 as the horizontal asymptote, as shown at the right.

Vertical asymptote

The line x = a is a vertical asymptote of the graph of y = f (x) if one or more of the following
holds:

The graph of  (Figure N2–4) has x = 0 (the y-axis) as the vertical asymptote.
The graph of  (Figure N2–5) has x = 1 as the vertical asymptote.
The graph of  (Figure N2–6) has the line x = 2 as the vertical asymptote.

EXAMPLE 8
From the graph of  in Figure N2–7, describe the asymptotes of k using limits.

SOLUTION: We see that y = 2 is a horizontal asymptote, since

Also, x = 3 is a vertical asymptote; the graph shows that



FIGURE N2–7

C. THEOREMS ON LIMITS
If lim f (x) and lim g(x) are finite numbers, then:
(1) lim kf (x) = k lim f (x).
(2) lim[f (x) + g(x)] = lim f (x) + lim g(x).
(3) lim f (x)g(x) = (lim f (x))(lim g(x)).
(4)  (if lim g(x) ≠ 0).

(5) 
(6) THE SQUEEZE OR SANDWICH THEOREM. If f (x) ≤ g(x) ≤ h(x) and if 

  Figure N2–8 illustrates this theorem.

FIGURE N2–8

Squeezing function g between functions f and h forces g to have the same limit L at x = c as do f
and g.

EXAMPLE 9



EXAMPLE 10

EXAMPLE 11

EXAMPLE 12

since, by the definition of  in §A, x must be different from 3 as x → 3, the factor x − 3
may be removed before taking the limit.

EXAMPLE 13

EXAMPLE 14
 the numerator approaches 1 while the denominator approaches 0; the

limit does not exist.

EXAMPLE 15

EXAMPLE 16



EXAMPLE 17

D. LIMIT OF A QUOTIENT OF POLYNOMIALS
To find  where P(x) and Q(x) are polynomials in x, we can divide both numerator and
denominator by the highest power of x that occurs and use the fact that 

EXAMPLE 18

EXAMPLE 19

EXAMPLE 20

THE RATIONAL FUNCTION THEOREM
We see from Examples 18, 19, and 20 that: if the degree of P(x) is less than that of Q(x), then 

 if the degree of P(x) is higher than that of Q(x), then  (i.e., does not exist);
and if the degrees of P(x) and Q(x) are the same, then  where an and bn are the coefficients
of the highest powers of x in P(x) and Q(x), respectively.

This theorem holds also when we replace “x → ∞” by “x → −∞.” Note also that:
(i) when  then y = 0 is a horizontal asymptote of the graph of 



(ii) when  then the graph of  has no horizontal asymptotes;

(iii) when  is a horizontal asymptote of the graph of 

EXAMPLE 21

E. OTHER BASIC LIMITS
E1. The basic trigonometric limit is:

 if θ is measured in radians.

EXAMPLE 22
Prove that 

SOLUTION: Since, for all x, −1 ≤ sin x ≤ 1, it follows that, if x > 0, then  But as x
→ ∞,  both approach 0; therefore by the Squeeze theorem,  must also approach 0. To
obtain graphical confirmation of this fact, and of the additional fact that  also equals 0,
graph

in [−4π, 4π] × [−1, 1]. Observe, as x → ±∞, that y2 and y3, approach 0 and that y1 is squeezed
between them.

EXAMPLE 23
Find 

SOLUTION: 

Limit definition of e

E2. The number e can be defined as follows:



The value of e can be approximated on a graphing calculator to a large number of decimal places by
evaluating

for large values of x.

F. CONTINUITY
If a function is continuous over an interval, we can draw its graph without lifting pencil from paper.
The graph has no holes, breaks, or jumps on the interval.

Conceptually, if f (x) is continuous at a point x = c, then the closer x is to c, the closer f (x) gets to
f (c). This is made precise by the following definition:
DEFINITION
The function y = f (x) is continuous at x = c if

(1) f (c) exists; (that is, c is in the domain of f );
(2)  exists;
(3) 
A function is continuous over the closed interval [a, b] if it is continuous at each x such that a ≤ x

≤ b.
A function that is not continuous at x = c is said to be discontinuous at that point. We then call x =

c a point of discontinuity.
CONTINUOUS FUNCTIONS
Polynomials are continuous everywhere; namely, at every real number.

Rational functions,  are continuous at each point in their domain; that is, except where Q(x) =
0. The function  for example, is continuous except at x = 0, where f is not defined.

The absolute value function f (x) = |x| (sketched in Figure N2–3) is continuous everywhere.
The trigonometric, inverse trigonometric, exponential, and logarithmic functions are continuous at

each point in their domains.
Functions of the type  (where n is a positive integer ≥ 2) are continuous at each x for which 

is defined.
The greatest-integer function f (x) = [x] (Figure N2–1) is discontinuous at each integer, since it

does not have a limit at any integer.
KINDS OF DISCONTINUITIES
In Example 2, y = f (x) is defined as follows:



The graph of f is shown above.
We observe that f is not continuous at x = −2, x = 0, or x = 2.
At x = −2, f is not defined.
At x = 0, f is defined; in fact, f (0) = 2. However, since  and  does not

exist. Where the left- and right-hand limits exist, but are different, the function has a jump
discontinuity. The greatest-integer (or step) function, y = [x], has a jump discontinuity at every
integer.

At x = 2, f is defined; in fact, f (2) = 0. Also,  the limit exists. However, 
This discontinuity is called removable. If we were to redefine the function at x = 2 to be f (2) = −2,
the new function would no longer have a discontinuity there. We cannot, however, “remove” a jump
discontinuity by any redefinition whatsoever.

Whenever the graph of a function f (x) has the line x = a as a vertical asymptote, then f (x)
becomes positively or negatively infinite as x → a+ or as x → a−. The function is then said to have an
infinite discontinuity. See, for example, Figure N2–4 for  Figure N2–5 for 

or Figure N2–7 for  Each of these functions exhibits an infinite discontinuity.

EXAMPLE 24
 is not continuous at x = 0 or = −1, since the function is not defined for either of

these numbers. Note also that neither  nor  exists.

EXAMPLE 25
Discuss the continuity of f, as graphed in Figure N2–9.
SOLUTION: f (x) is continuous on [(0,1), (1,3), and (3,5)]. The discontinuity at x = 1 is
removable; the one at x = 3 is not. (Note that f is continuous from the right at x = 0 and from the



left at x = 5.)

FIGURE N2–9

In Examples 26 through 31, we determine whether the functions are continuous at the points
specified:

EXAMPLE 26
Is  continuous at x = −1?

SOLUTION: Since f is a polynomial, it is continuous everywhere, including, of course, at x =
−1.

EXAMPLE 27
Is  continuous (a) at x = 3; (b) at x = 0?

SOLUTION: This function is continuous except where the denominator equals 0 (where g has
an infinite discontinuity). It is not continuous at x = 3, but is continuous at x = 0.

EXAMPLE 28

Is  continuous

(a) at x = 2; (b) at x = 3?
SOLUTIONS:
(a) h(x) has an infinite discontinuity at x = 2; this discontinuity is not removable.
(b) h(x) is continuous at x = 3 and at every other point different from 2. See Figure N2–10.



FIGURE N2–10

EXAMPLE 29
Is  (x ≠ 2) continuous at x = 2?

SOLUTION: Note that k(x) = x + 2 for all x ≠ 2. The function is continuous everywhere except
at x = 2, where k is not defined. The discontinuity at 2 is removable. If we redefine f (2) to equal
4, the new function will be continuous everywhere. See Figure N2–11.

FIGURE N2–11

EXAMPLE 30

Is  continuous at x = 1?

SOLUTION: f (x) is not continuous at x = 1 since  This function has a
jump discontinuity at x = 1 (which cannot be removed). See Figure N2–12.



FIGURE N2–12

EXAMPLE 31

Is  continuous at x = 2?

SOLUTION: g(x) is not continuous at x = 2 since  This discontinuity can be
removed by redefining g(2) to equal 4. See Figure N2–13.

FIGURE N2–13

THEOREMS ON CONTINUOUS FUNCTIONS
(1) The Extreme Value Theorem.  If f is continuous on the closed interval [a,b], then f attains a
minimum value and a maximum value somewhere in that interval.
(2) The Intermediate Value Theorem.  If f is continuous on the closed interval [a,b], and M is a
number such that f (a) ≤ M ≤ f (b), then there is at least one number, c, between a and b such that f (c)
= M.



Note an important special case of the Intermediate Value Theorem:
If f is continuous on the closed interval [a,b], and f (a) and f (b) have opposite signs, then f has a

zero in that interval (there is a value, c, in [a,b] where f (c) = 0).
(3) The Continuous Functions Theorem. If functions f and g are both continuous at x = c, then so are
the following functions:

(a) kf, where k is a constant;
(b) f ± g;
(c) f · g;
(d)  provided that g(c) ≠ 0.

EXAMPLE 32

Show that  has a root between x = 2 and x = 3.

SOLUTION: The rational function f is discontinuous only at  and f (3) = 1.

Since f is continuous on the interval [2,3] and f (2) and f (3) have opposite signs, there is a value,
c, in the interval where f (c) = 0, by the Intermediate Value Theorem.

Chapter Summary
In this chapter, we have reviewed the concept of a limit. We’ve practiced finding limits using
algebraic expressions, graphs, and the Squeeze (Sandwich) Theorem. We have used limits to find
horizontal and vertical asymptotes and to assess the continuity of a function. We have reviewed
removable, jump, and infinite discontinuities. We have also looked at the very important Extreme
Value Theorem and Intermediate Value Theorem.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

1. 

(A) 1
(B) 0

(C) 

(D) −1
(E) ∞



2. 

(A) 1
(B) 0
(C) −4
(D) −1
(E) ∞

3. 

(A) 0
(B) 1

(C) 

(D) ∞
(E) none of these

4. 

(A) 1
(B) 0
(C) ∞
(D) −1
(E) nonexistent

5. 

(A) 4
(B) 0
(C) 1
(D) 3
(E) ∞

6. 

(A) −2

(B) 

(C) 1
(D) 2



(E) nonexistent

7. 

(A) −∞
(B) −1
(C) 0
(D) 3
(E) ∞

8. 

(A) 3
(B) ∞
(C) 1
(D) −1
(E) 0

9. 

(A) −1
(B) 1
(C) 0
(D) ∞
(E) none of these

10. 

(A) −1
(B) 1
(C) 0
(D) ∞
(E) none of these

11. 

(A) = 0

(B) 

(C) = 1



(D) = 5
(E) does not exist

12. 

(A) = 0

(B) 

(C) = 1

(D) 

(E) does not exist

13. The graph of y = arctan x has
(A) vertical asymptotes at x = 0 and x = π
(B) horizontal asymptotes at 

(C) horizontal asymptotes at y = 0 and y = π
(D) vertical asymptotes at 

(E) none of these

14. The graph of  has

(A) a vertical asymptote at x = 3
(B) a horizontal asymptote at 

(C) a removable discontinuity at x = 3
(D) an infinite discontinuity at x = 3
(E) none of these

15. 

(A) 1

(B) 

(C) 3
(D) ∞

(E) 



16. 

(A) ∞
(B) 1
(C) nonexistent
(D) −1
(E) none of these

17. Which statement is true about the curve 

(A) The line  is a vertical asymptote.

(B) The line x = 1 is a vertical asymptote.
(C) The line  is a horizontal asymptote.

(D) The graph has no vertical or horizontal asymptote.
(E) The line y = 2 is a horizontal asymptote.

18. 

(A) −4
(B) −2
(C) 1
(D) 2
(E) nonexistent

19. 

(A) 0
(B) nonexistent
(C) 1
(D) −1
(E) none of these

20. 

(A) 0
(B) ∞
(C) nonexistent
(D) −1



(E) 1

21. 

(A) 1
(B) 0
(C) ∞
(D) nonexistent
(E) none of these

22. Let 

Which of the following statements is (are) true?
I.  exists
II. f (1) exists
III. f is continuous at x = 1
(A) I only
(B) II only
(C) I and II
(D) none of them
(E) all of them

23. 

and if f is continuous at x = 0, then k =
(A) −1

(B) 

(C) 0

(D) 

(E) 1

24. 



Then f (x) is continuous
(A) except at x = 1
(B) except at x = 2
(C) except at x = 1 or 2
(D) except at x = 0, 1, or 2
(E) at each real number

25. The graph of  has

(A) one vertical asymptote, at x = 1
(B) the y-axis as vertical asymptote
(C) the x-axis as horizontal asymptote and x = ±1 as vertical asymptotes
(D) two vertical asymptotes, at x = ±1, but no horizontal asymptote
(E) no asymptote

26. The graph of  has

(A) a horizontal asymptote at  but no vertical asymptote

(B) no horizontal asymptote but two vertical asymptotes, at x = 0 and x = 1
(C) a horizontal asymptote at  and two vertical asymptotes, at x = 0 and x = 1

(D) a horizontal asymptote at x = 2 but no vertical asymptote
(E) a horizontal asymptote at  and two vertical asymptotes, at x = ±1

27. 

Which of the following statements is (are) true?
I. f (0) exists
II.  exists
III. f is continuous at x = 0
(A) I only
(B) II only
(C) I and II only
(D) all of them
(E) none of them

Part B. Directions: Some of the following questions require the use of a graphing calculator.



28. If [x] is the greatest integer not greater than x, then  is

(A) 

(B) 1
(C) nonexistent
(D) 0
(E) none of these

29. (With the same notation)  is

(A) −3
(B) −2
(C) −1
(D) 0
(E) none of these

30. 

(A) is −1
(B) is infinity
(C) oscillates between −1 and 1
(D) is zero
(E) does not exist

31. The function 

(A) is continuous everywhere
(B) is continuous except at x = 0
(C) has a removable discontinuity at x = 0
(D) has an infinite discontinuity at x = 0
(E) has x = 0 as a vertical asymptote

Questions 32–36 are based on the function f shown in the graph and defined below:



32. 

(A) equals 0
(B) equals 1
(C) equals 2
(D) does not exist
(E) none of these

33. The function f is defined on [−1,3]
(A) if x ≠ 0
(B) if x ≠ 1
(C) if x ≠ 2
(D) if x ≠ 3
(E) at each x in [−1,3]

34. The function f has a removable discontinuity at
(A) x = 0



(B) x = 1
(C) x = 2
(D) x = 3
(E) none of these

35. On which of the following intervals is f continuous?
(A) −1 ≤ x ≤ 0
(B) 0 < x < 1
(C) 1 ≤ x ≤ 2
(D) 2 ≤ x ≤ 3
(E) none of these

36. The function f has a jump discontinuity at
(A) x = −1
(B) x = 1
(C) x = 2
(D) x = 3
(E) none of these

CHALLENGE

37. 

(A) −∞
(B) 

(C) 

(D) ∞
(E) none of these

38. Suppose  and f (−3) is not defined. Which of the following
statements is (are) true?
I. 
II. f is continuous everywhere except at x = −3.
III. f has a removable discontinuity at x = −3.
(A) None of them



(B) I only
(C) III only
(D) I and III only
(E) All of them

CHALLENGE

39. If  then  y is

(A) 0

(B) 

(C) 

(D) 

(E) nonexistent
Questions 40–42 are based on the function f shown in the graph.

40. For what value(s) of a is it true that  exists and f (a) exists, but  It is
possible that a =
(A) −1 only
(B) 1 only
(C) 2 only
(D) −1 or 1 only
(E) −1 or 2 only

41.  does not exist for a =

(A) −1 only



(B) 1 only
(C) 2 only
(D) 1 and 2 only
(E) −1, 1, and 2

42. Which statements about limits at x = 1 are true?
I.  exists.
II.  exists.
III.  exists.

(A) none of I, II, or III
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III



CHAPTER 3 Differentiation

Concepts and Skills
In this chapter, you will review

• derivatives as instantaneous rates of change;
• estimating derivatives using graphs and tables;
• derivatives of basic functions;
• the product, quotient, and chain rules;
• implicit differentiation;
• derivatives of inverse functions;
• Rolle’s Theorem and the Mean Value Theorem.

In addition, BC Calculus students will review
• derivatives of parametrically defined functions;
• L’Hôpital’s Rule for evaluating limits of indeterminate forms.

A. DEFINITION OF DERIVATIVE
At any x in the domain of the function y = f (x), the derivative is defined as

The function is said to be differentiable at every x for which this limit exists, and its derivative may
be denoted by f ′(x), y ′,  or Dx y. Frequently Δx is replaced by h or some other symbol.

The derivative of y = f (x) at x = a, denoted by f ′(a) or y ′(a), may be defined as follows:

• Difference quotient

• Average rate of change

• Instantaneous rate of change

• Slope of a curve

The fraction  is called the difference quotient for f at a and represents the average
rate of change of f from a to a + h. Geometrically, it is the slope of the secant PQ to the curve y = f
(x) through the points P(a, f (a)) and Q(a + h, f (a + h)). The limit, f ′(a), of the difference quotient is



the (instantaneous) rate of change of f at point a. Geometrically, the derivative f ′(a) is the limit of
the slope of secant PQ as Q approaches P; that is, as h approaches zero. This limit is the slope of the
curve at P. The tangent to the curve at P is the line through P with this slope.

FIGURE N3–1a

In Figure N3–1a, PQ is the secant line through (a, f (a)) and (a + h, f (a + h)). The average rate of
change from a to a + h equals  which is the slope of secant PQ.

PT is the tangent to the curve at P. As h approaches zero, point Q approaches point P along the
curve, PQ approaches PT, and the slope of PQ approaches the slope of PT, which equals f ′(a).

If we replace (a + h) by x, in (2) above, so that h = x − a, we get the equivalent expression

See Figure N3–1b.



FIGURE N3–1b

The second derivative, denoted by f ″(x) or  or y ″, is the (first) derivative of f ′(x). Also, f ″(a)
is the second derivative of f (x) at x = a.

B. FORMULAS
The formulas in this section for finding derivatives are so important that familiarity with them is
essential. If a and n are constants and u and v are differentiable functions of x, then:



C. THE CHAIN RULE; THE DERIVATIVE OF A COMPOSITE
FUNCTION

Formula (3) says that

This formula is an application of the Chain Rule. For example, if we use formula (3) to find the
derivative of (x2 − x + 2)4, we get

In this last equation, if we let y = (x2 − x + 2)4 and let u = x2 − x + 2, then y = u4. The preceding
derivative now suggests one form of the Chain Rule:



as before. Formula (3) the previous page gives the general case where y = un and u is a differentiable
function of x.

Now suppose we think of y as the composite function f (g(x)), where y = f (u) and u = g(x) are
differentiable functions. Then

Chain rule

as we obtained above. The Chain Rule tells us how to differentiate the composite function: “Find the
derivative of the ‘outside’ function first, then multiply by the derivative of the ‘inside’ one.”

For example:

Many of the formulas listed above in §B and most of the illustrative examples that follow use the
Chain Rule. Often the chain rule is used more than once in finding a derivative.

Note that the algebraic simplifications that follow are included only for completeness.

EXAMPLE 1
If y = 4x3 − 5x + 7, find y ′(1) and y ″(1).
SOLUTION: 

Then y ′(1) = 12 · 12 − 5 = 7 and y ″(1) = 24 · 1 = 24.

EXAMPLE 2
If f (x) = (3x + 2)5, find f ′(x).

SOLUTION: f ′(x) = 5(3x + 2)4 · 3 = 15(3x + 2)4.

EXAMPLE 3



SOLUTION: 

EXAMPLE 4

SOLUTION: 

EXAMPLE 5
If s(t) = (t2 + 1)(1 − t)2, find s ′(t).
SOLUTION: 

EXAMPLE 6
If f (t) = e2t sin 3t, find f ′(0).

SOLUTION: 

 Then, f ′(0) = 1(3 · 1 + 2 · 0) = 3.

EXAMPLE 7

SOLUTION: 

Note that neither f (v) nor f ′(v) exists where the denominator equals zero, namely, where 1 − 2v2

= 0 or where v equals 

EXAMPLE 8
If  x ≠ 0, find f ′(x).

SOLUTION: 

EXAMPLE 9
If y = tan (2x2 + 1), find y ′.
SOLUTION: y ′ = 4x sec2 (2x2 + 1).

EXAMPLE 10



If x = cos3 (1 − 3θ), find 

SOLUTION: 

EXAMPLE 11
If y = e(sin x) + 1, find 

SOLUTION: 

EXAMPLE 12
If y = (x + 1)ln2(x + 1), find 

SOLUTION: 

EXAMPLE 13
If g(x) = (1 + sin2 3x)4, find 

SOLUTION: 

 Then 

EXAMPLE 14
If y = sin−1 x +  find y ′.

SOLUTION: 

EXAMPLE 15
If u = ln  find 

SOLUTION: .

EXAMPLE 16
If s = e−t(sin t − cos t), find s ′.



SOLUTION: 

EXAMPLE 17
Let y = 2u3 − 4u2 + 5u − 3 and u = x2 − x. Find 

SOLUTION: 

EXAMPLE 18
If y = sin (ax + b), with a and b constants, find 

SOLUTION:  = [cos(ax + b)] · a = a cos(ax + b).

EXAMPLE 19
If f (x) = aekx (with a and k constants), find f ′ and f ″.

SOLUTION: f ′(x) = kaekx and f ″ = k2 aekx.

EXAMPLE 20
If y = ln (kx), where k is a constant, find 

SOLUTION: We can use both formula (13), and the Chain Rule to get

Alternatively, we can rewrite the given function using a property of logarithms: ln (kx) = ln k +
ln x. Then

EXAMPLE 21
Given f (u) = u2 − u and u = g(x) = x3 − 5 and F(x) = f (g(x)), evaluate F ′(2).
SOLUTION: F ′(2) = f ′(g(2))g ′(2) = f ′(3) · (12) = 5 · 12 = 60.

Now, since g ′(x) = 3x2, g ′(2) = 12, and since f ′(u) = 2u − 1, f ′(3) = 5. Of course, we get
exactly the same answer as follows.



D. DIFFERENTIABILITY AND CONTINUITY
If a function f has a derivative at x = c, then f is continuous at x = c.

This statement is an immediate consequence of the definition of the derivative of f ′(c) in the form

If f ′(c) exists, then it follows that  which guarantees that f is continuous at x = c.
If f is differentiable at c, its graph cannot have a hole or jump at c, nor can x = c be a vertical

asymptote of the graph. The tangent to the graph of f cannot be vertical at x = c; there cannot be a
corner or cusp at x = c.

Each of the “prohibitions” in the preceding paragraph (each “cannot”) tells how a function may
fail to have a derivative at c. These cases are illustrated in Figures N3–2 (a) through (f).

FIGURE N3–2

The graph in (e) is for the absolute function, f (x) = |x|. Since f ′(x) = −1 for all negative x but f ′(x)
= + 1 for all positive x, f ′(0) does not exist.

We may conclude from the preceding discussion that, although differentiability implies continuity,
the converse is false. The functions in (d), (e), and (f) in Figure N3–2 are all continuous at x = 0, but
not one of them is differentiable at the origin.



E. ESTIMATING A DERIVATIVE
E1. Numerically.

EXAMPLE 22
The table shown gives the temperatures of a polar bear on a very cold arctic day (t = minutes; T
= degrees Fahrenheit):

t 0 1 2 3 4 5 6 7 8

T 98 94.95 93.06 91.90 91.17 90.73 90.45 90.28 90.17

Our task is to estimate the derivative of T numerically at various times. A possible graph of T(t)
is sketched in Figure N3–3, but we shall use only the data from the table.

FIGURE N3–3

Using the difference quotient  with h equal to 1, we see that

Also,

and so on.
The following table shows the approximate values of T ′(t) obtained from the difference

quotients above:

t 0 1 2 3 4 5 6 7



T ′(t) −3.05 −1.89 −1.16 −0.73 −0.47 −0.28 −0.17 −0.11

Note that the entries for T ′(t) also represent the approximate slopes of the T curve at times 0.5,
1.5, 2.5, and so on.

From a Symmetric Difference Quotient
In Example 22 we approximated a derivative numerically from a table of values. We can also
estimate f ′(a) numerically using the symmetric difference quotient, which is defined as follows:

Note that the symmetric difference quotient is equal to

We see that it is just the average of two difference quotients. Many calculators use the symmetric
difference quotient in finding derivatives.

EXAMPLE 23
For the function f (x) = x4, approximate f ′(1) using the symmetric difference quotient with h =
0.01.

SOLUTION: 

The exact value of f ′(1), of course, is 4.

The use of the symmetric difference quotient is particularly convenient when, as is often the
case, obtaining a derivative precisely (with formulas) is cumbersome and an approximation is all
that is needed for practical purposes.

A word of caution is in order. Sometimes a wrong result is obtained using the symmetric
difference quotient. We noted that f (x) = |x| does not have a derivative at x = 0, since f ′(x) = −1 for
all x < 0 but f ′(x) = 1 for all x > 0. Our calculator (which uses the symmetric difference quotient)
tells us (incorrectly!) that f ′(0) = 0. Note that, if f (x) = |x|, the symmetric difference quotient gives
0 for f ′(0) for every h ≠ 0. If, for example, h = 0.01, then we get

which, as previously noted, is incorrect. The graph of the derivative of f (x) = |x|, which we see in
Figure N3–4, shows that f ′(0) does not exist.



FIGURE N3–4

E2. Graphically.
If we have the graph of a function f (x), we can use it to graph f ′(x). We accomplish this by estimating
the slope of the graph of f (x) at enough points to assure a smooth curve for f ′(x). In Figure N3–5 we
see the graph of y = f (x). Below it is a table of the approximate slopes estimated from the graph.

FIGURE N3–5

x −3 −2.5 −2 −1.5 −1 0 0.5 1 1.5 2 2.5

f ′(x) −6 −3 −0.5 1 2 2 1.5 0.5 −2 −4 −7
Figure N3–6 was obtained by plotting the points from the table of slopes above and drawing a

smooth curve through these points. The result is the graph of y = f ′(x).



FIGURE N3–6

From the graphs above we can make the following observations:
(1) At the points where the slope of f (in Figure N3–5) equals 0, the graph of f ′(Figure N3–6) has

x-intercepts: approximately x = −1.8 and x = 1.1. We’ve drawn horizontal broken lines at these points
on the curve in Figure N3–5.

(2) On intervals where f  the derivative is  We see here that f decreases for x <
−1.8 (approximately) and for x > 1.1 (approximately), and that f increases for −1.8 < x < 1.1
(approximately). In Chapter 4 we discuss other behaviors of f that are reflected in the graph of f ′.

BC ONLY

F. DERIVATIVES OF PARAMETRICALLY DEFINED
FUNCTIONS
Parametric equations were defined previously in Chapter 1.

If x = f (t) and y = g(t) are differentiable functions of t, then

EXAMPLE 24
If x = 2 sin θ and y = cos 2θ, find 

SOLUTION: 

Also,



EXAMPLE 25
Find the equation of the tangent to the curve in Example 24 for 

SOLUTION:
W h e n  the slope of the tangent,  equals −2 sin  = −1. Since 

 the equation is

EXAMPLE 26
Suppose two objects are moving in a plane during the time interval 0 ≤ t ≤ 4. Their positions at
time t are described by the parametric equations

x1 = 2t,  y1 = 4t − t2  and  x2 = t + 1,  y2 = 4 − t.

(a) Find all collision points. Justify your answer.
(b) Use a calculator to help you sketch the paths of the objects, indicating the direction in which

each object travels.

BC ONLY

SOLUTION:
(a) Equating x1 and x2 yields t = 1. When t = 1, both y1 and y2 equal 3. So t = 1 yields a true

collision point (not just an intersection point) at (2,3). (An intersection point is any point that
is on both curves, but not necessarily at the same time.)

(b) Using parametric mode, we graph both curves with t in [0,4], in the window [0,8] × [0,4] as
shown in Figure N3–7.

FIGURE N3–7

We’ve inserted arrows to indicate the direction of motion.
Note that if we draw the curves in simultaneous graphing mode, we can watch the objects as

they move, seeing that they do indeed pass through the intersection point at the same time.



G. IMPLICIT DIFFERENTIATION
When a functional relationship between x and y is defined by an equation of the form F(x, y) = 0, we
say that the equation defines y implicitly as a function of x. Some examples are x2 + y2 − 9 = 0, y2 −
4x = 0, and cos (xy) = y2 − 5 (which can be written as cos (xy) − y2 + 5 = 0). Sometimes two (or
more) explicit functions are defined by F(x, y) = 0. For example, x2 + y2 − 9 = 0 defines the two
functions  the upper and lower halves, respectively, of the circle centered
at the origin with radius 3. Each function is differentiable except at the points where x = 3 and x = −3.

Implicit differentiation is the technique we use to find a derivative when y is not defined
explicitly in terms of x but is differentiable.

In the following examples, we differentiate both sides with respect to x, using appropriate
formulas, and then solve for 

EXAMPLE 27
If x2 + y2 − 9 = 0, then

Note that the derivative above holds for every point on the circle, and exists for all y different
from 0 (where the tangents to the circle are vertical).

EXAMPLE 28
If x2 − 2xy + 3y2 = 2, find 

SOLUTION: 

EXAMPLE 29
If x sin y = cos (x + y), find 

SOLUTION: 

EXAMPLE 30
Find  using implicit differentiation on the equation x2 + y2 = 1.

SOLUTION: 

Then



where we substituted for  from (1) in (2), then used the given equation to simplify in (3).

EXAMPLE 31
Using implicit differentiation, verify the formula for the derivative of the inverse sine function, y
= sin−1 x = arcsin x, with domain [−1,1] and range 

SOLUTION: y = sin−1 x  ↔  x = sin y.
Now we differentiate with respect to x:

where we chose the positive sign for cos y since cos y is nonnegative if  Note that this
derivative exists only if −1 < x < 1.

H. DERIVATIVE OF THE INVERSE OF A FUNCTION
Suppose f and g are inverse functions. What is the relationship between their derivatives? Recall that
the graphs of inverse functions are the reflections of each other in the line y = x, and that at
corresponding points their x- and y-coordinates are interchanged.

Figure N3–8 shows a function f passing through point (a,b) and the line tangent to f at that point.
The slope of the curve there, f ′(a), is represented by the ratio of the legs of the triangle,  When this
figure is reflected across the line y = x, we obtain the graph of f −1, passing through point (b,a), with
the horizontal and vertical sides of the slope triangle interchanged. Note that the slope of the line
tangent to the graph of f −1 at x = b is represented by  the reciprocal of the slope of f at x = a. We
have, therefore,



FIGURE N3–8

Simply put, the derivative of the inverse of a function at a point is the reciprocal of the derivative
of the function at the corresponding point.

EXAMPLE 32
If f (3) = 8 and f ′(3) = 5, what do we know about f −1?

SOLUTION: Since f passes through the point (3,8), f −1 must pass through the point (8,3).
Furthermore, since the graph of f has slope 5 at (3,8), the graph of f −1 must have slope  at (8,3).

EXAMPLE 33
A function f and its derivative take on the values shown in the table. If g is the inverse of f, find g
′(6).
SOLUTION: To find the slope of g at the point where x = 6, we must look at the point on f
where y = 6, namely, (2,6). Since f ′(2) =  g ′(6) = 3.

x f (x) f ′(x)

2 6

6 8

EXAMPLE 34
Let y = f (x) = x3 + x − 2, and let g be the inverse function. Evaluate g ′(0).

SOLUTION: Since  To find x when y = 0, we must solve the equation x3

+ x − 2 = 0. Note by inspection that x = 1, so



EXAMPLE 35
Where is the tangent to the curve 4x2 + 9y2 = 36 vertical?
SOLUTION: We differentiate the equation implicitly to get  so  Since
the tangent line to a curve is vertical when  we conclude that  must equal zero; that is, y
must equal zero. When we substitute y = 0 in the original equation, we get x = ±3. The points
(±3,0) are the ends of the major axis of the ellipse, where the tangents are indeed vertical.

I. THE MEAN VALUE THEOREM
If the function f (x) is continuous at each point on the closed interval a ≤ x ≤ b and has a derivative at
each point on the open interval a < x < b, then there is at least one number c, a < c <b, such that 

 This important theorem, which relates average rate of change and instantaneous rate of
change, is illustrated in Figure N3–9. For the function sketched in the figure there are two numbers, c1
and c2, between a and b where the slope of the curve equals the slope of the chord PQ (i.e., where the
tangent to the curve is parallel to the secant line).

FIGURE N3–9

Rolle’s Theorem

We will often refer to the Mean Value Theorem by its initials, MVT.
If, in addition to the hypotheses of the MVT, it is given that f (a) = f (b) = k, then there is a number,

c, between a and b such that f ′(c) = 0. This special case of the MVT is called Rolle’s Theorem, as
seen in Figure N3–10 for k = 0.



FIGURE N3–10

The Mean Value Theorem is one of the most useful laws when properly applied.

EXAMPLE 36
You left home one morning and drove to a cousin’s house 300 miles away, arriving 6 hours later.
What does the Mean Value Theorem say about your speed along the way?
SOLUTION: Your journey was continuous, with an average speed (the average rate of change
of distance traveled) given by

Furthermore, the derivative (your instantaneous speed) existed everywhere along your trip. The
MVT, then, guarantees that at least at one point your instantaneous speed was equal to your
average speed for the entire 6-hour interval. Hence, your car’s speedometer must have read
exactly 50 mph at least once on your way to your cousin’s house.

EXAMPLE 37
Demonstrate Rolle’s Theorem using f (x) = x sin x on the interval [0,π].
SOLUTION: First, we check that the conditions of Rolle’s Theorem are met:
(1) f (x) = x sin x is continuous on <0, π > and exists for all x in [0,π].
(2) f ′(x) = x cos x + sin x exists for all x in <0,π >.
(3) f (0) = 0 sin 0 = 0 and f (π) = π sin π = 0.
Hence there must be a point, x = c, in the interval 0 < x < π where f ′(c) = 0. Using the calculator
to solve x cos x + sin x = 0, we find c = 2.029 (to three decimal places). As predicted by Rolle’s
Theorem, 0 ≤ c ≤ π.
Note that this result indicates that at x = c the line tangent to f is horizontal. The MVT (here as
Rolle’s Theorem) tells us that any function that is continuous and differentiable must have at least
one turning point between any two roots.

J.* INDETERMINATE FORMS AND L’HÔPITAL’S RULE
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Limits of the following forms are called indeterminate:

To find the limit of an indeterminate form of the type  we apply L’Hôpital’s Rule, which
involves taking derivatives of the functions in the numerator and denominator. In the following, a is a
finite number. The rule has several parts:

(a) If  and if  exists†, then

if  does not exist, then L’Hôpital’s Rule cannot be applied.
* Although this a required topic only for BC students, AB students will find L’Hôpital’s Rule very helpful.
† The limit can be finite or infinite (+∞ or −∞).

(b) If  the same consequences follow as in case (a). The rules in (a) and (b)
both hold for one-sided limits.

(c) If  exists, then

i f  does not exist, then L’Hôpital’s Rule cannot be applied. (Here the notation “ x → ∞”
represents either “x → + ∞” or “x → −∞.”)

(d) If  the same consequences follow as in case (c).
In applying any of the above rules, if we obtain  again, we can apply the rule once more,

repeating the process until the form we obtain is no longer indeterminate.

Examples 38–43 are BC ONLY.

EXAMPLE 38
 is of type  and thus equals 

(Compare with Example 12 from Chapter 1.)

EXAMPLE 39
 is of type  and therefore equals 



EXAMPLE 40
 (Example 13) is of type  and thus equals  as before. Note that  is not

the limit of an indeterminate form!

EXAMPLE 41
 is of type  and therefore equals 

EXAMPLE 42
 (Example 20) is of type  so that it equals  which is again of type 

Apply L’Hôpital’s Rule twice more:

For this problem, it is easier and faster to apply the Rational Function Theorem!

EXAMPLE 43
Find 

SOLUTION:  is of type  and equals 

EXAMPLE 44
Find 

SOLUTION: 

BEWARE: L’Hôpital’s Rule applies only to indeterminate forms  Trying to use it in
other situations leads to incorrect results, like this:

L’Hôpital’s Rule can be applied also to indeterminate forms of the types 0 · ∞ and ∞ − ∞, if the
forms can be transformed to either 

EXAMPLE 45
Find 

SOLUTION:  is of the type ∞ · 0. Since x  and, as x → ∞, the latter is the
indeterminate form  we see that



(Note the easier solution 

Other indeterminate forms, such as 00, 1∞ and ∞0, may be resolved by taking the natural logarithm
and then applying L’Hôpital’s Rule.
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EXAMPLE 46
Find 

SOLUTION:  is of type 1∞. Let y = (1 + x)1/x, so that

ln  ln (1 + x). Then  ln  which is of type  Thus,

and since  ln y = 1,  y = e1 = e.

EXAMPLE 47
Find 

SOLUTION:  is of type ∞0. Let y = x1/x, so that ln 

(which, as x → ∞, is of type ). Then  ln  and  y = e0 = 1.

For more practice, redo the Practice Exercises, applying L’Hôpital’s Rule wherever possible.

K. RECOGNIZING A GIVEN LIMIT AS A DERIVATIVE
It is often extremely useful to evaluate a limit by recognizing that it is merely an expression for the
definition of the derivative of a specific function (often at a specific point). The relevant definition is
the limit of the difference quotient:

EXAMPLE 48
Find 



SOLUTION:  is the derivative of f (x) = x4 at the point where x = 2. Since f ′(x) =
4x3 the value of the given limit is f ′(2) = 4(23) = 32.

EXAMPLE 49
Find 

SOLUTION:  where  The value of the limit is 

EXAMPLE 50
Find 

SOLUTION:  where 

Verify that  and compare with Example 17.

EXAMPLE 51
Find 

SOLUTION:  where f (x) = ex. The limit has value e0 or 1 (see also Example 41).

EXAMPLE 52
Find 

SOLUTION:  is f ′(0), where f (x) = sin x, because we can write

The answer is 1, since f ′(x) = cos x and f ′(0) = cos 0 = 1. Of course, we already know that the
given limit is the basic trigonometric limit with value 1. Also, L’Hôpital’s Rule yields 1 as the
answer immediately.

Chapter Summary
In this chapter we have reviewed differentiation. We’ve defined the derivative as the instantaneous
rate of change of a function, and looked at estimating derivatives using tables and graphs. We’ve
reviewed the formulas for derivatives of basic functions, as well as the product, quotient, and chain
rules. We’ve looked at derivatives of implicitly defined functions and inverse functions, and
reviewed two important theorems: Rolle’s Theorem and the Mean Value Theorem.

For BC Calculus students, we’ve reviewed derivatives of parametrically defined functions and
the use of L’Hôpital’s Rule for evaluating limits of indeterminate forms.



Practice Exercises

Part A. Directions: Answer these questions without using your calculator.
In each of Questions 1–20 a function is given. Choose the alternative that is the derivative,  of

the function.

1. y = x5 tan x
(A) 5x4 tan x
(B) x5 sec2 x
(C) 5x4 sec2 x
(D) 5x4 + sec2 x
(E) 5x4 tan x + x5 sec2 x

2. 

(A) 

(B) 

(C) 

(D) 

(E) 

3. 
(A) 

(B) 

(C) 

(D) 

(E) 

4. 

(A) 

(B) −30(5x + 1)−4

(C) 



(D) 

(E) 

5. y = 3x2/3 − 4x1/2 − 2

(A) 2x1/3 − 2x−1/2

(B) 3x−1/3 − 2x−1/2

(C) 

(D) 

(E) 2x−1/3 − 2x−1/2

6. 

(A) 

(B) x−1/2 + x−3/2

(C) 

(D) 

(E) 

7. 

(A) 

(B) 4y(x + 1)
(C) 

(D) 

(E) none of these

8. 

(A) 

(B) 

(C) 

(D) 

(E) 



9. 

(A) 

(B) 

(C) 

(D) 0
(E) 

10. y = tan−1 

(A) 

(B) 

(C) 

(D) 

(E) 

11. y = ln (sec x + tan x)
(A) sec x
(B) 

(C) 

(D) 

(E) 

12. 

(A) 0
(B) 1
(C) 

(D) 

(E) 

13. 



(A) 

(B) 

(C) 

(D) 

(E) 

14. 

(A) 

(B) 

(C) 

(D) 

(E) cos (ln x)

15. 

(A) −csc 2x cot 2x
(B) 

(C) −4 csc 2x cot 2x
(D) 

(E) −csc2 2x

16. y = e−x cos 2x
(A) −e−x (cos 2x + 2 sin 2x)

(B) e−x (sin 2x − cos 2x)

(C) 2e−x sin 2x
(D) −e−x (cos 2x + sin 2x)

(E) −e−x sin 2x

17. y = sec2 (x)
(A) 2 sec x
(B) 2 sec x tan x
(C) 2 sec2 x tan x



(D) sec2 x tan2 x
(E) tan x

18. y = x ln3 x
(A) 

(B) 3 ln2 x
(C) 3x ln2 x + ln3 x
(D) 3(ln x + 1)
(E) none of these

19. 

(A) 

(B) 

(C) 

(D) 

(E) 

20. y = sin−1 

(A) 

(B) 

(C) 

(D) 

(E) 

In each of Questions 21–24, y is a differentiable function of x. Choose the alternative that is the
derivative 

21. x3 − y3 = 1
(A) x
(B) 3x2

(C) 



(D) 

(E) 

22. x + cos(x + y) = 0
(A) csc(x + y) − 1
(B) csc(x + y)
(C) 

(D) 

(E) 

23. sin x − cos y − 2 = 0
(A) −cot x
(B) −cot y
(C) 

(D) −csc y cos x
(E) 

24. 3x2 − 2xy + 5y2 = 1
(A) 

(B) 

(C) 3x + 5y
(D) 

(E) none of these

25. If x = t2 + 1 and y = 2t3, then 

(A) 3t
(B) 6t2

(C) 

(D) 

(E) 



BC ONLY

26. If f (x) = x4 − 4x3 + 4x2 − 1, then the set of values of x for which the derivative equals zero is
(A) {1,2}
(B) {0,−1,−2}
(C) {−1, + 2}
(D) {0}
(E) {0,1,2}

27. If f (x) =  then f ″(4) is equal to
(A) −32
(B) −16
(C) −4
(D) −2
(E) 

28. If f (x) = ln x3 then f ″(3) is
(A) 

(B) −1
(C) −3
(D) 1
(E) none of these

29. If a point moves on the curve x2 + y2 = 25, then, at (0,5),  is

(A) 0
(B) 

(C) −5
(D) 

(E) nonexistent

30. If x = t2 − 1 and y = t4 − 2t3, then, when t = 1,  is

(A) 1
(B) −1



(C) 0
(D) 3
(E) 
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31. If f (x) = 5x and 51.002  5.016, which is closest to f ′(1)?
(A) 0.016
(B) 1.0
(C) 5.0
(D) 8.0
(E) 32.0

32. If y = ex (x − 1), then y ″(0) equals
(A) −2
(B) −1
(C) 0
(D) 1
(E) none of these

33. If x = eθ cos θ and y = eθ sin θ, then, when  is

(A) 1
(B) 0
(C) eπ/2

(D) nonexistent
(E) −1

BC ONLY

34. If x = cos t and y = cos 2t, then  is

(A) 4 cos t
(B) 4
(C) 

(D) −4
(E) −4 cot t
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35. 

(A) 0
(B) 1
(C) 6
(D) ∞
(E) nonexistent

36. 

(A) 0
(B) 

(C) 1
(D) 192
(E) ∞

37. 

(A) 0
(B) 

(C) 1
(D) e
(E) nonexistent

38. 

(A) −1
(B) 0
(C) 1
(D) ∞
(E) none of these

39.  which of these statements are true?

I.  exists.
II. f is continuous at x = 1.



III. f is differentiable at x = 1.
(A) none
(B) I only
(C) I and II only
(D) I and III only
(E) I, II, and III

40.  which of these statements are true?

I.  exists.
II. g is continuous at x = 3.
III. g is differentiable at x = 3.

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

41. The function f (x) = x2/3 on [−8, 8] does not satisfy the conditions of the Mean Value Theorem
because
(A) f (0) is not defined
(B) f (x) is not continuous on [−8, 8]
(C) f ′(−1) does not exist
(D) f (x) is not defined for x < 0
(E) f ′(0) does not exist

42. If f (x) = 2x3 − 6x, at what point on the interval 0 ≤ x ≤  if any, is the tangent to the curve
parallel to the secant line on that interval?
(A) 1
(B) −1
(C) 
(D) 0
(E) nowhere

43. If h is the inverse function of f and if  then h ′(3) =

(A) −9



(B) 

(C) 

(D) 3
(E) 9

44.  equals

(A) 0
(B) 1
(C) 

(D) ∞
(E) none of these
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45. If sin(xy) = x, then 

(A) sec(xy)
(B) 

(C) 

(D) 

(E) sec(xy) − 1

46. 

(A) 1
(B) 2
(C) 

(D) 0
(E) ∞

47. 

(A) 1
(B) 

(C) 



(D) 0
(E) nonexistent

48. 

(A) nonexistent
(B) 1
(C) 2
(D) ∞
(E) none of these

49. 

(A) 

(B) 0
(C) 1
(D) π
(E) ∞

50. 

(A) is 1
(B) is 0
(C) is ∞
(D) oscillates between −1 and 1
(E) is none of these

51. The graph in the xy-plane represented by x = 3 + 2 sin t and y = 2 cos t − 1, for −π ≤ t ≤ π, is
(A) a semicircle
(B) a circle
(C) an ellipse
(D) half of an ellipse
(E) a hyperbola
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52.  equals

(A) 0



(B) 

(C) 1
(D) 2
(E) none of these
In each of Questions 53–56 a pair of equations that represent a curve parametrically is given.

Choose the alternative that is the derivative 

53. x = t − sin t and y = 1 − cos t
(A) 

(B) 

(C) 

(D) 

(E) 

BC ONLY

54. x = cos3 θ and y = sin3 θ

(A) tan3 θ
(B) −cot θ
(C) cot θ
(D) −tan θ

(E) −tan2 θ

BC ONLY

55. x = 1 − e−t and y = t + e−t

(A) 

(B) e−t − 1

(C) et + 1

(D) et − e−2t

(E) et − 1

56.  and y = 1 − ln(1 − t) (t < 1)



(A) 

(B) t − 1
(C) 

(D) 

(E) 1 + ln x
Part B. Directions: Some of the following questions require the use of a graphing calculator.

In Questions 57–64, differentiable functions f and g have the values shown in the table.
x f f ′ g g ′
0 2 1 5 −4
1 3 2 3 −3
2 5 3 1 −2
3 10 4 0 −1

57. If A = f + 2g, then A ′(3) =
(A) −2
(B) 2
(C) 7
(D) 8
(E) 10

58. If B = f · g, then B ′(2) =
(A) −20
(B) −7
(C) −6
(D) −1
(E) 13

59. If  then D ′(1) =

(A) 

(B) 

(C) 

(D) 

(E) 



60. If H(x) =  then H ′(3) =

(A) 

(B) 

(C) 2
(D) 

(E) 

61. If K(x) =  then K ′(0) =

(A) 

(B) 

(C) 

(D) 

(E) 

62. If M(x) = f (g(x)), then M ′(1) =
(A) −12
(B) −6
(C) 4
(D) 6
(E) 12

63. If P(x) = f (x3), then P ′(1) =
(A) 2
(B) 6
(C) 8
(D) 12
(E) 54

64. If S(x) = f −1(x), then S ′(3) =
(A) −2
(B) 

(C) 



(D) 

(E) 2

65. The graph of g ′ is shown here. Which of the following statements is (are) true of g at x = a ?
I. g is continuous.
II. g is differentiable.
III. g is increasing.

(A) I only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III

66. A function f has the derivative shown. Which of the following statements must be false?

(A) f is continuous at x = a.
(B) f (a) = 0.
(C) f has a vertical asymptote at x = a.
(D) f has a jump discontinuity at x = a.
(E) f has a removable discontinuity at x = a.

67. The function f whose graph is shown has f ′ = 0 at x =



(A) 2 only
(B) 2 and 5
(C) 4 and 7
(D) 2, 4, and 7
(E) 2, 4, 5, and 7

68. A differentiable function f has the values shown. Estimate f ′(1.5).

x 1.0 1.2 1.4 1.6
f (x) 8 10 14 22

(A) 8
(B) 12
(C) 18
(D) 40
(E) 80

69. Water is poured into a conical reservoir at a constant rate. If h(t) is the rate of change of the
depth of the water, then h is

(A) constant
(B) linear and increasing
(C) linear and decreasing
(D) nonlinear and increasing
(E) nonlinear and decreasing



Use the figure to answer Questions 70–72. The graph of f consists of two line segments and a
semicircle.

70. f ′(x) = 0 for x =
(A) 1 only
(B) 2 only
(C) 4 only
(D) 1 and 4
(E) 2 and 6

71. f ′(x) does not exist for x =
(A) 1 only
(B) 2 only
(C) 1 and 2
(D) 2 and 6
(E) 1, 2, and 6

72. f ′(5) =
(A) 

(B) 

(C) 1
(D) 2
(E) 

73. At how many points on the interval [−5,5] is a tangent to y = x + cos x parallel to the secant
line?
(A) none
(B) 1
(C) 2



(D) 3
(E) more than 3

74. From the values of f shown, estimate f ′(2).

x 1.92 1.94 1.96 1.98 2.00

f (x) 6.00 5.00 4.40 4.10 4.00

(A) −0.10
(B) −0.20
(C) −5
(D) −10
(E) −25

75. Using the values shown in the table for Question 74, estimate (f −1) ′(4).
(A) −0.2
(B) −0.1
(C) −5
(D) −10
(E) −25

76. The “left half” of the parabola defined by y = x2 − 8x + 10 for x ≤ 4 is a one-to-one function;
therefore its inverse is also a function. Call that inverse g. Find g ′(3).
(A) 

(B) 

(C) 

(D) 

(E) 

77. The table below shows some points on a function f that is both continuous and differentiable on
the closed interval [2,10].

x 2 4 6 8 10

f (x) 30 25 20 25 30
Which must be true?
(A) f (x) > 0 for 2 < x < 10



(B) f ′(6) = 0
(C) f ′(8) > 0
(D) The maximum value of f on the interval [2,10] is 30.
(E) For some value of x on the interval [2,10] f ′(x) = 0.

78. If f is differentiable and difference quotients overestimate the slope of f at x = a for all h > 0,
which must be true?
(A) f ′(a) > 0
(B) f ′(a) < 0
(C) f ″(a) > 0
(D) f ″(a) < 0
(E) none of these

79. If f (u) = sin u and u = g(x) = x2 − 9, then (f ° g) ′(3) equals
(A) 0
(B) 1
(C) 6
(D) 9
(E) none of these

80. If  then the set of x’s for which f ′(x) exists is

(A) all reals
(B) all reals except x = 1 and x = −1
(C) all reals except x = −1
(D) all reals except  and x = −1

(E) all reals except x = 1

81. If  then the derivative of y2 with respect to x2 is
(A) 1
(B) 

(C) 

(D) 

(E) 



BC ONLY

82. If y = x2 + x, then the derivative of y with respect to  is

(A) (2x + 1)(x − 1)2

(B) 

(C) 2x + 1
(D) 

(E) none of these

BC ONLY

83. If  and g(x) =  then the derivative of f (g(x)) is

(A) 

(B) −(x + 1)−2

(C) 

(D) 

(E) 

84. If f (a) = f (b) = 0 and f (x) is continuous on [a, b], then
(A) f (x) must be identically zero
(B) f ′(x) may be different from zero for all x on [a, b]
(C) there exists at least one number c, a < c < b, such that f ′(c) = 0
(D) f ′(x) must exist for every x on (a, b)
(E) none of the preceding is true

85. Suppose y = f (x) = 2x3 − 3x. If h(x) is the inverse function of f, then h ′(−1) =
(A) −1
(B) 

(C) 

(D) 1
(E) 3



86. Suppose f (1) = 2, f ′(1) = 3, and f ′(2) = 4. Then (f −1) ′(2)
(A) equals 

(B) equals 

(C) equals 

(D) equals 

(E) cannot be determined

87. If f (x) = x3 − 3x2 + 8x + 5 and g(x) = f −1(x), then g ′(5) =
(A) 8
(B) 

(C) 1
(D) 

(E) 53

88. Suppose  It follows necessarily that

(A) g is not defined at x = 0
(B) g is not continuous at x = 0
(C) the limit of g(x) as x approaches 0 equals 1
(D) g ′(0) = 1
(E) g ′(1) = 0
Use this graph of y = f (x) for Questions 89 and 90.

89. f ′(3) is most closely approximated by



(A) 0.3
(B) 0.8
(C) 1.5
(D) 1.8
(E) 2

90. The rate of change of f (x) is least at x 
(A) −3
(B) −1.3
(C) 0
(D) 0.7
(E) 2.7
Use the following definition of the symmetric difference quotient for f ′ (x0) for Questions 91–93:

For small values of h,

91. For f (x) = 5x, what is the estimate of f ′(2) obtained by using the symmetric difference quotient
with h = 0.03?
(A) 25.029
(B) 40.236
(C) 40.252
(D) 41.223
(E) 80.503

92. To how many places is the symmetric difference quotient accurate when it is used to
approximate f ′(0) for f (x) = 4x and h = 0.08?
(A) 1
(B) 2
(C) 3
(D) 4
(E) more than 4

93. To how many places is f ′(x0) accurate when it is used to approximate f ′(0) for f (x) = 4x and h
= 0.001?



(A) 1
(B) 2
(C) 3
(D) 4
(E) more than 4

94. The value of f ′(0) obtained using the symmetric difference quotient with f (x) = |x| and h =
0.001 is
(A) −1
(B) 0
(C) ±1
(D) 1
(E) indeterminate

95. If  and h(x) = sin x, then  equals

(A) g(sin x)
(B) cos x · g(x)
(C) g ′(x)
(D) cos x · g (sin x)
(E) sin x · g(sin x)

96. Let f (x) = 3x − x3. The tangent to the curve is parallel to the secant through (0,1) and (3,0) for x
=
(A) 0.984 only
(B) 1.244 only
(C) 2.727 only
(D) 0.984 and 2.804 only
(E) 1.244 and 2.727 only
Questions 97–101 are based on the following graph of f (x), sketched on −6 ≤ x ≤ 7. Assume the

horizontal and vertical grid lines are equally spaced at unit intervals.



97. On the interval 1 < x < 2, f (x) equals
(A) −x − 2
(B) −x − 3
(C) −x − 4
(D) −x + 2
(E) x − 2

98. Over which of the following intervals does f ′(x) equal zero?
I. (−6,−3)
II. (−3,−1)
III. (2,5)
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) II and III only

99. How many points of discontinuity does f ′(x) have on the interval −6 < x < 7?
(A) none
(B) 2
(C) 3
(D) 4
(E) 5

100. For −6 < x < −3, f ′(x) equals



(A) 

(B) −1
(C) 1
(D) 

(E) 2

101. Which of the following statements about the graph of f ′(x) is false?
(A) It consists of six horizontal segments.
(B) It has four jump discontinuities.
(C) f ′(x) is discontinuous at each x in the set {−3,−1,1,2,5}.
(D) f ′(x) ranges from −3 to 2.
(E) On the interval −1 < x < 1, f ′(x) = −3.

102. The table gives the values of a function f that is differentiable on the interval [0,1]:

x 0.10 0.20 0.30 0.40 0.50 0.60

f (x) 0.171 0.288 0.357 0.384 0.375 0.336
According to this table, the best approximation of f ′(0.10) is
(A) 0.12
(B) 1.08
(C) 1.17
(D) 1.77
(E) 2.88

103. At how many points on the interval [a, b] does the function graphed satisfy the Mean Value
Theorem?

(A) none



(B) 1
(C) 2
(D) 3
(E) 4



CHAPTER 4 Applications of Differential Calculus

Concepts and Skills
In this chapter, we review how to use derivatives to
• find slopes of curves and equations of tangent lines;
• find a function’s maxima, minima, and points of inflections;
• describe where the graph of a function is increasing, decreasing, concave upward, and concave

downward;
• analyze motion along a line;
• create local linear approximations;
• and work with related rates.

For BC Calculus students, we also review how to

• find the slope of parametric and polar curves
• and use vectors to analyze motion along parametrically defined curves.

A. SLOPE; CRITICAL POINTS
Slope of a curve

If the derivative of y = f (x) exists at P(x1, y1), then the slope of the curve at P (which is defined to be
the slope of the tangent to the curve at P) is f ′(x1), the derivative of f (x) at x = x1.

Any c in the domain of f such that either f ′(c) = 0 or f ′(c) is undefined is called a critical point or
critical value of f. If f has a derivative everywhere, we find the critical points by solving the equation
f ′(x) = 0.

Critical point

EXAMPLE 1
For f (x) = 4x3 − 6x2 − 8, what are the critical points?

SOLUTION: f ′(x) = 12x2 − 12x = 12x(x − 1),
which equals zero if x is 0 or 1. Thus, 0 and 1 are critical points.

EXAMPLE 2
Find any critical points of f (x) = 3x3 + 2x.

SOLUTION: f ′(x) = 9x2 + 2.



Since f ′(x) never equals zero (indeed, it is always positive), f has no critical values.

EXAMPLE 3
Find any critical points of f (x) = (x − 1)1/3.
SOLUTION: 

Although f ′ is never zero, x = 1 is a critical value of f because f ′ does not exist at x = 1.

AVERAGE AND INSTANTANEOUS RATES OF CHANGE.
Both average and instantaneous rates of change were defined in Chapter 3. If as x varies from a to a +
h, the function f varies from f (a) to f (a + h), then we know that the difference quotient

is the average rate of change of f over the interval from a to a + h.
Thus, the average velocity of a moving object over some time interval is the change in distance

divided by the change in time, the average rate of growth of a colony of fruit flies over some interval
of time is the change in size of the colony divided by the time elapsed, the average rate of change in
the profit of a company on some gadget with respect to production is the change in profit divided by
the change in the number of gadgets produced.

The (instantaneous) rate of change of f at a, or the derivative of f at a, is the limit of the average
rate of change as h → 0:

On the graph of y = f (x), the rate at which the y-coordinate changes with respect to the x-
coordinate is f ′(x), the slope of the curve. The rate at which s(t), the distance traveled by a particle in
t seconds, changes with respect to time is s ′(t), the velocity of the particle; the rate at which a
manufacturer’s profit P(x) changes relative to the production level x is P ′(x).

EXAMPLE 4
Let G = 400(15 − t)2 be the number of gallons of water in a cistern t minutes after an outlet pipe
is opened. Find the average rate of drainage during the first 5 minutes and the rate at which the
water is running out at the end of 5 minutes.
SOLUTION: The average rate of change during the first 5 min equals

The average rate of drainage during the first 5 min is 10,000 gal/min.
The instantaneous rate of change at t = 5 is G ′(5). Since

G ′(t) = −800(15 − t),
G ′(5) = −800(10) = −8000 gal/min. Thus the rate of drainage at the end of 5 min is 8000
gal/min.



B. TANGENTS AND NORMALS
Tangent to a curve

The equation of the tangent to the curve y = f (x) at point P(x1, y1) is

y − y1 = f ′(x1)(x − x1).

The line through P that is perpendicular to the tangent, called the normal to the curve at P, has
slope  Its equation is

If the tangent to a curve is horizontal at a point, then the derivative at the point is 0. If the tangent is
vertical at a point, then the derivative does not exist at the point.

TANGENTS TO PARAMETRICALLY DEFINED CURVES.

BC ONLY

If the curve is defined parametrically, say in terms of t (as in Chapter 1), then we obtain the slope at
any point from the parametric equations. We then evaluate the slope and the x- and y-coordinates by
replacing t by the value specified in the question (see Example 9).

EXAMPLE 5
Find the equations of the tangent and normal to the curve of f (x) = x3 − 3x2 at the point (1, −2).

SOLUTION: Since f ′(x) = 3x2 − 6x and f ′(1) = −3, the equation of the tangent is
 y + 2 = −3(x − 1)  or  y + 3x = 1,

and the equation of the normal is
 or  3y − x = −7.

EXAMPLE 6
Find the equation of the tangent to x2 y − x = y3 − 8 at the point where x = 0.
SOLUTION: Here we differentiate implicitly to get 

Since y = 2 when x = 0 and the slope at this point is  the equation of the tangent is

 or  12y + x = 24.

EXAMPLE 7
Find the coordinates of any point on the curve of y2 − 4xy = x2 + 5 for which the tangent is
horizontal.
SOLUTION: Since  and the tangent is horizontal when  then x = −2y. If we



substitute this in the equation of the curve, we get

Thus y = ±1 and x = ±2. The points, then, are (2, −1) and (−2, 1).

EXAMPLE 8
Find the x-coordinate of any point on the curve of y = sin2 (x + 1) for which the tangent is
parallel to the line 3x − 3y − 5 = 0.
SOLUTION: Since  = 2sin(x + 1) cos(x + 1) = sin2(x + 1) and since the given line has slope
1, we seek x such that sin 2(x + 1) = 1. Then

or

BC ONLY

EXAMPLE 9
Find the equation of the tangent to F(t) = (cos t, 2 sin2 t) at the point where 

SOLUTION: Since  we see that

C. INCREASING AND DECREASING FUNCTIONS
CASE I. FUNCTIONS WITH CONTINUOUS DERIVATIVES.
A function y = f (x) is said to be  on an interval if for all a and b in the interval such that a <

b,  To find intervals over which f (x)  that is, over which the curve  analyze the

signs of the derivative to determine where 

EXAMPLE 10
For what values of x is f (x) = x4 − 4x3, increasing? decreasing?

SOLUTION:  f ′(x) = 4x3 − 12x2 = 4x2 (x − 3).



With critical values at x = 0 and x = 3, we analyze the signs of f ′ in three intervals:

The derivative changes sign only at x = 3. Thus,
if x < 3  f ′(x) ≤ 0 and f is decreasing;
if x > 3  f ′(x) > 0 and f is increasing.

Note that f is decreasing at x = 0 even though f ′(0) = 0. (See Figure N4–5.)

CASE II. FUNCTIONS WHOSE DERIVATIVES HAVE DISCONTINUITIES.
Here we proceed as in Case I, but also consider intervals bounded by any points of discontinuity of f
or f ′.

EXAMPLE 11
For what values of x is  increasing? decreasing?

SOLUTION: 

We note that neither f nor f ′ is defined at x = −1; furthermore, f ′(x) never equals zero. We need
therefore examine only the signs of f ′(x) when x < −1 and when x > −1.
When x < −1, f ′(x) < 0; when x > −1, f ′(x) < 0. Therefore, f decreases on both intervals. The
curve is a hyperbola whose center is at the point (−1,0).

D. MAXIMUM, MINIMUM, AND INFLECTION POINTS:
DEFINITIONS
The curve of y = f (x) has a local (or relative)  at a point where x = c if  for all x in
the immediate neighborhood of c. If a curve has a local  at x = c, then the curve changes from 

 as x increases through c. If a function is differentiable on the closed interval [a, b] and
has a local maximum or minimum at x = c (a < c < b), then f ′(c) = 0. The converse of this statement is
not true.

If f (c) is either a local maximum or a local minimum, then f (c) is called a local extreme value or
local extremum. (The plural of extremum is extrema.)

The global or absolute  of a function on [a, b] occurs at x = c if  for all x on [a,
b].

A curve is said to be concave  at a point P(x1, y1) if the curve lies  its tangent. If 
a t P, the curve is concave  In Figure N4–1, the curves sketched in (a) and (b) are concave
downward at P while in (c) and (d) they are concave upward at P.



FIGURE N4–1

Point of inflection

A point of inflection is a point where the curve changes its concavity from upward to downward
or from downward to upward. See §I, for a table relating a function and its derivatives. It tells how to
graph the derivatives of f, given the graph of f.

E. MAXIMUM, MINIMUM, AND INFLECTION POINTS:
CURVE SKETCHING
CASE I. FUNCTIONS THAT ARE EVERYWHERE DIFFERENTIABLE.

The following procedure is suggested to determine any maximum, minimum, or inflection point of
a curve and to sketch the curve.

Second Derivative Test

(1) Find y ′ and y ″.
(2) Find all critical points of y, that is, all x for which y ′ = 0. At each of these x’s the tangent to

the curve is horizontal.
(3) Let c be a number for which y ′ is 0; investigate the sign of y ″ at c. If y ″ (c) > 0, the curve is

concave up and c yields a local minimum; if y ″ (c) < 0, the curve is concave down and c
yields a local maximum. This procedure is known as the Second Derivative Test (for extrema).
See Figure N4–2. If y ″ (c) = 0, the Second Derivative Test fails and we must use the test in
step (4) below.



(a) y ′(c) = 0; y ″(c) > 0;
c yields a local minimum.

(b) y ′(c) = 0; y ″(c) = 0;
c yields a local minimum.

FIGURE N4–2

(4) If y ′(c) = 0 and y ″(c) = 0, investigate the signs of y ′ as x increases through c. If y ′(x) > 0 for
x’s (just) less than c but y ′(x) < 0 for x’s (just) greater than c, then the situation is that indicated
in Figure N4–3a, where the tangent lines have been sketched as x increases through c; here c
yields a local maximum. If the situation is reversed and the sign of y ′ changes from − to + as x
increases through c, then c yields a local minimum. Figure N4–3b shows this case. The
schematic sign pattern of y ′, + 0 − or − 0 +, describes each situation completely. If y ′ does not
change sign as x increases through c, then c yields neither a local maximum nor a local
minimum. Two examples of this appear in Figures N4–3c and N4–3d.



FIGURE N4–3

(5) Find all x’s for which y ″ = 0; these are x-values of possible points of inflection. If c is such an
x and the sign of y ″ changes (from + to − or from − to +) as x increases through c, then c is the
x-coordinate of a point of inflection. If the signs do not change, then c does not yield a point of
inflection.

The crucial points found as indicated in (1) through (5) above should be plotted along with the
intercepts. Care should be exercised to ensure that the tangent to the curve is horizontal whenever 

 and that the curve has the proper concavity.

EXAMPLE 12
Find any maximum, minimum, or inflection points on the graph of f (x) = x3 − 5x2 + 3x + 6, and
sketch the curve.
SOLUTION: For the steps listed above:

(1) Here f ′(x) = 3x2 − 10x + 3 and f ″(x) = 6x − 10.
(2) f ′(x) = (3x − 1)(x − 3), which is zero when  or 3.

(3) Since  we know that the point  is a local maximum; since f ′(3) = 0
and f ″(3) > 0, the point (3, f (3)) is a local minimum. Thus,  is a local maximum and (3,
−3) a local minimum.

(4) is unnecessary for this problem.
(5) f ″(x) = 0 when  and f ″ changes from negative to positive as x increases through  so the

graph of f has an inflection point. See Figure N4–4.



FIGURE N4–4

Verify the graph and information obtained above on your graphing calculator.

EXAMPLE 13
Sketch the graph of f (x) = x4 − 4x3.
SOLUTION:
(1) f ′(x) = 4x3 − 12x2 and f ″(x) = 12x2 − 24x.

(2) f ′(x) = 4x2 (x − 3), which is zero when x = 0 or x = 3.
(3) Since f ″(x) = 12x(x − 2) and f ″(3) > 0 with f ′(3) = 0, the point (3, −27) is a relative

minimum. Since f ″(0) = 0, the second-derivative test fails to tell us whether x = 0 yields a
maximum or a minimum.

(4) Since f ′(x) does not change sign as x increases through 0, the point (0, 0) yields neither a
maximum nor a minimum.

(5) f ″(x) = 0 when x is 0 or 2; f ″ changes signs as x increases through 0 (+ to −), and also as x
increases through 2 (− to +). Thus both (0, 0) and (2, −16) are inflection points of the curve.

The curve is sketched in Figure N4–5.

FIGURE N4–5

Verify the preceding on your calculator.



CASE II. FUNCTIONS WHOSE DERIVATIVES MAY NOT EXIST EVERYWHERE.
If there are values of x for which a first or second derivative does not exist, we consider those

values separately, recalling that a local maximum or minimum point is one of transition between
intervals of rise and fall and that an inflection point is one of transition between intervals of upward
and downward concavity.

EXAMPLE 14
Sketch the graph of y = x2/3.
SOLUTION: 

Neither derivative is zero anywhere; both derivatives fail to exist when x = 0. As x increases
through 0,  changes from − to +; (0,0) is therefore a minimum. Note that the tangent is vertical
at the origin, and that since  is negative everywhere except at 0, the curve is everywhere
concave down. See Figure N4–6.

FIGURE N4–6

EXAMPLE 15
Sketch the graph of y = x1/3.
SOLUTION:             

As in Example 14, neither derivative ever equals zero and both fail to exist when x = 0. Here,
however, as x increases through 0,  does not change sign. Since  is positive for all x except 0,
the curve rises for all x and can have neither maximum nor minimum points. The tangent is again
vertical at the origin. Note here that  does change sign (from + to −) as x increases through 0,
so that (0, 0) is a point of inflection of the curve. See Figure N4–7.



FIGURE N4–7

Verify the graph on your calculator.

F. GLOBAL MAXIMUM OR MINIMUM
CASE I. DIFFERENTIABLE FUNCTIONS.
If a function f is differentiable on a closed interval a ≤ x ≤ b, then f is also continuous on the closed
interval [a, b] and we know from the Extreme Value Theorem that f attains both a (global) maximum
and a (global) minimum on [a, b]. To find these, we solve the equation f ′(x) = 0 for critical points on
the interval [a, b], then evaluate f at each of those and also at x = a and x = b. The largest value of f
obtained is the global max, and the smallest the global min.

EXAMPLE 16
Find the global max and global min of f on (a) −2 ≤ x ≤ 3, and (b) 0 ≤ x ≤ 3, if f (x) = 2x3 − 3x2 −
12x.
SOLUTION:
(a) f ′(x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2), which equals zero if x = −1 or 2. Since f (−2) = −4, f

(−1) = 7, f (2) = −20, and f (3) = −9, the global max of f occurs at x = −1 and equals 7, and the
global min of f occurs at x = 2 and equals −20.

(b) Only the critical value 2 lies in [0,3]. We now evaluate f at 0, 2, and 3. Since f (0) = 0, f (2)
= −20, and f (3) = −9, the global max of f equals 0 and the global min equals −20.

CASE II. FUNCTIONS THAT ARE NOT EVERYWHERE DIFFERENTIABLE.
We proceed as for Case I but now evaluate f also at each point in a given interval for which f is
defined but for which f ′ does not exist.

EXAMPLE 17
The absolute-value function f (x) = |x| is defined for all real x, but f ′(x) does not exist at x = 0.
Since f ′(x) = −1 if x < 0, but f ′(x) = 1 if x > 0, we see that f has a global min at x = 0.

EXAMPLE 18



The function  has neither a global max nor a global min on any interval that contains zero
(see Figure N2–4). However, it does attain both a global max and a global min on every closed
interval that does not contain zero. For instance, on [2,5] the global max of f is  the global min 

G. FURTHER AIDS IN SKETCHING
It is often very helpful to investigate one or more of the following before sketching the graph of a

function or of an equation:
(1) Intercepts. Set x = 0 and y = 0 to find any y- and x-intercepts respectively.
(2) Symmetry. Let the point (x, y) satisfy an equation. Then its graph is symmetric about

the x-axis if (x, −y) also satisfies the equation;
the y-axis if (−x, y) also satisfies the equation;

the origin if (−x, −y) also satisfies the equation.
(3) Asymptotes. The line y = b is a horizontal asymptote of the graph of a function f if either 

 inspect the degrees of P(x) and Q(x), then use the Rational
Function Theorem. The line x = c is a vertical asymptote of the rational function  if Q(c) = 0
but P(c) ≠ 0.

(4) Points of discontinuity. Identify points not in the domain of a function, particularly where the
denominator equals zero.

EXAMPLE 19
Sketch the graph of 

SOLUTION: If x = 0, then y = −1. Also, y = 0 when the numerator equals zero, which is when 
 A check shows that the graph does not possess any of the symmetries described above.

Since y → 2 as x → ±∞, y = 2 is a horizontal asymptote; also, x = 1 is a vertical asymptote. The
function is defined for all reals except x = 1 ; the latter is the only point of discontinuity.
We find derivatives: 

From y ′ we see that the function decreases everywhere (except at x = 1), and from y ″ that the
curve is concave down if x < 1, up if x > 1. See Figure N4–8.



FIGURE N4–8

Verify the preceding on your calculator, using [−4,4] × [−4, 8].

EXAMPLE 20
Describe any symmetries of the graphs of

(a) 3y2 + x = 2; (b) y = x +  (c) x2 − 3y2 = 27.

SOLUTIONS:
(a) Suppose point (x, y) is on this graph. Then so is point (x, −y), since 3(−y)2 + x = 2 is

equivalent to 3y2 + x = 2. Then (a) is symmetric about the x-axis.
(b) Note that point (−x, −y) satisfies the equation if point (x, y) does:

Therefore the graph of this function is symmetric about the origin.
(c) This graph is symmetric about the x-axis, the y-axis, and the origin. It is easy to see that, if

point (x, y) satisfies the equation, so do points (x, −y), (−x, y), and (−x, −y).

H. OPTIMIZATION: PROBLEMS INVOLVING MAXIMA AND
MINIMA
The techniques described above can be applied to problems in which a function is to be maximized
(or minimized). Often it helps to draw a figure. If y, the quantity to be maximized (or minimized), can
be expressed explicitly in terms of x, then the procedure outlined above can be used. If the domain of
y is restricted to some closed interval, one should always check the endpoints of this interval so as
not to overlook possible extrema. Often, implicit differentiation, sometimes of two or more equations,
is indicated.

EXAMPLE 21



The region in the first quadrant bounded by the curves of y2 = x and y = x is rotated about the y-
axis to form a solid. Find the area of the largest cross section of this solid that is perpendicular
to the y-axis.

FIGURE N4–9

SOLUTION: See Figure N4–9. The curves intersect at the origin and at (1,1), so 0 < y < 1. A
cross section of the solid is a ring whose area A is the difference between the areas of two
circles, one with radius x2, the other with radius x1. Thus

The only relevant zero of the first derivative is  There the area A is

Note that  = π(2 − 12y2) and that this is negative when  assuring a maximum there.
Note further that A equals zero at each endpoint of the interval [0,1] so that  is the global
maximum area.

EXAMPLE 22
The volume of a cylinder equals V cubic inches, where V is a constant. Find the proportions of
the cylinder that minimize the total surface area.

FIGURE N4–10

SOLUTION: We know that the volume is



where r is the radius and h the height. We seek to minimize S, the total surface area, where

Solving (1) for h, we have  which we substitute in (2):

Differentiating (3) with respect to r yields

Now we set  equal to zero to determine the conditions that make S a minimum:

The total surface area of a cylinder of fixed volume is thus a minimum when its height equals its
diameter.
(Note that we need not concern ourselves with the possibility that the value of r that renders 
equal to zero will produce a maximum surface area rather than a minimum one. With V fixed, we
can choose r and h so as to make S as large as we like.)

EXAMPLE 23
A charter bus company advertises a trip for a group as follows: At least 20 people must sign up.
The cost when 20 participate is $80 per person. The price will drop by $2 per ticket for each
member of the traveling group in excess of 20. If the bus can accommodate 28 people, how many
participants will maximize the company’s revenue?
SOLUTION: Let x denote the number who sign up in excess of 20. Then 0  x  8. The total
number who agree to participate is (20 + x), and the price per ticket is (80 − 2x) dollars. Then
the revenue R, in dollars, is

R ′(x) is zero if x = 10. Although x = 10 yields maximum R—note that R ″(x) = −4 and is always
negative—this value of x is not within the restricted interval. We therefore evaluate R at the
endpoints 0 and 8: R(0) = 1600 and R(8) = 28·64 = 1792, 28 participants will maximize revenue.

EXAMPLE 24
A utilities company wants to deliver gas from a source S to a plant P located across a straight
river 3 miles wide, then downstream 5 miles, as shown in Figure N4–11. It costs $4 per foot to



lay the pipe in the river but only $2 per foot to lay it on land.
(a) Express the cost of laying the pipe in terms of u.
(b) How can the pipe be laid most economically?

FIGURE N4–11

SOLUTIONS:
(a) Note that the problem “allows” us to (1) lay all of the pipe in the river, along a line from S to

P; (2) lay pipe along SR, in the river, then along RP on land; or (3) lay some pipe in the river,
say, along ST, and lay the rest on land along TP. When T coincides with P, we have case (1),
with v = 0; when T coincides with R, we have case (2), with u = 0. Case (3) includes both (1)
and (2).
In any event, we need to find the lengths of pipe needed (that is, the distances involved); then
we must figure out the cost.
In terms of u:

If C(u) is the total cost,

(b) We now minimize C(u):

We now set C ′(u) equal to zero and solve for u:

where, in the last step, we squared both sides; then

4u2 = 9 + u2, 3u2 = 9, u2 = 3, u = 
where we discard u = −  as meaningless for this problem.
The domain of C(u) is [0,5] and C is continuous on [0,5], Since



So u =  yields minimum cost. Thus, the pipe can be laid most economically if some of it is
laid in the river from the source S to a point T that is  miles toward the plant P from R, and
the rest is laid along the road from T to P.

I. RELATING A FUNCTION AND ITS DERIVATIVES
GRAPHICALLY
The following table shows the characteristics of a function f and their implications for f ’s
derivatives. These are crucial in obtaining one graph from another. The table can be used reading
from left to right or from right to left.

Note that the slope at x = c of any graph of a function is equal to the ordinate at c of the derivative
of the function.

If f ′(c) does not exist, check the signs of f ′ as x increases through c: plus-to-minus yields a local
maximum; minus-to-plus yields a local minimum; no sign change means no maximum or minimum, but
check the possibility of a point of inflection.

AN IMPORTANT NOTE:
Tables and number lines showing sign changes of the function and its derivatives can be very helpful
in organizing all of this information. Note, however, that the AP Exam requires that students write
sentences that describe the behavior of the function based on the sign of its derivative.



EXAMPLE 25A
Given the graph of f (x) shown in Figure N4–12, sketch f ′(x).

FIGURE N4–12

Point x = Behavior of f Behavior of f ′

c1 f (c1) is a local max f ′(c1) = 0; f ′ changes sign
from + to −

c2

c2 is an inflection point of f; the
graph of f changes concavity
from down to up

f ′ changes from decreasing
to increasing; f ′(c2) is a
local minimum

c3 f (c3) is a local minimum f ′(c3) = 0; f ′ changes sign
from − to +

c4

c4 is an inflection point of f; the
graph of f changes concavity
from up to down

f ′ changes from increasing
to decreasing; f ′(c4) is a
local maximum

c5 f (c5) is a local maximum f ′(c5) = 0; f ′ changes sign
from + to −

EXAMPLE 25B



Given the graph of f ′(x) shown in Figure N4–13, sketch a possible graph of f.

FIGURE N4–13

SOLUTION: First, we note that f ′(−3) and f ′(2) are both 0. Thus the graph of f must have
horizontal tangents at x = −3 and x = 2. Since f ′(x) < 0 for x < −3, we see that f must be
decreasing there. Below is a complete signs analysis of f ′, showing what it implies for the
behavior of f.

Because f ′ changes from negative to positive at x = −3, f must have a minimum there, but f has
neither a minimum nor a maximum at x = 2.
We note next from the graph that f ′ is increasing for x < −1. This means that the derivative of f ′, f
″, must be positive for x < −1 and that f is concave upward there. Analyzing the signs of f ″ yields
the following:

We conclude that the graph of f has two points of inflection, because it changes concavity from
upward to downward at x = −1 and back to upward at x = 2. We use the information obtained to
sketch a possible graph of f, shown in Figure N4–14. Note that other graphs are possible; in fact,
any vertical translation of this f will do!

FIGURE N4–14

J. MOTION ALONG A LINE
Velocity

Acceleration

Speed



If a particle moves along a line according to the law s = f (t), where s represents the position of the
particle P on the line at time t, then the velocity v of P at time t is given by  and its acceleration a by

. The speed of the particle is |v|, the magnitude of v. If the line of motion is directed
positively to the right, then the motion of the particle P is subject to the following: At any instant,

(1) if v > 0, then P is moving to the right and its distance s is increasing; if v < 0, then P is moving
to the left and its distance s is decreasing;

(2) if a > 0, then v is increasing; if a < 0, then v is decreasing;
(3) if a and v are both positive or both negative, then (1) and (2) imply that the speed of P is

increasing or that P is accelerating; if a and v have opposite signs, then the speed of P is
decreasing or P is decelerating;

(4) if s is a continuous function of t, then P reverses direction whenever v is zero and a is different
from zero; note that zero velocity does not necessarily imply a reversal in direction.

EXAMPLE 26
A particle moves along a line such that its position s = 2t3 − 9t2 + 12t − 4, for t  0.
(a) Find all t for which the distance s is increasing.
(b) Find all t for which the velocity is increasing.
(c) Find all t for which the speed of the particle is increasing.
(d) Find the speed when 

(e) Find the total distance traveled between t = 0 and t = 4.
SOLUTION: 

and    

Velocity v = 0 at t = 1 and t = 2, and:

Acceleration a = 0 at  and:

These signs of v and a immediately yield the answers, as follows:
(a) s increases when t < 1 or t > 2.
(b) v increases when 

(c) The speed |v| is increasing when v and a are both positive, that is, for t > 2, and when v and a
are both negative, that is, for 



(d) The speed when  equals 

FIGURE N4–15

(e) P’s motion can be indicated as shown in Figure N4–15. P moves to the right if t < 1, reverses
its direction at t = 1, moves to the left when 1 < t < 2, reverses again at t = 2, and continues to
the right for all t > 2. The position of P at certain times t are shown in the following table:

t: 0 1 2   4

s: −4 1 0 28

Thus P travels a total of 34 units between times t = 0 and t = 4.

EXAMPLE 27
Answer the questions of Example 26 if the law of motion is

s = t4 − 4t3.

SOLUTION: Since v = 4t3 − 12t2 = 4t2 (t − 3) and a = 12t2 − 24t = 12t(t − 2), the signs of v and
a are as follows:

Thus
(a) s increases if t > 3.
(b) v increases if t < 0 or t > 2.
(c) Since v and a have the same sign if 0 < t < 2 or if t > 3, the speed increases on these

intervals.
(d) The speed when 

FIGURE N4–16

(e) The motion is shown in Figure N4–16. The particle moves to the left if t < 3 and to the right
if t > 3, stopping instantaneously when t = 0 and t = 3, but reversing direction only when t = 3.
Thus:



t: 0     3 4

s: 0 −27 0

The particle travels a total of 54 units between t = 0 and t = 4.

(Compare with Example 13, where the function f (x) = x4 − 4x3 is investigated for maximum and
minimum values; also see the accompanying Figure N4–5.)

BC ONLY

K. MOTION ALONG A CURVE: VELOCITY AND
ACCELERATION VECTORS

If a point P moves along a curve defined parametrically by P(t) = (x(t), y(t)), where t represents time,
then the vector from the origin to P is called the position vector, with x as its horizontal component
and y as its vertical component. The set of position vectors for all values of t in the domain common
to x(t) and y(t) is called vector function.

A vector may be symbolized either by a boldface letter (R) or an italic letter with an arrow
written over it  The position vector, then, may be written as  or as  In print the
boldface notation is clearer, and will be used in this book; when writing by hand, the arrow notation
is simpler.

The velocity vector is the derivative of the vector function (the position vector):

Alternative notations for  are vx and vy, respectively; these are the components of v in the
horizontal and vertical directions, respectively. The slope of v is

which is the slope of the curve; the magnitude of v is the vector’s length:

BC ONLY

Thus, if the vector v is drawn initiating at P, it will be tangent to the curve at P and its magnitude will
be the speed of the particle at P.

The acceleration vector a is  and can be obtained by a second differentiation of the
components of R. Thus



and its magnitude is the vector’s length:

where we have used ax and ay for  respectively.

Examples 28 and 29 are BC ONLY.

EXAMPLE 28
A particle moves according to the equations x = 3 cost, y = 2 sin t.
(a) Find a single equation in x and y for the path of the particle and sketch the curve.
(b) Find the velocity and acceleration vectors at any time t, and show that a = −R at all times.
(c) Find R, v, and a when (1)  (2) t2 = π, and draw them on the sketch.

(d) Find the speed of the particle and the magnitude of its acceleration at each instant in (c).
(e) When is the speed a maximum? A minimum?
SOLUTIONS:
(a) Since  therefore

and the particle moves in a counterclockwise direction along an ellipse, starting, when t = 0,
at (3,0) and returning to this point when t = 2π.

(b) We have

The acceleration, then, is always directed toward the center of the ellipse.
(c) At 

At t2 = π,

The curve, and v and a at t1 and t2, are sketched in Figure N4–18, below.

(d) At At t2 = π,



FIGURE N4–18

(e) For the speed |v| at any time t

We see immediately that the speed is a maximum when  and a minimum when t = 0 or
π. The particle goes fastest at the ends of the minor axis and most slowly at the ends of the major
axis. Generally one can determine maximum or minimum speed by finding  setting it equal to
zero, and applying the usual tests to sort out values of t that yield maximum or minimum speeds.

EXAMPLE 29
A particle moves along the parabola y = x2 − x with constant speed  Find v at (2,2).
SOLUTION: Since

and

Relation (3) holds at all times; specifically, at (2, 2),  so that vx = ±1. From (1), then,
we see that vy = ±3. Therefore v at (2, 2) is either  The former corresponds to
counterclockwise motion along the parabola, as shown in Figure N4–19a; the latter to clockwise
motion, indicated in Figure N4–19b.



FIGURE N4–19a

FIGURE N4–19b

L. TANGENT-LINE APPROXIMATIONS
Local linear approximation

If f ′(a) exists, then the local linear approximation of f(x) at a is
f (a) + f ′(a)(x − a).

Since the equation of the tangent line to y = f (x) at x = a is
y − f (a) = f ′(a)(x − a),

we see that the y value on the tangent line is an approximation for the actual or true value of f. Local
linear approximation is therefore also called tangent-line approximation.† For values of x close to a,
we have



FIGURE N4–20

where f (a) + f ′(a)(x − a) is the linear or tangent-line approximation for f (x), and f ′(a)(x − a) is the
approximate change in f as we move along the curve from a to x. See Figure N4–20.

In general, the closer x is to a, the better the approximation is to f (x).

EXAMPLE 30
Find tangent-line approximations for each of the following functions at the values indicated:

(a) sin x at a = 0  (b) cos x at a = 

(c) 2x3 − 3x at a = 1  (d)  at a = 8
SOLUTIONS:
(a) At a = 0, sin x  sin (0) + cos (0)(x − 0)  0 + 1 · x  x
(b) 

(c) At a = 1, 2x3 − 3x  − 1 + 3(x − 1)  3x − 4
(d) 

† Local linear approximation is also referred to as “local linearization” or even “best linear approximation” (the latter because it is better
than any other linear approximation).

EXAMPLE 31
Using the tangent lines obtained in Example 30 and a calculator, we evaluate each function, then
its linear approximation, at the indicated x-values:

Example 31 shows how small the errors can be when tangent lines are used for approximations
and x is near a.



EXAMPLE 32
A very useful and important local linearization enables us to approximate (1 + x) k by 1 + kx for
k any real number and for x near 0. Equation (1) yields

Then, near 0, for example,

EXAMPLE 33
Estimate the value of  at x = 0.05.

SOLUTION: Use the line tangent to  at x = 0; f (0) = 3.

 so f ′(0) = 6 ; hence, the line is y = 6x + 3.

Our tangent-line approximation, then, is 

At x = 0.05, we have f (0.05) ≈ 6(0.05) + 3 = 3.3.
The true value, to three decimal places, of  when x = 0.05 is 3.324; the tangent-line
approximation yields 3.3. This tells us that the curve is concave up, lying above the tangent line
to the curve near x = 0. Graph the curve and the tangent line on [−1, 1] × [−1, 6] to verify these
statements.

Approximating the Change in a Function.
Equation (1) above for a local linear approximation also tells us by about how much f changes when
we move along the curve from a to x: it is the quantity f ′(a)(x − a). (See Figure N4–20.)

EXAMPLE 34
By approximately how much does the area of a circle change when the radius increases from 3 to
3.01 inches?

SOLUTION: We use the formula A = πr2. Then Equation (1) tells us that the local linear
approximation for A(r), when A is near 3, is

A(3) + A ′(3)(r − 3).
Here we want only the change in area; that is,

A ′(3)(r − 3)   when   r = 3.01.
Since A ′(r) = 2πr, therefore A ′(3) = 6π; also, (r − 3) = 0.01, so the approximate change is (6π)
(0.01)  0.1885 in.2 The true increase in area, to four decimal places, is 0.1888 in.2



EXAMPLE 35
Suppose the diameter of a cylinder is 8 centimeters. If its circumference is increased by 2
centimeters, how much larger, approximately, are
(a) the diameter, and
(b) the area of a cross section?
SOLUTIONS:
(a) Let D and C be respectively the diameter and circumference of the cylinder. Here, D plays

the role of f, and C that of x, in the linear approximation equation (1) a previous page. The
approximate increase in diameter, when C = 8π, is therefore equal to D ′(C) times (the change
in C). Since C = πD,  and  (which is constant for all C). The change in C is given
as 2 cm; so the increase in diameter is equal approximately to   2. 0.6366 cm.

(b) The approximate increase in the area of a (circular) cross section is equal to
A ′(C) · (change in C),

where the area  Therefore,

Since the change in C is 2 cm, the area of a cross section increases by approximately 4 · 2 = 8
cm2.

M. RELATED RATES
If several variables that are functions of time t are related by an equation, we can obtain a relation
involving their (time) rates of change by differentiating with respect to t.

EXAMPLE 36
If one leg AB of a right triangle increases at the rate of 2 inches per second, while the other leg
AC decreases at 3 inches per second, find how fast the hypotenuse is changing when AB = 6 feet
and AC = 8 feet.

FIGURE N4–21

SOLUTION: See Figure N4–21. Let u, v, and z denote the lengths respectively of AB, AC, and
BC. We know that  Since (at any time) z2 = u2 + v2, then



At the instant in question, u = 6, v = 8, and z = 10, so

EXAMPLE 37
The diameter and height of a paper cup in the shape of a cone are both 4 inches, and water is
leaking out at the rate of  cubic inch per second. Find the rate at which the water level is
dropping when the diameter of the surface is 2 inches.
SOLUTION: See Figure N4–22. We know that  and that h = 2r.

Here, 

 at any time.

When the diameter is 2 in., so is the height, and  The water level is thus dropping at the
rate of  in./sec.

FIGURE N4–22

EXAMPLE 38
Suppose liquid is flowing into a vessel at a constant rate. The vessel has the shape of a
hemisphere capped by a cylinder, as shown in Figure N4–23. Graph y = h(t), the height (= depth)
of the liquid at time t, labeling and explaining any salient characteristics of the graph.



FIGURE N4–23

SOLUTION: Liquid flowing in at a constant rate means the change in volume is constant per
uni t of time. Obviously, the depth of the liquid increases as t does, so h ′(t) is positive
throughout. To maintain the constant increase in volume per unit of time, when the radius grows,
h ′(t) must decrease. Thus, the rate of increase of h decreases as h increases from 0 to a (where
the cross-sectional area of the vessel is largest). Therefore, since h ′(t) decreases, h ″(t) < 0
from 0 to a and the curve is concave down.
As h increases from a to b, the radius of the vessel (here cylindrical) remains constant, as do the
cross-sectional areas. Therefore h ′(t) is also constant, implying that h(t) is linear from a to b.
Note that the inflection point at depth a does not exist, since h ″(t) < 0 for all values less than a
but is equal to 0 for all depths greater than or equal to a.

BC ONLY

N. SLOPE OF A POLAR CURVE
We know that, if a smooth curve is given by the parametric equations

x = f (t) and y = g(t),
then

 provided that f ′(t) ≠ 0.

To find the slope of a polar curve r = f (θ), we must first express the curve in parametric form.
Since

x = r cos θ and y = r sin θ,
therefore,

x = f (θ) cos θ and y = f (θ) sin θ.
If f (θ) is differentiable, so are x and y; then

Also, if  then

In doing an exercise, it is often easier simply to express the polar equation parametrically, then
find dy/dx, rather than to memorize the formula.

EXAMPLE 39
(a) Find the slope of the cardioid r = 2(1 + cos θ) at  See Figure N4–24.

(b) Where is the tangent to the curve horizontal?



FIGURE N4–24

BC ONLY

SOLUTIONS:
(a) Use r = 2(1 + cos θ), x = r cos θ, y = r sin θ, and r ′ = −2 sin θ; then

At 

(b) Since the cardioid is symmetric to θ = 0 we need consider only the upper half of the curve
for part (b). The tangent is horizontal where  (provided ). Since  factors into 2(2
cos θ − 1)(cos θ + 1), which equals 0 for cos  or −1,  or π. From part (a), 

 does equal 0 at π. Therefore, the tangent is horizontal only at  (and, by
symmetry, at ).

It is obvious from Figure N4–24 that r ′(θ) does not give the slope of the cardioid. As θ varies
from 0 to  the slope varies from −∞ to 0 to +∞ (with the tangent rotating counterclockwise),
taking on every real value. However, r ′(θ) equals −2 sin θ, which takes on values only between
−2 and 2!

Chapter Summary
In this chapter we reviewed many applications of derivatives. We’ve seen how to find slopes of
curves and used that skill to write equations of lines tangent to a curve. Those lines often provide
very good approximations for values of functions. We have looked at ways derivatives can help us
understand the behavior of a function. The first derivative can tell us whether a function is increasing
or decreasing and locate maximum and minimum points. The second derivative can tell us whether the
graph of the function is concave upward or concave downward and locate points of inflection. We’ve
reviewed how to use derivatives to determine the velocity and acceleration of an object in motion
along a line and to describe relationships among rates of change.



For BC Calculus students, this chapter reviewed finding slopes of curves defined parametrically
or in polar form. We have also reviewed the use of vectors to describe the position, velocity, and
acceleration of objects in motion along curves.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

1. The slope of the curve y3 − xy2 = 4 at the point where y = 2 is
(A) −2
(B) 

(C) 

(D) 

(E) 2

2. The slope of the curve y2 − xy − 3x = 1 at the point (0, −1) is
(A) −1
(B) −2
(C) +1
(D) 2
(E) −3

3. The equation of the tangent to the curve y = x sin x at the point  is

(A) y = x − π
(B) 

(C) y = π − x
(D) 

(E) y = x

4. The tangent to the curve of y = xe−x is horizontal when x is equal to
(A) 0
(B) 1
(C) −1
(D) 

(E) none of these



5. The minimum value of the slope of the curve y = x5 + x3 − 2x is
(A) 0
(B) 2
(C) 6
(D) −2
(E) none of these

6. The equation of the tangent to the hyperbola x2 − y2 = 12 at the point (4, 2) on the curve is
(A) x − 2y + 6 = 0
(B) y = 2x
(C) y = 2x − 6
(D) 

(E) x + 2y = 6

7. The tangent to the curve y2 − xy + 9 = 0 is vertical when
(A) y = 0
(B) y = ± 
(C) 

(D) y = ±3
(E) none of these

8. The best approximation, in cubic inches, to the increase in volume of a sphere when the radius
is increased from 3 to 3.1 in. is
(A) 

(B) 0.04π
(C) 1.2π
(D) 3.6π
(E) 36π

9. When x = 3, the equation 2x2 − y3 = 10 has the solution y = 2. When x = 3.04, y 
(A) 1.6
(B) 1.96
(C) 2.04
(D) 2.14
(E) 2.4



10. If the side e of a square is increased by 1%, then the area is increased approximately
(A) 0.02e
(B) 0.02e2

(C) 0.01e2

(D) 1%
(E) 0.01e

11. The edge of a cube has length 10 in., with a possible error of 1%. The possible error, in cubic
inches, in the volume of the cube is
(A) 3
(B) 1
(C) 10
(D) 30
(E) none of these

12. The function f (x) = x4 − 4x2 has
(A) one relative minimum and two relative maxima
(B) one relative minimum and one relative maximum
(C) two relative maxima and no relative minimum
(D) two relative minima and no relative maximum
(E) two relative minima and one relative maximum

13. The number of inflection points of the curve in Question 12 is
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

14. The maximum value of the function  is
(A) 0
(B) −4
(C) 2
(D) −2
(E) none of these



15. The total number of local maximum and minimum points of the function whose derivative, for
all x, is given by f ′(x) = x(x − 3)2 (x + 1)4 is
(A) 0
(B) 1
(C) 2
(D) 3
(E) none of these

16. For which curve shown below are both f ′ and f ″ negative?

17. For which curve shown in question 16 is f ″ positive but f ′ negative?

In Questions 18–21, the position of a particle moving along a straight line is given by s = t3 − 6t2 +
12t − 8.

18. The distance s is increasing for
(A) t < 2
(B) all t except t = 2
(C) 1 < t < 3
(D) t < 1 or t > 3
(E) t > 2

19. The minimum value of the speed is



(A) 1
(B) 2
(C) 3
(D) 0
(E) none of these

20. The acceleration is positive
(A) when t > 2
(B) for all t, t ≠ 2
(C) when t < 2
(D) for 1 < t < 3
(E) for 1 < t < 2

21. The speed of the particle is decreasing for
(A) t > 2
(B) t < 3
(C) all t
(D) t < 1 or t > 2
(E) none of these

In Questions 22–24, a particle moves along a horizontal line and its position at time t is s = t4 − 6t3 +
12t2 + 3.

22. The particle is at rest when t is equal to
(A) 1 or 2
(B) 0
(C) 

(D) 0, 2, or 3
(E) none of these

23. The velocity, v, is increasing when
(A) t > 1
(B) 1 < t < 2
(C) t < 2
(D) t < 1 or t > 2
(E) t > 0



24. The speed of the particle is increasing for
(A) 0 < t < 1 or t > 2
(B) 1 < t < 2
(C) t < 2
(D) t < 0 or t > 2
(E) t < 0

25. The displacement from the origin of a particle moving on a line is given by s = t4 − 4t3. The
maximum displacement during the time interval −2  t  4 is
(A) 27
(B) 3
(C) 12  + 3
(D) 48
(E) none of these

26. If a particle moves along a line according to the law s = t5 + 5t4, then the number of times it
reverses direction is
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
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In Questions 27–30,  is the (position) vector  from the origin to a moving
point P(x, y) at time t.

27. A single equation in x and y for the path of the point is

(A) x2 + y2 = 13

(B) 9x2 + 4y2 = 36

(C) 2x2 + 3y2 = 13

(D) 4x2 + 9y2 = 1

(E) 4x2 + 9y2 = 36

28. When t = 3, the speed of the particle is



(A) 

(B) 2
(C) 3
(D) π
(E) 

29. The magnitude of the acceleration when t = 3 is
(A) 2
(B) 

(C) 3
(D) 

(E) π

30. At the point where  the slope of the curve along which the particle moves is

(A) 

(B) 

(C) 

(D) 

(E) none of these

31. A balloon is being filled with helium at the rate of 4 ft3 /min. The rate, in square feet per
minute, at which the surface area is increasing when the volume is ft3 is

(A) 4π
(B) 2
(C) 4
(D) 1
(E) 2π

32. A circular conical reservoir, vertex down, has depth 20 ft and radius of the top 10 ft. Water is
leaking out so that the surface is falling at the rate of  ft/hr. The rate, in cubic feet per hour, at
which the water is leaving the reservoir when the water is 8 ft deep is
(A) 4π



(B) 8π
(C) 16π
(D) 

(E) 

33. A local minimum value of the function  is

(A) 

(B) 1
(C) −1
(D) e
(E) 0

34. The area of the largest rectangle that can be drawn with one side along the x-axis and two
vertices on the curve of y = e−x2 is

(A) 

(B) 
(C) 

(D) 

(E) 

CHALLENGE

35. A line is drawn through the point (1, 2) forming a right triangle with the positive x- and y-axes.
The slope of the line forming the triangle of least area is
(A) −1
(B) −2
(C) −4
(D) 

(E) −3

CHALLENGE

36. The point(s) on the curve x2 − y2 = 4 closest to the point (6, 0) is (are)



(A) (2,0)
(B) 
(C) 
(D) 
(E) none of these

37. The sum of the squares of two positive numbers is 200; their minimum product is
(A) 100
(B) 
(C) 28
(D) 
(E) none of these

38. The first-quadrant point on the curve y2 x = 18 that is closest to the point (2, 0) is
(A) (2,3)
(B) 
(C) 
(D) 
(E) none of these

39. If h is a small negative number, then the local linear approximation for  is
(A) 

(B) 

(C) 

(D) 

(E) 

40. If f (x) = xe−x, then at x = 0
(A) f is increasing
(B) f is decreasing
(C) f has a relative maximum
(D) f has a relative minimum
(E) f ′ does not exist



41. A function f has a derivative for each x such that |x| < 2 and has a local minimum at (2, −5).
Which statement below must be true?
(A) f ′(2) = 0.
(B) f ′ exists at x = 2.
(C) The graph is concave up at x = 2.
(D) f ′(x) < 0 if x < 2, f ′(x) > 0 if x > 2.
(E) None of the preceding is necessarily true.

42. The height of a rectangular box is 10 in. Its length increases at the rate of 2 in./sec; its width
decreases at the rate of 4 in./sec. When the length is 8 in. and the width is 6 in., the rate, in cubic
inches per second, at which the volume of the box is changing is
(A) 200
(B) 80
(C) −80
(D) −200
(E) −20

43. The tangent to the curve x3 + x2 y + 4y = 1 at the point (3, −2) has slope
(A) −3
(B) 

(C) 

(D) 

(E) 

44. If f (x) = ax4 + bx2 and ab > 0, then
(A) the curve has no horizontal tangents
(B) the curve is concave up for all x
(C) the curve is concave down for all x
(D) the curve has no inflection point
(E) none of the preceding is necessarily true

45. A function f is continuous and differentiable on the interval [0,4], where f ′ is positive but f ″ is
negative. Which table could represent points on f ?
(A) 



(B) 

(C) 

(D) 

(E) 

46. The equation of the tangent to the curve with parametric equations x = 2t + 1, y = 3 − t3 at the
point where t = 1 is
(A) 2x + 3y = 12
(B) 3x + 2y = 13
(C) 6x + y = 20
(D) 3x − 2y = 5
(E) none of these
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47. Approximately how much less than 4 is 
(A) 

(B) 

(C) 

(D) 

(E) 1

48. The best linear approximation for f (x) = tan x near  is

(A) 

(B) 

(C) 

(D) 

(E) 

49. When h is near zero, ekh, using the tangent-line approximation, is approximately
(A) k
(B) kh



(C) 1
(D) 1 + k
(E) 1 + kh

50. If f (x) = cx2 + dx + e for the function shown in the graph, then

(A) c, d, and e are all positive
(B) c > 0, d < 0, e < 0
(C) c > 0, d < 0, e > 0
(D) c < 0, d > 0, e > 0
(E) c < 0, d < 0, e > 0

Part B. Directions: Some of the following questions require the use of a graphing calculator.

51. The point on the curve  at which the normal is parallel to the line y = −3x + 6 is
(A) (4,3)
(B) (0,1)
(C) 
(D) (4, −3)
(E) 

52. The equation of the tangent to the curve x2 = 4y at the point on the curve where x = −2 is
(A) x + y − 3 = 0
(B) y − 1 = 2x(x + 2)
(C) x − y + 3 = 0
(D) x + y − 1 = 0
(E) x + y + 1 = 0

53. The table shows the velocity at time t of an object moving along a line. Estimate the
acceleration (in ft/sec2) at t = 6 sec.



(A) −6
(B) −1.8
(C) −1.5
(D) 1.5
(E) 6

Use the graph shown, sketched on [0, 7], for Questions 54–56.

54. From the graph it follows that
(A) f is discontinuous at x = 4
(B) f is decreasing for 4 < x < 7
(C) f is constant for 0 < x < 4
(D) f has a local maximum at x = 0
(E) f has a local minimum at x = 7

55. Which statement best describes f at x = 5?
(A) f has a root.
(B) f has a maximum.
(C) f has a minimum.
(D) The graph of f has a point of inflection.
(E) none of these

56. For which interval is the graph of f concave downward?
(A) (0,4)
(B) (4,5)
(C) (5,7)
(D) (4,7)
(E) none of these



Use the graph shown for Questions 57–63. It shows the velocity of an object moving along a straight
line during the time interval 0 ≤ t ≤ 5.

57. The object attains its maximum speed when t =
(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

58. The speed of the object is increasing during the time interval
(A) (0,1)
(B) (1,2)
(C) (0,2)
(D) (2,3)
(E) (3,5)

59. The acceleration of the object is positive during the time interval
(A) (0,1)
(B) (1,2)
(C) (0,2)
(D) (2,3)
(E) (3,5)

60. How many times on 0 < t < 5 is the object’s acceleration undefined?
(A) none
(B) 1
(C) 2
(D) 3



(E) more than 3

61. During 2 < t < 3 the object’s acceleration (in ft/sec2) is
(A) −10
(B) −5
(C) 0
(D) 5
(E) 10

62. The object is furthest to the right when t =
(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

63. The object’s average acceleration (in ft/sec2) for the interval 0 ≤ t ≤ 3 is
(A) −15
(B) −5
(C) −3
(D) −1
(E) none of these

64. The line y = 3x + k is tangent to the curve y = x3 when k is equal to
(A) 1 or −1
(B) 0
(C) 3 or −3
(D) 4 or −4
(E) 2 or −2

65. The two tangents that can be drawn from the point (3,5) to the parabola y = x2 have slopes
(A) 1 and 5
(B) 0 and 4
(C) 2 and 10
(D) 2 and 



(E) 2 and 4

66. The table shows the velocity at various times of an object moving along a line. An estimate of
its acceleration (in ft/sec2) at t = 1 is

(A) 0.8
(B) 1.0
(C) 1.2
(D) 1.4
(E) 1.6

For Questions 67 and 68, f ′(x) = x sin x − cos x for 0 < x < 4.

67. f has a local maximum when x is approximately
(A) 0.9
(B) 1.2
(C) 2.3
(D) 3.4
(E) 3.7

68. The graph of f has a point of inflection when x is approximately
(A) 0.9
(B) 1.2
(C) 2.3
(D) 3.4
(E) 3.7
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In Questions 69–72, the motion of a particle in a plane is given by the pair of equations x = 2t and y =
4t − t2.

69. The particle moves along
(A) an ellipse
(B) a circle
(C) a hyperbola
(D) a line



(E) a parabola

70. The speed of the particle at any time t is
(A) 
(B) 
(C) 
(D) 
(E) 

71. The minimum speed of the particle is
(A) 2
(B) 
(C) 0
(D) 1
(E) 4

72. The acceleration of the particle
(A) depends on t
(B) is always directed upward
(C) is constant both in magnitude and in direction
(D) never exceeds 1 in magnitude
(E) is none of these

73. If a particle moves along a curve with constant speed, then
(A) the magnitude of its acceleration must equal zero
(B) the direction of acceleration must be constant
(C) the curve along which the particle moves must be a straight line
(D) its velocity and acceleration vectors must be perpendicular
(E) the curve along which the particle moves must be a circle

74. A particle is moving on the curve of y = 2x − ln x so that  at all times t. At the point (1,2),
 is

(A) 4
(B) 2
(C) −4



(D) 1
(E) −2

In Questions 75–76, a particle is in motion along the polar curve r = 6 cos 2θ such that 
radian/sec when 

75. At that point, find the rate of change (in units per second) of the particle’s distance from the
origin.
(A) 
(B) 
(C) 
(D) 
(E) 

76. At that point, what is the horizontal component of the particle’s velocity?
(A) 

(B) 

(C) −2
(D) 

(E) 

Use the graph of f ′ on [0,5], shown below, for Questions 77 and 78.

77. f has a local minimum at x =
(A) 0
(B) 1
(C) 2
(D) 3
(E) 5



78. The graph of f has a point of inflection at x =
(A) 1 only
(B) 2 only
(C) 3 only
(D) 2 and 3 only
(E) none of these

79. It follows from the graph of f ′, shown below, that

(A) f is not continuous at x = a
(B) f is continuous but not differentiable at x = a
(C) f has a relative maximum at x = a
(D) The graph of f has a point of inflection at x = a
(E) none of these

80. A vertical circular cylinder has radius r ft and height h ft. If the height and radius both increase
at the constant rate of 2 ft/sec, then the rate, in square feet per second, at which the lateral
surface area increases is
(A) 4πr
(B) 2π(r + h)
(C) 4π(r + h)
(D) 4πrh
(E) 4πh

81. A tangent drawn to the parabola y = 4 − x2 at the point (1, 3) forms a right triangle with the
coordinate axes. The area of the triangle is
(A) 

(B) 

(C) 

(D) 1
(E) 



82. Two cars are traveling along perpendicular roads, car A at 40 mph, car B at 60 mph. At noon,
when car A reaches the intersection, car B is 90 mi away, and moving toward it. At 1 P.M. the
rate, in miles per hour, at which the distance between the cars is changing is
(A) −40
(B) 68
(C) 4
(D) −4
(E) 40

83. For Question 82, if t is the number of hours of travel after noon, then the cars are closest
together when t is
(A) 0
(B) 

(C) 

(D) 

(E) 

The graph for Questions 84 and 85 shows the velocity of an object moving along a straight line
during the time interval 0 ≤ t ≤ 12.

84. For what t does this object attain its maximum acceleration?
(A) 0 < t < 4
(B) 4 < t < 8
(C) t = 5
(D) t = 8
(E) t = 12

85. The object reverses direction at t =
(A) 4 only
(B) 5 only



(C) 8 only
(D) 5 and 8
(E) none of these

86. The graph of f ′ is shown below. If we know that f (2) = 10, then the local linearization of f at x
= 2 is f (x) 
(A) 

(B) 

(C) 3x − 3
(D) 3x + 4
(E) 10x − 17

87. Given f ′ as graphed, which could be the graph of f ?



Use the following graph for Questions 88–90.

88. At which labeled point do both  equal zero?

(A) P
(B) Q
(C) R
(D) S
(E) T

89. At which labeled point is  positive and  equal to zero?

(A) P
(B) Q
(C) R
(D) S
(E) T



90. At which labeled point is  equal to zero and  negative?

(A) P
(B) Q
(C) R
(D) S
(E) T

91. If f (6) = 30 and  estimate f (6.02) using the line tangent to f at x = 6.

(A) 29.92
(B) 30.02
(C) 30.08
(D) 34.00
(E) none of these

92. The local linear approximation for  near x = −3 is

(A) 

(B) 

(C) 

(D) 

(E) 



CHAPTER 5 Antidifferentiation

 

Concepts and Skills
In this chapter, we review
• indefinite integrals,
• formulas for antiderivatives of basic functions,
• and techniques for finding antiderivatives (including substitution).
For BC Calculus students, we review two important techniques of integration:
• integration by parts,
• and integration by partial fractions.

A. ANTIDERIVATIVES
The antiderivative or indefinite integral of a function f (x) is a function F(x) whose derivative is f
(x). Since the derivative of a constant equals zero, the antiderivative of f (x) is not unique; that is, if
F(x) is an integral of f (x), then so is F(x) + C, where C is any constant. The arbitrary constant C is
called the constant of integration. The indefinite integral of f (x) is written as  thus

Indefinite integral
The function f (x) is called the integrand. The Mean Value Theorem can be used to show that, if two
functions have the same derivative on an interval, then they differ at most by a constant; that is, if 

 then

F(x) − G(x) = C (C a constant).

B. BASIC FORMULAS
Familiarity with the following fundamental integration formulas is essential.



All the references in the following set of examples are to the preceding basic formulas. In all of



these, whenever u is a function of x, we define du to be u ′(x) dx; when u is a function of t, we define
du to be u ′(t) dt; and so on.

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

EXAMPLE 4
 is integrated most efficiently by using formula (3) with u = 1 − 3x and du = u ′(x)dx =

−3 dx.

EXAMPLE 5



 where u = 2x3 − 1 and du = u ′(x) dx = 6x2 dx; this, by
formula (3), equals

EXAMPLE 6

 du, where u = 1 − x and du = −1 dx; this, by formula

(3) yields 

EXAMPLE 7

EXAMPLE 8

EXAMPLE 9

EXAMPLE 10

EXAMPLE 11



EXAMPLE 12

EXAMPLE 13

If the degree of the numerator of a rational function is not less than that of the denominator,
divide until a remainder of lower degree is obtained.

EXAMPLE 14

EXAMPLE 15

EXAMPLE 16
 with u = 5 + 2 sin x. The absolute-value sign is

not necessary here since (5 + 2 sin x) > 0 for all x.

EXAMPLE 17

EXAMPLE 18



 (by long division) = −x − ln |1 − x| + C.

EXAMPLE 19

EXAMPLE 20

EXAMPLE 21

EXAMPLE 22

EXAMPLE 23

EXAMPLE 24

EXAMPLE 25
 + C by (3) with u = tan t and du = u ′(t) dt = sec2 t dt.

EXAMPLE 26



EXAMPLE 27
 by (4)

with u = 1 + 2  and 

EXAMPLE 28

with u = cos x;  cos 2x + C by (6), where we use the trigonometric identity sin 2x = 2
sin x cos x.

EXAMPLE 29

EXAMPLE 30
 using the trigonometric identity 

EXAMPLE 31

EXAMPLE 32



EXAMPLE 33

EXAMPLE 34

EXAMPLE 35

EXAMPLE 36

EXAMPLE 37

EXAMPLE 38



EXAMPLE 39

EXAMPLE 40

EXAMPLE 41

BC ONLY

† C. INTEGRATION BY PARTIAL FRACTIONS
The method of partial fractions makes it possible to express a rational function  as a sum of
simpler fractions. Here f (x) and g(x) are real polynomials in x and it is assumed that  is a proper
fraction; that is, that f (x) is of lower degree than g(x). If not, we divide f (x) by g(x) to express the
given rational function as the sum of a polynomial and a proper rational function. Thus,

where the fraction on the right is proper.
Theoretically, every real polynomial can be expressed as a product of (powers of) real linear

factors and (powers of) real quadratic factors. †

In the following, the capital letters denote constants to be determined. We consider only
nonrepeating linear factors. For each distinct linear factor (x − a) of g(x) we set up one partial
fraction of the type  The techniques for determining the unknown constants are illustrated in the
following examples.

Examples 42–47 are BC ONLY.

EXAMPLE 42



Find 

SOLUTION: We factor the denominator and then set

where the constants A, B, and C are to be determined. It follows that

Since the polynomial on the right in (2) is to be identical to the one on the left, we can find the
constants by either of the following methods:
METHOD ONE. We expand and combine the terms on the right in (2), getting

x2 − x + 4 = (A + B + C)x2 − (3A + 2B + C)x + 2A.

We then equate coefficients of like powers in x and solve simultaneously. Thus

using the coefficients of x2, we get 1 = A + B + C;

using the coefficients of x, we get −1 = −(3A + 2B +
C);

using the constant coefficient, 4 = 2A

These equations yield A = 2, B = −4, C = 3.
METHOD TWO. Although equation (1) above is meaningless for x = 0, x = 1, or x = 2, it is still
true that equation (2) must hold even for these special values. We see, in (2), that

if x = 0, then 4 = 2A and A = 2;
if x = 1, then 4 = −B and B = −4;
if x = 2, then 6 = 2C and C = 3.

The second method is shorter than the first and more convenient when the denominator of the
given fraction can be decomposed into nonrepeating linear factors.
Finally, then, the original integral equals

[The symbol “C′” appears here for the constant of integration because C was used in simplifying
the original rational function.]

† In the Topical Outline for Calculus BC, integration by partial fractions is restricted to “simple partial fractions (nonrepeating linear
factors only).”



D. INTEGRATION BY PARTS
Parts Formula

The Parts Formula stems from the equation for the derivative of a product:
 or, or more conveniently d(uv) = u dv + v du.

Hence, u dv = d(uv) − v du and integrating gives us  or

the Parts Formula. Success in using this important technique depends on being able to separate a
given integral into parts u and dv so that (a) dv can be integrated, and (b)  du is no more difficult to
calculate than the original integral.

EXAMPLE 43
Find 

SOLUTION: We let u = x and dv = cos x dx. Then du = dx and v = sin x. Thus, the Parts
Formula yields

EXAMPLE 44
Find 

SOLUTION: We let u = x2 and dv = ex dx. Then du = 2x dx and v = ex, so 

We use the Parts Formula again, this time letting u = x and dv = ex dx so that du = dx and v = ex.
Thus,

EXAMPLE 45
Find I = 

SOLUTION: To integrate, we can let u = ex and dv = cos x dx; then du = ex dx, v = sin x. Thus,

To evaluate the integral on the right, again we let u = ex, dv = sin x dx, so that du = ex dx and v =



− cos x. Then,

EXAMPLE 46
Find 

SOLUTION: We let u = ln x and dv = x4 dx. Then,  and  Thus,

THE TIC-TAC-TOE METHOD. 1

This method of integrating is extremely useful when repeated integration by parts is necessary. To
integrate  we construct a table as follows:

Here the column at the left contains the successive derivatives of u(x). The column at the right
contains the successive antiderivatives of v(x) (always with C = 0); that is, v1 (x) is the antiderivative
of v(x), v2 (x) is the antiderivative of v1 (x), and so on. The diagonal arrows join the pairs of factors
whose products form the successive terms of the desired integral; above each arrow is the sign of that
term. By the tic-tac-toe method,

EXAMPLE 47
To integrate  cos x dx by the tic-tac-toe method, we let u(x) = x4 and v(x) = cos x, and get the
following table:



The method yields

With the ordinary method we would have had to apply the Parts Formula four times to perform
this integration.

1 This method was described by K. W. Folley in Vol. 54 (1947) of the American Mathematical Monthly and was referred to in the
movie Stand and Deliver.

E. APPLICATIONS OF ANTIDERIVATIVES; DIFFERENTIAL
EQUATIONS
The following examples show how we use given conditions to determine constants of integration.

EXAMPLE 48
Find f (x) if f ′(x) = 3x2 and f (1) = 6.

SOLUTION:
Since f (1) = 6, 13 + C must equal 6; so C must equal 6 − 1 or 5, and f (x) = x3 + 5.

EXAMPLE 49
Find a curve whose slope at each point (x, y) equals the reciprocal of the x-value if the curve
contains the point (e, −3).
SOLUTION: We are given that  and that y = −3 when x = e. This equation is also solved
by integration. Since 

Thus, y = ln x + C. We now use the given condition, by substituting the point (e, −3), to determine



C. Since −3 = ln e + C, we have −3 = 1 + C, and C = −4. Then, the solution of the given equation
subject to the given condition is

y = ln x − 4.

DIFFERENTIAL EQUATIONS: MOTION PROBLEMS.
An equation involving a derivative is called a differential equation. In Examples 48 and 49, we
solved two simple differential equations. In each one we were given the derivative of a function and
the value of the function at a particular point. The problem of finding the function is called an initial-
value problem and the given condition is called the initial condition.

In Examples 50 and 51, we use the velocity (or the acceleration) of a particle moving on a line to
find the position of the particle. Note especially how the initial conditions are used to evaluate
constants of integration.

EXAMPLE 50
The velocity of a particle moving along a line is given by v(t) = 4t3 − 3t2 at time t. If the particle
is initially at x = 3 on the line, find its position when t = 2.
SOLUTION: Since

Since x(0) = 04 − 03 + C = 3, we see that C = 3, and that the position function is x(t) = t4 − t3 + 3.
When t = 2, we see that

x(2) = 24 − 23 + 3 = 16 − 8 + 3 = 11.

EXAMPLE 51
Suppose that a(t), the acceleration of a particle at time t, is given by a(t) = 4t − 3, that v(1) = 6,
and that f (2) = 5, where f (t) is the position function.
(a) Find v(t) and f (t).
(b) Find the position of the particle when t = 1.
SOLUTIONS:



Using v(1) = 6, we get 6 = 2(1)2 − 3(1) + C1, and C1 = 7, from which it follows that v(t) = 2t2

− 3t + 7. Since

Using f (2) = 5, we get  + 14 + C2, so  Thus,

For more examples of motion along a line, see Chapter 8, Further Applications of Integration, and
Chapter 9, Differential Equations.

Chapter Summary
In this chapter, we have reviewed basic skills for finding indefinite integrals. We’ve looked at the
antiderivative formulas for all of the basic functions and reviewed techniques for finding
antiderivatives of other functions.

We’ve also reviewed the more advanced techniques of integration by partial fractions and
integration by parts, both topics only for the BC Calculus course.

Practice Exercises

Directions: Answer these questions without using your calculator.

1. 

(A) x3 − x2 + C
(B) 3x3 − x2 + 3x + C
(C) x3 − x2 + 3x + C
(D) 

(E) none of these

2. 

(A) 



(B) 

(C) 

(D) 

(E) none of these

3. 

(A) 

(B) 

(C) 

(D) 

(E) 

4. 

(A) 

(B) 

(C) 

(D) 

(E) none of these

5. 

(A) 

(B) 

(C) 

(D) 

(E) 

6. 

(A) 

(B) 

(C) 



(D) 

(E) 

7. 

(A) 

(B) 

(C) 2 ln|1 + 3u|+ C
(D) 

(E) none of these

8. 

(A) 

(B) 
(C) 
(D) 

(E) 

9. 

(A) 3 sin 3x + C
(B) −sin 3x + C
(C) 

(D) 

(E) 

10. 

(A) 

(B) 

(C) 

(D) 

(E) 



11. 

(A) tan−1 (2x) + C
(B) 

(C) 

(D) 

(E) 

12. 

(A) 

(B) 

(C) 

(D) 

(E) 

13. 

(A) 

(B) 

(C) 

(D) 

(E) 

14. 

(A) 

(B) 

(C) 

(D) 

(E) 

15. 



(A) 

(B) 

(C) 

(D) 

(E) 

16. 

(A) 

(B) 

(C) x + 2 ln |x| + C
(D) x + ln |2x| + C
(E) 

17. 

(A) 

(B) 

(C) 

(D) 

(E) none of these

18. 

(A) 

(B) 

(C) 

(D) 

(E) 

19. 

(A) 3x4/3 − 2x5/2 − 2x1/2 + C



(B) 3x4/3 − 2x5/2 + 2x1/2 + C
(C) 

(D) 

(E) none of these

20. 

(A) 

(B) 

(C) 

(D) 

(E) 

21. 

(A) 

(B) 

(C) 
(D) 
(E) 

22. 

(A) 

(B) 

(C) 
(D) 

(E) 

23. 

(A) 

(B) 



(C) 

(D) 

(E) cos 2θ + C

24. 

(A) −2 cos1/2 x + C
(B) 
(C) 
(D) 

(E) 

25. 

(A) 

(B) 

(C) 

(D) 

(E) none of these

26. 

(A) 

(B) 

(C) 

(D) 

(E) 

27. 

(A) 

(B) −2 cos 2θ + C
(C) −sin2 θ + C
(D) cos2 θ + C



(E) 

28. 

(A) x sin x + C
(B) x sin x + cos x + C
(C) x sin x − cos x + C
(D) cos x − x sin x + C
(E) 

BC ONLY

29. 

(A) 

(B) tan 3u + C
(C) 

(D) 

(E) 

30. 

(A) 

(B) 
(C) 
(D) ln |1 + sin x| + C
(E) 

31. 

(A) 2ln sin|θ − 1| + C
(B) −csc(θ − 1) + C
(C) 

(D) − cot(θ − 1) + C
(E) csc (θ − 1) + C

32. 



(A) 

(B) 

(C) 

(D) ln |sec t + tan t| + C
(E) 

33. 

(A) 
(B) 

(C) 
(D) 
(E) 2 ln |sin x| + C

34. 

(A) 

(B) 

(C) sec3/2 x + C
(D) 

(E) none of these

35. 

(A) −ln|sec θ| + C
(B) sec2 θ + C
(C) ln|sin θ| + C
(D) sec θ + C
(E) −ln|cos θ| + C

36. 

(A) 

(B) 

(C) 



(D) −cot x + C
(E) −csc 2x + C

37. 

(A) sec−1 y + C
(B) (tan−1 y)2 + C
(C) ln (1 + y2) + C
(D) ln (tan−1 y) + C
(E) none of these

38. 

(A) 

(B) 

(C) sin2 θ cos θ + C
(D) cos3 θ + C
(E) none of these

39. 

(A) 

(B) −ln |1 − cos2t| + C
(C) 

(D) 
(E) 2 ln |1 − cos 2t| + C

40. 

(A) ln |sin u| + C
(B) 

(C) 

(D) −sec 2u + C
(E) 2 ln |sin 2u| + C

41. 

(A) x + ln |ex − 1| + C



(B) x − ex + C
(C) 

(D) 

(E) ln |ex − 1| + C

42. 

(A) 

(B) 

(C) ln|x − 2| + ln|x| + C
(D) 

(E) none of these

BC ONLY

43. 

(A) 

(B) ex2 (2x2 + 1) + C

(C) 2ex2 + C

(D) ex2 + C
(E) 

44. 

(A) esinθ + 1 + C
(B) esin θ + C
(C) −esin θ + C
(D) ecos θ + C
(E) esin θ (cos θ − sin θ) + C

45. 

(A) cos e2θ + C
(B) 2e4θ (cos e2θ + sin e2θ) + C
(C) 



(D) −2 cos e2θ + C
(E) none of these

46. 

(A) 
(B) 

(C) 

(D) 

(E) none of these

47. 

(A) e−x (1 − x) + C
(B) 

(C) −e−x (x + 1) + C
(D) 

(E) e−x (x + 1) + C

BC ONLY

48. 

(A) ex (x2 + 2x) + C
(B) ex (x2 − 2x − 2) + C
(C) ex (x2 − 2x + 2) + C
(D) ex (x − 1)2 + C
(E) ex (x + 1)2 + C

BC ONLY

49. 

(A) x − ln|ex − e−x | + C
(B) x + 2 ln|ex − e−x | + C
(C) 

(D) ln|ex − e−x | + C
(E) ln (ex + e−x) + C



50. 

(A) tan−1 ex + C
(B) 

(C) ln (1 + e2x) + C
(D) 

(E) 2 tan−1 ex + C

51. 

(A) ln|ln v| + C
(B) 

(C) 

(D) 2 ln v + C
(E) 

52. 

(A) 

(B) ln2 x + C
(C) 

(D) 

(E) 

53. 

(A) x2 (3 ln x + 1) + C
(B) 

(C) 

(D) 

(E) none of these

BC ONLY

54. 



(A) 

(B) (ln  − 1) + C
(C) 

(D) ln (  − 1) + C
(E)  ln  +  + C

BC ONLY

55. 

(A) 

(B) 3x (ln x − 1) + C
(C) 3 ln x(x − 1) + C
(D) 

(E) none of these

BC ONLY

56. 

(A) 

(B) 

(C) 

(D) 

(E) 

BC ONLY

57. 

(A) 

(B) 

(C) −ln|ln v| + C
(D) 

(E) ln|ln v| + C

BC ONLY



58. 

(A) y − 2 ln|y + 1| + C
(B) 

(C) 

(D) 1 − 2 ln |y + 1| + C

(E) 

59. 

(A) ln (x2 + 2x + 2) + C
(B) ln |x + 1| + C
(C) arctan(x + 1) + C
(D) 

(E) 

60. 

(A) 2(x3/2 − x) + C
(B) 

(C) 

(D) 

(E) 

61. 

(A) eθ (cos θ − sin θ) + C
(B) eθ sin θ + C
(C) 

(D) 2 eθ (sin θ + cos θ) + C
(E) 

BC ONLY

62. 



(A) 

(B) ln t − 2 ln2 t + ln3 t + C
(C) −2(1 − ln t) + C
(D) 

(E) 

63. 

(A) u tan u + ln|cos u| + C
(B) 

(C) 

(D) u tan u − ln|sin u| + C
(E) u sec u − ln|sec u + tan u| + C

BC ONLY

64. 

(A) ln (x2 + 4) + C
(B) 

(C) 

(D) 

(E) none of these

CHALLENGE

65. 

(A) 

(B) sin−1 x + C
(C) 

(D) 
(E) 

CHALLENGE



66. 

(A) 

(B) sin−1 (1 − 2x) + C
(C) 

(D) 

(E) 

CHALLENGE

67. 

(A) tan−1 ex + C
(B) ex − ln (1 + ex) + C
(C) ex − x + ln|1 + ex | + C
(D) 

(E) none of these

CHALLENGE

68. 

(A) sec θ tan θ + C
(B) sin θ − csc θ + C
(C) ln (1 + sin2 θ) + C
(D) tan−1 (sin θ) + C
(E) 

69. 

(A) arc tan x + C
(B) x arc tan x − ln (1 + x2) + C
(C) x arc tan x + ln (1 + x2) + C
(D) 

(E) 

BC ONLY



70. 

(A) −ln|1 − ex | + C
(B) x − ln|1 − ex | + C
(C) 

(D) e−x ln |1 + ex | + C
(E) none of these

CHALLENGE

71. 

(A) 

(B) 

(C) ln |y| − y + 2y2 + C
(D) 

(E) none of these

72. 

(A) 

(B) eu3/3 + C
(C) 

(D) 

(E) e1 + 2 lnu + C

73. 

(A) 

(B) 

(C) 

(D) tan−1 (ln|y|) + C
(E) none of these

74. 



(A) sec θ + θ + 2 ln|cosθ| + C
(B) tan θ + 2 ln|cos θ| + C
(C) tan θ − 2 sec2 θ + C
(D) sec θ + θ − tan2 θ + C
(E) tan θ − 2 ln|cosθ| + C

CHALLENGE

75. 

(A) sec θ − tan θ + C
(B) ln (1 + sin θ) + C
(C) ln |sec θ + tan θ| + C
(D) θ + ln|csc θ − cot θ| + C
(E) none of these

CHALLENGE

76. A particle starting at rest at t = 0 moves along a line so that its acceleration at time t is 12t
ft/sec2. How much distance does the particle cover during the first 3 sec?
(A) 16 ft
(B) 32 ft
(C) 48 ft
(D) 54 ft
(E) 108 ft

77. The equation of the curve whose slope at point (x, y) is x2 − 2 and which contains the point (1,
−3) is
(A) 

(B) y = 2x − 1
(C) 

(D) 

(E) 3y = x3 − 10

78. A particle moves along a line with acceleration 2 + 6 t at time t. When t = 0, its velocity equals



3 and it is at position s = 2. When t = 1, it is at position s =
(A) 2
(B) 5
(C) 6
(D) 7
(E) 8

79. Find the acceleration (in ft/sec2) needed to bring a particle moving with a velocity of 75 ft/sec
to a stop in 5 sec.
(A) −3
(B) −6
(C) −15
(D) −25
(E) −30

80. 

(A) 

(B) ln|x2 − 1| + C
(C) x + tan−1 x + C
(D) 

(E) 

BC ONLY

CHALLENGE



CHAPTER 6 Definite Integrals

 

Concepts and Skills
In this chapter, we will review what definite integrals mean and how to evaluate them. We’ll look
at
• the all-important Fundamental Theorem of Calculus;
• other important properties of definite integrals, including the Mean Value Theorem for
Integrals;

• analytic methods for evaluating definite integrals;
• evaluating definite integrals using tables and graphs;
• Riemann sums;
• numerical methods for approximating definite integrals, including left and right rectangular
sums, the midpoint rule, and the trapezoid rule;

• and the average value of a function.
For BC students, we’ll also review how to work with integrals based on parametrically defined
functions.

A. FUNDAMENTAL THEOREM OF CALCULUS (FTC);
DEFINITION OF DEFINITE INTEGRAL
If f is continuous on the closed interval [a, b] and F ′ = f, then, according to the Fundamental Theorem
of Calculus,

Definite integrals

Here  is the definite integral of f from a to b; f (x) is called the integrand; and a and b are
called respectively the lower and upper limits of integration.

This important theorem says that if f is the derivative of F then the definite integral of f gives the
net change in F as x varies from a to b. It also says that we can evaluate any definite integral for
which we can find an antiderivative of a continuous function.

By extension, a definite integral can be evaluated for any function that is bounded and piecewise
continuous. Such functions are said to be integrable.

B. PROPERTIES OF DEFINITE INTEGRALS



The following theorems about definite integrals are important.

Fundamental Theorem of calculus

The evaluation of a definite integral is illustrated in the following examples. A calculator will be
helpful for some numerical calculations.

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3



EXAMPLE 4

EXAMPLE 5

EXAMPLE 6

EXAMPLE 7

EXAMPLE 8

BC ONLY

EXAMPLE 9

EXAMPLE 10



BC ONLY

EXAMPLE 11

BC ONLY

EXAMPLE 12

SOLUTION: We use the method of partial fractions and set

Solving for A and B yields  Thus,

EXAMPLE 13

EXAMPLE 14

EXAMPLE 15



EXAMPLE 16

EXAMPLE 17
Given  find F ′(x).

SOLUTION:

EXAMPLE 18
If  find F ′(x).

SOLUTION: We let u = cos x. Thus

EXAMPLE 19
Find 

SOLUTION:

Here we have let  and noted that

where



The limit on the right in the starred equation is, by definition, the derivative of F(x), that is, f (x).

EXAMPLE 20
Reexpress  in terms of u if 

SOLUTION: When  u2 = x − 2, and 2u du = dx. The limits of the given integral are
values of x. When we write the new integral in terms of the variable u, then the limits, if written,
must be the values of u that correspond to the given limits. Thus, when x = 3, u = 1, and when x =
6, u = 2. Then

EXAMPLE 21
If g ′ is continuous, find 

SOLUTION:

Note that the expanded limit is, by definition, the derivative of g(x) at c.

C. INTEGRALS INVOLVING PARAMETRICALLY DEFINED
FUNCTIONS
The techniques are illustrated in Examples 22 and 23.

BC ONLY

EXAMPLE 22
Evaluate  where x = 2 sin θ and y = 2 cos θ.

SOLUTION: Note that dx = 2 cos θ dθ, that  when x = −2, and that  when x = 2.



When using parametric equations we must be sure to express everything in terms of the parameter.
In Example 22 we replaced in terms of θ: (1) the integrand, (2) dx, and (3) both limits. Remember
that we have defined dx as x ′(θ) dθ.

EXAMPLE 23
Express  xy dx in terms of t if x = ln t and y = t3.

SOLUTION:
We see that  We now find limits of integration in terms of t:

For x = 0, we solve ln t = 0 to get t = 1.
For x = 1, we solve ln t = 1 to get t = e.

D. DEFINITION OF DEFINITE INTEGRAL AS THE LIMIT OF
A SUM: THE FUNDAMENTAL THEOREM AGAIN
Most applications of integration are based on the FTC. This theorem provides the tool for evaluating
an infinite sum by means of a definite integral. Suppose that a function f (x) is continuous on the
closed interval [a, b]. Divide the interval into n subintervals of lengths* Δxk. Choose numbers, one in
each subinterval, as follows: x1 in the first, x2 in the second, …, xk in the kth, …, xn in the nth. Then

Any sum of the form  is called a Riemann sum.

AREA
If f (x) is nonnegative on [a, b], we see (Figure N6–1) that f (xk) Δxk can be regarded as the area of a
typical approximating rectangle. As the number of rectangles increases, or, equivalently, as the width
Δx of the rectangles approaches zero, the rectangles become an increasingly better fit to the curve.
The sum of their areas gets closer and closer to the exact area under the curve. Finally, the area
bounded by the x-axis, the curve, and the vertical lines x = a and x = b is given exactly by



FIGURE N6–1
*It is not necessary that the subintervals be of equal length, but the formulation is generally simpler if they are.

What if f (x) is negative? Then any area above the graph and below the x-axis is counted as
negative (Figure N6–2).
The shaded area above the curve and below the x-axis equals

FIGURE N6–2

where the integral yields a negative number. Note that every product f (xk) Δx in the shaded region is
negative, since f (xk) is negative for all x between a and b.

We see from Figure N6–3 that the graph of f crosses the x-axis at c, that area A1 lies above the x-
axis, and that area A2 lies below the x-axis. Since, by property (5),

therefore



FIGURE N6–3

Note that if f is continuous then the area between the graph of f on [a, b] and the x-axis is given by

This implies that, over any interval within [a, b] for which f (x) < 0 (for which its graph dips below
the x-axis), |f (x)| = −f (x). The area between the graph of f and the x-axis in Figure N6–3 equals

This topic is discussed further in Chapter 7.

E. APPROXIMATIONS OF THE DEFINITE INTEGRAL;
RIEMANN SUMS
It is always possible to approximate the value of a definite integral, even when an integrand cannot be
expressed in terms of elementary functions. If f is nonnegative on [a, b], we interpret  dx as the
area bounded above by y = f (x), below by the x-axis, and vertically by the lines x = a and x = b. The
value of the definite integral is then approximated by dividing the area into n strips, approximating the
area of each strip by a rectangle or other geometric figure, then summing these approximations. We
often divide the interval from a to b into n strips of equal width, but any strips will work.
E1. Using Rectangles.
We may approximate  by any of the following sums, where Δx represents the

subinterval widths:
(1) Left sum: f (x0) Δx1 + f (x1) Δx2 + … + f (xn − 1) Δxn, using the value of f at the left endpoint of

each subinterval.
(2) Right sum: f (x1) Δx1 + f (x2) Δx2 + … + f (xn) Δxn, using the value of f at the right end of each

subinterval.
(3) Midpoint sum:  using the value of f at the midpoint

of each subinterval.
These approximations are illustrated in Figures N6–4 and N6–5, which accompany Example 24.

EXAMPLE 24
Approximate  by using four subintervals of equal width and calculating:

(a) the left sum,



(b) the right sum,
(c) the midpoint sum, and (d) the integral.

SOLUTIONS: Here 

(a) For a left sum we use the left-hand altitudes at  The approximating sum is

The dashed lines in Figure N6–4 show the inscribed rectangles used.
(b) For the right sum we use right-hand altitudes at  and 2. The approximating sum is

This sum uses the circumscribed rectangles shown in Figure N6–4.

FIGURE N6–4

FIGURE N6–5

(c) The midpoint sum uses the heights at the midpoints of the subintervals, as shown in Figure N6–
5. The approximating sum is

(d) Since the exact value of  or 4, the midpoint sum is the best of the three
approximations. This is usually the case.

We will denote the three Riemann sums, with n subintervals, by L(n) , R(n), and M(n). (These



sums are also sometimes called “rules.”)
E2. Using Trapezoids.
We now find the areas of the strips in Figure N6–6 by using trapezoids. We denote the bases of the
trapezoids by y0, y1, y2, …, yn and the heights by Δx = h1, h2, …, hn.

FIGURE N6–6

The following sum approximates the area between f and the x-axis from a to b:

If all subintervals are of equal width, h, we can remove the common factor 

Trapezoid Rule

Using T(n) to denote the approximating sum with n equal subintervals, we have the Trapezoid Rule:

EXAMPLE 25
Use T(4) to approximate 

SOLUTION: From Example  Then,

This is better than either L(4) or R(4), but M(4) is the best approximation here.

EXAMPLE 26
A function f passes through the five points shown. Estimate the area  using (a) a left

rectangular approximation and
(b) a trapezoidal approximation.



SOLUTION: Note that the subinterval widths are not equal.
(a) In each subinterval, we sketch the rectangle with height determined by the point on f at the

left end-point. Our estimate is the sum of the areas of these rectangles:
A ≈ 1(7) + 3(11) + 2(13) + 4(12) ≈ 114

(b) In each subinterval, we sketch trapezoids by drawing segments connecting the points o n f.
Our estimate is the sum of the areas of these trapezoids:

Comparing Approximating Sums



I f f is an increasing function on [a,b], then  while if f is decreasing, then 

From Figure N6–7 we infer that the area of a trapezoid is less than the true area if the graph of f is
concave down, but is more than the true area if the graph of f is concave up.

FIGURE N6–7

Figure N6–8 is helpful in showing how the area of a midpoint rectangle compares with that of a
trapezoid and with the true area. Our graph here is concave down. If M is the midpoint of AB, then the
midpoint rectangle is AM1 M2 B. We’ve drawn T1 T2 tangent to the curve at T (where the midpoint
ordinate intersects the curve). Since the shaded triangles have equal areas, we see that area AM1 M2

B = area AT1 T2 B.† But area AT1 T2 B clearly exceeds the true area, as does the area of the midpoint
rectangle. This fact justifies the right half of the inequality below; Figure N6–7 verifies the left half.

FIGURE N6–8

Generalizing to n subintervals, we conclude:
If the graph of f is concave down, then

If the graph of f is concave up, then

EXAMPLE 27
Write an inequality including L(n), R(n), M(n), T(n), and  for the graph of f shown in Figure
N6–9.



FIGURE N6–9

† Note that the trapezoid AT1 T2 B is different from the trapezoids in Figure N6–7, which are like the ones we use in applying the
trapezoid rule.

SOLUTION: Since f increases on [a,b] and is concave up, the inequality is

Graphing a Function from Its Derivative; Another Look

EXAMPLE 28
Figure N6–10 is the graph of function f ′(x); it consists of two line segments and a semicircle. If f
(0) = 1, sketch the graph of f (x). Identify any critical or inflection points of f and give their
coordinates.

FIGURE N6–10

SOLUTION: We know that if f ′ > 0 on an interval then f increases on the interval, while if f ′ <
0 then f decreases; also, if f ′ is increasing on an interval then the graph of f is concave up on the
interval, while if f ′ is decreasing then the graph of f is concave down. These statements lead to
the following conclusions:

 f increases on [0,1] and [3,5], because f ′ > 0 there;

but f decreases on [1,3], because f ′ < 0 there;

also the graph of f is concave down on [0,2], because f ′ is decreasing;

but the graph of f is concave up on [2,5], because f ′ is increasing.

Additionally, Since f ′(1) = f ′(3) = 0, f has critical points at x = 1 and x = 3. As x passes through



1, the sign of f ′ changes from positive to negative; as x passes through 3, the sign of f ′ changes
from negative to positive. Therefore f (1) is a local maximum and f (3) a local minimum. Since f
changes from concave down to concave up at x = 2, there is an inflection point on the graph of f
there.
These conclusions enable us to get the general shape of the curve, as displayed in Figure N6–
11a.

FIGURE N6–11a

FIGURE N6–11b

All that remains is to evaluate f (x) at x = 1, 2, and 3. We use the Fundamental Theorem of
Calculus to accomplish this, finding f also at x = 4 and 5 for completeness.
We are given that f (0) = 1. Then

where the integral yields the area of the triangle with height 2 and base 1;

where the integral gives the area of a quadrant of a circle of radius 1 (this integral is negative!);

where the integral is the area of the triangle with height 1 and base 1;



So the function f (x) has a local maximum at (1,2), a point of inflection at (2,1.2), and a local
minimum at (3,0.4) where we have rounded to one decimal place when necessary.
In Figure N6–11b, the graph of f is shown again, but now it incorporates the information just
obtained using the FTC.

EXAMPLE 29
Readings from a car’s speedometer at 10-minute intervals during a 1-hour period are given in the
table; t = time in minutes, v = speed in miles per hour:

t 0 10 20 30 40 50 60
v 26 40 55 10 60 32 45

(a) Draw a graph that could represent the car’s speed during the hour.
(b) Approximate the distance traveled, using L(6), R(6), and T(6).
(c) Draw a graph that could represent the distance traveled during the hour.

SOLUTIONS:
(a) Any number of curves will do. The graph has only to pass through the points given in the

table of speeds, as does the graph in Figure N6–12a.

FIGURE N6–12a

(b) L(6) = (26 + 40 + 55 + 10 + 60 + 32) · 

R(6) = (40 + 55 + 10 + 60 + 32 + 45) · 
 (26 + 2 · 40 + 2 · 55 + 2 · 10 + 2 · 60 + 2 · 32 + 45) = 

(c) To calculate the distance traveled during the hour, we use the methods demonstrated in
Example 28. (We know that, since v(t) > 0,  is the distance covered from time a to
time b, where v(t) is the speed or velocity). Thus,



It is left to the student to complete the missing steps above and to verify the distances in the
following table (t = time in minutes, s = distance in miles):

t 0 10 20 30 40 50 60
s 0 5.5 13.4 18.8 24.7 32.3 38.8

Figure N6–12b is one possible graph for the distance covered during the hour.

FIGURE N6–12b

EXAMPLE 30
The graph of f (t) is given in Figure N6–13.  fill in the values for F(x) in the table:

FIGURE N6–13

SOLUTION: We evaluate F(x) by finding areas of appropriate regions.



Here is the completed table:

x 0 1 2 3 4 5 6
F(x) 0 1 3 4 3 1 −0.5

EXAMPLE 31
The graph of the function f(t) is shown in Figure N6–14.

FIGURE N6–14

Let  Decide whether each statement is true or false; justify your

answers:
(i) If 4 < x < 6, F(x) > 0.
(ii) If 4 < x < 5, F ′(x) > 0.
(iii) F ″(6) < 0.

SOLUTIONS:
(i) is true. We know that, if a function g is positive on (a, b), then  whereas if g is

negative on (a, b), then  However, the area above the x-axis between x = 1 and x = 4 is
greater than that below the axis between 4 and 6. Since

it follows that F(x) > 0 if 4 < x < 6.
(ii) is false. Since F ′(x) = f (x) and f (x) < 0 if 4 < x < 5, then F ′(x) < 0.
(iii) is false. Since F ′(x) = f (x), F ″ (x) = f ′(x). At x = 6, f ′(x) > 0 (because f is increasing).
Therefore, F ″(6) > 0.



EXAMPLE 32
Graphs of functions f (x) , g(x), and h(x) are given in Figures N6–15a, N6–15b, and N6–15c.
Consider the following statements:
(I) f (x) = g ′(x) (II) h(x) = f ′(x) (III) 

Which of these statements is (are) true?
(A) I only
(B) II only
(C) III only
(D) all three
(E) none of them

SOLUTION:
The correct answer is D.
I is true since, for example, f (x) = 0 for the critical values of g: f is positive where g increases,
negative where g decreases, and so on.

FIGURE N6–15a

II is true for similar reasons.
III is also true. Verify that the value of the integral g(x) increases on the interval −2.5 < x < 0
(where f > 0), decreases between the zeros of f (where f < 0), then increases again when f
becomes positive.

FIGURE N6–15b



FIGURE N6–15c

EXAMPLE 33
Assume the world use of copper has been increasing at a rate given by f (t) = 1.5e0.015t, where t
is measured in years, with t = 0 the beginning of 2000, and f (t) is measured in millions of tons
per year.
(a) What definite integral gives the total amount of copper that was used for the 5-year period

from t = 0 to the beginning of the year 2005?
(b) Write out the terms in the left sum L(5) for the integral in (a). What do the individual terms of

L(5) mean in terms of the world use of copper?
(c) How good an approximation is L(5) for the definite integral in (a)?
SOLUTIONS:
(a) 

(b) L(5) = 15e0.015 · 0 + 15e0.015 · 1 + 15e0.015 · 2 + 15e0.015 · 3 + 15e0.015 · 4. The five terms on the
right represent the world’s use of copper for the 5 years from 2000 until 2005.

(c) The answer to (a), using our calculator, is 77.884 million tons. L(5) = 77.301 million tons, so
L(5) underestimates the projected world use of copper during the 5-year period by
approximately 583,000 tons.

Example 32 is an excellent instance of the FTC: if f = F ′ then  gives the total change in F
as x varies from a to b.

EXAMPLE 34



F. INTERPRETING ln x AS AN AREA
It is quite common to define ln x, the natural logarithm of x, as a definite integral, as follows:

This integral can be interpreted as the area bounded above by the curve  below by the t-
axis, at the left by t = 1, and at the right by t = x (x > 1). See Figure N6–16.

FIGURE N6–16

Note that if x = 1 the above definition yields ln 1 = 0, and if 0 < x < 1 we can rewrite as follows:

showing that ln x < 0 if 0 < x < 1.
With this definition of ln x we can approximate ln x using rectangles or trapezoids.

EXAMPLE 35
Show that  < ln 2 < 1.

SOLUTION: Using the definition of ln x above yields  which we interpret as the area



under  above the t-axis, and bouned at the left by t = 1 and at the right by t = 2 (the
shaded region in Figure N6–16). Since  is strictly decreasing, the area of the inscribed
rectangle (height  width 1) is less than ln 2, which, in turn, is less than the area of the
circumscribed rectangle (height 1, width 1). Thus

EXAMPLE 36
Find L(5), R(5), and T(5) for 

SOLUTION: Noting that for n = 5 subintervals on the interval [1,6] we have Δx = 1, we make a
table of values for 

x 1 2 3 4 5 6
f (x) 120 60 40 30 24 20

Then:

NOTE: The calculator finds that  is approximately 215.011.

G. AVERAGE VALUE
Average value of a function

If the function y = f (x) is integrable on the interval a ≤ x ≤ b, then we define the average value of f
from a to b to be

Note that (1) is equivalent to

I f f (x) ≥ 0 for all x on [a,b], we can interpret (2) in terms of areas as follows: The right-hand
expression represents the area under the curve of y = f (x), above the x-axis, and bounded by the
vertical lines x = a and x = b. The left-hand expression of (2) represents the area of a rectangle with
the same base (b − a) and with the average value of f as its height. See Figure N6–17.
CAUTION: The average value of a function is not the same as the average rate of change. Before
answering any question about either of these, be sure to reread the question carefully to be absolutely
certain which is called for.



FIGURE N6–17

EXAMPLE 37
Find the average value of f (x) = ln x on the interval [1,4].
SOLUTION: 

EXAMPLE 38
Find the average value of y for the semicircle  on [−2,2].

SOLUTION: 

NOTE: We have used the fact that the definite integral equals exactly the area of a semicircle of
radius 2.

EXAMPLE 39
The graphs (a) through (e) in Figure N6–18 show the velocities of five cars moving along an
east-west road (the x-axis) at time t, where 0 ≤ t ≤ 6. In each graph the scales on the two axes are
the same.
Which graph shows the car

(1) with constant acceleration?
(2) with the greatest initial acceleration?
(3) back at its starting point when t = 6?
(4) that is furthest from its starting point at t = 6?
(5) with the greatest average velocity?
(6) with the least average velocity?
(7) farthest to the left of its starting point when t = 6?



FIGURE N6–18

SOLUTIONS:
(1) (d), since acceleration is the derivative of velocity and in (d) v ′, the slope, is constant.
(2) (e), when t = 0 the slope of this v-curve (which equals acceleration) is greatest.
(3) (b), since for this car the net distance traveled (given by the net area) equals zero.
(4) (e), since the area under the v-curve is greatest, this car is farthest east.
(5) (e), the average velocity equals the total distance divided by 6, which is the net area divided
by 6 (see (4)).
(6) (a), since only for this car is the net area negative.
(7) (a) again, since net area is negative only for this car.

EXAMPLE 40
Identify each of the following quantities for the function f (x), whose graph is shown in Figure
N6–19a (note: F ′(x) = f (x)):
(a) f (b) − f (a)
(b) 

(c) F(b) − F(a)
(d) 

FIGURE N6–19a



FIGURE N6–19b

SOLUTIONS: See Figure N6–19b.
(a) f (b) − f (a) = length RQ.
(b)  = slope of secant PQ.

(c) F(b) − F(a) =  = area of APDQB.

(d)  = average value of f over [a,b] = length of CD, where CD · AB or CD · (b − a) is
equal to the area F(b) − F(a).

EXAMPLE 41
The graph in Figure N6–20 shows the speed v(t) of a car, in miles per hour, at 10-minute
intervals during a 1-hour period.

(a) Give an upper and a lower estimate of the total distance traveled.
(b) When does the acceleration appear greatest?
(c) Estimate the acceleration when t = 20.
(d) Estimate the average speed of the car during the interval 30 ≤ t ≤ 50.

FIGURE N6–20

SOLUTIONS:
(a) A lower estimate, using minimum speeds and  hr for 10 min, is

This yields  mi for the total distance traveled during the hour. An upper estimate uses



maximum speeds; it equals

or 55 mi for the total distance.
(b) The acceleration, which is the slope of v(t), appears greatest at t = 5 min, when the curve is

steepest.
(c) To estimate the acceleration v ′(t) at t = 20, we approximate the slope of the curve at t = 20.

The slope of the tangent at t = 20 appears to be equal to (10 mph)/(10 min) = (10 mph)/  =
60 mi/hr2.

(d) The average speed equals the distance traveled divided by the time. We can approximate the
distance from t = 30 to t = 50 by the area under the curve, or, roughly, by the sum of the areas
of a rectangle and a trapezoid:

Thus the average speed from t = 30 to t = 50 is

EXAMPLE 42
Given the graph of G(x) in Figure N6–21a, identify the following if G ′(x) = g(x):
(a) g(b)
(b) 

(c) 

(d) 

FIGURE N6–21a

FIGURE N6–21b



SOLUTIONS: See Figure N6–21b.
(a) g(b) is the slope of G(x) at b, the slope of line ST.
(b)  is equal to the area under G(x) from a to b.

(c)  = G(b) − G(a) = length of BT − length of BR = length of RT.

(d) 

EXAMPLE 43
The function f (t) is graphed in Figure N6–22a. Let

FIGURE N6–22a

(a) What is the domain of F ?
(b) Find x, if F ′(x) = 0.
(c) Find x, if F(x) = 0.
(d) Find x, if F(x) = 1.
(e) Find F ′(6).
(f) Find F(6).
(g) Sketch the complete graph of F.

SOLUTIONS:
(a) The domain of f is [−2,1] and [2,6], We choose the portion of this domain that contains the

lower limit of integration, 4. Thus the domain of
F is 2 ≤  ≤ 6, or 4 ≤ x ≤ 12.

(b) Since 

(c) F(x) = 0 when  or x = 8. F(8) = 

(d) For F(x) to equal 1, we need a region under f whose left endpoint is 4 with area equal to 1.
The region from 4 to 5 works nicely; so  and x = 10.

(e) 



(f) F(6) = 

(g) In Figure N6–22b we evaluate the areas in the original graph.

FIGURE N6–22b

Measured from the lower limit of integration, 4, we have (with “f” as an abbreviation for “f (t)
dt”):

We note that, since F ′(= f ) is linear on (2,4), F is quadratic on (4,8); also, since F ′ is positive
and increasing on (2,3), the graph of F is increasing and concave up on (4,6), while since F ′ is
positive and decreasing on (3,4), the graph of F is increasing but concave down on (6,8).
Finally, since F ′ is constant on (4,6), F is linear on (8,12). (See Figure N6–22c.)

FIGURE N6–22c

Chapter Summary
In this chapter, we have reviewed definite integrals, starting with the Fundamental Theorem of
Calculus. We’ve looked at techniques for evaluating definite integrals algebraically, numerically, and
graphically. We’ve reviewed Riemann sums, including the left, right, and midpoint approximations as
well as the trapezoid rule. We have also looked at the average value of a function.

This chapter also reviewed integrals based on parametrically defined functions, a BC Calculus



topic.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

1. 

(A) 

(B) 0
(C) 

(D) −2
(E) −1

2. 

(A) 

(B) 

(C) 1 − ln 2
(D) 

(E) 1

3. 

(A) 1
(B) −2
(C) 4
(D) −1
(E) 2

4. 

(A) 2
(B) 

(C) 

(D) 6
(E) 



5. 

(A) ln 3
(B) 

(C) 

(D) ln 
(E) 

6. 

(A) 1
(B) 

(C) 

(D) −1
(E) 2

7. 

(A) 

(B) 6
(C) 

(D) 0
(E) 4

8. 

(A) 

(B) 

(C) 

(D) 

(E) 

9. 

(A) 

(B) 0



(C) 

(D) 

(E) 

10. 

(A) 

(B) 1 − e
(C) 

(D) 

(E) 

11. 

(A) e − 1
(B) 

(C) 2(e − 1)
(D) 

(E) 

12. 

(A) 2
(B) 

(C) −1
(D) 

(E) −2

13. 

(A) −ln 2
(B) 

(C) 
(D) 

(E) ln 2



14. If we let x = 2 sin θ, then  is equivalent to

(A) 

(B) 

(C) 

(D) 

(E) none of these

15. 

(A) 

(B) 

(C) 1
(D) 

(E) 0

16. 

(A) 

(B) 

(C) 0
(D) 1
(E) e − 1

17. 

(A) −1
(B) e + 1
(C) 1
(D) e − 1
(E) 

BC ONLY

18. 

(A) ln 2



(B) 

(C) 

(D) 

(E) 

19. 

(A) 
(B) 

(C) 

(D) ln 3
(E) 

20. 

(A) 

(B) 

(C) 

(D) −1
(E) 

21. 

(A) 

(B) 1
(C) 

(D) 

(E) −1

22. 

(A) e
(B) 2 + e
(C) 

(D) 1 + e



(E) e − 1

23. 

(A) ln 2
(B) e
(C) 1 + e
(D) −ln 2
(E) 

24. If we let x = tan θ, then  is equivalent to

(A) 

(B) 

(C) 

(D) 

(E) 

25. If the substitution  is used, then  is equivalent to

(A) 

(B) 

(C) 

(D) 

(E) 

26. The table above shows some values of continuous function f and its first derivative. Evaluate 

x f (x) f ′(x)
0 11 3
2 15 2
4 16 −1
6 12 −3
8 7 0



(A) −1/2
(B) −3/8
(C) 3
(D) 4
(E) none of these

27. Using M(3), we find that the approximate area of the shaded region below is
(A) 9
(B) 19
(C) 36
(D) 38
(E) 54

28. The graph of a continuous function f passes through the points (4,2), (6,6), (7,5), and (10,8).
Using trapezoids, we estimate that 

(A) 25
(B) 30
(C) 32
(D) 33
(E) 41

29. The area of the shaded region in the figure is equal exactly to ln 3. If we approximate ln 3
using L(2) and R(2), which inequality follows?



(A) 

(B) 

(C) 

(D) 

(E) 

30. Let  We estimate A using the L, R, and T approximations with n = 100 subintervals.
Which is true?
(A) L < A < T < R
(B) L < T < A < R
(C) R < A < T < L
(D) R < T < A < L
(E) The order cannot be determined.

31. 

(A) 

(B) 4
(C) 

(D) 5
(E) 

32. 

(A) 

(B) 

(C) 5



(D) 

(E) 

33. The average value of  on its domain is
(A) 2
(B) 4
(C) 2π
(D) 4π
(E) none of these

34. The average value of cos x over the interval 

(A) 

(B) 

(C) 

(D) 

(E) 

35. The average value of csc2 x over the interval from 

(A) 

(B) 

(C) 

(D) 
(E) 

Part B. Directions: Some of the following questions require the use of a graphing calculator.

36. Find the average value of function f, as shown in the graph below, on the interval [0,5].



(A) 2
(B) 4
(C) 5
(D) 7
(E) 8

37. The integral  gives the area of

(A) a circle of radius 4
(B) a semicircle of radius 4
(C) a quadrant of a circle of radius 4
(D) an ellipse whose semimajor axis is 4
(E) none of these

38. 

(A) 0.25
(B) 0.414
(C) 1.000
(D) 1.414
(E) 2.000

Use the graph of function f, shown below, for questions 39–42.



39. In which of these intervals is there a value c for which f (c) is the average value of f over the
interval [0,6]?
I. [0,2]
II. [2,4]
III. [4,6]
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) none of these, because f is not differentiable on [0,6]

40. 

(A) −2
(B) 

(C) 0
(D) 

(E) 2

41. Let g(x) =  then g ′(1)

(A) = 3.
(B) = 4.
(C) = 6.
(D) = 8.
(E) does not exist, because f is not differentiable at x = 2.

42. Let h(x) = x2 − f (x). Find 

(A) 22
(B) 38
(C) 58
(D) 70
(E) 74

43. If f (x) is continuous on the closed interval [a,b], then there exists at least one number c, a < c
< b, such that  is equal to



(A) 

(B) f ′(c)(b − a)
(C) f (c)(b − a)
(D) 

(E) f (c)[f (b) − f (a)]

44. If f (x) is continuous on the closed interval [a,b] and k is a constant, then  is equal to

(A) k(b − a)
(B) k[f (b) − f (a)]
(C) kF(b − a), where 

(D) 

(E) 

45. 

(A) 

(B) 

(C) 

(D) 
(E) none of these

46. If  then F ′(u) is equal to

(A) −6u(2 − u2)2

(B) 

(C) (2 − u2)3 − 1

(D) (2 − u2)3

(E) −2u(2 − u2)3

47. 

(A) 
(B) 
(C) 



(D) 
(E) 

48. If x = 4 cos θ and y = 3 sin θ, then  is equivalent to

(A) 

(B) 

(C) 

(D) 

(E) 

49. A curve is defined by the parametric equations x = 2a tan θ and y = 2a cos2 θ, where 0  θ 
π. Then the definite integral  is equivalent to

(A) 

(B) 

(C) 

(D) 

(E) 

BC ONLY

50. A curve is given parametrically by x = 1 − cos t and y = t − sin t, where 0  t  π. Then 
is equivalent to
(A) 

(B) 

(C) 

(D) 

(E) 

BC ONLY

51. When  is estimated using n = 5 subintervals of equal width, which is (are) true?



I. 

II. 

III. 

(A) II only
(B) III only
(C) I and II only
(D) I and III only
(E) II and III only

52. Find the value of x at which the function y = x2 reaches its average value on the interval [0,10].
(A) 4.642
(B) 5
(C) 5.313
(D) 5.774
(E) 7.071

53. The average value of  on the interval 0 ≤ x ≤ 5 is

(A) 8
(B) 9.2
(C) 16
(D) 23
(E) undefined because f is not differentiable on this interval



CHAPTER 7 Applications of Integration to Geometry

Concepts and Skills
In this chapter, we will review using definite integrals to find areas and volumes; specifically
• area under a curve,
• area between two curves,
• volumes of solids with known cross sections,
• and volumes of solids of revolution (using disks and washers).
We’ll also review related BC topics, including
• arc length;
• arc lengths, areas, and volumes involving parametrically defined functions;
• and area and arc length for polar curves.
Also for BC Calculus students, we’ll review the topic of improper integrals, including
• recognizing when an integral is improper
• and techniques for determining whether an improper integral converges or diverges.

A. AREA
To find an area, we
(1) draw a sketch of the given region and of a typical element;
(2) write the expression for the area of a typical rectangle; and
(3) set up the definite integral that is the limit of the Riemann sum of n areas as n → ∞.

FIGURE N7–1

If f (x) is nonnegative on [a,b], as in Figure N7–1, then f (xk) Δx can be regarded as the area of a
typical approximating rectangle, and the area bounded by the x-axis, the curve, and the vertical lines x
= a and x = b is given exactly by

See Questions 1,5, and 10 in the Practice Exercises at the end of this chapter.



If f (x) changes sign on the interval (Figure N7–2), we find the values of x for which f (x) = 0 and
note where the function is positive, where it is negative. The total area bounded by the x-axis, the
curve, x = a, and x = b is here given exactly by

where we have taken into account that f (xk) Δx is a negative number if c < x < d.

FIGURE N7–2

See Question 11 in the Practice Exercises.
If x is given as a function of y, say x = g(y), then (Figure N7–3) the subdivisions are made along

the y-axis, and the area bounded by the y-axis, the curve, and the horizontal lines y = a and y = b is
given exactly by

See Questions 3 and 13 in the Practice Exercises.

FIGURE N7–3

A1. Area Between Curves.
To find the area between curves (Figure N7–4), we first find where they intersect and then write the
area of a typical element for each region between the points of intersection. For the total area
bounded by the curves y = f (x) and y = g(x) between x = a and x = e, we see that, if they intersect at
[c,d], the total area is given exactly by



See Questions 4, 6, 7, and 9 in the Practice Exercises.

FIGURE N7–4

A2. Using Symmetry.
Frequently we seek the area of a region that is symmetric to the x- or y-axis (or both) or to the origin.
In such cases it is almost always simpler to make use of this symmetry when integrating. For example:
•  The area bounded by the x-axis and this arch of the cosine curve is symmetric to the y-axis; hence it

is twice the area of the region to the right of the y-axis.

•  The area bounded by the parabola and the line is symmetric to the x-axis; hence it is twice the area
of the region above the x-axis.

•  The ellipse is symmetric to both axes; hence the area inside the ellipse is four times the area in the
first quadrant.



Evaluating  Using a Graphing Calculator
The calculator is especially useful in evaluating definite integrals when the x-intercepts are not

easily determined otherwise or when an explicit antiderivative of f is not obvious (or does not exist).

EXAMPLE 1

Evaluate 

SOLUTION: The integrand f (x) = e−x2 has no easy antiderivative. The calculator estimates the
value of the integral to be 0.747 to three decimal places.

EXAMPLE 2
In Figure N7–5, find the area under f (x) = −x4 + x2 + x + 10 and above the x-axis.

FIGURE N7–5

SOLUTION: To get an accurate answer for the area  use the calculator to find the two
intercepts, storing them as P and Q, and then evaluate the integral:

which is accurate to three decimal places.

Region Bounded by a Parametric Curve

If x and y are given parametrically, say by x = f (θ), y = g(θ), then to evaluate  we express y, dx,
and the limits a and b in terms of θ and dθ, then integrate. Remember that we define dx to be x ′(θ) dθ,



or f ′(θ) dθ.
See Questions 14, 15, and 44 in the Practice Exercises.

BC ONLY

Region Bounded by Polar Curve

FIGURE N7–6

To find the area A bounded by the polar curve r = f (θ) and the rays θ = α and θ = β (see Figure
N7–6), we divide the region into n sectors like the one shown. If we think of that element of area, ΔA,

as a circular sector with radius r and central angle Δθ, its area is given by 
Summing the areas of all such sectors yields the area of the entire region:

The expression above is a Riemann sum, equivalent to this definite integral:

We have assumed above that f (θ)  0 on [α, β]. We must be careful in determining the limits α
and β in (2); often it helps to think of the required area as that “swept out” (or generated) as the radius
vector (from the pole) rotates from θ = α to θ = β. It is also useful to exploit symmetry of the curve
wherever possible.

The relations between rectangular and polar coordinates, some common polar equations, and
graphs of polar curves are given in the Appendix.

BC ONLY

EXAMPLE 3
Find the area inside both the circle r = 3 sin θ and the cardioid r = 1 + sin θ.
SOLUTION: Choosing an appropriate window, graph the curves on your calculator.
See Figure N7–7, where one half of the required area is shaded. Since 3 sin θ = 1 + sin θ when 



 we see that the desired area is twice the sum of two parts: the area of the circle swept
out by θ as it varies from 0 to  plus the area of the cardioid swept out by a radius vector as θ varies
from  Consequently

FIGURE N7–7

See also Questions 46 and 47 in the Practice Exercises.
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EXAMPLE 4
Find the area enclosed by the cardioid r = 2(1 + cos θ).
SOLUTION: We graphed the cardioid on our calculator, using polar mode, in the window [−2,5] ×
[−3,3] with θ in [0,2π].

FIGURE N7–8

Using the symmetry of the curve with respect to the polar axis we write



B. VOLUME
B1. Solids with Known Cross Sections
If the area of a cross section  of a solid is known and can be expressed in terms of x, then the volume
of a typical slice, ΔV, can be determined. The volume of the solid is obtained, as usual, by letting the
number of slices increase indefinitely. In Figure N7–9, the slices are taken perpendicular to the x-axis
so that ΔV = A(x) Δx, where A(x) is the area of a cross section and Δx is the thickness of the slice.

FIGURE N7–9

EXAMPLE 5
A solid has as its base the circle x2 + y2 = 9, and all cross sections parallel to the y-axis are squares.
Find the volume of the solid.
SOLUTION:

FIGURE N7–10

In Figure N7–10 the element of volume is a square prism with sides of length 2y and thickness Δx,
so



ΔV = (2y)2 Δx = 4y2 Δx = 4(9 − x2) Δx.
Now, using symmetry across the y-axis, we find the volume of the solid:

Questions 25, 26, and 27 in the Practice Exercises illustrate solids with known cross sections.
When the cross section of a solid is a circle, a typical slice is a disk. When the cross section is the

region between two circles, a typical slice is a washer—a disk with a hole in it. Both of these solids,
which are special cases of solids with known cross sections, can be generated by revolving a plane
area about a fixed line.
B2. Solids of Revolution
A solid of revolution is obtained when a plane region is revolved about a fixed line, called the axis
of revolution. There are two major methods of obtaining the volume of a solid of revolution “disks”
and “washers.”
DISKS
The region bounded by a curve and the x-axis is revolved around the x-axis, forming the solid of
revolution seen in Figure N7–11. We think of the “rectangular” strip” of the region at the left as
generating the solid disk, ΔV (an element of the volume), shown at the right.

FIGURE N7–11

This disk is a cylinder whose radius, r, is the height of the rectangular strip, and whose height is
the thickness of the strip, Δx. Thus

EXAMPLE 6
Find the volume of a sphere of radius r.
SOLUTION: If the region bounded by a semicircle (with center O and radius r) and its diameter is
revolved about the x-axis, the solid of revolution obtained is a sphere of radius r, as seen in Figure
N7–12.



FIGURE N7–12

The volume ΔV of a typical disk is given by ΔV = π y2 Δx. The equation of the circle is x2 + y2 =
r2. To find the volume of the sphere, we form a Riemann sum whose limit as n becomes infinite is a
definite integral. Then,

EXAMPLE 7
Find the volume of the solid generated when the region bounded by y = x2, x = 2, and y = 0 is rotated
about the line x = 2 as shown in Figure N7–13.

SOLUTION:
Disk.

FIGURE N7–13

See Questions 18, 49, 51, 52, and 53 in the Practice Exercises for examples of finding volumes by



disks.
WASHERS
A washer is a disk with a hole in it. The volume may be regarded as the difference in the volumes of
two concentric disks. As an example, consider the volume of the solid of revolution formed when the
region bounded by the two curves seen in Figure N7–14 is revolved around the x-axis. We think of
the rectangular strip of the region at the left as generating the washer, ΔV (an element of the volume),
shown at the right.

FIGURE N7–14

This washer’s height is the thickness of the rectangular strip, Δx. The washer is a disk whose
outer radius, R, is the distance to the top of the rectangular strip, with the disk of inner radius r (the
distance to the bottom of the strip) removed. Thus:

EXAMPLE 8
Find the volume obtained when the region bounded by y = x2 and y = 2x is revolved about the x-axis.
SOLUTION: The curves intersect at the origin and at (2, 4), as shown in Figure N7–15. Note that
we distinguish between the two functions by letting (x, y1) be a point on the line and (x, y2) be a
point on the parabola.

Washer.



FIGURE N7–15

EXAMPLE 9
Find the volume of the solid generated when the region bounded by y = x2, x = 2, and y = 0 is rotated
about the y-axis, as shown in Figure N7–16.

SOLUTION:
Washer.

FIGURE N7–16

See Questions 19, 21, 48, 50, and 54 in the Practice Exercises for examples in which washers are
regarded as the differences of two disks.

Occasionally when more than one method is satisfactory we try to use the most efficient. In the
answers to each question in the Practice Exercises, a sketch is shown and the type and volume of a
typical element are given. The required volume is then found by letting the number of elements
become infinite and applying the Fundamental Theorem.
SHELLS‡



A cylindrical shell may be regarded as the outer skin of a cylinder. Its volume is the volume of the
rectangular solid formed when this skin is peeled from the cylinder and flattened out. As an example,
consider the volume of the solid of revolution formed when the region bounded by the two curves
seen in Figure N7–17 is revolved around the y-axis. We think of the rectangular strip of the region at
the left as generating the shell, ΔV (an element of the volume), shown at the right.

FIGURE N7–17

This shell’s radius, r, is the distance from the axis to the rectangular strip, and its height is the
height of the rectangular strip, h. When the shell is unwound and flattened to form a rectangular solid,
the length of the solid is the circumference of the cylinder, 2πr, its height is the height of the cylinder,
h, and its thickness is the thickness of the rectangular strip, Δx. Thus:

‡Examples 10–12 involve finding volumes by the method of shells. Although shells are not included in the Topic Outline, we include this
method here because it is often the most efficient (and elegant) way to find a volume. No question requiring shells will appear on the
AP exam.

EXAMPLE 10
Find the volume of the solid generated when the region bounded by y = x2, x = 2, and y = 0 is rotated
about the line x = 2. See Figure N7–18.

SOLUTION:
About x = 2.
Shell.



(Note that we obtained the same result using disks in Example 7.)
FIGURE N7–18

EXAMPLE 11
The region bounded by y = 3x − x2 and y = x is rotated about the y-axis. Find the volume of the solid
obtained. See Figure N7–19.

SOLUTION:
About the y-axis.
Shell.

FIGURE N7–19

EXAMPLE 12
Find the volume obtained when the region bounded by y = x2 and y = 2x is revolved about the x-axis.
SOLUTION: The curves intersect at the origin and at (2,4), as shown in Figure N7–20. Note that
we distinguish between the two functions by letting (x1, y) be a point on the line and (x2, y) be a
point on the parabola.



Shell.

(Note that we obtained the same result using washers in Example 8.)
FIGURE N7–20

NOTE: In Examples 32 and 33 we consider finding the volumes of solids using shells that lead to
improper integrals.
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C. ARC LENGTH
If the derivative of a function y = f (x) is continuous on the interval a  x  b, then the length s of the
arc of the curve of y = f (x) from the point where x = a to the point where x = b is given by

Here a small piece of the curve is equal approximately to 
As Δx → 0, the sum of these pieces approaches the definite integral above.
If the derivative of the function x = g(y) is continuous on the interval c ≤ y ≤ d, then the length s of

the arc from y = c to y = d is given by

If a curve is defined parametrically by the equations x = x(t) and y = y(t), if the derivatives of the
functions x(t) and y(t) are continuous on |ta, tb], (and if the curve does not intersect itself), then the
length of the arc from t = ta to t = tb is given by
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The parenthetical clause above is equivalent to the requirement that the curve is traced out just once
as t varies from ta to tb.

As indicated in Equation (4), formulas (1), (2), and (3) can all be derived easily from the very
simple relation

and can be remembered by visualizing Figure N7–21.

FIGURE N7–21

EXAMPLE 13
Find the length, to three decimal places, of the arc of y = x3/2 from x = 1 to x = 8.

SOLUTION: Here 

EXAMPLE 14
Find the length, to three decimal places, of the curve (x − 2)2 = 4y3 from y = 0 to y = 1.

SOLUTION: Since x − 2 = 2y3/2 and  Equation (2) above yields

EXAMPLE 15

The position (x, y) of a particle at time t is given parametrically by x = t2 and  Find the
distance the particle travels between t = 1 and t = 2.

SOLUTION: We can use (4): ds2 = dx2 + dy2, where dx = 2 t dt and dy = (t2 − 1) dt. Thus,

BC ONLY



EXAMPLE 16

Find the length of the arc of y = ln sec x from x = 0 to 
SOLUTION:

 

D. IMPROPER INTEGRALS
There are two classes of improper integrals:
(1) those in which at least one of the limits of integration is infinite (the interval is not bounded); and

(2) those of the type  where f (x) has a point of discontinuity (becoming infinite) at x = c, a  c
 b (the function is not bounded).
Illustrations of improper integrals of class (1) are:

The following improper integrals are of class (2):

Sometimes an improper integral belongs to both classes. Consider, for example,

In each case, the interval is not bounded and the integrand fails to exist at some point on the interval
of integration.

Note, however, that each integral of the following set is proper:

The integrand, in every example above, is defined at each number on the interval of integration.



Improper integrals of class (1), where the interval is not bounded, are handled as limits:

where f is continuous on [a,b]. If the limit on the right exists, the improper integral on the left is said
to converge to this limit; if the limit on the right fails to exist, we say that the improper integral
diverges (or is meaningless).

The evaluation of improper integrals of class (1) is illustrated in Examples 17–23.

EXAMPLE 17

Find 

SOLUTION:  The given integral thus converges to 1. In

Figure N7–22 we interpret  as the area above the x-axis, under the curve of y = 3, and bounded
at the left by the vertical line x = 1.

FIGURE N7–22

BC ONLY

EXAMPLE 18

It can be proved that  converges if p > 1 but diverges if p  1. Figure N7–23 gives a

geometric interpretation in terms of area of  Only the first-quadrant area under 
bounded at the left by x = 1 exists. Note that



FIGURE N7–23

EXAMPLE 19

EXAMPLE 20

BC ONLY

EXAMPLE 21

EXAMPLE 22

Thus, this improper integral diverges.

EXAMPLE 23

 Since this limit does not exist (sin b takes on values between −1 and 1
as b → ∞), it follows that the given integral diverges.



Note, however, that it does not become infinite; rather, it diverges by oscillation.

Improper integrals of class (2), where the function has an infinite discontinuity, are handled as
follows.

To investigate  where f becomes infinite at x = a, we define  to be  The
given integral then converges or diverges according to whether the limit does or does not exist. If f

has its discontinuity at b, we define  to be  again, the given integral converges or
diverges as the limit does or does not exist. When, finally, the integrand has a discontinuity at an
interior point c on the interval of integration (a < c < b), we let

Now the improper integral converges only if both of the limits exist. If either limit does not exist, the
improper integral diverges.

The evaluation of improper integrals of class (2) is illustrated in Examples 24–31.
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EXAMPLE 24

Find 

SOLUTION: 

In Figure N7–24 we interpret this integral as the first-quadrant area under  and to the left of x =
1.

FIGURE N7–24

EXAMPLE 25

Does  converge or diverge?

SOLUTION: 
Therefore, this integral diverges.



It can be shown that (a > 0) converges if p < 1 but diverges if p  1. Figure N7–25 shows an

interpretation of  in terms of areas where  1, and 3. Only the first-quadrant area under 
to the left of x = 1 exists.
Note that
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FIGURE N7–25

EXAMPLE 26

EXAMPLE 27

This integral diverges.

EXAMPLE 28
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EXAMPLE 29



Neither limit exists; the integral diverges.
NOTE: This example demonstrates how careful one must be to notice a discontinuity at an interior
point. If it were overlooked, one might proceed as follows:

Since this integrand is positive except at zero, the result obtained is clearly meaningless. Figure N7–
26 shows the impossibility of this answer.

FIGURE N7–26

THE COMPARISON TEST
We can often determine whether an improper integral converges or diverges by comparing it to a
known integral on the same interval. This method is especially helpful when it is not easy to actually
evaluate the appropriate limit by finding an antiderivative for the integrand. There are two cases.

(1) Convergence. If on the interval of integration f (x) ≤ g(x) and  is known to converge, then 

 also converges. For example, consider  We know that  converges. Since 

 the improper integral  must also converge.

(2) Divergence. If on the interval of integration f (x) ≥ g(x) and  is known to diverge, then 

 also diverges. For example, consider  We know that  diverges. Since sec x ≥

1, it follows that  hence the improper integral  must also diverge.
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EXAMPLE 30

Determine whether or not  converges.

SOLUTION: Although there is no elementary function whose derivative is e−x2, we can still show
that the given improper integral converges. Note, first, that if x  1 then x2  x, so that −x2  −x and
e−x2  e−x. Furthermore,



Since  converges and  dx converges by the Comparison Test.

EXAMPLE 31

Show that  converges.

SOLUTION: 
we will use the Comparison Test to show that both of these integrals converge. Since if 0 < x  1,
then x + x4 > x and  it follows that

We know that  converges; hence  must converge.

Further, if x  1 then x + x4  x4 and  so

We know that  converges, hence  also converges.

Thus the given integral,  converges.

NOTE: Examples 32 and 33 involve finding the volumes of solids. Both lead to improper integrals.
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EXAMPLE 32
Find the volume, if it exists, of the solid generated by rotating the region in the first quadrant

bounded above by  at the left by x = 1, and below by y = 0, about the x-axis.



FIGURE N7–27

SOLUTION:
About the x-axis.
Disk.
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EXAMPLE 33‡
Find the volume, if it exists, of the solid generated by rotating the region in the first quadrant
bounded above by  at the left by x = 1, and below by y = 0, about the y-axis.



FIGURE N7–28

SOLUTION:
About the y-axis.
Shell.
ΔV = 2πxy Δx = 2π Δx.

Note that  diverges to infinity.

Chapter Summary
In this chapter, we have reviewed how to find areas and volumes using definite integrals. We’ve
looked at area under a curve and between two curves. We’ve reviewed volumes of solids with
known cross sections, and the methods of disks and washers for finding volumes of solids of
revolution.

For BC Calculus students, we’ve applied these techniques to parametrically defined functions and
polar curves and added methods for finding lengths of arc. We’ve also looked at improper integrals
and tests for determining convergence and divergence.
‡No question requiring the use of shells will appear on the AP exam.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.
AREA

In Questions 1–11, choose the alternative that gives the area of the region whose boundaries are
given.



1. The curve of y = x2, y = 0, x = −1, and x = 2.

(A) 

(B) 
(C) 3
(D) 5
(E) none of these

2. The parabola y = x2 − 3 and the line y = 1.

(A) 
(B) 32

(C) 

(D) 
(E) none of these

3. The curve of x = y2 − 1 and the y-axis.

(A) 

(B) 

(C) 

(D) 
(E) none of these

4. The parabola y2 = x and the line x + y = 2.

(A) 

(B) 

(C) 

(D) 

(E) 



5. The curve of  the x-axis, and the vertical lines x = −2 and x = 2.

(A) 

(B) 
(C) 2π
(D) π
(E) none of these

6. The parabolas x = y2 − 5y and x = 3y − y2.

(A) 

(B) 

(C) 

(D) 
(E) none of these

7. The curve of  and x + y = 3.

(A) 

(B) 

(C) 

(D) 

(E) 

8. In the first quadrant, bounded below by the x-axis and above by the curves of y = sin x and y =
cos x.
(A) 
(B) 
(C) 2
(D) 
(E) 



9. Bounded above by the curve y = sin x and below by y = cos x from 
(A) 

(B) 

(C) 
(D) 
(E) 

10. The curve y = cot x, the line  and the x-axis.
(A) ln 2

(B) 
(C) 1

(D) 
(E) 2

11. The curve of y = x3 − 2x2 − 3x and the x-axis.

(A) 

(B) 

(C) 

(D) 
(E) none of these

12. The total area bounded by the cubic x = y3 − y and the line x = 3y is equal to
(A) 4

(B) 
(C) 8

(D) 
(E) 16

13. The area bounded by y = ex, y = 2, and the y-axis is equal to
(A) 3 − e



(B) e2 − 1

(C) e2 + 1
(D) 2 ln 2 − 1
(E) 2 ln 2 − 3

14. The area enclosed by the ellipse with parametric equations x = 2 cos θ and y = 3 sin θ equals
(A) 6π

(B) 
(C) 3π

(D) 
(E) none of these

BC ONLY

15. The area enclosed by one arch of the cycloid with parametric equations x = θ − sin θ and y = 1
− cos θ equals

(A) 
(B) 3π
(C) 2π
(D) 6π
(E) none of these

BC ONLY

16. The area enclosed by the curve y2 = x(1 − x) is given by

(A) 

(B) 

(C) 
(D) π
(E) 2π

BC ONLY



17. The figure below shows part of the curve of y = x3 and a rectangle with two vertices at (0,0)
and (c, 0). What is the ratio of the area of the rectangle to the shaded part of it above the cubic?

(A) 3:4
(B) 5:4
(C) 4:3
(D) 3:1
(E) 2:1

VOLUME
In Questions 18–24 the region whose boundaries are given is rotated about the line indicated.

Choose the alternative that gives the volume of the solid generated.

18. y = x2, x = 2, and y = 0; about the x-axis.

(A) 
(B) 8π

(C) 

(D) 

(E) 

19. y = x2, x = 2, and y = 0; about the y-axis.

(A) 
(B) 4π

(C) 
(D) 8π



(E) 

20. The first quadrant region bounded by y = x2, the y-axis, and y = 4; about the y-axis.
(A) 8π
(B) 4π

(C) 

(D) 

(E) 

21. y = x2 and y = 4; about the x-axis.

(A) 

(B) 

(C) 

(D) 
(E) none of these

22. y = x2 and y = 4; about the line y = 4.

(A) 

(B) 

(C) 

(D) 

(E) 

23. An arch of y = sin x and the x-axis; about the x-axis.

(A) 

(B) 

(C) 



(D) π2

(E) π(π − 1)

24. A trapezoid with vertices at (2,0), (2, 2), (4,0), and (4,4); about the x-axis.

(A) 

(B) 

(C) 

(D) 
(E) none of these

25. The base of a solid is a circle of radius a, and every plane section perpendicular to a diameter
is a square. The solid has volume

(A) 
(B) 2πa3

(C) 4πa3

(D) 

(E) 

26. The base of a solid is the region bounded by the parabola x2 = 8y and the line y = 4, and each
plane section perpendicular to the y-axis is an equilateral triangle. The volume of the solid is

(A) 
(B) 
(C) 
(D) 32
(E) none of these

27. The base of a solid is the region bounded by y = e−x, the x-axis, the y-axis, and the line x = 1.
Each cross section perpendicular to the x-axis is a square. The volume of the solid is

(A) 
(B) e2 − 1

(C) 



(D) 

(E) 

ARC LENGTH

28. The length of the arc of the curve y2 = x3 cut off by the line x = 4 is

(A) 

(B) 

(C) 

(D) 
(E) none of these

BC ONLY

29. The length of the arc of y = ln cos x from  equals

(A) 
(B) 2
(C) 
(D) 

(E) 

BC ONLY

IMPROPER INTEGRALS

30. 
(A) 1

(B) 
(C) −1

(D) 



(E) none of these

31. 
(A) 1

(B) 

(C) 
(D) −1
(E) none of these

32. 

(A) 

(B) 
(C) 3
(D) 1
(E) none of these

33. 
(A) 6

(B) 

(C) 
(D) 0
(E) none of these

34. 
(A) 2
(B) −2
(C) 0

(D) 
(E) none of these



35. 
(A) −2

(B) 
(C) 2

(D) 
(E) none of these
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In Questions 36–40, choose the alternative that gives the area, if it exists, of the region described.

36. In the first quadrant under the curve of y = e−x.
(A) 1
(B) e

(C) 
(D) 2
(E) none of these

37. In the first quadrant under the curve of y = xe−x2.
(A) 2

(B) 

(C) 

(D) 
(E) none of these

38. In the first quadrant above y = 1, between the y-axis and the curve xy = 1.
(A) 1
(B) 2

(C) 
(D) 4
(E) none of these



39. Between the curve  and the x-axis.
(A) 2π
(B) 4π
(C) 8π
(D) π
(E) none of these

40. Above the x-axis, between the curve  and its asymptotes.

(A) 
(B) π
(C) 2π
(D) 4π
(E) none of these
In Questions 41 and 42, choose the alternative that gives the volume, if it exists, of the solid

generated.

41.  at the left by x = 1, and below by y = 0; about the x-axis.

(A) 
(B) π
(C) 2π
(D) 4π
(E) none of these

42. The first-quadrant region under y = e−x ; about the x-axis.

(A) 
(B) π
(C) 2π
(D) 4π
(E) none of these

Part B. Directions: Some of the following questions require the use of a graphing calculator.

AREA



In Questions 43–47, choose the alternative that gives the area of the region whose boundaries are
given.

43. The area bounded by the parabola y = 2 − x2 and the line y = x − 4 is given by

(A) 

(B) 

(C) 

(D) 
(E) none of these
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44. The area enclosed by the hypocycloid with parametric equations x = cos3 t and y = sin3 t as
shown in the above diagram is

(A) 

(B) 

(C) 

(D) 
(E) none of these

BC ONLY



45. Suppose the following is a table of ordinates for y = f (x), given that f is continuous on [1, 5]:

x 1 2 3

y 1.62 4.15 7.5

If a trapezoid sum in used, with n = 4, then the area under the curve, from x = 1 to x = 5, is equal, to
two decimal places, to

(A) 6.88
(B) 13.76
(C) 20.30
(D) 25.73
(E) 27.53

46. The area A enclosed by the four-leaved rose r = cos 2θ equals, to three decimal places,
(A) 0.785
(B) 1.571
(C) 2.071
(D) 3.142
(E) 6.283
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47. The area bounded by the small loop of the limaçon r = 1 − 2 sin θ is given by the definite
integral

(A) 

(B) 

(C) 

(D) 

(E) 
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VOLUME
In Questions 48–54 the region whose boundaries are given is rotated about the line indicated.

Choose the alternative that gives the volume of the solid generated.



48. y = x2 and y = 4; about the line y = −1.

(A) 

(B) 

(C) 

(D) 
(E) none of these

49. y = 3x − x2 and y = 0; about the x-axis.

(A) 

(B) 

(C) 

(D) 

(E) 

50. y = 3x − x2 and y = x; about the x-axis.

(A) 

(B) 

(C) 

(D) 

(E) 

51. y = ln x, y = 0, x = e; about the line x = e.

(A) 

(B) 

(C) 



(D) 
(E) none of these

52. The curve with parametric equations x = tan θ, y = cos2 θ, and the lines x = 0, x = 1, and y = 0;
about the x-axis.

(A) 

(B) 

(C) 

(D) 

(E) 
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53. A sphere of radius r is divided into two parts by a plane at distance h (0 < h < r) from the
center. The volume of the smaller part equals

(A) 

(B) 

(C) 

(D) 
(E) none of these

CHALLENGE

54. If the curves of f (x) and g(x) intersect for x = a and x = b and if f (x) > g(x) > 0 for all x on (a,
b), then the volume obtained when the region bounded by the curves is rotated about the x-axis is
equal to

(A) 

(B) 

(C) 



(D) 
(E) none of these

ARC LENGTH

55. The length of one arch of the cycloid  equals

(A) 

(B) 

(C) 

(D) 

(E) 
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56. The length of the arc of the parabola 4x = y2 cut off by the line x = 2 is given by the integral

(A) 

(B) 

(C) 

(D) 
(E) none of these

BC ONLY

57. The length of x = et cos t, y = et sin t from t = 2 to t = 3 is equal to
(A) 
(B) 
(C) 2(e3 − e2)

(D) e3 (cos 3 + sin 3) − e2 (cos 2 + sin 2)
(E) none of these



CHALLENGE

IMPROPER INTEGRALS

58. Which one of the following is an improper integral?

(A) 

(B) 

(C) 

(D) 
(E) none of these

59. Which one of the following improper integrals diverges?

(A) 

(B) 

(C) 

(D) 
(E) none of these

60. Which one of the following improper integrals diverges?

(A) 

(B) 

(C) 

(D) 

(E) 



CHAPTER 8 Further Applications of Integration

Concepts and Skills
In this chapter, we will review many ways that definite integrals can be used to solve a variety of
problems, notably distance traveled by an object in motion along a line. We’ll see that in a variety
of settings accumulated change can be expressed as a Riemann sum whose limit becomes an
integral of the rate of change.

For BC students, we’ll expand our discussion of motion to include objects in motion in a plane
along a parametrically defined curve.

A. MOTION ALONG A STRAIGHT LINE
If the motion of a particle P along a straight line is given by the equation s = F(t), where s is the
distance at time t of P from a fixed point on the line, then the velocity and acceleration of P at time t
are given respectively by

This topic was discussed as an application of differentiation. Here we will apply integration to find
velocity from acceleration and distance from velocity.

Distance

If we know that particle P has velocity v(t), where v is a continuous function, then the distance
traveled by the particle during the time interval from t = a to t = b is the definite integral of its speed:

If v(t)  0 for all t on [a, b] (i.e., P moves only in the positive direction), then (1) is equivalent to 
 similarly, if v(t)  0 on [a, b] (P moves only in the negative direction), then (1) yields 

 If v(t) changes sign on [a, b] (i.e., the direction of motion changes), then (1) gives the total
distance traveled. Suppose, for example, that the situation is as follows:

Then the total distance traveled during the time interval from t = a to t = b is exactly



The displacement or net change in the particle’s position from t = a to t = b is equal, by the
Fundamental Theorem of Calculus (FTC), to

EXAMPLE 1
If a body moves along a straight line with velocity v = t3 + 3t2, find the distance traveled between t
= 1 and t = 4.

SOLUTION: 

Note that v > 0 for all t on [1, 4].

EXAMPLE 2
A particle moves along the x-axis so that its velocity at time t is given by v(t) = 6t2 − 18t + 12.
(a) Find the total distance covered between t = 0 and t = 4.
(b) Find the displacement of the particle from t = 0 to t = 4.
SOLUTIONS:
(a) Since v(t) = 6t2 − 18t + 12 = 6(t − 1)(t − 2), we see that:

Thus, the total distance covered between t = 0 and t = 4 is

When we replace v(t) by 6t2 − 18t + 12 in (2) and evaluate, we obtain 34 units for the total
distance covered between t = 0 and t = 4. This can also be verified on your calculator by
evaluating

This example is the same as Example 26, in which the required distance is computed by another
method.

(b) To find the displacement of the particle from t = 0 to t = 4, we use the FTC, evaluating



This is the net change in position from t = 0 to t = 4, sometimes referred to as “position shift.” Here
it indicates the particle ended up 32 units to the right of its starting point.

EXAMPLE 3
The acceleration of an object moving on a line is given at time t by a = sin t; when t = 0 the object
is at rest. Find the distance s it travels from t = 0 to 

SOLUTION: Since  it follows that

Also, v(0) = 0 yields C = 1. Thus v(t) = 1 − cos t; and since cos t  1 for all t we see that v(t)  0
for all t. Thus, the distance traveled is

B. MOTION ALONG A PLANE CURVE
BC ONLY

I n Chapter 4, §K, it was pointed out that, if the motion of a particle P along a curve is given
parametrically by the equations x = x(t) and y = y(t), then at time t the position vector R, the velocity
vector v, and the acceleration vector a are:

The components in the horizontal and vertical directions of R, v, and a are given respectively by the
coefficients of i and j in the corresponding vector. The slope of v is  its magnitude,

is the speed of the particle, and the velocity vector is tangent to the path. The slope of a is  The
distance the particle travels from time t1 to t2, is given by



How integration may be used to solve problems of curvilinear motion is illustrated in the
following examples.

BC ONLY

EXAMPLE 4
Suppose a projectile is launched from the origin at an angle of elevation α and initial velocity v0.
Find the parametric equations for its flight path.
SOLUTION: We have the following initial conditions:
Position: x(0) = 0; y(0) = 0.
Velocity: 

We start with equations representing acceleration due to gravity and integrate each twice,
determining the constants as shown:

If desired, t can be eliminated from this pair of equations to yield a parabola in rectangular
coordinates.

EXAMPLE 5
A particle P(x, y) moves along a curve so that

 at any time t  0.

At t = 0, x = 1 and y = 0. Find the parametric equations of motion.
SOLUTION: Since  we integrate to get  and use

x(0) = 1 to find that C = 2. Therefore,  and

Since y(0) = 0, this yields C ′ = 1, and so (2) becomes



Thus the parametric equations are

BC ONLY

EXAMPLE 6
The particle in Example 5 is in motion for 1 second, 0 ≤ t ≤ 1. Find its position, velocity, speed,
and acceleration at t = 1 and the distance it traveled.
SOLUTION: In Example 5 we derived the result  the parametric representation
of the particle’s position. Hence its position at t = 1 is 

From P(t) we write the velocity vector:

Hence, at t = 1 the particle’s velocity is 

Speed is the magnitude of the velocity vector, so after 1 second the particle’s speed is

The particle’s acceleration vector at t = 1 is

On the interval 0 ≤ t ≤ 1 the distance traveled by the particle is

BC ONLY

EXAMPLE 7
A particle P(x, y) moves along a curve so that its acceleration is given by



when t = 0, the particle is at (1, 0) with 

(a) Find the position vector R at any time t.
(b) Find a Cartesian equation for the path of the particle, and identify the conic on which P

moves.
SOLUTIONS:

(a)  and since  when t = 0, it follows that c1 = c2 = 0. So 
 Also  and since  when t = 0, we see that c3 =

c4 = 0. Finally, then,

(b) From (a) the parametric equations of motion are
x = cos 2t, y = 2 sin t.

By a trigonometric identity,

P travels in a counterclockwise direction along part of a parabola that has its vertex at (1, 0) and
opens to the left. The path of the particle is sketched in Figure N8–1; note that −1 ≤ x ≤ 1, −2 ≤ y ≤
2.

FIGURE N8–1

C. OTHER APPLICATIONS OF RIEMANN SUMS
We will continue to set up Riemann sums to calculate a variety of quantities using definite integrals.
In many of these examples, we will partition into n equal subintervals a given interval (or region or
ring or solid or the like), approximate the quantity over each small subinterval (and assume it is
constant there), then add up all these small quantities. Finally, as n → ∞ we will replace the sum by



its equivalent definite integral to calculate the desired quantity.

EXAMPLE 8
Amount of Leaking Water.  Water is draining from a cylindrical pipe of radius 2 inches. At t
seconds the water is flowing out with velocity v(t) inches per second. Express the amount of water
that has drained from the pipe in the first 3 minutes as a definite integral in terms of v(t).
SOLUTION: We first express 3 min as 180 sec. We then partition [0,180] into n subintervals
each of length Δt. In Δt sec, approximately v(t) Δt in. of water have drained from the pipe. Since a
typical cross section has area 4π in.2 (Figure N8–2), in Δt sec the amount that has drained is

(4π in.2) (v(t) in./sec)(Δt sec) = 4πv(t) Δt in.3.
The sum of the n amounts of water that drain from the pipe, as n → ∞, is  the units are

cubic inches (in.3).

FIGURE N8–2

EXAMPLE 9
Traffic: Total Number of Cars.  The density of cars (the number of cars per mile) on 10 miles of
the highway approaching Disney World is equal approximately to f (x) = 200[4 − ln (2x + 3)],
where x is the distance in miles from the Disney World entrance. Find the total number of cars on
this 10-mile stretch.
SOLUTION: Partition the interval [0, 10] into n equal subintervals each of width Δx. In each
subinterval the number of cars equals approximately the density of cars f (x) times Δx, where f (x)
= 200[4 − ln (2x + 3)]. When we add n of these products we get  which is a Riemann sum.
As n → ∞ (or as Δx → 0), the Riemann sum approaches the definite integral

which, using our calculator, is approximately equal to 3118 cars.

EXAMPLE 10
Resource Depletion. In 2000 the yearly world petroleum consumption was about 77 billion
barrels and the yearly exponential rate of increase in use was 2%. How many years after 2000 are
the world’s total estimated oil reserves of 1020 billion barrels likely to last?
SOLUTION: Given the yearly consumption in 2000 and the projected exponential rate of increase



in consumption, the anticipated consumption during the Δtth part of a year (after 2000) is 77e0.02t

Δt billion barrels. The total to be used during the following N
years is therefore  This integral must equal 1020 billion barrels.

We must now solve this equation for N. We get

Either more oil (or alternative sources of energy) must be found, or the world consumption must be
sharply reduced.

D. FTC: DEFINITE INTEGRAL OF A RATE IS NET CHANGE
If f is continuous and  then we know from the FTC that

The definite integral of the rate of change of a quantity over an interval is the net change or net
accumulation of the quantity over that interval. Thus, F(b) − F(a) is the net change in F(t) as t varies
from a to b.
We’ve already illustrated this principle many times. Here are more examples.

EXAMPLE 11
Let G(t) be the rate of growth of a population at time t. Then the increase in population between
times t = a and t = b is given by  The population may consist of people, deer, fruit flies,
bacteria, and so on.

EXAMPLE 12
Suppose an epidemic is spreading through a city at the rate of f (t) new people per week. Then



is the number of people who will become infected during the next 4 weeks (or the total change in
the number of infected people).

EXAMPLE 13
Suppose a rumor is spreading at the rate of f (t) = 100e−0.2t new people per day. Find the number of
people who hear the rumor during the 5th and 6th days.

SOLUTION:  100e−0.2t dt = 74 people.

If we let F ′(t) = f (t), then the integral above is the net change in F(t) from t = 4 to t = 6, or the
number of people who hear the rumor from the beginning of the 5th day to the end of the 6th.

EXAMPLE 14
Economists define the marginal cost of production  as the additional cost of producing one
additional unit at a specified production level. It can be shown that if C(x) is the cost at production
level x then C ′(x) is the marginal cost at that production level.
If the marginal cost, in dollars, is  per unit when x units are being produced, find the change in
cost when production increases from 50 to 75 units.
SOLUTION: 

We replace “cost” above by “revenue” or “profit” to find total change in these quantities.

EXAMPLE 15
After t minutes, a chemical is decomposing at the rate of 10e−t grams per minute. Find the amount
that has decomposed during the first 3 minutes.
SOLUTION: 

EXAMPLE 16
An official of the Environmental Protection Agency estimates that t years from now the level of a
particular pollutant in the air will be increasing at the rate of (0.3 + 0.4t) parts per million per year
(ppm/yr). Based on this estimate, find the change in the pollutant level during the second year.
SOLUTION: 

Work†

Work is defined as force times distance: W = F × d. When a variable force F(x) moves an object
along the x-axis from a to b, we approximate an element of work done by the force over a short
distance Δx by

ΔW = F(xk) Δx,



where F(xk) is the force acting at some point in the kth subinterval. We then use the FTC to get

If the force is given in pounds and the distance in feet, then the work is given in foot-pounds (ft-lb).
Problems typical of those involving computation of work are given in the following examples.

EXAMPLE 17
Find the work, W, done by a force F, in pounds, that moves a particle along the x-axis from x = 4
feet to x = 9 feet, if 

SOLUTION: 

EXAMPLE 18
A cylindrical reservoir of diameter 4 feet and height 6 feet is half-full of water weighing w pounds
per cubic foot (Figure N8–3). Find the work done in emptying the water over the top.

SOLUTION: The volume of a slice of water is ΔV = πx2 Δy, where x = 2. A slice at height y is
lifted (6 −y) ft.

FIGURE N8–3

We used 3 as the upper limit since the reservoir is only half full.

† The topic “work” is not specifically included in the Topical Outline, but it is an important application of integration.

EXAMPLE 19
A hemispherical tank with flat side up has radius 4 feet and is filled with a liquid weighing w
pounds per cubic foot. Find the work done in pumping all the liquid just to the top of the tank.



FIGURE N8–4

SOLUTION: In Figure N8–4, the generating circle has equation x2 + y2 = 16. Note that over the
interval of integration y is negative, and that a slice must be lifted a distance of (−y) feet. Then for
the work, W, we have

Chapter Summary
In this chapter we have reviewed how to find the distance traveled by an object in motion along a line
and (for BC students) along a parametrically defined curve in a plane. We’ve also looked at a broad
variety of applications of the definite integral to other situations where definite integrals of rates of
change are used to determine accumulated change, using limits of Riemann sums to create the
integrals required.

Practice Exercises
The aim of these questions is mainly to reinforce how to set up definite integrals, rather than how to
integrate or evaluate them. Therefore we encourage using a graphing calculator wherever helpful.

1.  A particle moves along a line in such a way that its position at time t is given by s = t3 − 6t2 + 9t +
3. Its direction of motion changes when
(A) t = 1 only
(B) t = 2 only
(C) t = 3 only
(D) t = 1 and t = 3
(E) t = 1, 2, and 3

2.  A body moves along a straight line so that its velocity v at time t is given by v = 4t3 + 3t2 + 5. The
distance the body covers from t = 0 to t = 2 equals



(A) 34
(B) 55
(C) 24
(D) 44
(E) none of these

3.  A particle moves along a line with velocity v = 3t2 − 6t. The total distance traveled from t = 0 to t
= 3 equals
(A) 9
(B) 4
(C) 2
(D) 16
(E) none of these

4.  The net change in the position of the particle in Question 3 is
(A) 2
(B) 4
(C) 9
(D) 16
(E) none of these

5.  The acceleration of a particle moving on a straight line is given by a = cos t, and when t = 0 the
particle is at rest. The distance it covers from t = 0 to t = 2 is
(A) sin 2
(B) 1 − cos 2
(C) cos 2
(D) sin 2 − 1
(E) −cos 2

6.  During the worst 4-hr period of a hurricane the wind velocity, in miles per hour, is given by v(t) =
5 t − t2 + 100, 0 ≤ t ≤ 4. The average wind velocity during this period (in mph) is
(A) 10
(B) 100
(C) 102
(D) 

(E) 

7.  A car accelerates from 0 to 60 mph in 10 sec, with constant acceleration. (Note that 60 mph = 88
ft/sec.) The acceleration (in ft/sec2) is



(A) 5.3
(B) 6
(C) 8
(D) 8.8
(E) none of these

For Questions 8–10 use the following information: The velocity v of a particle moving on a curve is
given, at time t, by  When t = 0, the particle is at point (0,1).

Questions 8–13 are BC ONLY.

8.  At time t the position vector R is
(A) 

(B) 

(C) 

(D) 

(E) 

9.  The acceleration vector at time t = 2 is
(A) 
(B) 
(C) 
(D) 
(E) none of these

10.  The speed of the particle is at a minimum when t equals
(A) 0
(B) 

(C) 1
(D) 1.5
(E) 2

11.  A particle moves along a curve in such a way that its position vector and velocity vector are
perpendicular at all times. If the particle passes through the point (4, 3), then the equation of the
curve is

(A) x2 + y2 = 5

(B) x2 + y2 = 25

(C) x2 + 2y2 = 34



(D)  x2 − y2 = 7

(E) 2x2 − y2 = 23
12.  The acceleration of an object in motion is given by the vector  If the object’s initial

velocity was  which is the velocity vector at any time t ?
(A) 
(B) 
(C) 
(D) 
(E) 

13.  The velocity of an object is given by  If this object is at the origin when t = 1, where
was it at t = 0?
(A) (−3,−4)
(B) (−2,−4)
(C) (2,4)
(D) 

(E) 

14.  Suppose the current world population is 6 billion and the population t years from now is
estimated to be P(t) = 6e0.024t billion people. On the basis of this supposition, the average
population of the world, in billions, over the next 25 years will be approximately
(A) 6.75
(B) 7.2
(C) 7.8
(D) 8.2
(E) 9.0

15.  A beach opens at 8 A.M. and people arrive at a rate of R(t) = 10 + 40t people per hour, where t
represents the number of hours the beach has been open. Assuming no one leaves before noon, at
what time will there be 100 people there?
(A) 9:45
(B) 10:00
(C) 10:15
(D) 10:30
(E) 10:45

16.  A stone is thrown upward from the ground with an initial velocity of 96 ft/sec. Its average
velocity (given that a(t) = −32 ft/sec2) during the first 2 sec is



(A) 16 ft/sec
(B) 32 ft/sec
(C) 64 ft/sec
(D) 80 ft/sec
(E) 96 ft/sec

17.  Suppose the amount of a drug in a patient’s bloodstream t hr after intravenous administration is
30/(t + 1)2 mg. The average amount in the bloodstream during the first 4 hr is
(A) 6.0 mg
(B) 11.0 mg
(C) 16.6 mg
(D) 24.0 mg
(E) none of these

18.  A rumor spreads through a town at the rate of (t2 + 10t) new people per day. Approximately how
many people hear the rumor during the second week after it was first heard?
(A) 1535
(B) 1894
(C) 2000
(D)  2219
(E) none of these

19.  Oil is leaking from a tanker at the rate of 1000e−0.3t gal/hr, where t is given in hours. The total
number of gallons of oil that will leak out during the first 8 hr is approximately
(A) 1271
(B) 3031
(C) 3161
(D) 4323
(E) 11,023

20.  Assume that the density of vehicles (number per mile) during morning rush hour, for the 20-mi
stretch along the New York State Thruway southbound from the Tappan Zee Bridge, is given by f
(x), where x is the distance, in miles, south of the bridge. Which of the following gives the number
of vehicles (on this 20-mi stretch) from the bridge to a point x mi south of the bridge?
(A) 

(B) 

(C) 



(D)  (where the 20-mi stretch has been partitioned into n equal subintervals)

(E) none of these
21.  The center of a city that we will assume is circular is on a straight highway. The radius of the city

is 3 mi. The density of the population, in thousands of people per square mile, is given
approximately by f (r) = 12 − 2r at a distance r mi from the highway. The population of the city (in
1000s) is given by the integral
(A) 

(B) 

(C) 

(D) 

(E) 

22.  The population density of Winnipeg, which is located in the middle of the Canadian prairie,
drops dramatically as distance from the center of town increases. This is shown in the following
table:

x = distance (in mi) from the
center 0 2 4 6 8 10

f (x) = density (hundreds of
people/mi2) 50 45 40 30 15 5

Using a Riemann sum, we can calculate the population living within a 10-mi radius of the center
to be approximately

(A) 608,500
(B) 650,000
(C) 691,200
(D) 702,000
(E) 850,000

23.  If a factory continuously dumps pollutants into a river at the rate of  tons per day, then the
amount dumped after 7 weeks is approximately
(A) 0.07 ton
(B) 0.90 ton
(C) 1.55 tons
(D) 1.9 tons
(E) 1.27 tons

24.  A roast at 160°F is put into a refrigerator whose temperature is 45°F. The temperature of the
roast is cooling at time t at the rate of (−9e−0.08t )°F per minute. The temperature, to the nearest



degree F, of the roast 20 min after it is put in the refrigerator is
(A) 45°
(B) 70°
(C) 81°
(D) 90°
(E) 115°

25.  How long will it take to release 9 tons of pollutant if the rate at which pollutant is being released
is te−0.3t tons per week?
(A) 10.2 weeks
(B) 11.0 weeks
(C) 12.1 weeks
(D) 12.9 weeks
(E) none of these

26.  What is the exact total area bounded by the curve f (x) = x3 − 4x2 + 3x and the x-axis?
(A) −2.25
(B) 2.25
(C) 3
(D) 3.083
(E) none of these

27.  Water is leaking from a tank at the rate of (−0.1 t2 − 0.3t + 2) gal/hr. The total amount, in gallons,
that will leak out in the next 3 hr is approximately
(A) 1.00
(B) 2.08
(C) 3.13
(D) 3.48
(E) 3.75

28.  A bacterial culture is growing at the rate of 1000e0.03t bacteria in t hr. The total increase in
bacterial population during the second hour is approximately
(A) 46
(B) 956
(C) 1046
(D) 1061
(E) 2046

29.  A website went live at noon, and the rate of hits (visitors/hour) increased continuously for the



first 8 hours, as shown in the graph below.

Approximately when did the 200th visitor go to this site?
(A) before 2 P.M.
(B) between 2 and 3 P.M.
(C) between 3 and 4 P.M.

(D) between 4 and 5 P.M.
(E) after 5 P.M.

30.  An observer recorded the velocity of an object in motion along the x-axis for 10 seconds. Based
on the table below, use a trapezoidal approximation to estimate how far from its starting point the
object came to rest at the end of this time.

CHALLENGE

t (sec) 0 2 3 5 7 10

v(t)
(units/sec) 2 3 1 −1 −2 0

(A) 0 units
(B) 1 unit
(C) 3 units
(D) 4 units
(E) 6 units

31. An 18-wheeler traveling at speed v mph gets about (4 + 0.01v) mpg (miles per gallon) of diesel
fuel. If its speed is  mph at time t, then the amount, in gallons, of diesel fuel used during the
first 2 hr is approximately
(A) 20
(B) 21.5



(C) 23.1
(D) 24
(E) 25



CHAPTER 9 Differential Equations

Concepts and Skills
In this chapter, we review how to write and solve differential equations, specifically,
• writing differential equations to model dynamic situations;
• understanding a slope field as a graphical representation of a differential equation and its

solutions;
• finding general and particular solutions of separable differential equations;
• and using differential equations to analyze growth and decay.
We also review two additional BC Calculus topics:
• Euler’s method to estimate numerical solutions
• and using differential equations to analyze logistic growth and decay.

A. BASIC DEFINITIONS
Differential equation

A differential equation (d.e.) is any equation involving a derivative. In §E of Chapter 5 we solved
some simple differential equations. In Example 50, we were given the velocity at time t of a particle
moving along the x-axis:

From this we found the antiderivative:

If the initial position (at time t = 0) of the particle is x = 3, then
x(0) = 0 − 0 + C = 3,

and C = 3. So the solution to the initial-value problem is

A solution of a d.e. is any function that satisfies it. We see from (2) above that the d.e. (1) has an
infinite number of solutions—one for each real value of C. We call the family of functions (2) the
general solution of the d.e. (1). With the given initial condition x(0) = 3, we determined C, thus
finding the unique solution (3). This is called the particular solution.

Note that the particular solution must not only satisfy the differential equation and the initial



condition, but the function must also be differentiable on an interval that contains the initial point.
Features such as vertical tangents or asymptotes restrict the domain of the solution. Therefore, even
when they are defined by the same algebraic representation, particular solutions with different initial
points may have different domains. Determining the proper domain is an important part of finding the
particular solution.

In §A of Chapter 8 we solved more differential equations involving motion along a straight line. In
§B we found parametric equations for the motion of a particle along a plane curve, given d.e.’s for the
components of its acceleration and velocity.
Rate of Change
A differential equation contains derivatives. A derivative gives information about the rate of change
of a function. For example:

(1) If P is the size of a population at time t, then we can interpret the d.e.

as saying that at any time t the rate at which the population is growing is proportional (3.25%) to its
size at that time.

(2) The d.e.  tells us that at any time t the rate at which the quantity Q is decreasing
is proportional (0.0275%) to the quantity existing at that time.

(3) In psychology, one typical stimulus-response situation, known as logarithmic response, is that
in which the response y changes at a rate inversely proportional to the strength of the stimulus x. This
is expressed neatly by the differential equation

If we suppose, further, that there is no response when x = x0, then we have the condition y = 0 when x
= x0.

(4) We are familiar with the d.e.

for the acceleration due to gravity acting on an object at a height s above ground level at time t. The
acceleration is the rate of change of the object’s velocity.

B. SLOPE FIELDS
In this section we solve differential equations by obtaining a slope field or calculator picture that
approximates the general solution. We call the graph of a solution of a d.e. a solution curve.

The slope field of a d.e. is based on the fact that the d.e. can be interpreted as a statement about
the slopes of its solution curves.

EXAMPLE 1
The d.e.  tells us that at any point (x, y) on a solution curve the slope of the curve is equal to
its y-coordinate. Since the d.e. says that y is a function whose derivative is also y, we know that

y = ex



is a solution. In fact, y = Cex is a solution of the d.e. for every constant C, since y ′ = Cex = y.
The d.e. y ′ = y says that, at any point where y = 1, say (0, 1) or (1, 1) or (5, 1), the slope of the
solution curve is 1; at any point where y = 3, say (0, 3), (ln 3,3), or (π, 3), the slope equals 3; and
so on.
In Figure N9–1a we see some small line segments of slope 1 at several points where y = 1, and
some segments of slope 3 at several points where y = 3. In Figure N9–1b we see the curve of y =
ex with slope segments drawn in as follows:

FIGURE N9–1a

FIGURE N9–1b

Figure N9–1c is the slope field for the d.e.  Slopes at many points are represented by small
segments of the tangents at those points. The small segments approximate the solution curves. If
we start at any point in the slope field and move so that the slope segments are always tangent to
our motion, we will trace a solution curve. The slope field, as mentioned above, closely



approximates the family of solutions.

FIGURE N9–1c

EXAMPLE 2
The slope field for the d.e.  is shown in Figure N9–2.

(a) Carefully draw the solution curve that passes through the point (1, 0.5).
(b) Find the general solution for the equation.

FIGURE N9–2

SOLUTIONS:
(a) In Figure N9–2a we started at the point (1, 0.5), then moved from segment to segment

drawing the curve to which these segments were tangent. The particular solution curve shown
is the member of the family of solution curves

y = ln x + C

that goes through the point (1, 0.5).

FIGURE N9–2a



FIGURE N9–2b

(b) Since we already know that, if  then  we are assured of having found
the correct general solution in (a).

In Figure N9–2b we have drawn several particular solution curves of the given d.e. Note that the
vertical distance between any pair of curves is constant.

EXAMPLE 3
Match each slope field in Figure N9–3 with the proper d.e. from the following set. Find the
general solution for each d.e. The particular solution that goes through (0,0) has been sketched in.
(A) y ′ = cos x
(B) 

(C) 

(D) 

FIGURE N9–3a

FIGURE N9–3b



FIGURE N9–3c

FIGURE N9–3d

SOLUTIONS:
(A) goes with Figure N9–3c. The solution curves in the family y = sin x + C are quite obvious.

(B) goes with Figure N9–3a. The general solution is the family of parabolas y = x2 + C.
For (C) the slope field is shown in Figure N9–3b. The general solution is the family of cubics y
= x3 − 3x + C.
(D) goes with Figure N9–3d; the general solution is the family of lines y = 

EXAMPLE 4
(a) Verify that relations of the form x2 + y2 = r2 are solutions of the d.e. 

(b) Using the slope field in Figure N9–4 and your answer to (a), find the particular solution to the
d.e. given in (a) that contains point (4, −3).

FIGURE N9–4



SOLUTIONS:
(a) By differentiating equation x2 + y2 = r2 implicitly, we get 2x + 2y  from which 

which is the given d.e.

(b) x2 + y2 = r2 describes circles centered at the origin. For initial point (4,−3), (4)2 + (−3)2 =
25. So x2 + y2 = 25. However, this is not the particular solution.

A particular solution must be differentiable on an interval containing the initial point. This
circle is not differentiable at (−5,0) and (5,0). (The d.e. shows  undefined when y = 0, and
the slope field shows vertical tangents along the x-axis.) Hence, the particular solution
includes only the semicircle in quadrants III and IV.

Solving x2 + y2 = 25 for y yields  The particular solution through point (4,−3) is 
 with domain −5 < x < 5.

Derivatives of Implicitly Defined Functions
In Examples 2 and 3 above, each d.e. was of the form  = f (x) or y ′ = f (x). We were able to find the
general solution in each case very easily by finding the antiderivative 

We now consider d.e.’s of the form  where f (x,y) is an expression in x and y; that is, 
is an implicitly defined function. Example 4 illustrates such a differential equation. Here is another
example.

EXAMPLE 5
Figure N9–5 shows the slope field for

At each point (x,y) the slope is the sum of its coordinates. Three particular solutions have been
added, through the points



FIGURE N9–5

C. EULER’S METHOD
BC ONLY

In §B we found solution curves to first-order differential equations graphically, using slope fields.
Here we will find solutions numerically, using Euler’s method to find points on solution curves.

When we use a slope field we start at an initial point, then move step by step so the slope
segments are always tangent to the solution curve. With Euler’s method we again select a starting
point; but now we calculate the slope at that point (from the given d.e.), use the initial point and that
slope to locate a new point, use the new point and calculate the slope at it (again from the d.e.) to
locate still another point, and so on. The method is illustrated in Example 6.

BC ONLY

EXAMPLE 6
Let  Use Euler’s method to approximate the y-values with four steps, starting at point P0 (1,
0) and letting Δx = 0.5.
SOLUTION: The slope at P0 = (x0, y0) = (1,0) is  To find the y-coordinate

of P1 (x1, y1), we add Δy to y0. Since  ≈  we estimate 

Δy = (slope at P0) · Δx = 3 · (0.5) = 1.5.

Then
y1 = y0 + Δy = 0 + 1.5 = 1.5

and
P1 = (1.5,1.5).

To find the y-coordinate of P2 (x2, y2) we add Δy to y1, where

Δy = (slope at P1) · 

Then
y2 = y1 + Δy = 1.5 + 1.0 = 2.5

and
P2 = (2.0,2.5).

To find the y-coordinate of P3 (x3, y3) we add Δy to y2, where

Δy = (slope at P2) · 

Then



y3 = y2 + Δy = 2.5 + 0.75 = 3.25,

P3 = (2.5, 3.25),

and so on.
The table summarizes all the data, for the four steps specified, from x = 1 to x = 3:

TABLE FOR 

The table gives us the numerical solution of  using Euler’s method. Figure N9–6a shows the
graphical solution, which agrees with the data from the table, for x increasing from 1 to 3 by four
steps with Δx equal to 0.5. Figure N9–6b shows this Euler graph and the particular solution of 

 passing through the point (1,0), which is y = 3 ln x.

FIGURE N9–6a



FIGURE N9–6b

We observe that, since y ″ for 3 ln x equals  the true curve is concave down and below the
Euler graph.
The last column in the table shows the true values (to three decimal places) of y. The Euler
approximation for 3 ln 3 is 3.85; the true value is 3.296. The Euler approximation with four steps
is not very good! However, see what happens as we increase the number n of steps:

n EULER APPROXIMATION ERROR  

4  3.85  0.554
10  3.505  0.209
20  3.398  0.102
40  3.346  0.050
80  3.321  0.025

Doubling the number of steps cuts the error approximately in half.

EXAMPLE 7
Given the d.e.  = x + y with initial condition y(0) = 0, use Euler’s method with Δx = 0.1 to
estimate y when x = 0.5.
SOLUTION: Here are the relevant computations:

x y (SLOPE) · Δx = (x + y) · (0.1) = Δ y
P0 0 0 0(0.1) = 0
P1 0.1 0 (0.1)(0.1) = 0.01
P2 0.2 0.01 (0.21)(0.1) = 0.021
P3 0.3 0.031 (0.331)(0.1) = 0.033



P4 0.4 0.064 (0.464)(0.1) = 0.046

P5 0.5 0.110

A Caution: Euler’s method approximates the solution by substituting short line segments in place of
the actual curve. It can be quite accurate when the step sizes are small, but only if the curve does not
have discontinuities, cusps, or asymptotes.

For example, the reader may verify that the curve  for the domain  solves the
differential equation  with initial condition y = −1 when x = 2. The domain restriction is
important. Recall that a particular solution must be differentiable on an interval containing the initial
point. If we attempt to approximate this solution using Euler’s method with step size Δx = 1, the first
step carries us to point (3, −3), beyond the discontinuity at  and thus outside the domain of the
solution. The accompanying graph (Figure N9–7) shows that this is nowhere near the solution curve
with initial point y = 1 when x = 3 (and whose domain is ). Here, Euler’s method fails because it
leaps blindly across the vertical asymptote at 

Always pay attention to the domain of any particular solution.
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FIGURE N9–7

D. SOLVING FIRST-ORDER DIFFERENTIAL EQUATIONS
ANALYTICALLY
In the preceding sections we solved differential equations graphically, using slope fields, and
numerically, using Euler’s method. Both methods yield approximations. In this section we review
how to solve some differential equations exactly.
Separating Variables



A first-order d.e. in x and y is separable if it can be written so that all the terms involving y are on
one side and all the terms involving x are on the other.

A differential equation has variables separable if it is of the form

The general solution is

EXAMPLE 8
Solve the d.e.  given the initial condition y(0) = 2.

SOLUTION: We rewrite the equation as y dy = −x dx. We then integrate, getting

Since y(0) = 2, we get 4 + 0 = C; the particular solution is therefore x2 + y2 = 4. (We need to
specify above that y > 0. Why?)

EXAMPLE 9
If  and t = 0 when s = 1, find s when t = 9.

SOLUTION: We separate variables:

then integration yields

Using s = 1 and t = 0, we get  so C = + 2. Then

When t = 9, we find that s1/2 = 9 + 1, so s = 100.

EXAMPLE 10
If (ln y)  and y = e when x = 1, find the value of y greater than 1 that corresponds to x = e4.

SOLUTION: Separating, we get  We integrate:

Using y = e when x = 1 yields  so



When x = e4, we have  thus ln2 y = 9 and ln y = 3 (where we chose ln y > 0 because y
> 1), so y = e3.

EXAMPLE 11
Find the general solution of the differential equation 

SOLUTION: We rewrite 

Taking antiderivatives yields eu = ev + C, or u = ln(ev + c).

E. EXPONENTIAL GROWTH AND DECAY
We now apply the method of separation of variables to three classes of functions associated with
different rates of change. In each of the three cases, we describe the rate of change of a quantity, write
the differential equation that follows from the description, then solve—or, in some cases, just give the
solution of—the d.e. We list several applications of each case, and present relevant problems
involving some of the applications.
Case I: Exponential Growth
An interesting special differential equation with wide applications is defined by the following
statement: “A positive quantity y increases (or decreases) at a rate that at any time t is proportional to
the amount present.” It follows that the quantity y satisfies the d.e.

where k > 0 if y is increasing and k < 0 if y is decreasing.
From (1) it follows that

Then

If we are given an initial amount y, say y0 at time t = 0, then

y0 = c · ek · 0 = c · 1 = c,

and our law of exponential change

tells us that c is the initial amount of y (at time t = 0). If the quantity grows with time, then k > 0; if it
decays (or diminishes, or decomposes), then k < 0. Equation (2) is often referred to as the law of



exponential growth or decay.
The length of time required for a quantity that is decaying exponentially to be reduced by half is

called its half-life.

EXAMPLE 12
The population of a country is growing at a rate proportional to its population. If the growth rate
per year is 4% of the current population, how long will it take for the population to double?
SOLUTION: If the population at time t is P, then we are given that  Substituting in
equation (2), we see that the solution is

P = P0 e0.04t,

where P0 is the initial population. We seek t when P = 2P0:

EXAMPLE 13
The bacteria in a certain culture increase continuously at a rate proportional to the number
present.
(a) If the number triples in 6 hours, how many will there be in 12 hours?
(b) In how many hours will the original number quadruple?
SOLUTIONS: We let N be the number at time t and N0 the number initially. Then

hence, C = ln N0. The general solution is then N = N0 ekt, with k still to be determined.

Since N = 3N0 when t = 6, we see that 3N0 = N0 e6k and that  ln 3. Thus

N = N0 e(t ln 3)/6.

(a) When t = 12, N = N0 e2 ln 3 = N0 eln 32 = N0 eln 9 = 9N0.

(b) We let N = 4N0 in the centered equation above, and get

EXAMPLE 14
Radium-226 decays at a rate proportional to the quantity present. Its half-life is 1612 years. How
long will it take for one quarter of a given quantity of radium-226 to decay?
SOLUTION: If Q(t) is the amount present at time t, then it satisfies the equation



where Q0 is the initial amount and k is the (negative) factor of proportionality. Since it is given
that  when t = 1612, equation (1) yields

We now have

When one quarter of Q0 has decayed, three quarters of the initial amount remains. We use this
fact in equation (2) to find t:

Applications of Exponential Growth
(1)  A colony of bacteria may grow at a rate proportional to its size.
(2)  Other populations, such as those of humans, rodents, or fruit flies, whose supply of food is

unlimited may also grow at a rate proportional to the size of the population.
(3)  Money invested at interest that is compounded continuously accumulates at a rate proportional to

the amount present. The constant of proportionality is the interest rate.
(4)  The demand for certain precious commodities (gas, oil, electricity, valuable metals) has been

growing in recent decades at a rate proportional to the existing demand.

Each of the above quantities (population, amount, demand) is a function of the form cekt (with k >
0). (See Figure N9–7a.)

(5)  Radioactive isotopes, such as uranium-235, strontium-90, iodine-131, and carbon-14, decay at a
rate proportional to the amount still present.

(6)  If P is the present value of a fixed sum of money A due t years from now, where the interest is
compounded continuously, then P decreases at a rate proportional to the value of the investment.

(7)  It is common for the concentration of a drug in the bloodstream to drop at a rate proportional to
the existing concentration.

(8)  As a beam of light passes through murky water or air, its intensity at any depth (or distance)
decreases at a rate proportional to the intensity at that depth.



Each of the above four quantities (5 through 8) is a function of the form ce−kt (k > 0). (See Figure
N9–7b.)

FIGURE N9–7a

FIGURE N9–7b

EXAMPLE 15
At a yearly rate of 5% compounded continuously, how long does it take (to the nearest year) for
an investment to triple?

SOLUTION: If P dollars are invested for t yr at 5%, the amount will grow to A = Pe0.05t in t yr.
We seek t when A = 3P:

EXAMPLE 16
One important method of dating fossil remains is to determine what portion of the carbon content
of a fossil is the radioactive isotope carbon-14. During life, any organism exchanges carbon with
its environment. Upon death this circulation ceases, and the14 C in the organism then decays at a
rate proportional to the amount present. The proportionality factor is 0.012% per year.

When did an animal die, if an archaeologist determines that only 25% of the original amount of14

C is still present in its fossil remains?

SOLUTION: The quantity Q of14 C present at time t satisfies the equation

with solution



Q(t) = Q0 e−0.00012t

(where Q0 is the original amount). We are asked to find t when Q(t) = 0.25Q0.

Rounding to the nearest 500 yr, we see that the animal died approximately 11,500yr ago.

EXAMPLE 17
In 1970 the world population was approximately 3.5 billion. Since then it has been growing at a
rate proportional to the population, and the factor of proportionality has been 1.9% per year. At
that rate, in how many years would there be one person per square foot of land? (The land area
of Earth is approximately 200,000,000 mi2, or about 5.5 × 1015 ft2.)
SOLUTION: If P(t) is the population at time t, the problem tells us that P satisfies the equation 

 Its solution is the exponential growth equation

P(t) = P0 e0.019t,

where P0 is the initial population. Letting t = 0 for 1970, we have

3.5 × 109 = P(0) = P0 e0 = P0.

Then

P(t) = (3.5 × 109)e0.019t.

The question is: for what t does P(t) equal 5.5 × 1015? We solve

Taking the logarithm of each side yields

where it seems reasonable to round off as we have. Thus, if the human population continued to
grow at the present rate, there would be one person for every square foot of land in the year
2720.

Case II: Restricted Growth
The rate of change of a quantity y = f (t) may be proportional, not to the amount present, but to a
difference between that amount and a fixed constant. Two situations are to be distinguished: The rate
of change is proportional to

(a) a fixed constant A minus the amount of the
quantity present:

(b) the amount of the quantity present minus a
fixed constant A:

f ′(t) = k[A − f (t)] f ′(t) = −k[f (t) − A]



where (in both) f (t) is the amount at time t and k and A are both positive. We may conclude that

(a) f (t) is increasing (Fig. N9–8a): (b) f (t) is decreasing (Fig. N9–8b):

f (t) = A − ce−kt f (t) = A+ ce−kt

for some positive constant c.

FIGURE N9–8a

FIGURE N9–8b

Here is how we solve the d.e. for Case II(a), where A − y > 0. If the quantity at time t is denoted
by y and k is the positive constant of proportionality, then

Case II (b) can be solved similarly.



EXAMPLE 18
According to Newton’s law of cooling, a hot object cools at a rate proportional to the difference
between its own temperature and that of its environment. If a roast at room temperature 68°F is
put into a 20°F freezer, and if, after 2 hours, the temperature of the roast is 40°F:
(a) What is its temperature after 5 hours?
(b) How long will it take for the temperature of the roast to fall to 21°F?
SOLUTIONS: This is an example of Case II (b) (the temperature is decreasing toward the
limiting temperature 20°F).
(a) If R(t) is the temperature of the roast at time t, then

(b) Equation (*) in part (a) gives the roast’s temperature at time t. We must find t when R = 21:

EXAMPLE 19
Advertisers generally assume that the rate at which people hear about a product is proportional
to the number of people who have not yet heard about it. Suppose that the size of a community is
15,000, that to begin with no one has heard about a product, but that after 6 days 1500 people
know about it. How long will it take for 2700 people to have heard of it?
SOLUTION: Let N(t) be the number of people aware of the product at time t. Then we are
given that

N ′(t) = k[15,000 − N(t)],
which is Case IIa. The solution of this d.e. is

N(t) = 15,000 − ce−kt.
Since N(0) = 0, c = 15,000 and

N(t) = 15,000(1 − e−kt ).
Since 1500 people know of the product after 6 days, we have



We now seek t when N = 2700:

Applications of Restricted Growth
(1) Newton’s law of heating says that a cold object warms up at a rate proportional to the

difference between its temperature and that of its environment. If you put a roast at 68°F into an oven
of 400°F, then the temperature at time t is R(t) = 400 − 332e−kt.

(2) Because of air friction, the velocity of a falling object approaches a limiting value L (rather
than increasing without bound). The acceleration (rate of change of velocity) is proportional to the
difference between the limiting velocity and the object’s velocity. If initial velocity is zero, then at
time t the object’s velocity V(t) = L(1 − e−kt).

(3) If a tire has a small leak, then the air pressure inside drops at a rate proportional to the
difference between the inside pressure and the fixed outside pressure O. At time t the inside pressure
P(t) = O + ce−kt.
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Case III: Logistic Growth
The rate of change of a quantity (for example, a population) may be proportional both to the amount
(size) of the quantity and to the difference between a fixed constant A and its amount (size). If y = f(t)
is the amount, then

where k and A are both positive. Equation (1) is called the logistic differential equation; it is used to
model logistic growth.

The solution of the d.e. (1) is

for some positive constant c.
In most applications, c > 1. In these cases, the initial amount A/(1 + c) is less than A/2. In all

applications, since the exponent of e in the expression for f (t) is negative for all positive t, therefore,
as t → ∞,

(1) ce−Akt → 0;
(2) the denominator of f (t) → 1;
(3) f (t) → A.

Thus, A is an upper limit of f in this growth model. When applied to populations, A is called the
carrying capacity or the maximum sustainable population.



Shortly we will solve specific examples of the logistic d.e. (1), instead of obtaining the general
solution (2), since the latter is algebraically rather messy. (It is somewhat less complicated to verify
that y ′ in (1) can be obtained by taking the derivative of (2).)
Unrestricted Versus Restricted Growth

FIGURE N9–9a

FIGURE N9–9b
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In Figures N9–9a and N9–9b we see the graphs of the growth functions of Cases I and III. The
growth function of Case I is known as the unrestricted (or uninhibited or unchecked) model. It is not
a very realistic one for most populations. It is clear, for example, that human populations cannot
continue endlessly to grow exponentially. Not only is Earth’s land area fixed, but also there are
limited supplies of food, energy, and other natural resources. The growth function in Case III allows
for such factors, which serve to check growth. It is therefore referred to as the restricted (or
inhibited) model.

The two graphs are quite similar close to 0. This similarity implies that logistic growth is
exponential at the start—a reasonable conclusion, since populations are small at the outset.

The S-shaped curve in Case III is often called a logistic curve. It shows that the rate of growth y ′:
(1) increases slowly for a while; i.e., y ″ > 0;
(2) attains a maximum when y = A/2, at half the upper limit to growth;
(3) then decreases (y ″ < 0), approaching 0 as y approaches its upper limit.

It is not difficult to verify these statements.
Applications of Logistic Growth



(1) Some diseases spread through a (finite) population P at a rate proportional to the number of
people, N(t), infected by time t and the number, P − N(t), not yet infected. Thus N ′(t) = kN(P − N)
and, for some positive c and k,

(2) A rumor (or fad or new religious cult) often spreads through a population P according to the
formula in (1), where N(t) is the number of people who have heard the rumor (acquired the fad,
converted to the cult), and P − N(t) is the number who have not.

(3) Bacteria in a culture on a Petri dish grow at a rate proportional to the product of the existing
population and the difference between the maximum sustainable population and the existing
population. (Replace bacteria on a Petri dish by fish in a small lake, ants confined to a small
receptacle, fruit flies supplied with only a limited amount of food, yeast cells, and so on.)
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(4) Advertisers sometimes assume that sales of a particular product depend on the number of TV
commercials for the product and that the rate of increase in sales is proportional both to the existing
sales and to the additional sales conjectured as possible.

(5) In an autocatalytic reaction a substance changes into a new one at a rate proportional to the
product of the amount of the new substance present and the amount of the original substance still
unchanged.

EXAMPLE 20
Because of limited food and space, a squirrel population cannot exceed 1000. It grows at a rate
proportional both to the existing population and to the attainable additional population. If there
were 100 squirrels 2 years ago, and 1 year ago the population was 400, about how many
squirrels are there now?
SOLUTION: Let P be the squirrel population at time t. It is given that

with P(0) = 100 and P(1) = 400. We seek P(2).
We will find the general solution for the given d.e. (3) by separating the variables:



and, finally (!),

Please note that this is precisely the solution “advertised” in equation (2), with A equal to 1000.
Now, using our initial condition P(0) = 100 in (4), we get

Using P(1) = 400, we get

Then the particular solution is

and P(2)  800 squirrels.



FIGURE N9–10

Figure N9–10 shows the slope field for equation (3), with k = 0.00179, which was obtained by
solving equation (5) above. Note that the slopes are the same along any horizontal line, and that
they are close to zero initially, reach a maximum at P = 500, then diminish again as P approaches
its limiting value, 1000. We have superimposed the solution curve for P(t) that we obtained in
(6) above.
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EXAMPLE 21
Suppose a flu-like virus is spreading through a population of 50,000 at a rate proportional both
to the number of people already infected and to the number still uninfected. If 100 people were
infected yesterday and 130 are infected today:
(a) write an expression for the number of people N(t) infected after t days;
(b) determine how many will be infected a week from today;
(c) indicate when the virus will be speading the fastest.

SOLUTIONS:
(a) We are told that N ′(t) = k · N · (50,000 −N), that N(0) = 100, and that N(1) = 130. The d.e.

describing logistic growth leads to

From N(0) = 100, we get

which yields c = 499. From N(1) = 130, we get



Then

(b) We must find N(8). Since t = 0 represents yesterday:

(c) The virus spreads fastest when 50,000/2 = 25,000 people have been infected.

Chapter Summary and Caution
In this chapter, we have considered some simple differential equations and ways to solve them. Our
methods have been graphical, numerical, and analytical. Equations that we have solved analytically—
by antidifferentiation—have been separable.
It is important to realize that, given a first-order differential equation of the type  it is the
exception, rather than the rule, to be able to find the general solution by analytical methods. Indeed, a
great many practical applications lead to d.e.’s for which no explicit algebraic solution exists.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.
In Questions 1–10, a(t) denotes the acceleration function, v(t) the velocity function, and s(t) the
position or height function at time t. (The acceleration due to gravity is −32 ft/sec2.)
 1.   If a(t) = 4t − 1 and v(1) = 3, then v(t) equals

(A) 2t2 − t
(B) 2t2 − t + 1

(C) 2t2 − t + 2

(D) 2t2 + 1

(E) 2t2 + 2

 2.   If a(t) = 20t3 − 6t, s (−1) = 2, and s(1) = 4, then v(t) equals

(A) t5 − t3

(B) 5t4 − 3t2 + 1

(C) 5t4 − 3t2 + 3

(D) t5 − t3 + t + 3

(E) t5 − t3 + 1
 3.   Given a(t), s (−1), and s(1) as in Question 2, then s(0) equals

(A) 0
(B) 1



(C) 2
(D) 3
(E) 4

 4.   A stone is thrown straight up from the top of a building with initial velocity 40 ft/sec and hits the
ground 4 sec later. The height of the building, in feet, is
(A) 88
(B) 96
(C) 112
(D) 128
(E) 144

 5.   The maximum height is reached by the stone in Question 4 after
(A) 4/5 sec
(B) 4 sec
(C) 5/4 sec
(D) 5/2 sec
(E) 2 sec

 6.   If a car accelerates from 0 to 60 mph in 10 sec, what distance does it travel in those 10 sec?
(Assume the acceleration is constant and note that 60 mph = 88 ft/sec.)
(A) 40 ft
(B) 44 ft
(C) 88 ft
(D) 400 ft
(E) 440 ft

 7.   A stone is thrown at a target so that its velocity after t sec is (100 − 20t) ft/sec. If the stone hits
the target in 1 sec, then the distance from the sling to the target is
(A) 80 ft
(B) 90 ft
(C) 100 ft
(D) 110 ft
(E) 120 ft

 8.   What should the initial velocity be if you want a stone to reach a height of 100 ft when you throw
it straight up?
(A) 80 ft/sec
(B) 92 ft/sec



(C) 96 ft/sec
(D) 112 ft/sec
(E) none of these

 9.   If the velocity of a car traveling in a straight line at time t is v(t), then the difference in its
odometer readings between times t = a and t = b is
(A) 

(B) 

(C) the net displacement of the car’s position from t = a to t = b
(D) the change in the car’s position from t = a to t = b
(E) none of these

10.   If an object is moving up and down along the y-axis with velocity v(t) and s ′(t) = v(t), then it is
false that 

(A) s(b) − s(a)
(B) the net distance traveled by the object between t = a and t = b
(C) the total change in s(t) between t = a and t = b
(D) the shift in the object’s position from t = a to t = b
(E) the total distance covered by the object from t = a to t = b

11.   Solutions of the differential equation y dy = x dx are of the form

(A) x2 − y2 = C
(B) x2 + y2 = C
(C) y2 = Cx2

(D) x2 − Cy2 = 0

(E) x2 = C − y2

12.   Find the domain of the particular solution to the differential equation in Question 11 that passes
through point (−2, 1).
(A) x < 0
(B) − 2 ≤ x < 0
(C) 
(D) 
(E) 

13.   If  and y = 1 when x = 4, then

(A) 
(B) 



(C) 
(D) 
(E) 

14.   If  and y = 0 when x = 1, then

(A) y = ln |x|
(B) y = ln |2 − x|

(C) e−y = 2 − x
(D) y = −ln |x|

(E) e−y = x − 2
15.   If  and y = 5 when x = 4, then y equals

(A) 
(B) 
(C) 

(D) 

(E) none of these
16.   The general solution of the differential equation x dy = y dx is a family of

(A) circles
(B) hyperbolas
(C) parallel lines
(D) parabolas
(E) lines passing through the origin

17.   The general solution of the differential equation  is a family of

(A) parabolas
(B) straight lines
(C) hyperbolas
(D) ellipses
(E) none of these

18.   A function f (x) that satisfies the equations f (x)f ′(x) = x and f (0) = 1 is
(A) 
(B) 
(C) f (x) = x
(D) f (x) = ex



(E) none of these
19.   The curve that passes through the point (1,1) and whose slope at any point (x, y) is equal to 

has the equation
(A) 3x − 2 = y
(B) y3 = x
(C) y = x3

(D) 3y2 = x2 + 2

(E) 3y2 − 2x = 1
20.   What is the domain of the particular solution in Question 19?

(A) all real numbers
(B) |x| ≤ 1
(C) x ≠ 0
(D) x < 0
(E) x > 0

21.   If  k a constant, and if y = 2 when x = 1 and y = 4 when x = e, then, when x = 2, y equals

(A) 2
(B) 4
(C) ln 8
(D) ln 2 + 2
(E) ln 4 + 2

22.   The slope field shown below is for the differential equation
(A) y ′ = x + 1
(B) y ′ = sin x
(C) y ′ = −sin x
(D) y ′ = cos x
(E) y ′ = −cos x

23.   The slope field below is for the differential equation



(A) y ′ = 2x
(B) y ′ = 2x − 4
(C) y ′ = 4 − 2x
(D) y ′ = y
(E) y ′ = x + y

24.   A solution curve has been superimposed on the slope field shown below. The solution is for the
differential equation and initial condition
(A) y ′ = tan x; y(0) = 0
(B) y ′ = cot x, y(π/4) = 1

(C) y ′ = 1 + x2; y (0) = 0
(D) 

(E) y ′ = 1 + y2; y(0) = 0

The slope fields below are for Questions 25–30.



25.   Which slope field is for the differential equation y ′ = y ?
(A) I
(B) II
(C) III
(D) IV
(E) V

26.   Which slope field is for the differential equation 

(A) I
(B) II
(C) III
(D) IV
(E) V

27.   Which slope field is for the differential equation y ′ = sin x ?
(A) I



(B) II
(C) III
(D) IV
(E) V

28.   Which slope field is for the differential equation y ′ = 2x ?
(A) I
(B) II
(C) III
(D) IV
(E) V

29.   Which slope field is for the differential equation y ′ = e−x2?
(A) I
(B) II
(C) III
(D) IV
(E) V

30.   A particular solution curve of a differential equation whose slope field is shown above in II
passes through the point (0,−1). The equation is

(A) y = −ex

(B) y = −ex

(C) y = x2 − 1
(D) y = −cos x
(E) 

31.   If you use Euler’s method with Δx = 0.1 for the d.e. y ′ = x, with initial value y(1) = 5, then,
when x = 1.2, y is approximately
(A) 5.10
(B) 5.20
(C) 5.21
(D) 6.05
(E) 7.10

BC ONLY

32.   The error in using Euler’s method in Question 31 is
(A) 0.005



(B) 0.010
(C) 0.050
(D) 0.500
(E) 0.720

33.   Which differential equation has the slope field shown below?
(A) y ′ = y (y + 2)
(B) y ′ = x (y + 2)
(C) y ′ = xy + 2
(D) 

(E) 

34.   Which function is a possible solution of the slope field shown?
(A) 

(B) y = 1 − ln x
(C) y = 1 + ln x
(D) y = 1 + ex

(E) y = 1 + tan x

Part B. Directions: Some of the following questions require the use of a graphing calculator.
35.   If  and if s = 1 when t = 0, then, when  t is equal to



(A) 

(B) 

(C) 1
(D) 

(E) 

36.   If radium decomposes at a rate proportional to the amount present, then the amount R left after t
yr, if R0 is present initially and c is the negative constant of proportionality, is given by

(A) R = R0 ct

(B) R = R0 ect

(C) 

(D) R = eR0 ct

(E) R = eR0 +ct

37.   The population of a city increases continuously at a rate proportional, at any time, to the
population at that time. The population doubles in 50 yr. After 75 yr the ratio of the population P
to the initial population P0 is

(A) 

(B) 

(C) 

(D) 

(E) none of these
38.   If a substance decomposes at a rate proportional to the amount of the substance present, and if

the amount decreases from 40 g to 10 g in 2 hr, then the constant of proportionality is
(A) −ln 2
(B) 

(C) 

(D) 

(E) 

39.   If (g ′(x))2 = g(x) for all real x and g(0) = 0, g(4) = 4, then g(1) equals
(A) 

(B) 



(C) 1
(D) 2
(E) 4

40.   The solution curve of y ′ = y that passes through point (2, 3) is

(A) y = ex + 3
(B) 

(C) y = 0.406ex

(D) y = ex − (e2 + 3)

(E) y = ex /(0.406)
41.   At any point of intersection of a solution curve of the d.e. y ′ = x + y and the line x + y = 0, the

function y at that point
(A) is equal to 0
(B) is a local maximum
(C) is a local minimum
(D) has a point of inflection
(E) has a discontinuity

42.   The slope field for F ′(x) = e−x2 is shown below with the particular solution F(0) = 0
superimposed. With a graphing calculator,  to three decimal places is
(A) 0.886
(B) 0.987
(C) 1.000
(D) 1.414
(E) ∞

43.   The graph displays logistic growth for a frog population F. Which differential equation could be
the appropriate model?
(A) 

(B) 



(C) 

(D) 

(E) 

BC ONLY

44.   The table shows selected values of the derivative for a differentiable function f.

x 2 3 4 5 6 7

f ′(x) 2.0 2.5 1.0 −0.5 −1.5 0.5

Given that f (3) = 100, use Euler’s method with a step size of 2 to estimate f (7).
(A) 101.5
(B) 102.5
(C) 103
(D) 104
(E) 104.5

45.   A cup of coffee at temperature 180°F is placed on a table in a room at 68°F. The d.e. for its
temperature at time t is  y(0) = 180. After 10 min the temperature (in °F) of the
coffee is
(A) 96
(B) 100
(C) 105
(D) 110
(E) 115

46.   Approximately how long does it take the temperature of the coffee in Question 45 to drop to
75°F?
(A) 10 min



(B) 15 min
(C) 18 min
(D) 20 min
(E) 25 min

47.   The concentration of a medication injected into the bloodstream drops at a rate proportional to
the existing concentration. If the factor of proportionality is 30% per hour, in how many hours will
the concentration be one-tenth of the initial concentration?
(A) 3
(B) 

(C) 

(D) 

(E) none of these
48.   Which of the following statements characterize(s) the logistic growth of a population whose

limiting value is L ?
I. The rate of growth increases at first.
II. The growth rate attains a maximum when the population equals 

III. The growth rate approaches 0 as the population approaches L.
(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II, and III

BC ONLY

49.   Which of the following d.e.’s is not logistic?

(A) P ′ = P − P2

(B) 

(C) 

(D) 

(E) f ′(t) = kf (t) · [A − f (t)] (where k and A are constants)
50.   Suppose P(t) denotes the size of an animal population at time t and its growth is described by the

d.e.  The population is growing fastest

(A) initially



(B) when P = 500
(C) when P = 1000
(D) when 

(E) when 

51.   According to Newton’s law of cooling, the temperature of an object decreases at a rate
proportional to the difference between its temperature and that of the surrounding air. Suppose a
corpse at a temperature of 32°C arrives at a mortuary where the temperature is kept at 10°C. Then
the differential equation satisfied by the temperature T of the corpse t hr later is
(A) 

(B) 

(C) 

(D) 

(E) 

52.   If the corpse in Question 51 cools to 27°C in 1 hr, then its temperature (in °C) is given by the
equation

(A) T = 22e0.205t

(B) T = 10e1.163t

(C) T = 10 + 22e−0.258t

(D) T = 32e−0.169t

(E) T = 32 − 10e−0.093t



CHAPTER 10 Sequences and Series

Concepts and Skills
In this chapter, we review infinite series for BC Calculus students. Topics include
• tests for determining convergence or divergence,
• functions defined as power series,
• MacLaurin and Taylor series,
• and estimates of errors.

All of Chapter 10 is BC ONLY.

A. SEQUENCES OF REAL NUMBERS‡

A1. Definitions.
A n infinite sequence is a function whose domain is the set of positive integers, and is often

denoted simply by an. The sequence defined, for example, by  is the set of numbers 
 The elements in this set are called the terms of the sequence, and the nth or general

term of this sequence is 
A sequence an converges to a finite number L if 

If an does not have a (finite) limit, we say the sequence is divergent.

EXAMPLE 1
Does the sequence  converge or diverge?

SOLUTION:  hence the sequence converges to 0.

EXAMPLE 2
Does the sequence  converge or diverge?

SOLUTION:  hence the sequence converges to 

‡Topic will not be tested on the AP examination, but some understanding of the notation and terminology is helpful.

EXAMPLE 3
Does the sequence  converge or diverge?

SOLUTION:  hence the sequence converges to 1.

Note that the terms in the sequence  are alternately smaller and larger than 1. We
say this sequence converges to 1 by oscillation.



EXAMPLE 4
Does the sequence  converge or diverge?

SOLUTION: Since  the sequence diverges (to infinity).

EXAMPLE 5
Does the sequence an = sin n converge or diverge?

SOLUTION: Because  sin n does not exist, the sequence diverges. However, note that it does
not diverge to infinity.

EXAMPLE 6
Does the sequence an = (−1)n + 1 converge or diverge?

SOLUTION: Because  does not exist, the sequence diverges.
Note that the sequence 1, −1, 1, −1,… diverges because it oscillates.

B. INFINITE SERIES
B1. Definitions.

Infinite series

If an is a sequence of real numbers, then an infinite series is an expression of the form

The elements in the sum are called terms; an is the nth or general term of the series.

EXAMPLE 7
A series of the form  is called a p-series.

The p-series for p = 2 is 

EXAMPLE 8
The p-series with p = 1 is called the harmonic series:

EXAMPLE 9
A geometric series has a first term, a, and common ratio of terms, r:



If there is a finite number S such that

then we say that infinite series is convergent, or converges to S, or has the sum S, and we write, in
this case,

When there is no source of confusion, the infinite series (1) may be indicated simply by

EXAMPLE 10
Show that the geometric series  converges to 2.

SOLUTION: Let S represent the sum of the series; then:

EXAMPLE 11
Show that the harmonic series  diverges.

SOLUTION The terms in the series can be grouped as follows:

This sum clearly exceeds

which equals

Since that sum is not bounded, it follows that  diverges to ∞.

B2. Theorems About Convergence or Divergence of Infinite Series.
The following theorems are important.



THEOREM 2a. If  converges, then 
This provides a convenient and useful test for divergence, since it is equivalent to the statement: If

an does not approach zero, then the series  diverges. Note, however, particularly that the converse
of Theorem 2a is not true. The condition that an approach zero is necessary but not sufficient for the
convergence of the series. The harmonic series  is an excellent example of a series whose nth
term goes to zero but that diverges (see Example 11 above). The series  diverges because 

 not zero; the series  does not converge (as will be shown shortly) even though 
THEOREM 2b. A finite number of terms may be added to or deleted from a series without affecting

its convergence or divergence; thus

(where m is any positive integer) both converge or both diverge. (Note that the sums most likely will
differ.)

THEOREM 2c. The terms of a series may be multiplied by a nonzero constant without affecting the
convergence or divergence; thus

both converge or both diverge. (Again, the sums will usually differ.)
THEOREM 2d. If  both converge, so does 
THEOREM 2e. If the terms of a convergent series are regrouped, the new series converges.

B3. Tests for Convergence of Infinite Series.
THE nth TERM TEST

If  diverges.
NOTE: When working with series, it’s a good idea to start by checking the nth Term Test. If the

terms don’t approach 0, the series cannot converge. This is often the quickest and easiest way to
identify a divergent series.

(Because this is the contrapositive of Theorem 2a, it’s always true. But beware of the converse!
Seeing that the terms do approach 0 does not guarantee that the series must converge. It just means
that you need to try other tests.)

EXAMPLE 12
Does  converge or diverge?

SOLUTION: Since  the series  diverges by the nth Term Test.

THE GEOMETRIC SERIES TEST
A geometric series  converges if and only if |r| < 1.

If |r| < 1, the sum is 
The series cannot converge unless it passes the nth Term Test;  only if |r| < 1. As noted



earlier, this is a necessary condition for convergence, but may not be sufficient. We now examine the
sum using the same technique we employed in Example 10:

EXAMPLE 13
Does 0.3 + 0.03 + 0.003 + · · · converge or diverge?
SOLUTION: The series 0.3 + 0.03 + 0.003 + · · · is geometric with a = 0.3 and r = 0.1. Since |r| <
1, the series converges, and its sum is

NOTE:  = 0.333 …, which is the given series.

B4. Tests for Convergence of Nonnegative Series.
The series  is called a nonnegative series if an ≥ 0 for all n.

THE INTEGRAL TEST
If f (x) is a continuous, positive, decreasing function and f (n) = an, then  converges if and only if
the improper integral  converges.

EXAMPLE 14
Does  converge?

SOLUTION: The associated improper integral is

which equals

The improper integral and the infinite series both diverge.

EXAMPLE 15
Test the series  for convergence.



SOLUTION: 
by an application of L’Hôpital’s Rule. Thus  converges.

THE p-SERIES TEST
A p-series  converges if p > 1, but diverges if p ≤ 1.

This follows immediately from the Integral Test and the behavior of improper integrals of the form

EXAMPLE 16
Does the series  converge or diverge?

SOLUTION: The series  is a p-series with p = 3;

hence the series converges by the p-Series Test.

EXAMPLE 17
Does the series  converge or diverge?

SOLUTION:  diverges, because it is a p-series with 

THE COMPARISON TEST
We compare the general term of  the nonnegative series we are investigating, with the general
term of a series known to converge or diverge.

(1) If  converges and an  un, then  converges.
(2) If  diverges and an  un, then  diverges.
Any known series can be used for comparison. Particularly useful are p-series, which converge if

p > 1 but diverge if p  1, and geometric series, which converge if |r| < 1 but diverge if |r|  1.

EXAMPLE 18
Does  converge or diverge?

SOLUTION: Since  and the p-series  converges,  converges by the
Comparison Test.

EXAMPLE 19
Does the series  converge or diverge?



SOLUTION:  diverges, since

the latter is the general term of the divergent p-series  where  and 

Remember in using the Comparison Test that you may either discard a finite number of terms or
multiply each term by a nonzero constant without affecting the convergence of the series you are
testing.

EXAMPLE 20
Show that  converges.

SOLUTION: For  is a convergent geometric series with 

THE LIMIT COMPARISON TEST
If  is finite and nonzero, then  and  both converge or both diverge.

This test is useful when the direct comparisons required by the Comparison Test are difficult to
establish. Note that, if the limit is zero or infinite, the test is inconclusive and some other approach
must be used.

EXAMPLE 21
Does  converge or diverge?

SOLUTION: This series seems to be related to the divergent harmonic series, but  so
the comparison fails. However, the Limit Comparison Test yields:

Since  also diverges by the Limit Comparison Test.

THE RATIO TEST
Let  if it exists. Then  converges if L < 1 and diverges if L > 1.

If L = 1, this test is inconclusive; apply one of the other tests.

EXAMPLE 22
Does  converge or diverge?

SOLUTION: 

Therefore this series converges by the Ratio Test.



EXAMPLE 23
Does  converge or diverge?

SOLUTION: 

and

(See §E2.) Since e > 1,  diverges by the Ratio Test.

EXAMPLE 24
If the Ratio Test is applied to any p-series,  then

But if p > 1 then  converges, while if p  1 then  diverges. This illustrates the failure of
the Ratio Test to resolve the question of convergence when the limit of the ratio is 1.

THE nth ROOT TEST
Let  if it exists. Then  converges if L < 1 and diverges if L > 1.
If L = 1 this test is inconclusive; try one of the other tests.
Note that the decision rule for this test is the same as that for the Ratio Test.

EXAMPLE 25
The series  converges by the nth Root Test, since

B5. Alternating Series and Absolute Convergence.
Any test that can be applied to a nonnegative series can be used for a series all of whose terms are
negative. We consider here only one type of series with mixed signs, the so-called alternating series.
This has the form:

where ak > 0. The series

is the alternating harmonic series.



THE ALTERNATING SERIES TEST
An alternating series converges if:

(1) an + 1 < an for all n, and
(2) 

EXAMPLE 26
Does the series  converge or diverge?

SOLUTION: The alternating harmonic series  converges, since

(1)  for all n and

(2) 

EXAMPLE 27
Does the series  converge or diverge?

SOLUTION: The series  diverges, since we see that  is 1, not 0. (By the
nth Term Test, if an does not approach 0, then  does not converge.)

DEFINITION

Absolute
convergence

A series with mixed signs is said to converge absolutely (or to be absolutely convergent) if the
series obtained by taking the absolute values of its terms converges; that is,  converges absolutely
if  converges.

A series that converges but not absolutely is said to converge conditionally (or to be
conditionally convergent). The alternating harmonic series converges conditionally since it
converges, but does not converge absolutely. (The harmonic series diverges.)

When asked to determine whether an alternating series is absolutely convergent, conditionally
convergent, or divergent, it is often advisable to first consider the series of absolute values. Check
first for divergence, using the nth Term Test. If that test shows that the series may converge,
investigate further, using the tests for nonnegative series. If you find that the series of absolute values
converges, then the alternating series is absolutely convergent. If, however, you find that the series of
absolute values diverges, then you’ll need to use the Alternating Series Test to see whether the series
is conditionally convergent.

EXAMPLE 28
Determine whether  converges absolutely, converges conditionally, or diverges.

SOLUTION: We see that  not 0, so by the nth Term Test the series  is



divergent.

EXAMPLE 29

Determine whether  converges absolutely, converges conditionally, or diverges.

SOLUTION: Note that, since  the series passes the nth Term Test.

But  is the general term of a convergent p-series (p = 2), so by the Comparison Test the
nonnegative series converges, and therefore the alternating series converges absolutely.

EXAMPLE 30

Determine whether  converges absolutely, converges conditionally, or diverges.

SOLUTION:  is a p-series with  so the nonnegative series diverges.

We see that 

so the alternating series converges; hence  is conditionally convergent.

APPROXIMATING THE LIMIT OF AN ALTERNATING SERIES
Evaluating the sum of the first n terms of an alternating series, given by  yields an

approximation of the limit, L. The error (the difference between the approximation and the true limit)
is called the remainder after n terms and is denoted by Rn. When an alternating series is first shown
to pass the Alternating Series Test, it’s easy to place an upper bound on this remainder. Because the
terms alternate in sign and become progressively smaller in magnitude, an alternating series
converges on its limit by oscillation, as shown in Figure N10–1.

FIGURE N10–1

Error bound

Because carrying out the approximation one more term would once more carry us beyond L, we



see that the error is always less than that next term. Since |Rn | < an + 1, the error bound for an
alternating series is the first term omitted or dropped.

EXAMPLE 31
The series  passes the Alternating Series Test; hence its sum differs from the sum

by less than  which is the error bound.

EXAMPLE 32
How many terms must be summed to approximate to three decimal places the value of

SOLUTION: Since  the series converges by the Alternating Series Test;

therefore after summing a number of terms the remainder (error) will be less than the first omitted
term.

We seek n such that  Thus n must satisfy (n + 1)2 > 1000, or n > 30.623. Therefore

31 terms are needed for the desired accuracy.

C. POWER SERIES
C1. Definitions; Convergence.
An expression of the form

where the a’s are constants, is called a power series in x; and

is called a power series in (x − a).
If in (1) or (2) x is replaced by a specific real number, then the power series becomes a series of

constants that either converges or diverges. Note that series (1) converges if x = 0 and series (2)
converges if x = a.

RADIUS AND INTERVAL OF CONVERGENCE
If power series (1) converges when |x| < r and diverges when |x| > r, then r is called the radius of
convergence. Similarly, r is the radius of convergence of power series (2) if (2) converges when |x −
a| < r and diverges when |x − a| > r.



The set of all values of x for which a power series converges is called its interval of
convergence. To find the interval of convergence, first determine the radius of convergence by
applying the Ratio Test to the series of absolute values. Then check each endpoint to determine
whether the series converges or diverges there.

EXAMPLE 33
Find all x for which the following series converges:

SOLUTION: By the Ratio Test, the series converges if

Thus, the radius of convergence is 1. The endpoints must be tested separately since the Ratio Test
fails when the limit equals 1. When x = 1, (3) becomes 1 + 1 + 1 + · · · and diverges; when x = −1,
(3) becomes 1−1 + 1−1 + ··· and diverges. Thus the interval of convergence is −1 < x < 1.

EXAMPLE 34
For what x does  converge?

SOLUTION: 

The radius of convergence is 1. When x = 1, we have  an alternating convergent
series; when x = −1, the series is  which diverges. Thus, the series converges if − 1 <
x  1.

EXAMPLE 35
For what values of x does  converge?

SOLUTION: 

which is always less than 1. Thus the series converges for all x.

EXAMPLE 36
Find all x for which the following series converges:

SOLUTION: 

which is less than 1 if |x − 2| < 2, that is, if 0 < x < 4. Series (4) converges on this interval and



diverges if |x − 2| > 2, that is, if x < 0 or x > 4.
When x = 0, (4) is 1 − 1 + 1 − 1 + · · · and diverges. When x = 4, (4) is 1 + 1 + 1 + · · · and
diverges. Thus, the interval of convergence is 0 < x < 4.

EXAMPLE 37
Find all x for which the series  converges.

SOLUTION:  converges only at x = 0, since

unless x = 0.

C2. Functions Defined by Power Series.
Let the function f be defined by

its domain is the interval of convergence of the series.
Functions defined by power series behave very much like polynomials, as indicated by the

following properties:

PROPERTY 2a. The function defined by (1) is continuous for each x in the interval of convergence
of the series.

PROPERTY 2b. The series formed by differentiating the terms of series (1) converges to f ′(x) for
each x within the radius of convergence of (1); that is,

Note that power series (1) and its derived series (2) have the same radius of convergence but not
necessarily the same interval of convergence.

EXAMPLE 38
Let 

Find the intervals of convergence of the power series for f (x) and f ′(x).

SOLUTION: 

also,



and

Hence, the power series for f converges if −1  x  1.

For the derivative 

also,

and

Hence, the power series for f ′ converges if −1  x < 1.
Thus, the series given for f (x) and f ′(x) have the same radius of convergence, but their intervals

of convergence differ.

PROPERTY 2c. The series obtained by integrating the terms of the given series (1) converges to 
 for each x within the interval of convergence of (1); that is,

EXAMPLE 39
Let  Show that the power series for  converges for all values of x in the interval
of convergence of the power series for f (x).
SOLUTION: Obtain a series for  by long division.

Then,

It can be shown that the interval of convergence is −1 < x < 1.
Then by Property 2c



Since when x = 0 we see that c = 1, we have

Note that this is a geometric series with ratio r = x and with a = 1; if |x| < 1, its sum is 

C3. Finding a Power Series for a Function: Taylor and Maclaurin
Series.

If a function f (x) is representable by a power series of the form

c0 + c1 (x − a) + c2 (x − a)2 + ··· + cn (x − a)n +···

on an interval |x − a| < r, then the coefficients are given by

Taylor series

The series

is called the Taylor series  of the function f about the number a. There is never more than one power
series in (x − a) for f (x). It is required that the function and all its derivatives exist at x = a if the
function f (x) is to generate a Taylor series expansion.

When a = 0 we have the special series

called the Maclaurin series of the function f; this is the expansion of f about x = 0.

EXAMPLE 40
Find the Maclaurin series for f (x) = ex.

SOLUTION: Here f ′(x) = ex, …, f (n) (x) = ex, …, for all n. Then

f ′(0) = 1, …, f (n) (0) = 1, …,
for all n, making the coefficients 

EXAMPLE 41
Find the Maclaurin expansion for f (x) = sin x.



SOLUTION: 
Thus,

EXAMPLE 42
Find the Maclaurin series for 

SOLUTION:

Then

Note that this agrees exactly with the power series in x obtained by different methods in Example
39.

EXAMPLE 43
Find the Taylor series for the function f (x) = ln x about x = 1.
SOLUTION:



Then

COMMON MACLAURIN SERIES
We list here for reference some frequently used Maclaurin series expansions together with their
intervals of convergence:

FUNCTIONS THAT GENERATE NO SERIES.
Note that the following functions are among those that fail to generate a specific series in (x − a)
because the function and/or one or more derivatives do not exist at x = a:



C4. Approximating Functions with Taylor and Maclaurin
Polynomials.

The function f (x) at the point x = a is approximated by a Taylor polynomial Pn (x) of order n:

The Taylor polynomial Pn (x) and its first n derivatives all agree at a with f and its first n
derivatives. The order of a Taylor polynomial is the order of the highest derivative, which is also the
polynomial’s last term.

In the special case where a = 0, the Maclaurin polynomial of order n that approximates f (x) is

The Taylor polynomial P1 (x) at x = 0 is the tangent-line approximation to f (x) near zero given by

f (x)  P1 (x) = f (0) + f ′(0)x.

It is the “best” linear approximation to f at 0, discussed at length in Chapter 4 §L.

A NOTE ON ORDER AND DEGREE

A Taylor polynomial has degree n if it has powers of (x − a) up through the nth. If f (n) (a) = 0,
then the degree of Pn (x) is less than n. Note, for instance, in Example 45, that the second-order
polynomial P2 (x) for the function sin x (which is identical with P1 (x)) is  or just x, which
has degree 1, not 2.

EXAMPLE 44
Find the Taylor polynomial of order 4 at 0 for f (x) = e−x. Use this to approximate f (0.25).

SOLUTIONS: The first four derivatives are −e−x, e−x, −e−x and e−x ; at a = 0, these equal −1, 1,
−1, and 1 respectively. The approximating Taylor polynomial of order 4 is therefore

With x = 0.25 we have



This approximation of e−0.25 is correct to four places.

In Figure N10–2 we see the graphs of f (x) and of the Taylor polynomials:

FIGURE N10–2

Notice how closely P4 (x) hugs f (x) even as x approaches 1. Since the series can be shown to
converge for x > 0 by the Alternating Series Test, the error in P4 (x) is less than the magnitude of the
first omitted term,  at x = 1. In fact, P4 (1) = 0.375 to three decimal places, close to e−1 ≈
0.368.

EXAMPLE 45
(a) Find the Taylor polynomials P1, P3, P5, and P7 at x = 0 for f (x) = sin x.

(b) Graph f and all four polynomials in [−2π,2π] × [−2,2].
(c) Approximate sin  using each of the four polynomials.

SOLUTIONS:
(a) The derivatives of the sine function at 0 are given by the following table:



From the table we know that

(b) Figure N10–3a shows the graphs of sin x and the four polynomials. In Figure N10–3b we see
graphs only of sin x and P7 (x), to exhibit how closely P7 “follows” the sine curve.

FIGURE N10–3a

FIGURE N10–3b

(c) To four decimal places, sin  = 0.8660. Evaluating the polynomials at  we get

We see that P7 is correct to four decimal places.

EXAMPLE 46
(a) Find the Taylor polynomials of degrees 0, 1, 2, and 3 generated by f (x) = ln x at x = 1.
(b) Graph f and the four polynomials on the same set of axes.
(c) Using P2, approximate ln 1.3, and find a bound on the error.



SOLUTIONS:
(a) The derivatives of ln x at x = 1 are given in the table:

From the table we have

(b) Figure N10–4 shows the graphs of ln x and the four Taylor polynomials above, in [0,2.5] ×
[−1,1].

FIGURE N10–4

(c) ln 1.3 ≈ P2 (1.3) = (1.3 − 1) −  − 0.045 = 0.255.

For x = 1.3 the Taylor series converges by the Alternating Series Test, so the error is less than
the magnitude of the first omitted term:

EXAMPLE 47
For what positive values of x is the approximate formula

ln (1 + x) = 

correct to three decimal places?
SOLUTION: We can use series (4) of Common Maclaurin Series:



For x > 0, this is an alternating series with terms decreasing in magnitude and approaching 0, so
the error committed by using the first two terms is less than  If  then the given

approximation formula will yield accuracy to three decimal places. We therefore require that |x|3 <
0.0015 or that |x| < 0.114.

C5. Taylor’s Formula with Remainder; Lagrange Error Bound.
When we approximate a function using a Taylor polynomial, it is important to know how large the
remainder (error) may be. If at the desired value of x the Taylor series is alternating, this issue is
easily resolved: the first omitted term serves as an upper bound on the error. However, when the
approximation involves a nonnegative Taylor series, placing an upper bound on the error is more
difficult. This issue is resolved by the Lagrange remainder.

TAYLOR’S THEOREM. If a function f and its first (n + 1) derivatives are continuous on the interval |x
− a| < r, then for each x in this interval

where

and c is some number between a and x. Rn (x) is called the Lagrange remainder.
Note that the equation above expresses f (x) as the sum of the Taylor polynomial Pn (x) and the

error that results when that polynomial is used as an approximation for f (x).
When we truncate a series after the (n + 1)st term, we can compute the error bound Rn, according

to Lagrange, if we know what to substitute for c. In practice we find, not Rn exactly, but only an upper
bound for it by assigning to c the value between a and x that determines the largest possible value of
Rn. Hence:

the Lagrange error bound.

EXAMPLE 48
Estimate the error in using the Maclaurin series generated by ex to approximate the value of e.
SOLUTION: From Example 40 we know that f (x) = ex generates the Maclaurin series

The Lagrange error bound is

To estimate e, we use x = 1. For 0 < c < 1, the maximum value of ec is e. Thus:



EXAMPLE 49
Find the Maclaurin series for ln (1 + x) and the associated Lagrange error bound.
SOLUTION:

Then

where the Lagrange error bound is

NOTE: For 0 < x < 1 the Maclaurin series is alternating, and the error bound simplifies to 
 the first omitted term. The more difficult Lagrange error bound applies for −1 < x <0.

EXAMPLE 50
Find the third-degree Maclaurin polynomial for  and determine the upper bound on
the error in estimating f (0.1).
SOLUTION: We first make a table of the derivatives, evaluated at x = 0 and giving us the
coefficients.



Thus 

Since this is not an alternating series for x = 0.1, we must use the Lagrange error bound:

     where x = 0.1 and 0 < c < 0.1.

Note that  is decreasing on the interval 0 < c < 0.1, so its maximum value occurs at
c = 0. Hence:

C6. Computations with Power Series.
The power series expansions of functions may be treated as any other functions for values of x that lie
within their intervals of convergence. They may be added, subtracted, multiplied, divided (with
division by zero to be avoided), differentiated, or integrated. These properties provide a valuable
approach for many otherwise difficult computations. Indeed, power series are often very useful for
approximating values of functions, evaluating indeterminate forms of limits, and estimating definite
integrals.

EXAMPLE 51
Compute  to four decimal places.

SOLUTION: We can use the Maclaurin series,

and let  to get

Note that, since this series converges by the Alternating Series Test, R5 is less than the first term
dropped:



so  correct to four decimal places.

EXAMPLE 52
Estimate the error if the approximate formula

is used and |x| < 0.02.
SOLUTION: We obtain the first few terms of the Maclaurin series generated by 

Then

Note that for x < 0, the series is not alternating, so we must use the Lagrange error bound. Here
 where −0.02 < c < 0.02. With |x| < 0.02, we see that the upper bound uses c = −0.02:

EXAMPLE 53
Use a series to evaluate 

SOLUTION: From series (1) in Common Maclaurin Series,

Then

a well-established result obtained previously.

EXAMPLE 54
Use a series to evaluate 

SOLUTION: We can use series (4) in Common Maclaurin Series, and write



EXAMPLE 55

EXAMPLE 56
Show how a series may be used to evaluate π.

SOLUTION: Since  a series for tan−1 x may prove helpful. Note that

and that a series for  is obtainable easily by long division to yield

If we integrate this series term by term and then evaluate the definite integral, we get

(Compare with series (5) in Common Maclaurin Series and note especially that this series
converges on −1 ≤ x ≤ 1.)
For x = 1 we have:

Here are some approximations for π using this series:

Since the series is alternating, the odd sums are greater, the even ones less, than the value of π. It is
clear that several hundred terms may be required to get even two-place accuracy. There are series
expressions for π that converge much more rapidly. (See Miscellaneous Free-Response Practice,
Problem 12.)

EXAMPLE 57



Use a series to evaluate  to four decimal places.

SOLUTION: Although  cannot be expressed in terms of elementary functions, we can write

a series for eu, replace u by (−x2), and integrate term by term. Thus,

Since this is a convergent alternating series (with terms decreasing in magnitude and approaching
0),  which will not affect the fourth decimal place. Then, correct to four decimal places,

†C7. Power Series over Complex Numbers.
A complex number is one of the form a + bi, where a and b are real and i2 = −1. If we allow complex
numbers as replacements for x in power series, we obtain some interesting results.

Consider, for instance, the series

When x = yi, then (1) becomes

Then

since the series within the parentheses of equation (2) converge respectively to cos y and sin y.
Equation (3) is called Euler’s formula. It follows from (3) that

ei π = − 1,
and thus that

ei π + 1 = 0,



sometimes referred to as Euler’s magic formula.
† This is an optional topic not in the BC Course Description. We include it here because of the dramatic result.

Chapter Summary
In this chapter, we have reviewed an important BC Calculus topic, infinite series. We have looked at
a variety of tests to determine whether a series converges or diverges. We have worked with
functions defined as power series, reviewed how to derive Taylor series, and looked at the
Maclaurin series expansions for many commonly used functions. Finally, we have reviewed how to
find bounds on the errors that arise when series are used for approximations.

Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

Note: No questions on sequences will appear on the BC examination. We have nevertheless chosen to
include the topic in Questions 1–5 because a series and its convergence are defined in terms of
sequences. Review of sequences will enhance understanding of series.

1. Which sequence converges?
(A) 

(B) 

(C) 

(D) 

(E) 

2. 

(A) sn diverges by oscillation

(B) sn converges to zero

(C) 
(D) sn diverges to infinity

(E) None of the above is true.

3. The sequence 

(A) is unbounded
(B) is monotonic
(C) converges to a number less than 1
(D) is bounded



(E) diverges to infinity

4. Which of the following sequences diverges?
(A) 

(B) 

(C) 

(D) 

(E) 

5. The sequence {rn } converges if and only if
(A) |r| < 1
(B) |r|  1
(C) −1 < r  1
(D) 0 < r < 1
(E) |r| > 1

6.  is a series of constants for which  Which of the following statements is always true?

(A)  converges to a finite sum.

(B)  equals zero.

(C)  does not diverge to infinity.

(D)  is a positive series.

(E) none of these

7. Note that  equals

(A) 0
(B) 1
(C) 

(D) 

(E) ∞

8. The sum of the geometric series 

(A) 

(B) 



(C) 1
(D) 

(E) 

9. Which of the following statements about series is true?
(A) If  converges.

(B) If  diverges.

(C) If  diverges, then 

(D)  converges if and only if 

(E) none of these

10. Which of the following series diverges?
(A) 

(B) 

(C) 

(D) 

(E) none of these

11. Which of the following series diverges?
(A) 

(B) 

(C) 

(D) 1−1.1 + 1.21−1.331 + ···
(E) 

12. Let  then S equals

(A) 1
(B) 

(C) 

(D) 2
(E) 3



13. Which of the following expansions is impossible?
(A)  in powers of x
(B)  in powers of x
(C) ln x in powers of (x − 1)
(D) tan x in powers of 

(E) ln (1 − x) in powers of x

14. The series  converges if and only if

(A) x = 0
(B) 2 < x < 4
(C) x = 3
(D) 2  x  4
(E) x < 2 or x > 4

15. Let  The radius of convergence of  is

(A) 0
(B) 1
(C) 2
(D) ∞
(E) none of these

16. The coefficient of x4 in the Maclaurin series for f (x) = e−x/2 is
(A) 

(B) 

(C) 

(D) 

(E) 

17. If an appropriate series is used to evaluate  then, correct to three decimal places, the
definite integral equals
(A) 0.009
(B) 0.082



(C) 0.098
(D) 0.008
(E) 0.090

18. If the series tan−1  is used to approximate  with an error less than 0.001, then
the smallest number of terms needed is
(A) 100
(B) 200
(C) 300
(D) 400
(E) 500

19. Let f be the Taylor polynomial P7 (x) of order 7 for tan−1 x about x = 0. Then it follows that, if
−0.5 < x < 0.5,

(A) f (x) = tan−1 x
(B) f (x) ≤ tan−1 x
(C) f (x) ≥ tan−1 x
(D) f (x) > tan−1 x if x < 0 but < tan−1 x if x > 0

(E) f (x) < tan−1 x if x < 0 but > tan−1 x if x > 0

20. Replace the first sentence in Question 19 by “Let f be the Taylor polynomial P9 (x) of order 9
for tan−1 x about x = 0.” Which choice given in Question 19 is now the correct one?

Part B. Directions: Some of the following questions require the use of a graphing calculator.

21. Which of the following statements about series is false?
(A)  where m is any positive integer.

(B) If  converges, so does  if c ≠ 0.

(C) If  and  converge, so does  where c ≠ 0.

(D) If 1000 terms are added to a convergent series, the new series also converges.
(E) Rearranging the terms of a positive convergent series will not affect its convergence or its
sum.

22. Which of the following series converges?
(A) 



(B) 

(C) 

(D) 

(E) 

23. Which of the following series diverges?
(A) 

(B) 

(C) 

(D) 

(E) 

24. For which of the following series does the Ratio Test fail?
(A) 

(B) 

(C) 

(D) 

(E) 

25. Which of the following alternating series diverges?
(A) 

(B) 

(C) 

(D) 

(E) 

26. Which of the following statements is true?
(A) If  converges, then so does the series 

(B) If a series is truncated after the nth term, then the error is less than the first term omitted.



(C) If the terms of an alternating series decrease, then the series converges.
(D) If r < 1, then the series  converges.

(E) none of these

27. The power series  converges if and only if

(A) −1 < x < 1
(B) −1  x  1
(C) −1  x < 1
(D) −1 < x  1
(E) x = 0

28. The power series

diverges
(A) for no real x
(B) if −2<x  0
(C) if x < −2 or x > 0
(D) if −2  x < 0
(E) if x ≠ −1

29. The series obtained by differentiating term by term the series

converges for
(A) 1  x  3
(B) 1  x < 3
(C) 1 < x  3
(D) 0  x  4
(E) none of these

30. The Taylor polynomial of order 3 at x = 0 for  is

(A) 

(B) 

(C) 



(D) 

(E) 

31. The Taylor polynomial of order 3 at x = 1 for ex is
(A) 

(B) 

(C) 

(D) 

(E) 

32. The coefficient of  in the Taylor series about  of f (x) = cos x is

(A) 

(B) 

(C) 

(D) 

(E) 

33. Which of the following series can be used to compute ln 0.8?
(A) ln (x − 1) expanded about x = 0
(B) ln x about x = 0
(C) ln x expanded about x = 1
(D) ln (x − 1) expanded about x = 1
(E) none of these

34. If e−0.1 is computed using a Maclaurin series, then, correct to three decimal places, it equals
(A) 0.905
(B) 0.950
(C) 0.904
(D) 0.900
(E) 0.949

35. The coefficient of x2 in the Maclaurin series for esin x is



(A) 0
(B) 1
(C) 

(D) −1
(E) 

36. Let  Suppose both series converge for |x| < R. Let x0 be a number such

that |x0 | < R. Which of the following statements is false?

(A)  converges to f (x0) + g(x0).

(B)  converges to f (x0)g(x0).

(C)  is continuous at x = x0.

(D)  converges to f ′(x0).

(E) none of these

37. The coefficient of (x − 1)5 in the Taylor series for x ln x about x = 1 is
(A) 

(B) 

(C) 

(D) 

(E) 

38. The radius of convergence of the series 

(A) 0
(B) 2
(C) 

(D) 

(E) ∞

39. If the approximate formula sin x =  is used and |x| < 1 (radian), then the error is
numerically less than
(A) 0.001



(B) 0.003
(C) 0.005
(D) 0.008
(E) 0.009

40. If a suitable series is used, then  correct to three decimal places, is

(A) −0.200
(B) 0.180
(C) 0.190
(D) −0.190
(E) −0.990

41. The function  and f ′(x) = −f (x) for all x. If f (0) = 1, then f (0.2), correct to three

decimal places, is
(A) 0.905
(B) 1.221
(C) 0.819
(D) 0.820
(E) 1.220

42. The sum of the series  is equal to

(A) 0
(B) 1
(C) 

(D) 

(E) none of these

43. When  is approximated by the sum of its first 300 terms, the error is closest to

(A) 0.001
(B) 0.002
(C) 0.005
(D) 0.01
(E) 0.02



44. The Taylor polynomial of order 3 at x = 0 for (1 + x)p, where p is a constant, is

(A) 1 + px + p(p − 1)x2 + p(p − 1)(p − 2)x3

(B) 

(C) 

(D) 

(E) none of these

45. The Taylor series for ln (1 + 2x) about x = 0 is
(A) 

(B) 2x − 2x2 + 8x3 − 16x4 + · · ·

(C) 2x − 4x2 + 16x3 + · · ·
(D) 

(E) 

46. The set of all values of x for which  converges is

(A) only x = 0
(B) |x| = 2
(C) −2 < x < 2
(D) |x| > 2
(E) none of these

47. The third-order Taylor polynomial P3 (x) for sin x about  is

(A) 

(B) 

(C) 

(D) 

(E) 

48. Let h be a function for which all derivatives exist at x = 1. If h(1) = h′ (1) = h″ (1) = h′″ (1) = 6,
which third-degree polynomial best approximates h there?

(A) 6 + 6x + 6x2 + 6x3

(B) 6 + 6(x − 1) + 6(x − 1)2 + 6(x − 1)3



(C) 6 + 6x + 3x2 + x3

(D) 6 + 6(x − 1) + 3(x − 1)2 + (x − 1)3

(E) 



CHAPTER 11 Miscellaneous Multiple-Choice Practice
Questions

 

These questions provide further practice for Parts A and B of Section I of the examination.
Part A. Directions: Answer these questions without using your calculator.

1. Which of the following functions is continuous at x = 0?

(A) 

(B) f (x) = [x] (greatest-integer function)

(C) 

(D) 

(E) 

2. Which of the following statements about the graph of  is not true?

(A) The graph is symmetric to the y-axis.
(B) The graph has two vertical asymptotes.
(C) There is no y-intercept.
(D) The graph has one horizontal asymptote.
(E) There is no x-intercept.

3. 

(A) −1
(B) 0
(C) 1
(D) 2
(E) none of these

4. The x-coordinate of the point on the curve y = x2 − 2x + 3 at which the tangent is perpendicular
to the line x + 3y + 3 = 0 is



(A) 

(B) 

(C) 

(D) 

(E) none of these

5. 

(A) −3
(B) −1
(C) 1
(D) 3
(E) nonexistent

6. For polynomial function p, p ″(2) = −6, p ″(4) = 0, and p ″(5) = 3. Then p must:
(A) have an inflection point at x = 4
(B) have a minimum at x = 4
(C) have a root at x = 4
(D) be increasing on [2,5]
(E) none of these

7. 

(A) 6
(B) 8
(C) 10
(D) 11
(E) 12

8. 

(A) 

(B) 

(C) 1
(D) 3
(E) nonexistent



9. The maximum value of the function f (x) = x4 − 4x3 + 6 on [1, 4] is
(A) 1
(B) 0
(C) 3
(D) 6
(E) none of these

10. Let  if x ≠ 5, and let f be continuous at x = 5. Then c =

(A) 

(B) 0
(C) 

(D) 1
(E) 6

11. 

(A) −1
(B) 

(C) 0
(D) 

(E) 1

12. If sin x = ln y and 0 < x < π, then, in terms of x,  equals

(A) esin x cos x
(B) e−sin x cos x
(C) 

(D) ecos x

(E) esin x

13. If f (x) = x cos x, then  equals

(A) 

(B) 0



(C) −1
(D) 

(E) 1

14. The equation of the tangent to the curve y = ex ln x, where x = 1, is
(A) y = ex
(B) y = ex + 1
(C) y = e(x − 1)
(D) y = ex + 1
(E) y = x − 1

15. If the displacement from the origin of a particle moving along the x-axis is given by s = 3 + (t
− 2)4, then the number of times the particle reverses direction is

(A) 0
(B) 1
(C) 2
(D) 3
(E) none of these

16.  equals

(A) 1 − e
(B) 

(C) e − 1
(D) 

(E) e + 1

17. If  equals

(A) 7
(B) 

(C) 

(D) 9
(E) 

18. If the position of a particle on a line at time t is given by s = t3 + 3t, then the speed of the



particle is decreasing when
(A) − 1 < t < 1
(B) − 1 < t < 0
(C) t < 0
(D) t > 0
(E) |t| > 1

19. A rectangle with one side on the x-axis is inscribed in the triangle formed by the lines y = x, y
= 0, and 2x + y = 12. The area of the largest such rectangle is

(A) 6
(B) 3
(C) 

(D) 5
(E) 7

CHALLENGE

20. The x-value of the first-quadrant point that is on the curve of x2 − y2 = 1 and closest to the
point (3, 0) is

(A) 1
(B) 

(C) 2
(D) 3
(E) none of these

21. If y = ln(4x + 1), then  is

(A) 

(B) 

(C) 

(D) 

(E) 

22. The region bounded by the parabolas y = x2 and y = 6x − x2 is rotated about the x-axis so that a



vertical line segment cut off by the curves generates a ring. The value of x for which the ring of
largest area is obtained is

(A) 4
(B) 3
(C) 

(D) 2
(E) 

23.  equals

(A) ln (ln x) + C
(B) 

(C) 

(D) ln x + C
(E) none of these

24. The volume obtained by rotating the region bounded by x = y2 and x = 2 − y2 about the y-axis
is equal to

(A) 

(B) 

(C) 

(D) 

(E) 

25. The general solution of the differential equation  is a family of

(A) straight lines
(B) circles
(C) hyperbolas
(D) parabolas
(E) ellipses

26. Estimate  dx using the Left Rectangular Rule and two subintervals of equal width.

(A) 
(B) 



(C) 
(D) 
(E) 

27. 

(A) −2
(B) 

(C) 0
(D) 

(E) 

28. 

(A) 0
(B) 

(C) 

(D) 

(E) ∞

BC ONLY

29. 

(A) 0
(B) 

(C) 1
(D) 2
(E) ∞

30. The number of values of k for which f (x) = ex and g(x) = k sin x have a common point of
tangency is

(A) 0
(B) 1
(C) 2
(D) large but finite
(E) infinite



CHALLENGE

31. The curve 2x2 y + y2 = 2x + 13 passes through (3, 1). Use the line tangent to the curve there to
find the approximate value of y at x = 2.8.

(A) 0.5
(B) 0.9
(C) 0.95
(D) 1.1
(E) 1.4

32. 

(A) 

(B) 

(C) 

(D) 

(E) 

33. The region bounded by y = tan x, y = 0, and  is rotated about the x-axis. The volume
generated equals

(A) 

(B) 
(C) 

(D) 

(E) none of these

34.  for the constant a > 0, equals

(A) 1
(B) a
(C) ln a
(D) log10 a

(E) a ln a



35. Solutions of the differential equation whose slope field is shown here are most likely to be

(A) quadratic
(B) cubic
(C) sinusoidal
(D) exponential
(E) logarithmic

36. 

(A) 0
(B) 1
(C) 

(D) 

(E) 

37. The graph of g, shown below, consists of the arcs of two quarter-circles and two straight-line
segments. The value of  is

(A) π + 2



(B) 

(C) 

(D) 

(E) 

38. Which of these could be a particular solution of the differential equation whose slope field is
shown here?

(A) 

(B) y = ln x
(C) y = ex

(D) y = e−x

(E) y = ex2

39. What is the domain of the particular solution for  containing the point where x = −1?

(A) x < 0
(B) x > −2
(C) − 2 < x < 2
(D) x ≠ ±2
(E) none of these; no solution exists for x = −1

40. The slope field shown here is for the differential equation



(A) 

(B) y ′ = ln x
(C) y ′ = ex

(D) y ′ = y
(E) y ′ = −y2

41. If we substitute x = tan θ, which of the following is equivalent to 

(A) 

(B) 

(C) 

(D) 

(E) 

42. If x = 2 sin u and y = cos 2u, then a single equation in x and y is

(A) x2 + y2 = 1

(B) x2 + 4y2 = 4

(C) x2 + 2y = 2

(D) x2 + y2 = 4

(E) x2 − 2y = 2

BC ONLY

43. The area bounded by the lemniscate with polar equation r2 = 2 cos 2θ is equal to
(A) 4
(B) 1
(C) 

(D) 2
(E) none of these

44. 

(A) 0
(B) 

(C) π



(D) 2π
(E) none of these

45. The first four terms of the Maclaurin series (the Taylor series about x = 0) for  are

(A) 1 + 2x + 4x2 + 8x3

(B) 1 − 2x + 4x2 − 8x3

(C) − 1 − 2x − 4x2 − 8x3

(D) 1 − x + x2 − x3

(E) 1 + x + x2 + x3

46. 

(A) 

(B) 

(C) −x2 e−x + 2xe−x + C
(D) −x2 e−x − 2xe−x − 2e−x + C
(E) −x2 e−x + 2xe−x − 2e−x + C

47.  is equal to

(A) 

(B) 

(C) 

(D) 

(E) 

BC ONLY

48. A curve is given parametrically by the equations x = t, y = 1 − cos t. The area bounded by the
curve and the x-axis on the interval 0  t  2π is equal to

(A) 2(π + 1)
(B) π
(C) 4π
(D) π + 1
(E) 2π



49. If x = a cot θ and y = a sin2 θ, then  when  is equal to

(A) 

(B) −1
(C) 2
(D) 

(E) 

50. Which of the following improper integrals diverges?
(A) 

(B) 

(C) 

(D) 

(E) 

51. 

(A) 

(B) 

(C) 

(D) 

(E) 

52. 

(A) −∞
(B) 0
(C) 1
(D) ∞
(E) nonexistent

53. A particle moves along the parabola x = 3y − y2 so that  at all time t. The speed of the
particle when it is at position (2, 1) is equal to

(A) 0



(B) 3
(C) 
(D) 
(E) none of these

54. 

(A) −∞
(B) −1
(C) 0
(D) 1
(E) ∞

55. When rewritten as partial fractions,  includes which of the following?

I. 

II. 

III. 

(A) none
(B) I only
(C) II only
(D) III only
(E) I and III

56. Using two terms of an appropriate Maclaurin series, estimate 

(A) 

(B) 

(C) 

(D) 

(E) undefined; the integral is improper

BC ONLY

57. The slope of the spiral r = θ at 

(A) 



(B) −1
(C) 1
(D) 

(E) undefined

Part B. Directions: Some of these questions require the use of a graphing calculator.

58. The graph of function h is shown here. Which of these statements is (are) true?
I. The first derivative is never negative.
II. The second derivative is constant.
III. The first and second derivatives equal 0 at the same point.
(A) I only
(B) III only
(C) I and II
(D) I and III
(E) all three

59. Graphs of functions f (x), g(x), and h(x) are shown below.

Consider the following statements:
I. g(x) = f ′(x)
II. f (x) = g ′(x)
III. h(x) = g ″(x)
Which of these statements is (are) true?
(A) I only



(B) II only
(C) II and III only
(D) all three
(E) none of these

60. 

(A) 

(B) 

(C) 

(D) 

(E) 0

61. If 

(A) −6
(B) −5
(C) 5
(D) 6
(E) 7

62. At what point in the interval [1, 1.5] is the rate of change of f (x) = sin x equal to its average
rate of change on the interval?

(A) 0.995
(B) 1.058
(C) 1.239
(D) 1.253
(E) 1.399

63. Suppose f ′(x) = x2 (x − 1). Then f ″(x) = x (3x − 2). Over which interval(s) is the graph of f
both increasing and concave up?

I. x < 0
II. 

III. 

IV. x > 1



(A) I only
(B) II only
(C) II and IV
(D) I and III
(E) IV only

64. Which of the following statements is true about the graph of f (x) in Question 62?
(A) The graph has no relative extrema.
(B) The graph has one relative extremum and one inflection point.
(C) The graph has two relative extrema and one inflection point.
(D) The graph has two relative extrema and two inflection points.
(E) None of the preceding statements is true.

65. The nth derivative of ln (x + 1) at x = 2 equals

(A) 

(B) 

(C) 

(D) 

(E) 

66. If f (x) is continuous at the point where x = a, which of the following statements may be false?
(A) 
(B) 

(C) f ′(a) exists.
(D) f (a) is defined.
(E) 

67. Suppose  where k is a constant. Then  equals

(A) 3
(B) 4 − k
(C) 4
(D) 4 + k
(E) none of these



68. The volume, in cubic feet, of an “inner tube” with inner diameter 4 ft and outer diameter 8 ft is

(A) 4π2

(B) 12π2

(C) 8π2

(D) 24π2

(E) 6π2

CHALLENGE

69. If f (u) = tan−1 u2 and g(u) = eu, then the derivative of f (g (u)) is
(A) 

(B) 

(C) 

(D) 

(E) 

70. If sin (xy) = y, then  equals

(A) sec (xy)
(B) y cos (xy) − 1
(C) 

(D) 

(E) cos (xy)

71. Let x > 0. Suppose 

(A) f (x4)

(B) f (x2)

(C) 2xg(x2)
(D) 

(E) 2g(x2) + 4x2 f (x)

72. The region bounded by y = ex, y = 1, and x = 2 is rotated about the x-axis. The volume of the
solid generated is given by the integral



(A) 

(B) 

(C) 

(D) 

(E) 

73. Suppose the function f is continuous on 1  x  2, that f ′(x) exists on 1 < x < 2, that f (1) = 3,
and that f (2) = 0. Which of the following statements is not necessarily true?

(A) The Mean-Value Theorem applies to f on 1  x  2.
(B)  exists.

(C) There exists a number c in the closed interval [1,2] such that f ′(c) = 0.
(D) If k is any number between 0 and 3, there is a number c between 1 and 2 such that f (c) = k.
(E) If c is any number such that 1 < c < 2, then  exists.

74. The region S in the figure is bounded by y = sec x, the y-axis, and y = 4. What is the volume of
the solid formed when S is rotated about the y-axis?

(A) 0.791
(B) 2.279
(C) 5.692
(D) 11.385
(E) 17.217

75. If 40 g of a radioactive substance decomposes to 20 g in 2 yr, then, to the nearest gram, the
amount left after 3 yr is

(A) 10
(B) 12
(C) 14
(D) 16
(E) 17



76. An object in motion along a line has acceleration  and is at rest when t = 1. Its

average velocity from t = 0 to t = 2 is
(A) 0.362
(B) 0.274
(C) 3.504
(D) 7.008
(E) 8.497

77. Find the area bounded by y = tan x and x + y = 2, and above the x-axis on the interval [0, 2],
(A) 0.919
(B) 0.923
(C) 1.013
(D) 1.077
(E) 1.494

78. An ellipse has major axis 20 and minor axis 10. Rounded off to the nearest integer, the
maximum area of an inscribed rectangle is

(A) 50
(B) 79
(C) 80
(D) 82
(E) 100

79. The average value of y = x ln x on the interval 1  x  e is
(A) 0.772
(B) 1.221
(C) 1.359
(D) 1.790
(E) 2.097

80. Let  for 0  x  2π. On which interval is f increasing?

(A) 0 < x < π
(B) 0.654 < x < 5.629
(C) 0.654 < x < 2π
(D) π < x < 2π



(E) none of these

81. The table shows the speed of an object (in ft/sec) during a 3-sec period. Estimate its
acceleration (in ft/sec2) at t = 1.5 sec.

time, sec 0 1 2 3

speed, ft/sec 30 22 12 0

(A) −17
(B) −13
(C) −10
(D) −5
(E) 17

82. A maple-syrup storage tank 16 ft high hangs on a wall. The back is in the shape of the parabola
y = x2 and all cross sections parallel to the floor are squares. If syrup is pouring in at the rate of
12 ft3 /hr, how fast (in ft/hr) is the syrup level rising when it is 9 ft deep?

(A) 

(B) 

(C) 

(D) 36
(E) 162

83. In a protected area (no predators, no hunters), the deer population increases at a rate of 
 where P(t) represents the population of deer at t yr. If 300 deer were originally

placed in the area and a census showed the population had grown to 500 in 5 yr, how many deer
will there be after 10 yr?

(A) 608



(B) 643
(C) 700
(D) 833
(E) 892

84. Shown is the graph of 

Let  The local linearization of H at x = 1 is H(x) equals

(A) 2x
(B) −2x − 4
(C) 2x + π − 2
(D) −2x + π + 2
(E) 2x + ln 16 + 2

85. A smokestack 100 ft tall is used to treat industrial emissions. The diameters, measured at 25-ft
intervals, are shown in the table. Using the midpoint rule, estimate the volume of the smokestack
to the nearest 100 ft3.

(A) 8100
(B) 9500
(C) 9800
(D) 12,500
(E) 39,300

For Questions 86–90 the table shows the values of differentiable functions f and g.



86. If  then P ′(3) =

(A) −2
(B) 

(C) 

(D) 

(E) 2

87. If H(x) = f (g (x)), then H ′(3) =
(A) 1
(B) 2
(C) 3
(D) 6
(E) 9

88. If M(x) = f (x) · g (x), then M ′(3) =
(A) 2
(B) 6
(C) 8
(D) 14
(E) 16

89. If K(x) = g−1 (x), then K ′(3) =
(A) 

(B) 

(C) 

(D) 

(E) 2



90. If R (x) =  then R ′(3) =

(A) 

(B) 

(C) 

(D) 
(E) 2

91. Water is poured into a spherical tank at a constant rate. If W(t) is the rate of increase of the
depth of the water, then W is

(A) constant
(B) linear and increasing
(C) linear and decreasing
(D) concave up
(E) concave down

92. The graph of f ′ is shown below. If f (7) = 3 then f (1) =

(A) −10
(B) −4
(C) −3
(D) 10
(E) 16

93. At an outdoor concert, the crowd stands in front of the stage filling a semicircular disk of
radius 100 yd. The approximate density of the crowd x yd from the stage is given by

people per square yard. About how many people are at the concert?



(A) 200
(B) 19,500
(C) 21,000
(D) 165,000
(E) 591,000

94. The Centers for Disease Control announced that, although more AIDS cases were reported this
year, the rate of increase is slowing down. If we graph the number of AIDS cases as a function
of time, the curve is currently

(A) increasing and linear
(B) increasing and concave down
(C) increasing and concave up
(D) decreasing and concave down
(E) decreasing and concave up
The graph below is for Questions 95–97. It shows the velocity, in feet per second, for 0 < t < 8, of
an object moving along a straight line.

95. The object’s average speed (in ft/sec) for this 8-sec interval was
(A) 0
(B) 

(C) 1
(D) 

(E) 8

96. When did the object return to the position it occupied at t = 2?



(A) t = 4
(B) t = 5
(C) t = 6
(D) t = 8
(E) never

97. The object’s average acceleration (in ft/sec2) for this 8-sec interval was
(A) −2
(B) 

(C) 0
(D) 

(E) 1

98. If a block of ice melts at the rate of  cm3 /min, how much ice melts during the first 3 min?

(A) 8 cm3

(B) 16 cm3

(C) 21 cm3

(D) 40 cm3

(E) 79 cm3

99. A particle moves counterclockwise on the circle x2 + y2 = 25 with a constant speed of 2 ft/sec.
Its velocity vector, v, when the particle is at (3, 4), equals

(A) 

(B) 

(C) 
(D) 
(E) 
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100. Let R = a cos kti + a sin ktj be the (position) vector xi + yj from the origin to a moving point
P(x, y) at time t, where a and k are positive constants. The acceleration vector, a, equals

(A) −k2 R
(B) a2 k2 R



(C) −aR
(D) 
(E) −R

101. The length of the curve y = 2x between (0, 1) and (2, 4) is
(A) 3.141
(B) 3.664
(C) 4.823
(D) 5.000
(E) 7.199

102. The position of a moving object is given by P(t) = (3t, et). Its acceleration is
(A) undefined
(B) constant in both magnitude and direction
(C) constant in magnitude only
(D) constant in direction only
(E) constant in neither magnitude nor direction

BC ONLY

103. Suppose we plot a particular solution of  from initial point (0, 1) using Euler’s method.
After one step of size Δx = 0.1, how big is the error?

(A) 0.09
(B) 1.09
(C) 1.49
(D) 1.90
(E) 2.65

104. We use the first three terms to estimate  Which of the following statements is (are)

true?
I. The estimate is 0.7.
II. The estimate is too low.
III. The estimate is off by less than 0.1.
(A) I only
(B) III only
(C) I and II



(D) I and III
(E) all three

105. Which of these diverges?

(A) 

(B) 

(C) 

(D) 

(E) 

106. Find the radius of convergence of 

(A) 0
(B) 

(C) 1
(D) e
(E) ∞

107. When we use  to estimate  the Lagrange remainder is no greater than

(A) 0.021
(B) 0.034
(C) 0.042
(D) 0.067
(E) 0.742

108. An object in motion along a curve has position P(t) = (tan t, cos 2t) for 0  t  1. How far
does it travel?

(A) 0.96
(B) 1.73
(C) 2.10
(D) 2.14
(E) 3.98



CHAPTER 12 Miscellaneous Free-Response Practice
Exercises

These problems provide further practice for both parts of Section II of the examination.
Part A. Directions: A graphing calculator is required for some of these problems.

x 2.5 3.2 3.5 4.0 4.6 5.0

f (x) 7.6 5.7 4.2 3.1 2.2 1.5

1. A function f is continuous, differentiable, and strictly decreasing on the interval [2.5,5]; some
values of f are shown in the table above.
(a) Estimate f ′(4.0) and f ′(4.8).
(b) What does the table suggest may be true of the concavity of f ? Explain.
(c) Estimate  with a Riemann sum using left endpoints.

(d) Set up (but do not evaluate) a Riemann sum that estimates the volume of the solid formed when
f is rotated around the x-axis.

2. The equation of the tangent line to the curve x2 y − x = y3 − 8 at the point (0,2) is 12y + x = 24.
(a) Given that the point (0.3,y0) is on the curve, find y0 approximately, using the tangent line.

(b) Find the true value of y0.

(c) What can you conclude about the curve near x = 0 from your answers to parts (a) and (b)?

3. A differentiable function f defined on −7 < x < 7 has f (0) = 0 and f ′(x) = 2x sin x − e−x2 + 1.
(Note: The following questions refer to f not to f ′.)
(a) Describe the symmetry of f.
(b) On what intervals is f decreasing?
(c) For what values of x does f have a relative maximum? Justify your answer.
(d) How many points of inflection does f have? Justify your answer.

4. Let C represent the piece of the curve  that lies in the first quadrant. Let S be the region
bounded by C and the coordinate axes.
(a) Find the slope of the line tangent to C at y = 1.
(b) Find the area of S.
(c) Find the volume generated when S is rotated about the x-axis.



5. Let R be the point on the curve of y = x − x2 such that the line OR (where O is the origin)
divides the area bounded by the curve and the x-axis into two regions of equal area. Set up (but
do not solve) an integral to find the x-coordinate of R.

6. Suppose f ″ = sin (2x) for −1 < x < 3.2.
(a) On what intervals is the graph of f concave downward? Justify your answer.
(b) Find the x-coordinates of all relative minima of f ′.
(c) How many points of inflection does the graph of f ′ have? Justify your answer.

7. Let f (x) = cos x and g(x) = x2 − 1.
(a) Find the coordinates of any points of intersection of f and g.
(b) Find the area bounded by f and g.

8. (a) In order to investigate mail-handling efficiency, each hour one morning a local post office
checked the rate (letters/min) at which an employee was sorting mail. Use the results shown in
the table to estimate the total number of letters he may have sorted that morning.

Time 8 9 10 11 12

Letters / min 10 12 8 9 11

(b) Hoping to speed things up a bit, the post office tested a sorting machine that can process mail at
the constant rate of 20 letters per minute. The graph shows the rate at which letters arrived at the
post office and were dumped into this sorter.

(i) When did letters start to pile up?
(ii) When was the pile the biggest?
(iii) How big was it then?
(iv) At about what time did the pile vanish?

9. Let R represent the region bounded by y = sin x and y = x4. Find:
(a) the area of R;
(b) the volume of the solid whose base is R, if all cross sections perpendicular to the x-axis are

isosceles triangles with height 3;
(c) the volume of the solid formed when R is rotated around the x-axis.



10. The town of East Newton has a water tower whose tank is an ellipsoid, formed by rotating an
ellipse about its minor axis. Since the tank is 20 feet tall and 50 feet wide, the equation of the
ellipse is 

(a) If there are 7.48 gallons of water per cubic foot, what is the capacity of this tank to the nearest
thousand gallons?

(b) East Newton imposes water rationing whenever the tank is only one-quarter full. Write an
equation to find the depth of the water in the tank when rationing becomes necessary? (Do not
solve.)

Note: Scales are different on the three figures.

11. The sides of a watering trough are made by folding a sheet of metal 24 inches wide and 5 feet
(60 inches) long at an angle of 60°, as shown in the figure above. Ends are added, and then the
trough is filled with water.
(a) If water pours into the trough at the rate of 600 cubic inches per minute, how fast is the water

level rising when the water is 4 inches deep?
(b) Suppose, instead, the sheet of metal is folded twice, keeping the sides of equal height and

inclined at an angle of 60°, as shown. Where should the folds be in order to maximize the
volume of the trough? Justify your answer.

12. (a) Using your calculator, verify that

(b) Use the Taylor polynomial of degree 7 about 0,

tan−1 x ≈ x −x3 /3 + x5 /5− x7 /7,



to approximate tan−1 1/5, and the polynomial of degree 1 to approximate tan−1 1/239.
(c) Use part (b) to evaluate the expression in (a).
(d) Explain how the approximation for π/4 given here compares with that obtained using π/4 =

tan−1 1.
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13. (a) Show that the series  converges.

(b) How many terms of the series are needed to get a partial sum within 0.1 of the sum of the
whole series?

(c) Tell whether the series  is absolutely convergent, conditionally convergent, or

divergent. Justify your answer.

14. Given  = ky(10 − y) with y = 2 at t = 0 and y = 5 at t = 2:

(a) Find k.
(b) Express y as a function of t.
(c) For what value of t will y = 8?
(d) Describe the long-range behavior of y.

15. An object P is in motion in the first quadrant along the parabola y = 18 − 2x2 in such a way that
at t sec the x-value of its position is 
(a) Where is P when t = 4?
(b) What is the vertical component of its velocity there?
(c) At what rate is its distance from the origin changing then?
(d) When does it hit the x-axis?
(e) How far did it travel altogether?

16. A particle moves in the xy-plane in such a way that at any time t ≥ 0 its position is given by x(t)
= 4 arctan t, 

(a) Sketch the path of the particle, indicating the direction of motion.
(b) At what time t does the particle reach its highest point? Justify.
(c) Find the coordinates of that highest point, and sketch the velocity vector there.
(d) Describe the long-term behavior of the particle.

17. Let R be the region bounded by the curve r = 2 + cos 2θ, as shown.
(a) Find the dimensions of the smallest rectangle that contains R and has sides parallel to the x-



and y-axes.
(b) Find the area of R.

Part B. Directions: Answer these questions wtihout using your calculator.

18. Draw a graph of y = f (x), given that f satisfies all the following conditions:
(1) f ′(−1) = f ′(1) = 0.
(2) If x < −1, f ′(x) > 0 but f ″ < 0.
(3) If −1 < x < 0, f ′(x) > 0 and f ″ > 0.
(4) If 0 < x < 1, f ′(x) > 0 but f ″ < 0.
(5) If x > 1, f ′(x) < 0 and f ″ < 0.

19. The figure below shows the graph of f ′, the derivative of f, with domain −3 ≤ x ≤ 9. The graph
of f ′ has horizontal tangents at x = 2 and x = 4, and a corner at x = 6.

(a) Is f continuous? Explain.
(b) Find all values of x at which f attains a relative minimum. Justify.
(c) Find all values of x at which f attains a relative maximum. Justify.
(d) At what value of x does f attain its absolute maximum? Justify.
(e) Find all values of x at which the graph of f has a point of inflection. Justify.

20. Find the area of the largest rectangle (with sides parallel to the coordinate axes) that can be
inscribed in the region bounded by the graphs of f (x) = 8 − 2x2 and g(x) = x2 − 4.

21. Given the graph of f (x), sketch the graph of f ′(x).



22. A cube is contracting so that its surface area decreases at the constant rate of 72 in.2 /sec.
Determine how fast the volume is changing at the instant when the surface area is 54 ft2.

23. A square is inscribed in a circle of radius a as shown in the diagram. Find the volume obtained
if the region outside the square but inside the circle is rotated about a diagonal of the square.

24. (a) Sketch the region in the first quadrant bounded above by the line y = x + 4, below by the line
y = 4 − x, and to the right by the parabola y = x2 + 2.
(b) Find the area of this region.

25. The graph shown below is based roughly on data from the U.S. Department of Agriculture.

(a) During which intervals did food production decrease in South Asia?
(b) During which intervals did the rate of change of food production increase?



(c) During which intervals did the increase in food production accelerate?

26. A particle moves along a straight line so that its acceleration at any time t is given in terms of
its velocity v by a = −2v.
(a) Find v in terms of t if v = 20 when t = 0.
(b) Find the distance the particle travels while v changes from v = 20 to v = 5.

27. Let R represent the region bounded above by the parabola y = 27 − x2 and below by the x-axis.
Isosceles triangle AOB is inscribed in region R with its vertex at the origin O and its base 
parallel to the x-axis. Find the maximum possible area for such a triangle.

28. (a) Find the Maclaurin series for f (x) = ln(1 + x).
(b) What is the radius of convergence of the series in (a)?
(c) Use the first five terms in (a) to approximate ln(1.2).
(d) Estimate the error in (c), justifying your answer.

BC ONLY

29. A cycloid is given parametrically by x = θ − sin θ, y = 1 − cos θ.
(a) Find the slope of the curve at the point where 

(b) Find the equation of the tangent to the cycloid at the point where 

30. Find the area of the region enclosed by both the polar curves r = 4 sin θ and r = 4 cos θ.

31. (a) Find the 4th degree Taylor polynomial about 0 for cos x.
(b) Use part (a) to evaluate 

(c) Estimate the error in (b), justifying your answer.

32. A particle moves on the curve of y3 = 2x + 1 so that its distance from the x-axis is increasing at
the constant rate of 2 units/sec. When t = 0, the particle is at (0,1).
(a) Find a pair of parametric equations x = x(t) and y = y(t) that describe the motion of the particle

for nonnegative t.
(b) Find |a|, the magnitude of the particle’s acceleration, when t = 1.

33. Find the area of the region that the polar curves r = 2 − cos θ and r = 3 cos θ enclose in
common.
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AB Practice Examination 1

SECTION I
Part A TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination. There are 28 questions
in Part A, for which 55 minutes are allowed. Because there is no deduction for wrong answers,
you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1. 

(A) −5
(B) ∞
(C) 0
(D) 5
(E) 1

2. 

(A) 0
(B) ln 2
(C) 

(D) 

(E) ∞

3. If y = e−x2, then y ″ (0) equals
(A) 2
(B) −2
(C) 

(D) 0
(E) −4

Questions 4 and 5. Use the following table, which shows the values of the differentiable functions f
and g.



4. The average rate of change of function f on [1,4] is
(A) 7/6
(B) 4/3
(C) 15/8
(D) 9/4
(E) 8/3

5. If h(x) = g(f (x)) then h ′(3) =
(A) 1/2
(B) 1
(C) 4
(D) 6
(E) 9

6. The derivative of a function f is given for all x by

f ′(x) = x2(x + 1)3(x − 4)2.
The set of x values for which f is a relative maximum is
(A) {0, −1, 4}
(B) {−1}
(C) {0,4}
(D) {1}
(E) none of these

7. If  equals

(A) 

(B) 

(C) 



(D) 

(E) 

8. The maximum value of the function f (x) = xe −x is
(A) 

(B) e
(C) 1
(D) −1
(E) none of these

9. Which equation has the slope field shown below?

(A) 

(B) 

(C) 

(D) 

(E) 

Questions 10–12. The graph below shows the velocity of an object moving along a line, for 0 ≤ t ≤ 9.



10. At what time does the object attain its maximum acceleration?
(A) 2 < t < 5
(B) 5 < t < 8
(C) t = 6
(D) t = 8
(E) 8 < t < 9

11. The object is farthest from the starting point at t =
(A) 2
(B) 5
(C) 6
(D) 8
(E) 9

12. At t = 8, the object was at position x = 10. At t = 5, the object’s position was x =
(A) −5
(B) 5
(C) 7
(D) 13
(E) 15

13.  α cos α dα is equal to

(A) 

(B) 

(C) 



(D) 

(E) 

14.  equals

(A) 3 ln (e − 3)
(B) 1
(C) 

(D) 

(E) none of these

15. A differentiable function has the values shown in this table:

x 2.0 2.2 2.4 2.6 2.8 3.0

f (x) 1.39 1.73 2.10 2.48 2.88 3.30

Estimate f ′(2.1).
(A) 0.34
(B) 0.59
(C) 1.56
(D) 1.70
(E) 1.91

16. If A =  is approximated using Riemann sums and the same number of subdivisions, and if
L, R, and T denote, respectively left, right, and trapezoid sums, then it follows that
(A) R ≤ A ≤ T ≤ L
(B) R ≤ T ≤ A ≤ L
(C) L ≤ T ≤ A ≤ R
(D) L ≤ A ≤ T ≤ R
(E) None of these is true.

17. The number of vertical tangents to the graph of y2 = x − x3 is
(A) 4
(B) 3
(C) 2



(D) 1
(E) 0

18. 

(A) 

(B) 

(C) 

(D) 

(E) 

19. The equation of the curve shown below is  What does the area of the shaded region
equal?

(A) 

(B) 8 − 2π
(C) 8 − π
(D) 

(E) 2π − 4

20. Over the interval 0 ≤ x ≤ 10, the average value of the function f shown below



(A) is 6.00.
(B) is 6.10.
(C) is 6.25.
(D) does not exist, because f is not continuous.
(E) does not exist, because f is not integrable.

21. If f ′(x) = 2f (x) and f (2) = 1, then f (x) =

(A) e2x − 4

(B) e2x + 1 − e4

(C) e4−2x

(D) e2x + 1

(E) ex − 2

22. The table below shows values of f ″(x) for various values of x:

x −1 0 1 2 3

f ″(x) −4 −1 2 5 8

The function f could be
(A) a linear function
(B) a quadratic function
(C) a cubic function
(D) a fourth-degree function
(E) an exponential function

23. The curve x3 + x tan y = 27 passes through (3,0). Use the tangent line there to estimate the value
of y at x = 3.1. The value is
(A) −2.7



(B) −0.9
(C) 0
(D) 0.1
(E) 3.0

24. At what value of h is the rate of increase of  twice the rate of increase of h ?
(A) 

(B) 

(C) 1
(D) 2
(E) 4

25. The graph of a function y = f (x) is shown above. Which is true?
(A) 

(B) 

(C) 

(D) 
(E) 

26. A function f (x) equals  for all x except x = 1. For the function to be continuous at x = 1, the
value of f (1) must be
(A) 0
(B) 1
(C) 2
(D) ∞



(E) none of these

27. The number of inflection points on the graph of f (x) = 3x5 − 10x3 is
(A) 4
(B) 3
(C) 2
(D) 1
(E) 0

28. Suppose  It follows that

(A) f increases for all x
(B) f increases only if x < −4
(C) f has a local min at x = −4
(D) f has a local max at x = −4
(E) f has no critical points

 

Part B TIME: 50 MINUTES

Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29. Let G(x) = [f (x)]2. At x = a, the graph of f is increasing and concave downward, while G is
decreasing. Which describes the graph of G at x = a ?



(A) concave downward
(B) concave upward
(C) linear
(D) point of inflection
(E) none of these

30. The value of c for which  has a local minimum at x = 3 is

(A) −9
(B) −6
(C) −3
(D) 6
(E) 9

31. An object moving along a line has velocity v (t) = t cos t − ln (t + 2), where 0 ≤ t ≤ 10. The
object achieves its maximum speed when t is approximately
(A) 3.7
(B) 5.1
(C) 6.4
(D) 7.6
(E) 9.5

32. The graph of f ′, which consists of a quarter-circle and two line segments, is shown above. At x
= 2, which of the following statements is true?
(A) f is not continuous.
(B) f is continuous but not differentiable.
(C) f has a relative maximum.
(D) The graph of f has a point of inflection.
(E) none of these

33. Let  where f is the function whose graph appears below.



The local linearization of H(x) near x = 3 is H(x)
(A) −2x + 8
(B) 2x − 4
(C) −2x + 4
(D) 2x − 8
(E) 2x − 2

34. The table shows the speed of an object, in feet per second, at various times during a 12-second
interval.

time (sec) 0 3 6 7 8 10 12

speed (ft/sec) 15 14 11 8 7 3 0

Estimate the distance the object travels, using the midpoint method with 3 subintervals.
(A) 100 ft
(B) 101 ft
(C) 111 ft
(D) 112 ft
(E) 150 ft

35. In a marathon, when the winner crosses the finish line many runners are still on the course,
some quite far behind. If the density of runners x miles from the finish line is given by R(x) =
20[1 − cos(1 + 0.03x2)] runners per mile, how many are within 8 miles of the finish line?
(A) 30
(B) 145
(C) 157
(D) 166



(E) 195

36. Which best describes the behavior of the function  at x = 1?

(A) It has a jump discontinuity.
(B) It has an infinite discontinuity.
(C) It has a removable discontinuity.
(D) It is both continuous and differentiable.
(E) It is continuous but not differentiable.

37. If  then f ′(t) equals

(A) 

(B) 

(C) 

(D) 

(E) tan−1 t2

38. 
(A) 

(B) 

(C) 

(D) 

(E) 

39. The region S in the figure shown above is bounded by y = sec x and y = 4. What is the volume
of the solid formed when S is rotated about the x-axis?



(A) 0.304
(B) 39.867
(C) 53.126
(D) 54.088
(E) 108.177

40. At which point on the graph of y = f (x) shown above is f ′(x) < 0 and f ″(x) > 0?
(A) A
(B) B
(C) C
(D) D
(E) E

41. Let f (x) = x5 + 1, and let g be the inverse function of f. What is the value of g ′(0)?
(A) −1
(B) 

(C) 1
(D) g ′(0) does not exist.
(E) g ′(0) cannot be determined from the given information.

42. The hypotenuse AB of a right triangle ABC is 5 feet, and one leg, AC, is decreasing at the rate of
2 feet per second. The rate, in square feet per second, at which the area is changing when AC = 3
is
(A) 

(B) 

(C) 

(D) 



(E) 

43. At how many points on the interval [0,π] does f (x) = 2 sin x + sin 4x satisfy the Mean Value
Theorem?
(A) none
(B) 1
(C) 2
(D) 3
(E) 4

44. If the radius r of a sphere is increasing at a constant rate, then the rate of increase of the volume
of the sphere is
(A) constant
(B) increasing
(C) decreasing
(D) increasing for r < 1 and decreasing for r > 1
(E) decreasing for r < 1 and increasing for r > 1

45. The rate at which a purification process can remove contaminants from a tank of water is
proportional to the amount of contaminant remaining. If 20% of the contaminant can be removed
during the first minute of the process and 98% must be removed to make the water safe,
approximately how long will the decontamination process take?
(A) 2 min
(B) 5 min
(C) 18 min
(D) 20 min
(E) 40 min

 



SECTION II
Part A  

A graphing calculator is required for some of these problems.
See instructions
1. A function f is defined on the interval [0,4], and its derivative is f ′(x) = esin x − 2 cos 3x.

(a) Sketch f ′ in the window [0,4] × [−2,5].
(Note that the following questions refer to f.)

(b) On what interval is f increasing? Justify your answer.
(c) At what value(s) of x does f have local maxima? Justify your answer.
(d) How many points of inflection does the graph of f have? Justify your answer.

2. The rate of sales of a new software product is given by S(t), where S is measured in hundreds of
units per month and t is measured in months from the initial release date of January 1, 2012. The
software company recorded these sales data:

t (months) 1 2 3 4 5 6 7

St (100s /mo) 1.54 1.88 2.32 3.12 3.78 4.90 6.12

(a) Using a trapezoidal approximation, estimate the number of units the company sold during the
second quarter (April 1, 2012, through June 30, 2012).

(b) After looking at these sales figures, a manager suggests that the rate of sales can be modeled by
assuming the rate to be initially 120 units/month and to double every 3 months. Write an equation
for S based on this model.

(c) Compare the model’s prediction for total second quarter sales with your estimate from part a.
(d) Use the model to predict the average value of S(t) for the entire first year. Explain what your

answer means.

 



Part B  TIME: 60 MINUTES
No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.

3. The graph of function y = f (x) passes through point (2, 5) and satisfies the differential equation 

(a) Write an equation of the line tangent to f at (2, 5).
(b) Using this tangent line, estimate f (2.1).
(c) Solve the differential equation, expressing f as a function of x.
(d) Using your answer to part (c), find f (2.1).

4. Let R represent the first-quadrant region bounded by the y-axis and the curves y = 2x and 
as shown in the graph.

(a) Find the area of region R.
(b) Set up, but do not evaluate, integrals in terms of a single variable for:

(i) the volume of the solid formed when R is rotated around the x-axis,
(ii) the volume of the solid whose base is R, if all cross sections in planes perpendicular to the

x-axis are squares.



5. Given the function f (x) = e2x(x2 − 2):
(a) For what values of x is f decreasing?
(b) Does this decreasing arc reach a local or a global minimum? Justify your answer.
(c) Does f have a global maximum? Justify your answer.

6.  (a) A spherical snowball melts so that its surface area shrinks at the constant rate of 10 square
centimeters per minute. What is the rate of change of volume when the snowball is 12 centimeters
in diameter?

(b) The snowball is packed most densely nearest the center. Suppose that, when it is 12 centimeters
in diameter, its density x centimeters from the center is given by  grams per cubic
centimeter. Set up an integral for the total number of grams (mass) of the snowball then. Do not
evaluate.

 





 

AB Practice Examination 2

SECTION I
Part A TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination. There are 28 questions
in Part A, for which 55 minutes are allowed. Because there is no deduction for wrong answers,
you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1. 

(A) −2
(B) −1
(C) 

(D) 0
(E) nonexistent

2. 

(A) 

(B) −1
(C) ∞
(D) 0
(E) 

3. If 

(A) 

(B) eln u

(C) 

(D) 1



(E) 0

4. Using the line tangent to  an estimate of f (0.06) is

(A) 0.02
(B) 2.98
(C) 3.01
(D) 3.02
(E) 3.03

5. Air is escaping from a balloon at a rate of  cubic feet per minute, where t is measured
in minutes. How much air, in cubic feet, escapes during the first minute?
(A) 15
(B) 15π
(C) 30
(D) 30π
(E) 30 ln 2

6. If y = sin3 (1 − 2x), then  is

(A) 3 sin2 (1 − 2x)

(B) − 2 cos3 (1 − 2x)

(C) − 6 sin2 (1 − 2x)

(D) − 6 sin2 (1 − 2x) cos (1 − 2x)

(E) − 6 cos2 (1 − 2x)

7. If y = x2e1/x (x ≠ 0), then  is

(A) xe1/x (x + 2)

(B) e1/x (2x − 1)
(C) 

(D) e −x (2x − x2)
(E) none of these

8. A point moves along the curve y = x2 + 1 so that the x-coordinate is increasing at the constant
rate of  units per second. The rate, in units per second, at which the distance from the origin is
changing when the point has coordinates (1, 2) is equal to



(A) 

(B) 

(C) 
(D) 

(E) 

9. 

(A) = 0
(B) 

(C) = 1
(D) = 10
(E) does not exist

10. The base of a solid is the first-quadrant region bounded by  Each cross section
perpendicular to the x-axis is a square with one edge in the xy-plane. The volume of the solid is
(A) 

(B) 

(C) 1
(D) 

(E) π

11. 

(A) 

(B) 

(C) 
(D) 

(E) 

12. 

(A) 

(B) y2 − y + ln|2y| + C



(C) 

(D) 

(E) 

13.  cot x dx equals

(A) 

(B) ln 2
(C) 
(D) 
(E) none of these

14. Given f ′ as graphed, which could be a graph of f ?

(A) I only
(B) II only
(C) III only
(D) I and III
(E) none of these

15. The first woman officially timed in a marathon was Violet Piercey of Great Britain in 1926.
Her record of 3:40:22 stood until 1963, mostly because of a lack of women competitors. Soon
after, times began dropping rapidly, but lately they have been declining at a much slower rate.
Let M(t) be the curve that best represents winning marathon times in year t. Which of the
following is (are) negative for t > 1963?
  I. M(t)
 II. M ′(t)



III. M ″(t)
(A) I only
(B) II only
(C) III only
(D) II and III
(E) none of these

16. The graph of f is shown above. Let  Which of the following is true?

(A) G(x) = H(x)
(B) G ′(x) = H ′(x + 2)
(C) G(x) = H(x + 2)
(D) G(x) = H(x) − 2
(E) G(x) = H(x) + 3

17. The minimum value of  on the interval  is

(A) 

(B) 1
(C) 3
(D) 

(E) 5

18. Which function could be a particular solution of the differential equation whose slope field is



shown above?

(A) y = x3

(B) 

(C) 

(D) y = sin x

(E) y = e −x2

19. Which of the following functions could have the graph sketched below?

(A) f (x) = xex

(B) f (x) = xe −x

(C) 

(D) 

(E) 

Questions 20–22. Use the graph below, consisting of two line segments and a quarter-circle. The
graph shows the velocity of an object during a 6-second interval.

20. For how many values of t in the interval 0 < t < 6 is the acceleration undefined?
(A) none
(B) one
(C) two
(D) three



(E) four

21. During what time interval (in sec) is the speed increasing?
(A) 0 < t < 3
(B) 3 < t < 5
(C) 3 < t < 6
(D) 5 < t < 6
(E) never

22. What is the average acceleration (in units/sec2) during the first 5 seconds?
(A) 

(B) −1
(C) 

(D) 

(E) 

23. The curve of  has

(A) two horizontal asymptotes
(B) two horizontal asymptotes and one vertical asymptote
(C) two vertical asymptotes but no horizontal asymptote
(D) one horizontal and one vertical asymptote
(E) one horizontal and two vertical asymptotes

24. Suppose

Which statement is true?
(A) f is discontinuous only at x = −2.
(B) f is discontinuous only at x = 1.
(C) If f (−2) is defined to be 4, then f will be continuous everywhere.
(D) f is continuous everywhere.
(E) f is discontinuous at x = − 2 and at x = 1.



25. The function f (x) = x5 + 3x − 2 passes through the point (1, 2). Let f −1 denote the inverse of f.
Then (f −1) ′(2) equals
(A) 

(B) 

(C) 1
(D) 8
(E) 83

26. 

(A) 

(B) 

(C) 

(D) 

(E) 

27. Which of the following statements is (are) true about the graph of y = ln (4 + x2)?
  I. It is symmetric to the y-axis.
 II. It has a local minimum at x = 0.
III. It has inflection points at x = ±2.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

28. Let  sin πx. Then f (3) =

(A) −3π
(B) −1
(C) 0
(D) 1
(E) 3π



 

Part B TIME: 50 MINUTES

Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29. The area bounded by the curve x = 3y − y2 and the line x = − y is represented by
(A) 

(B) 

(C) 

(D) 

(E) 

30. The region bounded by y = ex, y = 1, and x = 2 is rotated about the x-axis. The volume of the
solid generated is given by the integral:
(A) 

(B) 

(C) 

(D) 

(E) 

31. A particle moves on a straight line so that its velocity at time t is given by  where s is
its distance from the origin. If s = 1 when t = 0, then, when t = 1, s equals
(A) 0
(B) 
(C) 7
(D) 8



(E) 49

32. The sketch shows the graphs of f (x) = x2 − 4x − 5 and the line x = k. The regions labeled A and
B have equal areas if k =
(A) 5
(B) 7.766
(C) 7.899
(D) 8
(E) 11

33. Bacteria in a culture increase at a rate proportional to the number present. An initial population
of 200 triples in 10 hours. If this pattern of increase continues unabated, then the approximate
number of bacteria after 1 full day is
(A) 1160
(B) 1440
(C) 2408
(D) 2793
(E) 8380

34. When the substitution x = 2t − 1 is used, the definite integral  dt may be expressed in the
form  where {k, a, b} =

(A) 

(B) 

(C) 



(D) 

(E) 

35. The curve defined by x3 + xy − y2 = 10 has a vertical tangent line when x =
(A) 

(B) 1.037
(C) 2.074
(D) 2.096
(E) 2.154

Use the graph of f shown on [0,7] for Questions 36 and 37. Let 

36. G ′(1) is
(A) 1
(B) 2
(C) 3
(D) 6
(E) undefined

37. G has a local maximum at x =
(A) 1
(B) 

(C) 2
(D) 5
(E) 8

38. The slope of the line tangent to the curve y = (arctan (ln x))2 at x = 2 is
(A) −0.563
(B) −0.409
(C) −0.342



(D) 0.409
(E) 0.563

39. Using the left rectangular method and four subintervals of equal width, estimate  where f
is the function graphed below.

(A) 4
(B) 5
(C) 8
(D) 15
(E) 16

40. Suppose f (3) = 2, f ′(3) = 5, and f ″(3) = −2. Then  at x = 3 is equal to

(A) −20
(B) 10
(C) 20
(D) 38
(E) 42

41. The velocity of a particle in motion along a line (for t ≥ 0) is v(t) = ln(2 −t2). Find the
acceleration when the object is at rest.
(A) −2
(B) 0
(C) 

(D) 0
(E) none of these



42. Suppose  and x is increasing. The value of x for which the rate of increase of f
is 10 times the rate of increase of x is
(A) 1
(B) 2
(C) 
(D) 3
(E) 

43. The rate of change of the surface area, S, of a balloon is inversely proportional to the square of
the surface area. Which equation describes this relationship?
(A) 

(B) 

(C) 

(D) 

(E) 

44. Two objects in motion from t = 0 to t = 3 seconds have positions x1(t) = cos(t2 + 1) and 
 respectively. How many times during the 3 seconds do the objects have the same

velocity?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

45. After t years, 50e −0.015t pounds of a deposit of a radioactive substance remain. The average
amount per year not lost by radioactive decay during the second hundred years is
(A) 2.9 lb
(B) 5.8 lb
(C) 7.4 b
(D) 11.1 lb
(E) none of these



 

SECTION II
Part A      TIME: 30 MINUTES

 2 PROBLEMS
A graphing calculator is required for some of these problems.
1. Let function f be continuous and decreasing, with values as shown in the table:

x 2.5 3.2 3.5 4.0 4.6 5.0

f(x) 7.6 5.7 4.2 3.8 2.2 1.6

(a) Use the trapezoid method to estimate the area between f and the x-axis on the interval 2.5 ≤ x ≤
5.0.

(b) Find the average rate of change of f on the interval 2.5 ≤ x ≤ 5.0.
(c) Estimate the instantaneous rate of change of f at x = 2.5.

(d) If g(x) = f −1 (x), estimate the slope of g at x = 4.
2. Newton’s law of cooling states that the rate at which an object cools is proportional to the

difference in temperature between the object and its surroundings.
It is 9:00 P.M., time for your milk and cookies. The room temperature is 68° when you pour

yourself a glass of 40° milk and start looking for the cookie jar. By 9:03 the milk has warmed to
43°, and the phone rings. It’s your friend, with a fascinating calculus problem. Distracted by the
conversation, you forget about the glass of milk. If you dislike milk warmer than 60°, how long, to
the nearest minute, do you have to solve the calculus problem and still enjoy acceptably cold milk
with your cookies?

 



Part B  TIME: 60 MINUTES
No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.

3. Consider the first-quadrant region bounded by the curve  the coordinate axes, and the line x
= k, as shown in the figure above.
(a) For what value of k will the area of this region equal π?
(b) What is the average value of the function on the interval 0 ≤ x ≤ k ?
(c) What happens to the area of the region as the value of k increases?

4. The curve  divides a first quadrant rectangle into regions A and B, as shown in the
figure.
(a) Region A is the base of a solid. Cross sections of this solid perpendicular to the x-axis are

rectangles. The height of each rectangle is 5 times the length of its base in region A. Find the
volume of this solid.

(b) The other region, B, is rotated around the y-axis to form a different solid. Set up but do not
evaluate an integral for the volume of this solid.



5. A bungee jumper has reached a point in her exciting plunge where the taut cord is 100 feet long
with a 1/2-inch radius, and stretching. She is still 80 feet above the ground and is now falling at 40
feet per second. You are observing her jump from a spot on the ground 60 feet from the potential
point of impact, as shown in the diagram above.
(a) Assuming the cord to be a cylinder with volume remaining constant as the cord stretches, at

what rate is its radius changing when the radius is 1/2″?
(b) From your observation point, at what rate is the angle of elevation to the jumper changing when

the radius is 1/2″?



6. The figure above shows the graph of f, whose domain is the closed interval [−2,6]. Let 

(a) Find F (−2) and F(6).
(b) For what value(s) of x does F(x) = 0?
(c) For what value(s) of x is F increasing?
(d) Find the maximum value and the minimum value of F.
(e) At what value(s) of x does the graph of F have points of inflection? Justify your answer.

 





 

AB Practice Examination 3

SECTION I

Part A TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination. There are 28 questions
in Part A, for which 55 minutes are allowed. Because there is no deduction for wrong answers,
you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1.  (where [x] is the greatest integer in x) is

(A) 1
(B) 2
(C) 3
(D) ∞
(E) nonexistent

2. 

(A) 1
(B) −1
(C) 0
(D) ∞
(E) none of these

3. If f (x) = x ln x, then f′″(e) equals
(A) 

(B) 0
(C) 

(D) 



(E) 

4. The equation of the tangent to the curve 2x2 − y4 = 1 at the point (−1, 1) is
(A) y = −x
(B) y = 2 − x
(C) 4y + 5x + 1 = 0
(D) x − 2y + 3 = 0
(E) x − 4y + 5 = 0

5. On which interval(s) does the function f (x) = x4 − 4x3 + 4x2 + 6 increase?
(A) x < 0 and 1 < x < 2
(B) x > 2 only
(C) 0 < x < 1 and x > 2
(D) 0 < x < 1 only
(E) 1 < x < 2 only

6. 

(A) 
(B) 

(C) 
(D) 2ln|4 + 2sinx| + C
(E) 

7. A relative maximum value of the function  is

(A) 1
(B) e
(C) 

(D) 

(E) none of these

8. If a particle moves on a line according to the law s = t5 + 2t3, then the number of times it
reverses direction is
(A) 4
(B) 3



(C) 2
(D) 1
(E) 0

9. A particular solution of the differential equation whose slope field is shown above contains
point P. This solution may also contain which other point?
(A) A
(B) B
(C) C
(D) D
(E) E

10. Let . Which of the following statements is (are) true?

  I. The domain of F is x ≠ ±1.
 II. F(2) > 0.
III. The graph of F is concave upward.
(A) none
(B) I only
(C) II only
(D) III only
(E) II and III only

11. As the tides change, the water level in a bay varies sinusoidally. At high tide today at 8 A.M.,
the water level was 15 feet; at low tide, 6 hours later at 2 P.M., it was 3 feet. How fast, in feet
per hour, was the water level dropping at noon today?
(A) 3
(B) 



(C) 
(D) 
(E) 

12. A smooth curve with equation y = f (x) is such that its slope at each x equals x2. If the curve
goes through the point (−1, 2), then its equation is
(A) 

(B) x3 − 3y + 7 = 0

(C) y = x3 + 3

(D) y − 3x3 − 5 = 0
(E) none of these

13.  is equal to

(A) ln(1 + e2u) + C
(B) 

(C) 

(D) tan−1eu + C
(E) 

14. Given f (x) = log10x and log10(102)  2.0086, which is closest to f ′(100)?

(A) 0.0043
(B) 0.0086
(C) 0.01
(D) 1.0043
(E) 2

15. If G(2) = 5 and  then an estimate of G(2.2) using a tangent-line approximation is

(A) 5.4
(B) 5.5
(C) 5.8
(D) 8.8
(E) 13.8



16. The area bounded by the parabola y = x2 and the lines y = 1 and y = 9 equals
(A) 8
(B) 

(C) 

(D) 32
(E) 

17. Suppose  if x ≠ 0 and f (0) = 1. Which of the following statements is (are) true of f ?

I. f is defined at x = 0.
II. 
III. f is continuous at x = 0.
(A) I only
(B) II only
(C) I and II only
(D) None of the statements is true.
(E) All are true.

18. Which function could have the graph shown below?

(A) 

(B) 

(C) 

(D) 

(E) 

19. Suppose the graph of f is both increasing and concave up on a ≤ x ≤ b. Then, using the same



number of subdivisions, and with L, R, M, and T denoting, respectively, left, right, midpoint, and
trapezoid sums, it follows that
(A) R ≤ T ≤ M ≤ L
(B) L ≤ T ≤ M ≤ R
(C) R ≤ M ≤ T ≤ L
(D) L ≤ M ≤ T ≤ R
(E) none of these

20. 

(A) + ∞
(B) 0
(C) 

(D) −∞
(E) nonexistent

21. The only function that does not satisfy the Mean Value Theorem on the interval specified is

(A) f (x) = x2 − 2x on [−3, 1]
(B) 

(C) 

(D) 

(E) 

22. Suppose f ′(x) = x(x − 2)2(x + 3). Which of the following is (are) true?
I. f has a local maximum at x = −3.
II. f has a local minimum at x = 0.
III. f has neither a local maximum nor a local minimum at x = 2.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

23. If 



(A) 

(B) 

(C) 

(D) 

(E) 

24. The graph of function f shown above consists of three quarter-circles.
Which of the following is (are) equivalent to 

I. 

II. 

III. 

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

25. The base of a solid is the first-quadrant region bounded by  and each cross section
perpendicular to the x-axis is a semicircle with a diameter in the xy-plane. The volume of the
solid is
(A) 

(B) 

(C) 

(D) 

(E) 

26. The average value of f (x) = 3 + |x| on the interval [−2, 4] is



(A) 

(B) 

(C) 

(D) 

(E) 6

27. 

(A) 

(B) 

(C) 1
(D) 3
(E) nonexistent

28. The area of the region in the xy-plane bounded by the curves y = ex, y = e−x, and x = 1 is equal
to
(A) 

(B) 

(C) 

(D) 2e − 2
(E) none of these

 

Part B TIME: 50 MINUTES



Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29.  Then f ′(x) =

(A) 
(B) 
(C) 
(D) 
(E) 

30. A cylindrical tank, shown in the figure above, is partially full of water at time t = 0, when more
water begins flowing in at a constant rate. The tank becomes half full when t = 4, and is
completely full when t = 12. Let h represent the height of the water at time t. During which
interval is  increasing?

(A) none
(B) 0 < t < 4
(C) 0 < t < 8
(D) 0 < t < 12
(E) 4 < t < 12

31. A particle moves on a line according to the law s = f (t) so that its velocity v = ks, where k is a
nonzero constant. Its acceleration is

(A) k2v
(B) k2s
(C) k
(D) 0



(E) none of these

32. A cup of coffee placed on a table cools at a rate of  per minute, where H
represents the temperature of the coffee and t is time in minutes. If the coffee was at 120°F
initially, what will its temperature be 10 minutes later?
(A) 73°F
(B) 95°F
(C) 100°F
(D) 118°F
(E) 143°F

33. An investment of $4000 grows at the rate of 320e0.08t dollars per year after t years. Its value
after 10 years is approximately
(A) $4902
(B) $8902
(C) $7122
(D) $12,902
(E) none of these

34. If f (x) = (1 + ex) then the domain of f −1(x) is
(A) (−∞,∞)
(B) (0,∞)
(C) (1,∞)
(D) {x|x ≥ 1}
(E) {x|x ≥ 2}

Questions 35 and 36. The graph shows the velocity of an object during the interval 0 ≤ t ≤ 9.



35. The object attains its greatest speed at t =
(A) 2
(B) 3
(C) 5
(D) 6
(E) 8

36. The object was at the origin at t = 3. It returned to the origin
(A) at t = 5
(B) at t = 6
(C) during 6 < t < 7
(D) at t = 7
(E) during 7 < t < 8

37. When the region bounded by the y-axis, y = ex, and y = 2 is rotated around the y-axis it forms a
solid with volume
(A) 0.039
(B) 0.386
(C) 0.592
(D) 1.214
(E) 4.712

38. If  is replaced by u, then  is equivalent to

(A) 

(B) 

(C) 

(D) 

(E) 

39. The line tangent to the graph of function f at the point (8,1) intersects the y-axis at y = 3. Find f
′(8).
(A) 

(B) 0



(C) 

(D) 1
(E) 3

40. How many points of inflection does the function f have on the interval 0 ≤ x ≤ 6 if 

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

41. The graph shows the rate at which tickets were sold at a movie theater during the last hour
before showtime. Using the right-rectangle method, estimate the size of the audience.
(A) 230
(B) 300
(C) 330
(D) 375
(E) 420

42. At what point of intersection of f (x) = 4sin x and g(x) = ln (x2) do their derivatives have the
same sign?
(A) −5.2
(B) −4.0
(C) −1.2
(D) 2.6
(E) 7.8



43. Which statement is true?
(A) If f (x) is continuous at x = c, then f ′(c) exists.
(B) If f ′(c) = 0, then f has a local maximum or minimum at (c, f (c)).
(C) If f ″(c) = 0, then the graph of f has an inflection point at (c, f (c)).
(D) If f is differentiable at x = c, then f is continuous at x = c.
(E) If f is continuous on (a,b), then f attains a maximum value on (a, b).

44. The graph of f ′ is shown above. Which statements about f must be true for a < x < b ?
  I. f is increasing.
 II. f is continuous.
III. f is differentiable.
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

45. After a bomb explodes, pieces can be found scattered around the center of the blast. The density
of bomb fragments lying x meters from ground zero is given by  fragments per square
meter. How many fragments will be found within 20 meters of the point where the bomb
exploded?
(A) 13
(B) 278
(C) 556
(D) 712
(E) 4383



 

SECTION II
Part A  TIME: 30 MINUTES
A graphing calculator is required for some of these problems.
1. A curve is defined by x2y − 3y2 = 48.

(a) Verify that 

(b) Write an equation of the line tangent to this curve at (5,3).
(c) Using your equation from part (a), estimate the y-coordinate of the point on the curve where x =

4.93.
(d) Show that this curve has no horizontal tangent lines.

2. The table shows the depth of water, W, in a river, as measured at 4-hour intervals during a day-
long flood. Assume that W is a differentiable function of time t.

t (hr) 0 4 8 12 16 20 24

W(t) (ft) 32 36 38 37 35 33 32

(a) Find the approximate value of W ′(16). Indicate units of measure.
(b) Estimate the average depth of the water, in feet, over the time interval 0 ≤ t ≤ 24 hours by using

a trapezoidal approximation with subintervals of length Δt = 4 days.
(c) Scientists studying the flooding believe they can model the depth of the water with the function 

 where F(t) represents the depth of the water, in feet, after t hours. Find F ′(16)
and explain the meaning of your answer, with appropriate units, in terms of the river depth.

(d) Use the function F to find the average depth of the water, in feet, over the time interval 0 ≤ t ≤
24 hours.

 



Part B  TIME: 60 MINUTES
No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.
3. The region R is bounded by the curves f (x) = cos(πx) − 1 and g(x) = x(2 − x), as shown in the

figure.

(a) Find the area of R.
(b) A solid has base R, and each cross section perpendicular to the x-axis is an isosceles right

triangle whose hypotenuse lies in R. Set up, but do not evaluate, an integral for the volume of this
solid.

(b) Set up, but do not evaluate, an integral for the volume of the solid formed when R is rotated
around the line y = 3.

4. Two autos, P and Q, start from the same point and race along a straight road for 10 seconds. The
velocity of P is given by  feet per second.

The velocity of Q is shown in the graph.



(a) At what time is P’s actual acceleration (in ft/sec2) equal to its average acceleration for the
entire race?

(b) What is Q’s acceleration (in ft/sec2) then?
(c) At the end of the race, which auto was ahead? Explain.

5. Given the differential equation 

(a) Sketch the slope field for this differential equation at the points shown in the figure.

(b) Let f be the particular solution to the differential equation whose graph passes through (0,1).
Express f as a function of x, and state its domain.

6. The graph shown is for 

(a) What is 

(b) What is 

(c) At what value of x does f (x) = 0?
(d) Over what interval is f ′(x) negative?
(e) Let  Sketch the graph of G on the same axes.
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BC Practice Examination 1

SECTION I
Part A TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination. There are 28 questions
in Part A, for which 55 minutes are allowed. Because there is no deduction for wrong answers,
you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1. 

(A) −5
(B) ∞
(C) 0
(D) 5
(E) 1

2. 

(A) 0
(B) ln 2
(C) 

(D) 

(E) ∞

3. If  and y = sin−1t, then  equals

(A) 

(B) −t
(C) 

(D) 2
(E) 

Questions 4 and 5. Use the following table, which shows the values of the differentiable functions f



and g.

4. The average rate of change of function f on [1,4] is
(A) 7/6
(B) 4/3
(C) 15/8
(D) 9/4
(E) 8/3

5. If h(x) = g(f (x)) then h ′(3) =
(A) 1/2
(B) 1
(C) 4
(D) 6
(E) 9

6.  (3x − 2)3 dx is equal to

(A) 

(B) 

(C) 

(D) 

(E) none of these

7. If  equals

(A) 

(B) 

(C) 

(D) 



(E) 

8. The maximum value of the function f (x) = xe −x is
(A) 

(B) e
(C) 1
(D) −1
(E) none of these

9. Which equation has the slope field shown below?

(A) 

(B) 

(C) 

(D) 

(E) 

Questions 10–11. The graph below shows the velocity of an object moving along a line, for 0 ≤ t ≤ 9.



10. At what time does the object attain its maximum acceleration?
(A) 2 < t < 5
(B) 5 < t < 8
(C) t = 6
(D) t = 8
(E) 8 < t < 9

11. The object is farthest from the starting point at t =
(A) 2
(B) 5
(C) 6
(D) 8
(E) 9

12. If x = 2 sin θ, then  is equivalent to:

(A) 

(B) 

(C) 

(D) 

(E) 

13. 

(A) 0
(B) 

(C) 1
(D) 2
(E) none of these

14. 

(A) = 0
(B) = 1
(C) = e
(D) = ∞



(E) does not exist

15. A differentiable function has the values shown in this table:

x 2.0 2.2 2.4 2.6 2.8 3.0

f (x) 1.39 1.73 2.10 2.48 2.88 3.30

Estimate f ′(2.1).
(A) 0.34
(B) 0.59
(C) 1.56
(D) 1.70
(E) 1.91

16. If  is approximated using Riemann sums and the same number of subdivisions, and if L,
R, and T denote, respectively left, right, and trapezoid sums, then it follows that
(A) R ≤ A ≤ T ≤ L
(B) R ≤ T ≤ A ≤ L
(C) L ≤ T ≤ A ≤ R
(D) L ≤ A ≤ T ≤ R
(E) None of these is true.

17. If  tan x and y = 3 when x = 0, then, when 

(A) 
(B) ln 3
(C) 

(D) 

(E) 6

18. 

(A) 

(B) 

(C) 

(D) 



(E) 

19. The equation of the curve shown below is  What does the area of the shaded region
equal?

(A) 

(B) 8 − 2π
(C) 8 − π
(D) 

(E) 2π − 4

20. Find the slope of the curve 

(A) 

(B) 

(C) 0
(D) 
(E) 

21. A particle moves along a line with velocity, in feet per second, v = t2 − t. The total distance, in
feet, traveled from t = 0 to t = 2 equals
(A) 

(B) 

(C) 2
(D) 1
(E) 

22. The general solution of the differential equation  is a family of

(A) straight lines



(B) circles
(C) hyperbolas
(D) parabolas
(E) ellipses

23. The curve x3 + x tan y = 27 passes through (3,0). Use local linear approximation to estimate the
value of y at x = 3.1. The value is
(A) −2.7
(B) −0.9
(C) 0
(D) 0.1
(E) 3.0

24.  x cos x dx =

(A) x sin x + cos x + C
(B) x sin x − cos x + C
(C) 

(D) 

(E) none of these

25. The work done in lifting an object is the product of the weight of the object and the distance it
is moved. A cylindrical barrel 2 feet in diameter and 4 feet high is half-full of oil weighing 50
pounds per cubic foot. How much work is done, in foot-pounds, in pumping the oil to the top of
the tank?
(A) 100π
(B) 200π
(C) 300π
(D) 400π



(E) 1200π

26. The coefficient of the (x − 8)2 term in the Taylor polynomial for y = x2/3 centered at x = 8 is
(A) 

(B) 

(C) 

(D) 

(E) 

27. If f ′(x) = h(x) and g(x) = x3, then  f (g(x)) =

(A) h(x3)

(B) 3x2h(x)
(C) h ′(x)

(D) 3x2h(x3)

(E) x3h(x3)

28. 

(A) −∞
(B) −2
(C) 1
(D) 2
(E) ∞

 

Part B TIME: 50 MINUTES



Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29. The path of a satellite is given by the parametric equations
  x = 4 cos t + cos 12t,
y = 4 sin t + sin 12t.

The upward velocity at t = 1 equals
(A) 2.829
(B) 3.005
(C) 3.073
(D) 3.999
(E) 12.287

30. As a cup of hot chocolate cools, its temperature after t minutes is given by H(t) = 70 + ke −0.4t.
If its initial temperature was 120°F, what was its average temperature (in °F) during the first 10
minutes?
(A) 60.9
(B) 82.3
(C) 95.5
(D) 96.1
(E) 99.5

31. An object moving along a line has velocity v (t) = t cos t − ln (t + 2), where 0 ≤ t ≤ 10. The
object achieves its maximum speed when t =
(A) 3.743
(B) 5.107
(C) 6.419
(D) 7.550
(E) 9.538



32. The graph of f ′, which consists of a quarter-circle and two line segments, is shown above. At x
= 2 which of the following statements is true?
(A) f is not continuous.
(B) f is continuous but not differentiable.
(C) f has a relative maximum.
(D) The graph of f has a point of inflection.
(E) none of these

33. Let  where f is the function whose graph appears below.

The tangent line approximating H(x) near x = 3 is H(x)
(A) −2x + 8
(B) 2x − 4
(C) −2x + 4
(D) 2x − 8
(E) 2x − 2

34. The table shows the speed of an object, in feet per second, at various times during a 12-second
interval.

time (sec) 0 3 6 7 8 10 12

speed (ft/sec) 15 14 11 8 7 3 0



Estimate the distance the object travels, using the midpoint method with 3 subintervals.
(A) 100 ft
(B) 101 ft
(C) 111 ft
(D) 112 ft
(E) 150 ft

35. In a marathon, when the winner crosses the finish line many runners are still on the course,
some quite far behind. If the density of runners x miles from the finish line is given by R(x) =
20[1 − cos(1 + 0.03x2)] runners per mile, how many are within 8 miles of the finish line?
(A) 30
(B) 145
(C) 157
(D) 166
(E) 195

36. Find the volume of the solid generated when the region bounded by the y-axis, y = ex, and y = 2
is rotated around the y-axis.
(A) 0.296
(B) 0.592
(C) 2.427
(D) 3.998
(E) 27.577

37. If  then f ′(t) equals

(A) 

(B) 

(C) 

(D) 

(E) tan−1 t2

38. You wish to estimate ex, over the interval | x | < 2, with an error less than 0.001. The Lagrange
error term suggests that you use a Taylor polynomial at 0 with degree at least
(A) 6



(B) 9
(C) 10
(D) 11
(E) 12

39. Find the volume of the solid formed when one arch of the cycloid defined parametrically by x =
θ − sin θ, y = 1 − cos θ is rotated around the x-axis.
(A) 15.708
(B) 17.306
(C) 19.739
(D) 29.609
(E) 49.348

40. Which definite integral represents the length of the first quadrant arc of the curve defined by
x(t) = et, y(t) = 1 − t2?

(A) 

(B) 

(C) 

(D) 

(E) 

41. For which function is  the Taylor series about 0?

(A) ex

(B) e −x

(C) sin x
(D) cos x
(E) ln (1 + x)

42. The hypotenuse AB of a right triangle ABC is 5 feet, and one leg, AC, is decreasing at the rate of
2 feet per second. The rate, in square feet per second, at which the area is changing when AC = 3
is
(A) 

(B) 



(C) 

(D) 

(E) 

43. At how many points on the interval [0,π] does f (x) = 2 sin x + sin 4x satisfy the Mean Value
Theorem?
(A) none
(B) 1
(C) 2
(D) 3
(E) 4

44. Which one of the following series converges?
(A) 

(B) 

(C) 

(D) 

(E) 

45. The rate at which a purification process can remove contaminants from a tank of water is
proportional to the amount of contaminant remaining. If 20% of the contaminant can be removed
during the first minute of the process and 98% must be removed to make the water safe,
approximately how long will the decontamination process take?
(A) 2 min
(B) 5 min
(C) 18 min
(D) 20 min
(E) 40 min

 



SECTION II
Part A  TIME: 30 MINUTES
A graphing calculator is required for some of these problems..
1. A function f is defined on the interval [0,4], and its derivative is f ′(x) = esin x − 2 cos 3x.

(a) Sketch f ′ in the window [0,4] × [−2,5].
(Note that the following questions refer to f.)

(b) On what interval is f increasing?
(c) At what value(s) of x does f have local maxima? Justify your answer.
(d) How many points of inflection does the graph of f have? Justify your answer.

2. The rate of sales of a new software product is given by S(t), where S is measured in hundreds of
units per month and t is measured in months from the initial release date of January 1, 2012. The
software company recorded these sales data:

t (months) 1 2 3 4 5 6 7

S(t) (100s/month) 1.54 1.88 2.32 3.12 3.78 4.90 6.12

(a) Using a trapezoidal approximation, estimate the number of units the company sold during the
second quarter (April 1, 2012, through June 30, 2012).

(b) After looking at these sales figures, a manager suggests that the rate of sales can be modeled by
assuming the rate to be initially 120 units/month and to double every 3 months. Write an equation
for S based on this model.

(c) Compare the model’s prediction for total second quarter sales with your estimate from part a.
(d) Use the model to predict the average value of S(t) for the entire first year. Explain what your

answer means.

 



Part B  TIME: 60 MINUTES
No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.
3. The velocity of an object in motion in the plane for 0 ≤ t ≤ 1 is given by the vector 

(a) When is this object at rest?
(b) If this object was at the origin when t = 0, what are its speed and position when t = 1?
(c) Find an equation of the curve the object follows, expressing y as a function of x.

4. (a) Write the Maclaurin series (including the general term) for f (x) = ln(e + x).
(b) What is the radius of convergence?
(c) Use the first three terms of that series to write an expression that estimates the value of  ln(e +

x2)dx.
5. After pollution-abatement efforts, conservation researchers introduce 100 trout into a small lake.

The researchers predict that after m months the rate of growth, F, of the trout population will be
modeled by the differential equation  = 0.0002F(600 − F).

(a) How large is the trout population when it is growing the fastest?
(b) Solve the differential equation, expressing F as a function of m.
(c) How long after the lake was stocked will the population be growing the fastest?

6. (a) A spherical snowball melts so that its surface area shrinks at the constant rate of 10 square
centimeters per minute. What is the rate of change of volume when the snowball is 12 centimeters
in diameter?

(b) The snowball is packed most densely nearest the center. Suppose that, when it is 12 centimeters
in diameter, its density x centimeters from the center is given by  grams per cubic
centimeter. Set up an integral for the total number of grams (mass) of the snowball then. Do not
evaluate.

 







 

BC Practice Examination 2

SECTION I
Part A TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination. There are 28 questions
in Part A, for which 55 minutes are allowed. Because there is no deduction for wrong answers,
you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1. A function f (x) equals  for all x except x = 1. For the function to be continuous at x = 1, the
value of f (1) must be
(A) 0
(B) 1
(C) 2
(D) ∞
(E) none of these

2. 

(A) 2
(B) 0
(C) 

(D) 1
(E) nonexistent

3. The first four terms of the Taylor series about x = 0 of  are
(A) 

(B) 

(C) 

(D) 



(E) 

4. Using the line tangent to  at x = 0, an estimate of f (0.06) is

(A) 0.02
(B) 2.98
(C) 3.01
(D) 3.02
(E) 3.03

5. Air is escaping from a balloon at a rate of  cubic feet per minute, where t is measured
in minutes. How much air, in cubic feet, escapes during the first minute?
(A) 15
(B) 15π
(C) 30
(D) 30π
(E) 30 ln 2

6. The motion of a particle in a plane is given by the pair of equations x = cos 2t, y = sin 2t. The
magnitude of its acceleration at any time t equals
(A) 2
(B) 
(C) 4
(D) 
(E) 16

7. Let 

The interval of convergence of f ′(x) is
(A) 0  x  2
(B) 0  x < 2
(C) 0 < x  2
(D) 0 < x < 2
(E) only x = 1

8. A point moves along the curve y = x2 + 1 so that the x-coordinate is increasing at the constant
rate of  units per second. The rate, in units per second, at which the distance from the origin is
changing when the point has coordinates (1,2) is equal to



(A) 

(B) 

(C) 
(D) 

(E) 

9. 

(A) = 0
(B) 

(C) = 1
(D) = 10
(E) does not exist

10. sec2 x tan2 x dx equals

(A) 

(B) 

(C) 
(D) 3
(E) 

11.  equals

(A) 

(B) e − 1
(C) e + 1
(D) 1
(E) −1

12. 

(A) 

(B) y2 −y + ln|2y| + C
(C) 



(D) 

(E) 

13. 

(A) ln |x2 (x − 3)| + C
(B) −ln |x2 (x − 3)| + C

(C) 

(D) 

(E) none of these

14. Given f ′ as graphed, which could be a graph of f ?

(A) I only
(B) II only
(C) III only
(D) I and III
(E) none of these

15. The first woman officially timed in a marathon was Violet Piercey of Great Britain in 1926.
Her record of 3:40:22 stood until 1963, mostly because of a lack of women competitors. Soon
after, times began dropping rapidly, but lately they have been declining at a much slower rate.
Let M(t) be the curve that best represents winning marathon times in year t. Which of the
following is negative?
  I. M(t)
 II. M ′(t)
III. M ″(t)



(A) I only
(B) II only
(C) III only
(D) II and III
(E) none of these

16. The graph of f is shown above. Let  Which of the following is true?

(A) G(x) = H(x)
(B) G ′(x) = H ′(x + 2)
(C) G(x) = H(x + 2)
(D) G(x) = H(x) − 2
(E) G(x) = H(x) + 3

17. The minimum value of  on the interval   x  2 is

(A) 

(B) 1
(C) 3
(D) 

(E) 5

18. Which function could be a particular solution of the differential equation whose slope field is
shown above?



(A) y = x3

(B) 

(C) 

(D) y = sin x

(E) y = e −x2

19. A particular solution of the differential equation  = x + y passes through the point (2,1). Using
Euler’s method with Δx = 0.1, estimate its y-value at x = 2.2.
(A) 0.34
(B) 1.30
(C) 1.34
(D) 1.60
(E) 1.64

Questions 20 and 21. Use the graph below, consisting of two line segments and a quarter-circle. The
graph shows the velocity of an object during a 6-second interval.

20. For how many values of t in the interval 0 < t < 6 is the acceleration undefined?
(A) none
(B) one
(C) two
(D) three
(E) four

21. During what time interval (in sec) is the speed increasing?
(A) 0 < t < 3
(B) 3 < t < 5
(C) 3 < t < 6
(D) 5 < t < 6



(E) never

22. If  and y = 3 when x = 1, then

(A) x2 + y2 = 10
(B) y = x + ln3

(C) y2 − x2 = 8
(D) y = 3x
(E) y2 − 3x2 = 6

23. A solid is cut out of a sphere of radius 2 by two parallel planes each 1 unit from the center. The
volume of this solid is
(A) 8π
(B) 

(C) 

(D) 

(E) 

24. Which one of the following improper integrals converges?
(A) 

(B) 

(C) 

(D) 

(E) none of these

25. Let f (x) = x5 + 3x − 2, and let f −1 denote the inverse of f. Then (f −1) ′(2) equals
(A) 

(B) 

(C) 1
(D) 8
(E) 83

26. Find the domain of the particular solution of  = 1 + y2 that passes through the origin.



(A) all x
(B) x ≥ 0
(C) 

(D) 

(E) 

27. Which of the following statements is (are) true about the graph of y = ln (4 + x2)?
  I. It is symmetric to the y-axis.
 II. It has a local minimum at x = 0.
III. It has inflection points at x = ±2.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

28. 

(A) 

(B) 

(C) 

(D) 

(E) nonexistent

 

Part B TIME: 50 MINUTES



Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29. The area bounded by the curve x = 3y − y2 and the line x = − y is represented by
(A) 

(B) 

(C) 

(D) 

(E) 

30. Find the area bounded by the spiral r = ln θ on the interval π  θ  2π.
(A) 2.405
(B) 2.931
(C) 3.743
(D) 4.810
(E) 7.487

31. Write an equation for the line tangent to the curve defined by F(t) = (t2 + 1,2t) at the point
where y = 4.
(A) y − 4 = ln 2(x − 2)
(B) y − 4 = 4 ln 2(x − 2)
(C) y − 4 = 4(x − 5)
(D) y − 4 = ln 2(x − 5)
(E) y − 4 = 4 ln 2(x − 5)

32. Which infinite series converge(s)?
I. 

II. 

III. 

(A) I only



(B) II only
(C) III only
(D) I and III only
(E) none of these

33. Bacteria in a culture increase at a rate proportional to the number present. An initial population
of 200 triples in 10 hours. If this pattern of increase continues unabated, then the approximate
number of bacteria after 1 full day is
(A) 1160
(B) 1440
(C) 2408
(D) 2793
(E) 8380

34. When the substitution x = 2t − 1 is used, the definite integral  dt may be expressed in the
form  where {k. a, b } =

(A) 

(B) 

(C) 

(D) 

(E) 

35. The curve defined by x3 + xy − y2 = 10 has a vertical tangent line when x =
(A) 

(B) 1.037
(C) 2.074
(D) 2.096
(E) 2.154

Questions 36 and 37. Use the graph of f shown on [0,7]. Let 



36. G ′(1) is
(A) 1
(B) 2
(C) 3
(D) 6
(E) undefined

37. G has a local maximum at x =
(A) 1
(B) 

(C) 2
(D) 5
(E) 8

38. If the half-life of a radioactive substance is 8 years, how long will it take, in years, for two
thirds of the substance to decay?
(A) 4.68
(B) 7.69
(C) 12
(D) 12.21
(E) 12.68

39. Using the left rectangular method and four subintervals of equal width, estimate  where f
is the function graphed below.



(A) 4
(B) 5
(C) 8
(D) 15
(E) 16

40. The area in the first quadrant bounded by the curve with parametric equations x = 2a tan θ and y
= 2a cos2 θ, and the lines x = 0 and x = 2a, is equal to

(A) πa2

(B) 2πa2

(C) 

(D) 

(E) none of these

41. The base of a solid is the region bounded by x2 = 4y and the line y = 2, and each plane section
perpendicular to the y-axis is a square. The volume of the solid is
(A) 8
(B) 16
(C) 20
(D) 32
(E) 64

42. An object initially at rest at (3,3) moves with acceleration  Where is the object at t =
2?

(A) (4,e −2)

(B) (4,e −2 + 2)



(C) (7,e −2)

(D) (7,e −2 + 2)

(E) (7,e −2 + 4)

43. Find the length of the curve y = ln x between the points where  and y = 1.

(A) 0.53
(B) 0.86
(C) 1.18
(D) 1.36
(E) 10.02

44. Using the first two terms in the Maclaurin series for y = cos x yields accuracy to within 0.001
over the interval |x| < k when k =
(A) 0.032
(B) 0.394
(C) 0.786
(D) 0.788
(E) 1.570

45. After t years, 50e −0.015t pounds of a deposit of a radioactive substance remain. The average
amount per year not lost by radioactive decay during the second hundred years is
(A) 2.9 lb
(B) 5.8 lb
(C) 7.4 lb
(D) 11.1 lb
(E) none of these

 



SECTION II

Part A  TIME: 30 MINUTES
A graphing calculator is required for some of these problems.
1. Let function f be continuous and decreasing, with values as shown in the table:

x 2.5 3.2 3.5 4.0 4.6 5.0

f (x) 7.6 5.7 4.2 3.8 2.2 1.6

(a) Use the trapezoid method to estimate the area between f and the x-axis on the interval 2.5 ≤ x ≤
5.0.

(b) Find the average rate of change of f on the interval 2.5 ≤ x ≤ 5.0.
(c) Estimate the instantaneous rate of change of f at x = 2.5.

(d) If g(x) = f −1(x), estimate the slope of g at x = 4.

2. An object starts at point (1,3), and moves along the parabola y = x2 + 2 for 0 ≤ t ≤ 2, with the
horizontal component of its velocity given by 

(a) Find the object’s position at t = 2.
(b) Find the object’s speed at t = 2.
(c) Find the distance the object traveled during this interval.

 

Part B TIME: 60 MINUTES
No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.



3. Given a function f such that f (3) = 1 and 

(a) Write the first four nonzero terms and the general term of the Taylor series for f around x = 3.
(b) Find the radius of convergence of the Taylor series.
(c) Show that the third-degree Taylor polynomial approximates f (4) to within 0.01.

4. The curve  divides a first quadrant rectangle into regions A and B, as shown in the
figure.
(a) Region A is the base of a solid. Cross sections of this solid perpendicular to the x-axis are

rectangles. The height of each rectangle is 5 times the length of its base in region A. Find the
volume of this solid.

(b) The other region, B, is rotated around the y-axis to form a different solid. Set up but do not
evaluate an integral for the volume of this solid.

5. A bungee jumper has reached a point in her exciting plunge where the taut cord is 100 feet long
with a 1/2-inch radius, and stretching. She is still 80 feet above the ground and is now falling at 40
feet per second. You are observing her jump from a spot on the ground 60 feet from the potential
point of impact, as shown in the diagram above.
(a) Assuming the cord to be a cylinder with volume remaining constant as the cord stretches, at

what rate is its radius changing when the radius is 1/2″?
(b) From your observation point, at what rate is the angle of elevation to the jumper changing when

the radius is 1/2″?



6. The figure above shows the graph of f, whose domain is the closed interval [−2,6]. Let 

(a) Find F (−2) and F(6).
(b) For what value(s) of x does F(x) = 0?
(c) For what value(s) of x is F increasing?
(d) Find the maximum value and the minimum value of F.
(e) At what value(s) of x does the graph of F have points of inflection? Justify your answer.



 





 

BC Practice Examination 3

SECTION I
Part A TIME: 55 MINUTES

The use of calculators is not permitted for this part of the examination.
There are 28 questions in Part A, for which 55 minutes are allowed. Because there is no
deduction for wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question.

1.  (where [x] is the greatest integer in x) is

(A) 1
(B) 2
(C) 3
(D) ∞
(E) nonexistent

2. 

(A) 1
(B) −1
(C) 0
(D) ∞
(E) none of these

3. 

(A) 

(B) = 1.
(C) = 3.
(D) = 4.
(E) diverges.



4. The equation of the tangent to the curve 2x2 − y4 = 1 at the point (−1, 1) is
(A) y = −x
(B) y = 2 − x
(C) 4y + 5x + 1 = 0
(D) x − 2y + 3 = 0
(E) x − 4y + 5 = 0

5. The nth term of the Taylor series expansion about x = 0 of the function 

(A) (2x)n

(B) 2xn − 1

(C) 

(D) (−1)n − 1(2x)n − 1

(E) (−1)n(2x)n − 1

6. When the method of partial fractions is used to decompose  one of the fractions
obtained is
(A) 

(B) 

(C) 

(D) 

(E) 

7. A relative maximum value of the function is  is

(A) 1
(B) e
(C) 

(D) 

(E) none of these

8. When a series is used to approximate  the value of the integral, to two decimal places, is

(A) −0.09
(B) 0.29



(C) 0.35
(D) 0.81
(E) 1.35

9. A particular solution of the differential equation whose slope field is shown above contains
point P. This solution may also contain which other point?
(A) A
(B) B
(C) C
(D) D
(E) E

10. Let  Which of the following statements is (are) true?

I. The domain of F is x ≠ ±1.
II. F(2) > 0.
III. The graph of F is concave upward.
(A) none
(B) I only
(C) II only
(D) III only
(E) II and III only

11. As the tides change, the water level in a bay varies sinusoidally. At high tide today at 8 A.M.,
the water level was 15 feet; at low tide, 6 hours later at 2 P.M., it was 3 feet. How fast, in feet
per hour, was the water level dropping at noon today?
(A) 3
(B) 



(C) 
(D) 
(E) 

12. Let  sin πx. Then f (3) =

(A) − 3π
(B) −1
(C) 0
(D) 1
(E) 3π

13.  is equal to

(A) ln(1 + e2u) + C
(B) 

(C) 

(D) tan−1eu + C
(E) 

14. Given f (x) = log10x and log10(102)  2.0086, which is closest to f ′(100)?

(A) 0.0043
(B) 0.0086
(C) 0.01
(D) 1.0043
(E) 2

15. If G(2) = 5 and  then an estimate of G(2.2) using a tangent-line approximation is

(A) 5.4
(B) 5.5
(C) 5.8
(D) 8.8
(E) 13.8

16. The area bounded by the parabola y = x2 and the lines y = 1 and y = 9 equals



(A) 8
(B) 

(C) 

(D) 32
(E) 

17. The first-quadrant region bounded by  y = 0, x = q (0 < q < 1), and x = 1 is rotated about

the x-axis. The volume obtained as q →0+ equals
(A) 

(B) 

(C) 2π
(D) 4π
(E) none of these

18. A curve is given parametrically by the equations
x = 3 − 2sint and y = 2cos t − 1.

The length of the arc from t = 0 to t = π is
(A) 

(B) π
(C) 2 + π
(D) 2π
(E) 4π

19. Suppose the graph of f is both increasing and concave up on a ≤ x ≤ b. Then, using the same
number of subdivisions, and with L, R, M, and T denoting, respectively, left, right, midpoint, and
trapezoid sums, it follows that
(A) R ≤ T ≤ M ≤ L
(B) L ≤ T ≤ M ≤ R
(C) R ≤ M ≤ T ≤ L
(D) L ≤ M ≤ T ≤ R
(E) none of these

20. Which of the following statements about the graph of  is (are) true?

I. The graph has no horizontal asymptote.



II. The line x = 2 is a vertical asymptote.
III. The line y = x + 2 is an oblique asymptote.
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) all three

21. The only function that does not satisfy the Mean Value Theorem on the interval specified is

(A) f (x) = x2 − 2x on [−3, 1]
(B) 

(C) 

(D) 

(E) 

22. 

(A) −3e − 1
(B) −e
(C) e − 2
(D) 3e
(E) 4e − 1

23. A cylindrical tank, shown in the figure above, is partially full of water at time t = 0, when more
water begins flowing in at a constant rate. The tank becomes half full when t = 4, and is
completely full when t = 12. Let h represent the height of the water at time t. During which
interval is  increasing?

(A) none
(B) 0 < t < 4



(C) 0 < t < 8
(D) 0 < t < 12
(E) 4 < t < 12

24. The graph of function f shown above consists of three quarter-circles.
Which of the following is (are) equivalent to 

I. 

II. 

III. 

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) all three

25. The base of a solid is the first-quadrant region bounded by  and each cross section
perpendicular to the x-axis is a semicircle with a diameter in the xy-plane. The volume of the
solid is
(A) 

(B) 

(C) 

(D) 

(E) 

26. The average value of f (x) = 3 + |x| on the interval [−2, 4] is
(A) 

(B) 

(C) 



(D) 

(E) 6

27. The area inside the circle r = 3 sin θ and outside the cardioid r = 1 + sin θ is given by
(A) 

(B) 

(C) 

(D) 

(E) none of these

28. Let

Which of the following statements is (are) true?
I. f is defined at x = 6.
II.  exists.
III. f is continuous at x = 6.
(A) I only
(B) II only
(C) I and II only
(D) I, II, and III
(E) none of the statements

 

Part B TIME: 50 MINUTES



Some questions in this part of the examination require the use of a graphing calculator. There
are 17 questions in Part B, for which 50 minutes are allowed. Because there is no deduction for
wrong answers, you should answer every question, even if you need to guess.

Directions: Choose the best answer for each question. If the exact numerical value of the correct
answer is not listed as a choice, select the choice that is closest to the exact numerical answer.

29. Two objects in motion from t = 0 to t = 3 seconds have positions x1(t) = cos (t2 + 1) and 
 respectively. How many times during the 3 seconds do the objects have the same

velocity?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

30. The table below shows values of f ″(x) for various values of x:

x −1 0 1 2 3

f ″(x) −4 −1 2 5 8

The function f could be
(A) a linear function
(B) a quadratic function
(C) a cubic function
(D) a fourth-degree function
(E) an exponential function

31. Where, in the first quadrant, does the rose r = sin 3θ have a vertical tangent?
(A) nowhere
(B) θ = 0.39
(C) θ = 0.47
(D) θ = 0.52
(E) θ = 0.60

32. A cup of coffee placed on a table cools at a rate of  per minute, where H



represents the temperature of the coffee and t is time in minutes. If the coffee was at 120° F
initially, what will its temperature be 10 minutes later?
(A) 73°F
(B) 95°F
(C) 100°F
(D) 118°F
(E) 143°F

33. An investment of $4000 grows at the rate of 320e0.08t dollars per year after t years. Its value
after 10 years is approximately
(A) $4902
(B) $8902
(C) $7122
(D) $12,902
(E) none of these

34. The sketch shows the graphs of f (x) = x2 − 4x − 5 and the line x = k. The regions labeled A and
B have equal areas if k =
(A) 5
(B) 7.766
(C) 7.899
(D) 8
(E) 11



Questions 35 and 36. The graph shows the velocity of an object during the interval 0 ≤ t ≤ 9.

35. The object attains its greatest speed at t =
(A) 2 sec
(B) 3 sec
(C) 5 sec
(D) 6 sec
(E) 8 sec

36. The object was at the origin at t = 3. It returned to the origin
(A) at t = 5 sec
(B) at t = 6 sec
(C) during 6 < t < 7 sec
(D) at t = 7 sec
(E) during 7 < t < 8 sec

37. An object in motion in the plane has acceleration vector  for 0  t  5. It is at rest
when t = 0. What is the maximum speed it attains?
(A) 1.022
(B) 1.414
(C) 2.217
(D) 2.958
(E) 3.162

38. If  is replaced by u, then  is equivalent to

(A) 



(B) 

(C) 

(D) 

(E) 

39. The set of all x for which the power series  converges is

(A) {−3,3}
(B) |x| < 3
(C) |x| > 3
(D) − 3  x < 3
(E) − 3 < x  3

40. A particle moves along a line with acceleration a = 6t. If, when t = 0, v = 1, then the total
distance traveled between t = 0 and t = 3 equals
(A) 30
(B) 28
(C) 27
(D) 26
(E) none of these

41. The definite integral  represents the length of an arc. If one end of the arc is at the

point (1,2), then an equation describing the curve is
(A) y = 3 ln x + 2
(B) y = x + 3 ln x + 1
(C) 

(D) 

(E) 

42. Suppose f (3) = 2, f ′(3) = 5, and f ″(3) = −2. Then  at x = 3 is equal to

(A) −20
(B) 10
(C) 20



(D) 38
(E) 42

43. Which statement is true?
(A) If f (x) is continuous at x = c, then f ′(c) exists.
(B) If f ′(c) = 0, then f has a local maximum or minimum at (c,f (c)).
(C) If f ′(c) = 0, then the graph of f has an inflection point at (c,f (c)).
(D) If f is differentiable at x = c, then f is continuous at x = c.
(E) If f is continuous on (a, b), then f maintains a maximum value on (a, b).

44. The graph of f ′ is shown above. Which statements about f must be true for a <x < b ?
I. f is increasing.
II. f is continuous.
III. f is differentiable.
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) all three

45. After a bomb explodes, pieces can be found scattered around the center of the blast. The density
of bomb fragments lying x meters from ground zero is given by  fragments per square
meter. How many fragments will be found within 20 meters of the point where the bomb
exploded?
(A) 13
(B) 278
(C) 556
(D) 712
(E) 4383



 

SECTION II
Part A  TIME: 30 MINUTES
A graphing calculator is required for some of these problems.

1. The Boston Red Sox play in Fenway Park, notorious for its Green Monster, a wall 37 feet tall and
315 feet from home plate at the left-field foul line. Suppose a batter hits a ball 2 feet above home
plate, driving the ball down the left-field line at an initial angle of 30° above the horizontal, with
initial velocity of 120 feet per second. (Since Fenway is near sea level, assume that the
acceleration due to gravity is −32.172 ft/sec2.)
(a) Write the parametric equations for the location of the ball t seconds after it has been hit.
(b) At what elevation does the ball hit the wall?
(c) How fast is the ball traveling when it hits the wall?

2. The table shows the depth of water, W, in a river, as measured at 4-hour intervals during a day-
long flood. Assume that W is a differentiable function of time t.

t (hr) 0 4 8 12 16 20 24

W(t) (ft) 32 36 38 37 35 33 32

(a) Find the approximate value of W ′(16). Indicate units of measure.
(b) Estimate the average depth of the water, in feet, over the time interval 0 ≤ t ≤ 24 hours by using

a trapezoidal approximation with subintervals of length Δt = 4 hours.
(c) Scientists studying the flooding believe they can model the depth of the water with the function 

 where F(t) represents the depth of the water, in feet, after t hours. Find F ′(16)
and explain the meaning of your answer, with appropriate units, in terms of the river depth.

(d) Use the function F to find the average depth of the water, in feet, over the time interval 0 ≤ t ≤
24 hours.



 

Part B  TIME: 60 MINUTES
No calculator is allowed for any of these problems.
If you finish Part B before time has expired, you may return to work on Part A, but you may not
use a calculator.

3. The region R is bounded by the curves f (x) = cos(πx) − 1 and g(x) = x(2 − x), as shown in the
figure.
(a) Find the area of R.
(b) A solid has base R, and each cross section perpendicular to the x-axis is an isosceles right

triangle whose hypotenuse lies in R. Set up, but do not evaluate, an integral for the volume of this
solid.

(b) Set up, but do not evaluate, an integral for the volume of the solid formed when R is rotated
around the line y = 3.

4. Two autos, P and Q, start from the same point and race along a straight road for 10 seconds. The
velocity of P is given by  feet per second. The velocity of Q is shown in the graph.



(a) At what time is P’s actual acceleration (in ft/sec2) equal to its average acceleration for the
entire race?

(b) What is Q’s acceleration (in ft/sec2) then?
(c) At the end of the race, which auto was ahead? Explain.

5. Given that a function f is continuous and differentiable throughout its domain, and that f (5) = 2, f
′(5) = −2, f ″(5) = −1, and f ″′(5) = 6.
(a) Write a Taylor polynomial of degree 3 that approximates f around x = 5.
(b) Use your answer to estimate f (5.1).
(c) Let g(x) = f (2x + 5). Write a cubic Maclaurin polynomial approximation for g.

6. Let f be the function that contains the point (−1,8) and satisfies the differential equation 

(a) Write the equation of the line tangent to f at x = −1.
(b) Using your answer to part (a), estimate f (0).
(c) Using Euler’s method with a step size of 0.5, estimate f (0).
(d) Estimate f (0) using an integral.



Appendix: Formulas and Theorems for Reference

 

ALGEBRA
1.  QUADRATIC FORMULA.    The roots of the quadratic equation

 ax2 + bx + c = 0 (a ≠ 0)
are given by

 

2.  BINOMIAL THEOREM.      If n is a positive integer, then

3.  REMAINDER THEOREM. If the polynomial Q(x) is divided by (x − a) until a constant remainder R is
obtained, then R = Q(a). In particular, if a is a root of Q(x) = 0, then Q(a) = 0.

GEOMETRY
The sum of the angles of a triangle is equal to a straight angle (180°).

PYTHAGOREAN THEOREM

In a right triangle,

c2 = a2 + b2.

In the following formulas,

A  is  area B  is  area of base
S  surface area r  radius
V  volume C  circumference
b  base l  arc length
h  height or altitude θ  central angle (in radians)
s  slant height   

4.  Triangle:  

5.  Trapezoid:    

6.  Parallelogram:     A = bh.



7.  Circle:    C = 2πr, A = πr2.
8.  Circular sector:   

9.  Circular arc:   l = rθ.
10.  Cylinder:

11.  Cone:

12.  Sphere:

  

TRIGONOMETRY
BASIC IDENTITIES

13.  sin2 θ + cos2 θ = 1.

14.  1 + tan2 θ = sec2 θ.

15.  1 + cot2 θ = csc2 θ.

SUM AND DIFFERENCE FORMULAS

16.  sin (α ± β) = sin α cos β ± cos α sin β.
17.  cos (α ± β) = cos α cos β  sin α sin β.
18.  

DOUBLE-ANGLE FORMULAS

19.  sin 2α = 2 sin α cos α.

20.  cos 2α = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2 sin2 α.
21.  

HALF-ANGLE FORMULAS

22.  

23.  

REDUCTION FORMULAS

24.  sin (−α) = −sin α:   cos (−α) = cos α.



25.  

26.  

27.  sin (π − α) = sin α;  cos (π − α) = −cos α.
28.  sin (π + α) = −sin α;  cos (π + α) = −cos α.

29.  LAW OF COSINES. c2 = a2 + b2 − 2ab cos C.
30.  LAW OF SINES. 

31.  The area  sin C.

GRAPHS OF TRIGONOMETRIC FUNCTIONS

The four functions sketched above, sin, cos, csc, and sec, all have period 2π.



ANALYTIC GEOMETRY
RECTANGULAR COORDINATES

DISTANCE

32.  The distance d between two points, P1 (x1, y1) and P2 (x2, y2), is given by

EQUATIONS OF THE STRAIGHT LINE

33.  POINT-SLOPE FORM. Through P1 (x1, y1) and with slope m:

y − y1 = m(x − x1).

34.  SLOPE-INTERCEPT FORM. With slope m and y-intercept b:
y = mx + b.

35.  TWO-POINT FORM. Through P1 (x1, y1) and P2 (x2, y2):

36.  INTERCEPT FORM. With x- and y-intercepts of a and b, respectively:

37.  GENERAL FORM. Ax + By + C = 0, where A and B are not both zero. If B ≠ 0, the slope is  the y-
intercept,  the x-intercept, 

DISTANCE FROM POINT TO LINE

38.  Distance d between a point P(x1, y1) and the line Ax + By + C = 0 is

EQUATIONS OF THE CONICS

39.  With center at (0, 0) and radius r:     x2 + y2 = r2.

40.  With center at (h, k) and radius r:     (x − h)2 + (y − k)2 = r2.

PARABOLA

41.  With vertex at (0, 0) and focus at (p, 0):     y2 = 4px.

42.  With vertex at (0, 0) and focus at (0, p):     x2 = 4py.

With vertex at (h, k) and axis

43.  parallel to x-axis, focus at (h + p, k):     (y − k)2 = 4p(x − h).



44.  parallel to y-axis, focus at (h, k + p):     (x − h)2 = 4p(y − k).

ELLIPSE

With major axis of length 2a, minor axis of length 2b, and distance between foci of 2c:
45.  Center at (0, 0), foci at (±c, 0), and vertices at (±a, 0):

46.  Center at (0, 0), foci at (0, ±c), and vertices at (0, ±a):

47.  Center at (h, k), major axis horizontal, and vertices at (h ± a, k):

48.  Center at (h, k), major axis vertical, and vertices at (h, k ± a):

For the ellipse, a2 = b2 + c2, and the eccentricity  which is less than 1.

HYPERBOLA

With real (transverse) axis of length 2a, imaginary (conjugate) axis of length 2b, and distance
between foci of 2c:

49.  Center at (0, 0), foci at (±c, 0), and vertices at (±a, 0):

50.  Center at (0, 0), foci at (0, ±c), and vertices at (0, ±a):

51.  Center at (h, k), real axis horizontal, vertices at (h ± a, k):

52.  Center at (h, k), real axis vertical, vertices at (h, k± a):



For the hyperbola, c2 = a2 + b2, and eccentricity  which is greater than 1.

POLAR COORDINATES

RELATIONS WITH RECTANGULAR COORDINATES

53.  x = r cos θ;
y = r sin θ;

r2 = x2 + y2;

SOME POLAR EQUATIONS

54.  r = a  circle, center at pole, radius a.
55.  r = 2a cos θ   circle, center at (a, 0), radius a.
56.  r = 2a sin θ  circle, center at (0, a), radius a.
57.  

58.  

roses (four leaves)
59.  r = cos 2θ.

60.  r = sin 2θ.



cardioids (specific examples below)
61.  r = a (1 ± cos θ).

62.  r = a (1 ± sin θ).

63.  r2 = cos 2θ, lemniscate, symmetric to the x-axis.



64.  r = θ, (double) spiral of Archimedes

65.  rθ = a (θ > 0), hyperbolic (or reciprocal) spiral

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

PROPERTIES

INVERSE PROPERTIES

f (x) = ex and f −1(x) = ln x are inverses of each other:

f −1(f (x)) = f (f −1(x)) = x;

ln ex = eln x = x(x > 0).

GRAPHS





Answers Explained

Multiple-Choice

Part A
1.  (C)  Use the Rational Function Theorem.



 

2.  (D)  



 

3.  (A)  Since f ′(1) = 0 and f ′ changes from negative to positive there, f reaches a minimum at x =
1. Although f ′(2) = 0 as well, f ′ does not change sign there, and thus f has neither a
maximum nor a minimum at x = 2.



 

4.  (D)  



 

5.  (E)  



 

6.  (D)  The graph must look like one of these two:



 

7.  (E)  F ′(x) = 3 cos x cos 3x − sin x sin 3x.



 

8.  (B)   



 

9.  (C)  Let  Then f ′ increases for 1 < x < 2, then begins to decrease. In the figure
above, the area below the x-axis, from 2 to 3, is equal in magnitude to that above the x-axis,
hence, 



 

10.  (D)  P ′(x) = 2g(x) · g ′(x)



 

11.  (E)  Note that H(3) = f −1 (3) = 2. Therefore



 

12.  (D)  Note that the domain of y is all x such that |x|  1 and that the graph is symmetric to the
origin. The area is given by



 

13.  (E)  Since

y ′ = 2(x − 3)−2 and = 

y ″ is positive when x < 3.



 

14.  (D)   represents the rate of change of mass with respect to time; y is directly proportional to
x if y = kx.



 

15.  (B)  



 

16.  (E)  [cos (x2)] ′ = −sin (x2) · 2x. The missing factor 2x cannot be created through introduction
of constants alone.



 

17.  (E)  As the water gets deeper, the depth increases more slowly. Hence, the rate of change of
depth decreases: 



 

18.  (D)  The graph of f is shown in the figure above; f is defined and continuous at all x, including
x = 1. Since

f ′(1) exists and is equal to 2.



 

19.  (B)  Since |x − 2| = 2 − x if x < 2, the limit as 



 

20.  (A)   

Note that the distance covered in 6 seconds is  the area between the velocity curve
and the t-axis.



 

21.  (C)  Acceleration is the slope of the velocity curve, 



 

22.  (D)  Particular solutions appear to be branches of hyperbolas.



 

23.  (A)  Differentiating implicitly yields 2xyy ′ + y2 − 2y ′ + 12y2 y ′ = 0. When y = 1, x = 4.
Substitute to find y ′.



 

24.  (C)



 

25.  (A)  



 

26.  (B)  Separate to get  Since −(−1) = 1 + C implies that C = 0, the solution is

This function is discontinuous at x = 0. Since the particular solution must be differentiable
in an interval containing the initial value x = 1, the domain is x > 0.



 

27.  (E)  



 

28.  (C)  Note that  for all x.



 

Part B
29.  (B)  At x = 3, the equation of the tangent line is y − 8 = −4(x − 3), so f (x)  −4(x − 3) + 8. f

(3.02)  −4(0.02) + 8.



 

30.  (C)

 

The velocity is graphed in [−1,11] × [−15, 5]. The object reverses direction when the
velocity changes sign, that is, when the graph crosses the x-axis. There are two such
reversals − at x = a and at x = b.



 

31.  (D)  The sign diagram shows that f changes from increasing to decreasing at x = 4

and thus f has a maximum there. Because f increases to the right of x = 0 and decreases to
the left of x = 5, there are minima at the endpoints.



 

32.  (D)  Since f ′ decreases, increases, then decreases, f ″ changes from negative to positive, then
back to negative. Hence, the graph of f changes concavity at x = 2 and x = 3.



 

33.  (B)

On the curve of f (x) − ex − x2, the two points labeled are (0,1) and (1, e − 1).

The slope of the secant line is  Find c in [0,1] such that, f ′(c) = e − 2, or

f ′(c) − (e − 2) = 0. Since f ′(x) = ex − 2x, c can be calculated by solving 0 = ex − 2x − (e −
2). The answer is 0.351.



 

34.  (B)

Use disks; then ΔV = πR2 H = π(ln y)2 Δy. Note that the limits of the definite integral are 1
and 2. Evaluate the integral

Alternatively, use shells*; then ΔV = 2πRHT = 2πx(2 − ex) Δx. Here, the upper limit of
integration is the value of x for which ex = 2, namely, ln 2. Now evaluate

* No question requiring the use of the shells method will appear on the AP exam.



 

35.  (C)  Note that the rate is people per minute, so the first interval width from midnight to 6 A.M.
is 360 minutes. The total number of people is estimated as the sum of the areas of six
trapezoids:



 

36.  (C)   so v = 3t3 + c.

Since v = 1 when t = 0, c = 1.

Now  so s = t3 + t + c.

Since, s = 3 when t = 0, c = 3; then s = t3 + t + 3.



 

37.  (A)  Let u = x2. Then



 

38.  (C)

To find a, the point of intersection of y = x2 and y = cos (x), use your calculator to solve the
equation x2 − cos (x) = 0. (Store the value for later use; a ≈ 0.8241.)

As shown in the diagram above, ΔA = (cos (x) − x2) Δx.

Evaluate the area: 



 

39.  (D)  If x = 2t + 1, then  When t = 0, x = 1; when t = 3, x = 7.



 

40.  (E)  Use A(t) = A0 ekt, where the initial amount A0 is 50. Then A(t) = 50ekt. Since 45 g remain
after 9 days, 45 = 50ek ·9, which yields 

To find t when 20 g remain, solve  for t.

Thus, 



 

41.  (C)  See the figure above. Since x2 + y2 = 262, it follows that

at any time t. When x = 10, then y = 24 and it is given that 

Hence, 



 

42.  (E)  Let u = 2x and note that 

Then 



 

43.  (D)   

−v(0) = −π + 3; so v(0) = π − 3.



 

44.  (C)  



 

45.  (D)  Let y = (x3 − 4x2 + 8)ecos(x2). The equation of the tangent at point (2, y (2)) is y − y(2) = y
′(2)(x − 2). Note that y(2) = 0. To find the y-intercept, let x = 0 and solve for y: y = −2y ′(2).
A calculator yields y = 4.161.



 

Free-Response

Part A
AB 1/BC 3. (a)  (Review Chapter 3)

(b) After 15 minutes the rate at which grain is leaking is slowing down at the rate of one half
a cubic foot per minute per minute. (Review Chapter 3)

(c) Let h = the height of the cone and r = its radius. The cone’s diameter is given to be 5h, so 
 and the cone’s volume,

Then

At t = 10 the table shows  and it is given that h = 3; thus:

(Review Chapter 4)
(d) Use one of these Riemann sums:

(Review Chapter 6)



 

AB/BC 2. (a) Graph y = (x + ex) sin (x2) in [1, 3] × [−15, 20], Note that y represents velocity v and x
represents time t.

(b) The object moves to the left when the velocity is negative, namely, on the interval p < t <
r. Use the calculator to solve (x + ex)(sin (x2)) = 0; then p = 1.772 and r = 2.507. The
answer is 1.772 < t < 2.507.

(c) As the object moves to the left (with v(t) negative), the speed of the object increases
when its acceleration v ′(t) is also negative, that is, when v(t) is decreasing. This is true
when, for example, t = 2.

(d) The displacement of an object from time t1, to time t2, is equal to

Evaluate this integral on the calculator; to three decimal places the answer is 4.491. This
means that at t = 3 the object is 4.491 units to the right of its position at t = 1, given to be x
= 10. Hence, at t = 3 the object is at x = 10 + 4.491 = 14.491.

(Review Chapter 8)



 

Part B
AB 3.  One possible graph of h is shown; it has the following properties:

• continuity on [−4,4],
• symmetry about the y-axis,
• roots at x = −1, 1,
• horizontal tangents at x = −2, 0, 2,
• points of inflection at x = −3, −2, −1, 1, 2, 3,
• corners at x = −3, 3.

 

(Review Chapter 4)



 

AB 4.  (a) Draw elements as shown. Then

(b) 

(c) Revolving the element around the x-axis generates disks. Then

(Review Chapter 7)



 

AB 5.  (a) The differential equation  is separable:

If y = 0 when x = 2, then  thus c = 3, and 

Solving for y gives the solution: 

Note that  is defined only if 

 only if the numerator and denominator have the same sign.

Since the particular solution must be continuous on an interval containing the initial point x
= 2, the domain is  (Review Chapter 9)

(b) Since  the function  has a horizontal asymptote at y = ln 3.

(Review Chapter 2)



 

AB/BC 6. (a) 

(c) The line tangent to the graph of A at x = 6 passes through point (6, A(6)) or (6, 9π). Since
A ′(x) = f (x), the graph of f shows that A ′(6) = f (6) = 6. Hence, an equation of the line is y
− 9π = 6(x − 6).

(d) Use the tangent line; then A(x) = y ≈ 6(x − 6) + 9π, so A(7) ≈ 6(7 − 6) + 9π = 6 + 9π.
(e) Since f is increasing on [0,6], f ′ is positive there. Because f (x) = A ′(x), f ′(x) = A ″(x);

thus A is concave upward for [0,6]. Similarly, the graph of A is concave downward for
[6,12], and upward for [12,18]. There are points of inflection on the graph of A at (6,9π)
and (12,18π).



 

Answers Explained
The explanations for questions not given below will be found in the answer section for Calculus AB
Diagnostic Test. Some questions in Section I of Diagnostic Tests AB 1 and BC 1 are identical.
Explanations of the answers for Questions 1–6, not given below, will be found in Section I of
Calculus AB Diagnostic Test Answers 1–6.

Multiple-Choice

Part A
7.  (D)  The volume is given by  an improper integral.



 

9.  (B)  Let y = xx and take logarithms. ln  this function has the indeterminate
form ∞/∞. Apply L’Hôpital’s rule:

So y → e0 or 1.



 

12.  (A)  Use the Parts Formula with u = x and dv = ex dx. Then du = dx and v = ex, and



 

15.  (B)  The arc length is given by the integral  dx which is



 

16.  (E)  Separating variables yields  Integrating gives ln x = kt + C. Since x = 2 when t =
0, ln 2 = C. Then ln x = kt + ln 2. Using x = 6 when t = 1, it follows that ln 6 = k + ln 2, so k
= ln 6 − ln 2 = 



 

17.  (B)  y ′ = x + 2x ln x and 



 

18.  (D)  



 

19.  (C)  At (0, 2),  With step size  the first step gives 

where  so the next step produces 



 

24.  (B)  Since function f is increasing on the interval [2,6], rectangles based on left endpoints of
the subintervals will all lie completely below the curve, and thus have smaller areas than
any of the other sums or the definite integral.



 

Part B
29.  (B)  Set



 

30.  (E)  S is the region bounded by y = sec x, the y-axis, and y = 4.

We send region S about the x-axis. Using washers, Δ V = π(R2 − r2) Δx. Symmetry allows
us to double the volume generated by the first-quadrant portion of S. So for V we have

A calculator yields 108.177.



 

31.  (A)  Use the Ratio Test:

which equals zero if x ≠ 1. The series also converges if x = 1 (each term equals 0).



 

32.  (C)  The absolute value function f (x) = |x| is continuous at x = 0, but f ′(0) does not exist.



 

33.  (B)  The Maclaurin series is

When an alternating series satisfies the Altering Series Test, the sum is approximated by
using a finite number of terms, and the error is less than the first term omitted. On the
interval −π  x  π, the maximum error (numerically) occurs when x = π. Since

four terms will suffice to assure no error greater than 0.1.



 

34.  (B)

Graph x = 4 − t2 and y = 2t for −3 ≤ t ≤ 3 in the window [−1, 5] × [−1, 5]. Now ΔA = x Δy;
the limits of integration are the two points where the curve cuts the y-axis, that is, where x =
0. In terms of t, these are t1 = 2 and t2 = + 2. So



 

35.  (E)  



 

36.  (B)  



 

37.  (C)   = cos θ dx = cos θ dθ, sin−1 0 = 0, 



 

38.  (C)  The power series for ln (1 − x), if 



 

39.  (B)  Solve by separation of variables; then

Use P(0) = 200; then c = 1000, so P(x) = 1200 − 1000e−0.16t. Now P(2) = 473.85.



 

40.  (E)  As the water gets deeper, the depth increases more slowly. Hence, the rate of change of
depth decreases: d2 h/dt2 < 0.



 

45.  (E)  The first quadrant area is  (3 sin 2θ)2 d  ≈ 3.53.



 

Free-Response

Part A
1. (a) Use the Ratio Test:

The radius of convergence is 1. At the endpoint x = 1, 

Since

this series converges by the Alternating Series Test. Thus  converges for

positive values 0 < x ≤ 1.

(b) Because  satisfies the Alternating Series Test, the error in approximation

after n terms is less than the magnitude of the next term. The calculator shows that  at

n = 5 terms.

(c)  is a negative series. Therefore the error will be larger than the

magnitude of the first omitted term, and thus less accurate than the estimate for f (0.5).



 

2. See solution for AB-2.



 

Part B
3. See solution for AB 1.



 

4. (a) Using the differential equation, evaluate the derivative at each point, then sketch a short segment
having that slope. For example, at (−1, −1),  draw a segment at (−1, −1) that
decreases steeply. Repeat this process at each of the other points. The result is shown below.

(b) At (0, −1),  For Δx = 0.5 and  Δy = 0, so move to (0 + 0.5, −1 + 0) =
(0.5, −1).
At (0.5, −1),  Thus, for Δx = 0.5 and  Δy = 1.

Move to (0.5 + 0.5, −1 + 1) = (1,0), then f (1) ≈ 0.
(c) The differential equation  is separable:

It is given that f passes through (0, −1), so −1 = tan(02 + c) and 

The solution is 



 

5. (a) To find the y-intercepts of the graph of P(t) = (9 − t2,2t), let x = 9 − t2 = 0, and solve: t = −3, 3.
Then  and P(3) = (0, 8).

Draw a horizontal element of area as shown in the graph. Then:

(b) 

(c) Use disks. Then ΔV = πx2 Δy,



 

6. See solution for AB-6.



 

Answers Explained
1.  (C)  f (−2) = (−2)3 − 2(−2) − 1 = −5.



 

2.  (E)  The denominator, x2 + 1, is never 0.



 

3.  (D)  Since x − 2 may not be negative, x  2. The denominator equals 0 at x = 0 and x = 1, but
these values are not in the interval x ≥ 2.



 

4.  (E)  Since g(x) = 2, g is a constant function. Thus, for all f (x), g(f (x)) = 2.



 

5.  (D)  f (g(x)) = f (2) = −3.



 

6.  (B)  Solve the pair of equations

Add to get A; substitute in either equation to get B. A = 2 and B = 4.



 

7.  (C)  The graph of f (x) is symmetrical to the origin if f (−x) = −f (x). ln (C), f (−x) = (−x)3 +
2(−x) = −x3 − 2x = −(x3 + 2x) = −f (x).



 

8.  (C)  For g to have an inverse function it must be one-to-one. Note, that although the graph of y =
xe−x2 is symmetric to the origin, it is not one-to-one.



 

9.  (B)  Note that  the sine function varies from −1 to 1 as the argument varies from 



 

10.  (E)  The maximum value of g is 2, attained when cos x = −1. On [0,2π], cos x = −1 for x = π.



 

11.  (C)  f is odd if f (−x) = −f (x). ln (C), f (−x) = (−x)3 + 1 = −x3 + 1 ≠ −f (x)



 

12.  (B)  Since f (q) = 0 if q = 1 or q = −2, f (2x) = 0 if 2x, a replacement for q, equals 1 or −2.



 

13.  (B)  f (x) = x(x2 + 4x + 4) = x(x + 2)2; f (x) = 0 for x = 0 and x = −2.



 

14.  (E)  Solving simultaneously yields (x + 2)2 = 4x; x2 + 4x + 4 = 4x; x2 + 4 = 0.

There are no real solutions.



 

15.  (A)  The reflection of y = f (x) in the y-axis is y = f (−x).



 

16.  (B)  If g is the inverse of f, then f is the inverse of g. This implies that the function f assigns to
each value g(x) the number x.



 

17.  (D)  Since f is continuous, then, if f is negative at a and positive at b, f must equal 0 at some
intermediate point. Since f (1) = −2 and f (2) = 13, this point is between 1 and 2.



 

18.  (D)  The function sin bx has period  Then 



 

19.  (A)  Since ln q is defined only if q > 0, the domain of ln cos x is the set of x for which cos x >
0, that is, when 0 < cos x  1. Thus − ∞ < ln cos x  0.



 

20.  (E)   implies Then  and 3 = b1/2. So 32 = b.



 

21.  (E)  Interchange x and y: x = y3 + 2.

Solve for y:   



 

22.  (D)  Since f (1) = 0, x − 1 is a factor of f. Since f (x) divided by x − 1 yields x2 − x − 2, f (x) =
(x − 1) (x + 1) (x − 2); the roots are x = 1,−1, and 2.



 

23.  (B)  If  then − ∞< tan x < ∞ and 0 < etanx < ∞.



 

24.  (A)  The reflection of f (x) in the x-axis is −f (x).



 

25.  (C)  f (x) attains its maximum when  does. The maximum value of the sine function is 1;
the smallest positive occurrence is at  Set  equal to 



 

26.  (A)  arccos 



 

27.  (A)  Interchange x and y: x = 2e−y

Solve for y:  

Thus 



 

28.  (C)  The function in (C) is not one-to-one since, for each y between  (except 0), there
are two x’s in the domain.



 

29.  (D)  The domain of the In function is the set of positive reals. The function g(x) > 0 if x2 < 9.



 

30.  (C)  Since the domain of f (g) is (−3, 3), ln (9 − x2) takes on every real value less than or
equal to ln 9.



 

31.  (A)  Substituting t2 = x − 3 in y(t) = t2 + 4 yields y = x + 1.



 

32.  (D)  Using the identity 



 

33.  (D)  2 cos 5  = 0 when 



 

34.  (C)  If 2 + 2 cos  = 3, then 



 

35.  (B)  For polar functions x = r cos . Solving (  − 2 cos ) cos  = 2 yields  ≈ 5.201, and thus
y = r sin  = (5.201 − 2 cos 5.201)sin 5.201.



 



Answers Explained
1.  (B)  The limit as x → 2 is 0 ÷ 8.



 

2.  (D)  Use the Rational Function Theorem. The degrees of P(x) and Q(x) are the same.



 

3.  (C)  Remove the common factor x − 3 from numerator and denominator.



 

4.  (A)  The fraction equals 1 for all nonzero x.



 

5.  (D)  Note that 



 

6.  (B)  Use the Rational Function Theorem.



 

7.  (A)  Use the Rational Function Theorem.



 

8.  (E)  Use the Rational Function Theorem.



 

9.  (C)  The fraction is equivalent to  the denominator approaches ∞



 

10.  (D)  Since  therefore, as x → −∞ the fraction → +∞



 

11.  (D)  



 

12.  (B)  



 

13.  (B)  Because the graph of y = tan x has vertical asymptotes at  the graph of the inverse

function y = arctan x has horizontal asymptotes at 



 

14.  (C)  Since  (provided x ≠ 3), y can be defined to be equal to 2 at x = 3,

removing the discontinuity at that point.



 

15.  (B)  Note that 



 

16.  (C)  As x → 0,  takes on varying finite values as it increases. Since the sine function repeats,
 oscillates, taking on, infinitely many times, each value between −1 and 1. The

calculator graph of Y1 = sin(1/X) exhibits this oscillating discontinuity at x = 0.



 

17.  (A)  Note that, since  both x = 2 and  are vertical asymptotes. Also, 

 is a horizontal asymptote.



 

18.  (B)   Use the Rational Function Theorem.



 

19.  (B)  Since |x| = x if x > 0 but equals −x if x < 0,  while 



 

20.  (E)  Note that x  can be rewritten as  and that, as x → ∞, 



 

21.  (A)  As x → π, (π − x) → 0.



 

22.  (C)  Since f (x) = x + 1 if x ≠ 1,  exists (and is equal to 2).



 

23.  (B)   for all x ≠ 0. For f to be continuous at x = 0,  must equal f (0).



 

24.  (B)  Only x = 1 and x = 2 need be checked. Since  for x ≠ 1, 2, and  = −3 = f
(1), f is continuous at x = 1. Since  does not exist, f is not continuous at x = 2.



 

25.  (C)  As x → ±∞, y = f (x) → 0, so the x-axis is a horizontal asymptote. Also, as x → ±1, y →
∞, so x = ±1 are vertical asymptotes.



 

26.  (C)  As x → ∞,  the denominator (but not the numerator) of y equals 0 at x = 0 and at x
= 1.



 

27.  (D)  The function is defined at 0 to be 1, which is also 



 

28.  (D)  See Figure N2–1.



 

29.  (E)  Note, from Figure N2–1, that 



 

30.  (E)  As x → ∞, the function sin x oscillates between −1 and 1; hence the limit does not exist.



 

31.  (A)  Note that  if x ≠ 0 and that 



 

32.  (A)  



 

33.  (E)  Verify that f is defined at x = 0, 1, 2, and 3 (as well as at all other points in [−1,3]).



 

34.  (C)  Note that  However, f (2) = 1. Redefining f (2) as 0 removes the
discontinuity.



 

35.  (B)  The function is not continuous at x = 0, 1, or 2.



 

36.  (B)  



 

37.  (E)  As x → 0−, arctan 

The graph has a jump discontinuity at x = 0.  (Verify with a calculator.)



 

38.  (D)  No information is given about the domain of f except in the neighborhood of x = −3.



 

39.  (E)  As x → 0+,  and therefore y → 0. As x → 0−,  → −∞, so  and therefore 
 Because the two one-sided limits are not equal, the limit does not exist.  (Verify

with a calculator.)



 

40.  (A)    but f (−1) = 2. The limit does not exist at a = 1 and f (2) does not exist.



 

41.  (B)  



 

42.  (D)   but since these two limits are not the same,  does not
exist.



 

Answers Explained
Many of the explanations provided include intermediate steps that would normally be reached on the
way to a final algebraically simplified result. You may not need to reach the final answer.

NOTE: the formulas or rules cited in parentheses in the explanations are given.
1.  (E)  By the Product Rule, (5),

y ′ = x5 (tan x) ′ + (x5) ′ (tan x).



 

2.  (A)  By the Quotient Rule, (6),



 

3.  (B)  Since y = (3 − 2x)1/2, by the Power Rule, (3),



 

4.  (B)  Since y = 2(5x + 1)−3, y ′ = −6(5x + 1)−4 (5).



 

5.  (E)  



 

6.  (D)  Rewrite: 



 

7.  (A)  Rewrite: y = (x2 + 2x − 1)1/2; then  (x2 + 2x − 1)−1/2 (2x + 2).



 

8.  (D)  Use the Quotient Rule:



 

9.  (C)  Since

 



 

10.  (E)  Use formula (18): 



 

11.  (A)  Use formulas (13), (11), and (9):



 

12.  (D)  By the Quotient Rule,



 

13.  (D)  Since  ln (x2 + 1)



 

14.  (C)  



 

15.  (A)  Since (−csc 2x cot 2x · 2).



 

16.  (A)  y ′ = e−x (−2 sin 2x) + cos 2x(−e−x).



 

17.  (C)  y ′ = (2 sec x)(sec x tan x).



 

18.  (E)   The correct answer is 3 ln2 x + ln3 x.



 

19.  (B)  



 

20.  (C)  



 

21.  (D)  Let y ′ be  then 3x2 − 3y2 y ′ = 0; 



 

22.  (A)  1 − sin (x + y)(1 + y ′) = 0; 



 

23.  (D)  cos x + sin y · y′ = 0; 



 

24.  (B)  6x − 2(xy ′ + y) + 10yy ′ = 0; y ′(10y − 2x) = 2y − 6x.



 

25.  (A)  



 

26.  (E)  f ′(x) = 4x3 − 12x2 + 8x = 4x(x − 1)(x − 2).



 

27.  (E)  f ′(x) = 8x−1/2; 



 

28.  (A)  f (x) = 3 ln x;  Replace x by 3.



 

29.  (D)  2x + 2yy ′ = 0; 



 

30.  (E)   Replace t by 1.



 

31.  (D)  



 

32.  (D)  y ′ = ex · 1 + ex (x − 1) = xex;

 y ″ = xex + ex and y ″(0) = 0 · 1 + 1 = 1.



 

33.  (E)  When simplified, 



 

34.  (B)  Since (if sin t ≠ 0)

 = −2 sin t = −4 sin t cos t and 

 then  Thus:

BC ONLY



 

NOTE: Since each of the limits in Questions 35–39 yields an indeterminate form of the type  we can
apply L’Hôpital’s Rule in each case, getting identical answers.

35.  (C)  The given limit is the derivative of f (x) = x6 at x = 1.



 

36.  (B)  The given limit is the definition for f ′(8), where f (x) = 



 

37.  (B)  The given limit is f ′(e), where f (x) = ln x.



 

38.  (B)  The given limit is the derivative of f (x) = cos x at x = 0; f ′(x) = − sin x.



 

39.  (B)   but f (1) = 4.

Thus f is discontinuous at x = 1, so it cannot be differentiable.



 

40.  (E)   so the limit exists. Because g(3) = 9, g is continuous at x = 3. Since 



 

41.  (E)  Since  f ′(0) is not defined; f ′(x) must be defined on (−8,8).



 

42.  (A)  Note that f (0) =  = 0 and that f ′(x) exists on the given interval. By the MVT, there is
a number, c, in the interval such that f ′(c) = 0. If c = 1, then 6c2 − 6 = 0. (−1 is not in the
interval.)



 

43.  (B)  Since the inverse, h, of f (x) =  is h(x) =  then h ′(x) =  Replace x by 3.



 

44.  (D)  After 50(!) applications of L’Hôpital’s Rule we get  which “equals” ∞. A
perfunctory examination of the limit, however, shows immediately that the answer is ∞. In
fact,  for any positive integer n, no matter how large, is ∞.



 

45.  (C)  cos(xy)(xy ′ + y) = 1; x cos(xy)y ′ = 1 − y cos(xy);



 

NOTE: In Questions 46–50 the limits are all indeterminate forms of the type  We have therefore
applied L’Hôpital’s Rule in each one. The indeterminacy can also be resolved by introducing 
which approaches 1 as a approaches 0. The latter technique is presented in square brackets.
46.  (B)  

[Using sin 2x = 2 sin x cos x yields  cos x = 2 · 1 · 1 = 2.]



 

47.  (C)  

[We rewrite  As x → 0, so do 3x and 4x; the fraction approaches 1 · 1 · 
]



 

48.  (E)  

[We can replace 1 − cos x by  getting



 

49.  (D)  

[  as x (or πx) approaches 0, the original fraction approaches π · 1
·  = π]



 

50.  (C)  The limit is easiest to obtain here if we rewrite:



 

51.  (B)  Since x − 3 = 2 sin t and y + 1 = 2 cos t,
(x − 3)2 + (y + 1)2 = 4.

This is the equation of a circle with center at (3,−1) and radius 2. In the domain given, −π ≤
t ≤ π, the entire circle is traced by a particle moving counterclockwise, starting from and
returning to (3, −3).



 

52.  (C)  Use L’Hôpital’s Rule; then



 

53.  (A)  



 

54.  (D)  



 

55.  (E)  



 

56.  (C)
 Since

 



 

57.  (B)  (f + 2g) ′ (3) = f ′(3) + 2g ′(3) = 4 + 2(−1)



 

58.  (B)  (f · g) ′ (2) = f (2) · g ′(2) + g(2) · f ′(2) = 5(−2) + 1(3)



 

59.  (E)  



 

60.  (D)  



 

61.  (C)  



 

62.  (A)  M ′(1) = f ′(g(1)) · g ′(1) = f ′(3)g ′(1) = 4(−3).



 

63.  (B)  [f (x3)] ′ = f ′(x3)·3x2, so P ′(1) = f ′(13)·3·12 = 2·3.



 

64.  (D)  f (S(x)) = x implies that f ′(S(x)) · S ′(x) = 1, so



 

65.  (E)  Since g ′(a) exists, g is differentiable and thus continuous; g ′(a) > 0.



 

66.  (C)  Near a vertical asymptote the slopes must approach ±∞.



 

67.  (A)  There is only one horizontal tangent.



 

68.  (D)  Use the symmetric difference quotient; then



 

69.  (E)  Since the water level rises more slowly as the cone fills, the rate of depth change is
decreasing, as in (C) and (E). However, at every instant the portion of the cone containing
water is similar to the entire cone; the volume is proportional to the cube of the depth of the
water. The rate of change of depth (the derivative) is therefore not linear, as in (C).



 

70.  (C)  The only horizontal tangent is at x = 4. Note that f ′(1) does not exist.



 

71.  (E)  The graph has corners at x = 1 and x = 2; the tangent line is vertical at x = 6.



 

72.  (B)  Consider triangle ABC: AB = 1; radius AC = 2; thus, BC =  and AC has m = −  The
tangent line is perpendicular to the radius.



 

73.  (D)  The graph of y = x + cos x is shown in window [−5,5] × [−6,6]. The average rate of
change is represented by the slope of secant segment  There appear to be 3 points at
which tangent lines are parallel to 



 

74.  (C)  



 

75.  (A)  Since an estimate of the answer for Question 74 is f ′(2) ≈ −5, then



 

76.  (B)  When x = 3 on g−1, y = 3 on the original half-parabola. 3 = x2 − 8x + 10 at x = 1 (and at x
= 7, but that value is not in the given domain).



 

77.  (E)  f satisfies Rolle’s Theorem on [2,10].



 

78.  (C)  The diagrams show secant lines (whose slope is the difference quotient) with greater
slopes than the tangent line. In both cases, f is concave upward.



 

79.  (C)  (f ο g) ′ at x = 3 equals f ′(g(3)) · g ′(3) equals cos u (at u = 0) times 2x (at x = 3) = 1 · 6
= 6.



 

80.  (E)  Here f ′(x) equals 



 

81.  (A)  



 

82.  (A)  



 

83.  (B)  Note that f (g(x)) = 



 

84.  (B)  Sketch the graph of f (x) = 1 − |x|; note that f (−1) = f (1) = 0 and that f is continuous on
[−1,1]. Only (B) holds.



 

85.  (C)  Since f ′(x) = 6x2 − 3, therefore  also, f (x), or 2x3 − 3x, equals −1, by
observation, for x = 1. So h ′(−1) or  (when x = 1) equals 



 

86.  (D)  



 

87.  (B)  Since f (0) = 5, 



 

88.  (D)  The given limit is the derivative of g(x) at x = 0.



 

89.  (B)  The tangent line appears to contain (3,−2.6) and (4,−1.8).



 

90.  (D)  f ′(x) is least at the point of inflection of the curve, at about 0.7.



 

91.  (C)  



 

92.  (B)  By calculator, f ′(0) = 1.386294805 and 



 

93.  (E)  Now 



 

94.  (B)  Note that any line determined by two points equidistant from the origin will necessarily
be horizontal.



 

95.  (D)  Note that  f (h(x)) = f ′(h(x)) · h ′(x) = g(h(x)) · h ′(x) = g(sin x) · cos x.



 

96.  (E)  Since f (x) = 3x − x3, then f ′(x) = 3x ln 3 − 3x2. Furthermore, f is continuous on [0,3] and f
′ is differentiable on (0,3), so the MVT applies. We therefore seek c such that 

 Solving 3x ln 3 − 3x2 =  with a calculator, we find that c may be
either 1.244 or 2.727. These values are the x-coordinates of points on the graph of f (x) at
which the tangents are parallel to the secant through points (0,1) and (3,0) on the curve.



 

97.  (A)  The line segment passes through (1,−3) and (2,−4).

Use the graph of f ′(x), shown above, for Questions 98–101.



 

98.  (E)  f ′(x) = 0 when the slope of f (x) is 0; that is, when the graph of f is a horizontal segment.



 

99.  (E)  The graph of f ′(x) jumps at each corner of the graph of f (x), namely, at x equal to −3, −1,
1,2, and 5.



 

100.  (D)  On the interval (−6,−3), f (x) = 



 

101.  (B)  Verify that all choices but (B) are true. The graph of f ′(x) has five (not four) jump
discontinuities.



 

102.  (C)  The best approximation to f ′(0.10) is 



 

103.  (D)

The average rate of change is represented by the slope of secant segment  There appear
to be 3 points at which the tangent lines are parallel to 



 

Answers Explained
1.  (D)  Substituting y = 2 yields x = 1. We find y ′ implicitly.

3 y2 y ′ − (2 xyy ′ + y2) = 0; (3 y2 − 2xy)y ′ − y2 = 0.

Replace x by 1 and y by 2; solve for y ′.



 

2.  (A)  2yy ′ − (xy ′ + y) − 3 = 0. Replace x by 0 and y by −1; solve for y ′.



 

3.  (E)  Find the slope of the curve at   The equation is 



 

4.  (B)  Since y ′ = e−x (1 − x) and e−x > 0 for all x, y ′ = 0 when x = 1.



 

5.  (D)  The slope y ′ = 5x4 + 3x2 − 2. Let g = y ′. Since g ′(x) = 20x3 + 6x = 2x(10x2 + 3), g ′(x) = 0
only if x = 0. Since g ″ (x) = 60x2 + 6, g ″ is always positive, assuring that x = 0 yields the
minimum slope. Find y ′ when x = 0.



 

6.  (C)  Since 2x − 2yy ′ = 0,  At (4, 2), y ′ = 2. The equation of the tangent at (4, 2) is y − 2 =
2(x − 4).



 

7.  (D)  Since  the tangent is vertical for x = 2y. Substitute in the given equation and solve
for y.



 

8.  (D)  Since  therefore, dV = 4πr2 dr. The approximate increase in volume is dV ≈ 4π(32)
(0.1) in3.



 

9.  (C)  Differentiating implicitly yields 4x − 3y2 y ′ = 0. So  The linear approximation for
the true value of y when x changes from 3 to 3.04 is

Since it is given that, when x = 3, y = 2, the approximate value of y is

or



 

10.  (B)  We want to approximate the change in area of the square when a side of length e
increases by 0.01e. The answer is

A ′(e)(0.01e) or 2e (0.01e).



 

11.  (D)  Since V = e3, V ′ = 3e2. Therefore at e = 10, the slope of the tangent line is 300. The
change in volume is approximately 300(±0.1) = 30 in.3



 

12.  (E)  f ′(x) = 4x3 − 8x = 4x(x2 − 2). f ′ = 0 if x = 0 or 

f ″(x) = 12x2 − 8; f ″ is positive if x =  negative if x = 0.



 

13.  (C)  Since f ″(x) = 4(3x2 − 2), it equals 0 if  Since f ″ changes sign from positive to
negative at  and from negative to positive at  both locate inflection points.



 

14.  (A)  The domain of y is {x | x  2}. Note that y is negative for each x in the domain except 2,
where y = 0.



 

15.  (B)  f ′(x) changes sign (from negative to positive) as x passes through zero only.



 

16.  (E)  The graph must be decreasing and concave downward.



 

17.  (B)  The graph must be concave upward but decreasing.



 

18.  (B)  The distance is increasing when v is positive. Since  = 3(t − 2)2, v > 0 for all t ≠ 2.



 

19.  (D)  The speed = |v|. From Question 18, |v| = v. The least value of v is 0.



 

20.  (A)  The acceleration  From Question 18, a = 6(t − 2).



 

21.  (E)  The speed is decreasing when v and a have opposite signs. The answer is t < 2, since for
all such t the velocity is positive while the acceleration is negative. For t > 2, both v and a
are positive.



 

22.  (B)  The particle is at rest when v = 0; v = 2t(2t2 − 9t + 12) = 0 only if t = 0. Note that the
discriminant of the quadratic factor (b2 − 4ac) is negative.



 

23.  (D)  Since a = 12(t − 1)(t − 2), we check the signs of a in the intervals t < 1, 1 < t < 2, and t >
2. We choose those where a > 0.



 

24.  (A)  From Questions 22 and 23 we see that v > 0 if t > 0 and that a > 0 if t < 1 or t > 2. So
both v and a are positive if 0 < t < 1 or t > 2. There are no values of t for which both v and
a are negative.



 

25.  (D)  See the figure, which shows the motion of the particle during the time interval −2 ≤ t ≤ 4.
The particle is at rest when t = 0 or 3, but reverses direction only at 3. The endpoints need
to be checked here, of course. Indeed, the maximum displacement occurs at one of those,
namely, when t = −2.



 

26.  (C)  Since v = 5t3 (t + 4), v = 0 when t = −4 or 0. Note that v does change sign at each of these
times.



 

27.  (E)  Since 



 

28.  (A)  
Note that

 



 

29.  (B)   



 

30.  (D)  The slope of the curve is the slope of v, namely,  At  the slope is equal to



 

31.  (C)  Since 



 

32.  (B)  See Figure N4–22. Replace the printed measurements of the radius and height by 10 and
20, respectively. We are given here that  and that 

Replace h by 8.



 

33.  (D)    Since y ′ = 0 if x = 1 and changes from negative to positive as x increases
through 1, x = 1 yields a minimum. Evaluate y at x = 1.



 

34.  (A)  The domain of y is −∞ < x < ∞. The graph of y, which is nonnegative, is symmetric to the
y-axis. The inscribed rectangle has area A = 2xe−x2. Thus  which is 0 when the
positive value of x is  This value of x yields maximum area. Evaluate A.



 

35.  (B)  See the figure. If we let m be the slope of the line, then its equation is y − 2 = m(x − 1)
with intercepts as indicated in the figure.

The area A of the triangle is given by

Then  and equals 0 when m = ±2; m must be negative.



 

36.  (C)  Let q = (x − 6)2 + y2 be the quantity to be minimized. Then

q = (x − 6)2 + (x2 − 4);

q ′ = 0 when x = 3. Note that it suffices to minimize the square of the distance.



 

37.  (E)  Minimize, if possible, xy, where x2 + y2 = 200 (x, y > 0). The derivative of the product is 
 which equals 0 for x = 10. The derivative is positive to the left of that point and

negative to the right, showing that x = 10 yields a maximum product. No minimum exists.



 

38.  (C)  Minimize  Since

q ′ = 0 if x = 3. Since q ′ is negative to the left of x = 3 and positive to the right, the
minimum value of q occurs at x = 3.



 

39.  (A)  The best approximation for  when h is small is the local linear (or tangent line)
approximation. If we let  then  and  The approximation
for f (h) is f (0) + f ′(0) · h, which equals 



 

40.  (A)  Since f ′(x) = e−x (1 − x), f ′(0) > 0.



 

41.  (E)  The graph shown serves as a counterexample for A−D.



 

42.  (D)  Since V = 10 w,  = 10(8 · −4 + 6 · 2).



 

43.  (E)  We differentiate implicitly: 3x2 + x2 y ′ + 2xy + 4y ′ = 0. Then  At (3, −2), 



 

44.  (D)  Since ab > 0, a and b have the same sign; therefore f ″(x) = 12ax2 + 2b never equals 0.
The curve has one horizontal tangent at x = 0.



 

45.  (C)  Since the first derivative is positive, the function must be increasing. However, the
negative second derivative indicates that the rate of increase is slowing down, as seen in
table C.



 

46.  (B)  Since  therefore, at t = 1,  Also, x = 3 and y = 2.



 

47.  (A)  Let f (x) = x1/3, and find the slope of the tangent line at (64, 4). Since 
If we move one unit to the left of 64, the tangent line will drop approximately  unit.



 

48.  (D)  



 

49.  (E)  ekh  ek ·0 + kek ·0 (h − 0) = 1 + kh



 

50.  (E)  Since the curve has a positive y-intercept, e > 0. Note that f ′(x) = 2cx + d and f ″(x) = 2c.
Since the curve is concave down, f ″(x) < 0, implying that c < 0. Since the curve is
decreasing at x = 0, f ′(0) must be negative, implying, since f ′(0) = d, that d < 0. Therefore c
< 0, d < 0, and e > 0.



 

51.  (A)  Since the slope of the tangent to the curve is  the slope of the normal is 



 

52.  (E)  The slope  at the given point  and y = 1. The equation is therefore

y − 1 = −1(x + 2) or x + y + 1 = 0.



 

53.  (C)  



 

54.  (E)  Since f ′ < 0 on 5 ≤ x < 7, the function decreases as it approaches the right endpoint.



 

55.  (B)  For x < 5, f ′ > 0, so f is increasing; for x > 5, f is decreasing.



 

56.  (D)  The graph of f being concave downward implies that f ″ < 0, which implies that f ′ is
decreasing.



 

57.  (D)  Speed is the magnitude of velocity; at t = 3, speed = 10 ft/sec.



 

58.  (D)  Speed increases from 0 at t = 2 to 10 at t = 3; it is constant or decreasing elsewhere.



 

59.  (E)  Acceleration is positive when the velocity increases.



 

60.  (D)  Acceleration is undefined when velocity is not differentiable. Here that occurs at t = 1, 2,
3.



 

61.  (A)  Acceleration is the derivative of velocity. Since the velocity is linear, its derivative is its
slope.



 

62.  (C)  Positive velocity implies motion to the right (t < 2); negative velocity (t > 2) implies
motion to the left.



 

63.  (B)  The average rate of change of velocity is 



 

64.  (E)  The slope of y = x3 is 3x2. It is equal to 3 when x = ±1. At x = 1, the equation of the
tangent is

y − 1 = 3(x − 1) or y = 3x + 2.

At x = −1, the equation is
y + 1 = 3(x + 1) or y = 3x + 2.



 

65.  (C)  Let the tangent to the parabola from (3, 5) meet the curve at (x1, y1). Its equation is y − 5 =
2x1 (x − 3). Since the point (x1, y1) is on both the tangent and the parabola, we solve
simultaneously:

y1 − 5 = 2x1 (x1 − 3) and 

The points of tangency are (5, 25) and (1, 1). The slopes, which equal 2x1, are 10 and 2.



 

66.  (E)  



 

67.  (D)  The graph of f ′(x) = x sin x − cos x is drawn here in the window [0,4] × [−3,3]:

A local maximum exists at x = 0, where f ′ changes from positive to negative; use your
calculator to approximate a.



 

68.  (C)  f ″ changes sign when f ′ changes from increasing to decreasing (or vice versa). Again,
use your calculator to approximate the x-coordinate at b.



 

69.  (E)  Eliminating t yields the equation 



 

70.  (B)  



 

71.  (A)  Since  We note that, as t increases through 2, the sign
of |v| ′ changes from negative to positive, assuring a minimum of |v| at t = 2. Evaluate |v| at t
= 2.



 

72.  (C)  The direction of a is  the acceleration is always directed

downward. Its magnitude,  is 2 for all t.



 

73.  (D)  Using the notations vx, vy, ax, and ay, we are given that  where k is a
constant. Then



 

74.  (E)  



 

75.  (B)  The rate of change of the distance from the origin with respect to time is given by



 

76.  (B)  In parametric form, x = r cos  = 6 cos 2  cos ; hence:



 

77.  (B)  A local minimum exists where f changes from decreasing (f ′ < 0) to increasing (f ′ > 0).
Note that f has local maxima at both endpoints, x = 0 and x = 5.



 

78.  (D)  See Answer 68.



 

79.  (D)  At x = a, f ′ changes from increasing (f ″ > 0) to decreasing (f ″ < 0). Thus f changes from
concave upward to concave downward, and therefore has a point of inflection at x = a. Note
that f is differentiable at a (because f ′(a) exists) and therefore continuous at a.



 

80.  (C)  We know that 



 

81.  (E)  The equation of the tangent is y = −2x + 5. Its intercepts are  and 5.



 

82.  (D)  See the figure. At noon, car A is at O, car B at N; the cars are shown t hours after noon.
We know that  Using s2 = x2 + y2, we get

At 1 P.M., x = 30, y = 40, and s = 50.



 

83.  (B)   (from Question 82) is zero when  Note that x = 90 − 60t and y = 40t.



 

84.  (B)  Maximum acceleration occurs when the derivative (slope) of velocity is greatest.



 

85.  (B)  The object changes direction only when velocity changes sign. Velocity changes sign
from negative to positive at t = 5.



 

86.  (D)  From the graph, f ′(2) = 3, and we are told the line passes through (2,10). We therefore
have f (x)  10 + 3(x − 2) = 3x + 4.



 

87.  (C)  At x = 1 and 3, f ′(x) = 0; therefore f has horizontal tangents.

For x < 1, f ′ > 0; therefore f is increasing.

For x > 1, f ′ < 0, so f is decreasing.

For x < 2, f ′ is decreasing, so f ″ < 0 and the graph of f is concave downward.

For x > 2, f ′ is increasing, so f ″ > 0 and the graph of f is concave upward.



 

88.  (C)  Note that  at Q, R, and T. At Q,  at T, 



 

89.  (D)  Only at S does the graph both rise and change concavity.



 

90.  (E)  Only at T is the tangent horizontal and the curve concave down.



 

91.  (C)  Since f ′(6) = 4, the equation of the tangent at (6, 30) is y − 30 = 4(x − 6). Therefore f (x) 
 4x + 6 and f (6.02)  30.08.



 

92.  (C)  



 

Answers Explained
All the references in parentheses below are to the basic integration formulas. In general, if u is a
function of x, then du = u ′(x) dx.

1.  (C)  Use, first, formula (2), then (3), replacing u by x.



 

2.  (E)  Hint: Expand. 



 

3.  (A)  By formula (3), with u = 4 − 2t and 



 

4.  (D)  Rewrite: 



 

5.  (E)  Rewrite:

Use (3).



 

6.  (B)  Rewrite:

Using (3) yields 



 

7.  (A)  This is equivalent to  Use (4).



 

8.  (E)  Rewrite as  Use (3).



 

9.  (D)  Use (5) with u = 3x; du = 3 dx: 



 

10.  (A)  Use (4). If u = 1 + 4x2, du = 8x dx: 



 

11.  (D)  Use (18). Let u = 2x; then du = 2 dx: 



 

12.  (C)  Rewrite as  Use (3) with n = −2.



 

13.  (B)  Rewrite as  Use (3) with 

Note carefully the differences in the integrands in Questions 10–13.



 

14.  (C)  Use (17); rewrite as 



 

15.  (B)  Rewrite as  Use (3).

Compare the integrands in Questions 14 and 15, noting the difference.



 

16.  (A)  Divide to obtain  Use (2), (3), and (4). Remember that  whenever k
≠ 0.



 

17.  (E)  

(Note the Binomial Theorem with n = 3 to expand (x − 2)3.)



 

18.  (D)  The integral is equivalent to  Integrate term by term.



 

19.  (A)  Integrate term by term.



 

20.  (D)  Division yields



 

21.  (E)  Use formula (4) with u = 1 −  = 1 − y1/2. Then  Note that the integral can be

written as 



 

22.  (E)  Rewrite as  and use formula (3).



 

23.  (B)  The integral is equal to  Use formula (6) with u = 2θ; du = 2 dθ.



 

24.  (C)  Use formula (6) with 



 

25.  (A)  Use formula (5) with u = 4t2; du = 8t dt; 



 

26.  (A)  Using the Half-Angle Formula (23) with α = 2x yields 



 

27.  (E)  Use formula (6): 



 

28.  (B)  Integrate by parts. Let u = x and dv = cos x dx. Then du = dx and v = sin x. The given
integral equals 



 

29.  (D)  Replace  by sec2 3u; then use formula (9): 



 

30.  (C)  Rewrite using u = 1 + sin x and du = cos x dx as 

Use formula (3).



 

31.  (B)  The integral is equivalent to  Use formula (12).



 

32.  (E)  Use formula (13) with 



 

33.  (A)  Replace sin 2x by 2 sin x cos x; then the integral is equivalent to

where u = 1 + cos2 x and du = −2 sin x cos x dx. Use formula (3).



 

34.  (D)  Rewriting in terms of sines and cosines yields



 

35.  (E)  Use formula (7).



 

36.  (C)  Replace  by csc2 2x and use formula (10): 



 

37.  (E)  Let u = tan−1 y; then integrate  The correct answer is 



 

38.  (A)  Replacing sin 2θ by 2 sin θ cos θ yields



 

39.  (C)  



 

40.  (B)  Rewrite as  and use formula (8).



 

41.  (E)  Use formula (4) with u = ex − 1; du = ex dx.



 

42.  (D)  Use partial fractions; find A and B such that

Then x − 1 = A(x − 2) + Bx.

Set x = 0: −1 = −2A and 

Set x = 2: 1 = 2B and 

So the given integral equals



 

43.  (A)  Use formula (15) with u = x2; du = 2x dx; 



 

44.  (B)  Use formula (15) with u = sin θ; du = cos θ dθ.



 

45.  (C)  Use formula (6) with u = e2θ; du = 2e2θ dθ: 



 

46.  (B)  Use formula (15) with 



 

47.  (C)  Use the Parts Formula. Let u = x, dv = e−x dx; du = dx, v = −e−x. Then,



 

48.  (C)  See Example 44.



 

49.  (D)  The integral is of the form 



 

50.  (A)  The integral has the form  Use formula (18), with u = ex, du = ex dx.



 

51.  (C)  Let u = ln v; then  Use formula (3) for 



 

52.  (E)  Hint: ln  ln x; the integral is 



 

53.  (B)  Use parts, letting u = ln x and dv = x3 dx. Then  and  The integral equals 



 

54.  (B)  Use parts, letting u = ln  and dv = dx. Then  and v = . The integral equals  ln 



 

55.  (B)  Rewrite ln x3 as 3 ln x, and use the method of Answer 54.



 

56.  (D)  Use parts, letting u = ln y and dv = y−2 dy. Then  and  The Parts Formula
yields 



 

57.  (E)  The integral has the form  where 



 

58.  (A)  By long division, the integrand is equivalent to 



 

59.  (C)   use formula (18) with u = x + 1.



 

60.  (D)  Multiply to get 



 

61.  (C)  See Example 45. Replace x by θ.



 

62.  (E)  The integral equals  it is equivalent to  where u = 1 − ln t.



 

63.  (A)  Replace u by x in the given integral to avoid confusion in applying the Parts Formula. To
integrate  let the variable u in the Parts Formula be x, and let dv be sec2 x dx.
Then du = dx and v = tan x, so



 

64.  (D)  The integral is equivalent to  Use formula (4) on the first integral and
(18) on the second.



 

65.  (D)  The integral is equivalent to  Use formula (17) on the first integral.
Rewrite the second integral as  and use (3).



 

66.  (E)  Rewrite: 



 

67.  (B)  Hint: Divide, getting 



 

68.  (D)  Letting u = sin θ yields the integral  Use formula (18).



 

69.  (E)  Use integration by parts, letting u = arctan x and dv = dx. Then

The Parts Formula yields



 

70.  (B)  Hint: Note that

Or multiply the integrand by  recognizing that the correct answer is equivalent to −ln|e−x

− 1|.



 

71.  (D)  Hint: Expand the numerator and divide. Then integrate term by term.



 

72.  (C)  Hint: Observe that e2 ln u = u2.



 

73.  (A)  Let u = 1 + ln y2 = 1 + 2 ln |y|; integrate 



 

74.  (B)  Hint: Expand and note that

Use formulas (9) and (7).



 

75.  (E)  Multiply by  The correct answer is tan θ − sec θ + C.



 

76.  (D)  Note the initial conditions: when t = 0, v = 0 and s = 0. Integrate twice: v = 6t2 and s =
2t3. Let t = 3.



 

77.  (D)  Since y ′ = x2 − 2,  Replacing x by 1 and y by −3 yields 



 

78.  (D)  When t = 0, v = 3  and  s = 2, so

v = 2t + 3t2 + 3 and s = t2 + t3 + 3t + 2.
Let t = 1.



 

79.  (C)  Let  then

v = at + C.            (*)
Since v = 75 when t = 0, therefore C = 75. Then (*) becomes

v = at + 75
so

0 = at + 75  and  a = −15.



 

80.  (A)  Divide to obtain  Use partial fractions to get



 

Answers Explained
1. (C) The integral is equal to



 

2. (B) Rewrite as  This equals



 

3. (E) Rewrite as



 

4. (B) This integral equals



 

5. (D) 



 

6. (A) Rewrite as



 

7. (D) 



 

8. (A) 



 

9. (C) 



 

10. (D) You get  = −(e−1 − 1).



 

11. (B) 



 

12. (B) Evaluate  which equals  (0 − 1).



 

13. 