

Embedded Systems with
ARM Cortex-M

Microcontrollers in
Assembly Language and C

Dr. Yifeng Zhu

Third edition

June 2018

-

-
Copyright © by E-Man Press LLC, 2017. All rights reserved.
Printed in the United States of America

ARM, Cortex, Cortex-M, Cortex-MO, Cortex-MO+, Cortex-Ml, Cortex-M3, Cortex-M4,
Cortex-M7, uVision Keil, and others are registered trademarks of ARM Ltd ., 110
Fulbourn Road, Cambridge, GB-CBl 9 J, Great Britain.

STM32 discovery kit, STM32, STM32F4, STM32L, STM32L4, and others are trademarks
of STMicroelectronics Ltd., 39, Chemin du Champ des Filles, Plan-Les-Ouates, CH1228
Geneve, Switzerland.

All external peripheral or product names are trademarks of their owners.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission of the publisher.

The information contained in this book is believed to be reliable. However, neither the
publisher nor the author guarantees the accuracy or completeness of any information
contained herein. The publisher and the author shall not be liable for any errors,
inaccuracies or omissions, and shall not have any responsibility or liability for any loss,
damages, or costs arising out of the use of the information (including all programs)
contained herein. This book is published with the understanding that the publisher and
author are supplying information but are not attempting to render professional services.

The author has tried to seek permissions from the copyright holders. Contact the author
if any copyrighted work has not been acknowledged and cited. Future reprints may be
modified.

Book covered designed by Andrew Hayford

Library of Congress Control Number: 2017944799

ISBN 978-0-9826926-6-0

Pref ace

"I hear and I forget. I see and I remember. I do and I understand."

Confucius (Chinese philosopher, 551--479 BC)

Modern embedded systems exploit a single, highly integrated chip consisting of one or
more general-purpose processor core, memories, advanced peripherals, digital logic, and
miniaturized sensors. Due to small power dissipation, low fabrication cost, and small
size, System-on-Chips (SoC) become increasingly more prevalent in many embedded
applications, including cell phones, MP3 players, GPS, smart watches, medical devices,
fitness gadgets, and automobile control. ARM Cortex processors are one of such
successful SoC chips in the industry.

Significant changes in the third edition include updated serial communication
description (UART, SPI, and PC), new serial communication examples, incorporation of
GNU gee compiler, low power modes, modification of example programs from STM32Ll
(Cortex-M3) to STM32L4 (Cortex-M4).

The book introduces basic programming of ARM Cortex-M cores in assembly and Cat
the register level, and the fundamentals of embedded system design. It presents basic
concepts such as data representations (integer, fixed-point, floating-point), assembly
instructions, stack, and implementing basic controls and functions of C language at the
assembly level. It covers advanced topics such as interrupts, mixing C and assembly,
direct memory access (DMA), system timer (SysTick), multi-tasking, SIMD instructions
for digital signal processing (DSP), and instruction encoding/decoding. The book also
gives detailed examples of interfacing peripherals, such as general purpose I/0 (GPIO),
LCD driver, keypad interaction, stepper motor control, PWM output, timer input capture,
DAC, ADC, real-time clock (RTC), and serial communication (USART, PC, SPI, and USB).

The book has the following features:

• Focusing on register-level programming on bare metal hardware, with no or
minimum usage of STM, CMSIS, and ARM APis

• Emphasis on structured programming and top-down modular design in both C
and assembly language

• Line-by-line translation and comparison between C and ARM assembly
• Mixture of C and assembly languages, such as a C program calling assembly

subroutines, and an assembly program calling C subroutines
• Balance between theory and practical examples
• Valuable knowledge that prepares students for the courses of computer

architecture and operating systems

llill

-
Although assembly languages are used relatively less in modern embedded systems,
learning assembly languages is still crucial.

•

•

•

•

First, assembly is not another programming language. It is a low-level interface
between hardware and software. It provides a better understanding of how a
processor executes a program. Assembly programming is the prerequisite
knowledge of compilers, operating systems, and computer architecture.
Secondly, assembly programs can potentially run faster than C programs .
Compilers sometimes cannot fully utilize hardware features of a particular
processor, especially when the processor provides some specific operations of
which compilers are not aware. Therefore, we often use assembly languages to
develop some speed-sensitive portion of an application.
Thirdly, some operations have to be performed in assembly language because
there is no equivalent statement in C. Consequently, assembly programs are often
in the kernel codes of operating systems to implement low-level tasks, such as
booting and CPU scheduling.
Finally yet importantly, understanding how to translate high-level constructs into
low-level assembly instructions can help programmers to write more efficient
codes in high-level languages.

The audience for this book includes those who want to gain knowledge of the inner
working of a System-on-Chip (SoC), and experiences of programming embedded
systems at the register level. This book would serve better as text or reference material if
readers have learned some basic C programming. The book covers both fundamental
concepts and advanced topics, suitable for a broad range of audience.

I would like to thank all the people who have helped me greatly. My colleague Prof.
Duane Hanselman has offered excellent guidance and advice on book publishing. I
would like to thank Kaishuang Li for encouragement and help. I would like to thank
Elyse Kahl and Nolan Gagnon for proofreading and Andrew Hayford for the cover
design. I appreciate all the students of ECE 271 Microcomputer Architecture and
Applications class who have helped me correct many errors and gave me significant
improvement suggestions in the first and second edition.

Last but most importantly, I acknowledge the profound debt of gratitude I owe to my
mother and father. I cannot thank them enough for all the support and love they have
given to me.

Yifeng Zhu
June 1, 2017

Orono, Maine, USA

-
Table of Contents
Chapter 1. See a Program Running ...•..................... 1

1.1 Translate a C Program into a Machine Program ... 1
1.2 Load a Machine Program into Memory .. 4

1.2.1 Harvard Architecture and Von Neumann Architecture 4
1.2.2 Creating Runtime Memory Image 7

1.3 Registers 11
1.3.1 Reusing Registers to Improve Performance 12
1.3.2 Processor Registers 13

1.4 Executing a Machine Program .. 17
1.4.1 Loading a Program 18
1.4.2 Starting the Execution 19
1.4.3 Program Completion 23

1.S Exercises 24

Chapter 2. Data Representation .. 27
2.1 Bit, Byte, Halfword, Word, and Double-word ... 27
2.2 Binary, Octal, Decimal, and Hexadecimal Numbers .. 29
2.3 Unsigned lntegers 30
2.4 Signed lntegers 31

2.4.1 Sign-and-Magnitude 33
2.4.2 One's Complement 34
2.4.3 Two's Complement 35
2.4.4 Carry Flag for Unsigned Addition or Subtraction 36
2.4.5 Overflow Flag for Signed Addition or Subtraction 39

2.4 .5.l Interpreting the Carry and Overflow Flags 42
2.4 .5.2 Two's Complement Simplifies Hardware Implementation 45

2.S Character String ... 49
2.6 Exercises .. S3

Chapter 3. ARM Instruction Set Architecture .. 55
3.1 ARM Assembly Instruction Sets ... SS
3.2 ARM Cortex-M Organization .. 58
3.3 Going from C to Assembly 60
3.4 Assembly Instruction Format ... 63
3.S Anatomy of an Assembly Program ... 6S
3.6 Assembly Directives 69
3.7 Exercises 73

Chapter 4. Arithmetic and Logic .. 75
4.1 Program Status Register 7S
4.2 Updating Program Status Flags .. 77
4.3 Shift and Rotate 78

-
4.4 Arithmetic Instructions 80

4 .4.l Add it ion and Subtraction Inst ru ctions 81
4.4.2 Short Multiplication and Divis ion Instructions 82
4.4.3 Long Multiplication lnstructions 82
4.4 .4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Saturation Instructions 83
Barrel Shifter 83
Bitwise Logic Operations 84
Reversing the Order of Bits and Bytes ... 89
Sign and Zero Extension 90
Data Comparison 91
Data Movement between Registers .. 92
Bit Field Extract 93
Exercises 94

Chapter 5. Load and Store .. 97
5.1 Load Constant into Registers 97

5.1.1 Data Movement Instruction MOV and MVN 97
5.1.2
5.1.3

5.2

Pseudo Instruction LDR and ADR 98
Comparison of LDR, ADR, and MOV 99

Big and Little Endian .. 100
5.3 Accessing Data in Memory 101
5.4 Memory Addressing .. 101

5.4.1 Pre-index, Post-index, and Pre-index with Update 101
5.4.2 Load and Store lnstructions 103
5.4.3
5.4.4

5.5
5.6

PC-relative Addressing 104
Example of Accessing an Array 105

Loading and Storing Multiple Registers 106
Exercises 108

Chapter 6. Branch and Conditional Execution ... 111
6.1 Condition Testing 111
6.2 Branch Instructions 114
6.3 Conditional Execution ... 117
6.4 If-then Statement 118
6.5 If-then-else Statement 121
6.6 For Loop 122
6.7 While Loop 123
6.8 Do While Loop 124
6.9 Continue Statement 125
6.10 Break Statement 126
6.11 Switch Statement 126
6.12 Exercises 129

Chapter 7. Structured Programming ... 133
7.1 Basic Control Structures 133

1'41•

7 .2 Register Reuse ... 138
7.3 Example of Factorial Numbers ... 141
7.4 Example of Counting Ones in a Word ... 142
7.5 Example of Finding the Maximum of an Array ... 144
7.6 Example of Counting Digits 146
7.7 Example of Parity Bit ... 147
7.8 Example of Perfect Numbers ... 149
7 .9 Example of Armstrong Numbers .. 151
7.10 Example of Palindrome String .. 152
7.11 Example of Converting String to Integer (atoi) ... 154
7 .12 Example of Binary Search .. 155
7.13 Example of Bubble Sort ... 157
7.14 Exercises .. 159

Chapter 8. Subroutines•..........•....•.....•..••.....•....•.......................... 161
8.1 Calling a Subroutine ... 162
8.2 Stack 164
8.3 Implementation of Stack via STM and LDM .. 165
8.4 Preserving Runtime Environment via Stack .. 166
8.5 Passing Arguments to Subroutine via Registers .. 169

8.5.1 Pass a Variable by Value and by Reference 170
8.5.2 Example of Passing by Value 173
8.5.3 Write a Subroutine in Different Files 175
8.5.4 Example of Passing by Reference 176
8.5.5 Example of Greatest Common Divisor 177
8.5.6 Example of Concatenating Two Strings 179
8.5.7 Example of Comparing Two Strings 180
8.5.8 Example of Inserting an Integer into a Sorted Array 181
8.5.9 Example of Converting Integer to String (itoa) 182
8.5.10 Example of Matrix Transpose 184
8.5.11 Example of Removing a Character from a String 186
8.5.12 Example of Finding Unique Numbers in an Array 187

8.6 Passing Arguments through Stack .. 190
8. 7 Recursive Functions 192

8.7.1 Example of Factorial Numbers 194
8.7.2 Example of Reversing a String 196
8.7.3 Example of String Permutation 197

8.8 Exercises .. 199

Chapter 9. 64-bit Data Processing ... 203
9.1 64-bit Addition .. 203
9.2 64-bit Subtraction .. 204
9.3 64-bit Counting Leading Zeros ... 205
9.4 64-bit Sign Extension ... 205

9.5 64-bit Logic Shift Left 206
9.6 64-bit Logic Shift Right 207
9.7 64-bit Multiplication 208
9.8 64-bit Unsigned Division 209
9.9 64-bit Signed Division 211
9.10 Exercises 213

Chapter 10. Mixing C and Assembly ... 215
10.1 Data Types and Access 216

10.1.1 Signed or Unsigned Integers 216
10.1.2 Data Alignment 217
10.1.3 Data Structure Padding 219

10.2 Special Variables 222
10.2.1 Static Variables 222
10.2.2 Volatile Variables 226

10.3 lnline Assembly 228
10.3.1 Assembly Functions in a C Program 228
10.3.2 In line Assembly Instructions in a C Program 229

10.4 Calling Assembly Subroutines from a C Program 230
10.4.1 Example of Calling an Assembly Subroutine 230
10.4.2 Example of Accessing C Variables in Assembly 231

10.5 Calling C Functions from Assembly Programs .. 232
10.5.1 Example of Cal ling a C Function 232
10.5.2 Example of Accessing Assembly Data in a C Program 233

10.6 Exercises 234

Chapter 11. Interrupts .. 237
11.1 Introduction to Interrupts 237
11.2 Interrupt Numbers .. 238
11.3 Interrupt Service Routines 240
11.4 Interrupt Vector Table ... 241
11.5 Interrupt Stacking and Unstacking 243
11.6 Nested Vectored Interrupt Controller (NVIC) ... 245

11.6.1 Enable and Disable Peripheral Interrupts 247
11.6.2 Interrupt Prio rity 249
11.6.3 Global Interrupt Enable and Disable 253

11.7 System Timer 254
11.8 External Interrupt 262
11.9 Software Interrupt 266
11.10 Exercises 267

Chapter 12. Fixed-point and Floating-point Arithmetic 269
12.1 Fixed-point Arithmetic 270

12.1.1 Unsigned Fixed-point Representation 271
12.1.2 Signed Fixed-point Representation 272

-
12.1.3 Converting to Fixed-point Format.. 273
12.1.4 Fixed-point Range and Resolution Tradeoff 274
12.1.5 Fixed-point Addition and Subtraction 275
12.1.6 Fixed-point Multiplication 277
12.1.7 Fixed-point Division 278

12.2 Floating-point Arithmetic 279
12.2.1 Floating-point Representation 279
12.2.2 Special Values 284
12.2.3 Overflow and Underflow 285
12.2.4 Subnormal Numbers 286
12.2.5 Tradeoff between Numeric Range and Resolution 287
12.2.6 Rounding Rules 289

12.3 Software-based Floating-point Operations .. 292
12.3.1 Floating-point Addition 293
12.3.2 Floating-point Multiplication 297

12.4 Hardware-based Floating-point Operations ... 299
12.4.1 FPU Registers 299

12.4.1.1 Floating-point General-purpose Registers (SO-S31, or DO-DlS) 299
12.4.1.2 Coprocessor Access Control Register (CPACR) 301
12.4.1.3 Floating-point Status and Control Register (FPSCR) 302
12.4.1.4 Floating-point Context Address Register (FPCAR) 304
12.4.1.S Floating-point Context Control Register (FPCCR) 306

12.4.2 Load and Store Floating-point Numbers 308
12.4.3 Copy Floating-point Numbers 309
12.4.4 Copy and Set the Status and Control Register 309
12.4.5 Single-precision Arithmetic Operations 310
12.4.6 Single-precision comparisons 311
12.4.7 Precision Conversion 312
12.4.8 FPU Exception and Exception handling 314
12.4.9 Example Assembly Programs 316

12.4.9.1 Look up a Float Array 316
12.4.9.2 Sine Function of Argument in Radians 317

12.5 Exercises 319

Chapter 13. Instruction Encoding and Decoding .. 323
13.1 Tradeoff between Code Density and Performance ... 323
13.2 Dividing Bit Streams into 16- or 32-bit Instructions .. 324
13.3 Encoding 16-bit Thumb Instructions ... 326
13.4 Encoding 32-bit Instructions .. 327
13.5 Calculating Target Memory Address 329
13.6 Instruction Decoding Example 1 ... 330
13. 7 Instruction Decoding Example 2 ... 334
13.8 Exercises .. 339

Chapter 14. General Purpose 1/0 (GPI0} ... 341

-
14.1 Introduction to General Purpose 1/0 (GPIO} 341
14.2 GPIO Input Modes: Pull Up and Pull Down 342
14.3 GPIO Input: Schmitt Trigger 343
14.4 GPIO Output Modes: Push-Pull and Open-Drain 346

14.4.1 GPIO Push -Pull Output 346
14.4.2 GPIO Open-Drain Output 347

14.5 GPIO Output Speed: Slew Rate 350
14.6 Memory-mapped 1/0 351
14.7 Lighting up an LED 355
14.8 Push Button 360
14.9 Keypad Scan 365
14.10 Exercises 371

Chapter 15. General-purpose Timers 373
15.1 Timer Organization and Counting Modes 373
15.2 Compare Output 376

15.2.1 Setting Output Mode 377
15.2.2 Example of Toggling LED 379
15.2.3 Timer Update Events 382

15.3 PWM Output 384
15.3.1 PWM Alignment 389
15.3.2 PWM Programming Flowchart 391

15.4 Input Capture 395
15.4.l Configuring Input Capture 399
15.4.2 Input Captu re in Slave Mode with Reset.. 404
15.4.3 Interfacing to Ultrasonic Distance Sensor 407

15.5 Exercises ... 413

Chapter 16. Stepper Motor Control .. 415
16.1 Bipolar and Unipolar Stepper Motor 415
16.2 Step Angle 417
16.3 Wave Stepping .. 418
16.4 Full Stepping 419
16.5 Half Stepping 421
16.6 Micro-stepping 423
16. 7 Driving Stepper Motor 425
16.8 Exercises 426

Chapter 17. Liquid-crystal Display (LCD) ... 427
17.1 Static Drive ... 428
17.2 Multiplexed Drive ... 429
17.3 STM32L Internal LCD Driver 433

17.3.1 Basic lntroduction 433
17.3.2 Generic LCD Driver to Display Strings 439

17.4 Interfacing with External Character LCD Controllers 444

17.4.1 External Connection Diagram 444
17.4.2 Internal Font Encoding 447
17.4.3 Sending Commands and Data to LCD 448
17.4.4 Programming Fonts 451

17.5 Exercises .. 452

Chapter 18. Real-time Clock {RTC) .. 453
18.1 Epoch Time .. 453
18.2 RTC Frequency Settings ... 455
18.3 Oscillator Frequency Accuracy ... 456
18.4 Binary Coded Decimal (BCD) Encoding 457
18.5 RTC Initialization .. 459
18.6 RTC Alarm 462
18. 7 Using RTC to Wake Processors up from Sleep Mode .. 465
18.8 Exercises 468

Chapter 19. Direct Memory Access {OMA) .. 469
19.1 Advanced Microcontroller Bus Architecture (AMBA) 470
19.2 Interfacing a Peripheral without and with DMA 472
19.3 OMA Channels 474
19.4 Programming OMA .. 476
19.5 OMA Circular Mode 478
19.6 OMA Interrupts 479
19.7 Exercises .. 480

Chapter 20. Analog-to-Digital Converter (ADC) ... 481
20.1 ADC Architecture ... 481

20.1.1 Digital Quantization 482
20.1.2 Sampling and Hold 484

20.2 ADC Sampling Error ... 485
20.3 ADC Diagram ... 487
20.4 ADC Conversion Modes 488

20.4.1 One Input Channel 488
20.4.2 Multiple Input Channels 489

20.5 ADC Data Alignment .. 490
20.6 ADC Input Channels ..•.................... 491
20. 7 ADC Triggers ..•............. 493
20.8 Measuring the Input Voltage 496
20.9 ADC Configuration Flowchart ... 496
20.10 ADC with DMA ... 501
20.11 OMA with Ping-Pong Buffering ... 503
20.12 ADC Calibration ... 505
20.13 Exercises 506

Chapter 21. Digital-to-Analog Converter (DAC) ... 507

-
21.1 DAC Architecture .. 507
21.2 DAC on STM32L Processors 508
21.3 Conversion Trigger .. 510
21.4 Buffered Output 511
21.5 Generating a Sinusoidal Wave via Table Lookup .. 512
21.6 DAC with Software Trigger .. 515
21.7 Using Timer as a Trigger to DAC ... 517
21.8 Musical Synthesizing 520

21.8.1 Musical Pitch 520
21.8 .2 Musical Duration 521
21.8.3 Amplitude Modulation ofTones 521

21.9 Exercises 526

Chapter 22. Serial Communication Protocols ... 527
22.1 Universal Asynchronous Receiver and Transmitter .. 527

22.1.1 Communication Frame 528
22.1.2 Baud Rate 530
22 .1.3 UARTStandards 531
22 .1.4 UART Communication via Polling 533
22 .1.5 UART Communication via Interrupt 537
22.1.6 UART Communication via DMA 540
22.1.7 Serial Communication to Bluetooth Module .. 543

22.1.7.1 Bluetooth Transfer Protocols .. 543
22.1.7.2 Pairing Bluetooth Modules 544

22.2 Inter-Integrated Circuit (1 2C) .. 546
22.2.1 12C Pins 546
22.2.2 12C Protocol 547
22.2.3 12C Data Frame 549
22.2.4 Interfacing Serial Digital Thermal Sensors via 1

2C ... 551
22.2.5 12C Programmable Timings 553

22.2.5.1 Rise time and fall time 553
22.2.5.2 Data hold time 555
22.2.5.3 Data setup time 556
22.2.5.4 Master clock's minimum high and low time ... 556
22.2.5.5 Example of setting the 12C timing 557

22.2.6 Sending Data to 12C Slave via Polling 559
22.2 .7 Receiving Data from 12C Slave via Polling ... 560
22.2 .8 Interfacing a Temperature Sensor via Polling 561
22.2 .9 Transferring Data via DMA on 12C Master 566

22.3 Serial Peripheral Interface Bus (SPI) 568
22.3.1 Data Exchange 569
22.3.2 Clock Configuration 571
22.3.3 Using SPI to Interface a Gyroscope 572

22.4 Universal Serial Bus (USB) ... 578

22.4.1 USB Bus Layer 579
22.4.2 USB Device Layer 581
22.4.3 USB Function Layer 584

22.4.3.1 USB Descriptors 584
22.4.3.2 Endpoint-Oriented Communication 587
22.4.3.3 USB Enumeration 588

22.4.4 USB Class Layer 592
22.4.5 Human Interface Device (HID) 593

22.5 Exercises .. 598

Chapter 23. Multitasking .. 599
23.1 Processor Mode and Privilege Level ... 599

23.1.1 Control Register 600
23.1.2 Exception Return Value (EXC_RETURN) 601
23.1.3 Selection of MSP and PSP in Thread Mode 602

23.2 Supervisor Call (SVC) .. 603
23.3 CPU Scheduling .. 607
23.4 Example of Round Robin Scheduling .. 609
23.5 Exercises .. 616

Chapter 24. Digital Signal Processing (DSP) ... 617
24.1 Fixed-point and Floating-point DSP .. 617
24.2 Fixed-point Data Types in DSP ... 618
24.3 Saturation 619
24.4 Arithmetic Instructions .. 621

24.4.1 Parallel 8-bit Add and Subtract 623
24.4.2
24.4.3
24.4.4
24.4.5
24.4.6

Parallel 16-bit Add and Subtract 627
32-bit Add and Subtract 629
Sum of Absolute Difference 630
Extension and Add 631
Add and Subtract Halfwords with Exchange 633

24.4.7 16-bit and 32-bit Multiplication 635
24.4.8 16-bit Multiply and Accumulate with 64-bit Result.. 638
24.4.9 16-bit Multiply and Accumulate with 32-bit Resu lt.. 641
24.4.10 16x32 Multiply and Accumulate with 32-bit Result 643
24.4.11 32x32 Multiply and Accumulate with 32-bit Result 643
24.4.12 Unsigned Long Multiply with Accumulate Accumulate 644

24.5 Packing Halfwords into a Word .. 646
24.6 Signed and Unsigned Extension 647
24. 7 GE Flags 648
24.8 Byte Selection Instruction 649
24.9 Basic DSP Functions ... 650

24.9.1 Vector Negate 650
24.9.2 Vector Absolution Value 651

i'fiil

4ifi

24.9.3 Vector Offset with Saturation .. 653
24.9.4 Vector Shift Left with Saturation 655
24.9.5 Vector Mean 656
24.9.6 Vector Pairwise Multiplication 658
24.9.7 Vector Dot Product 660
24.9.8 Vector Min and Max 661

24.10 Exercises ... 662

Appendix A: GNU Compiler ... 665
A-1. Introduction .. 665
A-2. GNU and ARM Assembly Syntax Comparison .. 667
A-3. Mixing C and Assembly ... 671
A-4. Linker Script .. 674
A-5. Programming and Debugging the board .. 676

Appendix B: Cortex-M3/M4 Instructions ... 678

Appendix C: Floating-point Instructions (Optional on Cortex-M4 and Cortex-M7) ... 680

Appendix D: DSP Instructions on Cortex-M4 and Cortex-M7 682

Appendix E: Cortex-MO/MO+/Ml Instructions ... 685

Appendix F: Cortex-M3 16-bit Thumb-2 Instruction Encoding 687

Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding 689

Appendix H: HID Codes of a Keyboard ... 696

Appendix I: GPIO Alternate Functions (STM32L4) .. 698

Bibliography 705

Index 711

See a Program Running ..

CHAPTER

1
See a Program Running
This chapter shows how a machine program is generated and executed. If you do not
fully understand every detail presented, do not feel discouraged. It is merely meant to be
a general introduction. The following chapters explain the assembly programming
concepts in detail.

1.1 Translate a C Program into a Machine Program
Compilers translate a human-readable source program written in a high-level
programming language such as C, into a low-level machine-understandable executable
file encoded in binary form.

Executable files created by compilers are usually platform dependent. An executable file
compiled for one type of microprocessors, such as ARM Cortex-M3, cannot directly run
on a platform with a different kind of microprocessors that support a different set of
machine instructions, such as PIC or Atmel A VR microcontrollers. When we migrate a
program written in a high-level language to a processor of a different instruction set, we
usually have to modify and recompile the source programs for the new target platform.

One exception is Java executables, which are platform independent. The Java compiler
converts a Java program to bytecodes. A Java virtual machine (JVM) translates bytecodes
into machine instructions at runtime. Because each platform has its JVM, Java executables
become platform-independent. Currently, Java is not popular in embedded systems yet
because it needs more memory and cannot control peripherals flexibly.

Compilers first perform some analysis on the source program, such as extracting symbols
and checking syntax, and then create an intermediate re-presentation (IR). Compilers make
some transformations and optimizations to the IR to improve the program execution
speed or reduce the program size. For C compilers, the intermediate program is similar

- 1.1 - Translate a C Program into a Machine Program

to an assembly program, as shown in Figure 1-1. Finally, compilers translate the assembly
program into a machine program, also called a binary executable, which can run on the
target platform. The machine program consists of computer instructions and data
symbols.

2100
2000
E001
44e1
1C4e
280A
DBFB
BF0e
E7FE

Hex Format

int main(void){
int i;

c
Program

Assembly
Program

Binary
Machine
Program

int total = 0;
for (i = e; i < le; i++) {

total += i;
}
while(l); // Dead loop

MDVS rl, #e
MOVS re, #0
8 check

loop ADD rl, rl, re
ADDS r0, re, #1

check CMP r0, #10
BLT loop

self B self

0010000100000000 Load 0010000000000000 and 11100000e00e0ee1 Run e10ee10eeeeeeee1
eee1110e01eee00e
ee1e1e0e0e0e101e
11e111e011111e11
1e111111eeeeeee0
111ee11111111110

Binary Format

Microprocessor

Figure 1-1. Compiling a C program into a binary executable

Output Devices
(LED, LCD)

Input Devices
(Keypad , Sensors)

An assembly program includes the following five key components. Chapter 3.5 shows a
simple assembly program that annotates these components.

1. A label represents the memory address of a data variable or an assembly
instruction.

2. An instruction mnemonic is an operation that the processor should perform, such
as " ADD" for adding integers.

3. Operands of a machine operation can be numeric constants or processor registers.

See a Program Running -

4. A program comment aims to improve inter-programmer communication and
code readability by explicitly specifying programmers' intentions, assumptions,
and hidden concepts.

5. An assembly directive is not a machine instruction, but it defines the data content
or provides relevant information to assist the assembler.

'

The binary machine program follows a standard called
executable and linkable format (ELF), which most Linux and
UNIX systems use. The UNIX System Laboratories
developed and published ELF to standardize the format for
most executable files, shared libraries and object code.
Object code is an intermediate file that a compiler generates
at the compiling stage. Compilers link object code together
at the linking stage to form an executable or a software
library. Most ARM-based embedded systems support ELF.

Three popular
UNIX executable

file formats: ELF,
a.out, and COFF.

!

ELF, as its name suggests, provides two interfaces to binary files:

• a linkable interface that is used at static link time to combine multiple files when
compiling and building a program, and

• an executable interface that is utilized at runtime to create a process image in
memory when a program is loaded into memory and then executed.

Since we want to see how a program is loaded and executed, we focus only on the
executable interface in the following discussion.

Random
Access
Memory
(RAM)

Load View
Uninitialized
variables are

initialized to zero .

"---..

Execution View

Zero-initialized
Segment (ZQ

Read-write
Segment (RW)

RAM_Zl_limit

RAM ZI base
RAM=RW_limit

:

ELF Image File View
ELF Header ~

RAM_RW_base

1-'-'-""!'-'=.,-'r=~-,-==-+o-- - - ---

Section Header Table --
Read-only
Memory
(ROM)

Read-write
Section (RW)

Read-only
Section (RO)

-

ROM
R

Read-only
OM_RO_limit

OxOOOOOOOO Segment (RO)

---------- R OM_RO_base

Figure 1-2. Interface of an executable binary file in the executable and linking format (ELF).
An ELF file provides load view and execution view. The load view specifies how to load data

into the memory. The execution view instructs how to initialize data regions at runtime.

- 1.2 - Load a Machine Program into Memory

In ELF, similar data, symbols, and other information are grouped into many important
input sections. The executable interface provides two separate logic views: the load view
and the execution view, as shown in Figure 1-2.

• The load view classifies the input sections into two regions: read-write section
and read-only section. The load view also defines the base memory address of
these regions so that the processor knows where it should load them into the
memory.

• The execution view informs the processor how to load the executable at runtime.
A binary machine program includes four critical sections, including:

o a text segment that consists of binary machine instructions,
o a read-only data segment that defines the value of variables unalterable at

runtime,
o a read-write data segment that sets the initial values of statically allocated

and modifiable variables, and
o a zero-initialized data segment that holds all uninitialized variables declared

in the program.

1.2 Load a Machine Program into Memory
Binary executable programs are initially stored in non-volatile storage devices such as
hard drives and flash memory. Therefore, when the system loses power, the program is
not lost, and the system can restart. The processor must load the instructions and data of
a machine program into main memory before the program starts to run. Main memory
usually consists of volatile data storage devices, such as DRAM and SRAM, and all stored
information in main memory is lost if power is turned off.

1.2.1 Harvard Architecture and Von Neumann Architecture

There are two types of computer architecture, Von Neumann architecture, and Harvard
architecture, as shown in Figure 1-3.

In the Von Neumann architecture, data and instructions share the same physical memory.
There are only one memory address bus and one data transmission bus, as shown in
Figure 1-4. A bus is a communication connection, which allows the exchange of
information between two or more parts of a computer. All sections of an executable
program, including the text section (executable instructions), the read-only data section,
the read-write sections, and the zero-initialized section, are loaded into the main memory.
The data stream and the instruction stream share the memory bandwidth.

See a Program Running -

In the Harvard architecture, the instruction memory and data memory are two physically
separate memory devices. There are two sets of data transmission buses and memory
address buses. When a program starts, the processor copies at least the read-write data
section and the zero-initialized data section in the binary executable to the data memory.
Copying the read-only data section to the data memory is optional. The text section
usually stays in the non-volatile storage. When the program runs, the instruction stream
and the data stream transfer information on separate sets of data and address buses.

Von Neumann Architecture

Processor
Instruction and
Data Memory

Processor

Harvard Architecture

Instruction
Memory

Data Memory

Figure 1-3. Two types of computer architecture. In the Von Neumann architecture, data and
instructions are stored in the same memory. In the Harvard architecture, data and instructions

are stored in two physically separate memory devices.

Central
Processing Instruction
Unit (CPU) and Data

Memory
Instruction

Control Unit Data

Address
Opcode Status

Arithmetic & Address
Logic Unit

(ALU) 1/0

Result/ Peripherals

Operands Address
Data

Registers Data

Figure 1-4. Von Neumann computer
architecture. Instructions and data share the
memory device. It has only one set of data

bus and address bus shared by the
instruction memory and the data memory.

Central
Processing Instruction
Unit (CPU) Memory

Instruction
Data

Control Unit
Address

Instruction
Memory Opcode Status
Address

Arithmetic & 1/0

Logic Unit Data Memory Peripherals

(ALU) Address Address

Result/ Data
Operands

Data
Registers Data

Memory

Address

Data

Figure 1-5. Harvard computer architecture.
Instructions and data are stored in different

memory devices. It has a dedicated set of
data bus and address bus for the instruction

memory and the data memory.

- 1.2 - Load a Machine Program into Memory

In the Harvard architecture, the instruction memory and the data memory are often small
enough to fit in the same address space. For a 32-bit processor, the memory address has
32 bits. Modern computers are byte-addressable (i .e. , each memory address identifies a
byte in memory). When the memory address has 32 bits, the total addressable memory
space includes 232 bytes (i .e. , 4 GB). Table 1-1 lists a few metric prefixes, with their
numerical equivalents. A 4-GB memory space is large enough for embedded systems.

Name Abbr. Size
Kilo K 210 =1,024

Mega M 220 = 1,048,576
Giga G 230 = 1,073,741,824

Tera T 240 = 1,099,511,627,776
Table 1-1. Metric prefixes of memory size

Because the data and instruction memory are small enough to fit in the same 32-bit
memory address space, they often share the memory address bus, as shown in Figure 1-5.
Suppose the data memory has 256 kilobytes (218 bytes), and the instruction memory has
4 kilobytes (212 bytes) . In the 32-bit (i .e., 4 GB) memory address space, we can allocate a
4KB region for the instruction memory and a 256KB region for the instruction memory,
as shown in Figure 1-6. Because there is no overlap between these two address ranges,
the instruction memory and the data memory can share the address bus.

Memory a byte
Address 1 .. (8 bits) ~ I

0x200:'FFFF ~
;.--

0x20000002
f------l

0x20000001
f------l

0x20000000
f-----...;

0'08~00FFF ~
0x08000002

1-------t

0x08000001
f------l

0x08000000

Data Memory
218 bytes= 256 KB

Instruction Memory
212 bytes = 4 KB

Figure 1-6. Data memory and instruction memory are in the same memory address space in
Harvard Architecture in many embedded systems. Accordingly, the instruction memory and

the data memory can share the same address bus.

See a Program Running -

Each type of computer architecture has its advantages and disadvantages.

• The Von Neumann architecture is relatively inexpensive and simple.
• The Harvard architecture allows the processor to access the data memory and the

instruction memory concurrently. By contrast, the Von Neumann architecture
allows only one memory access at any time instant; the processor either read an
instruction from the instruction memory or accesses data in the data memory.
Accordingly, the Harvard architecture often offers faster processing speed at the
same clock rate.

• The Harvard architecture tends to be more energy efficient. Under the same
performance requirement, the Harvard architecture often needs lower clock
speeds, resulting in a lower power consumption rate.

• In the Harvard architecture, the data bus and the instruction bus may have
different widths. For example, digital signal processing processors can leverage
this feature to make the instruction bus wider to reduce the number of clock cycles
required to load an instruction.

1.2.2 Creating Runtime Memory Image
ARM Cortex-M3/M4/M7 microprocessors are
Harvard computer architecture, and the
instruction memory (flash memory) and the
data memory (SRAM) are built into the
processor chip, as shown in Figure 1-7. The
microprocessor employs two separate and
isolated memories. Separating the instruction
and data memories allows concurrent accesses

Cortex-MJ
Processor

Core

Instruction
Memory
(FLASH)

Input/
Output

Data
Memory
(SRAM) to instructions and data, thus improving the

memory bandwidth and speeding up the
processor performance. Typically, the
instruction memory uses a slow but non
volatile flash memory, and the data memory
uses a fast but volatile SRAM.

Figure 1-7. The instruction memory and
the data memory are built into the

processor chip.

Figure 1-8 gives a simple example that shows how the Harvard architecture loads a
program to start the execution. When the processor loads a program, all initialized global
variables, such as the integer array a, are copied from the instruction memory into the
initialized data segment in the data memory. All uninitialized global variables, such as
the variable counter, are allocated in the zero-initialized data segment. The local variables,
such as the integer array b, are allocated on the stack, located at the top of SRAM. Note
the stack grows downward. When the processor boots successfully, the first instruction

- 1.2 - Load a Machine Program into Memory

of the program is loaded from the instruction memory into the processor, and the
program starts to run.

Copying an Array

To improve performance, some
variables are not stored in memory.
Variable i will be stored in a register.

~------------, '
~li_n_t_c_o_un_t_er_; _____ ~~ -----~~

SRAM End Address

Stack
Stack Start

/ ---

I int a[5) = {1, 2, 3, 4, 5}; ~ -:, 7 -:::_

int main(void){ ------
1 int i; ~-----

I int b[5); ~----------

counter = 0;
for (i = 0; i < 5; i++){

b[i] = a[i];
counter++

}
while(l);

Dissection of a c Program

ROM

Ox0000,0000 ~-----~

f----in_t,bf_5J_; ---;--Stack Pointer (SP)

Stack grows down

Heap grows up

Heap
f--------14-- Heap Start

Zero-initialized
Data Segment

counter= O;

Figure 1-8. A processor of Harvard architecture loads a program into the instruction memory and
the data memory.

At runtime, the data memory is divided into four segments: initialized data segment,
uninitialized data segment, heap, and stack. The processor allocates the first two data
segments statically, and their size and location remain unchanged at runtime. The size of
the last two segments changes as the program runs.

The initialized data segment contains global and static variables that the program gives
some initial values. For example, in a C declaration, "int capacity = 100;", if it appears
outside any function (i.e., it is a global variable), the processor places the variable capacity
in the initialized data segment with an initial value when the processor creates a running
time memory image for this C program.

• The zero-initialized data segment contains all global or static variables that are
uninitialized or initialized to zero in the program. For example, a globally
declared string" char name [20];" is stored in the uninitialized data segment.

• The heap holds all data objects that an application creates dynamically at runtime.
For example, all data objects created by dynamic memory allocation library
functions like malloc() or calloc() in Corby the new operator in C++ are placed in

See a Program Running -

the heap. A free() function in C or a delete operator in C ++ removes a data object
from the heap. The memory space allocated to this data object is freed up. The
heap is placed immediately after the zero-initialized segment, and it grows
upward (toward higher addresses).

• The stack stores local variables of subroutines, including main(), saves the
runtime environment and passes arguments to a subroutine. A stack is a first-in
last-out (FILO) memory region, and the processor places it on the top of the data
memory. When a subroutine declares a local variable, the variable is saved in the
stack. When a subroutine returns, the subroutine should pop from the stack all
variables it has pushed. Additionally, when a caller calls a subroutine, the caller
may pass parameters to the subroutine via the stack. As subroutines are called
and returned at runtime, the stack grows downward or shrinks upward
correspondingly.

The processor places the heap and the stack at the opposite end of a memory region, and
they grow in different directions, as shown in Figure 1-8. In a free memory region, the
stack starts from the top, and the heap starts from the bottom. As variables are
dynamically allocated or removed from the heap or stack, the size of the heap and stack
changes at runtime. The heap grows up toward the large memory address, and the stack
grows down toward the small memory address. Growing in opposite directions allows
the heap and stack to take full advantage of the free memory region. When the stack
meets the heap, free memory space is exhausted.

Figure 1-9 shows an example memory map of the 4GB memory space in a Cortex-M3
microprocessor. The memory map is pre-defined by the chip manufacturer and is not
programmable usually. Within this 4GB linear memory space, the address range of
instruction memory, data memory, internal and external peripheral devices, and external
RAM has no overlap with each other.

• The on-chip flash memory, used for the instruction memory, has 4 KB, and its
address starts at 0x08000000.

• The on-chip SRAM, used for the data memory, has 256 KB, and its memory
address begins at 0x20000000.

• The external RAM allows the processor to expand the data memory capacity.

The processor allocates memory addresses for each internal or external peripheral. This
addressing scheme enables the processor to interface a peripheral in a convenient way.
A peripheral typically has a set of registers, such as data registers for data exchange
between the peripheral and the processor, control registers for the processor to configure
or control the peripheral, and status registers to indicate the operation state of the
peripheral. A peripheral may also contain a small memory.

1.2 - Load a Machine Program into Memory

The processor maps the registers and memory of all peripherals to the same memory
address space of the instruction and data memory. To interface a peripheral, the
processor uses regular memory access instructions to read or write to those memory
addresses predefined for this peripheral. This method is called memory-mapped IIO (See
Chapter 14.6 for details). The processor interfaces all peripheral in the way as if they were
part of the memory.

512MB

lGB

lGB

512MB

512MB

512MB

0xFFFFFFFF

0xE0100000

0xE0000000

0xC0000000

0xA0000000

0x80000000

0x60000000

0x40026400

0x40000000

0x20000000

0x08000000

0x00000000

1~
8 bits

·I

Cortex-M3 Internal
Peripherals (64 KB)

External
Device

External
RAM

Peripheral
(153KB)

SRAM
(Data Memory)

Flash Memory
(Instruction Memory)

/
/

/
/

/

SRAM end address

/
/

/
/

/

/
/

/

/
/

/

0x20000000

/

Main Stack

+
Stack grows down.

Heap grows up.

t
Data

SRAM start address

} 128MB

-stack start

Stack
- pointer (SP)

- Stack end
- Heap end

- Heap start

Figure 1-9. Example memory map of a 4GB memory space. The instruction memory, the data
memory, and all peripherals share the same memory address space. The memory map is fixed

and contains unused region.

See a Program Running -

1.3 Registers
Before we illustrate how a microprocessor executes a program, let us first introduce one
important component of microprocessors - hardware registers. A processor contains a
small set of registers to store digital values. Registers are the fastest data storage in a
computing system.

All registers are of the same size and typically hold 16, 32, or 64 bits. Each register in
Cortex-M processors has 32 bits. The processor reads or writes all bits in a register
together. Chapter 4.6 presents how to check or change individual bits in a register. A
register can store the content of an operand for a logic or arithmetic operation, or the
memory address or offset when the processor access data in memory.

A processor core has two types of registers: general-purpose registers and special
purpose registers. While general-purpose registers store the operands and intermediate
results during the execution of a program, special-purpose registers have a pre
determined usage, such as representing the processor status. Special-purpose registers
have more usage restrictions than general-purpose registers. For example, some of them
require special instructions or privileges to access them.

Set Reset Digital Bit

1 0 1
0 1 0
0 0 not allowed
1 1 hold state

Figure 1-10. Logic diagram and truth table of a basic flip-flop constructed by using two
Negated AND (NANO) gates

A register consists of a set of flip-flops in parallel to store binary bits. A 32-bit register has
32 flip-flops side by side. Figure 1-10 shows a simple implementation of a flip-flop by
using a pair of Negated AND (NANO) gates. A flip-flop usually has a clock input, which
is not shown in this example.

The flip-flop works as follows. When the set or the reset is true, a digital value of 1 or 0
is stored, respectively. When both the set and the reset are true, the digital value stored
remains unaffected. The set and reset signals cannot be false simultaneously. Otherwise,
the result produced would be random.

- 1.3 - Registers

1.3.1 Reusing Registers to Improve Performance
Accessing the processor's registers is much faster than data memory. Storing data in
registers instead of memory improves the processor performance.

•

•

In most programs, the probability that a data
item is accessed is not uniform. It is a common
phenomenon that a program accesses some
data items much more frequently than the
other items. Moreover, a data item that the
processor accesses at one point in time is likely
to be accessed again shortly. This
phenomenon is pervasive in applications, and
it is called temporal locality . Therefore, most
compilers try to place the value of frequently
or recently accessed data variables and
memory addresses in registers whenever
possible to optimize the performance.
Software programs also have spatial locality .
When a processor accesses data at a memory
address, data stored in nearby memory
locations are likely to be read or written
shortly. Processor architecture design (such as

Analogy Example

Temporal Locality: You
tend to read the same

book repeatedly in the
library when preparing

an exam.

Spatial Locality: You
tend to read books on the

same bookshelf in the
library when preparing

an exam.

caching and prefetching) and software development (such as reorganizing data
access sequence) exploit spatial locality to speed up the overall performance.

The number of registers available on a microprocessor is often small, typically between
4 and 32, for two important reasons.

• First, many experimental measurements have shown that registers often exhibit
the highest temperature compared to the other hardware components of a
processor. Reducing the number of registers helps mitigate the thermal problem.

• Secondly, if there are fewer registers, it takes fewer bits to encode a register in a
machine instruction. A small number of registers consequently decrease the code
size and reduce the bandwidth requirement on the instruction memory. For
example, if a processor has 16 registers, it requires 4 bits to represent a register in
an instruction. To encode an assembly instruction with two operand registers and
one destination register, such as "add r3, rl, r2" (r3 = rl + r 2), the binary
machine instruction uses 12 bits to identify these registers. However, if a
processor has only eight registers, encoding three registers in an instruction takes
only 9 bits.

See a Program Running -

Register allocation is a process that assigns variables and constants to general-purpose
registers. It is often the case that a program has more variables and constants than
registers. Register allocation decides whether a variable or constant should reside in a
processor register or at some location in the data memory. Register allocation is
performed either automatically by compilers if the program is written in a high-level
language (such as C or C++), or manually if the program is in assembly.

For a given program, finding the optimal register allocation that minimizes the number
of memory accesses is a very challenging problem. Register allocation becomes further
complicated in Cortex-M processors. For example, some instructions can only access
registers with small addresses (low registers). Some instructions, such as multiplication,
place a 64-bit result into two registers.

When writing an assembly program, we can follow three basic steps to allocate registers.
Chapter 7.2 gives a detailed example.

1. We inspect the live range of a variable. A variable is live if the program accesses
it again at some later point in time.

2. If the live range of two variables overlaps, we should not allocate them into the
same register. Otherwise, we can assign them to the same register.

3. We map the most frequently used variables to registers and allocate the least
frequently used variables in the data memory if necessary to reduce the number
of memory accesses.

1.3.2 Processor Registers
As shown in Figure 1-11, registers are divided into two groups:
general-purpose registers and special-purpose registers. Register
names are case-insensitive.

•

•

•

There are 13 general-purpose registers (r0 - r12) available for
program data operations. The first eight registers (r0 - r7) are

'----r--'
32 bits

called low registers, and the other five (r8 - r12) are called high registers. Some
of the 16-bit assembly instructions in Cortex-M can only access the low registers.
Stack point (SP) r13 holds the memory address of the top of the stack. Cortex-M
processors provide two different stacks: the main stack and the process stack. Thus,
there are two stack pointers: the main stack pointer (MSP) and the process stack
pointer (PSP) . The processor uses PSP when executing regular user programs, and
uses MSP when serving interrupts or privileged accesses. The stack pointer (SP) is
a shadow register of either MSP or PSP, depending on the processor' s mode setting.
When a processor starts, it assigns MSP to SP initially.
Link register (LR) r14 holds the memory address of the instruction that needs to
run immediately after a subroutine completes. It is the next instruction after the

1.3 - Registers

instruction that calls a subroutine. During the execution of an interrupt service
routine, LR holds a special value to indicate whether MSP or PSP is used.

• Program counter (PC) rlS holds the memory address (location in memory) of the
next instruction(s) that the processor fetches from the instruction memory.

• Program status register (xPSR) records status bit flags of the application program,
interrupt, and processor execution. Example flags include negative, zero, carry,
and overflow. Chapter 4.1 gives a detailed introduction.

• Base priority mask register (BASEPRI) defines the priority threshold, and the
processor disables all interrupts with a higher priority value than the threshold.
A lower priority value represents a higher priority (or urgency).

• Control register (CONTROL) sets the choice of the main stack or the process stack,
and the selection of privileged or unprivileged mode. Chapter 23 discusses the
CONTROL register.

• Priority mask register (PRIMASK) is used to disable all interrupts excluding hard
faults and non-maskable interrupts (NMI) . If an interrupt is masked, the
processor disables this interrupt. Chapter 11 introduces interrupts in detail.

• Fault mask register (FAUL TMASK) is used to disable all interrupts excluding non
maskable interrupts (NMI).

Low
Registers

High
Registers

I· 32 bits .. 1
RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

.....,

General
Purpose
Registers

~ R13(PSP) I

R13 (MSP) I

I· 32 bits .. 1
xPSR

BASE PR I

PRIMASK

FAULTMASK

CONTROL

Figure 1-11. Registers of ARM Cortex-M processor.

Special
Purpose
Registers

PC = program counter, LR = link register, SP = stack pointer, MSP =main stack pointer,
PSP = process stack pointer, xPSR = program status register

See a Program Running -

The program counter (PC) stores the memory address at which the processor loads the
next instruction(s). Instructions in a program run sequentially if the program flow is not
changed. Usually, the processor fetches instructions consecutively from the instruction
memory. Thus, the program counter is automatically incremented, pointing to the next
instruction to be executed.

Each instruction in Cortex-M has either 16 or 32 bits.
Typically, the processor increases the program counter by
four automatically. The processor retrieves four bytes (i .e.,
32 bits) from the instruction memory in one clock cycle, as
shown in Figure 1-12. Chapter 13.2 discusses how the
processor decodes these 32 bits and finds out whether they
represent one 32-bit instruction or two 16-bit instructions.

PC=PC+4
after each

instruction fetch

Instruction Memory

Memory Memory
Address Data

32 bits

{

Case 1: One 32-bit Instruction

Case 2: Two 16-bit Instructions

4

Figure 1-12. The program counter (PC) is incremented by 4. PC holds the memory address of
the next instruction(s) to be fetched from the instruction memory. When the program reads

PC, the returned value is the address of the current instruction plus 4.

[!

Normally, assembly instructions in a program run in a sequential order. However,
branch instructions (see Chapter 6), subroutines (see Chapter 8), and interrupts (see
Chapter 11) can change the sequential program flow by setting PC to the memory address
of the target instruction.

For Cortex-MO/M3/M4, each instruction takes three stages, as shown in Figure 1-13.

• At the first stage, the processor fetches 4 bytes from the instruction memory and
increments the program counter by 4 automatically. After each instruction fetch,
the program counter points to the next instruction(s) to be fetched .

• At the second stage, the processor decodes the instruction and finds out what
operations are to be carried out.

• At the last stage, the processor reads operand registers, carries out the designated
arithmetic or logic operation, accesses data memory (if necessary) and updates
target registers (if needed).

1'':

2nd

3rd

41t1

51t1

51t1

1.3 - Registers

Execute
Instruction

Fetch
Instruction

Decode
Instruction

Figure 1-13. Life cycle of an instruction. An instruction pointed by the program counter is
fetched, decoded, and executed. The processor increments PC automatically after it loads an

instruction from the instruction memory.

This fetch-decode-execution process repeats for each instruction until the program finishes.
As shown in Figure 1-14, the processor executes each instruction in a pipelined fashion.
This pipeline is like an automobile assembly line. Pipelining allows multiple instructions
to run simultaneously. Thus, it increases the utilization of hardware resources and
improves the processor's overall performance. To execute programs correctly, a pipeline
processor should take special considerations to branch instructions. For example, when
a branch instruction changes the program flow, any instructions that the processor has
fetched incorrectly should not complete the pipeline.

Clock

16-bit Instruction Fetch Decode I Execution

16-bit Instruction Fetch Decode Execution

32-bit Instruction Fetch Decode Execution

32-bit Instruction Fetch Decode Execution I
16-bit Instruction Fetch Decode I Execution I
16-bit Instruction Fetch I Decode I Execution I

Figure 1-14. Three-stage fetch-decode-execution pipeline in Cortex-M4. Pipelining makes
hardware resources fully utilized. Each time the processor fetches 4 bytes from the instruction
memory, which includes two 16-bit instructions or one 32-bit instruction (See Chapter 13.2 for

details). Therefore, after each fetch, PC is incremented by 4.

While Cortex-MO, Cortex-M3, and Cortex-M4 have three pipeline stages, Cortex-MO+ has
only two stages, including instruction fetch and execution. As well, Cortex-MO+ is based
on Von Neumann Architecture, instead of Harvard Architecture. Cortex-M7 is much
more complicated, and it has multiple pipelines, such as load/store pipeline, two ALU

See a Program Running -

pipeline, and FPU pipeline. It allows more instructions to run concurrently. Each pipeline
can have up to six stages, including instruction fetch, instruction decode, instruction
issue, execute sub-stage 1, execute sub-stage 2, and write back.

1.4 Executing a Machine Program
This section illustrates how a Cortex-M processor executes a program. We use a simple
C program given in Table 1-2 as an example. The program calculates the sum of two
global integer variables (a and b) and saves the result into another global variable c.
Because most software programs in embedded systems never exit, there is an endless
loop at the end of the C program.

C Program Assembly Program
Machine Program
Binary Hex

AREA myData, DATA
ALIGN

int a = 1; a DCD 1 0000000000000000 0x0000
0000000000000001 0x0001

int b = 2; b DCD 2 0000000000000000 0x0000
0000000000000010 0x0002

int c = 0· J c DCD 0 0000000000000000 0x0000
0000000000000000 0x0000

AREA myCode, CODE
EXPORT main -
ALIGN
ENTRY

int main(){ - main PROC
c = a + b; LDR rl, =a 0100100100000011 0x4903
while(l); LDR r2, [rl] 0110100000001010 0x680A

} LDR r3, =b 0100101100000011 0x4B03
LDR r4, [r3] 0110100000011100 0x681C
ADDS rs, r2, r4 0001100100011001 0x191S
LDR r6, =C 0100111000000011 0x4E03
STR rs, [r6] 0110000000111001 0x603S

stop B stop 1110011111111110 0xE7FE
ENDP 0000000000000000 0x0000
END 0010000000000000 0x2000

0000000000000100 0x0004
0010000000000000 0x2000
0000000000001000 0x0008
0010000000000000 0x2000

Table 1-2. Comparison of C program, assembly program, and machine program

A compiler translates the above C program into an assembly program like the one given
in Table 1-2. Different compilers may generate assembly programs that differ from each

- 1.4 - Executing a Machine Program

other. Even the same compiler can generate different assembly programs from the same

C program if different compilation options (such as optimization levels) are used.

The assembler then produces the machine program based on the assembly program. The

machine program includes two parts: data and instructions. Table 1-2 only lists the
instructions. The prefix "0x" represents a hexadecimal number. A number represented

in hexadecimal format is more readable than its representation in binary. Chapter 2

introduces the representation and conversion of integers in detail.

Note that the assembly program uses instruction "ADDS rs, r2, r4", instead of "ADD rs,

r2, r4", even though the processor does not use the N, Z, C, and V flags updated by the

ADDS instruction in this program (see Chapter 4.2). The ADD instruction has 32 bits, and

ADDS has only 16 bits. The compiler prefers ADDS to ADD to reduce the binary program size.

1.4.1 Loading a Program
When the program runs on Harvard architecture, its instructions and data are loaded

into the instruction and data memory, respectively. Table 1-3 gives an example image of

the instruction and data memory.

Memory Memory Binary Assembly Comments
Region Address Instruction Instruction

0x20000000 0x0001 DCW 0x0001
0x20000002 0x0000 DCW 0x0000 ; 0x00000001

Data
0x20000004 0x0002 DCW 0x0002

Memory 0x20000006 0x0000 DCW 0x0000 ; 0x00000002
0x20000008 0x0000 DCW 0x0000
0x2000000A 0x0000 DCW 0x0000 ; 0x00000000

...
0x08000160 0x4903 LDR rl, [pc,#12] ; (al0x08000170
0x08000162 0x680A LDR r2, frll ; r2 = a
0x08000164 0x4B03 LDR r3, f pc,#12] ; (al0x08000174
0x08000166 0x681C LDR r4, f r3l ; r4 = b
0x08000168 0x191S ADDS rs, r2, r4 ; rs = a + b
0x0800016A 0x4E03 LDR r6, roc,#12] ; (al0x08000178

Instruction
0x0800016C 0x603S STR rs, f r6l ; save c

Memory 0x0800016E 0xE7FE B 0x0800016E ; stop
0x08000170 0x0000 DCW 0x0000
0x08000172 0x2000 DCW 0x2000 ; 0x20000000
0x08000174 0x0004 DCW 0x0004
0x08000176 0x2000 DCW 0x2000 , 0x20000004
0x08000178 0x0008 DCW 0x0008
0x0800017A 0x2000 DCW 0x2000 ; 0x20000008

.
Table 1-3. Memory image when the processor loads the instructions and data of a program

into the instruction memory and the data memory, respectively.

See a Program Running -

Depending on the processor hardware setting, the starting address of the instruction and
data memory might differ from this example. Each instruction in this example happens
to take two bytes in the instruction memory. The global variables are placed in the data
memory when a program runs, as shown in Figure 1-8.

By default, the address of the RAM, used as data memory starts at 0x20000000 (see
Figure 1-9). Therefore, as Table 1-3 shows, these three integer variables (a, b, and c) are
stored in the RAM, and their starting address is 0x20000000. Each integer takes four bytes
in memory.

Each instruction takes three clock cycles (fetch, decode, and execute) to complete on ARM
Cortex-M3 and Cortex-M4 processors:

(1) Fetch the instruction from the instruction memory,
(2) Decode the instruction, and
(3) Execute the arithmetic or logic operation, update the program counter for a

branch instruction, or access the data memory for a load or store instruction.

The assembly instruction "LOR rl, =a" is a pseudo
instruction, and the compiler translates it to real machine

instructions, as discussed in detail in Chapter 5.4.4. This Pseudo instructions
instruction sets the content in register rl to the memory are not real machine
address of variable a. The pseudo instruction is instructions.
translated to "LOR rl, [pc, #12] ". The memory address
of variable a is stored at the memory location " [pc,

#12]" . This PC-relative addressing scheme is a general
approach to loading a large irregular constant number into a register. Chapter 3 explains
PC-relative addressing.

1.4.2 Starting the Execution

After the processor is booted and initialized, the program counter (PC) is set to
0x08000160. After executing an instruction, the processor increments PC automatically
by four. PC points to the next 32-bit instruction or the next two 16-bit instructions to be
fetched from the instruction memory. In this example, each instruction happens to take
only two bytes (16 bits). Many instructions take four bytes (32 bits), as discussed in
Chapter 13. Consequently, the processor fetches two instructions each time in this
example.

Each processor has a special program called boot loader, which sets up the runtime
environment after completion of self-testing. The boot loader sets PC to the first

t·.

1.4 - Executing a Machine Program

instruction of a user program. For a C program, PC points to the first statement in the
main function. For an assembly program, PC points the first instruction of the _main
function (See Table 1-2).

Figure 1-15 shows the values of registers, the layout of instruction memory and data
memory after the processor loads the sample program. When the program starts, PC is
set to 0x08000160. Note each memory address specifies the location of a byte in memory.
Because each instruction takes 16 bits in this example, the memory address of the next
instruction is 0x08000162. Variables a, b, and care declared as integers, and each of them
takes four bytes in memory.

R0

Rl

R2

R3

R4

RS

RG

R7

RS

R9

R10

Rll

R12

SP
LR

PC

I·
32 bits

·I

0x08000160 '""

Microprocessor

Memory
Address

0x2000000A

0x20000008

0x20000006

0x20000004

0x20000002

0x20000000

0x0800017A

0x08000178

0x08000176

0x08000174

0x08000172

0x08000170

0x0800016E

0x0800016C

0x0800016A

0x08000168

0x08000166

0x08000164

0x08000162

- - - - - - - - - ----- - ---- - -~ 0x08000160

16 bits

0x0000

0x0000

0x0002

0x0000

0x0001

0x0000

~
0X2000

0x0008

0x2000

0x0004

0x2000

0x0000

0xE7FE

0x6035

0x4E03

0x1915

0x681C

0x4B03

0x680A

0x4903

C=0X00000000

b=0x00000002

a=0x00000001

DCW 0x2000

DCW 0x0008

DCW 0x2000

DCW 0x0004

DCW 0x2000

DCW 0x0000

B 0x0800016E

STR r5,(r6)

LDR r6,(pc,#12)

ADDS r5,r2,r4

LDR r4,(r3)

LDR r3,[pc,#12)

LDR r2,[rl]

LDR rl,[pc,#12)

Data
Memory

Instruction
Memory

Figure 1-15. Memory image when the example program is loaded. The program counter
points to the next instruction to be loaded. Variables a, b, and care stored in the data memory.

Registers hold values to be operated by the arithmetic and logic unit (ALU). All registers
can be accessed simultaneously, without causing any extra delay. A variable can be
stored in memory or a register. When a variable is stored in the data memory, the value
of this variable must be loaded into a register because arithmetic and logic instructions

See a Program Running -

cannot directly operate on a value stored in memory.
The processor must carry out the load-modify-store
sequence to update this variable:

1. Load the value of the variable from the data
memory into a register,

2. Modify the value of the register by using ALU,
and

A load-modify-store
sequence is required to

update a memory value.

1.
)

~

I;
l

~~~~~~~~~~~~~. 
: 

3. Store the value of this register back into the data 
memory. 

This assembly program given in Table 1-2 involves the following four key steps: 

1. Load the value of variable a from the data memory into register r2. 

2. Load the value of variable b from the data memory into register r4. 

3. Calculate the sum of r2 and r4 and save the result into register rs. 

4. Save the content of register rs to the memory where variable c is stored. 

The following explains the execution of each assembly instruction line by line. To 
facilitate the discussion, we list the memory address where the instruction is stored, the 
binary machine instruction, the assembly instruction that the binary machine instruction 
represents, the execution result, and comments in sequential order. 

Address: Binary Code => Assembly Instruction => Execution Result 
1. 0x08000160: I 0x4903 I => I LOR rl, [pc, #12] I => I rl = 0x2000000ij 

; Load memory address of global variable a into register rl 

A 16-bit binary instruction stored at 0x08000160 in the instruction memory is 
0x4903. The processor decodes it as "LDR rl, [pc, #12]". 

• This instruction loads a 32-bit data (a word) stored at the address PC+ 4 + 

12 into register rl. PC is the base memory address. The constant number 
12 is an offset, which denotes the distance between the base address and 
the target address. 

• Note that the target memory address is PC + 4 + 12, not PC + 12. PC is 
automatically incremented by four. Reading the program counter always 
returns PC + 4. 

• Because PC at this moment is 0x08000160, the memory address of the 
target data in this load instruction is PC + 4 + 12, i. e., 0x08000170. 

• The 32-bit data stored at the memory address 0x08000170 is 0x20000000. 

• After executing this instruction, register rl is set to 0x20000000. 



- 1.4 - Executing a Machine Program 

In this program, the memory address of variable a is directly stored in the binary 
code, and this instruction uses PC-relative addressing to load the memory address 
of a into rl. 

2. exeseee162: I 0x680 I~ I LDR r2, [rl] I~ I r2 = 0x00000001I 
; Load the value of global variable a from the data memory into r2 

The 16-bit binary instruction stored at the memory address 0x08000162 is 0x680A. 
In C, each integer variable takes four bytes in memory. In this example, the value 
of the integer variable a is stored at the address 0x20000000 in the data memory. 
This instruction loads the value of variable a into register rl. After this instruction 
completes, the content in register r2 is 0x00000001. 

3. exeBeee164: I 0x4B03 I~ I LDR r3, [pc, #12] I ~ I r3 = 0x2000000~ 
; Load the memory address of global variable b into register r3 

The next 16-bit instruction is 0x4B03, which is decoded as "LDR r3, [pc, #12]". 
It loads the memory address of variable b into register r3. PC is 0x08000164 and 
thus the target memory address is PC+ 4 + 12, i.e., 0x08000174. After loading 32-
bit data located at 0x08000174, r3 is 0x20000004. 

4. exeseee166: I 0x681C I ~ I LDR r4, [r3] I ~ I r4 0x00000002I 
; Load value of global variable b into register r4 

The machine instruction 0x681C instructs the processor to load 32-bit data at 
memory location 0x20000004 into register r4. Register r 3 holds the memory 
address of variable b. After the execution, r4 is 0x00000002. 

s. exeBeee16B: I 0xl915 I ~ I ADDS rs, r2, r4 I ~ I rs = 0x00000003I 
; Add the values of a and b 

The machine instruction 0x1915 asks the processor to add two integers stored in 
register r2 and r4, and save the result into register r5, i.e., r5 = r2 + r4. 

• Register r2 and r4 hold the values of variable a and b, respectively. 
• After the add operation completes, r5 is 0x00000003. 
• Because ADD is a 32-bit instruction and ADDS is a 16-bit instruction, ADDS is 

preferred to increase the code density. In this example, "ADD r5, r2, r4" 
allows the program to run correctly, but increases the size of the binary 
code by two bytes. 

6. exeseee16A: I 0x4E03 I ~ I LDR r6, [pc, #12 J I ~ I r6 = 0x2000000sl 
; Load memory address of global variable c into register r6 



See a Program Running -

This instruction loads the memory address of variable c into register r 6. After 
completion, r 6 is 0x20000008. 

7. 0x0800016C: I 0x6035 I :=> \ STR rs, [r6 ] I => \ mem[ 0x20000008 ] 0x0000000 3I 
; Store sum i nto variable c located in the data memory 

This instruction stores the 32-bit content in register rs into the memory address 
pointed by register r 6. It saves the content of variable c into the data memory 
located at 0x20000008. After completion, the content of the data memory located 
at 0x20000008 is 0x00000003. 

8. 0x0800016f: I 0xE7FE I => \ B 0x0800016E I => I PC 0x0800016EI 
; Dead loop 

This instruction (0xE7FE) is a branch instruction that sets PC to 0x0800016 E, which 
points to the instruction itself. The 11-bit branch offset is 0x7FE (i.e., -2). Thus, PC 

= PC + 4 + 2 x offset = PC + 4 - 4 = PC. Consequently, the same instruction is 
repeatedly executed, which creates an endless loop. This corresponds to the 
while( 1) loop of the C program. 

1.4.3 Program Completion 
Figure 1-16 shows the values of all registers and the data memory when the program 
reaches the dead loop. 

• The instruction memory remains unchanged because it is read only. 
• The data memory stores computed values that may change at run time. 
• The program saves the result in the data memory. Variable c stored at the data 

memory address 0x20000008 has a value of 3, which is the sum of a and b. 
• The program counter (PC) is kept at 0x0800016E, pointing to the instruction 

0xE7F E repeatedly. PC keeps pointing to the current instruction, which forms a 
dead loop. In embedded systems, most applications do not return and 
consequently places a dead loop at the end of the main function. 

During the computation, values stored in the data memory cannot be operands of ALU 

directly. To process data stored in the data memory, the processor must load data into 

processor's general-purpose registers first. Neither can the processor save the result of 

ALU to the data memory directly. The processor should write the ALU result to a 

general-purpose register first and use a store instruction to copy the data from the 

register to the data memory. 



- 1.5 - Exercises 

R0 

Rl 

R2 

R3 

R4 

RS 

R6 

R7 

RB 

R9 

R10 

Rll 

R12 

SP 
LR 

PC 

1 .. 32 bits ·I 

0x20000000 

0x00000001 -

0x20000004 

0x00000002 -

0x00000003 ~ 

0x20000008 

0x0800016E >--

I 
I 
I 
I 
I 
I 
I 
I 

Microprocessor 

I I 
L- - - - - - - - - - - - - - _I 

Memory 
Address 

16 bits 

0x2000000A 0x0003 

0x20000008 0x0000 

0x20000006 0x0002 

0x20000004 0x0000 

0x20000002 0x0001 

0x20000000 

0x0800017A 

0x08000178 

0x08000176 

0x08000174 

0x08000172 

0x08000170 

1• 0x0800016E 

: 0x0800016C 

: 0x0800016A 

: 0x08000168 

: 0x08000166 
I 
I 0x08000164 
I 
I 0X08000162 
I 

~ 
0x2000 

0x0008 

0x2000 

0x0004 

0x2000 

0x0000 

0xE7FE 

0x6035 

0x4E03 

0x1915 

0x681C 

0x4B03 

0x680A 

- - - - - - - - - - - - - - - - - - - " 0x08000160 0x4903 

c=0x00000003 

b=0x00000002 

a=0x00000001 

DCW 0x2000 

DCW 0x0008 

DCW 0x2000 

DCW 0x0004 

DCW 0x2000 

DCW 0x0000 

B 0x0800016E 

STR r5, [ r6] 

LOR rG,[pc,#12] 

ADDS r5,r2,r4 

LOR r4, [r3] 

LOR r3, [pc,#12] 

LOR r2, [ rl] 

LOR rl,[pc,#12] 

Data 
Memory 

Instruction 
Memory 

Figure 1-16. Processor and memory status when the program reaches the dead loop. The 
program counter (PC) points to the branch instruction. The ALU can take any general-purpose 

registers as the source operands and the destination operand. To change the value stored in 
the data memory, the processor must perform a sequence of load-modify-store. 

1.5 Exercises 
1. Identify the processor type and manufacturer of five different devices, excluding 

servers, laptops, and desktops. Answer the following questions for each 

processor. 

a) How many bits does a machine instruction have? How many bits does the 

memory address have? 
b) What is the maximum memory capacity they can support? 
c) Do they have Harvard architecture and Von Neumann architecture? 



See a Program Running Im 

2. The program counter (PC) points to the memory address of the next instruction(s) 
that the processor load from memory. 

a) How does the PC value change after fetching a 32-bit instruction? 
b) How does PC change after executing a 16-bit instruction? 

3. The arithmetic and logic unit (ALU) performs integer and logic operations. 
Implement the logic of a simple ALU that performs 2-bit addition and subtraction. 
Assume that the operands are A1 A0 and 8 18 0 , and the output is C1 C0 . The 
operation code 0 has only one bit, which selects addition or subtraction. 

4. A register is the fastest data storage element within a processor. A 32-bit register 
consists of a set of flip-flops to store 32 bits of information. Design a 4-bit register 
by using flip-flops and answer the following questions. 

a) How many bits does the address bus have? 
b) How many bits does the data bus have? 
c) What else input signals should the register have? 

5. Suppose the memory address in most embedded systems has 32 bits. 

a) How many unique memory locations can a 32-bit address access? 
b) Desktops and servers usually have virtual memory, which allows a 

process to allocate and use a memory space that is larger than the physical 
memory. Why do not embedded systems use virtual memory usually? 

6. What are the advantages and disadvantages of Von Neumann architecture and 
Harvard architecture? 

7. Executable and Linkable Format (ELF) is a standard used for Linux operating 
systems and many other embedded systems. Compile a C program in Linux into 
a binary executable and use the readelf command to display the information of a 
binary executable. Identify the data sections and instruction/data sections of a 
binary executable program. 

8. Suppose a processor of the Harvard architecture has 4MB instruction memory 
and 32MB data memory. If the instruction memory and the data memory shares 
the same address bus, design a memory allocation scheme for this processor (i.e., 

give an example address range for the instruction memory and the data memory). 



- 1.5 - Exercises 

9. Why can instruction memory and data memory share the same address bus in 
Cortex-M3, Cortex-M4, and Cortex-M7? In other words, why can we put the 
instruction memory and data memory in the same memory address space? 

10. Cortex-MO+ is the most energy-efficient processor in the Cortex-M family . 

Suppose a Cortex-MO+ processor takes 100 µA in the active mode, and 48 µA in 

the sleep mode. If the application puts the processor 50% of the time in active 
mode and 50% in sleep mode, and two button cell batteries power the processor, 
with a total capacity of 600 mAh. How long can the batteries last? (Rule of thumb: 
Battery Life= Battery Capacity in mA per hour I Load Current in mA * 0.70) 

11. A mov assembly instruction copies the value of the source register to the 
destination register. What is the value of the destination register rl after the 
following instruction completes? 

Memory Assembly 
Address Instruction 

... .. . 
0x08000166 MOV rl, pc 

... ... 

12. Suppose a pipeline processor has three stages, as shown in Figure 1-14. Assume 
in a perfect scenario (such as no branch instructions, no data dependence between 
instructions, and no memory I/O waiting). 

a) How many clock cycles does it take to execute 10 instructions? What is the 
throughput (measured in instructions per cycle)? 

b) How many clock cycles does it take to execute n instructions? If n is 
sufficiently large, what is the throughput in terms of instructions per cycle? 

13. If two processors given below run the same binary program, which processor 
runs faster and how many times faster? 

Processor Clock Frequency 

Non-pipeline Processor A lOMHz 
Three-stage Pipeline Processor B 28MHz 



Data Representation -

CHAPTER 

2 
Data Representation 
Computers store data as a sequence of binary bits. This chapter focuses on digital 
representations of integers and text strings. Chapter 11 explains digital representations 
of real numbers. 

2.1 Bit, Byte, Halfword, Word, and Double-word 
A bit is the smallest quantity of information. Each bit has a value of either one or zero, 
and thus it is called a binary bit. However, it is more efficient for computers to load, 
process, store, and transmit a group of bits simultaneously. Therefore, bits are divided 
into a sequence of fixed-length logic units. 

As shown in Figure 2-1, a byte is a group of 8 bits, a halfword consists of 16 bits (or 2 
bytes), a w ord has 32 bits (or 4 bytes), and a double-w ord contains 64 bits (or 8 bytes). 
The most significant bit (MSB) and the least significant bit (LSB) of a byte are the bit at 
the leftmost and rightmost position, respectively. Usually, this is also true for halfword, 
word, and double-word. However, MSB and LSB may be located at some other positions 
in these units (See big endian and little endian in Chapter 5.2 for details). 

One Byte (8 bits) 

7 0 
One Half-word (16 bits) 

One Word (32 bits) 15 0 

One Double-word (64 bits ) 31 0 

63 0 

t t 
Most Significant Bit (MSB) Least Significant Bit (LSB) 

Figure 2-1. Number of bits in a byte, halfword, word, and double-word 



- 2.1 - Bit, Byte, Halfword, Word, and Double-word 

The C standard specifies the minimum size of basic data types. The actual size of a 
variable relies on the implementation of C compilers. Table 2-1 gives the typical size of 
some data bytes. A pointer in a C program is a special variable that holds the memory 
address of a variable stored in memory. On 32-bit processors, a pointer has 32 bits. Each 
register in Cortex-M processors has 32 bits. Accordingly, a register can hold a pointer or 
all basic data types listed except double. A double variable takes two registers. 

Basic data type of C language Typical size in memory 
char 1 byte 
short 2 bytes or 1 halfword 
signed/unsigned integer 4 bytes or 1 word 
signed/unsigned long 4 bytes or 1 word 
signed/unsigned long long 8 bytes or 1 double word 
float 4 bytes or 1 word 
double 8 bytes or 1 double word 

Table 2-1. Size of C variables in memory 

A byte is the smallest unit that can be transferred into or out of memory. Each byte in 
memory has a memory address. A halfword, word, and double-word span 2, 4, and 8 
consecutive bytes in memory, respectively. By convention, if a variable takes multiple 
bytes in memory, the processor uses the lowest memory address of these bytes as the 
memory address of this variable. For example, if a C integer variable takes four bytes in 
memory (0x20000000 - 0x20000003), the memory address of this integer variable is 
0x20000000. To modify a bit in memory, in general, a processor should load at least a 
byte from memory and then operate on the target bit. ARM Cortex-M processors provide 
a performance-enhancement technique called bit banding, which allows the processor to 
store directly or modify a bit (See Reference [17] for details). 

History of Binary Representation 
Modern binary systems were inspired from "Yi Jing" (also 
known as Book of Changes), one of the oldest classic texts dating 
back to 2852 - 2738 B.C. It used Yin (a broken line,--) and Yang 
(a solid line, - ) to represent two contrast but complementary 
natural phenomena, such as heaven and earth, fire and water, 
and wind and thunder. It uses a set of eight special symbols 
(called trigrams)::: (000),:: (001), =: (010), :=: (011),:.: (100), 

:::: (101), :.: (110), and = (111). Two trigrams from this set 
form a hexagram. Therefore, there are 64 possible hexagrams, 
forming sophisticated tools in analyzing and predicting 
patterns applicable to all human affairs. 

Figure 2-2. Yin Yang Ba Gua. 
Courtesy: Image from 

wikipedia.org 



Data Representation 1$* 

2.2 Binary, Octal, Decimal, and Hexadecimal Numbers 
We can represent an integer with different base values. Four commonly used bases are 
binary (base 2), octal (base 8), decimal (base 10), and hexadecimal (base 16). In general, 
an n-digit integer N in the base b has the following form: 

We can calculate its equivalent decimal value N as follows: 

N = Un-l x bn-l + Un-2 X bn- 2 + an_3 X bn-3 + ... +a1 X b + ao 

For example, in the decimal system (base 10), the number 201410 means 

201410 = 2 x 103 + 0 x 102 + 1 x 101 + 4 

Similarly, in the octal system (base 8), the number 13758 represents 

13758 = 1 x 83 + 3 x 82 + 7 x 81 + 5 = 76510 

Table 2-2 shows the conversion of a decimal number between 0 and 15 to its equivalent 
in decimal, binary, octal, and hexadecimal (hex for short). Because binary numbers are 
verbose, programmers often use hex numbers in programs. 

We can convert a binary number to its hex equivalent by separating binary bits into 
groups of four and then using Table 2-2 to replace each group of four binary digits with 
its equivalent hex digit. 

Decimal Binary Octal Hexadecimal 
0 0000 00 0x0 
1 0001 01 0xl 
2 0010 02 0x2 
3 0011 03 0x3 
4 0100 04 0x4 
5 0101 05 0x5 
6 0110 06 0x6 
7 0111 07 0x7 
8 1000 010 0x8 
9 1001 011 0x9 

10 1010 012 0xA 
11 1011 013 0xB 
12 1100 014 0xC 
13 1101 015 0xD 
14 1110 016 0xE 
15 1111 017 0xF 

Table 2-2. Conversion between decimal, binary, octal, and hexadecimal 



- 2.3 - Unsigned Integers 

In C, a prefix "0" represents octal, and a prefix "0x" or "0X" represents hexadecimal. The 
following gives examples of defining constant numbers in C. Most C compilers do not 
support directly declaring a binary number. This book uses "0b" to represent binary. 

int 
k 
k 
k 
k 
k 

k• , 
0xA; 
0XA; 
-0xA; 
012; 
0b1010; 

II hex constant, k = 1e in decimal 
II ex is the same as ex 
II hex constant, k = -le in decimal 
II octal constant, k = le in decimal 
II binary constant. Most compilers do not support it. 

2.3 Unsigned Integers 
How many unique symbols can n binary bits represent? Because each bit has two 
possible values, either one or zero, n bits can represent a total of zn different symbols. 
For example, with 5 bits, we can have 25 (i .e., 32) symbols, including 0b00000, 0b00001, 
0b00010, ... , and 0b11111. To use these symbols to represent numbers, we need to 
establish a mapping between each symbol and the number it represents. 

11101 

11100 

28 

27 

21 

20 

10100 

00011 

29 

19 13 

10010 01110 
10001 10000 01111 

00100 

11 

12 01011 

01100 

01101 

Figure 2-3. Representing unsigned numbers in a five-bit system 

Let us first look at unsigned numbers. Since each unsigned number can be represented 
in binary, it is natural for computers to store them using their binary representation 
directly. Figure 2-3 shows the mapping between unsigned numbers and all binary 
symbols in a five-bit system. If a n-bit string represents an unsigned number, the 
representable range is [O, zn - 1], including zero and zn - 1 positive integers. 



Data Representation -

Converting a binary number to an unsigned integer 

Since binary numbers have a base of 2, the conversion from binary to unsigned 
decimal is the same as the one presented in Chapter 2.2. The equivalent unsigned 
decimal integer of a binary number is the sum of the product of each binary digit 
and the power of 2 this binary bit represents. The exponent of each power is 
incremented by 1 for each binary digit, starting from the rightmost digit. For 
example, the binary value 0b1011 represents: 

1011 2 = 1 x 23 + o x 22 + 1 x 21 + 1 x 2° 
=8+2+1 
= 11 

Converting an unsigned integer to a binary number 

We can convert an unsigned decimal to its binary equivalent by repeatedly 
dividing the decimal number by 2 until the quotient becomes zero. The binary 
equivalent is the combination of all remainders, with the first remainder as the 
least-significant bit (LSB). For example, the binary of 52 and 32 are 0b110100 and 
0b100000 respectively, as shown below. 

Remainder Remainder 

LSB ................. 0 ......,...__ 0 LSB 

0 

MSB MSB 

Figure 2-4. Converting a decimal number to binary by repeatedly dividing it by 2. 
Read the binary from the bottom to the top (5210 = 1101002, and 3210 = 1000002). 

2.4 Signed Integers 
There are different ways to map binary symbols to signed integer numbers. Examples 
include sign-and-magnitude, one's complement, and two's complement. One common 
characteristic of these numeral systems is that the most significant bit (also called the 
leftmost bit) indicates the sign of the number. The most significant bit is also known as 
the sign bit. The number is non-negative if the sign bit is zero and negative if it is one. 

Table 2-3 shows three different approaches to mapping 4-bit binary symbols to different 
signed integers. These mapping schemes are sign-and-magnitude, one's complement, 



- 2.4 - Signed Integers 

and two's complement. While we present these three different representations for signed 
numbers in detail later, the following gives a summary. 

• Sign-and-magnitude uses the most significant bit to represent the sign, and the 
rest of the bits to represent the magnitude. 

• One's complement denotes a negative number by inverting every bit of its 
positive equivalent. 

• Two's complement represents a negative number by adding one to the equivalent 
one's complement. 

Binary Bit Sign-and- One's Two's 
String Magnitude Complement Complement 

0000 +0 +0 0 
0001 1 1 1 
0010 2 2 2 
0011 3 3 3 
0100 4 4 4 
0101 5 5 5 
0110 6 6 6 
0111 7 7 7 
1000 -0 -7 -8 
1001 -1 -6 -7 
1010 -2 -5 -6 
1011 -3 -4 -5 
1100 -4 -3 -4 
1101 -5 -2 -3 
1110 -6 -1 -2 
1111 -7 -0 -1 

Table 2-3. Decimal values represented by a four-bit binary string 

Based on Table 2-3, we make the following summary, if the bit string has n bits. The range 
means the largest and the smallest values that these bit strings can represent. 

Sign-and-Magnitude One's Complement Two's Complement 

Range [-zn-1+1, zn-1 - 1] [-zn-1+1,zn-1 -1] [-zn-1, zn-1 - 1] 

Zero Two zeros (±0) Two zeros (±0) One zero 

Unique Numbers zn -1 zn -1 zn 

Table 2-4. Data range of three different representation methods 

In C, the range that a signed integer variable can represent depends on its data type. An 
integer variable of "signed char," "signed short," "signed int," and "signed long 
long" has at least 8, 16, 32, and 64 bits in size, respectively. The C standard only specifies 
the minimum size of integer types, and their actual size varies by implementation. 



Data Representation -

Two's complement is the one used in almost all modern computers to represent signed 
integers because it simplifies the hardware design from two aspects: 

(1) the hardware for two's complement subtraction is the same as two's complement 
addition, and 

(2) the hardware implementation for addition, subtraction, and multiplication of 
signed numbers are identical to those for unsigned numbers. 

2.4.1 Sign-and-Magnitude 
The sign-and-magnitude is a straightforward 
way to represent signed integers. It uses the 
most significant bit to indicate the sign, with 
one being negative and zero being positive. 
The remaining n-1 bits represent the value. 

For example, in a five-bit system shown in 
Figure 2-5, 0b10111 is -7, and 0b00111 is 7. 

Sign-and-Magnitude 

value = ( -1 )sign x Magnitude 

There are two ways to represent zero: 0b00000 for +0 and 0b10000 for -0. 

10011 

10100 00100 
.3 

10101 -4 4 

10110 
-5 5 

.s 
10111 00111 .7 

11000 ·8 01000 

.9 9 
11001 01001 

-10 10 
11010 01010 

-11 11 

11011 ·12 12 01011 

11100 ·13 13 
01100 

-14 ·15 15 
11101 

11110 01110 
11111 01111 

Figure 2-5. Sign-and-magnitude representation in a five-bit system 

Many computer systems do not use the sign-and-magnitude due to two shortcomings. 

• First, it is difficult for the hardware to perform addition or subtraction because 
hardware should consider the sign of both operands. If we add two numbers in a 

fi 



2.4 - Signed Integers 

straightforward way, such as 00011(3)+11011 (-3), we get a wrong answer, 11110 

(-14). 

• Second, there are two representations of zero: positive zero and negative zero. A 
system with two zeros complicates the circuit for checking for equality. 

2.4.2 One's Complement 
The one's complement representation of a negative 
number (denoted as 0.) is bitwise NOT of its positive 
counterpart (denoted as a) . For example, in a five
bit system, the one's complement of -1 is 0b11110 

(see Figure 2-6). Arithmetically, we have: 

a. = 2n - 1 - a. 

One's Complement (a): 

a+ a= zn -1 
I' ,, 
,, 
I' 
I ' 

The word "complement" means that two counterparts complete the whole. Specifically, 
the one's complement a. and its counterpart a add to 211-1. For example, adding 0b00001 

( +1) and 0b11110 (-1) leads to 0blllll, which is in fact negative zero. 

00000/ 

11101 
11110 11111 00001 00010 

11100 00011 

-1 0 
11011 ·2 2 00100 

-3 
11010 -4 4 00101 

.5 5 00110 

·6 6 

00111 
.7 7 

10111 ·8 8 01000 

9 
10110 01001 

10 
01010 

·11 11 

·12 12 01011 

·13 13 
01100 10011 -14 

·15 
10010 

10001 
10000 01111 

Figure 2-6. One's complement representation in a five-bit system 

A simple way to find the one's complement a. is to toggle every bit in its counterpart a. 
In C, the bitwise NOT operator(-) is also called the one's complement operator. 

y = ~y; II Take one's compLement in a C program 

Earlier processors, such as CDC Cyber 18 developed in the 1980s, use one's complement. 
However, modern computer systems rarely use it. 



Data Representation -

2.4.3 Two's Complement 
The two's complement (TC) representation of a negative 
number (o) is bitwise NOT of its positive counterpart (a) 
plus one. 

The opposite is also true. If we take bitwise NOT of a 
negative number and then add 1 to the result, we obtain 
the two's complement representation of its positive 
counterpart. 

Two's Complement 

a + a= zn 

We say a and a are a complement to each other with respect to 2n. Mathematically, we 
have 

a = a + 1 = 2n - a. 

Figure 2-7 shows a five-bit system in two's complement form. For an n-bit system, the 
representable range is [-zn- 1, zn-l - 1]. There is only one representation for zero. 

11111 00000 00001 
11110 00010 

11101 00011 

11 100 00100 
-3 

1101 1 -4 4 00101 

-5 

.5 

1100 1000 

-9 

-10 

-11 11 

10101 -12 12 01011 
-13 13 

10100 -14 
15 

14 01100 
-15 -16 

10011 01101 

10010 01110 
10001 10000 01111 

Figure 2-7. Two's complement representation in a five-bit system 

The fo llowing clarifies two confusing terms: 

• Convert x to two's complement: Find the two's complement representation of x 
without changing its value. 

• Calculate or take two's complement of x: Compute the negative of x. 

For example, the following C program calculates two's complement of x. 

y = -x; 
y += 1; 

II Toggle every bit 
II Obtain two's complement 

1: 

1: 

I: 
1, 

i 



- 2.4 - Signed Integers 

The following gives two examples of calculating two's complement. 

Example 1. Calculate the two's complement of 0b00011. 

Binary Decimal 
Original number 0b00011 3 

Step 1: Invert every bit 0b11100 
Step 2: Add 1 + 0b00001 

~~~~~~~~~~ 

Two's complement 0b11101 -3

Example 2. Calculate the two's complement of 0b11101.

Binary Decimal
0b11101 -3
0b00010

Original number
Step 1: Invert every bit

Step 2: Add 1
Two's complement

+ 0b00001
0b00011 3

2.4.4 Carry Flag for Unsigned Addition or Subtraction
Cortex-M processors maintain the application program status register (APSR). It holds
important flags such as a carry flag (C), an overflow flag (V), a zero flag (Z), a negative
flag (N), and a saturation flag (Q). Chapter 4.1 gives detailed information on these flags.

Processors rely on these flags to evaluate whether any abnormal phenomenon occurs at
runtime. For example, when two unsigned numbers are added, the carry flag indicates
whether the sum is too large to fit into a 32-bit register.

Moreover, processors rely on these flags to implement branch instructions. In Example
2-1, the compiler translates the if-else statement into conditional branch instructions,
which check the flag bits to decide whether the processor should execute "c =a - b" or "c
= b - a" (see Chapter 6.1).

if(a>b){
c = a - b;

} else {
c = b - a;

}

Example 2-1. Depending on whether variables a and bare signed or unsigned, the compiler
uses different assembly instructions to implement the if-else statement.

The following focuses only on how a processor sets up the carry flag and the overflow
flag when adding and subtracting integers. The carry flag is for operations on unsigned
integers, and the overflow flag is for operations on signed integers.

Data Representation -

Let us first review simple addition and subtraction of two integers with only one bit. The
carry/borrow flag is set as shown in Table 2-5.

Addition Subtraction

0 + 0 = 0, Carry = 0 0 - 0 = 0, Borrow = 0

1 + 0 = 1, Carry = 0 1 - 0 = 1, Borrow = 0

0 + 1 = 1, Carry = 0 0 - 1 = 1, Borrow = 1

1 + 1 = 0, Carry = 1 1 - 1 = 0, Borrow = 0

Table 2-5. Settings of carry and borrow on 1-bit binary addition and subtraction. Cortex-M
processors use the same bit in the APSR register to store the carry and the borrow flag.

In an n-bit system, a carry or borrow occurs under the following scenarios.

• When two unsigned integers are added, a carry event takes place if the result is
larger than the maximum representable unsigned integer (i .e., zn - 1).

• When two unsigned integers are subtracted, a borrow event occurs if the result is
negative, smaller than the smallest expressible unsigned integer (i.e., 0).

While addition can modify the carry flag,
subtraction can change the borrow flag. However,
on ARM Cortex-M processors, the carry flag and the
borrow flag are physically the same flag bit in the
application program status register (APSR). Thus, the
borrow flag is in fact called the carry flag.

On Cortex-M, the carry flag is set as follows:

For unsigned subtraction,
Carry= NOT Borrow

• When adding two unsigned integers, the processor sets the carry flag if a carry
occurs, i.e. , the sum is too large (;;?:2 32, i.e., 4, 294, 967, 296) to be stored in a 32-bit
register). Otherwise, the carry flag is cleared.

• When subtracting two unsigned integers, the processor sets the carry flag if no
borrow occurs, implying the difference is positive or zero. Otherwise, the carry
bit is cleared.

Figure 2-8 and Figure 2-9 show two examples of finding the value of the carry flag. We
can obtain the result of addition and subtraction by traversing the number circle
clockwise and counter-clockwise, respectively.

The carry flag follows this rule:

If the traversal crosses the boundary between B and zn - 1, the carry
flag is set on addition and is cleared on subtraction.

:
'

'

- 2.4 - Signed Integers

Example: 28 + 6

11100

11011 28

27
28 + 6

26

1100

23
10111

22

10110 21

10101 20

19

2

On addition, carry
is set if crossing
this boundary.

00011

00100
3

4

5

11

12 01011
13

01100

Figure 2-8. Carry flag is set if the result of the
unsigned addition is larger than 25 - 1.

Example: 3 -

11101

11100

11011 28

27

26

1100

23
10111

22

10110 21

10101 20

10100

5

19

On subtraction,
carry is reset if
crossing this

boundary.

3-5

13

16 15 14

10010 01110
10001 10000 01111

00011

00100

4 00101

5

11

12

01100

01101

Figure 2-9. Carry flag is cleared if the result of the
unsigned subtraction should be negative.

Carry 1 1 1 0 01
1 1 1 0 0

+ 00110

, 0 0 0 1 0

E.xtra bit is ~
discarded.

28

+ 6

32

• Carry flag = 1, indicating carry
has occurred on unsigned
addition.

• The carry flag is 1 because the
result crosses the boundary
between 32 and 0.

Borrow 1 1 1 0 0 1

0 0 0 1 1

0 0 1 0 1

3

5

1 1 1 1 0 30

'------y----J
5-bit result

• Carry flag= 0, indicating borrow
has occurred on unsigned
subtraction.

• For subtraction, carry = NOT
borrow.

Data Representation -

2.4.5 Overflow Flag for Signed Addition or Subtraction
While the carry flag is for unsigned arithmetic operations, the overflow flag is for signed
arithmetic operations. Overflow occurs when the result produced by an arithmetic
operation falls outside the representable range [-2n- 1 , zn- 1 - 1] of two's complement.

When adding signed numbers, overflow occurs only in two scenarios:

• Adding two positive numbers produces a non-positive result, or
• Adding two negative numbers yields a non-negative result.

Similarly, when subtracting signed numbers, overflow occurs in two scenarios:

• Subtracting a positive number from a negative one creates a positive result, or
• Subtracting a negative number from a positive one makes a negative result.

Overflow cannot occur when operands with different signs are added or when operands
with the same sign are subtracted. Checking sign bits can detect overflow on addition.
Overflow occurs on addition if the signs of the operands are the same, but the sum has a
sign different with the operands.

We can also use the number circle to illustrate the concept. On the number circle, if the
boundary between -2n-1 and zn-1 - 1 is crossed on addition, the overflow flag is set, as
shown in Figure 2-10 and Figure 2-11.

Example: 12 + 5

11111 00000 00001
11110 00010

11101 00011

-1 0 1
11100 -2 00100

-3
11011 -4 4 00101

.5

-6

Overflow is set when
·10 adding two positives but

-11 obtaining negative result.

10101 -1 2 12 01011
·13

10100 01100

011 01

Figure 2-10. Overflow example

1000

•

•

0 1 1 0 0

+ 00101

12

+ 5

1 0 0 0 1 -15

~
5-bit result

On addition, overflow occurs if
sum~ 24 when adding two
positives.
On addition, overflow never
occurs when adding two
numbers with different signs.

- 2.4 - Signed Integers

Example: (-13) + (-7)

1100

11111 00000 00001
11110 00010

11101 00011

11100 00100

11011 -4

.5

-11

Overflow Is set when
adding two negatives but
obtaining positive result.

(·13) + (·7)
-12 .7

-13 ~-....... -- 13

4

11

12

Figure 2-11. Overflow example

01011

1 0 0 1 1

+ 11001

T 0 1 1 0 0

E.xtra bit is ~
discarded.

-13

+ -7

12

On addition, overflow happens if
sum< -24 when adding two
negatives.

In two's complement arithmetic, the problem of detecting overflow on subtraction can
be converted to the issue of detecting overflow of addition. We can transform a
subtraction operation into an addition operation. Algebraically, we have

A - B =A+ (-B)
=A+ TC(B)

where TC(B) takes the two's complement of B.

Thus, instead of performing subtraction, we add the negation of B to A. Therefore, the
overflow flag of the original subtraction is set or cleared based on the addition result.
When adding a negative integer, we can traverse the number circle counter-clockwise.

Subtraction example: 0b10111 - 0b00110 (i .e., -9-6)

In a five-bit two's complement system, we have 0b10111 = -9 and 0b00110 = 6.
The two's complement of -6 is invert(0b00110) + 0b00001 = 0b11010.

-9 - 6 = -9 + (-6) = 0b10111 + 0b11010 = 0b10001

The hardware adder produces 0b10001, which equals -15 in two's complement,
as shown in Figure 2-12. This shows that a signed subtraction can be successfully
converted to a signed addition by taking the two's complement of the second

Data Representation -

source operand. When adding 0b10111 and 0b11010, no overflow has occurred.
Therefore, the overflow flag for the signed subtraction 0b10111 - 0b00110 is 0.

-9

1 0 1 1 1

Hardware
Adder

6

Two's
Complement

1 0 0 0 1

-15

Subtracting two numbers

-6

Figure 2-12. Signed subtraction can be converted to signed addition. No overflow occurs on
the addition in this example. Therefore, the overflow flag of the signed subtraction is 0.

Below is another method to detect overflow on signed addition.

Overflow occurs on signed addition, if the carry into the sign bit differs from
the carry out of the sign bit. Otherwise, there is no overflow.

Example: 12 + S

Carry out of
the sign bit

Carry 0 1

0

+ 0

1

Sign

Carry into
the sign bit

1 0 0

1 1 0 0

0 1 0 1

0 0 0 1

bit

12

+ 5

-15

Figure 2-13. When adding 12 and 5, the carry into the sign bit is 1,
but the carry out of the sign bit is 0. Thus, an overflow has occurred.

- 2.4 - Signed Integers

Example: (- 13) + (- 7)

Carry out of Carry into
the sign bit the sign bit

Carry 1 0 0 1 1

1 0 0 1 1

+ 1 1 0 0 1

0 1 1 0 0

Sign bit

-13

+ -7

12

Figure 2-14. When adding-13 and -7, the carry into the sign bit is 0,
but the carry out of the sign bit is 1. Thus, an overflow has occurred.

2.4.5.1 Interpreting the Carry and Overflow Flags
Suppose in a five-bit system, the binary values
of two variables are set as follows:

a 0b10000

b 0b10000

When adding these two numbers in an assembly
program, should these two binary values
represent signed or unsigned integers?

• If a and bare unsigned integers, we have:
a= 16,
b = 16, and
a+ b = 32 > 25 - 1.

Is BxFFFFFFFF a signed or
unsigned number?

You and compilers know the
answer. But the processor does

not know it at runtime.

Thus, carry has occurred if a and b are unsigned integers.

• If a and b are signed integers, we have:
a= -16,
b = -16, and
a+ b = -32 < -24

.

Thus, overflow has occurred if a and b are signed integers.

Should the processor set up the carry flag or the overflow flag when a and bare added?

In fact, when adding these two numbers in an assembly program, the processor does not
know whether a and b are signed or unsigned integers. Thus, the processor simply sets

Data Representation -

both the overflow flag and the carry flag. It is the
assembly programmer's responsibility to interpret
the flag results.

Assembly programs should appropriately choose
to check either the overflow flag or the carry flag in
assembly instructions, depending on the software's
intention of using them as signed or unsigned

A processor modifies both
the carry flag and the

overflow flag.

integers. For example, to evaluate the logical expression a+ b > 10, we should use different
assembly instructions to check either the carry or overflow flag depending on whether a
and bare unsigned or signed integers (see Chapter 6.1).

Carry Flag Overflow Flag
For unsigned arithmetic, For signed arithmetic, assuming

Objective assuming a, b, and care all two's complement is used to
unsigned numbers represent a, b and c
Method 1: Carry = 1 if true Method 1: Overflow = 1 if true
result> 2n-1. result> 2n·1-1 or true result< -2n·1 .

Addition
c=a+b Method 2: Both a and bare Method 2: Overflow = 1 if

unsigned. Carry is set if c <a or • a> 0 and b > 0 but c < 0

c < b. • a < 0 and b < 0 but c > 0

Carry= Not Borrow. Method 1: Subtraction is
Carry is set if a~ b. (meaning no transformed into addition.
borrow) Overflow is set based on

Subtraction addition.
c=a-b

Method 2: Overflow = 1 if

• a> 0 and b < 0 but c < 0

• a< 0 and b > 0 but c > 0

If the carry is 1 on unsigned Overflow flag has the same
addition, the result is incorrect; meaning for signed addition and
otherwise, it is correct. signed subtraction.

Correctness
If the carry is 1 on unsigned If the overflow is 1, the result is
subtraction, the result is correct; incorrect.
otherwise, it is wrong.

Shift operations
Shift operations can change the Shift operations cannot modify
carry flag. the overflow flag.

Table 2-6. Summary of the carry flag and the overflow flag

:

.:
,:

,.
':

- 2.4 - Signed Integers

When interpreting the carry flag and overflow flag, one must be careful because they
have different meanings for different operations. If the carry flag is set, it means the result
is incorrect for addition, but correct for subtraction. If the overflow is set, it means the
result is wrong for both addition and subtraction. Table 2-6 summarizes the carry flag
and the overflow flag for unsigned and signed addition/subtraction.

In C, variables a and b are declared explicitly either signed or unsigned by the
programmer, such as "unsigned int a" or "int a," and thus the corresponding
assembly program translated from the C program can correctly choose either the carry
flag or the overflow flag to interpret the result.

Example: Translating the C statement "if (a > b)" into assembly
An if-statement in C is translated into a set of assembly instructions involving
comparison and conditional branch. When translating "if (a > b) ," C compilers
must choose appropriate branch instructions by considering whether the logic
expression compares two signed numbers or two unsigned numbers. When
performing the comparison, the processor does not know whether they are signed
or unsigned. Therefore, the processor hardware will write a value to the carry flag
by assuming they are unsigned and simultaneously write a value to the overflow
flag by assuming they are signed numbers. The software should choose the
appropriate instructions to evaluate the carry flag or the overflow flag, based on
the following rules. (Chapter 6.2 gives a detailed explanation.)

• If variables a and b are declared as unsigned in C, the compiler appends the
HI condition suffix to the branch instruction (i.e. , BHI), which checks the
carry flag.

• If a and b are declared as signed, the compiler appends the GT suffix to the
branch instruction (i.e. , BGT), which checks the overflow flag.

Although an if-statement is correctly translated to assembly instructions, most C
compilers ignore the occurrence of the overflow and carry when an integer result falling
out of the representable range is stored during data operations. In Example 2-2, the
leading bytes of the variable i are truncated, but the compiler might not generate any
error message to abort compiling. This often leads to an unexpected or erroneous result.
Failing to consider overflow and carry is a software bug often made by programmers.

signed int i = 0x89ABCDEF; II 32-bit signed integer
signed short s = i; /I overflow, s = exCDEF, variable i is truncated
signed char c = i; II overflow, c = 0xEF, variable i is truncated

Example 2-2. Overflow and carry are ignored in C.

Data Representation Im

2.4.S.2 Two's Complement Simplifies Hardware Implementation
Two's complement simplifies the logic implementation of arithmetic functions. Binary
data to be processed may be signed or unsigned integers. If two's complement is used to
represent signed numbers, the hardware implementation becomes simple. The hardware
does not need to worry about whether these operands are signed or unsigned, performs
the same addition, subtraction, or multiplication operation, and still obtains the correct
result.

Two's complement addition

The hardware adder designed for adding two unsigned numbers also works correctly
for adding two signed numbers. For example, if two binary numbers, 0b10111 and
0b00110, are added in a five-bit system, the hardware adder performs a simple addition
by treating them as unsigned numbers, such as the ones shown in Figure 2-15. We obtain
the sum as 0b11101.

1 0 1 1 1 0 0 1 1 0

Simple Hardware
Adder

1 1 1 0 1

Figure 2-15. A simple adder works for both unsigned addition and signed addition.

In fact, the binary number 0bll101 equals 29 if it is an unsigned number, and -3 if it
represents a signed number in two's complement. This implies that a simple adder,
which does not distinguish the sign of its operands, can obtain the correct result.
Therefore, the same hardware adder works correctly for both signed addition and
unsigned addition.

Simple Addition Unsigned Signed
(ignore the sign) Addition Addition

1 0 1 1 1 23 -9 addend
+ 0 0 1 1 0 + 6 + 6 + addend

1 1 1 0 1 29 -3 sum

1111!1 2.4 - Signed Integers

Proposition 1. Suppose X and Y are two unsigned integers that two n-bit strings
represent, and x and y are two signed integers that these bit strings represent in two's
complement. Prove the following:

X + Y = x + y (modulo 2").

Proof. We give the proof in four cases.
1. If x 2': 0 and y 2': 0, apparently X + Y = x + y (modulo 2");
2. If x < 0 and y ;:=: 0, then X + Y = (2" + x) + y = x + y (modulo 2");
3. If x 2': 0 and y < 0, apparently X + Y = x + (y + 211

) = x + y (modulo 2");
4. If x < 0 and y < 0, apparently X + Y = (x + 2") + (y + 2") = x + y (modulo 2");

Two's complement subtraction

The same subtraction hardware works correctly for both signed subtraction and
unsigned subtraction. For example, when we subtract 0b00110 from 0b10111, in a five
bit system, we obtain 0b10001, as shown in Figure 2-16.

1 0 1 1 1 0 0 1 1 0

Simple Hardware
Subtracter

1 0 0 0 1

Figure 2-16. A simple subtractor works for both unsigned subtraction and signed subtraction.

The binary result 0b10001represents17 if it is unsigned and -15 if it is signed in two's
complement. As illustrated below, the simple subtraction hardware can successfully
achieve the correct result, no matter whether the operands are signed or unsigned.

Simple Subtraction Unsigned Signed
(ignore the sign) Subtraction Subtraction

1 0 1 1 1 23 -9 minuend
0 0 1 1 0 6 6 - subtrahend
1 0 0 0 1 17 -15 difference

Data Representation -

Proposition 2. Suppose X and Y are two unsigned integers that two n-bit strings
represent, and x and y are two signed integers that these bit strings represent in two's
complement. Prove the following:

X - Y = x - y (modulo 2°) .

Proof We give the proof in four cases.
1. If x ~ 0 and y ~ 0, apparently X - Y = x - y (modulo 2°);
2. If x < 0 and y ~ 0, then X - Y = (2n + x) - y = x - y (modulo 2n);

3. If x ~ 0 and y < 0, apparently X + Y = x - (y + 2°) = x - y (modulo 2°);
4. If x < 0 and y < 0, apparently X + Y = (x + 2n) - (y + 2°) = x - y (modulo 2n);

Two's complement multiplication

If the product is required to keep the same number of bits as operands, unsigned
multiplication hardware works correctly for signed numbers. Given two binary numbers:
0b00011 and 0b11101, the hardware performs a simple multiplication, as shown follows.
Since the product must be five bits, the product obtained is 0b10111, with extra leading
bits truncated.

• If both operands are signed, then in two' s complement we have two operands as
0b00011 = 3, 0b11101 = -3, and the result as 0b10111 = -9.

• On the other hand, if both operands are unsigned, then we have two operands
0b00011 = 3 and 0b11101 = 29, and the result 0b10111 = 23. While the result is
incorrect, it does not mean the hardware has failed. It is only because the result
is too large and cannot be fully expressed with 5 bits. To avoid this issue, software
should use a more complex multiplication instruction to multiply two large
numbers, as discussed in Chapter 4.4 (Refer to UMULL and SMULL instructions).

: 0 0 0 1 1 multiplicand
x : 1 1 1 0 1 x multiplier

:0 0 0 1 1
0 :e 0 0 0

0 0 :e 1 1
0 0 0 : i 1

0 0 0 1 : i
0 0 1 0 : i 0 1 1 1 product

On many processors, multiplication instructions do not affect the carry and overflow
flags. On ARM Cortex-M, a multiplication instruction leaves the carry flag undefined and
the overflow flag unchanged.

- 2.4 - Signed Integers

Proposition 3. Suppose X and Y are two unsigned integers that two n-bit strings
represent, and x and y are two signed integers that these bit strings represent in two's
complement. Prove the following:

X • Y = x • y (modulo 2").

Proof There are only four possible cases.
1. If x ~ 0 and y ~ 0, apparently X • Y = x • y (modulo 211

);

2. If x < 0 and y ~ 0, then X • Y = (2" + x) • y = 2" • y + x • y = x • y (modulo
2");

3. If x ~ 0 and y < 0, apparently X • Y = x • (y + 2") = x • y + 211
• x = x • y (modulo

2");

4. If x < 0 and y < 0, apparently X + Y = (x + 211
) • (y + 2°) = x • y + 2° • x + 2° • y

+ 2n+1 = x • y (modulo 2");

Two's complement division

However, signed and unsigned division cannot directly share the same division
hardware. For example, we divide -10 (0b10110 in two's complement) by 2 (0b00010 in
two's complement) by using a traditional division technique, the quotient obtained is 11
(0b01011 in two's complement). Apparently, the conventional division for unsigned
integers does not work for signed integers.

0 1
divisor 1 0 I 1 0

1 0
0
0

0 1
1 1

1
0
1 1
1 0

1
1

1
0

0
0
0

quotient
dividend

remainder

Signed division is harder than unsigned division. A general method of signed division is
first to convert both signed numbers to positive numbers, then execute unsigned division,
and finally change the result into signed form.

Therefore, there are two 32-bit integer division instructions in Cortex-M processors. The
SDIV instruction is signed division, and the UDIV instruction is unsigned division (see
Chapter 4.4).

Data Representation iij+

Summary of two's complement arithmetic operations

Two's complement can simplify the hardware design. The same addition, subtraction,
and multiplication hardware work for both signed and unsigned integers.

1. When adding or subtracting two integers, the hardware does not know
whether they are signed or unsigned. Accordingly, the hardware will set up
both the overflow and carry flags.

a. The hardware assumes both operands are unsigned and sets the carry
flag to the appropriate value.

b. At the same time, the hardware also assumes both operands are signed
and sets up the overflow flag.

2. It is the software's responsibility to decide whether to use either the carry flag
or overflow flag in the assembly code. Whether the carry flag or the overflow
flag should be utilized depends on the programmer's intention.

a. If the programmer intends to use the binary value stored in a register as
an unsigned integer, then the carry flag should be used.

b. If the programmer intends to use it as a signed integer, then the
overflow flag should be used.

c. When programming in high-level languages such as C, the compiler
automatically chooses to use the carry or overflow flag based on how
this integer is declared in the source code ("int" or "unsigned int").

3. The same multiplication hardware works for both signed and unsigned
multiplication if the product obtained has the same length as the operands.

4. The same division hardware cannot function correctly for both signed division
and unsigned division.

2.5 Character String
The American Standard Code for Information Interchange (ASCII) defines the 7-bit
encoding standard for 128 characters, including 33 control characters (0x00-0xl9, plus
0x7F) and 95 printable characters (0x20-0x7E). The ASCII value 0x20 represents the space
character, which is a printable character. The first ASCII was published in 1963, and many
of these control characters have become obsolete. However, ASCII is still widely used for
computers to store text documents and data, such as a C or assembly programs.

A string consists of an array of ASCII characters determined by the NULL character. NULL

is a reserved character used to signify the termination of a string. Note that NULL differs
from 0. ASCII of ZERO is 0x30 while ASCII of NULL character is 0x00.

mm! 2.5 - Character String

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 NUL 32 20 SP 64 40 (al 96 60 '
1 01 SOH 33 21 ! 6S 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 3S 23 # 67 43 c 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
s 0S ENQ 37 2S % 69 4S E 101 6S e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 , 71 47 G 103 67 g

8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 10S 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 7S 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C 1
13 00 CR 4S 20 - 77 40 M 109 60 m
14 0E so 46 2E 78 4E N 110 6E n
lS 0F SI 47 2F I 79 4F 0 111 6F 0

16 10 DLE 48 30 0 80 S0 p 112 70 p
17 11 DCl 49 31 1 81 Sl Q 113 71 q
18 12 DC2 S0 32 2 82 S2 R 114 72 r
19 13 DC3 Sl 33 3 83 S3 s llS 73 s
20 14 DC4 S2 34 4 84 S4 T 116 74 t
21 lS NAK S3 3S 5 8S SS u 117 7S u
22 16 SYN S4 36 6 86 S6 v 118 76 v
23 17 ETB SS 37 7 87 S7 w 119 77 w
24 18 CAN S6 38 8 88 S8 x 120 78 x
2S 19 EM S7 39 9 89 S9 y 121 79 v
26 lA SUB S8 3A 90 SA z 122 7A z
27 lB ESC S9 3B ; 91 SB [123 7B {

28 lC FS 60 3C < 92 SC \ 124 7C I
29 1D GS 61 30 = 93 SD l 12S 70 }
30 1E RS 62 3E > 94 SE " 126 7E ~

31 lF us 63 3F ? 9S SF 127 7F DEL
Table 2-7. ASCII table

When a C program declares a string, the compiler automatically adds a NULL terminator
at the end of the string. Each character takes one byte in memory, and all characters are
stored in consecutive memory addresses. The first character of the string is stored at the

lowest memory address.

Example 2-3 shows the memory layout of a string "ARM Assembly. " Because of the NULL
terminator, the string size is 13.

Characters are compared based on their ASCII values. For example,

• 'B' >'A' because ASCII of ' B' is 0x42 and ASCII of' A' is 0x41.
• Similarly, ' z' >'a' > 'Z' > 'A' > '9' > '1' > '0' > ' !' > ' '.

Data Representation -

char str[13] = "ARM Assembly";

II The array should have at Least 13
II bytes even though the string has
II only 12 Letters. The NULL
II terminator takes one byte.
II
II strLen() returns the Length
II excluding the NULL terminator
II
11 sizeof () returns the Length
II including the NULL terminator

Memory
Address

str + 12 ~
str + 11 ~
str + 10 ~
str + 9 ~
str + 8 ~
str + 7 ~
str + 6 ~
str + 5 ~
str + 4 ~
str + 3 ~
str + 2 ~
str + 1 ~

str ~

Memory
Content

0x00
0x79
0x6C
0x62
0x6D
0x65
0x73
0x73
0x41
0x20
0x4D
0x52
0x41

Letter

\0
y

1
b
m
e
s
s
A

space
M

R

A

Example 2-3. All strings are null-terminated. While "ARM Assembly" has 12 characters, the
string str should be declared with a length of 13 characters to include NULL.

Strings are compared in alphabetical order by following three steps.

1. If two strings are of different length, the shorter one is assumed to have one or
more NULL (0x00) characters appended to make the length equal.

2. Then the strings are compared character by character starting with the first one.

3. When a character in one string is smaller than the corresponding one in the other
string, the former string is then smaller than the latter one.

For example, we have the following string comparison results:

• "j" <"jar"< "jargon"< "jargonize"

• "CAT"< "Cat"< "DOG"< "Dog"< "cat"< "dog"

• "12" < "123" < "2" <"AB"<" Ab"< "ab"< "a be"

The following gives a few commonly used string functions in C.

isDigi t tests for a decimal digit (0 through 9). If the given character is one of the 10
decimal digits, the function returns 1; otherwise, returns 0. The ASCII values of decimal
digits are from 48 to 57, with 48 representing '0' and 57 representing '9' .

C Implementation Simplified C Implementation
int isDigit(char c){ int isDigit(char c){

if(c >= '0' && c <= '9') return (c >= '0' && c <= '9');
return 1; II or: return (c >= 48 && c <= 57);

return 0; }
}

- 2.5 - Character String

is lower exams for a lower-case character (a through z). The ASCII values of lower-case
characters are between 97 and 122.

int isLower(char c){
return(c >= 'a' && c <= 'z'); /I or: return (c >= 97 && c <= 122);

isUpper checks for an upper-case character (A through Z). The ASCII values of upper
case characters are between 65 and 90.

int isUpper(char c){
return(c >= 'A' && c <= 'Z'); II or: return (c >= 65 && c <= 90);

isWhi tespace searches for a whitespace character, including space (ASCII 32),
horizontal tab (ASCII 9), line feed (ASCII 10), and form feed (ASCII 12).

int isWhitespace(char c) {

}

return(c == ' ' 11 c == '\t' 11 c == '\n' 11 c == '\12');
II or: return(c == 32 II c == 9 II c == 10 II c == 12);

strlen finds the length of a string, excluding the null terminator. It checks all characters
of a string array one by one. If the loop reaches the end of the string array, pStr[i] has a
value of 0, making the while condition false and thus terminating the loop.

int strlen(char *pStr){
int i = 0;
while(pStr[i]){ i++; } //Loop until pStr[i] is NULL
return i;

}

toUpper converts all alphabetic characters to lower case. The difference between the
ASCII value of a lower-case character and its corresponding upper case is 32. Below are
two different implementations, one based on dereferencing a pointer (i.e., get the value
stored at the pointer address), and the other based on a numeric index.

Pointer dereference operator * Array subscript operator []
void toUpper(char *pStr){ void toUpper(char *pStr){

for(char *p = pStr; *p; ++p){ char c = pStr[0];
if(*p >= 'a' && *p <= J z J) for(int i = 0; c; i++, c = pStr[i];) {

*p -= 'a' - 'A'; if(c >= 'a' && c <= J z J)

//or: *p -= 32; pStr[i] -= 'a' - 'A';
} II or: pStr[i] -= 32;

} }
}

Data Representation -

tolower changes all alphabetic characters in a string to its upper case. Adding 32 to the
ASCII value of a lower-case character converts it to its corresponding upper case. Like
the toUppe r function, the following provides two different implementations.

Pointer dereference operator * Array subscript operator []

voi d tolower(char *pStr){ vo i d tolower(cha r *pStr){
fo r (char *p = pStr; *p; ++p) { int i;

if(* p >= , A' && *p <= ' Z') char c = pStr[0];
*p += ' a ' - 'A' ; for(i = 0; C' i++, c = pStr[i]) { J

II or: *p += 32; if(c >= 'A' && c <= 'Z')
} pStr[i] += 'a' - 'A';

} II or: pStr[i] += 32;
}

}

2.6 Exercises

1. For the six-bit binary values given below, find the equivalent decimal values
when the data is interpreted as signed or unsigned integers, respectively.

010000 , 100001, 010111, 111000, 111001,
001111, 101011 , 110110, 101010, 100011

2. Complete the following arithmetic operations in two's complement
representation . What are the value of the carry flag and the overflow flag?
(Assume a six-bit system)

a) -7 + (-29)
b) 31+11
c) 15-19
d) -7 x (-3)

e) -7 x (3)

f) 21+3
g) 21 + (-3)

3. To check for the signed greater or equal (GE) condition, we evaluate whether the
negative flag is equal to the overflow flag . If they are equal, then GE condition is
true. Explain the reasons why this works.

4. For Cortex-M, there are separate division instructions for signed integers and
unsigned integers. Does the same d ivision instruction work for both signed and
unsigned integers? If yes, prove it. If not, show an example.

- 2.6 - Exercises

5. What are the overflow and carry flags in the following operations in a four-bit
system?

Carry Overflow
1101 + 1100

1101 - 1100

1100 + 1010

0100 - 0110

0100 + 0010

0100 + 0110

1100 - 0110

6. Given the following two 32-bit binary unsigned numbers A and B, find the logic
expression of the carry flag when A and Bare added. The result is R.

7. Find the logic expression of the carry flag when Bis subtracted from A, where A
and B have the same format as Question 6.

8. Suppose A and B are signed numbers, and they have the same format as Question
6, find the logic expression of the overflow flag when A and Bare added.

9. Suppose A and Bare signed numbers, and they have the same format as Question
6, find the logic expression of the overflow flag when B is subtracted from A.

10. If a string is stored at the memory address 0x20008000 and the string is "Cortex
M", show the memory content in hex format starting at 0x20008000. How many
bytes does this string take in memory?

11. Write a C program that implements the standard function
char * strrchr(const char *str, int c)

that returns the memory address of the last instance of c in the string str. Return
a NULL pointer if c is not found in the string.

12. Write a C program that implements the standard function
char * strstr(char *strl, char *str2)

that returns the memory address of the first instance of string str2 in string strl.
Return a NULL pointer if string str2 is not found in string strl.

ARM Instruction Set Architecture 1111

CHAPTER

3
ARM Instruction Set Architecture
This chapter gives an overview of ARM assembly instructions and presents basic
instruction formats.

ARMv1 ARMv2

1985 1986

ARM1 ARM2

Thumb/ARM32

ARMv3 ARMv4/v4T ARMv5

1993 1995 1998

t
ARM6 ARM? ARM ARM

TOMI 946E 10
ARM9
TOMI

Thumb/
Thumb-2/
ARM32

ARMv6 ARMv7

Thumb/
Thumb-2/
ARM32/
ARM64

ARMv8

2002 2004 2009 2010 2014

Cortex ortex Cortex Cortex Cortex
ARM M3 M1 MO MO+ A15/A7

11
Cortex Cortex Cortex

R4 A8/A9 M4
Cortex

M7

Figure 3-1. History of ARM architecture and instruction sets

3.1 ARM Assembly Instruction Sets
ARM processors support mainly four different assembly instruction sets: Thumb,
Thumb-2, ARM32, and ARM64. Figure 3-1 shows their history.

• Thumb. The objective of the Thumb instruction set is to improve the code density.
Because an instruction in Thumb has only 16 bits in length, the size of their
executable files is small. The space saving is achieved by reducing the possibilities
of operands and limiting the number of registers that are accessible by an

- 3.1 - ARM Assembly Instruction Sets

instruction. Reducing the size of instruction memory benefits many embedded
systems demanding for low cost and long battery life.

• ARM32. Each instruction in ARM32 has 32 bits and provides more coding
flexibility than a Thumb instruction. More operand options, more flexible
memory addressing schemes, larger immediate numbers, and more addressable
registers can be encoded in a 32-bit word. Furthermore, ARM32 instructions run
faster than Thumb because an instruction can perform more operations or include
more operands. However, the disadvantage is its code density.

• Thumb-2. It provides an outstanding compromise between ARM32 and Thumb.
It optimizes the tradeoff between code density and processor performance. It
consists of 16-bit Thumb instructions and a subset of 32-bit ARM32 instructions.
The goal of Thumb-2 is to achieve higher code density like Thumb and fast
performance comparable to ARM32.

• ARM64. ARM 64-bit processors are often used in desktops and servers. These
processors have a set of 64-bit assembly instructions.

One prominent ARM family is Cortex processors, which have three groups:

• Cortex-M series for microcontrollers (M stands for microcontroller),
• Cortex-R series for real-time embedded systems (R stands for real-time), and
• Cortex-A series for high-performance applications (A stands for application).

Cortex-A processors are specially designed based on the ARMv7-A or ARMv8-A
architecture to provide fast performance for sophisticated devices, such as smartphones
and tablets. They often support full-fledged operating systems such as Linux, iOS, and
Android.

Cortex-R processors are designed for mission-critical real-time systems that require high
reliability, fault-tolerance, and most importantly, deterministic real-time responsiveness.
Example systems include factory automation and automobile engine control. In real-time
systems, the correctness of computation is determined not only by the logical correctness
but also by whether it is consistently completed within certain time constraints.

Cortex-M processors offer an excellent tradeoff between performance, cost, and energy
efficiency. Therefore, they are suitable for a broad range of microcontroller applications,
such as home appliances, robotics, industrial control, smart watch, and internet-of-things
(IoT). In contrast to general-purpose processors in desktops, a microcontroller is a small
processor with a processor core, memory, and many integrated I/0 peripherals such as
timers, analog-to-digital converter, serial communications, and LCD driver.

ARM Instruction Set Architecture

Cortex-M7F
Enhanced digital signal processing

Single and double precision FPU (optional)

Cortex-M4F
Digital signal processing

Single precision FPU (optional)

Cortex-M3

Figure 3-2. ARM Cortex-M family

The Cortex-M family includes Cortex-MO, Cortex-MO+, Cortex-Ml, Cortex-M3, Cortex
M4, and Cortex-M7. The former three are Von Neumann architecture, and the latter three
are Harvard architecture. Moreover, Cortex-MO/MO+/Ml are ARMv6-M, and Cortex
M3/M4/M7 are ARMv7-M.

Cortex-M processors are backward compatible, and Figure 3-2 compares the instructions
supported by each processor group. For example, a binary program compiled for Cortex
M3 can run on Cortex-M4 without any modification.

The floating-point unit (FPU), which is a coprocessor for floating-point operations, is
optional on Cortex-M4 and Cortex-M7. Cortex-M4 and M7 also provide single
instruction multiple-data (SIMD) and multiply-and-accumulate (MAC) instructions for
digital signal processing applications (DSP).

This book focuses on the ARMv7-M architecture, including
Cortex-M3, Cortex-M4, and Cortex-M7. ARMv7-M only
supports the Thumb-2 instruction set and is not compatible
with ARM32. Conventional ARM processors are required
to switch to the Thumb state to execute a 16-bit instruction
and to the ARM state to run a 32-bit instruction. Cortex-M
processors can run a mix of 16-bit and 32-bit Thumb-2
instructions without changing the processor state, thus
eliminating the overhead of state switching.

Thumb-2 optimizes
the tradeoff between

code density and
application speed.

This book also presents assembly instructions for floating-point operations and digital
signal processing, which are available on Cortex-M4 and M7 but not available on the
other Cortex-M processors.

- 3.2 - ARM Cortex-M Organization

3.2 ARM Cortex-M Organization
An ARM Cortex-M processor chip consists of a Cortex-M core licensed by ARM, on-chip
peripheral devices implemented by chip manufacturers, and buses and bridges for the
communication between the core and peripheral devices.

Examples of peripheral devices integrated into a Cortex-M chip are LCD controllers,
serial communication (PC, SPI, and USART), USB, digital-to-analog converters (DAC),
and analog-to-digital converters (ADC). Different manufacturers may add various
peripheral devices to the chip.

LCD SPl2
TIM2 SPl3

SW/JTAG TIM3 12C1/SMBUS

i
TIM4 12C2/SMBUS

f\ TIMS 12C3/SMBUS
TIM7 USB 2.0 FS

Instructions I USART2 bxCAN Cortex-M4 Processor Core
Flash I - I Memory USART3 SWPMl1

-;: Instruction Bus USART4 LPTIM1 ~ g c £" ~ .!! Cl Of/) "ti ::::> ~~ Data
: SRAM I

USARTS LPTIM2 g " :=c .. 0 .c
.c .. c o- c 0 .!l o~ x LPUART1 OpAmp 0 " Protection -.: c- "0 0 c " ~~ iii

Interrupts I
Memory I

c: :!: E .; OU c .. ; ::::> c u. ::l!.E Unit(MPU) ::;; Advanced High- ~ - f-+U:> GO'!: 0 c ~c 0.. .J c
" 111=> .£!. < ~ -z 0

.,, .. - .. " ;.!! ~- 0£ .. - 0.. ::::> 0
I? e Cl ·- 0.. s c :: .e I- u.

;
o- Data Bus CD

s CD

performance Bus APB 1
(AHB) I AHB to APB Bridge 1 Advan

Peripher
ced
al Bus
B)

·-:I ., I
£ 0.. Vl::i; £

.,
<(! I AHB to APB Bridge 2 I ABP2 (AP £

~ System Bus

GPIO Port A ·
GPIO Port B

EXTI SP11 GPIOPortC
Direction Memory ~ v GPIOPortD WKUP SAl1

Access (OMA) GPIO Port E TIM1 /PWM SAl2
Controllers GPIO Port F TIMB/PWM DFSDM

GPIOPortG TIM15 COMP1
GPIO Port H TIM16 COMP2

TIM17 Firewall
USART1

Figure 3-3. Organization of STM32L4 ARM Cortex-M4 processor

Figure 3-3 shows the core and peripheral devices integrated into the STM32L4 Cortex
M4 processor chip.

• The core processor communicates with the flash memory (typically used as
instruction memory), SRAM (generally used as data memory), Direct Memory
Access (DMA) controller, and general-purpose input/output (GPIO) ports via a
bus matrix (also called crossbar switch).

• The bus matrix is an interconnection scheme, which allows concurrent data
streams between components connected to the bus matrix, thus providing a high
communication bandwidth. The bus matrix connects high-speed components,
such as the processor core, Flash, SRAM, DMA controllers, and GPIO ports.

• Peripheral devices are connected to the bus matrix via the bus bridges that links
the advanced high-performance bus (AHB) and the advanced peripheral bus

ARM Instruction Set Architecture -

(APB). Generally, AHB is for high-bandwidth communication, and APB is for
low-bandwidth communication. AHB and APB are connected via bridges, which
buffers data and control signals to fill the bandwidth gap between these two
buses, and ensure that there is no data loss.

• Each GPIO pin has multiple functions usually. Software can change its function,
even at runtime. We can use a pin simply for digital input or digital output, or we
can use it for more advanced functions such as analog-to-digital conversion
(ADC), serial communication, timer functions, and so on. Different SoC chips
may have different GPIO functions, depending on the chip manufacturers.

• Most peripheral components, such as timers, ADC and I2C, are connected to APB.

A bus is a set of physical wires for transferring data or control
signals between two or more hardware components. A
communication protocol or agreement must be in place to
coordinate the use of a bus. The bandwidth of a bus depends on the
width of the bus (usually specified in bits) and the clock speed
supported. A processor has various buses for communicating

c

internal and external hardware components. A bus bridge connects two different buses
together.

Fundamental components of a Cortex-M processor core include the arithmetic logic unit
(ALU), the processor control unit, the interrupt controller (NVIC), the instruction
fetching and decoding unit, and the interfaces for memory and debug.

• ALU carries out logical (such as logic AND), and integer arithmetic operations
(such as add). ALU has two data inputs (called operands) and one data output.

• The processor control unit generates control signals for internal digital circuits
(such as the selection signal of the multiplexers, the control signals of the ALU)
and coordinates all components of the processor core.

• The interrupt controller (NVIC) allows the processor core to stop the execution of
the current task and immediately respond to special events or signals generated
by software or by peripheral devices. Chapter 11 introduces interrupts.

• The instruction fetching and decoding unit reads one machine instruction from
the instruction memory address pointed by the program counter and decodes the
instruction to figure out what operations the processor core should perform. The
processor control unit then generates corresponding control signals based on the
decoding result. Chapter 13 introduces how to encode and decode an instruction.

• The memory interface supports the access to memory devices (such as SRAM and
flash).

- 3.3 - Going from C to Assembly

• The debug interface allows a programmer to use a host computer to start or stop
a software program on a Cortex-M processor, and monitor or modify processor
registers, peripheral registers, and memory in real-time.

• Cortex-M4 supports digital signal processing (DSP) and can optionally have a
single-precision floating processing unit (FPU). Cortex-MO/MO+/Ml/M3 has no
support to DSP and FPU. Compared with Cortex-M4, the optional FPU on Cortex
M7 can support both single-precision and double-precision operations.

3.3 Going from C to Assembly
Before we study the syntax (grammar) and semantics (meaning) of assembly instructions,
let us first examine the key differences between C and assembly.

C, like many other high-level programming languages, makes powerful abstraction of
computer hardware to hide from programmers the details of how computation is
implemented. High-level languages make program codes more concise, more portable,
and easier to develop and debug.

However, the assembly language, a low-level programming language, offers
programmers not only almost complete and fine-grained control of the underlying
hardware, but also the flexibility of specifying how a computation should be carried out.
Hence, it is often that a well-written assembly program is more efficient than its C
counterpart is. Besides abstracting a microprocessor at different levels, some assembly
instructions have no equivalent implementation in C, as we shall see later in this book.

Tas k: Compute
-2 + 1

C Program

int x = -2;
x = x + 1;

Assembly program

AREA c,CODE

LDR r0, =x 0
LOR rl,[r0] f)
ADD rl, rl, #1 8
STR rl, [r0] 0

AREA d,DATA
x DCW -2

Microprocessor

Figure 3-4. Comparison of C and assembly in abstracting microprocessors

ARM Instruction Set Architecture nm

In Figure 3-4, we use a simple example, which computes the sum of two signed integers
(1 and -2), to compare the hardware abstraction of C and assembly. We assume the
variable x is stored in memory. Note that a variable may be stored in a register instead of
in memory to improve the computation speed.

• C abstracts away much detail of complex low-level computing operations.
Accordingly, C provides a friendly and convenient programming interface to
programmers. Because of strong abstraction, the same C program can be
recompiled for two different hardware platforms, as given below:

Platform 1 Platform 2

Signed integer representation Two's complement One's complement

Size of an integer (bits) 32 16

Operate on immediate numbers? No Yes
Data endian (see Chapter 5.1) Big endian Little endian

Table 3-1. AC program can be compiled for two different hardware platforms.

• In contrast, assembly language requires programmers to understand low-level
details of the instruction set that this specific microprocessor supports. For
example, how many bits does an integer take in memory? What is the data layout
of the signed integer x in memory? How are memory locations specified? How is
the integer x retrieved from memory? How many operands can an addition
support? How is an overflow or carry handled on an addition?

In general, there are three types of instruction set architecture (ISA).

• Accumulator-based instruction set. One of the ALU source operands is implicitly
stored in a special register called accumulator, and the ALU result is saved into
the accumulator. The programmer does not have to specify this operand and the
destination register in the program. The accumulator-based instruction set was
popular in the 1950s.

• Stack-based instruction set. All ALU operands are assumed to be on top of the
stack, and the ALU result is also placed on top of the stack. The stack is a special
region of memory. Thus, programmers need to push the value of operands onto
the stack before an ALU operation is called. The stack-based instruction set was
used in the 1960s.

• Load-store instruction set. ALU source or destination operands can be any
general-purpose registers. ALU cannot directly use data stored in memory as
operands. ALU can only access data in memory by using load or store
instructions. Most modern processors are based on a load-store instruction set.

3.3 - Going from C to Assembly

In the load-store instruction set, many
arithmetic and logic instructions typically
support two source operands that are stored
in registers. The second operand of some
instructions can also be a constant number,
encoded directly in the instruction.

Load-store instruction set
allows effective use of registers.

Compared with the other two types of instruction sets, the load-store instruction set is
faster in performance. The accumulator-based instruction set must make an extra copy
to store one of the source operands in the accumulator. The performance of a stack-based
instruction set is undermined by the performance of memory because ALU must access
the memory repeatedly. However, because there are many general-purpose registers
available, the load-store instruction set can take full advantage of temporal locality
exhibited in almost all applications, effectively reducing the number of accesses to slow
memory.

In a load-store instruction set, data stored in memory cannot be ALU operands directly.
Therefore, if we want to change some data in memory, software needs to perform a
sequence of load-modify-store operations. Software (1) loads target data from memory
to a register, (2) modifies the value in the register, and (3) stores the new value in the
register back to the memory.

As Figure 3-5 shows, to increment the value of variable x stored in memory by one, a
load-modify-store sequence is carried out in four steps in a sequential order: (1) set up
the memory address, (2) load data from memory, (3) perform addition, and (4) store new
value back to memory.

While we will examine the detailed syntax of assembly instruction later, we can briefly
show the assembly program to illustrate the load-modify-store concept.

LDR r0, =X j Step 1: Set up address (Load memory address of x into re)
LDR rl, [r0] j Step 2: Load (Register re holds the memory address of x)
ADD rl, rl, #1 , Step 3: Modify (Increase the value in register rl by 1)
STR rl, [r0] j Step 4: Store (Save the content in register rl into memory)

Note an integer takes four bytes in memory. The 32-bit two's complement of -2 is
0xFFFFFFFE. Assume this number is stored in contiguous memory locations, starting at
0x20000000. The second LDR instruction loads this 32-bit integer into register r0 (LDR
stands for load register). The last step is to save the 32-bit result (0xFFFFFFFF, i.e. , -1) back
to the memory region. After these four steps, the byte stored at memory location
0x20000003, 0x20000002, 0x20000001 and 0x20000000 is 0xFF, 0xFF, 0xFF, and 0xFF.

I:

,,

I
I
I
I
I
I
\

ARM Instruction Set Architecture -

.,,,,..-----------------------
/// A Save 32-bit data in ------

1 'ii register R1 into memory. ---

I• 32 bits ..
1

f) RO holds the memory
address of variable x.

\ RO 0x20000000
' R-1 0xFFFFF FFE

----€)R1:~~:-;- ,,
I
I
I
I
I
I
I
I
I
I
I
\

' ' '

Memory
address

0x20000004 0x00

0x20000003 Ox FF

0x20000002 Ox FF

0x20000001 Ox FF

0x20000000 OxFE

\
\

\
I
I
I
I
I
I

..._ I
I I
I I
I I ,,,
f I
I I
I I
I I

I
I
I
I
I

.................... ':"=1 //
........ / --- .,,,,..,,,,.. -------

Control Unit
Data Memory

Processor Core

Figure 3-5. A sequence of load-modify-store in assembly equivalent to "x = x + 1;" in
C. The variable x has an initial value of-2 (i.e., 0xFFFFFFFE) in two's complement.

3.4 Assembly Instruction Format
A machine instruction consists of:

• a binary operation code (opcode) denoting a specific operation to be carried out
• zero or more operands specifying the inputs of the operation

In an assembly program, each binary opcode is replaced by its symbolic abbreviation,
called instruction mnemonic. Using human-readable mnemonics instead of binary
opcode makes developing an assembly program simpler and more convenient.

The general format of an assembly instruction for ARM Keil compilers is as follows:

label mnemonic operandi, operand2, operand3 ; comments

3.4 - Assembly Instruction Format

• The label in the above instruction is a reference to the memory address of this
instruction. The assembler either replaces the label with the actual numeric
memory address or memory address offset when generating the binary
executable. The label is optional and must be unique within the same assembly
program file . The label should start at the beginning of a line, without any leading
whitespace. The instruction can start a new line, as shown below:

label
mnemonic operandl, operand2, operand3 ; comments

• The mnemonic represents the operation to be performed.
• The number of operands varies, depending on each instruction. Some instructions

have no operands. The comma "," is used to separate operands. Some instruction
allows constant numbers (also called immediate numbers) as operands.

• Typically, the first operand (operandl) is the destination register, and operand2
and operand3 are source operands. The second operand (operand2) is usually a
register. The last operand (operand3) may be a register, an immediate number, a
register shifted by a constant amount of bits (using the Barrel shifter introduced
in Chapter 4.5), or a register plus an offset (used for memory access).

• Everything after the semicolon";" is a comment, which is an annotation explicitly
declaring programmers' intentions or assumptions.

For GNU compilers, the instruction format is slightly different. All assembly instructions
presented in this book follow the ARM format. The GNU format is shown below.

label: mnemonic operandl, operand2, operand3 /* comment */

The following gives five examples of ARM assembly instructions.

Example 1: Adding two registers

ADD r0, r2, r3 ; r0 = r2 + r3

"ADD" is a mnemonic for arithmetic addition, register r0 is the destination
operand, and registers r2 and r3 are two source operands. Register names are
case-insensitive. We can also write r0 as R0, rl as Rl, and so on.

Example 2: Subtracting an immediate number

SUB r3, r0, #3 ; r3 = re - 3

" SUB" is mnemonic for subtraction, register r3 is the destination operand,
register r0 is the minuend, and the immediate number 3 is the subtrahend.

ARM Instruction Set Architecture -

Example 3: Setting the value of a register

MOV r0, #'M' ; re = ASCII value of 'M' (i.e., ex4D)

"MOV" instruction sets the value of r0 to the ASCII value of character M. A
constant number has the prefix '#'.

Example 4: Variants of the ADD instruction

ADD rl, r2, r3 ; rl = r2 + r3
ADD rl, r3 , rl = rl + r3
ADD rl, r2, #4 ; rl = r2 + 4
ADD rl, #15 , rl = rl + 1S

The number of operands in an instruction varies. If the destination operand
(operandl) is the same as the first source operand (operand2), the destination
operand can be omitted. The second operand (operand2) can have some
variations (such as using Barrel shifter, see Chapter 4.5, and memory
addressing, see Chapter 5.4), and it is often written as Op2 in the instruction
description. For example, the add instruction is described as follows:

ADD {Rd,} Rn, Op2 ; Rd= Rn+ Op2

The curly brackets " { }" mean the destination operand Rd is optional if Rn is
the same as Rd.

Example 5: Inline Barrel shifter

ADD r0, r2, rl, LSL #2 ; re = r2 + rl << 2 = r2 + 4 x rl
; re = r2/4 (signed division) MOV r0, r2, ASR #2

MOV r0, r0, ROR #16 ; Swap the top and bottom halfword

In many instructions, the last operand (operand2 or operand3) can have
different formats. We can use the Barrel shifter to shift or rotate the last
operation. Refer to Chapter 4.5 for details.

3.5 Anatomy of an Assembly Program
Let us take a quick look at a complete assembly program, as shown in Figure 3-6. The
program copies a string to another string. An assembly program includes labels,
directives, assembly instructions, and program comments.

1. A label, such as strcpy, stop, srcStr, and dstStr, represents the memory address of
the data or instruction marked with that label. The assembler replaces each label
with its memory address or its memory address offset when generating the

3.5 - Anatomy of an Assembly Program

executable. A label must start with the beginning of a line without any leading space. A
label can be a function name (such as "_main" as in the example), which is the
memory address of the first instruction of a function. The " main" label is
exported to allow the linker to find it and resolve this label.

2. The directives provide valuable information for assisting the assembler. The
example in Figure 3-6 uses the following directives. PROC and ENDP declare the
start and the end of a function (or called a subroutine). END indicates the end of
an assembly program file. AREA defines code or data regions. ENTRY designates the
initial entry into the program. ALIGN specifies the requirement of memory address
alignment. DCB allocates and defines data.

3. An assembly instruction is a machine command that controls the program flow
or manipulates data. Some instructions are pseudo instructions, which are not
real machine commands but are allowed in assembly language code. The
assembler translates a pseudo instruction, such as "LDR rl, =srcStr" in the
example code, into a real instruction. Pseudo instructions make the job of writing
assembly language programs easier.

4. A comment is a text annotation that explains the programmer's intentions or
assumptions. It aims to improve inter-programmer communication and code
readability. A comment in an assembly program starts with a semicolon.
Assemblers ignore everything after the semi-colon in that line.

Code
Area

Data
Area

Labels
i

/ !
i
i
i
i ...

_main

strcpy

loop

stop

srcStr
dststr

:-AREA -string_=copy~--CODE~--READONi-v]
: EXPORT _main :
: ALIGN :.------ Directives

: ENTRY :
l~~p_c_ ________________________________ J

Program
Comments

.. -·············
4 -------

iLDR ____ ri,--;;;;r.e:s-tr ____ : Retrieve address of the source string
: LDR r0, =dstStr ! Retrieve address of the destination string
i LDRB r2, [rl], #1 : Load a byte & increase src address pointer
i STRB r2, [r0], #1 i Store a byte & increase dst address pointer
: CMP r2, #0 : Check for the null terminator
: BNE loop : Copy the next byte if string is not ended
L!:! ______ ~t9P _______ ___ J ; Dead loop. Embedded program never exits.
__ ______________ ::::::::-_-::=:::::::::-~::-~::::::::~-------->Assembly Instructions

: ENDP :
: : . . ' ~------ Directives
: AREA myData, DATA, READWRITE :

L~~l-~~ --------------- - ------- - --J
--!
: DCB "The source string.", 0 : ;
i DCB "The destination string.", 0 : ;
~------------------ -.. - - - - ---------------!

END '
i

Data

Strings are null terminated
dststr has more space than srcstr

• !

Program
Comments

Figure 3-6. An example assembly program

ARM Instruction Set Architecture -

The example assembly program in Figure 3-6 has two areas: a data area and a code area.

• The data area defines two strings: srcStr and dstStr. The program allocates
memory space for both strings and gives them initial values. The NULL character
terminates a string.

• The code area includes a function named _main, which is equivalent to the main()
function in a C program. This program copies string srcStr to string dstStr.

Most assembly instructions of Cortex-M3 can be classified into the following four
categories:

• arithmetic, shift, and logic instructions (see Chapter 4),
• data movement instructions (see Chapter 5),
• compare and branch instructions (see Chapter 6), and
• miscellaneous instructions for various functions such as debugging.

In addition to these instructions, Cortex-M4 and M7 also support

• digital signal processing instructions (see Chapter 24), and
• floating-point instructions (see Chapter 12.4).

(1) Arithmetic, shift, and logic instructions

Shift, logic, Shift: LSL (logic shift left), LSR (logic shift right), ASR (arithmetic shift
and bit right), ROR (rotate right), RRX (rotate right with extend)
instructions Logic: AND (bitwise and), ORR (bitwise or),

EOR (bitwise exclusive or), ORN (bitwise or not), MVN (move not)
Bit set/clear: BFC (bit field clear), BFI (bit field insert),
BIC (bit clear), CLZ (count leading zeros)
Bit/byte reordering: RBIT (reverse bit order in a word), REV (reverse
byte order in a word), REV16 (reverse byte order in each halfword
independently), REVSH (reverse byte order in the bottom halfword,
and sign extend to 32 bits)

Arithmetic Addition: ADD, ADC (add with carry)
instructions Subtraction: SUB, RSB (reverse subtract), SBC (subtract with carry)

Multiplication: MUL (multiply), MLA (multiply with accumulate),
MLS (multiply with subtract), SMULL (signed long multiply),
UMULL (unsigned long multiply),
SMLAL (signed long multiply, with accumulate),
UMLAL (unsigned long multiply, with subtract)

- 3.5 - Anatomy of an Assembly Program

Division: SDIV (signed), UDI V (unsigned)
Saturation: SSAT (signed), USAT (unsigned)
Extension: SXTB (sign-extend a byte), SXTH (sign-extend a halfword),
UXTB (zero-extend a byte), UXTH (zero-extend a halfword)
Bit field extract: SBFX (signed extraction), UBFX (unsigned extraction)

(2) Data movemen t instructions

Memory Read data memory:
access LDRB (load byte), LDRH (load halfword), LOR (load word),
instructions LORD (load double-word), LDRSB (load signed byte), LDRSH (load

signed halfword), LDM, LDMDB, LDMFD (load multiple words)
LDREXB, LDREXH, LDREX (load register exclusive with a byte, halfword,
and word), LDRT (load in privileged modes), POP (load from stack)
Write data memory:
STRB (store byte), STRH (store halfword), STR (store word),
STRD (store double-word), STRSB (store signed byte), STRSH (store
signed halfword), STM, STMDB, STMFD (store multiple words),
STREXB, STREXH, STREX (store register exclusive with a byte, halfword,
and word), STRT (store in privileged modes), PUSH (store into stack)

Data copy MOV (move), MOVT (move top), MOVW (move halfword),
instructions MRS (move from coprocessor), MSR (move to coprocessor)

(3) Compare and branch instructions

Data CMP (compare), CMN (compare negative),
compare TST (test), TEQ (test equivalent),
instructions IT (if-then)

Branch B (branch), CBZ (compare and branch on zero),
instructions CBNZ (compare and branch on non-zero),

TBB (table branch byte), TBH (table branch halfword)

Subroutine BL (branch with link), BLX (branch with link and exchange),
instructions BX (branch and exchange)

(4) Miscellaneous instructions

Miscellaneous BKPT (breakpoint), NOP (no operation), SEV (set event),
instructions WFE (wait for event), WFI (wait for interrupt),

CPSID (interrupt disable), CPSIE (interrupt enable),
DMB (data memory barrier), DSB (data synchronization barrier), !SB

(instruction synchronization barrier)

ARM Instruction Set Architecture RM

3.6 Assembly Directives
In assembly programs, directives are not actual commands. Instead, they are used to
provide key information to compile the source program, such as declaring constants and
symbolic names, defining data layout, allocating memory space, and specifying the
program structure and entry point. Table 3-2 lists some commonly used directives.

AREA Make a new block of data or code

ENTRY Declare an entry point where the program execution starts

ALIGN Align data or code to a memory boundary

DCB Allocate one or more bytes (8 bits) of data

DCW Allocate one or more halfwords (16 bits) of data

DCD Allocate one or more words (32 bits) of data

DCFS Allocate single-precision (32 bits) floating-point numbers

DCFB Allocate double-precision (64 bits) floating-point numbers

SPACE Allocate a zeroed block of memory

FILL Allocate a block of memory and fill with a given value

EQU Give a symbol name to a numeric constant
RN Give a symbol name to a register

EXPORT Declare a symbol and make it referable by other source files
IMPORT Provide a symbol defined outside the current source file
INCLUDE/GET Include a separate source file within the current source file
PROC Declare the start of a procedure
ENDP Designate the end of a procedure
END Designate the end of a source file

Table 3-2 Directives commonly used in ARM assembly language

Table 3-3 gives a typical skeleton frame of an assembly program.

AREA myDat a, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, RE ADONLY ; Define a code section
EXPORT _main
ENTRY

_main PROC

ENDP
END

, Make main visible to the Linker
; Mark the entrance to the entire program
; PROC marks the beginning of subroutine
; Assembly program starts here.
, Mark the end of a subroutine
; Mark the end of a program

Table 3-3. Skeleton of an ARM assembly program.

- 3.6 - Assembly Directives

(1) AREA

An application consists of one or multiple data and code areas. The AR EA directive
indicates to the assembler the start of a new data or code section. A code section contains
a list of instructions, and a data section includes the declaration and initialization of
variables.

An area is a basic independent and indivisible unit processed by the linker. Each area
should have a name, and areas within the same source file cannot share the same name.
An assembly program must have at least one code area. By default, a code area can only
be read (READONL Y), and a data area may be read from and written to (READWRITE).

(2) ENTRY

The ENTRY directive marks the first instruction to
be executed within an application. There must
be one and only one entry directive in an
application, no matter how many source files the
application has. When there is no entry
directive, the linker generates an error message.
When there are multiple entry directives, the
assembler gives an error message.

For applications written in C or C++, the entry

There should be only one
entry for the whole

application, even if it has
multiple source files .

point is in the C library's initialization function, not directly visible to programmers.

(3) END

The END directive indicates the end of a source file. Each assembly program file must end
with this directive. Suppose we have two assembly source files A and B. When A uses
either GET or INCLUDE to include B, the assembler returns to A after reaching END in B, and
continues to assemble the rest of A . The END directive of the top-level file informs the
assembler to complete the application.

(4) Function or subroutin e defin ition: PROC and ENDP

PROC and ENDP mark the beginning and the end of a function (also called a subroutine or
procedure), respectively. PROC stands for "procedure" and ENDP means "end of
procedure."

A single source file can contain multiple subroutines. However, PROC and ENDP cannot be
nested. We cannot define a subroutine within another subroutine.

A C program must have at least one function named main () . Similarly, an assembly
program must have at least one subroutine named _main.

ARM Instruction Set Architecture -

(5) Data allocation directive: DCB, DCW, DCD, DCQ, SPACE, and FILL
An assembly program needs to reserve space in the data memory for variables and set
their initial contents. Table 3-4 lists commonly used data allocation directives.

Directive Description Memory Space
DCB Define Constant Byte Reserve 8-bit values
DCW Define Constant Half-word Reserve 16-bit values
DCD Define Constant Word Reserve 32-bit values
DCQ Define Constant Doubleword Reserve 64-bit values
SPACE Defined Zeroed Bytes Reserve some zeroed bytes
FILL Defined Initialized Bytes Reserve and fill each byte with a value

Table 3-4. Directives for data allocation and initialization

Example 3-1 shows how to declare an initialized string, initialized integer arrays, a

zeroed memory region, and a few variables in different formats.

AREA myData, DATA, READWRITE
hello DCB 11 Hello World! 11

, 0 ; Allocate a string that i.s nul l-termi.nated
dollar DCB 2,10,0,200 ; Allocate integers ranging from -128 to 255
scores DCD 2,3.5,-0.8,4.0 ; Allocate 4 words containing decimal values
miles DCW 100,200,50,0 , Allocate integers between -32768 and 65535
p SPACE 255 ; Allocate 255 bytes of zeroed memory space
f FILL 20,0xFF,1 ; Allocate 20 bytes and set each byte to BxFF
binary DCB 2_01010101 ; Allocate a byte i.n bi.nary
octal DCB 8_73 ; Allocate a byte i.n octal
char DCB 'A' ; Allocate a byte i.ni.ti.ali.zed to ASCII of 'A'

Example 3-1. Data definition by using data allocation directive

(6) The EQU and RN directive
EQU and RN are to make an assembly program easier to understand. The EQU directive
associates a symbolic name to a numeric constant. Like "#define" in a C program, EQU
can be used to define a constant in an assembly code.

; Interrupt Number Defi.ni.ti.on
BusFault_IRQn EQU -11
SVCall_IRQn EQU -5
PendSV_IRQn EQU -2
SysTick_IRQn EQU -1

(IRQn)
, Cortex-M Bus Fault Interrupt
, Cortex-M Supervisor Call (SVC) Interrupt
; Cortex-M Pend SVC Interrupt
; Cortex-M System Ti.ck Interrupt

Example 3-2. EQU is equivalent to "define" in a C program.

The RN directive gives a symbolic name to a register.

Dividend
Divisor

RN
RN

6
5

; Defines dividend for register 6
; Defines di.visor for register 5

Example 3-3. RN gives a special, meaningful name to a register.

- 3.6 - Assembly Directives

(7) ALIGN

To improve performance, many processors require that the starting memory address of
an instruction or a variable must be a multiple of 2n. For example, an address aligned to
a word boundary must be divisible by 4 (i .e., 22). If instructions or data are not
appropriately aligned in memory, some processors generate a misalignment fault signal
and abort the memory access. Cortex-M processors allow unaligned memory accesses at
the sacrifice of performance. Multiple memory accesses may be required to fetch a
misaligned data item or instruction. Chapter 10.1 introduces alignment in detail.

The following shows an example usage of ALIGN and its layout of the data area.

a

b
c

d

AREA myCode, CODE, ALIGN = 3
ADD r0, rl, r2

, Memory address begins at a multiple of B
, Instructions start at a multiple of B

AREA myData,
DCB 0xFF
ALIGN 4, 3
DCB 0x33
DCB 0x44
ALIGN
DCD 0x12345

DATA, ALIGN = 2 ; Address begins at a multiple of 4
, The first byte of a word (4 bytes)
; Align to the Last byte of a word
, Set the fourth byte of a 4-byte word
, Add a byte to make next data misaligned
, Force the next data to be aligned
; Skip three bytes and store the word

Example 3-4. Data alignment in assembly language

0x2000000B 0x00

0x2000000A 0x01

0x20000009 0x23

0x20000008 0x45

0x20000007 0x00

0x20000006 0x00

0x20000005 0x00

0x20000004 0x44

0x20000003 0x33

0x20000002 0x00

0x20000001 0x00

0x20000000 0xFF

Memory
address

14 ~1
8 bits

Figure 3-7. Data layout of Example 3-4. Assume the my Data area starts at 0x20000000.

ARM Instruction Set Architecture IN

(8) EXPORT and IMPORT

EXPORT and IMPORT define and locate symbols externally defined in different source files.
The EXPORT declares a symbol and makes this symbol visible to the linker. The IMPORT
gives the assembler a symbol that is not defined locally in the current assembly file. The
IMPORT is like the "extern" keyword in C.

(9) INCLUDE or GET

The INCLUDE or GET directive is to include an assembly source file within another source
file. It is useful to include constant symbols defined by using EQU and stored in a separate
source file. In Example 3-5, all constants are defined by using EQU directives and are
stored in a separate assembly file called "constants.s" . To include these constants, we can
use a simple statement "INCLUDE constants. s".

INCLUDE constants.s ; Load Constant Definitions
AREA myCode, CODE, READONLY
EXPORT _main
ENTRY

_main PROC

ENDP
END

Example 3-5. Using INCLUDE to load constants defined in a separate file

3.7 Exercises

1. Find five devices that use an ARM processor. Identify the instruction set they support
(such as ARM32, Thumb, Thumb-2, or ARM64).

2. Identify two ARM Cortex-M processors and find what 1/0 peripherals are built into
the processor chip.

3. Identify key differences between Cortex-M3 and Cortex-M4.

4. Compared with accumulator-based and stack-based instruction set, what are the
advantages and disadvantages of the load-store instruction set?

5. The C language standard (C99 standard) specifies the minimum field width of each
variable type. The actual size of a variable type varies by implementations. Find out
the minimum size of the following variable types in terms of bytes.

1) char
2) short

ml 3.7 - Exercises

3) signed short int
4) int
5) long
6) unsigned long int
7) long long
8) unsigned long long
9) float
10)double

6. An assembly program must have a subroutine named _main. Find why it must be

named as _main. (Hints: Look at the assembly source code of the boot loader, which

initializes the processor when the processor starts.)

7. What does "ALIGN 8, 5" mean? Draw the data memory layout if the data memory

starts at 0x20000000.

AREA myData, Data
ALIGN 4

a DCB 1
b DCB 2
c DCB 3

ALIGN 8,5
d DCB 5

8. What are incorrect in the following assembly program?

AREA myData, DATA, READWRITE
String DCB "ABCDE"
Array DCD 1, 2, 3, 4, 5
END

AREA myCode, CODE, READONLY
EXPORT _main2

main PROC

sum PROC

ENDP

ENDP
END

9. How does an assembly program define a float or double variable? How is a float or
double array defined?

Arithmetic and Logic

CHAPTER

4
Arithmetic and Logic
Data processing instructions can be classified into seven categories: arithmetic
instructions, reorder instructions, extension instructions, bitwise logic instructions, shift
instructions, comparison instructions, and data copy instructions. This chapter focuses
on assembly instructions for arithmetic and logic operations.

4.1 Program Status Register
Cortex-M processors have five status flags: negative (N), zero (Z), overflow (V), carry (C),

and saturation (Q).
• The negative flag (N) is set if the result of ALU is negative (i.e., bit[31] is 1), and

is cleared otherwise.
• The zero flag (Z) is set if the ALU result is zero, and is cleared otherwise.
• The carry flag (C) is set if a carry occurs in unsigned addition, and is cleared

otherwise. For unsigned subtraction, it is set if no borrow has occurred, and is

cleared otherwise.
• The overflow flag (V) is set if an overflow takes place when performing a signed

addition or subtraction, and is cleared otherwise.
• The saturation flag (Q) is set if an SSAT or USAT instruction causes saturation, and

is cleared otherwise.

Most data processing instructions of Cortex-M processors have an option to update these
ALU status flags. These flags are stored in the program status register (PSR). The program
status register is a combination of three special registers: the application program status
register (APSR), the interrupt program status register (IPSR), and the execution program
status register (EPSR).

Because APSR, IPSR, and EPSR have no overlap in bit fields, the processor combines them
into one register PSR, or called xPSR, as shown in Figure 4-1, to allow convenient accesses.

11111 4.1 - Program Status Register

31 30 29 28 21 26 25 24 23 22 21 20 19 18 11 16 15 14 13 12 11 10 9 8 1 6 5 4 3 2 1 o

Reserved

Saturation flag

Overflow flag

~-- Carry/Borrow flag

~----- Negative or less than flag

GE[3:0] Reserved

Greater than or Equal (GE) flags
(Note: Available in Cortex-M7/M4, but not in Cortex-M3)

EPSR Reserved Reserved IT[5:0] Reserved

Thumb state flag

IPSR Ll ____________ Re_se_rv_ed ____________ _,__ __ o_or_E_xre_p_tio_n_Nu_m_be_r_~

PSR = APSR + EPSR + IPSR

31 30 29 28 21 26 25 24 23 22 21 20 19 18 11 16 15 14 13 12 11 io 9 a 1 6 5 4 3 2 1 o

PSR N Z c V a IT(7:6) T Reserved IT[5:0] Exreption Number

Reserved

Figure 4-1. Program status register APSR, EPSR, and IPSR

In APSR, the GE flags indicate whether the corresponding results are greater than or equal
to zero (see Chapter 24.7). The GE flags are only available on Cortex-M4 and M7.

In EPSR, the T flag indicates whether the processor is in Thumb state or ARM32 state.
Since Cortex-M processors only support Thumb-2/Thumb instructions, the T flag has a
fixed value of 1 in Cortex-M. Additionally, the IT bit fields (IT [7: 6] and IT [5: 0]) in
EPSR hold the condition states associated with the current IF-THEN (IT) block. An IT

block is a convenient approach to implementing conditionally executed instructions.

In IPSR, the least significant 9 bits are zero if the processor is in the thread mode, or the
exception or interrupt number if the processor is in the handler mode. On reset, the
processor is in the thread mode. Chapter 11 introduces the concept of interrupts.

These special registers can only be accessed by using two special instructions:

• MRS (move from a special register to a general register) and
• MSR (move from a general register to a special register).

Specifically, MRS reads these registers, and MSR writes to these registers. The following
gives a few examples.

MRS r0, apsr , Read APSR
MRS r0, ipsr , Read IPSR
MRS r0, epsr , Read EPSR
MRS r0, xpsr , Read APSR, IPSR, and EPSR
MSR apsr_nzcvq, r0 , Change N,Z,C,V,Q flags in APSR
MSR apsr_g, r0 , Copy r0{19:16) to GE{3:0] in APSR (Not on Cortex-M3)
MSR apsr_nzcvqg, r0 , Change N,Z,C,V,Q and GE flags (Not on Cortex-M3)

4.2 Updating Program Status Flags
It is an option for an arithmetic or logic instruction to set the
processor status flags. If the S suffix is appended to an

Arithmetic and Logic Im

instruction mnemonic, the processor modifies the status flags ADD vs ADDS
based on the computation result. For example, the ADDS
instruction changes the N, Z, C, and V flags when performing
addition. On the contrary, ADD cannot change these flags. If an
instruction does not update these flags, the existing value of each flag, set by a previous
instruction, is preserved.

Data comparison instructions (introduced in Chapter 4.9), such as CMP (compare), CMN

(compare negative), TST (test), and TEQ (test equivalence), set these flags even though
they do not have the S suffix.

Let us look at ADD instructions with and without the S suffix.

ADD rl, r2, r3 , rl = r2 + r3, but won't update N, z, c, and v flags
ADDS rl, r2, r3 ; rl = r2 + r3, and update N, Z, C, and V flags

While the first instruction ADD does not change the N, Z, C, and V flags, the second
instruction ADDS modifies the flags in the following ways:

(1) the overflow flag by assuming that r2 and r3 hold signed integers represented in
two's complement,

(2) the carry flag by assuming that r2 and r3 hold unsigned integers,
(3) the zero flag by checking whether the result saved in the destination register rl

is zero or not, and
(4) the negative flag by checking the sign bit of rl (the most significant bit of rl).

If the Barrel shifter is used, the source operand may update the program status flags.
Chapter 4.5 introduces the Barrel shifter. For example, the bitwise logical ANDS instruction
can update the N, Z, and C flags. In the following instruction, the N flag is set if the most
significant bit of rl is 1, and the Z flag is set if rl equals 0.

ANDS rl, r2, r3 ; rl = r2 AND r3

It is easy to understand that most logical instructions do not update the overflow flag.
How does a logical instruction update the carry flag? The answer lies in the second
operand of a logical instruction. If the second operand uses the Barrel shifter, then the
processor updates the carry flag based on the shift or rotation result.

ANDS rl, r2 , r3, LSL #3 ; rl = r2 AND (r3 << 3)

- 4.3 - Shift and Rotate

When MOVS uses the Barrel shifter, the processor also updates the Z, N, and C flags.

MOVS r2, rl, LSR #3 ; r2 = rl « 3

However, the Barrel shifter does not change the flags if it is employed in an arithmetic
instruction. For example, in the following instruction, the flags depend on the result of
addition, instead of logical shift left.

ADDS rl, r2, r3, LSL #3 ; rl = r2 AND (r3 << 3)

If the program is written in assembly, it is the programmer's responsibility to interpret
and use these flags correctly. For programs written in high-level languages, compilers
automatically interpret these flags. As introduced in Chapter 2.4.3, if the ALU is to
update the status flags when performing an arithmetic addition or subtraction, the
processor updates both the carry flag and the overflow flag. It must be clear to
programmers whether the numbers stored in the registers are signed or unsigned.

4.3 Shift and Rotate
As shown in Figure 4-2, the second ALU operand is equipped with a Barrel shifter, which
is a special digital circuit for quick shift and rotation. Barrel shifters are usually not
available on other processors such as PIC and AVR.

Source
Operand 1

Source
Operand 2

Barrel
shifter

Figure 4-2. Barrel shifter is special hardware that performs quick shift and rotate operations
on the second source operand.

There are five types of shift and rotate operations: LSL, LSR, ASR, ROR, and RRX, as shown
in Figure 4-3.

• LSL (logical shift left) moves all bits of a register value left by n bits and zeros are
shifted in at the right end. LSL is equivalent to multiplication by zn ("«"
operation in C).

Arithmetic and Logic MF

• LSR (logical shift right) moves all bits of a register value right by n bits and zeros
are shifted in at the left end. LSR is equivalent to unsigned division by zn ("»"
operation on unsigned numbers in C).

• ASR (arithmetic shift right) moves all bits right by n bits and copies of the left most
bit (the sign bit) are shifted in at the left end. ASR is equivalent to signed division
by zn ("»" operation on signed numbers in C).

• ROR (rotate right) is the circular shift, in which all 32 bits are shifted right
simultaneously as if the right end of the register is joined with its left end. The bit
shifted out from the right end of the register is copied into the carry bit. The carry
bit can be optionally used to update the carry flag of the processor status register.

• RRX (rotate right with extend) works similarly to ROR except that the carry bit joins
the rotating circle, and RRX can rotate the data by only one bit.

Below gives a few examples of shift and rotate instructions.

LSL rl, r2 , rl = rl « r2
LSL rl, #3 , rl = rl « 3
LSL rl, r2, #3 ; rl = r2 << 3
LSL rl, r2, r3 ; rl = r2 « r3
ROR rl, r2 ; rl = rotate rl by r2 bits
RRX rl, r2 ; rotate r2 right by one bit (with extension)

LSL : Logical Shift Left

b31 ------< bO 0

LSR : Logical Shift Right

b31 f----· bO

ASR: Arithmetic Shift Right

bO

ROR: Rotate Right

RRX: Rotate Right Extended

Figure 4-3. Shift and rotate operations. Note that the carry (C) is not APSR's carry flag.

- 4.4 - Arithmetic Instructions

The C language does not provide rotate operations (ROR and RRX). The compiler
automatically uses a rotation instruction if it can improve the performance. Besides, ARM
assembly language does not provide a rotate left assembly instruction. However, a rotate
left by n bits can be replaced with a rotate right by 32 - n bits. For example, rotating left

by 6 bits has the same result as rotating right by 26 bits.

Note the carry bit shown in Figure 4-3 is not the carry flag of the processor status register.
Therefore, none of these shift and rotate instructions updates the status flags by default.
If these flags need to be updated, a shift or rotate instruction must have the suffix S
specified. What's more, these instructions cannot modify the overflow flags.

LSL rl, #3
LSLS rl, #3

, rl = rl << 3, but won't update the flags
; rl = rl << 3, and update the N, Z, C flags
; LSLS does not update the V flag

Programs often use the Barrel shifter to replace slow multiplication and division

instructions to improve the speed, as shown below.

ADD r0, r2, rl, LSL #1
ADD rl, r0, r0, LSR #3

; re = r2 + rl << 1 = r2 + 2 x rl
; rl = re + re >> 3 = re + re/8

The Barrel shifter used in a move (MOVS and MVNS), and logical/bitwise instruction with
the S suffix (such as ANDS, ORRS, EORS, BICS) updates the carry flag. This chapter gives
detailed discussions later.

4.4 Arithmetic Instructions
Table 4-1 lists arithmetic instructions that produce 32-bit results.

ADD {Rd,} Rn, Op2 Add. Rd ~Rn + Op2

ADC {Rd,} Rn, Op2 Add with carry. Rd ~ Rn + Op2 + Carry

SUB {Rd,} Rn, Op2 Subtract. Rd ~ Rn - Ov2

SBC {Rd,} Rn, Op2 Subtract with carry. Rd ~ Rn - Op2 + Carry - 1

RSB {Rd,} Rn, Op2 Reverse subtract. Rd ~ Op2 - Rn

MUL {Rd,} Rn, Rm Multiply. Rd~ (Rn x Rm)[31:0]

MLA Rd, Rn, Rm, Ra Multiply with accumulate. Rd~ (Ra+ (Rn x Rm))[31:0]

MLS Rd, Rn, Rm, Ra Multiply and subtract. Rd~ (Ra - (Rn x Rm))[31:0]

SDIV {Rd,} Rn, Rm Signed divide. Rd ~ Rn I Rm

UDIV {Rd,} Rn, Rm Unsigned divide. Rd ~Rn I Rm

SSAT Rd, #n, Rm{, shift #s} Signed saturate
USAT Rd,#n, Rm{, shift #s} Unsigned saturate

Table 4-1. Arithmetic instructions with 32-bit results

Arithmetic and Logic Ill

4.4.1 Addition and Subtraction Instructions
Most of these instructions take two source operands, and the 32-bit result is saved in a
destination register. While the first source operand is a register, the second source
operand is flexible and can be a register, an immediate constant, or an inline Barrel shifter.

Examples of three register operands:

SUB r3, r2, rl ; r3 = r2 rl
SBC r3, r2, rl , r3 = r2 rl + Carry - 1
RSB r3, r2, rl ; r3 = rl - r2

Examples of an immediate number operand:

SUB r3, r2, #987 , r3 = r2 - 987
RSB r3, r2, #987 ; r3 = 987 - r2

Examples of inline Barrel shifter:

RSB r0, r0, r0, LSL #5
ADD r0, r0, r0, LSL #3

; re = re << s - re = 31 x re
, re = re + re << 3 = 9 x re

The next section introduces the Barrel shifter in detail.

If an instruction has three operands, the second operand cannot be a constant number in
most instructions (except SSAT and USAT). For example, the SUB instruction below has a
syntax error.

SUB r0, #1, r3
RSB r0, r3, #1

; Not allowed, causing a syntax error.
, re = 1 - r3. RSB is for reverse subtraction.

Example 4-1 given below shows the implementation of subtracting two 96-bit integers
by using SUB and SBC. A 96-bit integer is saved in three registers.

C(r8: r7: r6) = A(r2: rl: rO) - B(rS: r4: r3)

The program uses the LDR instruction (see Chapter 5.1). The LDR instruction sets a register
to a constant value. A constant value is also called an immediate number.

;C=A-8
; Subtracting two 96-bit integers A (r2:rl:re) and B (r5:r4:r3).
; Three registers to hold a 96-bit integer: upper word : middle word Lower word
; Result C (r8:r7:r6)
, A = eeee1234,eeeeeee2,FFFFFFFF
; B = 1234567B,eeeeeee4,eeeeeee1

LDR r0, =0xFFFFFFFF
LDR rl, =0x00000002
LDR r2, =0x00001234

; A's Lower 32 bits (See LOR in Chapter 5.1)
; A's middle 32 bits
; A's upper 32 bits

- 4.4 - Arithmetic Instructions

LDR r3, =0x00000001
LDR r4, =0x00000004
LDR rs, =0x1234S678

; B's Lower 32 bits
; B's middle 32 bits
; B's upper 32 bits

; Subtract A from B
SUBS r6, r0, r3 , C{31:e] = A{31:e] - B{31:e], update carry

; Carry f Lag is 1 if no borrow has occurred in the previous subtraction
SBCS r7, rl, r4 ; C{64:32) = A{64:32) - B{64:32) +carry - 1, update carry
SBC r8, r2, rs ; C{96:64) = A{96:64) - B{96:64) + carry - 1

Example 4-1. Subtracting two 96-bit integers. Each integer is stored in three registers.

4.4.2 Short Multiplication and Division Instructions
The result of a multiplication may have more than 32 bits. However, the destination
register only holds the least significant 32 bits (LSB32) of the result.

MUL r6, r4, r2 , signed multiply, r6 = LSB32(r4 x r2)
UMUL r6, r4, r2 ; unsigned multiply, r6 = LSB32(r4 x r2)
MLA r6, r4, rl, r0 ; r6 = LSB32(r4 x rl) + re
MLS r6, r4, rl, r0 , r6 = LSB32(r4 x rl) - re
SDIV r3, r2, rl ; signed divide, r3 = r2/rl
UDIV r3, r2, rl , unsigned divide, r3 = r2/rl

4.4.3 Long Multiplication Instructions
Table 4-2 presents long multiplication instructions that produce 64-bit results.

UMULL RdLo,RdHi,Rn,Rm Unsigned long multiply, RdHi,RdLo ~ unsi)(ned(Rn x Rm)

SMULL RdLo,RdHi,Rn,Rm Signed long multiply, RdHi,RdLo f- si~ned(Rn x Rm)

UM LAL RdLo,RdHi,Rn,Rm
Unsigned multiply with accumulate,
RdHi,RdLo f- unsi~ned(RdHi,RdLo + Rn x Rm)

SM LAL RdLo,RdHi,Rn,Rm
Signed multiply with accumulate,
RdHi,RdLo ~ si~ned(RdHi,RdLo +Rn x Rm)

Table 4-2. Long multiplication instructions

Two registers are used to store a 64-bit result, with the high register (RdHi) holding the
most significant 32 bits, and the low register (Rd Lo) holding the least significant 32 bits.

UMULL and UMLAL assume that the operands Rn and Rm, and the 64-bit multiplication result
is an unsigned integer. On the other hand, SMULL and SMLAL treat the operands as signed
integers. UMLAL and SMLAL also perform accumulation.

UMULL r3, r4, r0, rl ; r4:r3 = re x rl_, r4 = MSB bi.ts) r3 = LSB bits
SMULL r3, r4, r0, rl , r4:r3 = re x rl
UMLAL r3, r4, r0, rl
SMLAL r3, r4, r0, rl

; r4:r3 = r4:r3 + re x rl
J r4:r3 = r4:r3 + re x rl

Arithmetic and Logic l:SM

4.4.4 Saturation Instructions
The saturation instructions limit a given input to a configurable signed or unsigned range.
When the input value exceeds the specified range, its output is then set as the maximum
or minimum value of the selected range. Otherwise, the output is equal to the input. The
saturation instructions take one immediate source operand and one register source
operand.

• 55AT saturates a signed integer x to the signed range -2°-1 $ x $ 2°-1-1.

{
zn-1 - 1

SSAT(x) = -2;-1 if x > zn-l - 1
if x < zn-1
otherwise

• U5AT saturates a signed integer x to the unsigned range 0 ~ x ~ 2" - 1.

USAT(x) = {zn - 1 if x > ~n - 1
x otherwise

The following gives two examples in which n is 11. Note the second operand is an
immediate number in 5SAT and U5AT.

55AT r2, #11, rl
USAT r2, #11, r3

4.5 Barrel Shifter

; output range: -210 s r 2 s 21e
; output range: e s r2 s 211

The key advantage of Barrel shifters is that it can shift or rotate a register by a specified
number of bits in one clock cycle. Typically, a Barrel shifter is implemented as a cascade
of parallel 2-to-1 multiplexers. Figure 4-4 gives an example implementation of a four-bit
Barrel shifter that performs rotate right. The 5150 indicates the amount of rotation. The
implementation of logic shift is similar, except that a zero bit is shifted in either from the
right end or the left end.

As shown in Figure 4-2, the Barrel shifter is
special hardware that can perform shift and
rotation on the second ALU source
operand. Therefore, not only can a shift and
rotate instruction be used as a standalone
assembly instruction, but it can also be
utilized in other instructions to make
changes to the second source operand.

51 Se V3 Y2 Y1 Ye
0 0 D3 Di Dl De
0 1 De D3 Di Dl
1 0 Dl De D3 Di
1 1 Di Dl De D3

Table 4-3. Truth table of rotation right

4.6 - Bitwise Logic Operations

ASR and LSR differ on whether the sign is preserved. For example,

ADD
ADD
ADD

03

rl, r0,
rl, r0,
rl, r0,

2-to-1
Multiplexer,

r0,
r0,
r0,

LSL #3 ,
LSR #3 ,
ASR #3 ;

02

rl = re + re << 3 = re + 8 x re
rl = re + re » 3 = re + re/8 (unsigned)
rl = re + re » 3 re + re/8 (signed)

01 Do

So

Figure 4-4. Example four-bit Barrel shifter that performs rotate right

We can leverage Barrel shifter to speed up the application.

• Without Barrel shjfter, two separate instructions would be required to carry out
each of the above instructions. This would not only increase the size of a binary
program but also take more processor cycles to complete the same task.

• Barrel shifter can also replace slow multiplication instructions, as shown in the
following example.

ADD rl, r0, r0, LSL #3 MOV r2, #9 , r2 = 9

MUL rl, r0, r2 ; rl = re * 9

4.6 Bitwise Logic Operations
Bitwise operations treat input operands as a sequence of binary bits, rather than as
integer numbers. The computation is carried out at the bit level. For example, we can
reset a specific bit of a register to zero or set a specific bit a register to one, leaving the
other bits unchanged.

There are four commonly used bitwise Boolean operators: AND, OR, Exclusive OR (EB), and
negation (NOT). The output of the Exclusive OR is true only when the input bits differ (i. e.,

one is true, and the other is false). Table 4-4 shows their truth table.

Arithmetic and Logic l:~W

a b aandb a orb aEa b not a
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

Table 4-4. Truth table of logic operations

Table 4-5 shows the bitwise assembly instructions supported in Cortex-M.

AND {Rd,} Rn, Op2 Bitwise logic AND. Rd+--- Rn & operand2
ORR {Rd,} Rn, Op2 Bitwise logic OR. Rd +--- Rn I operand2
EOR {Rd,} Rn, Op2 Bitwise logic exclusive OR. Rd +--- Rn " operand2
ORN {Rd,} Rn, Op2 Bitwise logic NOT OR. Rd +--- Rn I (NOT operand2)
BIC {Rd,} Rn, Op2 Bit clear. Rd+--- Rn & NOT operand2
BFC Rd, #lsb, #width Bit field clear. Rd[(width+lsb-l): lsb] +--- e
BFI Rd, Rn, #lsb, #width Bit field insert. Rd[(width+lsb- l): lsb] +--- Rn[(width-1):0]
MVN Rd, Op2 Logically negate all bits. Rd +--- OxFFFFFFFF EOR Op2

Table 4-5. Bitwise Logic Instructions

These instructions operate at the bit level. They perform logic operations for each pair of

bits that are at the same position of inputs. For example, suppose r0 = 0xD5755755 and

rl = 0xAABAAAA9, the following shows the result of various bitwise logic operations.

AND r2, re, rl

r0

rl
r2

ORR r2, re, rl

r0
rl
r2

EOR r2, re, rl

r0
rl
r2

ORN r2, re, rl

r0
rl

NOT rl
r2

; r2 = re bitwise AND rl ~ r2 = exBe3ee2e1

11010101011101010101011101010101

10101010101110101010101010101001
10000000001100000000001000000001

; r2 = re bitwise OR rl ~ r2 = exFFFFFFFD

11010101011101010101011101010101
10101010101110101010101010101001
1 0 1

; r2 = re bitwise ExcLusive OR rl ~ r2 = ex7FCFFDFC

11010101011101010101011101010101
10101010101110101010101010101001
0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0

; r2 = re bitwise NOT OR rl ~ r2 = exD5755757

11010101011101010101011101010101
10101010101110101010101010101001
01010101010001010101010101010110
11010101011101010101011101010111

- 4.6 - Bitwise Logic Operations

BIC r2, r0, rl ; r2 = bit clear re according to rl ~ r2 = ex55455554

r0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1
rl 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1

NOT rl 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0
r2 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

MVN r2, rl ; r2 = NOT rl ~ r2 = ex55455556

rl 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
r2 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0

Bit mask

We often use bit masks to manipulate a particular subset of binary bits in a single
bitwise operation conveniently. For an integer N, its bit mask is constructed as follows:

• The mask has the same number of bits in binary as the integer N.
• Bit mask(i) is set if bit N(i) is to be operated; otherwise, mask(i) is 0.
• If N(i) is 1, we say bit N(i) is masked.

The mask can separate the binary bits of an integer into two parts. The part selected
by the bit mask is examined or modified, and the other part is ignored. If a bit in the
bit mask is 1, the corresponding bit in the target variable is chosen. For example, a
mask of 0b00110100 (0x34) selects bits 2, 4, and 5 of the target variable. The following
gives C and assembly example programs to set, clear, toggle and check bits in a
variable.

• N = 0xA2 = 0b10100010
• Mask = 0x34 = 0b00110100

Bitwise Operators Symbol Example
AND & c = N & Mask; II c = ebee1eeeee = ex2e
OR I c = N I Mask; II c = eb1e11e11e = exB6

EXCLUSIVE-OR (EOR) " c = N " Mask; II c = eb1ee1e111 = ex97
NOT ... c = ~N; II c = ebe1e111e1 = exso

SHIFT RIGHT » c = N » 2· , II c = ebee1e1eee = ex28
SHIFT LEFT « c = N « 2; II c = eb1eee1eee = exBB

Example 4-2. The mask selects bit 2, 4, and 5.

Checking a bit via bitwise AND (&)

c Program Assembly Program 1 Assembly Program 2

char a = 0x34; LOR r0,#0x34 , re = a LOR r0,#0x34 ; re = a
char mask = 1<<5; LOR rl,#(1«5) , rl = mask ANDS r2,r0,#(1<<5)
char b; ANDS r2,r0,rl ; r2 = b
11 Check bit 5
b = a & mask;

Arithmetic and Logic -

We can check whether a bit is 1 by performing bitwise AND operation with the
corresponding mask. In this example, register r2, representing variable b, is non-zero
only when bit 5 in register r0 is 1.

Setting a bit via bitwise OR (I)

C Program Assembly Program 1 Assembly Program 2

char a = 0x34; LDR r0,#0x34 , re = a LDR r0,#0x34 ; re = a
char mask = 1«5; LDR rl,#(1«5) ; rl = mask ORR r0,r0,#(1<<5)
II Set bit 5 ORR r0,r0,rl
a I= mask;

ORR a bit with 1 sets this bit. ORR a bit with 0 does not change it. Therefore, ORR a
variable with the mask sets all bits marked by the mask, while keeping all the other
bits unchanged.

Clearing a bit via bitwise AND (&)

C Program Assembly Program 1 Assembly Program 2

char a = 0x34; LDR r0,#0x34 ; re = a LDR r0,#0x34 ; re = a
char mask = 1<<5; LDR rl,#(1«5) , rl = mask BIC r0,#(1«5)
II Reset bit 5 MVN rl,rl ; NOT
a &= -mask; EOR r0,r0,rl

AND a bit with 0 clears this bit. AND a bit with 1 does not change it. Therefore, AND a
variable with the negation of the mask clears all data bits marked by the mask.

Toggling a bit via bitwise EOR (")

C Program Assembly Program 1 Assembly Program 2

char a = 0x34; LDR r0,#0x34 , re = a LDR r0,#0x34 ; re = a
char mask = 1<<5; LDR rl,#(1«5) ; rl = mask EOR r0,r0,#(1<<5)
11 Toggle bit 5 EOR r0,r0,rl
a "= mask;

As illustrated by the truth table given in Table 4-6, exclusive OR (EOR) between 1 and a
bit inverts this bit, and exclusive OR between 0 and a bit keeps the bit unchanged.
Therefore, exclusive OR between a data and its mask toggles all data bits masked.

Data bit Mask bit Data bit E9 Mask bit
0 1 1
1 1 0
0 0 0
1 0 1

Table 4-6. Truth table of Exclusive OR. Use bitwise EOR with a 1 to toggle a bit.

- 4.6 - Bitwise Logic Operations

In C, the Boolean operations are A && B (Boolean and), A 11 B (Boolean or), and !B

(Boolean not), which are different from the above bitwise operations.

• The Boolean operators perform word-wide operations, not bitwise. For

example, "0x10 & 0x01" equals 0x00, but "0x10 && 0x01" equals 0x01.

• The bitwise negation expression "-0x01" equals 0xFFFFFFFE, but Boolean NOT

expression " ! 0x01" equals 0x00.

Using EQU to define a mask in assembly

To make programs easier to read, we often give a name to a mask. For example, we

define the bit masks for the clock enable and disable bits for GPIO ports.

RCC_AHB2ENR_GPIOAEN EQU
RCC_AHB2ENR_GPIOBEN EQU
RCC_AHB2ENR_GPIOCEN EQU

(0x00000001)
(0x00000002)
(0x00000004)

, GPIO port A clock enable
, GPIO port 8 clock enable
; GPIO port C clock enable

LDR r7, =RCC_BASE ; Address of reset and clock control
LDR rl, [r7, #RCC_AHB2ENR] , Load AHB2ENR from memory into rl
ORR rl, rl, #RCC_AHB2ENR_GPIOAEN , Enable clock of GPIO port A
ORR rl, rl, #RCC_AHB2ENR_GPIOBEN ; Enable clock of GPIO port B
ORR rl, rl, #RCC_AHB2ENR_GPIOCEN ; Enable clock of GPIO port C
STR rl, [r7, #RCC_AHB2ENR] ; Save to RCC->AH82ENR

(RCC)

By using EQU, the program defines three constants (such as RCC_AHB2ENR_GPIOAEN) .

These constants are bit masks, which make it easier to manipulate individual bits. It is

not a good programming style to set or clear bits directly by using constants instead

of a named mask, such as the following instruction.

ORR rl, rl, #0x7 ; Set bits 0, 1, and 2

Updating program status flags in assembly

The logic operations with S suffix, including ANDS, ORRS, EORS, ORNS, and MVNS update

the N, Z, C flags in APSR. None of them affects the V flag. Neither BFC nor BFI updates

these four flags.

It is understandable that a logical instruction with S suffix can update the negative

and zero flags in APSR. You may wonder how a logic operation can change the carry

flag. The carry flag is updated when the second source operand uses the Barrel shifter.

For example,

ANDS r0, rl, r2, LSL #3 ; Update N, z, c flags. (V is unchanged.)

The carry flag of the above ANDS operation is, in fact, the carry of the "LSLS r2, #3"

operation.

Arithmetic and Logic WWW

4. 7 Reversing the Order of Bits and Bytes
Instructions for reversing the bit or byte orders are useful, particularly when data
exchanged between two systems have different formats. For example, the REV instruction
is useful to convert data that are exchanged between different endian systems.

Reverse bit order in a word.
RBIT Rd, Rn

for (i = e; i < 32; i++) Rd[i] ~ RN{31- i]

Reverse byte order in a word.
REV Rd, Rn Rd{31 :24] ~ Rn{7:0], Rd{23 :16] ~ Rn{15:8],

Rd{15:8] ~ Rn{23:16], Rd{7:0] ~ Rn{31:24]

Reverse byte order in each halfword.
REV16 Rd, Rn Rd{15:8] ~ Rn{7:0], Rd{7:0] ~ Rn{15:8],

Rd{31:24] ~ Rn{23:16], Rd{23:16] ~ Rn{31:24]

Reverse byte order in bottom halfword and sign extend.
REVSH Rd, Rn Rd{15:8] ~ Rn{7:0], Rd{7:0] ~ Rn{15:8],

Rd{31 :16] ~ Rn{7] & OxFFFF

Table 4-7. Instructions for changing the order of bits or bytes

Reverse bits (RBIT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reverse byte order in a word (REV)

Byte 3 I Byte 2 I Byte 1 I Byte 0
------. -

Byte 0 Byte 1 Byte 2 I Byte 3

Reverse byte order In each half-word (REV16)

Byte 3 Byte 2 I Byte 1 Byte O

------ -- --- --- ---~ ---_-_,..._-_-_---- ----.-- --.. .------ ---- ..
Byte 2 Byte 3 Byte O Byte 1

Reverse byte order in bottom half-word and sign extension (REVSH)

Byte 3 I Byte 2 I Byte 1 I Byte O ------ ---
---~-------

Sign Extension of Byte 0 (16 bits) Byte 0 Byte 1

Figure 4-5. Reverse bit or byte order

4.8 - Sign and Zero Extension

The following gives a few examples of changing the bit or the byte order of a value stored
in register r0.

LOR r0, =0x12345678 ; re = ex12345678
RBIT rl, r0 ; Reverse bits, rl = ex1E6A2C48

LOR r0, =0x12345678 ; re = ex12345678
REV rl, r0 ; Reverse byte order, rl = ex78563412
REV16 r2, r0 , Reserve byte order in halfwords, r2 = ex34127856

LOR r0, =0x33448899 ; re = ex33448899
REVSH rl, r0 ; Reverse bytes in Lower halfword and extend sign

; re = exFFFF9988

Example 4-3. Assembly codes to change the order of bits or bytes.

4.8 Sign and Zero Extension
Most computers represent signed integers in two's complement. When a signed integer
is converted to another signed integer with more bits, the sign bit (i .e., the most significant
bit or the leftmost bit) should be duplicated to maintain the integer's sign. Duplicating
the sign bit is called sign extension.

When an unsigned integer is converted to another unsigned integer with more bits, zero
extension is deployed to place zeros in the upper bits of the output.

In Example 4-4, when signed variable a and b are assigned to variable c, sign extension is
performed. However, when unsigned d is assigned to e, zero-extension is performed.

• The int_8 (signed char), int_16 (signed short), and int_32 (signed integer) are
standard integer data types defined in the header file stdint.h. They define 8-, 16-
and 32-bit signed integers, respectively.

• The unsigned integer definition includes uint_8 (unsigned char), uint_16
(unsigned short), and uint32_t (unsigned integer) .

int 8 a = -1; II a signed 8-bit integer, a = exFF -
int 16 b = -2; II a signed 16-bit integer, b = exFFFE -
int - 32 c; II a signed 32-bit integer
c = a; II sign extension, c = fJxFFFFFFFF
c = b; II sign extension, c = fJxFFFFFFFE

uint 8 d = 1; II an unsigned 8-bit integer, d = exe1 -
uint - 32 e; II an unsigned 32-bit integer
e = d; II zero extension, e = 0x00000001

Example 4-4. Example of sign and zero extension performed in a C program

Arithmetic and Logic -

Table 4-8 shows assembly instructions that perform sign and zero extension.

SXTB {Rd,} Rm {,ROR #n}
Sign extend a byte.
Rd[31:0] ~ Sign Extend((Rm ROR (8 x n))[7:0])

SXTH {Rd,} Rm {,ROR #n}
Sign extend a halfword.
Rd[31:0] ~ Sign Extend((Rm ROR (8 x n))[15:0])

UXTB {Rd,} Rm {,ROR #n}
Zero extend a byte.
Rd[31:0] ~Zero Extend((Rm ROR (8 x n))[7:0])

{Rd,} {,ROR #n}
Zero extend a halfword.

UXTH Rm
Rd[31:0] ~Zero Extend((Rm ROR (8 x n))[15:0])

Table 4-8. Instructions for zero and sign extension

The following program gives a few examples of sign and zero extension. Assume the
value of register r0 is 0x11228091.

; re = 0x11228091
SXTB rl, r0 ; rl = 0xFFFFFF91, sign extend a byte
SXTH rl, r0 , rl = exFFFF8091, sign extend a halfword
UXTB rl, r0 , rl = 0x00000091, zero extend a byte
UXTH rl, r0 , rl = 0x00008091, zero extend a halfword

Example 4-5. Example code of sign and zero extension

4. 9 Data Comparison
There are four different data comparison instructions.

CMP Rn, Op2 Compare Set NZCV flags on Rn - Op2

CMN Rn, Op2 Compare negative Set NZCV flags on Rn + Op2

TST Rn, Op2 Test Set NZCV flags on Rn AND Op2

TEQ Rn, Op2 Test equivalence Set NZCV flags on Rn EOR Op2

Table 4-9. Data comparison instructions

• The CMP instruction subtracts the value of Op2 from the value in Rn. It is the same
as a SUBS instruction, except that the processor discards the result. CMP updates
the N, Z, C, and V flags per the subtraction result.

• The CMN instruction adds the value of Op2 to the value in Rn. "CMN Rn, Op2" is like
"ADDS Rn, Op2" except that the result is discarded. CMN updates N, Z, C, and V.

• The instruction "TST Rn, Op2" performs a bitwise AND operation on Rn and Op2.

Different from "ANDS Rn, Op2", the TST instruction discards the result. TST

- 4.10 - Data Movement between Registers

updates the N and Z flags. If Op2 uses the Barrel shifter, TST also updates the C flag
during the calculation of Op2. However, it does not affect the V flag.

• The TEQ instruction performs a bitwise exclusive OR operation on Rn and Op2. "TEQ
Rn, Op2" is the same as "EOR Rn, Op2" except that the result is discarded. TEQ
updates the N, Z, and C flags.

TEQ and TST have different usages.

• TEQ is to check whether two values are equal, and TST is to exam whether target
bits set by the second operand are clear. After TEQ completes, the zero flag is set
if two operands are equal; otherwise, the zero flag is clear.

• TST cannot check the equivalence of two operands. For example, when r0 =
0b1010 and rl = 0b0101, the instruction "TST r0, rl" sets the zero flag because
the result of AND is 0. However, these two operands are not equal.

r0 rl Action
TST r0, rl 0b1010 0b0101 Set flag z
TEQ r0, rl 0b1010 0b0101 Clear flag z
TST r0, rl 0b1010 0b1010 Clear flag z
TEQ r0, rl 0b1010 0b1010 Set flag Z

The following gives a few examples of data comparison.

CMP r0, #3 , Compare re with 3
CMN r0, #10 ; Compare re with -le
CMP r0, rl ; Compare re and rl
TEQ r0, #' ?' ; Compare re with ASCII value of '?.J (ex3F)

MOV rl, #(1«31) ; rl = exseeeeeee
TST r0, rl ; check whether the sign bit is 1.

4.10 Data Movement between Registers
We can classify instructions for moving data between registers into two categories:

• Move data between two general-purpose registers (r0 - r12)
• Move data between a general-purpose register and a special-purpose register

MOV (move) and MVN (move not) are used to copy data between two general-purpose
registers. MRS and MSR move content between special registers and general registers.

Special registers include APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAUL TMASK, and CONTROL.

Arithmetic and Logic -

MOV Rd f- operand2

MVN Rd f- NOT operand2

MRS Rd, spec reg Move from special register to general register

MSR s pec_reg , Rm Move from general register to special register

Table 4-10. Data copy instructions

MOV and MVN can also load an immediate number into a register, as introduced in Chapter

5.4.4. The following are a few examples of MOV and MVN.

MOV r4, rs ; Copy r5 to r4
MVN r4, rs ; r4 = bitwise Logical NOT of r5
MOV rl, r2, LSL #3 ; rl = r2 « 3
MOV r 0, PC , Copy PC (r15) to re
MOV rl, SP ; Copy SP (r14) to rl

The following instructions copy a special-purpose register to a general-purpose register.

MRS r 0 , APSR _; Read flag state into re
MRS r0, IPSR Read exception/interrupt state into re
MRS r 0 , EPSR ; Read execution state into re
MRS r0, PSR , Copy combined CPSR, EPSR, and SPSR into re

The following shows how to copy a general-purpose register to a special-purpose register.

MSR APSR, r 0
MSR BASE PRI, r0

; Write flag state
; Write to base priority mask register; Disable
; exceptions with same or Lower priority Level

4 .11 Bit Field Extract
Table 4-11 shows two instructions that extract adjacent bits from one register.

• The #lsb parameter, ranging from 0 to 31, specifies the starting position.
• The #width parameter, ranging from 1 to (32 - #lsb), indicates the number of

contiguous bits to be extracted.

Signed Bit Field Extract

SBFX Rd, Rn, #lsb, #width Rd[(width-1):0] f- Rn[(width+lsb-l):lsb]

Rd[31 :width] f- Replicate(Rn[width+lsb-1])

Unsigned Bit Field Extract

UBFX Rd, Rn, #lsb, #width Rd[(width-1):0] f- Rn[(width+lsb-l):lsb]

Rd[31 :width] f- Replicate(e)

Table 4-11. Bit field extract instructions

llllJI 4.12 - Exercises

UBFX simply places zero in the upper bits, while SBFX duplicates the sign bit. The sign bit,

in this case, is not the most significant bit; instead, it is the bit at the position of #width +
#lsb - 1.

The following shows two examples of extracting 8 bits from register r3, starting at bit 4.
One has no sign extension, and the other has sign extension.

; Assume r3 = 6x1234CDEF
UBFX r4, r3, #4, #8
SBFX r4, r3, #4, #8

; r4 = exeeeeeeDE (zero extension)
, r4 = exFFFFFFDE (sign extension)

r3
0x1234CDEF

UBFX r4,r3,#4,#8 SBFX r4,r3,#4,#8

r4 r4

Figure 4-6. Extracting 8 bits starting at bit position 4, i.e., r4 = r3 [11: 4]

4.12 Exercises

1. LSL (logic shift left) can speed up some special multiplication because it runs much
faster than MUL. Use LSL to implement the following C statements.

(1) x = 31 * x;

(2) x = 38 * x;

(3) x = 17 * x;

2. Suppose r0 = 0x0F0F0F0F, and rl 0xFEDCBA98, find the result of the following

operations.

(1) EOR r3, rl, r0
(2) ORR r3, rl, r0
(3) AND r3, rl, r0
(4) BIC r3, rl, r0
(5) BFI r3, rl, #4, #8
(6) MVN r3, rl
(7) MVN r3, r0
(8) MVN r3, r0

ADD r3, rl, r3

Arithmetic and Logic -

3. Suppose r0 = 0x56789ABC, find the result of the following operations. These

operations run independently.

(1) RBIT rl, r0
(2) REV rl, r0
(3) REV16 rl, r0
(4) REVSH rl, r0

4. Translate the following C statement into an assembly program, assuming 16-bit
signed integers x, y and z (i.e., signed short) are stored in 32-bit register r0, rl, and
r2, respectively.

x = x * y + z -x;

5. Translate the following C statement into an assembly program, assuming 16-bit
unsigned integers x and y (i.e., unsigned short) are stored in register r0, and rl,

respectively.
x = x o/oy;

6. Write an assembly program that calculates the value of the following given
polynomial, assuming signed integers x and y are stored in register r0 and rl,
respectively.

y = 3x3 - 7x2 + lOx - 11.

7. Write an assembly program that calculates the remainder of the division between two
unsigned 32-bit integers.

8. Explain why Cortex-M processors do not provide any left rotation instructions. They
only offer ROR (rotate right) and RRX (rotate right extended).

9. Explain the difference between the Barrel shifter's role in the following instructions:

(1) ANDS rl, r2, r3, LSL #3
(2) ADDS rl, r2, r3, LSL #3

10. Write an assembly program that reverses the byte order of a register without using
the REV instruction.

11. Write an assembly program that swaps the upper halfword and the lower halfword
of a register.

12. Implement the BIC (bitwise clear) instruction by using other assembly instructions.

13. Suppose Mask = 0x00000F0F and P = 0xABCDABCD. What are the results of the
following bitwise operations?

- 4.12 - Exercises

(1) Q = P & Mask;
(2) Q = p I Mask;
(3) Q = P " Mask;
(4) Q = -Mask;
(5) Q = P & -Mask;

14. Suppose r0 = 0xFFFFFFFF, rl = 0x00000001, and r2 = 0x00000000. Initially the N, z, c,
and V flags are zero. Find the value of the N, Z, C, and V flags of the following
instructions. (Assume each instruction runs individually, i.e., these instructions are
not part of a program.)

(1) ADD r3, r0, r2
(2) SUBS r3, r0, r0
(3) ADDS r3, r0, r2
(4) LSL r3, r0, #1
(5) LSRS r3, rl, #1
(6) ANDS r3, r0, r2

15. Suppose we have a hypothetical processor, of which each register has only five bits.
r0 = 0b11101 and rl = 0b10110. What are the N, Z, C, and V flags of the following
instructions? Assume initially N = 0, Z = 0, C = 1, V = 0, and these instructions are
executed independently (i .e., they are NOT part of a program)

(1) ADDS r3, r0, rl
(2) SUBS r3, r0, rl
(3) EOR r3, r0, rl
(4) ANDS r3, rl, rl, LSL #3

16. What is the value in register rl? Assume r0 0x00001016

(1) USAT rl, #8, r0
(2) SSAT rl, #8, r0
(3) USAT rl, #9, r0
(4) SSAT rl, #9, r0

17. Write short assembly programs to complete the following tasks.

(1) Reset all even bits in register r0 to zero and keep all odd bits unchanged
(2) Set all odd bits in register r0 to one and keep all even bits unchanged
(3) Toggle all odd bits in register r0 and keep all even bits unchanged

Load and Store

CHAPTER

5
Load and Store
A load instruction sets a register to some value. The value might be a constant directly
specified in the program or a value that is stored in memory. A store instruction saves
the value held in a register to the memory.

5.1 Load Constant into Registers
Many assembly instructions use constant numbers, often called immediate numbers. One
command usage is to set a register to a specific constant value.

MOV Rd, #<immed_8> Move 8-bit immediate value (0-255) to the register

MVN Rd, #<immed 8>
Move the bitwise inverse of 8-bit immediate value (0-255)
to the register

MOVT Rd, #<immed_16>
Move 16-bit immediate value to top halfword [31 :16] of
the register. Bottom halfword unaltered.

MOVW Rd, #<immed_16>
Move 16-bit immediate value to bottom halfword [15:0] of
the register and clear top halfword [31:16]

LOR Rt, =#<immed_8> Equivalent to MOV

LOR Rt, =#<immed_32> A pseudo instruction

Table 5-1. Instructions for loading constants into a register.

5.1.1 Data Movement Instruction MOV and MVN
All immediate numbers start with a"#" sign. If the immediate number is less than 8 bits,
we can use MOV to set the register value.

MOV r0, #0xFF ; Set rB to the hexadecimal value BxFF
MOV r0, #0b10011100 ; Set re to the binary value 10011100
MOV r0, #54 ; Set rB to the decimal value 54
MOV r0, #0d54 ; Set rB to the decimal value 54

- 5.1 - Load Constant into Registers

If the immediate number has 32 bits, we can use MOV to set the register value if the
immediate number can be obtained by using the following format:

#immed_32 = #immed_8 ROR (2 x #immed_4)

where ROR is the circular right rotate. For example, right rotating 0xAF by 24 bits can get
0x0000AF00.

0x0000AF00 = 0xAF ROR (2x12)

Besides, these instructions can also use a few 32-bit values with some regular patterns,
such as 0xABABABAB, 0x00AB00AB, and 0xAB00AB00.

5.1.2 Pseudo Instruction LOR and ADR
A pseudo instruction is an instruction that is available to use in an assembly program,
but not directly supported by the microprocessor. Compilers translate it to one or
multiple actual machine instructions when the assembler builds the program into an
executable. Pseudo instructions are provided for the convenience of programmers.

As introduced later in this chapter, LDR loads data from the memory to a register.
However, LDR can be a pseudo instruction that loads an immediate number into a register.
A pseudo instruction is not a real machine instruction, but it provides convenience for
programmers and improves the readability of programs. The assembler translates a
pseudo instruction into one or multiple actual machine instructions.

LOR r0, =array ; Pseudo instruction
LDR rl, [r0] , Not a pseudo instruction

LOR r2, =0x12345678 ; Pseudo instruction
ADD rl, rl, r2 rl = rl + r2
STR rl, [r0] ; Save rl to memory

AREA myData, DATA ; Directive: declare a data area
ALIGN ; Directive: align on a word boundary

Allocate padding bytes if necessary to make the
; array to align properly

array DCW 1, 2, 3, 4, 5

Example 5-1. Using LOR pseudo instruction to load a memory address or an immediate
number into a register.

Another widely used pseudo instruction in ARM assembly language is ADR (stands for
address), which sets a register to a memory address within a certain range, as shown in
Example 5-2. The syntax difference between LDR and ADR is that LDR needs an equal sign
("=") but ADR does not. The assembler translates an ADR instruction into an ADD or SUB
instruction with one source operand as PC.

Load and Store -

Also, the pseudo instruction LDR is different from the LDR instruction for accessing
memory. For example, "LDR rl, =0x12345678" is a pseudo instruction, and "LDR rl,
[r0]" is a real machine instruction that loads a word from memory. The assembler can
distinguish them by checking the format of the operands specified in LDR.

loop ADD rl, r2, r3
ADR r4, loop ; A pseudo instruction, translated to "SUB r4, pc, #12"

Example 5-2. Using ADR pseudo instruction to load a memory address into a register

5.1.3 Comparison of LOR, ADR, and MOV
While ADR can only load a memory address label into
a register, LOR is more versatile and can load an
immediate number up to 32 bits. The real instructions
translated from the LDR pseudo instruction depend
on the immediate number.

• If the constant number can fit into the 12-bit
immediate number format used by an MOV or
MVN instruction, compilers translate the LDR
pseudo instruction to MOV or MVN.

• Otherwise, compilers translate it into a
regular LDR instruction that uses PC-relative
memory address.

LOR can load a 32-bit
constant to a register.

MOV can only load a 12-bit
constant into a register.

ADR can load a memory
address.

In the latter case, the immediate numbers are directly stored together with the instruction
code in the machine executable. As introduced in Chapter 1.2, the executable is stored in
the instruction memory.

Compilers replace the LOR pseudo instruction with an actual load instruction with a PC
relative memory address to load the immediate number from the instruction memory.
Chapter 5.4.3 introduces PC-relative addressing in detail.

LDR rl, =2 ; Translated to: MOV rl, #2

LDR r2, =-2 , Translated to: MVN re, #1
LDR r3, =0x12345678 ; Translated to: LOR r2, [pc, #off setl}
LDR r4, =myAddress ; Translated to: LOR r2, [pc, #off set2]

, LOR with a PC-relative address

Example 5-3. Pseudo-instruction LDR.

Note the syntax for specifying the constant number in MOV and LDR are different.

LDR r0, =0xFF
MOV r0, #0xFF

; '=' before the constant
; '#' before the constant

,' ,'

',

mm!I 5.2 - Big and Little Endian

5.2 Big and Little Endian
Cortex-M processors support both big and little endian. The endian specifies the byte

order if a data element has multiple bytes, as shown in Figure 5-1. We can use REV, which

reserves the byte order, to convert the endian (See Chapter 4.7).

• Little endian means the low-order byte of the number is stored in memory at the
lowest address, and the high-order byte at the highest address. (The little end

comes first.)

• Big endian means the high-order byte of the number is stored at the lowest

address, and the low-order byte at the highest address. (The big end comes first.)

Most
Significant Bit

Least
Significant Bit

- --- A Word (32 bits) ---~

31 /
~--~ ./

Base Address+ 3 Byte 3

Base Address + 2 Byte 2

Base Address + 1 Byte 1

Base Address Byte 0
#,,,,,.,...

Little Endian

Byte 0

____ / ________________________ _ Byte 1

Byte 2

Byte 3

Big Endian

Figure 5-1. Comparison of little endian and big endian

Base Address + 3

Base Address + 2

Base Address + 1

Base Address

In the example given in Figure 5-2, the assembly instruction "LDR rl, [r0]" loads a 32-
bit value from the memory address 0x20008000 to register rl. Register rl has different

results, depending on whether the big or little endian is used.

LOR rl, [r0]
"' ... '

Little / ', Big
E d. ... ' n 1an ,/ ', Endian

... '
--~L~-~ ~

rl 0x4C3D2E1F rl 0x1F2E3D4C

0x20008007

0x20008006

0x20008005

0x20008004

0x20008003

0x20008002

0x20008001

r0 I 0x20008000 ~ - - --. 0x20008000

Memory
address

0x88

0x79

0x6A

0xSB

0x4C

0x3D

0x2E

0x1F

Memory
data

Load 4
bytes to r1

Figure 5-2. Register rl is 0x4C302E1F under little endian, and 0x1F2E3D4C under big endian.

Load and Store lmM

5.3 Accessing Data in Memory
A load instruction retrieves data stored at some memory address and saves the data in a
specific register. A store instruction does the opposite. It saves the content of a register to

the memory at a given memory address.

When an assembly program accesses data in memory, the memory address must be in a
register. Example 5-4 assumes the memory address is in register r0. The program loads
a 32-bit integer to register rl, increases it by 4, and saves the result in memory.

; Suppose re = 0x82000004
LDR rl, [r0] ; rl = a word (4 bytes) in memory starting at 0x82000004
ADD rl, rl, #4 ; rl = rl + 4
STR rl, [r0] ; Save 4 bytes into memory starting at 0x82000004

Example 5-4. Loading a word from the memory

5.4 Memory Addressing

5.4.1 Pre-index, Post-index, and Pre-index with Update
Cortex-M processors support flexible memory addressing. They provide three
addressing modes: pre-index, post-index, and pre-index with update, as shown in Table
5-2. Each mode has a base memory address (saved in a register) and a byte offset.

1. In the pre-index format, the target memory address is the base memory address
plus the offset. The base memory address remains unchanged.

2. In the pre-index with update format, three steps are involved. First, it calculates
the target memory address as the base plus the offset. Then, it accesses the data
at the destination memory address. Finally, it updates the base memory.

3. In the post-index format, two steps are involved. First, it updates the base
memory address as the sum of the base memory address and offset. Then it
accesses the data by using the updated base memory address.

Memory Address Mode Example Equivalent

Pre-index LDR rl, [r0, #4] rl ~ memory[r0 + 4],
r0 remains unchanged.

Pre-index with update LDR rl, [r0, #4] !
rl ~ memory[r0 + 4]
r0 ~ r0 + 4

Post-index LDR rl, [r0], #4 rl ~ memory[r0]
r0 ~ r0 + 4

Table 5-2. Three memory addressing formats

mmJI 5.4 - Memory Addressing

The following gives three examples to compare these three addressing modes. Suppose
register r0 has an initial value of 0x20008000, and the p rocessor uses little-endian.

LOR rl, [re, #4] ; Pre-index

As shown in Figure 5-3, register r0 remains unchanged. After loading the word
stored at memory address 0x20008004, the data in register r l is 0x88796ASB.

.----------, r0 + Offset
Offset 4 1-------;~

r0 = 0x20008000

Base memory address

0x20008007

0x20008006

0x20008005

0x20008004

0x20008003

0x20008002

0x20008001

0x20008000

Memory
address

0x88
0x79
0x6A
0x5B

0x4C

0x3D
0x2E

0x1F

Memory
data

rl 0x88796ASB

Figure 5-3. Pre-index (rl ~ memory[rO + 4], rO remains unchanged)

LOR rl, [r0], #4 ; Post-index

As shown in Figure 5-4, the value in register r0 is incremented by the offset
after loading. Register rl is fetched from the memory address 0x20008000.

r0 = 0x20008004

r0 r0 + Offset

Offset 4

r0 = 0x20008000

Base memory address

r0

0x20008007

0x20008005

0x20008005

0x20008004

0x20008003

0x20008002

0x20008001

0x20008000

Memory
address

0x88
0x79
0x6A

0x5B

0x4C
0x3D
0x2E

0x1F

Memory
data

Figure 5-4. Post-index (rl ~ memory[rO], rO ~ rO + 4)

rl 0x4C3D2E1F

Load and Store

LOR rl, (r0, #4]! ; Pre-index with update

r0 =

As shown in Figure 5-5, the value in register r0 is incremented by the offset after
loading. Both the post-index and the pre-index with update change the base
memory address. However, different with the post-index, the pre-index with
update retrieves the word from the memory address 0x20008004, instead of
0x20008000.

r0 = 0x20008004

r0 + Off set

Offset = 4

r0 = 0x20008000

Base memory address

0x20008007

0x20008006

0x20008005

0x20008004

0x20008003

0x20008002

0x20008001

0x20008000

Memory
address

0x88

0x79

0x6A

0x5B

0x4C

0x3D

0x2E

0x1F

Memory
data

rl 0x88796A5B

Figure 5-5. Pre-index with update (rl ~ memory[rO + 4], rO ~ rO + 4)

Table 5-3 summarizes the results of three addressing modes described above.

Instruction Result of r0 Result of rl Comment
LDR rl, [r0, #4] 0x20008000 0x88796ASB Pre-index
LDR rl, [r0], #4 0x20008004 0x4C3D2E1F Post-index
LDR rl, [r0, #4]! 0x20008004 0x88796ASB Pre-index with update

Table 5-3. Example of three addressing modes

5.4.2 Load and Store Instructions
Table 5-4 and Table 5-5 list load and store instructions. Only the pre-index format is
presented. However, load and store instructions with the other two formats are similar.

LOR Rt, [Rn, #offset] Load word, Rt ~ mem[Rn +offset]
LORB Rt, [Rn, #offset] Load byte, Rt ~ mem[Rn +offset]
LORH Rt, [Rn, #offset] Load halfword, Rt ~ mem[Rn +offset]

LORSB Rt, [Rn, #offset]
Load signed byte,
Rt~ Sign Extend (mem[Rn +offset])

LORSH Rt, [Rn, #offset]
Load signed halfword,
Rt~ Sign Extend (mem[Rn +offset])

LOM Rn, register _list Load multiple words
Table 5-4. Load data of different sizes from memory to a register

- 5.4 - Memory Addressing

STR Rt, (Rn, #offset] Store word, mem[Rn +offset] +--- Rt
STRB Rt, [Rn, #offset] Store lower byte, mem[Rn +offset] +--- Rt
STRH Rt, [Rn, #offset] Store lower halfword, mem[Rn +offset] +--- Rt
STM Rn, register_list Store multiple words

Table 5-5. Store value of a register in memory

When a byte or halfword is loaded into a 32-bit register, we should draw attention to
whether the memory data represents a signed or unsigned number. If it is a signed
number, we should use LDRSB or LDRSH to preserve the number's sign and value. LDRSB
and LDRSH perform sign extension, which duplicates the sign bit.

In LDM and STM, the order in which registers are listed does not matter. The lowest
numbered register is loaded from or written to the lowest memory address (see Chapter
5.5 for details).

5.4.3 PC-relative Addressing
PC-relative addressing is widely used by ARM processors to locate nearby instructions
and data. Even if the original assembly program does not use it, the compiler may
translate a memory index by using PC-relative addressing to achieve position

independent addressing.

The target memory address is as follows:

Target Memory Address= PC+ 4 +Offset

The program counter (PC) always incremented by 4, pointing to the next 32-bit instruction
or the next two 16-bit instructions. Even if a 16-bit Thumb assembly instruction reads PC,
the value returned is the address of this instruction plus 4 bytes.

PC-relative addressing is often used to set a register to a complicated value. For example,
the program needs to set register rl to 0xF1234567. We cannot use the instruction "MDV
rl, #0xF1234567" because the constant number is too large. As an alternative, we use
the pseudo instruction "LDR rl, =0xF1234567".

The compiler translates the above LDR pseudo instruction into a PC-relative LDR

instruction.

• Suppose the constant 0xF1234567 is stored at the memory location 0x08000144.
• The compiler uses the PC-relative addressing for the load word instruction. If the

memory address of the load word (LDR) instruction is 0x0800012C, the difference
between 0x08000144 and 0x0800012C is 24 in decimal.

• Thus, the memory address is [pc, #20]. The target address is pc + 4 + 20.

Load and Store lu~•

The following shows the translated PC-relative load instruction.

0x0800012C LDR rl, [pc, #20) ; @exeseee144

0x08000144 DCW 0x4S67 ; Lower halfword
0x08000146 DCW 0xF123 ; upper halfword

Example 5-5. Using PC-relative addressing to load a large constant number into a register

5.4.4 Example of Accessing an Array
The following three examples iterates through an array of five 32-bit integers by using

three different addressing modes. Suppose we want to load an array of five integers into

registers rl, r2, r3, r4, and rs. The following uses three different address modes to access

the array and calculate the sum of the array. Assume the array is defined as follows.

AREA myData, DATA, READWRITE
array DCD 1, 2, 3, 4, S

(1) Iterate an array by using pre-index

LDR r0, =array ; Using LOR pseudo instruction, re = array address
LDR rl, [r0] ; rl = array[e]. After Loading, re = array
LDR r2, [r0, #4) ; r2 = array[l]. After Loading, re = array + 4
LDR r3, [r0, #8) ; r3 = array[2]. After Loading, re = array + 8
LDR r4, [r0, #12) ; r4 = array[3). After Loading, re = array + 12
LDR rs, [r0, #16) , rs = array[4). After Loading, re = array + 16

(2) Iterate an array by using post-index

LDR r0, =array , Using LOR pseudo instruction, re = array address
LDR rl, [r0), #4 , rl = array[e]. After Loading, re = array + 4
LDR r2, [r0], #4 ; r2 = array[l]. After Loading, re = array + 8
LDR r3, [r0], #4 , r3 = array[2]. After Loading, re = array + 12
LDR r4, [r0), #4 ; r4 = array[3]. After Loading, re = array + 16
LDR rs, [r0), #4 ; rs = array[4). After Loading, re = array + 20

(3) Iterate an array by using pre-index with update

LDR r0, =array ; Using LOR pseudo instruction, re = array address
LDR rl, [r0] , rl = array[e]. After Loading, re = array
LDR r2, [r0, #4) ! ; r2 = array[l}. After Loading, re = array + 4
LDR r3, [r0, #4) ! , r3 = array[2]. After Loading, re = array + 8
LDR r4, [r0, #4) ! , r4 = array[3). After Loading, re = array + 12
LDR rs, [r0, #4) ! ; rs = array[4). After Loading, re = array + 16

The above example codes only work well for a short array. If the length of the array is
long, then the assembly program needs to use conditional branch instructions (see
Chapter 6) to implement a loop to iterate the array.

mm'I 5.5 - Loading and Storing Multiple Registers

5.5 Loading and Storing Multiple Registers
A sequence of registers can be stored in consecutive memory locations in one assembly
instruction. Similarly, multiple words can be loaded from sequential memory locations
to registers in one instruction too.

There are four different addressing modes for loading and storing multiple registers, as
shown in Table 5-6.

Addressing Mode Description Instructions
IA Increment After STMIA, LDMIA

IB Increment Before STMIB, LDMIB

DA Decrement After STMDA, LDMDA

DB Decrement Before STMDB, LDMDB
Table 5-6. Four different addressing modes for STM and LDM

• IA: The memory address is incremented by 4 after a word is loaded or stored.

• IB: The memory address is incremented by 4 before a word is loaded or stored.

• DA: The memory address is decremented by 4 after a word is loaded or stored.

• DB: The memory address is decremented by 4 before a word is loaded or stored.

The assembly instruction format is as follows:

STMxx rn{!}, {register_list}
LDMxx rn{!}, {register_list}

where the base register rn holds the starting memory location and xx is one of the
addressing modes (IA, IB, DA, or DB).

• The exclamation mark "!" is optional. If it is specified, the instruction writes a

modified value back to register rn. If it is omitted, register rn is not updated.

• The order in which registers are listed in the register list does not matter at all.
When multiple registers are stored or loaded, they are sorted by name, and the
lowest-numbered register is saved to or read from the lowest memory address.

Figure 5-6 shows the result of "STMxx r0 ! , { r3, rl, r 7, r2}" under four different address
modes (where xx= IA, IB, DA, or DB). Note the order in which the four registers are listed
does not matter. Register rl, the lowest numbered register, is always stored at the lowest
memory address in all memory address modes. For STMIA and STMDA, the base register
r0 points to an empty memory location at the end, while it points to a valid data item for

STMIB and STMDB.

STMxx re!, {r3,r1,r7,r2}

High Memory
Addresses

Stack
Growing
Direction

Low Memory
Addresses

rO

ST MIA
Increment After

Empty
Ascending

rO

STMIB
Increment Befor e

Full
Ascending

rO

Load and Store Inf+

STMDA STMDB
Decrement After Decrement Before

Empty
Descending

rO

Full
Descending

Figure 5-6. Example of four different memory addressing mode for STM.

Figure 5-7 shows the result of "LDMxx r0 ! , {r3, rl, r7, r2}" under four different address
modes (where xx= IA, IB, DA, or DB). Like STM, the order in which registers are listed does
not matter in an LDM instruction. The lowest-numbered register is loaded from the lowest
memory address.

LDMxx re!, {r3,r1,r7,r2}

High Memory
Addresses

Stack
Shrinking
Direction

rO

Low Memory
Addresses

16 rO

12

8

-4

-8

-12

-16

LDMIA
Increment After

-4

-8

-12

-16

rl e
r2 4
r3 8
r7 12

rO

LDMIB
Increment Bef ore

-4

-8

-12

-16

rl 4
r2 8
r3 12
r7 16

rO

LDMDA LDMDB
Decrement After Decrement Before

16 16

12 12

8 8

4

rO

rl -12 rl -16
r2 -8 r2 -12
r3 -4 r3 -8
r7 -e r7 -4

Figure 5-7. Example of four different memory address modes for LDM.

- 5.6 - Exercises

For Cortex-M processors, STM is STMIA, and LDM is LDMIA. The following are synonyms.

• STM = STMIA (Increment After)= STMEA (Empty Ascending)
• LDM = LDMIA (Increment After)= LDMFD (Full Descending)

Note that when loading or storing multiple values by using STM and LDM, the destination
memory address must be word-aligned. Therefore, in the instruction " LDMxx rn{ ! } ,
{register _list}" or "STMxx rn{ ! } , {register _list}", the least significant two bits of
register rn are ignored. If aligned checking is enabled, any unaligned access made by LDM
or STM (i.e., when bit[1:0] in register rn are not zero) generates a usage fault.

Chapter 8.3 explains how to implement a stack by using the STM and LDM instructions.

5.6 Exercises

1. Suppose r0 = 0x20008000, and the memory layout is as follows:

Address Data
0x20008007 0x79
0x20008006 0xCD
0x20008005 0xA3
0x20008004 0xFD
0x20008003 0x00
0x20008002 0xEB
0x20008001 0x2C
0x20008000 0x1A

a) What is the value of rl after running LOR rl, [r0) if the system is little endian?
What is the value if the system uses the big-endian?

b) Suppose the system is set as little endian. What are the values of rl and r0 if the
following instructions are executed separately?

• LOR rl, [r0, #4]
• LOR rl, [r0), #4
• LOR rl, [r0, #4) !

2. Write an assembly program that converts a 32-bit integer stored in memory from little
endian to big endian, without using the REV instruction. Make sure that the result is

saved back to the memory.

Load and Store luiji

3. Suppose r0 = 0x20000000 and rl = 0x12345678. All bytes in memory are initialized
to 0x00. Suppose the following assembly program has run successfully. Draw a table
to show the memory value if the processor uses little endian.

STR rl, [r0], #4
STR rl, [r0, #4]!
STR rl, [r0, #4]

4. What is the memory value of Question 3 if the processor uses big endian?

5. When an 8-bit or 16-bit data is loaded from the data memory into a 32-bit register,
whether sign extension or zero extension is performed depends on the data's sign.

• LDRSB (load register with signed byte) LDRSH loads a signed byte and LDRB
(load register with byte) for an unsigned byte.

• LDRSH (load register with signed halfword) and LDRH (load register with
halfword) read load a 16-bit signed and unsigned number from memory into
a register, respectively.

What is the value in register rl in the following instructions if r0 = 0x20008000?
Assume the system is little endian.

(1) LDRSB rl, [r0]
(2) LDRSH rl, [r0]
(3) LDRB rl, [r0]
(4) LDRH rl, [r0]

Memory address
0x20008002

0x20008001
0x20008000
0x20007FFF
0x20007FFE

Data
0xA1
0xB2

0xC3
0xD4
0xES

6. Suppose r0 = 0x20008000. What address is register r7 loaded from in the following
instructions? What is the value of r0 after executing each instruction? Assume each
instruction runs separately, i.e., they are not part of a program.

(l)LDMIA r0, {rl, r3, r7, r6, r2}
(2)LDMIB r0, {rl, r3, r7, r6, r2}
(3) LDMDA r0, {rl, r3, r7, r6, r2}
(4) LDMDB r0, {rl, r3, r7, r6, r2}

5.6 - Exercises

7. Suppose r0 = 0x20008000. What address is register r7 stored at in the following
instructions? What is the value of r0 after executing each instruction? Assume each
instruction runs separately, i.e., they are not part of a program.

(l)STMIA r0!, {r3, r9, r7, rl, r2}
(2)STMIB r0!, {r3, r9, r7, rl, r2}
(3)STMDA r0!, {r3, r9, r7, rl, r2}
(4)STMDB r0!, {r3, r9, r7, rl, r2}

8. Suppose r0 = 0x20008000. What is the value in register r0, r3, rs, r7, and r9 after
running the following instructions? Assume each instruction runs separately, i.e.,
they are not part of a program.

(1) LDMDB r0, {r3, r7, r9, rS}
(2) LDMIA r0, {r7, r3, r9, rS}
(3) LDRIB r0, {r3, r9, rs, r7}
(4)LDRDA r0, {r9, rs, r7, r3}

High Memory Addresses

0x20008010 16
0x2000800C 12
0x20008008 8
0x20008004 4
0x20008000 0
0x20007FFC -4
0x20007FF8 -8
0x20007FF4 -12
0x20007FF0 -16

Low Memory Addresses

9. In the following load instruction based on PC-relative addressing, what is the address
range in which the target data can be located? Assume the memory address of this
instruction is 0x10004000. The PC-relative offset is a 12-bit signed integer.

LDR rl, =label

Branch and Conditional Execution llm

CHAPTER

6
Branch and Conditional Execution
Normally instructions of an assembly program run in the same sequential order as they
are listed in the program. When one instruction completes, the program counter is
incremented by the control unit within the processor and ordinarily points to the next
instruction. However, modifying the program counter at runtime can
dynamically change the execution order. We call it changing the flow
of control. There are four major approaches to alter the flow of control:

1. branch instructions,
2. conditional execution,
3. calling a subroutine, and
4. interrupts.

This chapter focuses on the first two approaches. Chapter 8 discusses subroutines, and
Chapter 11 presents interrupt.

6.1 Condition Testing
Most assembly instructions can be selectively executed based on the N, Z, C, and V flags
of the application program status register (APSR). Table 6-1 lists the condition flags for
comparing signed and unsigned numbers.

Compare Signed Unsigned Relationship Tested
- EQ EQ Equal to
!= NE NE Not equal to
> GT HI Greater than
~ GE HS Greater than or equal to
< LT LO Less than
~ LE LS Less than or equal to

Table 6-1. Summary of the comparison suffix for signed and unsigned numbers

6.1 - Condition Testing

These flags provide convenience for programmers and improve the code readability.

For example, the following two assembly instructions calculate the absolute value of a
signed integer stored in register rl. The second instruction RSB is executed if rl is less
than 0. The condition flag "LT" tests the negative flag, and the processor ignores the
RSB instruction if the negative flag is 0.

CMP rl, #0 ; CMP updates N_, Z_, C_, and V flags
RSBLT rl, rl, #0 ; Run rl = e - rl if rl < e. LT= signed Less Than.

Cortex-M processors have 15 condition flags, as summarized in Table 6-2. These
condition flags check whether N, Z, C, and V meet specific requirements. When an
instruction has no conditional flag, it defaults to "AL" and is always executed.

Suffix Description Flags tested Logic Implementation
EQ EQual Z=l z
NE Not Equal Z=0 t

CS/HS unsigned Higher or Same C=l c
CC/LO unsigned LOwer (=0 c

MI Minus (negative) N=l N

PL Plus (positive or zero) N=0 N
vs overflow Set V=l v
vc o Verflow Clear V=0 v
HI unsigned Higher C=l&Z=0 CZ

LS unsigned Lower or Same C=0orZ = l c+z
GE signed Greater or Equal N=V NV+NV
LT signed Less Than N !=V NV+NV
GT signed Greater Than Z=0&N=V i(NV +NV)

LE signed Less than or Equal Z = 1 or N ! = V Z +NV+ NV
AL AL ways

Table 6-2. Summary of flag testing for various signed and unsigned comparisons

The CMP instruction "CMP r0, rl" is equivalent to the subtraction operation r0 - rl,
except the result is discarded.

When two registers in the instruction "CMP r0, rl" represent unsigned integers,

• the carry flag is set if no borrow occurs during the subtraction (i.e ., r0 ~ rl), and
• the carry flag is cleared if borrow does occur during the subtraction (i .e., r0 < rl).

Therefore, the HS, LO, HI and LS suffix check the zero flag (if necessary) and the carry flag.

Branch and Conditional Execution llM

When two registers in the instruction "CMP r0, rl" represent signed numbers, Table 6-3
summarizes the meaning of all four possible combinations of the negative flag (N) and

the overflow flag (V).

N = 0 N = 1

v = 0 r0 ~ rl r0 < rl

v = 1 r0 < rl r0 ~ rl

Table 6-3. The meaning of the overflow and negative flags of "CMP r0, r1"
if register r0 and r1 hold signed numbers.

Table 6-4 gives the detailed explanation of how to get the conclusions listed in Table 6-3.

• When two signed numbers are subtracted, there are two possible scenarios, in
which overflow occurs: (1) the result of subtracting a positive number from a
negative number is positive, or (2) the result of subtracting a negative number
from a positive number is negative.

• When subtracting two numbers with the same sign, no overflow would occur.

In sum, if overflow occurs, the result is incorrect, and its sign indicated by the N flag is
opposite to the sign of the actual result.

N = 0 N = 1

No overflow has occurred, implying No overflow has occurred, implying
v = 0 the result is correct. The result is non- the result is correct. The result is

negative. Thus, r0 - rl;::: 0, i.e., r0;::: rl. negative. Thus, r0 - rl < 0, i.e., r0 < rl.

Overflow has occurred, implying the Overflow has occurred, implying the
result is incorrect. The result is result is incorrect. The result is

v = 1 mistakenly reported as non-negative, mistakenly reported as negative, but it
but it should be negative. should be non-negative.

Thus, r0 - rl < 0 in reality, i.e., r0 < rl. Thus, r0 - rl ;::: 0 in reality, i.e., r0 ;::: rl.

Table 6-4. The signed greater or equal (GE) checks whether Vis equal to N.

Table 6-4 leads to the following conclusions:

• If N = V, then r0 is signed greater than or equal to rl.

• If N * V, then r0 is signed less than rl.

Therefore, the signed greater or equal suffix (GE) and the signed greater than suffix (GT)
check whether the N flag is the same as the V flag.

mlll 6.2 - Branch Instructions

6.2 Branch Instructions
A branch instruction is used to change the flow of program execution from a
normal sequential order. It allows the microprocessor to begin execution a
different set of instructions. There are two types of branch instructions:
unconditional and conditional.

• An unconditional branch instruction always loads the memory
address of the designated instruction into the program counter and
starts to execute the new program flow. Assembly programs use a label
to denote the designated instruction.

• A conditional branch instruction first checks whether a specific condition is
satisfied or not. If the condition is satisfied, the processor then starts to execute
the designated instruction, instead of the next sequential instruction. A
conditional branch instruction is equivalent to "if the condition is true, then go to
the label." When the program jumps away, we say the branch is taken. Otherwise,
the branch is not taken.

We can append the condition suffix to the branch instruction " B" to form different
conditional branch instructions, as summarized in Table 6-5. For example, " BEQ"

compares two register values, and the branch is taken if the source operands are equal.

Instruction Description Flags tested
Unconditional

B Label Branch to label none
Branch

BEQ Label Branch if EQual Z=l

BNE Label Branch if Not Equal Z =0

BCS/BHS Label Branch if unsigned Higher or Same C=l

BCC/BLO Label Branch if unsigned LOwer (= 0

BM! Label Branch if Minus (Negative) N=l

BPL Label Branch if Plus (Positive or Zero) N=0

Conditional BVS Label Branch if o Verflow Set V = l

Branch BVC Label Branch if o Verflow Clear V=0

BHI Label Branch if unsigned Higher C =l&Z=0

BLS Label Branch if unsigned Lower or Same C = 0 or Z = 1

BGE Label Branch if signed Greater or Equal N=V

BLT Label Branch if signed Less Than N !=V

BGT Label Branch if signed Greater Than Z =0&N=V

BLE Label Branch if signed Less than or Equal Z = 1 or N = !V

Table 6-5. List of unconditional and conditional branch instructions

Branch and Conditional Execution lliW

Note some ARM processors can directly support all branch instructions listed above.
However, Cortex-M processors do not directly support these conditional branch
instructions. Instead, compilers translate conditional branch instructions to if-then

else (IT) instructions. IT performs the same flag testing as presented in Table 6-5.

Program flow control structures such as if-then, if-then-else, for loop, and while loop use (1)

CMP instructions followed by a branch instruction, (2) conditionally executed instructions
(see Chapter 6.3), or (3) a combination of both. Table 6-6 summarizes conditional branch
instructions for the comparison of signed and unsigned numbers.

Comparison Signed Unsigned

-- BEQ BEQ

!= BNE BNE

> BGT BHI

~ BGE BHS

< BLT BLO
::::; BLE BLS

Table 6-6. Comparison of branch instructions used for signed and unsigned comparison

Example: Go to the labeled instruction if two numbers are equal.

CMP rl, r2
BEQ Label

When comparing 0xFFFFFFFF or 0x00000001, which is greater? When they are unsigned
integers, the first number is larger. However, if they are signed numbers, the second one
is larger. When the program is written in assembly, it is the programmer's responsibility
to tell the processor how to interpret data. If written in C, their corresponding variables
are declared explicitly by programmers as signed or unsigned numbers.

When two numbers are unsigned integers, branch instructions should use an unsigned
condition suffix.

C Program Assembly Program

uint32_t x, y, z; MOV rs, #0x00000001 , r5 = x
x = 0x00000001; MOV r6, #0xFFFFFFFF , r6 = y
y = 0xFFFFFFFF; CMP rs, r6

BLS else , branch if s
if (x > y) then MOV r7, #1 j z = 1

z = 1; B end if j skip next instruction
else else MOV r7, #0 j z = e

z = 0; end if

Example 6-1. Implementation of if-statement that compares two unsigned integers

6.2 - Branch Instructions

When these two numbers are signed integers, branch instructions should use a signed
condition suffix.

C Program Assembly Program

int32_t x, y, z; MOVS rs, #0x00000001 , r5 = x
MOVS r6, #0xFFFFFFFF ; r6 = y

x = 1· , II exeeeeeee1
y = -1; II exFFFFFFFF CMP rs, r6

BLE then ; branch if signed s
if (x > y) MOVS r7, #1 , z = 1

z = 1· , B end if , skip next instruction
else then MOVS r7, #0 , z = e

z = 0; end if

Example 6-2. Implementation of if-statement that compares two signed integers

It is often that an assembly program compares against zero and checks whether the
branch should be taken or not. Instructions CBZ (compare and branch on zero) and CBNZ

(compare and branch on non-zero) are available to improve the performance of this
common case by reducing one instruction.

One limitation is that CBZ and CBNZ can only branch forward, and the branch destination
must be within 4 to 130 bytes after the instruction. The following shows example usages
and their equivalent implement.

CBZ rl, label

CBNZ rl, label

CMP rl, #0
BEQ label

CMP rl, #0

branch if equal

BNE label ; branch if not equal

In addition to these standard branch instructions, the following are special branch
instructions that call a subroutine. Chapter 8.1 gives detailed descriptions and examples.

• " BL label" instruction copies the memory address of the instruction immediately
after the BL instruction into the link register (r14), and then branches to the
instruction addressed by the label.

• "BX Rm" is like " BL label" except that the target instruction address is saved in
register Rm.

• " BLX Rm" first places the address of the next instruction after the BLX instruction
into the link register and then branches to the address held in Rm.

Bl label Branch with link. LR = PC + 4; PC = label
BLX Rm Branch with link and exchange. LR= PC+ 4; PC= Rm
BX Rm Branch and exchange. PC= Rm

Table 6-7. Branch instructions that call a subroutine.

Branch and Conditional Execution 1111

6.3 Conditional Execution
Besides four data comparison instructions (CMP, CMN, TEQ, and TST), most instructions can
update the program status flags (N, z, C, and V) if the suffix Sis added. One of the salient
features of ARM assembly language is that an instruction can be executed optionally
based on the program status flags. This feature is often not available in other assembly
languages.

The condition flags introduced in Chapter 6.1 can be a suffix of almost all instructions to
implement conditional execution. The conditional branch instructions presented in the
previous section are a special case of conditional execution.

We take the add instruction as an example to illustrate conditional execution. By default,
the instruction "ADD r3, r2, rl" is always executed no matter what value the program
status flags are. The conditional flag, such as EQ, can be appended to ADD to form a
conditionally executed instruction ADDEQ, as shown in Table 6-8.

Add instruction Condition Flags tested

ADDEQ r3, r2, rl Add if EQual Add if Z = 1

ADDNE r3, r2, rl Add if Not Equal Add if Z = 0

ADD HS r3, r2, rl Add if Unsigned Higher or Same Add if c = 1

ADD LO r3, r2, rl Add if Unsigned LOwer Add if C = 0

ADDMI r3, r2, rl Add if Minus (Negative) Add if N = 1

ADDPL r3, r2, rl Add if Plus (Positive or Zero) Add if N = 0

ADDVS r3, r2, rl Add if o Verflow Set Add if V = 1

ADDVC r3, r2, rl Add if o Verflow Clear Add ifV= 0

ADD HI r3, r2, rl Add if Unsigned Higher Add if C = 1 & Z = 0

ADD LS r3, r2, rl Add if Unsigned Lower or Same Add if C = 0 or Z = 1

ADDGE r3, r2, rl Add if Signed Greater or Equal Add if N = V

ADDLT r3, r2, rl Add if Signed Less Than Add if N != V

ADDGT r3, r2, rl Add if Signed Greater Than Add if Z = 0 & N = V
ADDLE r3, r2, rl Add if Signed Less than or Equal Add if Z = 1 or N = !V

Table 6-8. Conditionally executed ADD instruction

Conditionally executed instructions can help facilitate the implementation of the
selection and loop control structures. The following gives an example.

CMP rl, r0 ; Perform rl - re but discard the subtraction result
ADDSPL r3, r3, #1 ; Increment r3 by 1 and update flags if rl ~ re

6.4 - If-then Statement

6.4 If-then Statement
An if-then statement in C selectively executes a block of code based on whether a given
Boolean condition is true or false.

• If the condition is true or non-zero, the block is executed.
• Otherwise, the block is skipped, and the control returns to the first statement after

the if-then statement.

The following example calculates the absolute value of a signed integer a and increases
the variable x by 1.

C Program

if (a < 0) {
a 0 - a;

}
x x + 1;

YES

NO

Assuming variable a and x are stored in register rl and r2, respectively, the following
gives two assembly implementations equivalent to the above C code.

An if-then statement can be implemented by using a conditional branch instruction
(Example 6-3) or a conditionally executed instruction (Example 6-4).

; rl = a, r2 = x
CMP rl, #0 , Compare a with e
BGE end if ; Go to endif if a ~ e

then RSB rl, rl, #0 ; a = - a
end if ADD r2, r2, #1 ; x = x + 1

Example 6-3. An if-then statement can be implemented by using a conditional branch.

; rl = a, r2 = x
CMP rl, #0
RSBLT rl, rl, #0
ADD r2, r2, #1

Compare a with e
; a = e - a if a < e
; x = x + 1

Example 6-4. An if-then statement can be carried out by using conditional execution.

Branch and Conditional Execution 114M

Compared with conditional branch instructions, conditionally executed instructions are
concise and provide convenience for programmers. However, we should use
conditionally executed instructions only when the if-statement body is short. What's
more, in a nested-if statement, conditional branches are often preferred.

Compound Boolean expression

In mathematics, a Boolean (or logical) condition can be a compound expression combined
with logical operators AND, OR, and NOT.

C language uses three special symbols as logical operators: && for Boolean AND, I I for
Boolean OR, and! for Boolean NOT. In C, we write a Boolean condition like this:

x > 20 && x < 25
x == 20 I I x == 25

!(x == 20 I I x == 25)

The NOT operator (!)has higher precedence than the AND operator(&&), which has higher
precedence than the OR operator (11).

If-then statement with a compound logical OR expression

A compound logical expression combined by logical OR can be implemented by multiple
comparison instructions that test each simple logical expression. Example 6-5 shows how
to implement an if-statement with a compound logic OR expression.

C Program Assembly Program

II x is a signed integer ; re = x, rl = a
if(x <= 20 11 x >= 25){ CMP r0, #20 ; compare x and 20

a = 1; BLE then , go to then if x <= 20
} CMP r0, #25 ; compare x and 25

BLT endif , go to endif if x < 25
then MOV rl, #1 ; a = 1
end if

Example 6-5. A generic approach to implementing if-then with a compound logical OR

Example 6-6 gives a simplified assembly implementation that uses conditionally
executed instructions.

C Program Assembly Program

II x is a signed integer ; re = x, rl = a
if(x <= 20 11 x >= 25){ CMP r0, #20 ; compare x and 2e

a = 1 · , MOVLE rl, #1 ; a = 1 if x <= 2e
} CMP r0, #25 ; compare x and 25

MOVGE rl, #1 , a = 1 if x >= 25

Example 6-6. Using Conditional execution to implement a compound logical OR.

6.4 - If-then Statement

Sometimes conditional comparison (such as CMPNE) and conditional execution can
simplify the program, as shown below.

C Program Assembly Program

if(x == 20 11 x -- 25){ ; re = x, rl = a
a = 1; CMP r0, #20 ; compare x and 2e

} CMPNE r0, #25 , CMP if re ~ 25
MOVEQ rl, #1 , rl = 1 if Z = 1

Example 6-7. Conditional comparison (such as CMPNE) tests a compound expression

However, using conditional branch and execution can only implement an if-then
statement in which the actions performed are simple. A generic approach to
implementing an if-then structure with a compound logic OR expression is to use
conditional branch instructions.

If-then statement with a compound logical AND expression

It is harder to test in assembly a compound logical expression combined by AND. De
Morgan's laws are often used to break a logical AND compound expression into a logical
OR expression.

For example:
A and B =A or B

x > 20 and x < 25 = x > 20 or x < 25
= x ~ 20 or x ;::;: 25

Therefore, when the condition of the if-statement is x > 20 && x < 25, in the assembly
implementation given in Example 6-8, we test whether x ~ 20 or x;?: 25.

C Program Assembly Program

if(x > 20 && x < 25){ ; Assume re = x, rl = a
a = 1; CMP r0, #20 ; compare x with 20

} BLE endif , go to endif if x <= 2e
CMP r0, #25 , compare x with 25
BGE end if ; go to endif if x >= 25
MOVS rl, #1 ; a = 1

end if

Example 6-8. Using De Morgan's laws to convert a logical AND to a logical OR

If-then statement with a compound logical AND and OR expression

When a compound logical expression includes both AND and OR operators, the techniques
introduced previously must be combined.

if < x == s 11 (x > 20 && x < 2s))
a = 1;

Branch and Conditional Execution 11111

The following gives an example implementation.

; Assume re ; x, rl ; a
CMP r0, #5 , compare x with 5
BEQ then ; if x ;; 5, go to then

CMP r0, #20 ; compare x with 20

BLE end if) go to endif if x ~ 20

CMP r0, #25 ; compare x with 25
BGE end if ; go to endif if x ~ 25

then MOVS rl, #1)
a ; 1

end if

Example 6-9. Assembly implementation of a logic expression with both AND and OR

6.5 If-then-else Statement
The if-then-else statement selects one of two alternative sets of statements to execute. It
first evaluates the given Boolean condition.

• If the condition is true, the statements following the if statement are executed.
• Otherwise, the statements following the else statement are executed.

C Program

if (a == 1)
b 3;

else
b 4· ,

YES NO

ENDIF

In the C program shown above, variable b is set to 3 if a is 1; otherwise, b is set to 4.

Assume the content of variable a is stored in register rl, and b in register r2, Example
6-10 gives two equivalent implementations of the above if-else C program. One
implementation is based on branch instructions, and the other uses conditionally
executed instructions.

To make assembly code easy to understand, we should give each label a meaningful
name, such as "then", "else", and "endif" .

6.6 - For Loop

Assembly Program 1 Assembly Program 2

, rl = a, r2 = b ; rl = a, r2 = b
CMP rl, #1 , compare a and 1 CMP rl, #1 , compare a and 1
BNE else ; go to else if a # 1 MOVEQ r2, #3 , b = 3 if a = 1

then MOV r2, #3 ; b = 3 MOVNE r2, #4 , b = 4 if a # 1
B end if , go to endif

else MOV r2, #4 ; b = 4
end if

Example 6-10. Assembly implementation of if-then-else based on conditional branch and
conditional execution

6.6 For Loop
The for loop repeatedly executes a block of codes if the specified condition is satisfied. A
for loop contains three expressions, as shown below.

• The initial expression is executed only once often to initialize loop indices.
• The condition expression is tested before each iteration is executed. The loop body

is executed if the condition expression is true. Note the loop body is skipped if
the condition expression is false at the very first time it is evaluated.

• The loop expression is typically used to increment or decrement loop indices after
each loop.

for (initial_expression; condition_expression; Loop_experssion) {
II Loop body

}

The following C program calculates the sum of the first 10 non-negative integers.

C Program

int i;
int sum 0;

for(i 0; i < 10; i++){
sum += i;

}

Branch and Conditional Execution If&

Assume r0 = i and r2 =sum. Example 6-11 gives three different approaches to translating
the above for loop into the assembly.

Assembly Program 1 Assembly Program 2 Assembly Program 3

MOV r0, #0 ; i MOV r0, #0 , i MOV r0, #0 ; i
MOV rl, #0 ; sum MOV rl, #0 ; sum MOV rl, #0 ; sum

8 check
loop ADD rl, rl, r0 loop CMP r0, #10 loop CMP r0, #10

ADD r0, r0, #1 BGE end loop ADDLT rl, rl, r0
check CMP r0, #10 ADD rl, rl, r0 ADDLT r0, r0, #1

BLT loop ADD r0, r0, #1 BLT loop
end loop 8 loop end loop

end loop

Example 6-11. Assembly implementation of for loop based on conditional branch and
conditional execution

6. 7 While Loop
A while loop tests the condition expression before executing the loop body. If the
condition expression is true, the loop body is then executed. Otherwise, the loop is
terminated. Thus, the loop body may not be performed.

while (condition_expression) {
II Loop body

}

The following C program uses a while loop to calculate the sum of the first 10 integers,
starting with 0.

C Program
int i = 10;
int sum = 0;

while(i > 0){
sum += i;
i--;

}

llFDI 6.8 - Do While Loop

Assume the variable i is saved in register r0 and the variable sum is stored in rl, Example
6-12 gives three different assembly implementations of the above while loop.

Assembly Program 1 Assembly Program 2 Assembly Program 3

MOV r0, #10 ; i MOV r0, #10 ; i MOV r0, #10 , i
MOV rl, #0 ; sum MOV rl, #0 ; sum MOV rl, #0 ; sum

B check
loop ADD rl, rl, r0 loop CMP r0, #0 loop CMP r0, #0

SUB r0, r0, #1 BLE end loop ADDGT rl, rl, r0
check CMP r0, #0 ADD rl, rl, r0 SUBGT r0, r0, #1

BGT loop SUB r0, r0, #1 BGT loop
end loop B loop end loop

end loop

Example 6-12. Assembly implementation of while loop

The first implementation checks the condition expression at the end of the loop. The
second and third implementations check the conditional expression at the beginning of
the loop. Since the loop body is not large, the last implementation uses conditionally
executed instructions.

6.8 Do While Loop

C Program
int sum 0;
int i = 10;
do{

sum += i;
i--;

} while(i > 0);
YES

The do-while loop is like the while loop. The key difference is that the condition
expression is evaluated before executing the loop body in the while loop, whereas the
condition expression is assessed at the end of each iteration in the do-while loop.

Branch and Conditional Execution Im

Therefore, the while loop executes the loop body zero or more times sequentially, whereas
the do-while loop executes the loop body at least once.

do {
II Loop body

} while (condition_expression)

Again, we use the example of calculating the sum of the first 10 integers, starting with 0.
Example 6-12 gives two equivalent assembly implementations (r0 = i, rl = sum).

Assembly Program 1 Assembly Program 2

MOV r0, #10 , i. = le MOV r0, #10 ; i = e
MOV rl, #0 , sum = e MOV rl, #0 ; sum = e

loop ADD rl, rl, r0 ; sum += i loop ADD rl, rl, r0 ; sum += i
SUB r0, r0, #1 ; i.- - SUBS r0, r0, #1 ; i.- -
CMP r0, #0 BGT loop
BGT loop end loop

end loop

Example 6-13. Assembly implementation of do-while loop

The second implementation uses SUBS that performs subtraction and updates the N, Z, C,
and V flags. Therefore, there is no need to use CMP before the BGT instruction.

6. 9 Continue Statement
A continue statement in a loop is to skip the remaining statements in the current iteration
and transfer the control to the next iteration of the loop. Example 6-14 calculates the sum
of all integers between 0 and 9, excluding 5. The assembly program uses the condition
code "NE" to skip the add instruction if r0 equals 5.

C Program Assembly Program

int i· , MOVS r0, #0 ; i = e
int sum = 0· , MOVS rl, #0 ; sum = e

for(i = 0; i < 10; i++) { loop CMP r0, #10
if (i == 5) II skip 5 BGE end loop

continue; CMP r0, #5
sum += i; ADDNE rl, rl, r0 , sum += i

} ADD r0, r0, #1 ; i.++
B loop

end loop

Example 6-14. Assembly implementation of continue in a loop

••• 6.10 - Break Statement

6.10 Break Statement
A break statement is to exit the current loop, including for, while, and do-while. It is
useful when the number of iterations in a loop cannot be predetermined. When there are
nested loops, the break statement terminates the nearest enclosing loop. It is easy to
confuse the break and continue statements.

The following two C programs illustrate the difference between break and continue.

Example code for break Example code for continue

for(int i = 0; i < 5; i++){ for(int i = 0; i < 5; i++){
if (i == 2) break; if (i == 2) continue;
printf("%d, " i) printf("%d, " i) , ,

} }

Output: 0, 1, Output: 0, 1, 3, 4,

Example 6-15. Comparing break and continue

The break statement is translated to a conditional or an unconditional branch statement
in assembly. The following shows how the break statement is implemented by a
combination of CBNZ and B instructions.

C Program Assembly Program
II Find string Length ; re = string memory address
char str[] = "hello"; ; rl = string Length
int len = 0· , MOV rl, #0 , Len = e
char *p = str;

loop LDRB r2, [r0]
for(, ;) {

CBNZ r2, not Zero
if (*p == . \0.) B end loop

break;
not Zero ADD r0, r0, #1 ; p++

p++; ADD rl, rl, #1 ; Len++
len++;

} B loop
end loop

Example 6-16. Implementation of break in assembly

6.11 Switch Statement
A switch statement in C allows the program to make multiple choices based on a switch
expression. If the value of the expression matches with one of the predetermined set of

Branch and Conditional Execution lfW

integer values defined in the program, the program branches accordingly. When there
are many choices, the switch statement makes the program more structured and easier
to read than a combination of if-then or if-then-else statements.

grade= 'A'

grade= 'B'

grade= 'C'

grade= 'D'

NEXT

Figure 6-1. Flowcharts of an example switch
program

The body of a switch structure consists of an
optional default label, a series of case labels
and case expressions, and lists of statements
for each instance.

• The switch expression must be
evaluated to an integer or a character.

• If the switch expression does not
match any of the case constants, the
default label is then selected.

• A break statement in the switch
structure is used to exit the switch.

• After exiting, the processor then
executes the instruction immediately
after the switch structure.

Example 6-17 gives the implementation in C
to convert a numeric grade to its
corresponding letter grade. Figure 6-1 gives
the flowchart.

The assembly code can use the table branch byte (TBB) instruction to implement the
switch statement.

TBB [PC, r0] ; PC = PC + 4 + 2 x BranchTabLe[re]

TBB relies on the branch table defined immediately after the TBB instruction. In the branch
table, each table item takes one byte, and it represents the offset in halfwords between
the current PC and the memory address of the target instruction. The memory address of
the instruction to which the program should branch is calculated as follows:

target = PC + 4 + 2 x BranchTable[r0]

6.11 - Switch Statement

Thus, the program counter (PC) is

PC = PC + 4 + 2 x BranchTable[r0]

TBB (Rn, Rm] Table branch byte
TBH (Rn, Rm, LSL #1] Table branch halfword

Table 6-9. Table branch instructions

The table branch halfword (TBH) instruction is like TBB. However, each item in the branch
table takes halfwords.

TBH [PC, r0] ; PC = PC + 4 + 2 x BranchTabLe[re)

We use a simple example to illustrate how to use TBB or TBH instruction to implement a
switch statement in assembly.

The following assembly code uses TBB to implement a switch statement, which converts
a numeric score to its corresponding letter grade.

c Program

uint32 t score;
char grade;

switch (score){
case 10:

case 9:
grade = I A I;
break;

case 8:
grade = 'B';
break;

case 7:
grade = 'c';
break;

case 6:
grade = ID I;
break;

default:
grade = 'F';
break;

}

Assembly Program
, re = numeric score (e i re i 1e)
, rl = Letter grade

SUBS r2, r0, #6 , r2 is branch index
CMP r2, #5
BHS default ; branch if unsigned r2 ~ 5

; r2 is the index;
; pc = pc + 4 + 2 x BranchTabLe[r2]
TBB [pc, r2] ; Tab Le Branch Byte

BranchTable
DCB (case 6 - BranchTable)/2 ; index = e
DCB (case 7 - BranchTable)/2 ; index = 1
DCB (case 8 - BranchTable)/2 ; index = 2
DCB (case 10 9 - BranchTable)/2 ; index = 3
DCB (case 10 9 - BranchTable)/2 ; index = 4

ALIGN

case 10 9
MOV rl, #0x41 , ASCII 'A' = ex41
B exit

case 8
MOV rl, #0x42 ; ASCII 'B' = ex42
B exit

Branch and Conditional Execution Im

case_7
MOV rl, #0x43 , ASCII 'C' = 0x43
B exit

case_6
MOV rl, #0x44 , ASCII 'D' = 0x44

B exit

defa ult
MOV rl, #0x46 , ASCII 'F' = 0x46

exit

Example 6-17. Converting score to letter grade

6.12 Exercises

1. Translate the following code into a C program and explain what it does.

MOV r2, #1
MOV rl, #1

loop CMP r l, r0
BGT done
MUL r2, rl, r 2
ADD rl, r l , #1
B loop

done MOV r0, r2

2. We can use the REV instruction to perform conversion between 32-bit little-endian
and big-endian numbers. Write an assembly program that uses bitwise operators,
such as&, I, A,<<, and>>, to implement the endian conversion. You cannot use REV

in your program.

3. Define an array with 10 unsigned integers in assembly code, and write an assembly
program that calculates the mean of these 10 integers (truncating the result to an
integer).

4. Define an array with 10 unsigned integers a1 (0 ~ i ~ 9) in assembly code, and write
an assembly program that calculates the sum of the cube of these 10 unsigned integers.

11111 6.12 - Exercises

9

sum= I a[
i=O

The following defines the array and its size in the data memory.

AREA myData, DATA
array DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

5. Write an assembly program that converts all lowercase letters to their corresponding
upper cases.

6. Write an assembly program that calculates the kinetic energy (E), E = MC2, where the
mass (M) is 15 kg and is stored in r0. C is the speed of light (299,792,458 m/s) and is
stored in rl. The result E has 32-bit and is stored in register r2.

7. Write an assembly program that calculates the value of the following integer
expression:

3x
7x 2 + 9xy +- + 11x + 13y + 5

y

where unsigned integers x = 4 and y = 2.

8. Test for complex roots in solution to the following quadratic equation:

ax2 +bx+ c = 0

The solution has complex roots if b2
- 4ac is smaller than 0 and real roots otherwise.

Suppose a, b, and care signed integers and they are stored in register r0, rl, and r2.

Write an assembly program that set register r3 to 1 if the solution has complex roots
and 0 otherwise.

9. Write an assembly program that calculates the following function. Assume register
r0 holds the signed integer x, and register rl saves the result.

{

-1

f(x) = ~
if x < 0
if x = 0
if x > 0

10. Write an assembly program that calculates the following cost function. Assume the
unsigned integer input x is stored in register r0 and the cost is in register rl.

{

9x
Bx

cost(x) = ?x

6x

Branch and Conditional Execution IPIM

if x ::::; 10
if x > 10 and x ::::; 100
if x > 100 and x ::::; 1000
if x > 1000

11. Translate the following C program into an assembly program. The C program finds
the minimal value of three signed integers. Assume a, b, and c is stored in register r0,
rl, and r3, respectively . The result min is saved in register r4.

if (a ~ b && a < c) {
min = a;

} else if (b < a && b < c) {
min b;

} else {
min c;

}

12. Assume two dates are stored in memory as follows. Write an assembly program to
compare these two dates. If datel comes before date2, set register r0 to 1; otherwise,
set r0 to -1.

datel
date2

AREA myData, DATA
DCD 12, 31, 2014
DCD 01, 20, 2013

; monthJ day, year
; month, day) year

13. Write an assembly program that calculates the sum as given below. Variable n is
saved in register r0, and the sum is stored in register rl.

n

sum = L i2 = 12 + 22 + ... + n2

i=l

14. Write an assembly program that calculates the factorial of a non-negative integer n.
Assume n is given in register r0, and the result is saved in register rl.

n

f(n) = n i = n x (n - 1) x (n - 2) x ... x 3 x 2 x 1
i=l

15. When a two-dimensional (2D) matrix is declared in a C program, the matrix, in fact,
is stored as a one-dimensional array in memory. C program uses a row-major
approach to convert a 2D matrix into a lD array. The following gives an example of
storing a 3-by-3 matrix in memory.

- 6.12 - Exercises

Index

Content

Memory offset
in bytes

(0, 0)

1

0

I

(0, 1) (0, 2) (1, 0)

2 I 3 4 I
4 8 12

1" Row

(1 , 1) (1 , 2) (2, 0) (2, 1) (2 , 2)

5 I 6 7 I 8 I 9

16 20 24 28 32

Translate the following C program to an assembly program. Your assembly program
must consist of two nested loops.

int a[4][3] = {

{11, 12, 13}, II first row
{21, 22, 23}, II second row
{31, 32, 33}, II third row
{41, 42, 43} II fourth row

};

void main(void) {
int i, j;

}

for(i = 0; i < 4; i++)
for(j = 0; j < 3; j++)

a[i][j] = 2*a[i][j];
return;

16. Write an assembly program that transposes the matrix defined in the previous
question. Your assembly program should have two nested loops. In linear algebra,
the transpose of a matrix [aij]m xn is [ajdn xm·

[f [] a ·· - a ..
lJ m xn - Jl nxm

For example:

[11
12 lT [11 21 31 41] 21 22 23 = 12 22 32 42 31 32 33 13 23 33 43

41 42 43

Structured Programming Im

CHAPTER

7
Structured Programming
Structured programming has been widely supported in high-level programming
languages, such as C. to provide the clarity, simplicity, and ease of maintenance of
programs. Structured programming is a technique that utilizes a top-down hierarchical
method to solve a problem. It only uses sequence, selection, and loop control structures
to implement programs.

A goto statement, which was available, is prohibited in most modern high-level
languages. Although assembly language is not a structured programming language
intrinsically, we can still apply fundamental principles of structured programming to
simplify the complexity and increase the ease of programming.

This chapter introduces the basic idea of the top-down design and gives example
assembly programs to illustrate how to realize structured programming by using three
basic control structures. We use program flowcharts, which are a useful tool to facilitate
structured programming.

7 .1 Basic Control Structures
A software program solves a problem by using an appropriate combination of three basic
control structures: sequence, selection, and loop.

• A sequence is a set of instructions that are completed in a sequential order.
• A selection lets the computer choose two alternatives based on whether a logic

condition is true or false.
• A loop executes a sequence of instructions repeatedly if a logic condition is

satisfied.

One common characteristic of these control structures is that each has only one entry
point and one exit point. A control structure can be nested or embedded in another

Miji 7.1 - Basic Control Structures

structure to form a compound structure. It has been mathematically proven that any
program can be written by using only these three control structures.

Sequence
Structure

True False

Selection Structure Loop Structure

Figure 7-1. Three basic control structures in structured programming

When we solve a large complex problem, the first step is to break down this massive
problem into a set of simpler and more manageable
sub-problems. This divide-and-conquer strategy
effectively reduces the difficulty of problem-solving
because each sub-problem is easier to solve, and the
solution requires less time to develop, verify and
maintain.

Our next step is to design a solution for each sub
problem. Usually, we make the solution to a sub-
problem as a subroutine (or function) . These
subroutines communicate with each other by passing

"Nothing is particularly
hard if you divide it into

small jobs."

Henry Ford,
Founder of Ford Motor

parameters (or arguments) and returning values. In this chapter, we focus on how to
develop a simple program, and we will introduce how to build a subroutine in the next
chapter.

The three control structures (sequence, selection, and loop) are implemented almost in
every structured programming language.

• Sequence. All statements of a software program are assumed to run in a sequential
order by default, even though on modem processors they might be executed out
of order. Also, a function (or called subroutine) can be part of a sequence.

• Selection. The if, if else and switch statements are selection control structure.
Although the if statement is sufficient to implement any selection structure, the if
else and switch are provided for the convenience of programming.

• Loop. The loop in C includes for, while and do while. Two statements (break and
continue) are available to change the regular control flow of a loop. The break

Structured Programming Im

statement makes an immediate exit from the inner-most for, switch, while, and do
while in which it appears. The continue makes the processor skip the remaining
statements in the current loop body and begin the next iteration of the loop.

Top-Down Design

Main task

Smaller subtasks

• • •

Figure 7-2. Top-down design (also called stepwise refinement)

Programming using hierarchical or nested control structures as well as subroutines in
high-level languages is called structured programming.

The key process of structured programming is stepwise refinement, which is about
solving a problem by making a series of design decisions. Each successive refinement
logically decomposes a task into several subtasks. The stepwise process stops until all
subtasks can be described successfully by using three basic control structures. Examples
of the final subtask include "if P is true, then do X else do Y," or "while C is true, do Z."

The final program code can be written naturally based on the result of the last
decomposition.

However, assembly language itself is not a structured programming language because it does
not directly support selection and loop structures. Assembly program uses conditional
or unconditional branch instructions to implement the high-level selection and loop
structure. A branch instruction in assembly is equivalent to a goto statement in a high
level language. Structured programming languages discourage the usage of goto
statements. That is why some high-level languages have eliminated goto statements, and
most textbooks do not cover it. Edsger Dijkstra, a famous computer scientist, published
a letter titled "Goto Considered Harmful" in 1968.

In assembly languages, we must use branch instructions that are equivalent to goto.
Despite this, we can still extend the principle of structured programming to assembly
languages. We should still follow the stepwise refinement approach to solving a problem

M@fl 7.1 - Basic Control Structures

in assembly. While the basic control structures are not directly available, they can be
readily implemented. Structured programming in assembly language involves two steps:

1. Top-down logical design. It performs stepwise refinement and constructs

program flow by using high-level control structures.
2. Implementing the high-level structures identified in the previous step in

assembly language. It is a good practice to give each instruction label a
meaningful name to demonstrate clearly their corresponding control structures.
We should use branch instructions carefully to ensure there are only one entry
and one exit into each structure. If possible, the assembly instructions should be

broken into subroutines that make the program more modularized.

These two steps separate the process of logic construction and low-level coding. In other
words, we think in high-level structured language, but write code in low-level assembly

language.

An indispensable tool that can help us use structured programming techniques in
assembly language is program flowcharts. A program flowchart visually organizes the
program logic flow and steps by using graphic symbols. A flowchart not only serves as
valuable program documentation, but also more importantly as an aid to the top-down
design and analysis during the problem-solving phase and an effective guideline during
the software development phase. The following gives an example how to use flowcharts
to aid programming.

Example: Find all Armstrong numbers less than 10,000.
Given a positive integer that has n digits, it is an Armstrong number if the sum of the nth

powers of its digits equals the number itself. For example, 371 is an Armstrong number
because we have 371=33 + 73 + 13• We want to find all Armstrong numbers less than 10,000.

We can divide the task into 10,000 subtasks. Each subtask checks whether a given integer
is an Armstrong number or not. Apparently, we need a loop structure to execute these
10,000 subtasks iteratively. The loop structure should have only one in and one out. We
can further refine a subtask by using a selection structure. Specifically, a subtask prints
the number if it is an Armstrong number.

The subtask of checking whether a number is Armstrong can be implemented as a
subroutine that returns YES or NO for a given input integer. In general, using subroutines
in a program helps decompose a complex task into smaller and simpler subtasks.
Subroutines make program design, verification, and maintenance easier.

Figure 7-3 illustrates the top-down design process.

START

If 1 is an Armstrong number, then print 1.
If 2 is an Armstrong number, then print 2.
If 3 is an Armstrong number, then print 3.
If 4 is an Armstrong number, then print 4.
If 5 is an Armstrong number, then print 5.
If 6 is an Armstrong number, then print 6.

If 9999 is an Armstrong number, then print 9999.

STOP

START

STOP

YES

Structured Programming Ill

START

If x is an Armstrong number,
then print x

YES

STOP

Figure 7-3. Example of top-down design to find Armstrong numbers less than 10,000

This subtask, however, is still complex. We can further decompose it into four smaller
subtasks, as in Figure 7-4. The first three of them are still not straightforward, and we can
implement them as subroutines. Within each subroutine, the above decomposition

rocess re eats if necessar to break a subtask further into smaller subtasks. This rocess

Ml!:I 7.2 - Register Reuse

stops if we can express each subtask by using the three basic control structures. Chapter
7.6 shows the flowchart and program of identifying the number of digits in an integer,
and Chapter 7.9 gives an implementation that checks whether an integer is an Armstrong

number.

Check whether x is
an Armstrong Number

Determine how many
digits x has

Determine all digits of x

Calculate the sum of the
power of all digits

Check whether x equals to
the sum

Figure 7-4. Breaking a complex task into smaller subtasks.

7 .2 Register Reuse
There are always a limited number of physical registers available in a microprocessor.
However, it is often that many variables are defined in a program. Therefore, we need to
minimize the number of registers used for each chunk of codes to save registers for other
chunks of codes.

v

If the program runs out of registers, we need to save the value of some
registers back to memory to make registers free to use. When these variables
are used later, we need to load their value back from memory again.
Reducing the number of registers used by a piece of code can help eliminate
some memory accesses, thus speeding up the application performance.

To minimize the footprint of registers, a program should reuse a register if possible. One
simple strategy is that a register can be reused outside its live range. A live range of a register
in a program is defined as the interval between the instruction that writes to the register
and the last instruction that reads it before the register is written again.

The following example illustrates how this strategy works. Assuming global variables
are allocated in the data memory starting at the address of 0x20000000. The assembly

Structured Programming iiji

program needs to load variables B, C, and D from memory into registers first, then
calculate the results and finally save the result in memory. A simple assembly
implementation, as shown in Figure 7-5, uses eight registers.

int A
int B
int C
int D

Global variables

0; // 0x00000000
-1; // 0xFFFFFFFF
-2; // 0xFFFFFFFE
2; // 0x00000002

void main(void){
A = B + C - D;
return;

}

Data memory

Address Data
0x2000,000F 0x00
0x2000,000E 0x00 D 0x0000,0002
0x2000,0000 0x00
0x2000,000C 0x02
0x2000,000B 0xFF
0x2000,000A 0xFF
0x2000,0009 0xFF

c 0xFFFF,FFFE

0x2000,0008 0xFE
0x2000,0007 0xFF
0x2000,0006 0xFF
0x2000,0005 0xFF

B 0xFFFF,FFFF

0x2000,0004 0xFF
0x2000,0003 0x00
0x2000,0002 0x00
0x2000,0001 0x00

0x0000,0000 A

0x2000,0000 0x00

AREA myCode, CODE
EXPORT main -
ENTRY

main PROC -

LOR r2, =B r2 0x2000,0004
LOR r3, [r2] r3 B = -1
LOR r4, =(r4 0x2000,0008
LOR rs, [r4] rs c = -2
LOR r6, =D r6 0x2000,000B
LOR r7, [r6] r7 D 2
ADD rl, r3, rs rl B + C
SUB rl, rl, r7 rl B + C - D
LOR r0, =A r0 0x2000,0000
STR rl, [r0] Save A
ENDP

AREA myData, DATA
A DCD 0
B DCD -1
c DCD -2
D DCD 2

END

Figure 7-5. Simple assembly implementation and data memory layout

2

-2

-1

0

7.2 - Register Reuse

To reuse registers, first, we need to determine the live range of each register. A register
may have multiple live ranges in a program. However, no live ranges of a register overlap
with each other. A register can be reused outside its live range .

Figure 7-6 shows the process of renaming registers to reduce the number of registers used
in the above program.

Lifetime
of r3

• During the first step, we can replace register r4, r6, and r0 by register r2, and
replace rl by r3. This reduces the total number of registers used by the program
from eight to four.

• During the second step, we replace register r7 by r2, reducing the total number
of registers to three.

• This process repeats if necessary.

AREA myCode, CODE AREA myCode, CODE AREA myCode, CODE
EXPORT - main EXPORT main EXPORT main - -ENTRY ENTRY ENTRY

- main PROC main PROC main PROC - -

LDR r2, =B } Lifetime LDR r2, =B LDR r2, =B
LDR r3, [r2] ofr2 LDR r3, [r2] LDR r3, [r2]
LDR r4, =C } Lifetime LDR r2, =C Lifetime LDR r2, =C
LDR rs, [r4] ofr4 LDR rs, [r2] of r2 LDR rs, [r2]
LDR rG, =D } Lifetime LDR r2, =D LDR r2, =D
LDR r7, (rG] of r6 LDR r7, [r2] LDR r2, [r2] } ADD rl, r3, rs ADD r3, r3, rs ADD r3, r 3 rS Reusi
SUB rl, rl, r7 SUB r3, r3, r7 SUB r3, ' r2

r3, r2
LDR r0, =A } Lifetime LDR r2, =A } Lifetime LDR r2, =A
STR rl, [r0] ofrO STR r3, [r2] of r2 STR r3, [r2]
ENDP ENDP ENDP

AREA myData, DATA AREA myData, DATA AREA myData, DATA
A DCD 0 A DCD 0 A DCD 0
B DCD -1 B DCD -1 B DCD -1
c DCD -2 c DCD -2 c DCD -2
D DCD 2 D DCD 2 D DCD 2

END END END

8 registers used 4 registers used 3 registers used

Figure 7-6. Reusing registers based on their live ranges

Structured Programming IDI

7.3 Example of Factorial Numbers
The factorial of a non-negative number n, denoted as n!, is the product of all positive
integers less than or equal ton, as shown in the following math formula. There is one
special case: O! = 1.

n

n! = n i = n x (n - 1) x (n - 2) ... x 2 x 1

START

Initialization :
Result= 1

i = 1

i=l

Result= Result • i

STOP

Figure 7-7. Flowchart of factorial program

This example illustrates implementing
a for loop in assembly. The assembly
needs to check the exit condition and
update the loop index in each loop.
There are different ways to implement
the for loop. In this specific example:

• An unconditional branch
instruction "B loop" is placed at
the end of the loop body to
implement a loop.

• At the beginning of the loop
body, a comparison instruction
(CMP) sets up the NZCV flags.

• A conditional branch (BGT in
this example) exits the loop.

C Program Assembly Program

AREA factorial, CODE, READONLY
EXPORT main -

int main(void) { ENTRY
int result, n, i· J _main PROC

result = 1; MOV r0, #1 ; re = result
n = 5; MOV rl, #5 , rl = n

for (i = 1; i <= n; i++) MOV r2, #1 ; r2 = i = 1
result = result * i· loop CMP r2, rl ; compare i and n J

BGT stop , if i > n, stop
MULS r0, r2, r0 ; result *= i
ADD r2, r2, #1 ; i++
B loop

while (1); stop B stop
} ENDP

END

.... 7.4 - Example of Counting Ones in a Word

7.4 Example of Counting Ones in a Word
In this example, we count the number of ones in a 32-bit word. One application of this
code is to calculate the Hamming distance, which is defined as the number of different
bits in two words. Given two words A and B, let C =A EBB, then the Hamming distance
of A and B equals the number of ones in C. Hamming distance has a wide range of
applications in information coding and cryptography.

The assembly implementation is given below.
The assembly program checks two bits every
time, and one of them is stored in the carry flag
set by the "MOVS" instruction.

However, the C language cannot directly access
the carry flag. To test whether a carry has
occurred, we can use an if-statement that
compares x and x < < 1. If xis smaller than x < <

The C language cannot directly
check the carry flag. This shows

an advantage of assembly
language over C language.

1, then carry has occurred, implying the bit being shifted out has a value of 1; otherwise,
the bit shifted out has a value of 0.

C Program

II Count the number ones in x
II Result saved in counter

int main(void){

}

uint32_t x = 0xAAAAAAAA;
uint32 t y, z;

uint32_t counter = 0;
counter = x >> 31;

while (x > 0) {
y = x << 2.

J

z = y » 31;
if (x«l > y) II check

counter += z + 1· J

else
counter += Z' J

x = y;
}
while(l);

carry

Assembly Program

AREA Count_Ones, CODE
EXPORT _main
ALIGN
ENTRY

_main PROC

; re = Input = x
; rl = Number of ones = counter

LDR r0, =0xAAAAAAAA

; rl = re » 31
MOV rl, r0, LSR #31

; re = re << 2 and change Carry
loop MOVS r0, r0, LSL #2

; rl = rl + re >> 31 + Carry
ADC rl, rl, r0, LSR #31
BNE loop

stop B stop
ENDP
END

Structured Programming -

The following shows the initialization and the execution of the first loop. Note the ADC
instruction does not update the carry flag. At the end of the first loop, we have rl
bit[31] + bit[30] + bit[29].

Initialization

MOV r1, rO, LSR #31 ; r1 = b31 of rO

r1: 0 0 0 b31

Carry

Loop
MOVS rO, rO, LSL #2 ; shift b30 into
Carry

rO: b29 bO 0 0 0

Carry

rO, LSR #31

0 0 b29 1 b3o I

Carry is not

ADC r1, r1, rO, LSR #31 r1 = b31 + b30 + b29 updated

At the end of the first loop: r1 = b31 + b30 + b29

Figure 7-8. Result of the first loop. Register r0 holds the input.
Register rl holds the counting result.

The loop body runs 16 times, and each loop checks two bits. The following gives a
detailed illustration of the above example to show the key idea.

1. Initially we have r0 = 0xAAAAAAAA. Note 0xA = 0b1010.
2. The counter rl is initially set to r0»31 (i.e ., r0 = 0x00000001).
3. During the first iteration of the loop:

a) MOVS r0, r0, LSL #2 ==>Carry= 0 and r0 = 0xAAAAAAAC
b) ADC rl, rl, r0, LSR #31 ==> rl = 1+0x00000000 +Carry = 1
c) Since r0 does not equal zero, the loop runs again.

4. During the second iteration of the loop:
a) MOVS r0, r0, LSL #2 ==>Carry= 0 and r0 = 0xAAAAAAA0
b) ADC rl, rl, r0, LSR #31 ==> rl = 1 + 0x00000000 +Carry = 2
c) Since r0 does not equal zero, the loop runs again.

5. During the third iteration of the loop:
a) MOVS r0, r0, LSL #2 ==>Carry= 0 and r0 = 0xAAAAAAC0
b) ADC rl, rl, r0, LSR #31 ==> rl = 1 + 0x00000000 +Carry = 3
c) Since r0 does not equal zero, the loop runs again.

6. The loop repeats 16 times, and finally, we have rl = 16.

mm 7.5 - Example of Finding the Maximum of an Array

7.5 Example of Finding the Maximum of an Array
This example finds the maximum value and its location in a given signed integer array .
The program needs to traverse the array and keep track of the maximum value and its
location or index. The program updates the maximum value variable if a larger value is
found during the loop. If there are multiple maximum values in this array, only the first
one is identified. This method is called linear search.

Figure 7-9 gives the program flowchart. In the beginning, the program assumes the
maximum value is the first integer of this array, and the corresponding maxLocation is 0.
It uses a for loop to iterate through the array. The loop index i starts with 0 and is
incremented by 1 in the loop body. In each loop, the program loads an integer of this
array and updates max Value and maxLocation when a larger value is found when iterating
through the array.

START

Initialization:
maxlocation = O

maxValue = array[O]
i = 0

maxlocation = i
maxValue = array[i]

i = i + 1

STOP

Figure 7-9. Flowchart of finding the maximum value of an integer array

Structured Programming 1111

The following shows the implementation of finding the highest value in C and assembly.
Since array and size are declared as global variables with initial values in the C program,

the corresponding assembly program places them in the initialized data area, defined by

using the directive AREA. The assembly program starts to identify the array size and the

memory address where the array is stored. Variables i, maxLocation, and maxValue are

local variables and are stored in r2, r0, and rl, respectively. The assembly program
initializes r0 to the first integer of the array and writes rl to 0.

The memory address of the first integer of this array, which we also call the memory

address of this array, is stored in register r4. The following statement loads array[i] into

register rs. Because each integer takes 4 bytes in memory, the memory address of array[i]
is r4 + r2 x 4.

LOR rs, [r4, r2, LSL #2]

C Program

int array[10] = { -1, S, 3, 8, 10,
23, 6, s, 2, -10};

int size = 10;

int main(void) {
int i, maxLocation, maxValue;

}

II Initialize max and Location
maxLocation = 0;
maxValue = array[0];

II Loop through the array
for (i = 0; i < size; i++){

if (array[i] > maxValue)
maxValue = array[i];
maxLocation = i. ,

}
}

while(l); II dead Loop

{

Assembly Program

AREA myData, DATA
ALIGN

array DCD -1,S,3,8,10,23,6,S,2,-10
size DCD 10

AREA findMax, CODE
EXPORT _main
ALIGN
ENTRY

_main PROC

loop

stop

; Identify the array size
LOR r3, =size
LOR r3, [r3] ; array size
SUB r3, r3, #1

; Initialize max value and Location
LOR r4, =array
LOR r0, [r4]
MOV rl, #0

; re = default max
, rl = max Location

; Loop over the array
MOV r2, #0 ; Loop index i
CMP r2, r3 ; compare i & size
BGE stop ; stop if i ~ size
LOR rs, [r4,r2,LSL #2] ; array[i]
CMP rs, r0 ; compare with max
MOVGT r0, rs ; update max value
MOVGT rl, r2 , update Location
ADD r2, r2, #1 ; update index i
B loop

B stop ; dead Loop
ENDP
END

Mifl 7.6 - Example of Counting Digits

7 .6 Example of Counting Digits
Given a decimal integer, find how many decimal digits this number has. For example,

the decimal number 9578 has four digits.

START

Initialization:
count= 0

No

number = number/10

counter = counter + 1

STOP

Figure 7-10. Flowcharts of counting
decimal digits

The C program uses a simple while loop that

repeatedly executes a block of code until a given

Boolean condition becomes false.

The implementation of a while loop in assembly

language is like a for loop. It often relies on a

comparison instruction (CMP, CMN, TEQ, and TST)

and a conditional branch instruction. However,

CBZ (compare and branch if zero) and CBNZ

(compare and branch if nonzero) is an effective

combination instruction of two operations.

When integers are divided, any fractional part of

the result is discarded. This rounding scheme is

called truncation toward zero. For example, the

result of 9/10 is zero. If the division result is

negative, the SIDV and UDIV instructions

truncate the result toward 0 rather than flooring.

For example, the division of -8/3 is -2, not -3 .

C Program Assembly Program

AREA countDigits, CODE, READONLY
EXPORT main -

int main(void){ ENTRY
int number, count; _main PROC

number = 123456; LDR r0, =123456 ; input integer number
count = 0; MOV rl, #0 ; number of digits

MOV r2, #10 ; set r2 to 1e
while(number){ loop CBZ r0, stop ; if re = e, stop

number = number/10; SDIV r0, r0, r2 ; re = re I 10
count++; ADD rl, rl, #1 ; count++

} B loop ; Loop again

while(l); stop B stop
} ENDP

END

Structured Programming llJM

7.7 Example of Parity Bit
The parity bit of a binary number indicates whether it contains an odd or even number
of ones. Parity bits are widely used in communication and digital systems to detect data
corruption when there are an odd number of bit errors.

There are two parity schemes: even parity and odd parity.

• In the even parity, the parity bit is set if there are an odd number of ones in the
data; otherwise, it is cleared. Thus, the number of ones in the data and the parity
bit is always even.

• On the other hand, the odd parity always keeps the total number of ones in the
entire data set (including the parity) an odd number.

The exclusive OR of all bits in the whole data set including the parity bit should be 0 in
the even parity scheme, and 1 in the odd parity scheme.

Data bits Parity bit Total# of 1-bits (including parity)

Even Parity
10101010 0 4 (An even number of ones)
10101011 1 6 (An even number of ones)
10101010 1 5 (An odd number of ones)

Odd Parity 10101011 0 5 (An odd number of ones)
Table 7-1. Examples of even and odd parity

The following will implement a simple bit-counting algorithm that computes the odd
parity. The key idea, proposed in reference [39], is to reset repetitively one of the 1-bits
to 0 and invert the parity bit until all bits are 0. The reset operation is achieved by the
bitwise logic AND operation between n and n - 1. The following gives two examples.

Example 1: n = 11 (0b1011)

Step 1 Step 2 Step 3
n 1011 1010 1000

n-1 1010 1001 0111
n & (n-1) 1010 1000 0000

Parity 0 1 0

Example 2: n = 15 {0bllll)

Step 1 Step 2 Step 3 Step 4
n 1111 1110 1100 1000

n-1 1110 1101 1011 0111
n & (n-1) 1110 1100 1000 0000

Parity 0 1 0 1

111!1 7.7 - Example of Parity Bit

This algorithm is based on the observation that the bitwise AND operation of n & (n - 1)
always resets a 1-bit to zero. The following gives a briefly proof. When we examine the least
significant two bits, there are four possible scenarios. In each of the four scenarios,
n & (n - 1) resets a 1-bit. The number of steps required to complete this algorithm does
not depend on the total number of bits, but instead the number of ones in the tested data.

Cases Bits[1:0] n & (n -1) Observation
1 11 10 A bit of 1 is reset.
2 10 00 A bit of 1 is reset.
3 01 00 A bit of 1 is reset.

4 00
Either the algorithm stops, or the last

A bit of 1 is reset.
1 on the rightmost is cleared.

The C program and assembly program for calculating the odd parity are shown below.
In this example, we calculate the parity of a 32-bit integer, which is 0x11 in decimal, and
0b1011 in binary. The total number of 1-bits in this integer is an odd number; therefore,
its parity bit, saved in register rl, is cleared .

C Program Assembly Program

AREA parity, CODE, READONLY
EXPORT main -
ENTRY

int main(void){ _main PROC

uint32_t n = 11; MOVS r0, #11 ; number to be checked
int parity = 0; MOVS rl, #0 parity)

loop CBZ r0, stop) branch to stop if zero
while (n) { CMP rl, #0 ; flip parity bit

parity = !parity; MOVEQ rl, #1) if r1 = e, set it
n = n & (n - 1); MOVNE r2, #0 ; if r1 # e, clear it

} SUBS r2, r0, #1 ; (n-1)
ANDS r0, r0, r2 ; n = n & (n-1)
B loop

while(l); stop B stop
} ENDP

END

The CBZ (Compare and branch on zero) instruction can be replaced by the following two
instructions.

CMP r0, #0
BEQ stop

; Compare register with e
; Branch if equal

Another approach to implementing the C statement "parity

MVN rl, rl ; Negate all bits
AND rl, rl, #1 , Clear all bits except bit[e)

! parity; /1 is as follows:

Structured Programming lid

7.8 Example of Perfect Numbers
If the sum of all proper divisors of a positive number equals the number itself, this
number is a perfect number. For example, 6 is a perfect number because the sum of its
proper divisors, including 1, 2, and 3, equals 6. Other examples are 28, 496, and 8128. This
following presents a program to check whether a given positive number is perfect or not.

START

Initialization:
sum= 0

i = 1

r = n - ixq

sum= sum+ i

i = i + 1

STOP

No

Figure 7-11. Checking whether n is a perfect number

For a given positive integer n, the program loops over the loop variable i from 1 ton - 1,
then checks whether i is a divisor of n, and finally adds to sum if yes. After the loop
completes, the program evaluates whether sum equals n. If yes, then n is a perfect
number; Otherwise, n is not. To check whether i is a divisor of n, the program performs
a modulo operation, which is simple in C (use % operator). However, this modulo
operation takes several steps in assembly. First, it uses truncated division to find the

7.8 - Example of Perfect Numbers

quotient q, i.e. , q = l~J, and then the remainder is calculated as r = n - q xi. If the

remainder is zero, then i is a divisor of n.

In the following program, the number to be checked is stored in variable num, which is
assigned to register rl in the assembly program. The flag indicating whether the integer
is a perfect number or not is stored in register r0.

C Program Assembly Program
AREA perfectNumber, CODE
EXPORT main -

int main (void){ ALIGN
uint32_t i, flag; ENTRY
uint32_t num, sum; _main PROC

num = 28; MOV rl, #28 ; number to check
sum = 0; MOV r2, #0 ; sum = 0

MOV r3, #1 , i = 1
for(i = 1; i < num; i++){ loop CMP r3, rl ; compare i & num

if(num % i == 0) BHS check ; if i ~ num, exit
sum += i; UDIV r4, rl, r3 ; r4 = num/i

} MLS r4, r3, r4, rl ; r4 = num - i*r4
CMP r4, #0 ; num % i
ADDEQ r2, r2, r3 ; sum += i
ADD r3, r3, #1 ; i++
B loop ; Loop again

if (sum == num) check CMP r2, rl ; compare sum & num
flag = 1 · , yes MOVEQ r0, #1 ; flag = 1

else no MOVNE r0, #0 ; flag = e
flag = 0;

while(l); stop B stop
} ENDP

END

"CMP r3, rl" updates the N, Z, C, and V flags based on the results of subtraction r3 - rl.
The following BHS (Branch if unsigned higher or same) instruction checks the C flag. Also,
BHS causes PC to branch away if the C flag is set, indicating that no borrowing has occurred
during the subtraction.

"MLS r4, r 3, r4, rl" performs the following operation: r4 = r 3 - r4 x rl . If the product
of r4 and rl might have 64 bits, the most significant 32 bits are discarded.

The C statement "num % i" is translated into two assembly statements.

UDIV r4, rl, r3 ; r4 = num + i
MLS r4, r3, r4, rl ; r4 = num - i x r4

Structured Programming IMI

7.9 Example of Armstrong Numbers
An n-digit number is Armstrong if the sum of the nth powers of its digits equals the
number itself. For example, the following are Armstrong numbers.

371 = 33 + 73 + l3

1634 = 14+ 64+ 34+ 44

54748 = 5s + 4s + 7s + 4s +gs

1741725 = F + 77 + 47 + F + 77 + 27 + 57

The following C and assembly programs check whether a given three-digit number is
Armstrong. The program checks whether the sum of cubes of individual digits of this
three-digit number is equal to the number itself.

C language provides a modulus operator(%) that calculates the remainder of an integer
division. However, there are no modulus instructions in assembly. The following two
assembly instructions implement the modulus operation (r2 = rl % r3).

SDIV r6, rl, r3 ; r2 = remainder
MLS r2, r3, r6, rl ; r2 = rl - r3 * r6

C Program Assembly Program
AREA Armstrong, CODE, READONLY

int main(void) { EXPORT - main
int number, sum, r· , ENTRY
int flag, t; - main PROC
number = 371; LOR r0, =371 ; number to be checked
sum = 0; MOV r4, #0 ; sum = e
t = number; MOV rl, r0 , save a copy, rl=number
while(t != 0) { MOV r3, #10

r = t % 10; loop CBZ rl, check ; if t = e, exit Loop
sum = sum + r*r*r; SDIV r6, rl, r3 , r2 = remainder
t = t I 10; MLS r2, r3, r6, rl ; r2 = rl - W*r6

} MUL r3, r2, r2 ; remainerA2
MLA r4, r3, r2, r4 ; r4 = W*r2 + r4
MOVS r3, #10
SDIV rl, rl, r3 ; t = t/W
CBNZ loop

if (number -- sum) check CMP r0, r4
flag = 1· , yes MOVEQ r0, #1 ; Armstrong

else no MOVNE r0, #0 ; not Armstrong
flag = 0· ,

while(l); stop B stop
} ENDP

END

mL'll 7.10 - Example of Palindrome String

7.10 Example of Palindrome String
A string is a palindrome if the string is read the same forward and backward. For
example, "rats live on no evil star" is a palindrome. Write a program to check whether a
given string is a palindrome.

The assembly program uses two memory pointers (rl and r2), which are initially set to
the memory address of the first letter and the last letter of the string to be checked. The
program loads two characters pointed by rl and r2, and compares them whether they
are the same. If yes, the program updates the memory pointers and continues the
comparison until r2 becomes larger or equal to rl.

The assembly program uses the post-index memory address mode, which automatically
updates the memory pointer after loading data from memory. For example,

LDRB r4, [rl], #-1

is equivalent to the following two instructions:
LDRB r4, [rl]
SUB rl, rl, #1

START

Initialization:
r2 points the beginning of the string

r1 points the end of the string

No

r3 = load a byte pointed by r2
r4 = load a byte pointed by r1

Yes

Update pointers:
r2=r2+1
r1 = r1 - 1

It is NOT a
palindrome

STOP

It is a
palindrome

Figure 7-12. Check whether a given string is a palindrome.

Structured Programming -

A character string is an array of ASCII characters terminated with a null character ('0x00'

in ASCII). Each character (including the NULL terminator) takes one byte in memory.

• In a C program, the compiler automatically adds a NULL character at the end of

each string.
• In an assembly program, a string can be defined by using the DCB (define constant

byte) directive. We should explicitly add "0" at the end of each string.

Note "LOR r6, =str" is a pseudo instruction, which is not a real instruction and is

translated into a PC-relative load. It loads a 32-bit memory address, identified by the label

str, into r6. The LDR pseudo instruction provides convenience for assembly programmers.

C Program

char str[26)="rats live on no evil star";

int main(void) {
int i = 0, j = 0;

}

int len = 0, flag = 1;

II find the string Length
while(str[i++]!='\0')

len++;

II if the string is not a
II palindrome, clear the flag

for(i=0,j=(len-1); i<j; i++,j--){
if(str[j] != str[i]) {

flag = 0;
break;

}
}

while(l);

Assembly Program

str

_main

strlen

cmpStr

stop

AREA myData, DATA
ALIGN
DCB "rats live on no evil star",0

AREA palindrome, CODE
EXPORT _main
ALIGN ENTRY
PROC
LOR r6, =str

; find the string Length
MOV rl, #0 ; Len
MOV rS, r6 , r5 = str
LDRB r2, [rS], #1 ; post-index
CMP r2, #0 ; check NULL
ADDNE rl, rl, #1 , Len++
BNE strLen ; Loop again

; check palindrome
SUB rl, rl, #1 ; Len - 1
ADD rl, r6, rl ; &str[Len-1)

; &str MOV r2, r6

LDRB
LDRB
CMP
MOVNE
BNE
CMP
BLT

r3,
r4,
r3,

[r2], #1 ; str[i]
[rl),#-1 ; str[Len-1-i)
r4 ; compare
#0 ; not Palindrome

; stop
r0,
stop
rl, r2
cmpStr

; compare i & j
; Loop again

MOV r0, #1 ; Palindrome

B
ENDP
END

stop ; dead Loop

mDI! 7.11 - Example of Converting String to Integer (atoi)

7.11 Example of Converting String to Integer (atoi)
A character takes one byte in memory, and it is represented by the corresponding ASCII

value, shown in the following table. To convert the character "9" to its numeric value, the

program subtracts 0x30 from the ASCII value of "9". The atoi function in C converts a

numeric string to an integer.

Letter 0 1 2 3 4 5 6 7 8 9

ASCII 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39

A simple way to implement the multiplication by 10 is to use the MUL instruction:

MOV r4, #10
MUL r3, r2, #10
ADD r2, r0, r3 ; r2 = 1e*r2 + re

However, the shift operations run faster than the MUL instruction.

ADD r3, r2, r2, LSL #2 , r3 = r2 + r2*4 = 5*r2
ADD r2, r0, r3, LSL #1 ; r2 = 2*r3 + re = W*r2 + re

C Program Assembly Program

char str[] "123456";

int main(){
char *p = str;
int value = 0;

while(*p != '\0'){
II ASCII of 'e' = exJe
II ASCII of '9' = ex39
if(*p<0x30 I I *p>0x39)

return 0;
else

AREA myData, DATA
ALIGN

str DCB "123456",0

AREA atoi, CODE
EXPORT main
ALIGN
ENTRY

_main PROC

loop

LDR rl, =Str
MOVS r2, #0

LDRB r0, [rl],
CBZ r0, stop
CMP r0, #0x30
BLT stop
CMP r0, #0x39
BGT stop

#1

, r2 = value

; re = *p; p = p + 1
; check nuLL terminator
; ex3e = 'e'
; stop if < 'e'
, ex39 = '9)
, stop if > '9)

value = \ SUBS r0, r0, #0x30 , re = *p-48
value*10 + (*p-0x30);

p++;
}

while(l); //dead Loop
}

ADD
ADD
B

stop B
ENDP
END

r3, r2, r2, LSL #2 , r3 = 5*r2
r2, r0, r3, LSL #1 ; r2 = 1e*r2 + re
loop

stop

Structured Programming I~{·

7 .12 Example of Binary Search
If an array is already sorted in ascending order, we can use the binary search to locate a
specific value in this array. It uses a divide-and-conquer approach, which divides the
array in half and checks the middle point. If the middle is the target, the search completes
successfully. If the middle is larger than the target, then it searches the first half of the
array. Otherwise, it searches the second half. This search process repeats until the size of
the remaining array is reduced to zero. The following gives the flowchart of binary search.

START

Initialization:
left= O

right = size - 1

middle= (left+ right)/2

left = middle + 1 right = middle - 1

Target found Target not found

STOP

Figure 7-13. Flowchart of binary search over an array sorted ascendingly

mll 7.12 - Example of Binary Search

For example, suppose the array consists of six integers, including 11, 12, 13, 14, 15, and
16 in order. The program searches for 12. The index of an array in C starts w ith 0.

• During the first round of the while loop, variable left is 0 and variable right is 5.
Then, the middle is (left + right)/2 = (0 + 5)/2 = 2. Note C language uses truncation
instead of rounding for integer arithmetic. Since array[middle], i.e. , array[2], is 13,
which is larger than the target 12, we have right = middle - 1 = 2 - 1 = 1.

• During the second loop, middle = (left + right)/2 = (0 + 1)/2 = 0. Since array[0] is
smaller than the target, we have left = middle + 1 = 0 + 1 = 1.

• During the third loop, the middle is (left+ right)/2 = (1+1)/2 = 1. Because array[l]
is equal to the target, the target has been found, and the while loop stops.

C Program Assembly Program

int array[6] =
{11, 12, 13, 14, lS, 16};

int size = 6;

int main(void) {

}

int left, right, middle;
int target = 12;
int targetlocation = -1;

left = 0;
right = size - 1;

while(left <= right){
middle = (left + right)/2;
if(array(middle]==target){

targetlocation = middle;
break;

}

}
if(array[middle] < target)

left = middle + 1;
else

right = middle - 1;

while(l); //dead Loop

array
size

main -

loop

found

stop

AREA myData, DATA
ALIGN
DCD 11,12,13,14,lS,16
DCD 6

AREA binarySearch, CODE
EXPORT main -
ALIGN
ENTRY
PROC
MOVS r3, #12 ; search target
MOVS rs, #-1 ; r5 = Location
LDR r12, =array
MOVS rl, #0 ; rl = Left

LDR r2, =size
LDR r2, [r2]
SUB r2, r2, #1 ; r2 = right

ADD r0, rl, r2 , re = Left + right
LSR r0, r0, #1 ; middle = r6/2
LDR r4, [r12,r0,LSL #2] ; array[middLe]

CMP r4, r3 , compare with target
SUB GT r2, r0, #1 ; right = middle - 1
ADDLT rl, r0, #1 ; Left = middle + 1
BEQ found

CMP rl, r2 ; compare Left & right
BLE loop , Loop if Left i right
MOVEQ rs, r0

B stop
ENDP
END

Structured Programming Im

7.13 Example of Bubble Sort
Bubble sort is a straightforward and well-known sorting algorithm. It iterates through
the unsorted portion of an array, repeatedly compares each pair of adjacent elements in
this array, and swaps them if they are in reverse order. In each iteration, the largest
element within the unsorted portion of the array sinks to the tail of this array for sorting
in ascending order, and to the head of this array for sorting in descending order.

Assuming we want to sort an array of signed
integers into ascending order. Figure 7-4 gives
the flowchart.

The program has a pair of nested loops. In the
outer loop i, the ith largest number of the array
is identified and moved toward the tail. The
inner loop j iterates through the unsorted
portion of the array and moves the greatest
number in the unsorted portion to its proper
place.

• In the first iteration of the outer loop (loop
over i), we find the biggest number in this
array and store it at array[size-1]. This is
achieved by the following sequential steps.
It first compares array[0] and array[l],
then compares array[l] and array[2], ... ,
and finally compares array[size-2] and
array[size-1]. If array[j-1] is larger than
array[j], then they are swapped.

• In the second iteration of the outer loop,
we find the greatest number in the
subarray from array[0] to array[size-2], and
store it into the position array[size-2] .

• In each iteration, the size of the subarray to
be sorted is reduced by one.

The above process repeats until the subarray
size is reduced to zero. In the end, all numbers
in this array are sorted in ascending order.

START

Initialization:
i =size - 1

Swap arrayU-1]
and arrayU]

j = j + 1

i = i - 1

STOP

No

Figure 7-14. Flow chart of bubble sort

7.13 - Example of Bubble Sort

The following shows the implementation of bubble sort in C and assembly.

• In the assembly implementation, loop variable i is stored in register rl, and loop
variable j is stored in register r0.

• The outer loop iterates n times, and the inner loop is always executed in each pass
of the outer loop.

• During the first iteration of the outer loop, the inner loop iterates n times; during
the second outer loop, the inner loop iterates n - 1 times, and so on.

• Therefore, the total number of comparisons when sorting an array of n integers,
is (n - 1) + (n - 2) + (n - 3) + ··· + 1 = n(n + 1)/2.

Note that the bubble sort algorithm is simple but inefficient. There are faster sorting
algorithms, such as quick sort and heap sort.

C Program
int array[12] = {12, 11, 10, 9,
8, 7, 6, 5, 4, 3, 2, 1};

int size = 12;

int main(void) {
int i, j, temp;

}

for(i = size-1; i > 0; i--){

for(j = 1; j <= i; j++){

if(array[j-l]>array[j]){
II swap them

}
}

}

temp = array[j-1];
array[j-1] = array[j];
array[j] = temp;

while(l);

Assembly Program
AREA myData, DATA
ALIGN

array DCD 12,11,10,9,8,7,6,5,4,3,2,1
size DCD 12

AREA bubbleSort, CODE
EXPORT main
ALIGN
ENTRY

_main PROC
LDR r5, =array
LDR r6, =size
LOR r6, [r6]

SUB rl, r6, #1
loop_i CMP rl, #0

BLE stop
MOV r0, #1

loop_j CMP r0, rl
BGT exit_j
SUB r2, r0, #1
LDR r3, [r5,r2,LSL
LOR r4, [r5,r0,LSL
, compare array[j-1)
CMP r3, r4

; array size

; rl = i = size -1
I check for i) e
; exit the Loop i
;r0=j=l
; compare j and i
I exit the Loop j
, r2 = j - 1

#2] ; array[j-1)
#2] ; array[j]
and array[j]

STRGT r4, [r5,r2,LSL #2] ; array[j-1)
STRGT r3, [r5,r0,LSL #2] ; array[j]
ADD r0, r0, #1 ; j++
B loop_j

exit_j SUB rl, rl, #1 ; i. - -
B loop_i

stop B stop
ENDP
END

Structured Programming IM:M

7 .14 Exercises

1. Write an assembly program that converts all characters in a string to uppercase.

2. Write an assembly program that finds the least common multiple (LCM) of two
integers. For example, LCM(4 , 6) = 12.

3. Write an assembly program that calculates the result of x raised to the power of y,
(i.e., xY), where x and y are two signed integers.

4. Write an assembly program that checks whether a given year is a leap year. A leap
year is a year containing one additional day in February. A leap year meets one of the
following requirements.

• divisible by 400, or
• only divisible by 4 but not by 100.

5. Write an assembly program that removes all vowel letters (a, e, i, o, u, A, E, I, 0, U)
from a string.

6. Let n be a positive integer. Integers a and bare congruent modulo n if they have the
same remainder when divided by n. For example, 39 and 19 are congruent modulo
10. Write an assembly program that checks whether two unsigned integers, a and b,

are congruent modulo n.

7. Write an assembly program that checks whether an unsigned number is a prime
number or not.

8. Write an assembly program that reverses all bits of a 32-bit number without using
the RBIT instruction.

9. Write an assembly program that checks whether an unsigned integer is a square of
any unsigned integer. For example, 25 = 52.

10. Write an assembly program that calculates the number of words in a string. The string
is terminated with NULL, and words are separated by space.

11. Write an assembly program that finds the day of the week for a given date. Suppose
the year is stored in r0, the month in r l , and the day of the month in r2. The day of
the week is saved in r3 (0 =Sunday, 1 =Monday, etc.). Michael Keith and Torn Craver
published the following method in 1990.

7.14 - Exercises

int day_of_week(int y, int m, int d) {
static int t[] = {0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4};
y -= m < 3;
return (y + y/4 - y/100 + y/400 + t[m-1] + d) % 7;

}

12. Write an assembly program that calculates the variance of an unsigned integer array,
defined as follows:

- l~n X =-L.J. X· n t t

13. Write an assembly program that calculates the sum of diagonal elements of an n-by

n integer matrix. The following gives an example matrix definition.

AREA myData, DATA
DCD 4 size

matrix DCD 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

14. Write an assembly program that calculates the dot product of two integer vectors of
the equal number of elements. The dot product is defined as:

n

dot product= A· B = L (ai x bJ = a1b1 + a 2b2 + ... + anbn

i=l

AREA myData, DATA
size DCD 8
A_Array DCD 1,2,3,4,5,6,7,8
B_Array DCD 9,10,11,12,13,14,15,16
Product DCD 0

15. Write an assembly program that performs matrix multiplication.

Ccmxn) = Acm xp) · B(pxn)

The (i, j) element of the product matrix, where 1 :5 i :5 m and 1 :5 j :5 n is:
p

ciJ = L (aik x bkj) = ai1b1j + ai2b2j + ... + aipbpj

m
p
n

AREA
DCD
DCD
DCD

k=l

myData, DATA
4 ; A has m rows
3 ; A has p columns
4 ; B has n columns

A DCD 1,2,3,4,5,6,7,8,9,10,11,12
B DCD 1,2,3,4,5,6,7,8,9,10,11,12
C SPACE 64

; Matrix A
, Matrix B
, Reserve 16 words

Subroutines IMI

CHAPTER

8
Subroutines
One key motivation of subroutines is to enable the reuse of a portion of the program code
that carries out a specific task. Moreover, using subroutines can increase the quality and
reliability of programs. A subroutine is also called a procedure, a function, or a routine.

One mistake which new software programmers often
make is to duplicate code within a program by copy-and
paste. This programming style makes the program less
modularized and difficult to read and debug. It increases
the cost of developing and maintaining a large software
project substantially.

Breaking the program codes into subroutines has two
significant advantages.

• First, it decomposes a complex task into several
simpler and more manageable subtasks, which

"One of my most
productive days was
throwing away 1000

lines of code."

Ken Thompson, early
developer of UNIX OS

makes the design, development, and debugging of each subtask much easier. We
can develop and test each subtask separately, making it easier to find errors.

• Second, subtasks can be reused in a program or other subtasks repeatedly without
duplicating any code, which saves time and effort by eliminating redundant
development work.

A subroutine usually takes some input arguments and returns a result, when the
subroutine exits. For example, when a subroutine finds the maximum of an array of
elements, it may take two arguments: the memory address (a pointer in C language) of
the array and the number of items in this array. It may also return the maximum value
or the index (or the address of the maximum value). Using arguments makes a
subroutine versatile and suitable for a variety of uses.

'

:
!

mD 8.1 - Calling a Subroutine

Implementing a subroutine using a high-level programming language such as Java, C, or
C++ differs significantly from using an assembly language. Specifically, when a
programmer develops a subroutine in assembly, we must consider two special issues.

1. Preserve and recover the caller's environment. The subroutine should be non
intrusive and avoid destroying the content of relevant registers, which are still
meaningful for the caller. A subroutine takes two steps to preserve and to recover
the caller's runtime environment.

• First, the subroutine saves the environment by pushing registers to be
used in the subroutine onto the stack at the beginning of the subroutine.

• Second, the subroutine restores the environment by popping the content
off the stack to registers at the end of the subroutine.

2. The standard of application binary interface specifies the protocol of passing
input arguments to a subroutine and returning the result back to the caller. If
subroutines developed in assembly follow the standard, a C program can call
these subroutines. Following the standard also facilitates sharing code between
different programmers.

8.1 Calling a Subroutine
An assembly program can use the branch and link (BL) instruction to call a subroutine.
The BL instruction performs the following two operations:

1. Configure the link register (LR) as the memory address of the next instruction
immediately after the BL instruction (PC + 4 in Cortex-M), and

2. Adjust the program counter (PC) as the memory address of the very first
instruction of the subroutine.

Register LR stores the memory address of the instruction to be executed immediately after
a subroutine exits. The address held in LR is also called return address . The return address
is the memory address of the instruction immediately after the BL instruction in the caller
program. Since a BL instruction takes 32 bits (i.e ., 4 bytes) in memory, the memory address
of the instruction immediately after the BL instruction is PC+ 4.

There are two different approaches to return from a subroutine.

• The first one is to run the branch and exchange instruction "BX LR".

• The second one is to pop the LR value off the stack into PC, i.e., " POP {PC}", if the
subroutine has already pushed LR onto the stack.

Subroutines IHI

Figure 8-1 shows an example in which the main program calls the subroutine Joo, and the
subroutine Joo then calls the subroutine bar. Because each BL instruction takes 32 bits (i .e.,
4 bytes), the address of the next instruction immediately after a BL instruction is PC + 4.

• When the main program uses " BL foo" to call the subroutine Joo, the processor
carries out two operations: (1) set LR to PC1 + 4, and (2) set PC to the memory
address of the subroutine Joo.

• When Joo returns by executing " BX LR", the processor copies the content of LR to
PC, making the next instruction after " BL foo" in the main program to start the
execution.

Main Program foo subroutine

LR= PC, + 4 .,..,.A PUSH{LR}

PC=foo ..,...,...,."'
LR = PCi + 4 PUSH {LR}
PC=bar .. --~ ----

bar subroutine

......
PC1 BL foo ..,...,.

------PC2 BL bar --
PC1 + 4 - + Next_lnstruction..._

........ ~

PC2 + 4 - -+ Next_lnstruction _

........
PC= LR_

= P~ + 4 POP{LR}
' BXLR

................ --PC= LR----i--
= PC2 + 4 - - - POP {PC}

Figure 8-1. An example of calling subroutines. A subroutine should preserve the link register
(LR) in the stack if this subroutine calls any subroutines.

When the subroutine Joo calls another subroutine bar, the register Joo should preserve LR

in the stack at the beginning of the subroutine. In the example shown in Figure 8-1,

• When Joo calls bar, " BL ba r" sets LR to PC2 + 4.

• When bar executes "POP { PC}", the processor
sets LR to PC2 + 4

• If Joo did not preserve and recover LR, i.e., Joo
did not have " PUSH { LR }" and " POP {LR}" in
the code, the " BX LR" instruction at the end of
Joo would not be able to return the control to
the main program correctly. The processor
would mistakenly set PC to PC 2 + 4, instead of
PC1 + 4 when Joo exits.

Preserve Link Register (LR)

in a subroutine if it calls
another subroutine.

• Therefore, Joo should push LR onto the stack if it calls another subroutine or itself.

ml!I 8.2 - Stack

8.2 Stack
A stack is a last-in-first-out (LIFO) data structure, as shown in Figure 8-2. A stack has two
fundamental operations: push and pop. The push operation adds an item to the top of the
stack. The pop operation removes the item that was added last.

A stack also refers to a contiguous region in the data memory that software programs or
processors use to hold a stack data structure. The stack pointer (SP) holds the memory
address of the top of the stack. A program can utilize stacks to preserve and recovery the
runtime environment when it calls a subroutine.

0 PUSH POP

0

Figure 8-2. A stack is last-in-first-out (LIFO).

Per the direction in which the stack grows, a stack can be either descending or ascending,
as shown in Figure 8-3.

• Descending stack. When the content of a register is pushed onto the stack, the
stack pointer (SP) is decreased by 4 if it is a descending stack. The stack starts at a
high memory address and grows downward, i.e., in the direction toward lower
memory addresses.

• Ascending stack. When a program pushes a register onto the stack, SP is increased
by 4. The stack starts at a low memory address grows upward, i.e., in the direction
toward high memory addresses.

Also, a stack can be either a full stack or an empty stack.

• Full stack. If the memory location pointed by SP holds the last item that was
pushed onto the stack, this stack is called a full stack.

• Empty stack. If the memory location pointed by SP is an empty spot and will store
the next item to be pushed onto the stack, this stack is referred to as an empty
stack.

Memory
Address

Memory
Address

Subroutines Im

M'""""' ~ ,,,,,,,,,,

PUSH

Stack base
f--------1

>--~~~--<

Stack grows
downward

Stack top

POP

Descending Stack

PUSH

Stack grows
upward

POP

f--------1 Stack top

Stack base

~ ,,,,,,,,,,
Ascending Stack

Figure 8-3. Comparing descending stack and ascending stack.

With a combination of the growth direction and the validness of the memory location
pointed by the stack pointer, there are four types of stacks, including full descending stack,
full ascending stack, empty descending stack, and empty ascending stack.

8.3 Implementation of Stack via STM and LDM
Table 8-1 shows the assembly instructions equivalent to the push and pop operations for
these four types of stacks. For each push and pop operation, there are two
implementations. Chapter 5.5 has explained these STM and LDM instructions.

Push Pop
Stack Name

Equivalent Alternative Equivalent Alternative

Full Descending(FD) STMFD SPl, li st STMDB SPl,list LDMFD SP I, list LDMIA SP I, list

Empty Descending(ED) STMED SP!,l i st STMDA SP!, list LDMED SP!, list LDMIB SP I, list

Full Ascending(FA) STMFA SP!,list STMIB SP!, list LDMFA SP!, list LDMDA SP !, list

Empty Ascending(EA) STMEA SP !,list STMIA SP!,list LDMEA SP !, list LDMDB SP!, list

Table 8-1. Implementation of PUSH and POP by using STM and LDM instructions

Midi 8.4 - Preserving Runtime Environment via Stack

ARM Cortex-M uses full descending stacks, as shown in Figure 8-4. For full-descending
stacks, the push and pop operations are equivalent to STMDB and LDMIA, respectively.

Moreover, a Cortex-M processor supports two stacks: one main stack and one process
stack. Therefore, there are two stack pointers: MSP and PSP. The stack pointer (SP) is a
shadow of MSP or PSP. Chapter 23.1 discusses the usage of these two stacks. The initial
value of these two stack pointers can be programmed. Typically, the system stack is
placed in the top region of the system memory region.

Stack

High Memory Addresses

•
•
•

Stack base

Pointer --..i Top of Stack
(SP) 1--------,...------1

Stack grows toward
low memory
addresses.

Low Memory Addresses

PUSH {register _li st}
equivalent to:
STMDB SP! , {register_list}

DB: Decrement Before

POP {register_list}
equivalent to:
LDMIA SP!, {register_list}

IA : Increment After

Figure 8-4. Cortex-M uses full descending stack

8.4 Preserving Runtime Environment via Stack
If a subroutine uses a register to hold some variable, the subroutine often must preserve
the value of this register in the stack when the subroutine starts, and recover the register
value from the stack when the subroutine exits. In this process, the callee preserves the
caller's runtime environment.

Example 8-1 shows the motivation why a subroutine must preserve the runtime
environment. The caller uses register r4 as a loop variable looping from 0 to 100. The

Subroutines lbfl

loop body calls a subroutine named Joo . However, the subroutine Joo also uses register r4

as a local variable. If the subroutine does not preserve the content in register r4, r4 is
mistakenly set to 10 after the subroutine completes. Thus, the loop in the caller does not
perform as desired.

Caller Program Subroutine/Callee
foo PROC

MOV r4, #100 ...
... MOV r4, #10 , foo changes r4
BL foo ...
... BX LR
ADD r4, r4, #1 ; r4 = 101, not 11 ENDP

Example 8-1. The loop in the caller program is not executed as desired.

To solve this issue, the subroutine stores the value of register r4 onto the stack before
executing any other code, and then restores the content to r4 immediately before the
subroutine returns. The stack push and pop operations preserve and recover the runtime
environment, as illustrated below.

Caller Program Subroutine/Callee
; main.s foo PROC

MOV r4, #100 PUSH {r4} ; preserve r4
... . . .

BL foo MOV r4, #10 ; foo changes r4
... . . .
POP {r4} Recover r4 ADD r4, r4, #1 ; r4 = 101, not 11 ;

BX LR
ENDP

Example 8-2. A subroutine preserves register values in the stack at the beginning and recovers
register values from the stack before the subroutine exits.

The ARM embedded application binary interface (EABI) requires that a subroutine must
preserve the content in registers r4- rll and r13 (SP) if this subroutine changes the value
of these registers.

However, a subroutine is not required to preserve registers r0-r3, also called scratch
registers. Thus, if the caller requires that the value in registers r0-r3 remains unchanged,
the caller should push these registers onto the stack before it calls a subroutine.

Table 8-2 summarizes the register usage. Subroutines should meet the following
requirements.

• Besides registers r0-r3, a subroutine also does not preserve the intra-procedure
call register r12 (IP) and the link register r14 (LR).

8.4 - Preserving Runtime Environment via Stack

• Register r 9 is platform dependent and has different purposes. For example, r9

can be a variable register to hold a local variable.

• Register I P allows a routine and any subroutine it calls to share an intermediate
value. When the caller executes a BL instruction, the value of IP may be changed
if the memory address of the destination instruction is beyond the range of the BL

instruction. Therefore, software should not use register IP as a general-purpose
register to hold important values.

• It is not required to preserve register LR. However, if a subroutine A() calls
another subroutine B(), the subroutine A() should preserve LR in the stack (see

Chapter 8.1).

Register Usage
Subroutine

Notes
Preserved

r0
Argument 1 and

No
If the l •t argument has 64 bits, rl :r0 hold it

return value (r l is upper word, r0 is bottom word).

rl Argument 2 No If the 2nd argument has 64 bits, r 3:r2 hold it.

r2 Argument 3
If more than 4 arguments, use the stack.

0 If the return has 64 bits, then r l :r0 hold it.
r3 Argument4 No If the return has 128 bits, then r 0-r3 hold it.
r4 General-purpose Vl Yes
rs General-purpose V2 Yes
r6 General-purpose V3 Yes Variable registers for holding local variables.
r7 General-purpose V 4 Yes
r8 General-purpose VS Yes
r9 Pia tform specificN 6 No Usage is platform-dependent.

r10 General-purpose V7 Yes
rll General-purpose V8 Yes

Variable registers for holding local variables

r12 Intra-procedure-call
No

It holds intermediate values between a
(IP} register procedure and the sub-procedure it calls.

r13
Stack pointer Yes

SP must be the same after a subroutine has
(SP} completed.

r14
Link register No

LR does not have to contain the same value
(LR} after a subroutine has completed.
rlS

Program counter NIA Do not directly change PC (PC)
Table 8-2. Standard of register usage of a subroutine

When using the push instruction to push multiple registers onto the stack, as shown in
Example 8-3, the order in which the registers are listed in the bracket does not matter.
These the registers are sorted in the descending order based on their numbers. The
processor pushes the largest register first during the push, an d pops the smallest register
first during the pop.

Subroutines Ill

Push and pop multiple r egist ers Equi valent assembly code
MOV r4, #4
MOV rs, #S
MOV r6 , #6

PUSH {r4, rs , r6}
, The order in the bracket does not matter.
; The register List is sorted based on
; their names and the Largest numbered
; register is pushed first.

POP {r6, r4, rs}
; The order in the bracket does not matter.
, The smallest numbered register is popped
; off the stack first.

; result : r4=4, r5=5, r6=6

MOV r4, #4
MOV rs, #S
MOV r6, #6

; Equivalent code
PUSH {r6}
PUSH {rS}
PUSH {r4}

; Equivalent code
POP {r4}
POP {rS}
POP {r6}

; resul t : r4=4, r5=5, r6=6

Example 8-3. Push and pop operations of the stack

8.5 Passing Arguments to Subroutine via Registers
An assembly subroutine may be called by standard C programs or by assembly programs
developed independently by different programmers. Therefore, all subroutines must
follow the ARM EABI protocol in passing arguments and in returning a result.

The protocol of passing arguments is summarized below.

• When the caller passes up to four 32-bit arguments to a subroutine, the caller
places these arguments in registers r0, rl, r2, and r3.

• When a subroutine takes two 64-bit arguments, such as "long long" and "dou ble"
in C, the caller puts the first 64-bit argument in registers r0 and rl, and the second
64-bit argument in registers r2 and r3 . The most significant 32 bits are of these
two arguments are in register rl and r3, respectively.

• When the caller passes a 128-bit argument, the argument is contained in registers
r 0, rl, r2, and r 3.

• When there are more than four 32-bit arguments, the first four arguments come
in via registers r0 - r3, respectively, and the subroutine receives the rest
arguments via the stack.

The protocol of returning a result is as follows.

• When a subroutine returns a 32-bit value, the return value is stored in register r0.

• If the result has 64 bits, it is stored in register r0 and rl .

• If the return has 128 bits, it is stored in registers r0, rl, r2, and r3.

MW1i 8.5 - Passing Arguments to Subroutine via Registers

R0

32-bit
Argument 1

Rl

32-bit
Argument2

R2

32-bit
Argument 3

R3

32-bit
Argument4

• • •
Extra

Arguments

Rl(MSB32) I R0 (LSB32)

64-bit Argument 1

I R3 (MSB32) I R2(LSB32)

64-bit Argument 2

• • •
Extra Arguments

R3 (MSB32) R2 Rl

128-bit Argument

R0 (LSB32)

Subroutine

• • •
Extra Arguments

Extra arguments are pushed to the stack
by the caller. It is the caller's responsibility
to pop them out of the stack after the
subroutine returns.

R0

32-bit Return Value

Rl (MSB32) I R0 (LSB32)

64-bit Return Value

I R3 (MSB32) R2 Rl R0(LSB32)

128-bit Return Value

Figure 8-5. Passing arguments and returning a value. If a value takes multiple registers, the
most significant 32 bits (MSB32) are stored in the highest numbered register.

8.5.1 Pass a Variable by Value and by Reference

Variables are stored in memory
typically. A caller can pass
variable arguments to a
subroutine by value or by
reference. In C, the arguments
are always passed by value.
However, C can use memory
points to emulate passing a
variable by reference. Figure
8-6 shows the comparison. If
passed by value, the input

Pass by Value

before after D-~,_,~._"!!._ D
' ' ' -..

Take_notes([]) {
I

I ,..

~

Pass by Reference

before after

~:~~~-"'-~
' ' >l

Take_notes([]) {
I I

,..' I

~
I

I
I

I
I

argument remains unchanged. Figure 8-6. Comparison between pass by value and pass

by reference.

Subroutines IWM

• Passing a variable by value is to make a copy of the variable. After the callee
returns, the caller's variable always remains unchanged.

• Passing a variable by reference is achieved by making a copy of the memory
address of the caller's variable. The callee can change the value of the caller's
variable because the callee knows the memory address of the caller's variable.

Example 8-4 shows a simple example that compares passing a variable to a subroutine
by value and by reference. We can better understand their differences by looking at the
assembly programs into which a C compiler translates them, as illustrated in Figure 8-7
and Figure 8-8.

Pass by Value Pass by Reference
void fun(int n){ void fun(int *n){

n = 1; II The value of n is passed *n = 1; II The address of n
II won't update caller's n II is passed.

} II dereference and
II update memory

}

int main(void){ int main(void){
int n = 0; int n = 0;
fun(n); II pass value of n int *p = &n;
printf("%d", n); fun(p); II pass pointer
return 0; printf("%d", n);

} return 0;
}

Program Output: 0 Program Output: 1

Example 8-4. Comparison of passing a variable by value and by reference in C

When compiling a C program, the compiler can assign a local variable to a register or
store it in the heap region of the data memory, as discussed in Chapter 7.2. Suppose
variable n in Example 8-4 is stored in the data memory. Figure 8-7 and Figure 8-8 compare
the operations of passing a variable by value and by reference.

1. When a variable is passed by value, Figure 8-7 illustrates the key operations of
the corresponding assembly code of Example 8-4.

• The value of variable n is loaded from the memory to register r0.

• While the subroutine changes the value of register r0, the value stored in
memory remains unchanged.

• Therefore, a subroutine cannot modify the in-memory variable if the
variable is passed to the subroutine by value.

2. When a variable is passed by reference, Figure 8-8 shows the key operations of its
assembly implementation of Example 8-4.

8.5 - Passing Arguments to Subroutine via Registers

• The memory address of variable n is loaded into register r0 and is passed
to the subroutine.

• Register r0 serves as a pointer to variable n.
• Since the memory address is sent to the subroutine, the subroutine can

change the value of the variable by using the store instruction (STR) .
• When the subroutine exits, the value of the caller's variable n in memory

has been changed.

{

0x20000003 0x00

Variable 0x20000002 0x00
1--------4

n 0x20000001 0x00
r--------j

0x20000000 0x00
r--------j

\
\

\
\
\
\
\
\

\
\
\
\
\

R0

0x00000000

RO stores the
value of variable n.

fun PROC
MOV R0, #1
BX LR
ENDP

void fun(int n){
n = 1;
return;

}

\ I

\ ' The subroutine has no

\'- --X ------i impact on variable n.

Figure 8-7. Example of passing a variable by value.
If variable n is passed to a subroutine by value, the subroutine cannot change the variable
value stored in memory because the subroutine only knows the value but not the memory
address of variable n. Therefore, after the fun subroutine exits, the value of n stored in
memory is still 0, not 1.

{

0x20000003 0x00

variable 0x20000002 0x00
>------~

n 0x20000001 0x00
r---------<

0x20000000 0x01
I-------<

R0

0x20000000

fun PROC

RO stores the memory
address of variable n.

MOV Rl, #1
STR Rl, [R0)
BX LR

void fun(int *n){
*n = 1;
return;

} ENDP

The store instruction can
change the value of

variable n.

Figure 8-8. Example of passing a variable by reference.
If variable n is passed to a subroutine by reference, the memory address of variable n is
passed. Therefore, the subroutine can change the value of variable n. After the subroutine
exits, the value of n in memory is changed to 1.

Subroutines lfji

8.5.2 Example of Passing by Value
In Example 8-5, two 32-bit integers are passed to the subroutine sum2. Per the application
binary interface (ABI) protocol, the assembly program should meet the following
requirements.

• The value of variable al is received in register r0, and a2 in register rl. An integer
in Chas 32 bits. Therefore, only one register is required to hold al.

• The caller program assumes the subroutine saves the result total in register r0.

• Registers r0, rl, r2, and r3 are scratch registers, and the subroutine does not have
to preserve them in the stack. If the caller wishes to safeguard the value of these
registers, the caller must push them onto the stack before the subroutine is called,
and pop them off stack after the subroutine completes.

• If a subroutine does not call any other subroutine, the subroutine is required to
preserve the link register (LR) in the stack. Otherwise, the subroutine should
preserve LR on entry and recover it on exit.

C Program Assembly Program

int t; AREA sum, CODE
int sum2(int al, int a2); EXPORT - main

ALIGN
ENTRY

int main(){ - main PROC
MOV r0, #1 ; 1st argument
MOV rl, #2 ; 2nd argument

t = sum2(1, 2); BL sum2 ; result returned in re
; LR points to LOR instr

LDR rl, =t ; memory address of t
STR r0, [rl] J save the sum

while(l); stop B stop
} ENDP

int sum2(int al, int a2){ sum2 PROC ; name of procedure
int total; ; re = 1st argument

; r1 = 2nd argument

total = al + a2; ADD r0, r0, rl ; re = re + r1
; re = result to be returned

return total; BX lr ; set PC to LR
} ENDP ; end of procedure

AREA myData, DATA
t DCD 0

END ; end of program

Example 8-5. Passing two arguments to a subroutine

8.5 - Passing Arguments to Subroutine via Registers

In the following, we illustrate how to pass a 64-bit value to a subroutine. In C, a long
long variable has 64 bits in memory. When a subroutine takes a long long variable, two
registers, r0 and rl, are used to hold the value of this variable. Register rl holds the most
significant 32 bits, and register r0 contains the least significant 32 bits. For example, if the
long long variable has a value of-2, then r0 is 0xFFFFFFFE and rl is 0xFFFFFFFF.

The subroutine returns the 64-bit result in register rl and r0. In the following example,
the 64-bit sum should be 3. Thus, when the subroutine returns, rl is 0x00000000 (the
upper word), and r0 is 0x00000003 (the lower word). If the 64-bit result should be saved

in the data memory, two STR instructions are used to store the upper and lower words,
respectively.

C Program

long long t;

long sum2(long long al,
long long a2);

int main(){

t = sum2(1, 2);

while(l);
}

Assembly Program

AREA sum, CODE
EXPORT _main
ALIGN
ENTRY

_main PROC
MOV r0, #1
MOV rl, #0
MOV r2, #2
MOV r3, #0

BL sum2

LDR r3, =t
STR r0, [r3]
STR rl, [r3,

stop B stop
ENDP

#4]

, 1st 64-bi.t argument
; rl:re
, 2nd 64-bi.t argument
, r3: r2

, result in rl:re
, LR points to LDR instr.
, memory address of t

; save Lower 32 bi.ts
; save upper 32 bi.ts
; re = 3, rl = e in
; this example

long long sum2(long long al, sum2
long long a2){

PROC ; name of procedure
; rl: re = 1st 64-bi.t argument
; r3:r2 = 2nd 64-bi.t argument

}

long long total;
total = al + a2;

return total;

ADDS r0, r0, r2
ADC rl, rl, r3

; add Lower 32 bi.ts
; add upper 32 bi.ts

; rl:re = 64-bi.t return value
BX lr ; set PC to LR
ENDP ; end of procedure

AREA myData, DATA
t DCQ 0 , allocate 8 bytes

END ; end of program

Example 8-6. Passing two 64-bit arguments to a subroutine

Subroutines IJ.JeW

8.5.3 Write a Subroutine in Different Files
Subroutines can be in separate source files. A compiler must compile these source files
and then link them together to build an executable. Placing subroutines in multiple files
improves the clarity and makes the code more manageable when the source code is large.

A subroutine should export its name of if it is called by codes in other source files.
Exporting a subroutine allows other source files to reference it during the linking state.
Similarly, a caller should import the subroutine name defined in a different source file .

Example 8-7 shows how an assembly program calls a subroutine implemented in a
separate assembly source file.

• In the sum2.s file, "EXPORT sum2" is used to declare a symbol sum2 that may be
referred to in other source files. The directive "EXPORT" in assembly is like
"EXTERN" in C.

• In the main.s file, "IMPORT sum2" is used to tell the assembler that the symbol sum2
is defined in a different file.

Source file sum2.s Source file main.s
AREA sum, CODE AREA program, CODE
EXPORT sum2 EXPORT main -
ALIGN IMPORT sum2

ALIGN
sum2 PROC ENTRY

ADD r0, r0, rl ; return re
BX lr ; set PC to LR main PROC -
ENDP MOV r0, #1 ; 1 st argument

MOV rl, #2 , 2nd argument
END BL sum2 ; return re

stop B stop
ENDP
END

Example 8-7. Implementing a subroutine stored in a separate file. The keywords IMPORT
and EXPORT are used to call a subroutine stored in a separate source file.

A symbol can be the name of a subroutine or a data variable. A compiler resolves all
symbols at the linking stage in which various pieces of code and data are combined into
a single executable file. A linker performs the linking process.

• The EXPORT directive makes a symbol visible to all modular files during the
linking stage. By default, the linker tries to locate a symbol locally within the
current source file or included files.

• The IMPORT directive informs the linker that a symbol is defined or implemented
in a different file.

8.5 - Passing Arguments to Subroutine via Registers

8.5.4 Example of Passing by Reference
Pass-by-reference in C is a method that passes the memory address of a variable to the
subroutine and thus allows the subroutine to change the variable value. AC program
must declare an argument passed by reference as a pointer type. The following swap
subroutine takes two arguments that are passed by reference.

C program Assembly Program
II swap two characters ; swap routine
void swap (char *x, char *y) { swap PROC

char t; LDRB r2, [r0]
t = *x; LDRB r3, [rl)
*x = *y; STRB r3, [r0] ; [rl] into [re)
*y = t; STRB r2, [rl) , [re] into [rl)

} BX lr
ENDP

Example 8-8. Implementation of passing by reference in assembly language

Example 8-9 shows a subroutine that swaps the first and the last character of a string. For
example, the swap subroutine changes "abcde" to "ebcda".

char str[6) = "abcde";

int main(void){
swap(str, str+4);

}

II Include the NULL terminator into the Length

II The result is "ebcda".

Example 8-9. AC program calls a subroutine implemented in assembly language.

In contrast to passing by reference, another method is to pass by value. The key difference
is whether the caller can see any changes made to an argument by a subroutine.

The arguments in Example 8-10 are passed by value. The callee receives a copy of the
variables' values . These variables remain unchanged in the caller. Consequently,
Example 8-10 fails to swap the characters in this string. The subroutine "swap(str[0],
str[4))"does not affect the content of the string str at all.

C program (Incorrect code) Assembly Program (Incorrect code)
II failed to swap x and y ; swap routine
void swap (char x, char y) { swap PROC

char t; MOVS r2, r0
t = x· , MOVS r0, rl
x = y; MOVS rl, r2
y = t; BX lr

} ENDP

Example 8-10. A subroutine implemented in C and assembly language fails to swap two
characters when arguments are passed by value.

Subroutines Im

8.5.5 Example of Greatest Common Divisor
This example gives a subroutine that calculates the greatest common divisor (GCD) of
two positive integers. Figure 8-9 shows the flowchart of the gcd subroutine.

The subroutine uses Euclid's algorithm, i .e., gcd(a, b) = gcd(b, a mod b) . The subroutine
swaps a and b if a is smaller than b. It then repeatedly finds the GCD of the remainder
(a mod b) and b. The remainder becomes smaller and smaller, and this process continues
until the remainder becomes zero.

Start

N

Y swap a and b

t = remainder of alb

y

b is the result

Stop

Figure 8-9. Flowchart of GCD subroutine

For illustration, suppose a= 2310 and b = 483. The program takes the following iterations:

1. a= 2310 and b = 483. Since 2310 = 4 x 483 + 378, the remainder of alb is 378.
2. a= 483 and b = 378. Since 483 = 1 x 378 + 105, the remainder of alb is 105.
3. a = 378 and b = 105. Since 378 = 3 x 105 + 63, the remainder of alb is 63.
4. a = 105 and b = 63. Since 105 = 1 x 63 + 42, the remainder of alb is 42.
5. a = 63 and b = 42. Since 63 = 1 x 42 + 21, the remainder of alb is 21
6. a= 42 and b = 21. Since 42 = 2 x 21, the remainder of alb is 0.
7. The program stops, and the GCD of 2310 and 483 is 21.

MW:I 8.5 - Passing Arguments to Subroutine via Registers

Per the ARM EABI protocol, the two arguments a and b are passed in register r0 and rl,

respectively. The subroutine returns the result in register r0.

Since this gcd subroutine does not call any other subroutines, it does not have to preserve

the link register (LR) in the stack. Also, the subroutine only uses registers r0, rl, r2, and

r3. Thus, there is no need to push any registers onto the stack.

C Program Assembly Program

int gcd(int a, int b); AREA myData, DATA
int result; ALIGN

result DCW 0 ; allocate four bytes

int main(void){ AREA GCD, CODE
result = gcd(21, 28); EXPORT - main
while(l); ALIGN

} ENTRY
main PROC -

MOV rl, #21 I 1st argument
MOV r0, #28 ; 2nd argument
BL gcd I call subroutine

; GCD is returned in re
LOR r2, =result I r2 = memory address
STR r0, [r2] ; save result

stop B stop
ENDP

int gcd(int a, int b) { gcd PROC
int t; II temp variable ; re = 1st argument = a

; r1 = 2nd argument = b
II swap a and b if a < b
if(a < b) { CMP r0, rl ; compare a & b

t = a. MOVLT r2, r0 I if a < b, swap a & b J

a = b; MOVLT r0, rl
b = t; MOVLT rl, r2

}

while(b != 0){ loop CBZ rl, exit ; if b = e, exit
t = a % b• J SDIV r3, r0, rl ; r3 = relr1
a = b; MLS r2, rl, r3, r0 ; r2 = r1 - r3*re
b = t; MOV r0, rl I a = b

} MOV rl, r2 ; b = remainder
B loop ; Loop again

return a; exit BX lr ; return in re
}

ENDP
END

Example 8-11. Finding the greatest common divisor (GCD)

Subroutines lf'AM

8.5.6 Example of Concatenating Two Strings
When a string is concatenated to another string, the destination string must have enough

extra memory space to hold the resulting concatenated string. Otherwise, data stored
after the target string in memory may be modified by mistake. Thus, in the data region,

the statement "strl_ SPACE 20" reserves 20 bytes of memory space.

Each string ends with a NULL character. This example uses the post index memory

addressing. The following instruction with post-index addressing

LDRB r3, [rl], #1 ; post-index addressing

is equivalent to:

LDRB r3, [rl]
ADD rl, rl, #1

c Program

void strcat(char *sl, char *s2);

char s1[20] = "Shaking";
char s2[10] = " hands";

int main(){
strcat(sl, s2);
while(l);

}

II Concatenate two strings
void strcat(char *dst, char *src){

}

while(*dst != '\0')
dst++;

while((*dst++ = *src++)!= '\0');

return;

Assembly Program

AREA myData, DATA
ALIGN

strl DCB "Shaking",0
strl_ SPACE 20 ; reserve space
str2 DCB " hands",0

AREA my_strcat, CODE
EXPORT main
ALIGN
ENTRY

_main PROC
LOR
LOR
BL

stop B
ENDP

r0, =strl
rl, =str2
st re at
stop

; Concatenate two strings
Streat PROC
loop LDRB r2, [r0]

CBZ r2, copy
ADD r0, r0, #1
B loop

copy LDRB r3, [rl],
STRB r3, [r0],
CBNZ r3, copy

BX lr
ENDP
END

, 1st argument
, 2nd argument
; call subroutine

; Load a byte
, null ending

#1 ; post-index
#1 ; post-index

Example 8-12. Concatenating two strings in C and assembly

8.5 - Passing Arguments to Sub routine via Registers

8.5. 7 Example of Comparing Two Strings
The strcmp compares two null-terminated strings and returns a positive, zero, or a

negative integer if the first string is greater than, equal to, or less than the second string,

respectively.

The comparison sta rts with the first pair and continues with the next pair if the first pair

is equal. When a pair is different from each other, the function strcmp returns the

difference between this pair. The following gives a few examples.

• strcmp("their", "there") returns -9 because ASCII of "i" and "r" is 105 and 114,

respectively.
• strcmp("their", "the") returns 105. A string must end with the NULL character.

The ASCII value of "i" is 105 and the NULL terminator is 0.

• strcmp("the", "there") returns -114. ASCII of NULL and 'r' is 0 and 114.

• strcmp("their", "their") returns 0.

C Program

char strl[] = "dog";
char str2[] = "cat";
int result;

int main (void){
int result;

result = strcmp(strl, str2);

while(l);
}

II Compare two strings
int strcmp(char *s, char *t){

}

while(*s == *t){

}

if (*s -- '\0') return 0;
s++;
t++;

return *s - *t;

Assembly Program

AREA myData, DATA
strl DCB "dog",0 , NULL terminated
str2 DCB "cat",0 , NULL terminated
result DCW 0 ; allocate one word

AREA my_strcmp, CODE
EXPORT main
ALIGN
ENTRY

_main PROC
LDR r0, =strl , address of strl
LDR rl, =str2 , address of str2
BL strcmp ; ca LL subroutine
LDR rl, =result ; address of result
STR r0, [rl] , save the result

stop B stop ; dead Loop
ENDP

; Compare two strings
strcmp PROC

; re = s, rl = t
loop LDRB r2, [r0], #1 ; post-index

LDRB r3, [rl], #1 ; post-index
CBZ r2, exit ; NULL terminator
CMP r2, r3 ; if *s == *t
BEQ loop ; Compare again

exit SUB r0, r2, r3 ; re = *s - *t
BX lr ; return re
ENDP
END

Example 8-13. Comparing two strings in C and assembly

Subroutines 11:11

8.5.8 Example of Inserting an Integer into a Sorted Array

The subroutine has three arguments,
passed in registers re, rl, and r2. The
subroutine preserves registers r4 and
LR. In the end, it pops LR to PC, which
makes it return to the caller.

2 4 5

5

3. Insert

2. Move 1. Move

Suppose the array has been sorted in ascending order. The program starts with the last
element (i .e., the largest one) of the array and compares the input integer with each array
element one by one. If the element is greater than the input, this element is moved to the
right by one; otherwise, the input is inserted at the current position.

C Program
int a[le] = {1, 2, 4, 5, 6, 7};

void insert(int, int *, int);

int main(void){
insert(3, a, 5);
while(l);

}

II input: value, pointer, size
void insert(int v, int *a, int s){

int i;

}

for (i=s; i>e && v<a[i-1]; i--){
a[i] = a[i-1];

}

a[i] = v;
return;

Assembly Program

a

main -

stop

AREA myData, DATA
ALIGN
DCD 1,2,4,5,6,7

AREA insert_array, CODE
EXPORT _main
ALIGN
ENTRY
PROC
MOV re, #3 , 1st argument,
LDR rl, =a ; 2nd argument,
MOV r2, #5 ; 3rd argument,

value
array
size

BL insert , call subroutine
B stop
ENDP

; re = value, rl = array, r2 = size
insert PROC

PUSH {r4, lr}

loop CMP r2, #e ; check i > e
BLE done ; done if i s e
SUB r4, r2, #1 ; r4 = i - 1

LDR r4, [rl, r4, LSL #2] ; a[i-1]
CMP re, r4 ; compare v & a[i-1]
BGE done ; done if v ~ a[i-1]
STR r4, [rl, r2, LSL #2] ; a[i]
SUB r2, r2, #1 ; i--
B loop

done STR re, [rl,r2,LSL #2]
POP {r4, pc}
ENDP
END

; a[i] = v
; exit

Example 8-14. Inserting an integer into a sorted array in C and assembly

mD 8.5 - Passing Arguments to Subroutine via Registers

8.5.9 Example of Converting Integer to String (itoa)
The C function itoa converts an integer to a string. To convert a digit d (0 $; d $; 9) to its
ASCII value of the corresponding letter ch [l], we can

ch[0] = d + 0x30
or

ch(0] d + '0'

Letter 0 1 2 3 4 5 6 7 8 9

ASCII 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39

For a given unsigned integer, such as 12345, we extract the digits backward. We start
with the least significant digit, which can be obtained by using modulo operation to find
the remainder of the division of 12345 by 10, i.e., mod(12345, 10). We append this digit
to a string.

The modulo operation continues until we obtain all digits. In the end, we get a string of
"54321". We need to reverse the string order and move the least significant digit from the
first position to the end of the string.

Quotient/10 Quotient Remainder Reverse
12345/10 = 1234 5

1234/10 = 123 4
123/10 = 12 3 11

12/10 = 1 2
1/10 = 0 1

If quotient
Result = "54321" Result "12345"

is 0, stop =

12345/10 1234/10 123/10 12/10 1/10

Quotient = Quotient = Quotient = Quotient Quotient
1234 123 12 1 0

Remainder = Remainder = Remainder = Remainder = Remainder =
5 4 3 2 1

Figure 8-10. Basic steps of obtaining all digits of an integer

C Program
char str[20];

void itoa(unsigned int, char *);

int main (void){

}

itoa(1234S, str);
while(l);

void itoa(uint32_t n,
char *s) {

}

char * p = s, temp;

II Build the string backward

for (; n != 0; n /= 10){
*p = n % 10 + ' 0';
p++;

}

*p = I \0 I ;

p- - ; I I skip NULL

II Reverse the string
for(; p > s; s++, p--){

temp = *p;
*p = *s;
*s = temp;

}

return;

Assembly Program

str

AREA myData, DATA
ALIGN
SPACE 20

AREA my_itoa, CODE
EXPORT main
ALIGN
ENTRY

_main PROC

stop

itoa

MOV r0, #1234S
LDR rl, =str
BL itoa
B stop
ENDP

PROC
PUSH {r4-r6, lr}
MOV r2, r0
MOV r3, rl

Subroutines li:M

; r2 = n
; r3 = s

; Build the string
MOV r6, #10

backward

loo pl CBZ r2, done
UDIV rs, r2, r6
MLS r4, r6, rs, r2
ADD r4, r4, #0x30
STRB r4, [r3], #1
UDIV r2, r2, r6
B loopl

done MOV r4, #0
STRB r4, [r3]
SUB r3, r3, #1

; Reverse the string
loop2 CMP r3, rl

exit

BLE exit
LDRB r4, [r3]
LDRB rs, [rl]
STRB r4, [rl]
STRB rs, [r3]
ADD rl, rl , #1
SUB r3, r3, #1
B loop2

POP {r4-r6, pc}
ENDP
END

; done if n = 0
; rs = nlle
; r4 = r2-10*r5
; n%10 + '0'

; *p = n%10+'0'
; n I= 10

; *p = '\0 ';
; skip NULL

; compare p & s
; exit if p .5 s
; swap

; s++
; p- -

Example 8-15. Converting an integer to a string in C and assembly

mml 8.5 - Passing Arguments to Subroutine via Registers

8.5.10 Example of Matrix Transpose
In linear algebra, the transpose of a matrix [aiJ]mxn is [a1dnxm· In C, a two-dimensional
(2D) matrix in fact is stored as a one-dimensional array in memory. C uses a row-major
approach to convert the 2D matrix into a lD array, and it stores the matrix row by row
contiguously in memory.

For example, a 3x3 matrix is stored as a simple lD array in memory, as shown in Figure
8-11. We assume each element is an integer and takes four bytes. Because a memory
address is always in terms of bytes, the memory offset is also expressed in bytes.

Index (0, 0) (0, 1) (0, 2) (1 , 0) (1, 1) (1, 2) (2, 0) (2 , 1) (2 , 2)

Content 2 3 4 5 6 7 8 9

Memory offset
0 4 8 12 16 20 24 28 32

in bytes
\. A A)

y y y
1•1 Row 2°d Row 3rd Row

Figure 8-11. Linear layout of a two-dimensional matrix in memory

We can replace multiplication with shift operations to improve the speed. For example,
the following instructions

MOV rl, #3
MUL r4, r0, rl

can be replaced by a single instruction "ADD r4, r0, r0, LSL #1", in which
r4 = r0 + r0 << 1 = 3 x r0.

The shift and addition operations are faster than the multiplication instruction.

Figure 8-12 gives an example of matrix transpose. Note the items on the diagonal do not
change. Therefore, the program only needs to swap elements in the upper right
triangular matrix with the lower left triangle matrix.

I (o, o) I /.1 (o, 1) l---1 (o, 2) I

I 11. ~-:l>r;;~· ;; I " ,.i 11 . 2) I

I (2 ,~~, I I (2 , ~~,I, I (2, 2) I

Figure 8-12. Demonstration of matrix transpose. None-diagonal elements are swapped.

C Program
int a[3][3] = { { 1, 2, 3 },

{ 4, 5, 6 },
{ 7, 8, 9} };

void transpose(int *p);

int main (void){

}

int *p = &a[0][0];
transpose(p);
while(l);

void transpose(int *p){
int i, j, t;

}

for(i=0; i<3; i++){
for (j=i+l; j<3; j++){

t = *(p + 3*i + j);

}
}

*(p + 3*i + j) = *(p + 3*j + i);
*(p + 3*j + i) = t;

return;

Subroutines m
Assembly Program

AREA myData, DATA
ALIGN

matrix DCD 1, 2, 3, 4, 5, 6, 7, 8, 9

AREA Matrix_Transpose, CODE
EXPORT _ma i n
ALIGN
ENTRY

_main PROC
LDR r0, =matrix
BL transpose

stop B stop
ENDP

transpose PROC
PUSH {r4-r7, lr}
MOV rl, #0

loop_i CMP rl, #3
BGE exit_i
ADD

loop_j CMP
BGE

r2, rl, #1
r2, #3
exit_j

; r4 = p + (3*i + j)*4

; rl = i;

; j = i + 1

ADD r4,rl,rl,LSL #1 ; 3 * i
ADD r4,r0,r4,LSL #2 ; 4 * r4
ADD r4,r2,LSL #2

; rs = p + (3*j + i)*4
ADD r4,r2,r2,LSL #1 ; 3 * j
ADD r4,r0, r4,LSL #2 ; 4 * r4
ADD r4,rl,LSL #2

; swap elements pointed by r4 and r5
LDR r6, [r4]
LDR r7, [r5]
STR r7, [r4]
STR r6, [rs]

ADD r2, r2, #1
B loop_j

exit_j ADD
B

rl, rl, #1
loop_i

exit_i POP {r4-r7, lr}
ENDP
END

, for loop j

; i++

; for loop i

Example 8-16. Transposing a matrix in C and assembly

Ml:fi 8.5 - Passing Arguments to Subroutine via Registers

8.5.11 Example of Removing a Character from a String
This example subroutine removes a specific character from a string. The subroutine starts
to compare each character from the beginning and shift all following characters left one
if this character is the same as the target characters. The subroutine adds a null terminator
at the end of the string when it checks all characters.

pointer

l

Figure 8-13. All following characters must be moved left when a character is removed.

C Program
char s[lS] = "Less is more";
void remove(char *s, char c);

int main(void){

}

II remove Letter 'e' from s
remove (s, ' e') ;
while(l);

II Remove c from string s
void remove(char *s, char c){

char *t = s;

}

for(; *s != '\0'; s++){

if (*s != c){
*t = *s;
t++;

}

}

*t = '\0';
return;

Assembly Program

str
AREA myData, DATA
DCB "Less is more",0

AREA removeChar, CODE
EXPORT main
ALIGN
ENTRY

_main PROC
LDR r0, =str ; memory address
MOVS rl, #'e' ; ASCII of 'e'
, re and rl are arguments
BL remove

stop B stop ; dead Loop
ENDP

remove PROC
; re = s, rl = c
MOV r2, r0

loop LDRB
CBZ

r3, [r0]
r3, exit

CMP r3, rl

, r2 = t = s

; r3 = *s
, null ending

; compare *s & c
; get byte *s LDRBNE r3, [r0]

STRBNE r3, [r2]
ADDNE r2, r2, #1 ;

, store to *t
t++

ADD
B

exit STRB
BX
ENDP
END

r0, r0, #1 .; S++

loop

r3, [r2]
lr

, do it again

; *t = '\e ';
; return

Example 8-17. Implementation of removing a character from a string

Subroutines ll:JM

8.5.12 Example of Finding Unique Numbers in an Array
This example removes any duplicate numbers in an array. It finds all unique members of
an array. As shown in Figure 8-14, the program uses three loops over the array.

• The outer loop based on loop variable i selects a character to be compared with.
• The middle loop based on j compares each of all following characters with array[i].
• The inner loop based on loop variable k is used to shift all following characters to

the left by one position if array UJ is equal to array[i].

START

i = 0

No

j = i + 1

i = i + 1

No

k = j

No

array(k) = array(k+1)

k=k+1

size = size - 1

j = j + 1

STOP

Figure 8-14. Flowchart of removing duplicates in an array

_.....
~ 8.5 - Passing Arguments to Subroutine via Registers

C Program

int array[S0] = {
7, 1, 7, 2, 1,
3, 1, 2, 4, s,
2, 3, 2, 6, 7,
2, 3, 2, 6, 7};

int size = 20;

int remove_dup(int * int); ,

int main(){
int i;

size = remove_dup(array,
size);

for (i = size; i < S0; i++)
array[i] = 0;

while(l);
}

int remove_dup(int *array,
int size) {

}

int i, j, k;
int *p;
i = 0;
while(i < size){

}

j = i + 1;
while(j < size) {

}

if(*(p+i)==*(p+j)){
for(k=j; k<size-1; k++)

*(p+k) = *(p+k+l);
size--;

} else
j++;

i++;

return size;

Assembly Program

AREA myData, DATA
ALIGN

array DCD 7, 1, 7, 2, 1
DCD 3, 1, 2, 4, s
DCD 2, 3, 2, 6, 7
DCD 2, 3, 2, 6, 7

size DCD 20

AREA remove_duplicates, CODE
EXPORT main
ALIGN
ENTRY

_main PROC

loop

stop

LOR r0, =array
LOR rl, =size
LOR rl, [rl]
BL remove_dup

MOV r4, r0
CMP r4, #S0
BGE stop
MOV r0, #0

, re = size

STR r0, [r1,r4,LSL #2] ,
ADD r4, r4, #1
B loop
B stop
ENDP

returned

array[i]

remove_dup PROC

Li

; re = array pointer
; rl = size
PUSH {r4-r8,lr}
; r5 = i, r6 = j, rl = k
MOV rs, #0 ; rs = i
CMP rs, rl
BGE exit

; compare i and size

ADD r6, rs, #1 ; r6 = j, j = i + 1
Lj CMP r6, rl ; compare j and size

Lk

BGE
LOR
LOR
CMP
BNE
MOV
SUB
CMP

Ej
r8,
r4,
r8,
Ek2
r7,
r4,
r7,

[r0,rS,LSL #2] , rB = *(p+i)
[r0,r6,LSL #2] ; r4 = *(p+j)
r4 , *(p+i) and *(p+j)

r6 ; rl = k
rl, #1 , r4 = size - 1
r4 ; compare k and size-1

Subroutines ll:§M

BGE Ekl
ADD r8, r0,r7,LSL #2
LDR r8, [r8, #4] ; rB = *(p+k+l)
STR r8, (r0,r7,LSL #2] ; *(p+k)

ADD r7, r7, #1 ; k++
B Lk ; Loop k

Ekl SUB rl, rl, #1 ; size--
B Lj ; Loop j

Ek2 ADD r6, r6, #1 ; j++
B Lj ; Loop j

Ej ADD rs, rs, #1 ; i++
B Li ; Loop i

exit MOV r0, rl ; return size

POP {r4-r8, pc}

ENDP
END

Example 8-18. Removing duplicates in an integer array in C and assembly

Figure 8-15 shows an example to illustrate the basic idea of using three nested loops to
eliminate all duplicates in an array.

• The first loop indexed by i starts with the first element.

• The second loop indexed by j iterates through all items between (i+l) and the end
of the array.

• When a duplicate is found, the third loop indexed by k is used to shift all numbers
after the jth number left by 1. In this example, when the program finds the
duplicate "7", all numbers after the "7" is moved left by one.

l
7

k-.

Figure 8-15. Variable i, j, and k are indices of three nested loops.
Loop k shifts numbers left after a duplicate is found.

8.6 - Passing Arguments through Stack

8.6 Passing Arguments through Stack
A subroutine can receive up to four arguments via registers r0- r3 . When a subroutine

takes more than four arguments, additional parameters must be passed via the stack.

Example 8-19 shows a simple subroutine named sum6 that takes six 32-bit integers and

calculates their sum.

C Program Assembly Program

int sum6(int al, int a2, int a3, AREA sum, CODE

int a4, int as, i nt a6); EXPORT - main
ALIGN
ENTRY

int main(){ - main PROC
int t; MOV r0, #S ; 5th argument

MOV rl, #6 , 5th argument

MOV r2, #3 ; 3rd argument

MOV r 3, #4 , 4th argument

PUSH {r0, rl} ; push 5th and 5th

MOVS rl, #2 ; 1st argument

MOVS r0, #1 ; 2nd argument

t = sum6(1, 2, 3, 4, s, 6); BL sum6
while(l); stop B stop

} ENDP

int sum6(int al, int a2, int a3, sum6 PROC
int a4, int as, int a6) { PUSH {r4-r7, lr}

MOV r4, r0
int total; ; LORD = Load double-word

LORD rs, r6, [sp, #20]

total = al + a2 + a3 + a4 + as + a6; ADD r7, r4, rl , add al & a4
ADD r7, r7, r2 ; add a2

ADD r7, r7, r3 ; add a3

ADD r7, r7, rs ; add a5

ADD r0, r7, r6 ; add a6

return total; POP {r4-r7, pc} ; return
ENDP

} END

Example 8-19. Passing six arguments in C and assembly

The caller puts the first four arguments in registers r0, rl, r2, and r3, and pushes the last

two arguments onto the stack. When the subroutine starts, it first should preserve any

non-scratch registers used in this subroutine. In this example, the subroutine pushes

registers r4 - r7 and LR onto the stack.

Subroutines IWM

The subroutine then uses a load double-word instruction (LDRD) to retrieve the additional
two arguments by using SP-relative addressing.

LDRD rs, r6, [sp, #20] LDR rs, [sp, #20]
LDR r6, [sp, #24]

Note when a single push or pop instruction stores or loads multiple registers, the order
in which these registers are listed in the instruction does not matter. The processor always
pushes the largest register first, as introduced in Example 8-3. On the contrary, in a pop
instruction, the value is popped to the register with the smallest register number first.

High memory
address

Stack grows
downward

Low memory
address

LORD rs, r6, [sp,#20] - rs = s; r6 = 6

Old SP

SP+ 24

SP+ 20

SP+ 16

SP+ 12

SP+ 8

SP +4

SP

" .
" .
~

~

" .
~

~

~

.
~

~

<xxxxxxxx>

6

5

Ir

r7

r6

r5

r4

Two extra arguments
pushed by caller.

Pushed by subroutine to
preserve enviornment

Figure 8-16. Memory layout after the subroutine preserves the environment

The LDRD instruction transfers two contiguous words starting at the memory address SP
+ 20 to two registers. The first destination register holds the word with a lower memory
address. The LORD instruction is equivalent to the following two LOR instructions:

LDR rs, [#sp, #20] ; rs = mem[sp + 20} = s
LDR r6, [#sp, #24] ; r6 = mem[sp + 24} = 6

The subroutine should not pop any arguments out from the stack. Per the application
binary interface standard, the stack pointer (SP) must remain the same immediately
before and after a subroutine is executed.

Example 8-20 gives a slightly more efficient implementation. The key idea is to reuse
register r0 and, therefore, the subroutine does not need to push any registers onto the
stack, reducing the number of memory accesses.

As well, because the subroutine sum6() does not call any other subroutines, it is not
required to preserve the link register (LR) in the stack. Hence, it uses " BX LR" to return.

8.7 - Recursive Functions

sum6 PROC
ADD r0, r 0, rl add 1 st and 2nd arguments
ADD r0, r0, r2 add 3rd argument
ADD r0, r0, r3 add 4th argument
LORD r2, r3, [sp] ; Load 5th and 5th arguments
ADD r0, r0, r2 , add 5th argument
ADD r0 , r0, r3 , add 5th argument
BX LR ; return
ENDP

Example 8-20. Improved implementation of the sum6 subroutine by reusing register r 0

8. 7 Recursive Functions
A recursive function is a function that calls itself directly or indirectly. If Joo() calls bar(),
and bar() calls Joo(), then Joo() calls itself indirectly. A recursive function solves a task by
calling itself on smaller pieces of input data.

For example, quick sort is a recursive function. It randomly picks an element from an array
and partitions the array into two subarrays, one with all elements smaller than the chosen
element, and the other with all elements larger than the selected element. This process
repeats on each subarray until there are only one or two items in each subarray. The
result is a combination of these sorted subarrays.

A recursive function is an efficient divide-and-conquer tactic. It divides a large problem
into smaller sub-problems of the same type, then solves those sub-problems, and finally
combines the results to obtain the solution of the original problem.

Any problem solved by using a recursive function is also solvable by using a traditional
iterative function based on loops. The advantages of recursive functions over iterative
functions are twofold.

• A recursive function resembles the problem to be solved more naturally.

• Moreover, a recursive function is easier to program and debug in high-level
languages such as C.

However, a recursive function usually is slower and requires more memory than its
corresponding iterative function. Also, it is harder to debug a recursive function in
assembly.

Example 8-21 shows recursive and iterative functions that calculate the factorial. Figure
8-7 shows the call graph of the recursive function when calculatingJactorial(5).

Subroutines Im

Recursive Function Iterative Function
int factorial(int n) { int factorial(int n) {

if(n==l) result = 1;
retu r n 1· , for (int i = 1; i < n; i ++)

else result *= i;
return n * factorial(n -1); return result;

} }

int main(void){ int main(void){
int y; int y;
y = factorial(S) ; y = factoria l(S) ;
return 0; return 0;

} }

Example 8-21. Factorial function implemented by using recursive and iterative function

Return 5' f(4)

First call of the funct ion f(n)

Input: n = 5

Second call of the function f(n)

Return 4' f(3)

Fifth call of the function f(n)

Input: n = 1

Return : 1

Pop n and LR
out of the stack

Push n and LR
Into the stack

Figure 8-17. Call graph of the recursive factorial function

Miji 8.7 - Recursive Functions

Each recursive function must have an exit condition, also known as a stopping case. The
exit condition is to ensure that the recursive function does not go into an infinite loop.
For example, the statement of "if (n == 1) return 1;" is the exit condition.

Figure 8-7 shows how the functionfactorial(S) runs step by step.

• factorial(S) calls factorial(4), and
• factorial(4) calls factorial(3), and
• factorial(2) calls factorial(l).
• After the exit condition is satisfied, factorial(l) returns the result backward to

factorial(2) for calculating previously pending results.
• factorial(2) returns the result to factorial(3) .
• factorial(3) returns the result to factorial(4) .
• factorial(4) returns the result to factorial(S) .
• factorial(S) completes and returns the final result.

Recursive functions utilize the stack to preserve the runtime environment and keep track
of different call instances of the recursive functions. At least, a recursive function must
preserve the link register (LR) in the stack. In the example of recursively calculating the
factorial number, the subroutine must push LR and the input n onto the stack. The stack
keeps growing as more data are pushed onto it during the recursive call. After the exit
condition is satisfied, the stack begins to shrink as data are popped off the stack upon
each function return.

In sum, when programming a recursive function in assembly, the function must manage
the stack carefully to ensure the correctness and avoid infinite loop or stack overflow.

8.7.1 Example of Factorial Numbers
This section illustrates how the stack grows as a recursive function is called and how the
stack shrinks when a recursive function is returned.

Suppose SP is 0x20000600, and r4 is 0 before the recursive factorial function starts. At the
beginning of the subroutine, r4 and LR are pushed onto the stack. Recall that the BL

instruction puts the memory address of the instruction immediately after the BL

instruction into LR. The subroutine copies r0 to r4 because r0 is used to pass the argument
when it calls itself.

Table 8-3 shows the stack content immediately after factorial(l) completes. The stack
grows down toward the low memory address. Register r0 holds the input n passed to
the subroutine. Because register r0 must hold the return result, the function copies r0 to
r4. When the factorial function calls itself, LR points to the multiplication instruction "MUL

r0, r4, r0", which multiples n and factorial(n-1) .

Memory
Address

0x20000600

0x200005FC

0x200005F8
0x200005F4

0x200005F0

0x200005EC

0x200005E8
0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

0x200005D0

Subroutines IBW

Memory
Content

0x08000134 (LR)

0 (r4)

0x08000148 (LR)

5 (r4)

0x08000148 (LR)

4 (r4)
0x08000148 (LR)

3 (r4)

0x08000148 (LR)

2 (r4)

0x08000148 (LR)

Table 8-3. Stack content immediately after factorial (1) completes.

C Program Address Assembly Program

AREA main, CODE, READONLY
EXPORT main -

int factorial(int n); ENTRY

int main(void){ - main PROC
0x0800012E MOV r0, #5

factorial(S); 0x08000130 BL factorial
while(l); 0x08000134 stop B stop

} ENDP

int factorial(int n) { factorial PROC
int f; 0x08000136 PUSH {r4, lr} ; preserve

0x08000138 MOV r4, r0 ; r4 = n
if(n==l) 0x0800013A CMP r4, #1

0x0800013C BNE else ; if n # 1
f = 1· , 0x0800013E MOV r0, #1 ; f = 1

0x08000140 loop POP {r4, pc} , return
else 0x08000142 else SUB r0, r4, #1 ; n - 1

f = n*factorial(n-1); 0x08000144 BL factorial ; re is input
0x08000148 MUL r0, r4, r0 ; n*f(n-1)

return f; 0x0800014C B loop
}

ENDP
END

Example 8-22. Calculating factorial number in C and assembly

8.7 - Recursive Functions

8. 7.2 Example of Reversing a String
The reverse of "ABCD" is "DCBA". The following is a recursive reverse function. The
key idea is to swap the first and last character, and reverse the substring excluding the
first and the last characters. This process repeats for each substring.

C Program

char str[20] = "Reverse me,
please!";

void swap (char *x, char *y);
void reverse(char *, int, int);

int main() {

}

reverse(str, 0, 20);
while(l);

II swap two characters in a string
void swap (char *x, char *y) {

char temp;
temp = *x;
*x = *y;
*y = temp;

}

II recursive function for reversion
void reverse(char *str,

}

int start,
int end) {

if (start -- end)
return;

swap (str + start, str + end);
start++;
end--;

reverse(str, start, end);
return;

Assembly Program

str

AREA myData, DATA
ALIGN
DCB "Reverse me, please!'',0

AREA reverse_string, CODE
EXPORT main
ALIGN
ENTRY

main PROC -
LDR r0, =str
MOV rl, #0
MOV r2, #20
BL reverse

stop B stop
ENDP

swap PROC
LDRB r2, [r0]
LDRB r3, [rl]
STRB r3, [r0]
STRB r2, [rl]
BX lr
ENDP

; ist argument
; 2nd argument
, 3rd argument
, Recursive caLL

; Swap routine
, temp = *x
;
; *x = Y
; *y = temp

reverse PROC

exit

PUSH {r4-r6, lr}
MOV r6, r0 ; string pointer
MOV r4, rl ; start position
MOV rs, r2 , end position
CMP r4, rs ; check start <= end
POPEQ {r4-r6, pc} ; exit
ADD r0, r6, r4 ; [str + start]
ADD rl, r6, rs ; [str + end]
BL swap
ADD r4, r4, #1 , start++
SUB rs, rs, #1 ; end--
MOV r0, r6 ; 1st argument
MOV rl, r4 , 2nd argument
MOV r2, rs , 3rd argument
BL reverse
POP {r4-r6, pc}
ENDP
END

Example 8-23. Reversing a string in C and assembly

Subroutines WWW

8. 7 .3 Example of String Permutation
The following code finds all possible permutations of the characters in a string. For
example, the permutation of "ABC" includes: "ABC", "ACB", "BAC", "BCA", "CAB",
and "CBA". The program stores all permutations in a string named result, separated by
space. The permute function uses two subroutines: strcat that concatenates two strings
(given in Chapter 8.5.6) and swap that swaps two characters in a string (given in Chapter
8.7.2). As shown in Figure 8-18, the permutation of a string is found by recursively
permuting all new substrings. New substrings are formed by swapping the first letter
with all letters in the original string (excluding the first letter of each new string).

permute

~I;) A~
~<:'

start end ~ o/'l;
~~~ 

c; 
permute permute 

start and 1 

B~ 
start end ll''i-

~ start end 
IS'~ .,,.,.. 

.,,,,. 
O'.=> permute 

c~ 
start end 

Figure 8-18. Permutation is achieved by swapping the first letter to every letter and permuting 
all substrings excluding the first letter of all new strings. 

C Program 
char str[4) = "ABC"; 
char result[200); 
char sep[2) = " "; 

void strcat(char *, char *); 
void swap(char *, char *); 
void permute(char *, int, int); 

int main() { 

} 

permute(str, 0, 2); 
while(l); 

Assembly Program 
AREA myData, DATA 
ALIGN 

str DCB "ABC",0 
result SPACE 200 
sep DCB " ",0 

AREA permute, CODE 
EXPORT _main 
ALIGN 
ENTRY 

_main PROC 
LOR r0, =str 
MOV rl, #0 ; start 
MOV r2, #2 ; end 
BL permute 

stop B stop 
ENDP 



8.7 - Recursive Functions 

II recursive permute function ; recursive permute function 
void permute(char *str, permute PROC 

int start, 
int end) { PUSH {r4-r7, lr} 

MOV r4, r0 , re = *str 
int i; MOV rs, rl ; rl start 

MOV r7, r2 ; r2 = end 

if (start >= end){ CMP rs, r7 ; start >= end 
BLT else ; if Less or equal 

strcat(result, sep); then LDR r0, =result 
LDR rl, =Sep 
BL strcat ; result + set 

strcat(result, str); LDR r0, =result 
MOV rl, r4 , rl = str 
BL strcat ; result + str 

B exit 

} else { else MOV r6, rs ; r6 = variable i 

for (i=start; i <=end; i++){ loop ADD r0, r4, rs , re = str + start 
ADD rl, r4, r6 , rl = str + i 

swap(str + start, str + i); BL swap 

MOV r0, r4 ; str 
ADD rl, rs, #1 , start + 1 
MOV r2, r7 ; end 

permute(str, start+l, end); BL permute ; recursive call 

ADD r 0, r 4, rs ; str + start 
ADD rl, r4, r6 ; str + i 

swap(str + start, str + i); BL swap 

ADD r6, r6, #1 ; i++ 
check CMP r6, r7 ; compare i & end 

} BLE loop 
} 
return; exit POP {r4 - r7, pc} 

} ENDP 

END 

Example 8-24. String permutation in C and assembly 



8.8 Exercises 

1. Which of the following is equivalent to "PUSH {r7}"? 

(1) SP= SP - 4, and then memory[ SP]= r7 

(2) SP= SP+ 4, and then memory[SP] = r7 

(3) memory[SP] = r7, and then SP= SP - 4 

(4) memory[SP] = r7, and then SP= SP+ 4 

Subroutines lijiji 

2. Which of the following instructions load five words from the stack into registers 

rl-rS? What are the value of registers rl-rS? (Assuming SP = 0x20008000, and 

these instructions are executed separately.) 

(l)LDMDA sp, {rl-rS} 
(2) LDMDB sp, {rl-rS} 
(3) LDMIA sp, {rl-rS} 
(4) LDMIB sp, {rl-rS} 
(S)LDMDA sp ! , {rl-rS} 
(6)LDMDB Sp!' {rl-rS} 
(7) LDMIA sp ! , {rl-rS} 
(8) LDMIB sp ! , {rl-rS} 

Memory Address Value 
0x20008008 0x00000006 
0x20008004 0x00000005 
0x20008000 0x00000004 
0x2000800C 0x00000003 
0x20008008 0x00000002 
0x20008004 0x00000001 
0x20008000 0x00000000 
0x20007FFC 0xFFFFFFFF 
0x20007FF8 0xFFFFFFFE 
0x20007FF4 0xFFFFFFFD 
0x20007FF0 0xFFFFFFFC 
0x20007FE8 0xFFFFFFFB 
0x20007FE4 0xFFFFFFFA 

3. What are the memory content after each of the following instruction completes? 

Assume register ri = i, i = 0, 1, 2, 3, and 5. (Assuming SP = 0x20008000 and these 

instructions runs independently). 

(l)STMDA sp, 
(2)STMDB sp, 

{rl-rS} 
{rl-rS} 



m%ml 8.8 - Exercises 

(3) STMIA sp, {rl-rS} 
(4) STMIB sp, {rl-rS} 
(S)STMDA sp ! , {rl-rS} 
(6) STMDB sp ! , {rl-rS} 
(7) STMIA sp ! , {rl-rS} 
(8)STMIB sp!, {rl-rS} 

Memory 
a b c d a b c d Address 

0x20008008 
0x20008004 
0x20008000 
0x2000800C 
0x20008008 
0x20008004 
0x20008000 
0x20007FFC 
0x20007FF8 
0x20007FF4 
0x20007FF0 
0x20007FE8 
0x20007FE4 

4. How many bytes does the stack need to pass the arguments when each of the 

following function is called? 

(1) int32_t funl(uint8_t a, uint16 t b, uint8_t c, int32_t 

(2) int32_t fun2(uint8_t a, uint16 t b, uint8 t c, int32_t 
uint8 t e, int32_t f, uint8_t g) 

(3) int32_t fun3(uint8_t a, int32 t b, int64_t c, 
uint8_t d, int32_t e) 

(4)int32_t fun4(uint8_t a, int64_t b, int64_t c, 
uint8_t d, int32_t e) 

5. Which register(s) holds the return value in the following functions? 

(1) int16_t 
(2) int8_t 
(3) int32_t 
(4) int64_t 
(5) int64_t 

funl() 
* fun2() 
* fun3() 

fun4() 
* funs() 

d) 

d, 

6. Why does a recursive assembly function have to preserve the link register? 

7. Give two different assembly instructions to make a subroutine return. 



Subroutines ml 

8. Write a subroutine that checks whether a given number is a prime number. The 
subroutine takes one argument and returns true or false. Find all prime numbers 
between 100 and 200. 

9. Write a subroutine that takes eight integer arguments and computes the product 
of these integers. The caller passes extra arguments to the subroutine via the stack. 

10. Implement a subroutine of the Caesar shift encryption. It is a simple substitution 
encryption algorithm, in which each letter is replaced by another letter with a 
fixed number of offset down in the alphabet. For example, with a shift offset of 3, 
A becomes D, and Bis substituted by E, and so on. 

11. Write a subroutine called MoviePrice that calculates the movie ticket price based 
on the input argument called age. If the age is 12 or under, the price is $6. If the 
age is between 13 and 64, the price is $8. If the age is 65 or over, the price is $7. 

12. Write a subroutine that calculates the value of the following expression based on 
two input arguments a and n. 

n 

Sn(a) =a+ aa + aaa + ··· + ac:l:a 

For example, when a= 3 and n = 5, we have 

55 (3) = 3 + 33 + 333 + 3333 + 33333 

13. Write a program that calculates l:~~o n!. The program should use two subroutines. 
One subroutine calculates the factorial n!, and the other subroutine calculates the 
sum of the factorials . 

14. Write a program that uses a subroutine to find how many 1-bits exist in a 32-bit 
number. 

15. Write a program that uses a subroutine to determine how many bits differ in two 
32-bit numbers. 

16. Mathematically, the cardinality of an array is defined as the number of unique 
elements in an array. Write a subroutine that calculates the cardinality of an 
integer array. 

17. Write an assembly subroutine named f that calculates the following value 

f(x,y) = ax 2 + bxy + c 



Mi1Jj 8.8 - Exercises 

where a, b, and c are constant integers, x and y are the input integers. Assuming 

a, b, and care defined in the data memory, x and y are input arguments of this 

subroutine. 

18. Write a recursive assembly subroutine that calculates the Fibonacci number. 

F(n) = 1 
{ 

0 

F(n - 1) + F(n - 2) 

if n = 0 
if n = 1 
otherwise 

19. When PC is 0x08000100 in the following assembly program, the stack pointer (SP) 

is 0x20002000. Show the value of the link register (LR) and the whole stack content 

when PC = 0x08000120. 

Memory Address Instruction 
0x08000100 MOV R0, #2 
0x08000104 BL QUAD 
0x08000108 B ENDL 
0x0800010C SQl PUSH {LR} 
0x08000110 MUL R0, R0 
0x08000114 BL SQ2 
0x08000118 POP {PC} 
0x0800011C SQ2 PUSH {LR} 
0x08000120 MUL R0, R0 
0x08000124 POP {PC} 
0x08000128 QUAD PUSH {LR} 
0x0800012C BL SQl 
0x08000130 POP {LR} 
0x08000134 BX LR 
0x08000138 ENDL ... 

20. Write a recursive assembly subroutine that checks whether a given string is a 

palindrome. 

21. Write a recursive assembly subroutine that calculates the Kth power of 2 (i .e., 2K). 

22. Compared with iterative methods, what are the advantages and disadvantages of 

recursive methods? 



64-bit Data Processing 111& 

CHAPTER 

9 
64-bit Data Processing 
ARM Cortex-M is 32-bit processors, and the operands of 
assembly instructions cannot exceed 32 bits. There are a few 
exceptions, such as UMULL (unsigned multiply), UMLAL 

(unsigned multiply with accumulate), SMULL (signed 
multiply), and SMLAL (signed multiply with accumulate). We 
may need to perform arithmetic operations on integers that 
are greater than 232 - 1 . One example is fixed-point 
arithmetic (see Chapter 12). This chapter focuses on how to 
implement 64-bit operations based on 32-bit instructions. 

9.1 64-bit Addition 

How to perform 64-
bit operations on 

32-bit processors? 

Chapter 2.4.5.2 shows that an adder works in the same way for both unsigned and signed 
numbers when signed numbers are represented in two's complement. In other words, 
the same add assembly instruction works for both signed and unsigned integers. 

A[63:32] 8[63:32] 

32-bit 
Adder 

32 

C[63:32] 

carry 

A[31 :0] 8[31 :0] 

32-bit 
Adder 

32 

C[31 :O] 

Figure 9-1. Adding two 64-bit integers 

Suppose we are adding two 64-bit integers A and B, either signed or unsigned. A 64-bit 
number is stored in a pair of registers (rl:r0), with the most significant 32 bits stored in 
register rl, and the least significant bits stored in r0. Example 9-1 shows the codes. 

t: 
' 



9.2 - 64-bit Subtraction 

; 64-bit addition: C (r5:r4) = A (rl:r0) + B (r3:r2) 
; A = 0x00002222FFFFFFFF, B = 0x0000044400000001 

LDR r0, =0xFFFFFFFF J A's Lower 32 bits 
LDR rl, =0x00002222 ; A's upper 32 bits 

LDR r2, =0x00000001 J B's Lower 32 bits 
LDR r3, =0x00000444 J B's upper 32 bits 

; Add two Lower words 
ADDS r4, r2, r0 , C[31:0} = A{31:0} + B[31:0}, update Carry 

; Add two upper words and the carry from adding Lower words 
ADC rs, r3, rl ; C[64:32} = A[64:32} + B[64:32} + Carry 

Example 9-1. Adding two 64-bit signed or unsigned integers 

9.2 64-bit Subtraction 
The following program performs 64-bit subtraction for both signed numbers and 
unsigned numbers. It is like the 64-bit addition, except the subtraction starts with the 
upper word. The carry flag is set if no borrow occurs on subtraction. 

A[63:32] 8[63:32] 

32-bit 
Subtractor 

borrow 

32 

C[63:32] 

A[31 :0] 8[31 :O] 

32-bit 
Subtractor 

32 

C[31 :O] 

Figure 9-2. Subtracting two 64-bit integers 

, 64-bit subtraction: C = r5:r4, A = rl:r0, B = r3:r2, C = A - B 
; A = 0x00000002FFFFFFFF, B = 0x0000000400000001 

LDR r0, =0xFFFFFFFF , A's Lower 32 bits 
LDR rl, =0x00000002 ; A's upper 32 bits 

LDR r2, =0x00000001 ; B's Lower 32 bits 
LDR r3, =0x00000004 ; B's upper 32 bits 

; Subtract two Lower words 
SUBS r4, re, r2 J C[31:0} = A[31:0} - B[31:0], update Carry 

; Subtract two upper words and the borrow from subtracting Lower words 
SBC rs, rl, r3 ; C[64:32} = A{64:32} - 8{64:32} +carry - 1 

Example 9-2. Subtracting two 64-bit signed or unsigned integers 



64-bit Data Processing 11!11 

9.3 64-bit Counting Leading Zeros 
Example 9-3 counts the number of leading zero bits before the first one in a 64-bit integer. 
The key instruction used is CLZ (Count Leading Zeros) . It is useful to normalize an integer 
by removing all leading zeros and making the most significant bit a 1. When we count 
the number of leading zeros in a 64-bit number, there are two scenarios: 

1. The upper word is not zero. Then the number of leading zeros in the 64-bit 
number equals the number of leading zeros of the upper word. 

2. The upper word is zero. Then the number of leading zeros in the 64-bit number 
equals the number of leading zeros of the lower word plus 32. 

; 64-bit input data = (rl:re), 
; rl = upper word of 64-bit data, 
; re = Lower word of 64-bit data 
; r2 = # of Leading zero bits in the 64-bit data 

; Counting # of Leading zeros in upper word 
CLZ r2, rl ; CLZ = Count Leading zeros 

; Counting # of Leading zeros in Lower word 
CMP r2, #32 
CLZEQ r3, r0 

ADDEQ r2, r2, r3 

; if r2 == 32, then count Leading zero 
, bits of the Lower word 
; if all bits of the upper word are zero, 
; add the Leading zeros of the Lower word 

Example 9-3. Counting the number of leading zeros in a 64-bit number (rl: r0) 

9.4 64-bit Sign Extension 
When we extend a 32-bit signed integer to 64 bits, we must preserve the number's sign 
(either positive or negative) and value by duplicating the sign bit to the upper word. If 
the most significant bit (MSB) of the 32-bit signed integer is 1, the top word of the 64-bit 
number must be 0xFFF FFFFF . 

; re = Lower word of 64-bit data 
; rl = Upper word of 64-bit data 

TST r0, 0x80000000 ; Check the sign bit 
LDREQ rl, =0xFFFFFFFF ; If MSB is 1, duplicate 1 in upper word 
LORNE rl, =0x00000000 , If MSB is e, duplicate e in upper word 

Example 9-4. Extending a 32-bit signed integer (r0) to 64 bits (rl: r0) 



Mlml 9.5 - 64-bit Logic Shift Left 

9.5 64-bit Logic Shift Left 
When a 64-bit number is shifted left, some of the bits in the lower word should be shifted 
into the upper word. 

Upper Word Lower Word 

Figure 9-3. Logic shift left of a 64-bit number stored in two registers 

The following gives an example of shifting a 64-bit number left by 3 bits. The most 
significant three bits of the lower word are shifted into the upper word. If the shift 
amount is larger than 32 bits, the lower word becomes zero. 

Upper Word Lower Word 

b63 b35 b34 b3 b2 b1 bO 

LSL 3 

b60 0 0 LSL 3 

b60 b30 b29 b28 bO 0 0 0 

Upper Word of Result Lower Word of Result 

Figure 9-4. Shifting a 64-bit number left by 3 bits 

; re = Lower word of 64-bit data, rl = Upper word of 64-bit data 
; r2 = Shift amount 

MOV r3, r0 , Backup the Lower word 
MOV rl, rl, LSL r2 ; Shift Left the upper word 
MOV r0, r0, LSL r2 , Shift Left the Lower word 

; Shift bits of the Lower word into the upper word 
CMP r2, #32 

, if r2 < 32 
RSBLO rs, r2, #32 ; r5 = 32 - r2 
LSR r4, r3, rs ; r4 = r3 >> (32 - r2) 
ORR LO rl, rl, r4 , upper /= Lower >> (32 - r2) 

; if r2 L 32 
SUB HS rs, r2, #32 ; r5 = r2 - 32 
LSLHS rl, r3, rs ; upper = Lower << (r2 - 32) 
MOVHS r0, #0 Lower = e 

Example 9-5. Shifting a 64-bit number (rl: r0) left by r2 bits 



64-bit Data Processing l.l1W 

9.6 64-bit Logic Shift Right 
When a 64-bit number is shifted right, the least significant bits of the upper word are 
shifted into the lower word, as shown in Figure 9-5. 

Upper Word Lower Word 

Figure 9-5. Logic shift right of a 64-bit number stored in two registers 

The following example shows logic shift right of a 64-bit number by 3 bits. The least 
significant three bits of the upper word are shifted into the lower word. If the shift 
amount is larger than 32 bits, the upper word becomes zero. 

Upper Word Lower Word 

b63 b62 

b31 b3 ~ 

0 0 0 b63 b35 

Upper Word of Result Lower Word of Result Carry 

Figure 9-6. Shifting a 64-bit number right by 3 bits 

, re = Lower word of 64-bit data, rl = Upper word of 64-bit data 
, r2 = Shift amount 

MOV r3, rl 

MOV rl, rl, LSR r2 
MOV r0, r0, LSR r2 

; Backup the upper word 

, Shift right upper word 
; Shift right Lower word 

; Shift bits of the upper word into the Lower word 
CMP r2, #32 

; if r2 < 32 
RSBLO rs, r2, #32 , rs = 32 - r2 
ORRLO r0, r0, r3, LSL rs , Lower /= upper « (32 - r2) 

; if r2 ~ 32 
SUBHS rS, r2, #32 ; r5 = r2 - 32 
LSRHS r0, r3, rS ; Lower = upper >> (r2 - 32) 

MOVHS rl, #0 , upper = e 

Example 9-6. Shifting a 64-bit number (rl: r0) right by r2 bits 

Carry 



llE,I 9.7 - 64-bit Multiplication 

9.7 64-bit Multiplication 
We can use long multiply instructions (32-bit by 32-bit, with a 64-bit result) and the 
multiply accumulate instruction (MLA) to multiply two 64-bit numbers. Example 9-7 
multiplies two 64-bit signed integers or unsigned integers. 

; product (r5:r4) =multiplier (rl:re) x multiplicand (r3:r2) 
, r5:r4 = re x r2 + 232 x (rl x r2 + re x r3) + 264 x rl x r3 
, The Last item in the above equation exceeds 64 bits and thus it is ignored. 

UMULL r4, rs, r0, r2 ; r5:r4 = re * r2 
MLA rs, rl, r2, rs , rs = rs + rl * r2 
MLA rS, r0, r3, rS ; r5 = r5 + re * r3 

Example 9-7. Multiplying two 64-bit unsigned or signed integers 

Note that UMULL multiplies two 32-bit unsigned integers, and SMULL multiplies two 32-bit 
signed integers. However, Example 9-7 also works correctly for multiplying two 64-bit 
signed numbers. For example, when multiplying (-2) and (-3), the above code can obtain 
the correct result (i .e., 6), as shown below. 

; A (rl:re) -2 = FFFF,FFFF,FFFF,FFFE 
; 8 (r3:r2) = -3 = FFFF,FFFF,FFFF,FFFD 

UMULL r4,rS,r0,r2 , r5:r4 = FFFF,FFFE x FFFF,FFFD = FFFF,FFFB,eeee,eee6 
MLA rS,rl,r2,rS ; r5 = FFFF,FFFB + FFFF,FFFF x FFFF,FFFD = FFFF,FFFE 
MLA rS,r0,r3,rS ; r5 = FFFF,FFFE + FFFF,FFFE x FFFF,FFFF = eeee,eeee 

; rs:r4 = eeee,eeee,eeee,eee6 

Example 9-8. Multiplying -2 and -3 

The reason UMULL in Example 9-7 also works correctly for 64-bit signed numbers is simple. 
If a negative number A is represented in two's complement, the processor reads it as 
264 

- IAI if the processor treats it as an unsigned number. Given two 64-bit negative 
numbers A and B, the multiplication is as follows if they are treated as unsigned numbers. 

C 264 
- IAI)( 264 

- IBI) = 2128 
- 264 x CIAI + IBI) + IAI x IBI 

The first two items are larger than 264 , and thus they can be discarded. Thus, the 
following are equivalent under the modulo 264 . 

( 264 
- IAI)( 264 

- IBI) = IAI x IBI mod 264 

Similarly, if A is a negative 64-bit number and B is a positive one, 

( 264 
- IAI) x B = 264 x B - IAI x B = (2 64 - IAI x B) mod 264 

If the unsigned number 264 
- IAI x Bis read as a two's complement, it is -IAI x B. 



64-bit Data Processing IZ!m 

9.8 64-bit Unsigned Division 
Dividing two 64-bit numbers works differently for signed numbers and unsigned 
numbers. This section discusses the implementation of 64-bit unsigned division. 

It takes two registers to hold a 64-bit integer. When we say a 64-bit integer is stored in 
registers (rl:r0), we mean the upper word is in rl, and the lower word is in r0. 

Table 9-1 illustrates the key idea of 64-bit unsigned division a/b. It is assumed that 
dividend a and divisor bare stored in registers r0-r3. The program also has two 64-bit 
outputs: the 64-bit quotient in rl:r0 and the 64-bit remainder in r3:r2. 

Unsigned 64-bit division: (rl:r0)/(r3:r2) 
Input: a = rl:r0 =dividend, b = r3:r2 =divisor, 
Return: quotient (rl:r0) and remainder (r3:r2) of (rl:r0)/(r3:r2) 

1. Initialization 
(l)Quotient(r9:r8) 
(2)Remainder(rl:r0) 

0; 
Dividend(rl:r0) 

2. Loop over the following steps if remainder (rl:r0) ~ divisor (r3:r2) 
(l)a_64_bit =remove leading zeros of remainder(rl:r0), 

• x = number of leading zero bits removed 
• CLZ instruction counts the number of leading zero bits 

(2)b_64_bit =remove leading zeros of divisor(r3:r2), 
• y = number of leading zero bits removed 

(3)g_32_bit = MSB_32(a_64_bit) I MSB_16(b_64_bit) 
• MSB: most significant bits 
• UDIV: unsigned 32-bit division 

(4)r6:rll = unsign_extend_to_64_bits(g_32_bit << (y - 16)) >> x; 
(5)Quotient(r9:r8) = Quotient(r9:r8) + (r6:rll) 
(6)Remainder(rl:r0) = Remainder(rl:r0) - (r6:rll) * Divisor(r3:r2) 
(7)If the remainder (rl:r0) is smaller than zero, 

• g_32_bit = MSB_32(a_64_bit) I (MSB_16(b_64_bit) + 1), and 
go to step c. 

3. Copy the results to the return registers 
(l)Quotient(rl:r0) = Quotient(r9:r8) 
(2)Remainder(r3:r2) = Remainder(rl:r0) 

Table 9-1. Basic steps of dividing two 64-bit unsigned integers (a= b*q + r) 

In the loop, the program shifts left both the dividend and the divisor to remove their 
leading zeros. Then the program divides their top word of the dividend by the top 
halfword of the divisor. The program calculates the remainder and the partial quotient, 



Wjui 9.8 - 64-bit Unsigned Division 

adjusted by the previous shift left operations. We use a simple example to illustrate the 
basic idea of the above algorithm. 

Example of 64-bit division 
Assuming the dividend and the divisor are given as follows: 

• Dividend(rl:r0) = 0x0000,FFFF,FFFF,FFFF 
• Divisor(r3:r2) = 0x0000,0000,0000,0001 

The algorithm starts to initialize the quotient and the remainder, shown as follows: 

• Quotient(r9: r8) 0; 
• Remainder(rl:r0) = Dividend(rl:r0) 0x0000,FFFF,FFFF,FFFF 

Loop 1: 
• a_64_bit 0xFFFF,FFFF,FFFF,0000 x 16 
• b_64_bit 0x8000,0000,0000,0000 y 63 
• g_32_bit MSB_32(a_64_bit) I MSB_16(b_64_bit) 

0xFFFF,FFFF I 0x0000,8000, 
0xFFFF,FFFF / 2A1S 
0x0001,FFFF 

• r6:rll unsign_extend_to_64_bits(g_32_bit << (y - 16)) >> x 
unsign_extend_to_64_bits(0x0001,FFFF << (63 - 16)) >> 16 
unsign_extend_to_64_bits(0x0001,FFFF << 47) >> 16 
0x0001,FFFF << 31 
0x0000,FFFF,8000,0000 

• Quotient(r9:r8) Quotient(r9:r8) + (r6:rll) 
0 + 0x0000,FFFF,8000,0000 
0x0000,FFFF,8000,0000 

• Remainder(rl:r0) Remainder(rl:r0) - (r6:rll) * Divisor(r3:r2) 
0x0000,FFFF,FFFF,FFFF - 0x0000,FFFF,8000,0000 * 1 
0x0000,0000,7FFF,FFFF 

Loop 2: 
• a_64_bit 0xFFFF,FFFE,0000,0000 x 33 
• b_64_bit 0x8000,0000,0000,0000 y 63 
• g_32_bit MSB_32(a_64_bit) I MSB_16(b_64_bit) 

0xFFFF,FFFE I 0x0000,8000 
0x0001,FFFF 

• r6:rll unsign_extend_to_64_bits(g_32_bit << (y - 16)) >> x 
unsign_extend_to_64_bits(0x0001,FFFF << (63 - 16)) >> 33 
unsign_extend_to_64_bits(0x0001,FFFF << 47) >> 33 
0x0000,0000,7FFF,C000 

• Quotient(r9:r8) Quotient(r9:r8) + (r6:rll) 
0x0000,FFFF,8000,0000 + 0x0000,0000,7FFF,C000 
0x0000,FFFF,FFFF,C000 

• Remainder(rl:r0) Remainder(rl:r0) - (r6:rll) * Divisor(r3:r2) 
0x0000,0000,7FFF,FFFF - 0x0000,0000,7FFF,C000 * 1 
0x0000,0000,0000,3FFF 



64-bit Data Processing ijiM 

Loop 3: 
• a_64_bit 0xFFFC,0000,0000,0000 x 50 
• b_64_bit 0x8000,0000,0000,0000 y 63 
• g_32_bit MSB_32(a_64_bit) I MSB_16(b_64_bit) 

0xFFFC,0000 / 0x0000,8000 
0x0001,FFF8 

• r6:rll unsign_extend_to_64_bits(g_32_bit << (y - 16)) >> x 
unsign_extend_to_64_bits(0x0001,FFF8 << (63 - 16)) >> 50 
unsign_extend_to_64_bits(0x0001,FFF8 << 47) >> 50 
0x0000,0000,0000,3FFF 

• Quotient(r9:r8) Quotient(r9:r8) + (r6:rll) 
0x0000,FFFF,FFFF,C000 + 0x0000,0000,0000,3FFF 
0x0000,FFFF,FFFF,FFFF 

• Remainder(rl:r0) Remainder(rl:r0) - (r6:rll) * Divisor(r3:r2) 
0x0000,0000,0000,3FFF - 0x0000,0000,0000,3FFF * 1 
0x0000,0000,0000,0000 

9. 9 64-bit Signed Division 
The following program shows the algorithm of 64-bit signed division. For each 64-bit 
held in registers (rm: rn), register rm contains the upper word, and register rn holds the 
lower word. 

The program is divided into three major steps. 

• The program first converts the dividend and divisor to positive 64-bit integers if 
they are negative. 

• Then the program computes 64-bit unsigned division presented in Chapter 9.8. 
• At the end, the program adjusts the quotient and remainder based on the sign of 

the dividend and divisor. 

, Signed 64-bit division algorithm: (rl:re)/(r3:r2) 

; Inputs: 
Dividend (64 bits): rl:re 

; Divisor (64 bits): r3:r2 
; Return: 

Quotient (64 bits): rl:re 
Remainder (64 bits): r3:r2 

signed_64_mul PROC 
EXPORT signed_64_mul 

PUSH {r4, lr} 



9.9 - 64-bit Signed Division 

ASRS r4, rl, #1 

EOR r4, r4, r3, LSR #1 

J If rl >= e and r3 >= e, 
; If rl >= e and r3 < e, 
; If rl < e and r 3 >= e, 
J If rl < e and r3 < e, 

, if rl >= e, r4[31:3e) = ee; 
, otherwise r4[31:3e) = 11 

, if r3 >= e, shift result[31:3e) = ee; 
, otherwise shift result{31:3e) el 

r4[31:3e) (ee)"'(ee) ee 
r4[31:30} (ee)"'(el) 01 
r4[31:3e) (ll}"'(ee) 11 
r4{31:3e] (ll}"'(el) 10 

J Bit r4[31) represents whether dividend >= 0 
j Bit r4{30} represents whether dividend and divisor 
J are both positive or both negative 

J Convert dividend (rl:re) to a positive number if it is negative 
BPL Testl J check whether dividend >= e, 
RSBS r0, r0, #0 J if dividend < e, re = -re 
RSB rl, rl, #0 , if dividend < e, rl = -rl 
SUB LO rl, rl, #1 , check if borrow occurs, LO = Unsigned 

J Convert divisor(r3:r2) to a positive number if it is negative 

Lower 

Testl TST r3, r3 J check whether divisor >= e; bitwise AND 
BPL uldiv , branch if positive or zero 
RSBS r2, r2, #0 J if divisor is negative, 
RSB r3, r3, #0 , if divisor is negative, 
SUB LO r3, r3, #1 J check if borrow occurs 

; Perform unsigned division (rl:re)/(r3:r2) 
; The algorithm is discussed in Chapter 9.8. 

uldiv BL unsigned_division_64_bits 

; If dividend and divisor are not both positive or both 
J then convert the quotient to a negative number 

Test2 TST r4, #0x40000000 J check bit r4[3e] 
BEQ Test3 ; branch if ZERO is set 

; i.e., branch if dividend 
RSBS r0, r0, #0 ; re = -re 
RSB rl, rl, #0 J rl = -rl 
SUB LO rl, rl, #1 check if borrow occurs 

; If dividend (rl:re) < e, 
to a negative number 

r2 -r2 
r3 -r3 

negative, 

>=e 

Test3 
; then convert the remainder 
TST r4, #0x80000000 
BEQ exit 

, check bit r4{31} (i.e., sign bit) 
; branch if ZERO is set 

RSBS r2, r2, #0 
RSB r3, r3, #0 
SUBLO r3, r3, #1 

exit POP {r4, pc} 
ENDP 

; r2 = -r2 
; r3 = -r3 
; check if borrow occurs 

Example 9-9. Implementation of 64-bit unsigned integer division 



64-bit Data Processing IJD 

9.10 Exercises 

1. LORD and STRD can load and store two registers from memory, respectively. They 
load or store 64-bit numbers conveniently and efficiently. They take only one 
memory cycle if the destination memory address is a multiple of 8. 

Load registers with two words 
LORD Rtl, Rt2, [Rn, #offset] Rtl +- mem[Rn + offset], 

Rt2 +- memf Rn + offset + 41 
Store registers with two words 

STRD Rtl, Rt2, [Rn, #offset] mem[Rn + offset] = Rtl 
mem[Rn + offset + 4] = Rt2 

Assume r0 = 0x20008000, find out the value in register r0, r3, and r4 in the 
following instructions. These instructions run independently, i.e., they are not 
part of a program. 

(1) LDRD r3, r4, [r0], #8 
(2) LORD r4, r3, [r0, #8] 
(3) LORD r3, r4, [r0, #8] ! 

Memory Address 
0x2000800C 
0x20008008 
0x20008004 
0x20008000 

Memory Data 
0x44444444 
0x33333333 
0x22222222 
0xllllllll 

2. Implement the following function in assembly, which returns 2a + 2b. 

int64_t doublesum(int64_t a, int64_t b) 

3. Write an assembly program that compares two 64-bit signed integers. 

int8_t compare64(int64_t a, int64_t b) 

The return value of is as follows: 

l
-1 

return value = o'. 
1, 

a<b 
a=b 
a>b 

4. Write an assembly program that compares two 64-bit unsigned integers. The 
return value is the same as Question 3. 

int8_t compare64(uint64_t a, uint64_t b) 

5. Write an assembly program that calculates the number of leading ones in a 64-bit 
integer. 



WjEI 9.10 - Exercises 

6. Write an assembly program that performs 64-bit rotation right. 

7. Write an assembly program that calculates the sum of an array of 64-bit integers. 

8. Write an assembly program that multiplies a 32-bit unsigned integer and a 64-bit 
unsigned integer. The product is limited to 64 bits. 

9. Write an assembly program that divides a 64-bit unsigned integer and a 32-bit 
unsigned integer. The quotient is restricted to 32 bits. 

10. Write an assembly program that uses the subtraction-based Euclid's algorithm to 
compute the greatest common divisor of two 64-bit integers. 

uint64_t gcd(uint64_t a, uint64_t b) { 
while (a != b) { 

if (a > b) 
a a - b• J 

else 
b b - a; 

} 
return a; 

} 

11. Implement the following in assembly to add two 128-bit unsigned numbers. 

void add_128( uint64_t *sum_upper64, uint64_t *sum_lower64, 
uint64_t inl_upper64, uint64 t inl_lower64, 
uint64 t in2_upper64, uint64_t in2_lower64) 

12. Implement the following in assembly to subtract two 128-bit signed numbers. 

void sub_128( int64_t *diff_upper64, int64 t *diff_lower64, 
int64_t inl_upper64, int64 t inl_lower64, 
int64 t in2_upper64, int64_t in2_lower64) 

13. Implement the following in assembly to run logic shift left on a 128-bit integer. 

void LSL_128( uint64_t *out_upper64, uint64_t *out_lower64, 
uint64_t in_upper64, uint64_t in_lower64, 
uint32_t shift) 

14. Implement the following in assembly to run logic shift right on a 128-bit integer. 

void LSR_128( uint64 t *out_upper64, uint64_t *out_lowe r64, 
uint64_t in_upper64, uint64 t in_lower64, 
uint32_t shift) 



Mixing C and Assembly 1)4W 

CHAPTER 

10 

Mixing C and Assembly 
Occasionally it is required to write a program in both C and assembly language. There 
are several possible reasons. 

• First, an experienced programmer might want to optimize a performance-critical 
function manually in assembly, instead of relying on compilers. Many profiling 
tools can identify the most time-consuming functions . However, compilers often 
have limited intelligence in optimizing these functions. A handcrafted assembly 
code can out-perform high-level languages, such as C. 

• Second, writing a program in assembly allows a programmer to use processor
specific instructions. For example, a test-and-set atomic assembly instruction can 
implement locks and semaphores. Another example is that most C compilers do 
not use some operations available on Cortex-M processors, such as ROR (rotate 
right) and RRX (rotate right extended). 

• Third, assembly programs can directly access hardware, which is especially 
useful for device drivers and processor booting code. 

The embedded application binary interface (EABI) 
briefly introduced in Chapter 8.2 defines low-level 
standards of interfacing program modules that are 
compiled separately, no matter whether these 
modules are written in C or assembly. The EABI 
specifies (1) standards for data types, data 
alignments, and executable file formats, and (2) 
conventions for function calls, parameter passing, 
registers usage, and stack frame. If a program is 
written in C, compilers ensure that these standards 
are followed strictly. However, if a program is 

"The good thing about 
standards is that there are 
so many to choose from." 

Andrew Tanenbaum, 
famous computer scientist 

I 



mJrl 10.1 - Data Types and Access 

developed in assembly, it is the programmer's responsibility to adhere to these standards. 
The standard allows programmers to mix C and assembly in the application. 

10.1 Data Types and Access 
While the size of a basic data type in the C language depends on the compilers and 
platforms, the following table lists the typical size of commonly used data types in the C 
language. 

Data Type 
Size 

Alignment Data Range 
(bits) 

bool 8 byte 0 or 1. Bits 1 - 7 are ignored 
char 8 byte -128 to 127 (signed), or 0 to 255 (unsigned) 

int 32 word 
-2,147,483,648 to 2,147,483,647 (signed), or 
0 to 4,294,967,296 (unsigned) 

short int 16 halfword -32,768 to 32,767 (signed), or 0 to 65,536 (unsigned) 
long int 32 word same as int 

-9,223,372,036,854,775,808 to 
long long 64 word 9,223,372,036,854,775,807 (signed), or 

0 to 18,446,744,073,709,551,616 (unsigned) 
float 32 word +/- (1.4023 x 1045 to 3.4028 x 10+38) , always signed 
double 64 word +/- (4.9406 x lQ-324 to 1.7977 x 1Q30B), always signed 

long 
96 word Enormous range double 

pointer 32 word 0 to 4,294,967,296 
Table 10-1. Data size and alignment of basic data types in C 

10.1.1 Signed or Unsigned Integers 
When programming in an assembly language, it is the programmer's responsibility to 
interpret whether a data item is signed or unsigned. For example, when loading an 8-bit 
data into a 32-bit register, the program should use LDRSB (load register with signed byte) 
to access a signed character and LDRB (load register with byte) to retrieve an unsigned 
character. 

• LDRSB loads a byte from memory into a register and performs sign extension. The 
sign extension duplicates the sign bit of the 8-bit data to all bits at the most 
significant side of a register to preserve the positive or negative sign. 

• LDRB loads a byte from memory into a register and simply pads the left of the 
register with zeros. 

For example, when a program loads an 8-bit binary data 0x88 ( + 136 for unsigned or -120 
for signed) from memory into a 32-bit register, should the register be 0xFFFFFF88 or 



Mixing C and Assembly IJB 

0x00000088? It depends on the programmer's intention. If these 8 bits represent a signed 
number, LDRSB should be used to preserve the sign. If they represent an unsigned number, 
LDRB should be utilized. Similarly, LDRSH (load register with signed halfword) and LDRH 

(load register with halfword) bring a 16-bit signed and unsigned number into a register, 
respectively. Table 10-2 summarizes these load instructions. 

Variable Instruction Description 
Sign 

Extension 
unsigned char LDRB Load register with byte No 
unsigned short LDRH Load register with halfword No 
unsigned/signed int LOR Load register with word No 
char LDRSB Load register with signed byte Yes 
short LDRSH Load register with signed halfword Yes 

Table 10-2. ARM assembly instructions for accessing various basic integer data types 

Correspondingly, STRB (store register byte) and STRH (store register halfword) store either 
a signed number or an unsigned number into the memory. Loading or storing a 32-bit 
integer does not need to take care of the sign because each register has the same number 
of bits as the integer. 

A 64-bit integer takes two registers, and it can be loaded by using two separate LDR 

instructions or a single LORD (load registers with double words). 

C Program Assembly Program 

LDR r3, =X J Load memory address of x 

signed long long x -1; 
LORD r0, rl, [r3] ; re Lower word, rl higher word 

= 

x DCW 0xFFFFFFFF, 0xFFFFFFFF ; allocate 8 bytes 

Example 10-1. Loading a 64-bit integer from the memory 

10.1.2 Data Alignment 
Most computer systems have some alignment requirement on the starting memory 
address of a variable. The memory address of a C variable often must be aligned, as listed 
in Table 10-1. The smallest unit exchanged between the processor and the memory is a 
byte (8 bits), and thus the memory address is always in terms of bytes. 

A variable is n-byte aligned in memory if its starting memory address is some multiple of n. 
Typically, n is a power of 2, such as 2 (halfword aligned), 4 (word aligned), and 8 (double 
word aligned). Suppose a 32-bit variable is word aligned. If the address of the next 
available byte in memory is 0x8001, the variable is then stored in a continuous span of 4 
bytes from 0x8004 to 0x8007. The compiler or the program inserts three meaningless 



W)l:I 10.1 - Data Types and Access 

bytes at memory addresses 0x8001, 0x8002, and 0x8003. These three bytes are called 
padding bytes. 

Enforcing data alignment is to improve the memory performance. A memory system 
consists of multiple storage units, and the processor typically distributes data among 
these units in a round-robin fashion. Because the number of pins available on a processor 
is limited, these memory units typically share some pins in the memory address bus. To 
allow these memory units to transfer data concurrently, the target data stored in all 
memory units needs to share a portion of their memory addresses. The data alignment 
ensures that all data of a variable stored in different memory units meet this requirement. 
When the processor reads a properly aligned variable, only one access is required to 
transfer the data out of these memory units. Otherwise, two separate memory accesses 
might be necessary, slowing down the processor performance. 

I· a bits .. 
1 

Row Number Bank 0 

r + s 

r + 4 

3•d Access __ ...._ r + 3 

r + 2 

2"d Access __ ...._ r + 1 

1•1 Access - _ _.. r 

0xll 

0x78 

} s 

Bank 1 

0x22 

0x12 

}s 

Bank 2 

0x33 

0x34 

}s 
'}32 

Processor 

Bank 3 

0x44 

0x56 

"' "'8 

Memory 
Address 

4x + 20 

4x + 16 

4x + 12 

4x + 8 

4x + 4 

4x 

Figure 10-1. Loading unaligned data 0x78563412 takes two accesses even if the processor 
allows unaligned memory accesses. Loading aligned data 0x44332211 takes only one access. 

As shown in Figure 10-1, the data memory is organized into four banks, and these banks 
can feed the 32-bit data bus. Four bytes in the same row of all banks can be loaded into 
the processor concurrently. In this example, data 0x78563412 is not aligned with word 
boundaries, and the processor takes two memory accesses to load the data 0x78563412 
to a register. However, it takes only one memory access to load data 0x44332211. 

As introduced in Chapter 3.6, the " ALIGN" directive gives data alignment requirements 
to compilers. The syntax is " ALIGN boundary, offset". The boundary is any power of 
2. The default boundary is 4, making the next variable align to a word boundary . The 
offset specifies how many bytes the next variable should start from the word boundary. 
The default offset is 0. 



AREA myData, DATA, ALIGN=2 
; word aligned 

a DCB 0xll 

ALIGN 4 
; word aligned 

b DCD 0x12345678 

ALIGN 4,3 
; word aligned with an offset of 3 

c DCB 0x22 

ALIGN 4,2 
; word aligned with an offset of 2 

d DCW 0xAABB 

Mixing C and Assembly 1)41 

8 bits 

0x2000000E 0xBB d 
0x2000000F 0xAA ~ 

0x2000000D 1---------1 

offset = 2 
0x2000000C 

0x2000000B 

0x2000000A 

0x20000009 

0x22 

1-------1 
0x20000008 

1-------1 
0x20000007 0x12 

1----- --1 
0x20000006 0x34 

1-------1 
0x2000000s 0x56 

1---------1 
0x20000004 0x78 

1---------1 
0x20000003 

0x20000002 

0x20000001 

0x20000000 0xll 

c 

offset= 3 

b 

a 

Figure 10-2. Memory layout 

10.1.3 Data Structure Padding 
A data structure defined in C language aggregates multiple basic variables into a single 
complex entity. By default, compilers ensure that all variables in a structure are aligned 
to their required memory boundaries. In a structure array, compilers also ensure that all 
variables in this array meet their alignment requirements. Therefore, compilers may 
place padding bytes between structure variables. 

C language also supports packed structures in which variables are not aligned. Therefore, 
compilers do not add any padding bytes into a data structure. Packed structures are often 
used in communication protocols (such as USB) to save transmission time. 

Figure 10-3 and Figure 10-4 compare the memory layout of an unpacked structure 
defined in Example 10-2. 

Unpacked Structure Packed Structure 

struct Position { _packed struct Position { 
char x· , char x· , 
char y; char y; 
char x; char x; 
int time; int time; 
short scale; short scale; 

} array[2]; } array[2]; 

Example 10-2. Comparison of unpacked and packed structure in C 



10.1 - Data Types and Access 

address+ 23 

address+ 22 

address+ 21 

address+ 20 

address+ 19 

address+ 18 

address + 17 

address+ 16 

address + 15 

address+ 14 

address+ 13 

address+ 12 

address+ 11 

address+ 10 

address+ 9 

address+ 8 

address+ 7 

address+ 6 

address+ 5 

address+ 4 

address+ 3 

address+ 2 

address+ 1 

address 

8 bits 

0x00 

0x00 

0x00 

0x00 

0x00 

0x00 

> padding 

> scale 

< 

> time 

r- padding 

I-+ x 

I-+ y 

I-+ x 
~ 

). padding 
~ 

> scale 
< 

> time 

_, 

-+ padding - x 

I-+ y 

I-+ x 

array[1] 

array[O] 

Figure 10-3. In an unpacked structure, variables 
are aligned. Specifically, the integer variable 

and the structure are aligned in words. 

8 bits 

address+ 17 

address+ 16 

address+ 15 

address+ 14 

address+ 13 

address+ 12 

address+ 11 

address+ 10 

address+ 9 

address+ 8 

address+ 7 

address+ 6 

address+ 5 

address+ 4 

address+ 3 

address+ 2 

address+ 1 

address 

> 

I-+ 

I-+ 

I----+ 
' 

-< 

---

scale 

time 

x 
y 

x 

scale 

time 

x 
y 

x 

array[1] 

array[O] 

Figure 10-4. In a packed structure, variables 
are not aligned. Cortex-M processors 
support unaligned access in LDR/STR, 

LDRT/STRT, LDRH/STRH, and LDRHT/STRHT. 

In Figure 10-3, the compiler inserts three padding bytes into the structure position. 

• The first padding byte is added after variable x to make the next integer variable 
time aligned to some word boundary. 

• In a structure array, the compiler also ensures that all variables in this array meet 
their alignment requirements. Therefore, two additional bytes are added at the 
end of the data structure, making the size of the Position structure a multiple of 
four. This padding also makes the variables in this array, particularly the time 
variable, align properly. 

In fact, two structure definitions give below are equivalent. Compilers allocate proper 
padding bytes in an unpacked structure. 



struct Position { 
char x; 
char y; 
char x; 
int time; 
short scale; 

} array[2]; 

Equivalent 

<==> 

Mixing C and Assembly DI 

struct Position { 
char x; 
char y; 
char x; 
char padding_l; 
int time; 
short scale; 
char padding_2[2]; 

} array[2]; 

Example 10-3. Compiler inserts three padding bytes to an unpacked structure 

In Figure 10-4, the Position structure uses the type modifier "_packed" to the compiler 
to produce an unaligned memory layout. Specifically, the integer variable time is not 
aligned to a word boundary, and the short variable scale is not aligned to a halfword 
boundary. Therefore, there is no padding between structure members or at the end of the 
structure. The _unpack modifier is often used to map a structure to a special data area 
in memory, such as a USB communication package received in a memory buffer. 

Programs often do not use packed structures. No ARM processors released before ARM
V6 support unaligned memory accesses. The instruction "LDR rl, [ r0] " would generate 
an alignment exception if the memory address stored in r0 were not a multiple of four. 
The Cortex-M processors do support unaligned memory accesses. However, unaligned 
accesses are still slower than aligned memory accesses, and thus it is recommended to 
avoid using unaligned accesses. 

Packed structures and unpacked structures are not compatible with each other. We 
cannot assign or cast one to the other. The only way to assign a packed structure to an 
unpacked structure is to copy all structure members one by one. 

Suppose we want to set array[e]. time to 1234. Example 10-4 compares the assembly 
codes that update the time variable of the unpacked and packed structure respectively. 

Unpacked Structure Packed Structure 
LDR r0, =array ; Load base address LDR r0, =array ; Load base address 
LDR rl, [r0, #4] , array[e].time LDR rl, [r0, #3] , array[e).time 
LDR r2, #1234 , pseudo instruction LDR r2, #1234 ; pseudo instruction 
STR r2, [r0, #4] ; array[e].time STR r2, [r0, #3] , array[e].time 

Example 10-4. Accessing members of an unpacked and packed structure in assembly 

In the unpacked structure, the access to array[e]. time is aligned. However, in the 
packed structure, the access is misaligned. Even though the misaligned accesses "LDR rl, 
[r0, #3] " and "STR r2, [r0, #3]" are supported in Cortex-M, their access speed is 
slower than the aligned accesses " LDR rl, [r0, #4]" and "STR r2, [r0, #4] ". 



MJJI 10.2 - Special Variables 

10.2 Special Variables 
This section discusses two special types of variables in C: static variables and volatile 
variables. 

10.2.1 Static Variables 

A static variable is 
initialized only once. 
Its lifetime is across 
its entire program 
runtime. 

.: 

! 

.: 

:i 

Different from local variables, a static C variable has 
a lifetime over the entire program runtime. A static 
variable declared within a C function is initialized 
only once at the compiling time no matter how many 
times this function is called. This static variable is 
visible only inside this function. 

A static variable can be either global or local. A static 
local variable can only be visitable or available within 
the scope of the function in which this variable is 
declared. A static global variable can only be accessed 
within the source file in which it was declared, and 
other source files cannot access it. 

A static variable is preferred to a global variable in C 
because a local or global static variable has a narrower 
access range. A program should avoid global variables 
whenever possible. A global variable is accessible to all 
source codes in all files . The biggest problem of using 
global variables is that they create hidden coupling 
between different software modules that is hard to identify 

Always avoid 
global variables. 

1: 

~"='~~~~~~~~"'l!!"'"I 

and understand, thus increasing the risk of software bugs. Because of the implicit 
interference caused by global variables, a bug in one software module might cause the 
failure of another seemingly-unrelated module, making the debug process difficult. 

One effective way to avoid global variables is to use static variables. As shown in 
Example 10-5, the counter is declared as a global static variable, instead of a global 
variable. Therefore, the counter can only be accessed within that source file . Codes in 
other source files cannot access the counter variable. 

If a global variable is only accessed by one subroutine, the program may declare this 
variable as a local static variable within that subroutine. The access scope of a local static 
variable is the subroutine that declares it. When that subroutine is called successively, 
the value of the local static variable is retained. 



Mixing C and Assembly IJM 

static int counter = 0; 

void increase(void){ 
counter++; 

} 

void decrease(void){ 
counter--; 

} 

Example 10-5. Example of using a global static variable 

Example 10-6 and Example 10-7 compare how a local static variable and a local regular 
variable are accessed in assembly. All static variables are allocated in the data memory. 
However, a local variable is often stored in a register or the heap region of the data 
memory. A static variable is always loaded from memory first and then is stored back to 
the memory before exiting the subroutine. Therefore, if the subroutine is called again, the 
static variable keeps its previous value, instead of its initial value. 

Example of a local non-static variable 

C Program Assembly Program 
int foo(); AREA static_demo, CODE 

EXPORT main -
ALIGN 
ENTRY 

int main(void) { - main PROC 
int y; BL foo ; re = 6 

y = foo(); II y = 6 BL foo ; re = 6 

y = foo(); II y = 6 BL foo ; re = 6 

y = foo(); II y = 6 stop B stop 
while(l); ENDP 

} 

int foo() { foo PROC 
int x = 5; II x is a Local variable MOV r0, #5 
x = x + 1; ADD r0, r0, #1 
return(x) BX lr 

} ENDP 
END 

Example 10-6. If x is not declared as static, Joo() always returns the same value. 

In the program given in Example 10-6, variable x is not declared as static. Thus, Joo returns 
the same value each time it is called. From the assembly implementation, we can notice 
that the local variable x is always reinitialized when Joo is called. Plus, in this example, x 
is stored in a register, and its value is lost (not saved in the data memory) after Joo exits. 



10.2 - Special Variables 

Example of a local static variable 

C Program 
int foo(); 

int main(void) { 
int y; 
y = foo(); II y = 6 
y = foo(); II y = 7 

y = foo(); II y = B 
while(l); 

} 

int foo() { 

II Local static variable 

} 

II x is initialized only once 
static int x = 5; 

x = x + 1; 
return(x) 

Assembly Program 
AREA myData, DATA 
ALIGN 
II Reserve space for x 

x OCO 5 

main -

stop 

foo 

AREA static_demo, CODE 
EXPORT _main 
ALIGN 
ENTRY 

PROC 
BL foo , re = 6 
BL foo , re = 7 

BL foo ; re = 8 
B stop 
ENDP 

PROC 
; Load address of x 
LOR rl, =X 
; Load value of x 
LOR r0, [rl] 
ADD r0, r0, #1 
; save value of x 
STR re, [rl] 
BX lr 
ENDP 
END 

Example 10-7. When xis declared as static, the Joo() function returns different values. 

In the program given in Example 10-7, variable x is declared as static locally within the 
Joo function. 

• The local static variable x is only initialized once. The initialization is carried out 
at compile time instead of at runtime. As you see from the assembly code, the 
variable is defined in the data region with an initial value of 5. No matter how 
many times Joo runs, variable x is never re-initialized. 

• When Joo needs to increase the value of the local static variable x, the value of 
variable x is read from memory at the beginning of Joo and is saved into the 
memory before Joo exits. Therefore, Joo returns a different result each time it runs. 
On the contrary, Joo in Example 10-6, in which x is not static, always returns the 
same value. 



Mixing C and Assembly l)jej 

Example 10-8 gives another example of using static variables. The program uses the static 
variable sum to check whether an integer number is a palindrome number. A palindrome 
number remains the same if all digits are reversed. 

C Program Assembly Program 
int isPal(int); AREA myData, DATA 

ALIGN 
sum DCD 0 

AREA palindrome, CODE 
EXPORT main -int main(){ ALIGN 

int n; ENTRY 
n = isPal(12321); main PROC 
while(l); -

LDR r0, =12321 
} BL isPal 

stop B stop 
ENDP 

II Check palindrome number ; Recursively check palindrome 
int isPal(int n){ is Pal PROC 

static int sum = 0; PUSH {r4, lr} 
int r; MOV r4, r0 
if(n!=0) { CBZ r4, done ; if n is e, done 

MOV r2, #10 
SDIV rl, r4, r2 ; r1 = nlW 

r = n % 10; MLS r3, rl, r2, r4 ; r3 = n - r1 * W; 
LOR rl, =sum 
LOR rl, [rl] ; r1 = sum 
ADD rl, rl,rl,LSL #2 ; rl = 5*sum 
ADD rl, r3,rl,LSL #1 ; sum = sum*10+r; 
LDR r2, =sum 

sum = sum*10 + r; STR rl, [r2] ; save sum 
MOV r2, #10 
SDIV r0, r4, r 2 ; re= nlW 

isPal (n/10); BL is Pal ; recursive call 

} done LOR rl, =sum 
LOR rl, [rl] 

CMP rl, r4 
BNE no 

if (sum == n) yes MOV r0, #1 ; if palindrome 
return 1· J B exit 

else no MOV r0, #0 ; if not palindrome 
return 0; exit POP {r4, pc} 

} ENDP 
END 

Example 10-8. Using a local static variable sum in a function 



•>• 10.2 - Special Variables 

10.2.2 Volatile Variables 
When the compiler optimizes a C program, a 
hard-to-find hidden error is that the program 
mistakenly reuses the value of a variable 
stored in a register, instead of reloading it from 
memory each time. To avoid such compilation 
error, the program should declare the variable 
as volatile, such as: 

volatile int variable; 

The keyword volatile forces the compiler to 
generate an executable, which always loads 
the variable value from the memory whenever 
this variable is read, and always stores the 
variable in memory whenever it is written. 

A volatile variable is a 
variable that may be changed 

by an external input or an 
interrupt hander. Therefore, the 

processor should not use a 
register to cache this variable 

to avoid using stale data. 

Example 10-10 gives a simple example to illustrate the necessity of declaring a variable 
counter, shared by two concurrently running tasks (main function and SysTick_Handler), 

as volatile. In this example, the main program uses the SysTick to implement a time delay. 
It sets up the SysTick timer and then waits until the SysTick interrupt service routine 
reduces the counter to 0. The SysTick decrements the counter by one when a system timer 
interrupt occurs. Chapter 11.7 gives the implementation of SysTick_Init(). 

Main Program (main.c) Interrupt Service Routine (isr.s) 
//volatile uint32_t counter; II correct AREA !SR, CODE, READONLY 
uint32_t counter; II incorrect IMPORT counter 
extern void task(); ENTRY 
extern void SysTick_Init(); 

SysTick_Handler PROC 
int main(void) { EXPORT SysTick_Handler 

counter = 10; LDR rl, =counter 
SysTick_Init(); LDR r0, [rl] , Load counter 
while(counter ! = 0); II Delay SUB r0, r0, #1 , counter--
II Continue the task STR r0, [rl] save counter , 
while(l); BX LR ; exit 

} ENDP 
END 

Example 10-9. A C variable is not declared as volatile while it should be. 

Compilers often attempt to optimize the program, but sometimes can cause troubles. The 
compiler observes that, after the counter is initialized to 10, the value of the counter 
variable is not modified directly by main() or indirectly by any subroutine called from 
main(). Loading data from memory is much slower than retrieving data from registers. 

,;1 

' 

Ii 

I: 
I: 
. 

I' 



Mixing C and Assembly IJM 

Therefore, the compiler may choose to reuse the value of the counter stored in a register, 
instead of fetching the counter value again from memory, when the counter is accessed 
in the while loop. Example 10-10 compares the assembly program generated by the 
compiler when the counter variable is declared as volatile or non-volatile. 

• If the counter is not declared as volatile, the while loop is a dead loop. 
SysTick_Handler periodically decrements the counter and stores its value in 
memory. However, the main program repeatedly checks register r0, without 
reloading the latest value of the counter from memory. 

• If the counter is declared as volatile, the dead loop problem is avoided. 

If counter is not declared as volatile If counter is declared as volatile 
main PROC main PROC - -

LOR rl, =counter LOR rl, =counter 
MOV r0, #10 MOV r0, #10 
STR r0, [rl] STR r0, [rl] 
BL SysTick_Init BL SysTick_Init 

wait CMP re, #0 , re does not hold wait LOR rl, =counter 
; Latest counter value LOR re, [rl] 

BNE wait , Thus, a dead Loop CMP r0, #0 
stop B stop BNE wait 

ENOP stop B stop 
ENOP 

Example 10-10. Comparison of assembly instructions generated by the compiler when the 
counter variable is declared as volatile and non-volatile. 

AC program should declare any variable that represents the data of a memory-mapped 
I/O register as volatile. Memory-mapped I/0 has been widely used to access peripheral 
devices. Data and control registers of external devices are mapped to specific memory 
addresses, and a program can use memory pointers to access these hardware registers, 
such as the following C statement. 

uint32_t *p = (uint32_t *) 0x60002400; 

To prevent the compiler from optimizing out these memory pointers incorrectly, 
software must declare these pointers as volatile. The following example uses a memory 
pointer to access a 32-bit hardware register mapped to the memory address 0x60002400. 

volatile uint32_t *p = (uint32_t *) 0x60002400; 

In sum, a variable should be declared as volatile to prevent the 
compiler from optimizing it away when (1) this variable is updated 
by external memory-mapped hardware, or (2) this variable is global 
and is changed by interrupt handlers or by multiple threads. 



10.3 - Inline Assembly 

10.3 Inline Assembly 
A block of assembly code, called inline assembly, can be directly embedded in a C 
program. It is convenient for programmers because it does not require different assemble 
and link processes. Another advantage of inline assembly is that it can flexibly access C 
variables without export and import operations, which would be needed if the assembly 
code were written as an assembly subroutine. 

10.3.1 Assembly Functions in a C Program 

When a C program declares a 
function with "_asm", the 
assembly code in this function 
has to preserve the 
environment. 

When a block of assembly code 
is embedded within a function 
by using "_asm", the 
assembly code does not need to 
preserve the environment. 

- asm int sum4(int a, int b, 

A C program can have inline assembly by 
using the "_asm" keyword. It has two 
different uses. The first is to specify a 
function that is implemented in assembly 
completely. The second is to specify multiple 
lines of assembly code within a C function. 

When a function is declared with "_asm", 

the assembly implementation must preserve 
!'. the runtime environment via the stack and 

recover the environment before exiting from 
the subroutine. The assembly code can 
directly access the registers and must follow 
the procedure call protocol. Example 10-11 
and Example 10-12 use "_asm" to 
implement a C function in assembly. 

int c, int d){ 
; arguments stored in re, rl, r2, r3 
PUSH {r4, lr} , preserve environment i.n stack 
MOV r4, r0 ; re = 1st argument 
ADD r4, r4, rl ; rl = 211d argument 
ADD r4, r4, r2 ; r2 = 3rd argument 
ADD r0, r4, r3 ; r3 = 4th argument, re = return 
POP {r4, pc} , recover environment from stack 

} 

int main (void){ 

} 

int s = sum4(1, 2, 3, 4); 
while(l); 

Example 10-11. Using inline assembly to implement a subroutine that adds four integers. 



char a[25] ="Hello!"; 
char b[25]; 

void strcpy(char *src, char *dst){ 

Mixing C and Assembly llJD 

_asm 
loop LDRB r2, [ r0], #1 ; 1st argument, re = src, post-index 

STRB r2, [ rl], #1 ; 2nd argument, rl = dst, post-index 
CMP r2, #0 
BNE loop 
BX lr 

} 

int main(void){ 
strcpy(a, b); 
while(l); 

} 

Example 10-12. Using inline assembly to copy a string. 

When a function is declared with "_asm", the compiler only creates the interface of this 
function and does not provide any actual implementation. Therefore, Example 10-11 uses 
PUSH and POP to preserve and recover the running environment of the caller. 

10.3.2 Inline Assembly Instructions in a C Program 
When "_asm" is used to declare a block of assembly instructions in a C function, the 
assembly code cannot access registers and does not need to preserve the runtime 
environment in the stack. The compiler automatically generates necessary code to 
preserve the environment. 

Additionally, the assembly code treats each C variable as a register. These C variables are 
called virtual registers, and they can be accessed in assembly instructions. Compilers 
replace virtual registers with real registers. 

Also, the comments of the assembly code should be in C style. Example 10-13 has a block 
of assembly instructions in a C function. 

int sum4(int a, int b, int c, int d){ 
int t; 

} 

_asm { 

} 

ADD t, a, b; II t, a, and b are virtuaL registers 
ADD t, c; II Cannot directLy access re - r15 
ADD t, d; 11 Must use comment sty Le of C 

return t; 

int main (void){ 

} 

int s = sum4(1, 2, 3, 4); 
while(l); 

Example 10-13. Using "_asm" to declare a block of assembly instructions in a C function. 



Wj1i 10.4 - Calling Assembly Subroutines from a C Program 

10.4 Calling Assembly Subroutines from a C Program 
A large software project often has its program code saved in multiple small source files, 
instead of a single monolithic file. This technique not only improves the software 
modularity and maintainability, but also reduces the compilation time. These files can be 
compiled separately so that unmodified files do not need to be recompiled. 

This section shows how a C program calls assembly subroutines, which are stored in a 
different source file. 

• The assembly code must use the directive " EXPORT" or "GLOBAL" to make all 
variables or subroutines that are accessed in the C program as global. These 
directives make subroutine names visible outside this source code module. 
Consequently, the compiler can locate them when linking the object files 
generated from their source codes. 

• The C program must declare these functions by using the keyword "extern". 

10.4.1 Example of Calling an Assembly Subroutine 
In the following example, the C program calls the assembly subroutine strlen, which 
calculates the length of a string. The C program and the assembly program are in two 
separate source files: main.c and strlen.s. 

C Program (main.c) Assembly Program (strlen.s) 
AREA stringLength, CODE 

char str[25] ="Hello!"; EXPORT strlen ; make strlen visible 
ALIGN 

extern int strlen(char* s); strlen PROC 
PUSH {r4, lr} ; preserve r4 and Lr 

int main(void){ MOV r4, #0 ; initialize Length 

} 

int i; loop LDRB rl, [r0, r4] , re = string address 
i = strlen(str); CBZ rl, exit ; branch if zero 
while(l); ADD r4, r4, #1 ; Length++ 

B loop ; do it again 
exit MOV r0, r4 ; place result in re 

POP {r4, pc} ; exit 
ENDP 

Example 10-14. AC program calls an assembly routine stored in a different file. 

• The assembly subroutine follows the procedure call protocol defined in ARM 
embedded application binary interface (EABI) and assumes that argument str is 
passed in register r0. Furthermore, the caller expects that the assembly subroutine 
returns a 32-bit result in register r0 and a 64-bit result in registers rl:r0. 



Mixing C and Assembly IJll 

• The C program declares the assembly function to be called by using the keyword 
"extern" to inform the compiler that the implementation of this function is in 

another file. 
• The assembly subroutine uses " EXPORT strlen" to make the symbol strlen 

visible to the linker. Note all symbols are case-sensitive. 

10.4.2 Example of Accessing C Variables in Assembly 
An assembly program can access global variables defined in a C program or a separate 
assembly source file. When an assembly program accesses a global variable defined 

elsewhere, it needs to import that variable name by using the directive " IMPORT". An 
imported variable name, or called a symbol, is resolved at link time. In the following 
example, the C program declares the global variable counter. The assembly code uses 
" IMPORT counter" to access this global variable. 

C Program (main.c) Assembly Program (count.s) 
int counter; AREA count, CODE 

IMPORT counter 
extern int getValue(); ALIGN 
extern void setValue(int c); 

setValue PROC 
void increment(); EXPORT setValue 

LDR r l, =counter 
int main(void) { STR r0, [rl] 

int c = 0; BX lr 
setValue(l); ENDP 
increment(); 

getValue PROC c = getValue(); 
while(l); EXPORT getValue 

} LDR rl, =counter 
LDR r0, [rl] 

void increment(){ BX lr 

counter += 1; ENDP 

} 
increment PROC 

EXPORT increment [WEAK] 
LDR rl, =counter 
LDR r0, [rl] 
ADD r0, r0, #1 
STR r0, [rl] 
BX lr 
ENDP 
END 

Example 10-15. Example of accessing a C variable in assembly routines 

The assembly program exports the increment symbol with weak specified. By default, all 

exporting statements are strong. At the linking stage, a strongly exported symbol 



10.5 - Calling C Functions from Assembly Programs 

replaces a weakly-exported symbol of the same name. The linker reports a fatal error if 

there more than one strong instance of the same symbol name. Because the symbol 

increment is exported weakly and the one in the C program is exported strongly, the 

increment function defined in C overrides the one defined in the assembly. Thus, when 

the increment function is called, the counter variable is incremented by two, instead of one. 

10.5 Calling C Functions from Assembly Programs 
An assembly program can call functions implemented in C. The assembly program needs 
to follow the procedure call protocol defined in ARM embedded application binary 
interface (EABI). 

• Specifically, the assembly program needs to place the input arguments of a C 
function in registers r0-rl before it calls the function. 

• The assembly program also expects that the result is returned in register r0 if the 
C function returns a value less than 32 bits. 

• If the result has more than 32 bits, the result is returned in registers r0 - r4. 

10.5.1 Example of Calling a C Function 
In the following example, the assembly program calls the strlen function implemented in 
C. The C function returns the length of the string in register r0 to the assembly program. 
In the assembly code, the C function names must be imported to avoid linking errors. 

Assembly Program (main.s) C Program (strlen.c) 
AREA my_strlen, CODE 
EXPORT main -
IMPORT strlen int strlen(char *s){ 
ALIGN int i = 0; 
ENTRY 

while( s[i] != '\0' ) 

- main PROC i++; 
LDR r0, =Str 
BL strlen return i; 

stop B stop } 
ENDP 

AREA myData, DATA 
ALIGN 

Str DCB "12345678",0 
END 

Example 10-16. Example of an assembly program that calls a C subroutine 



Mixing C and Assembly DI 

If "WEAK" is specified in the import directive, the linker does not produce any error if the 
symbol is not defined externally. Instead, the linker then replaces the symbol with zero 
or some appropriate value. For example, if the label is not defined in the project, the 
linker then replaces it with the address of the next instruction after the branch. 

IMPORT label [WEAK] 

B label 

Example 10-17. A symbol declared with weak prevents the linker from fatal linking error. 

10.5.2 Example of Accessing Assembly Data in a C Program 
To access variable counter defined in the assembly code, the C program has to use 
"extern int counter" . This statement is to inform the compiler that this variable is 
defined outside this C program. 

The assembly program allocates the memory space for the counter variable, and the C 

program only needs to indicate the existence of this variable without performing any 
memory allocation. Without the "extern" keyword, compilers would allocate space 
again for variable counter defined in the C program, thus producing an error of 

duplicated variables at the link stage. 

Assembly Program 

_main 

stop 

AREA main, CODE 
EXPORT main 
IMPORT getValue 
IMPORT increment 
IMPORT setValue 
ALIGN 
ENTRY 

MOVS r2, #0 
MOVS r0, #1 
BL setValue 
BL increment 
BL getValue 
MOV r2, r0 
B stop 

AREA myData, DATA 
EXPORT counter 

counter DCD 0 
END 

C Program 

extern int counter; 

int getValue() { 
return counter; 

} 

void increment() { 
counter++; 

} 

void setValue(int c) { 
counter = c; 

} 

Example 10-18. C functions access a variable defined in an assembly program. 



•»• 10.6 - Exercises 

10.6 Exercises 
1. Translate the following C statement into the assembly. 

x[l].c += 100; 

The following gives the definition the structure array x [ 2]. Assume register r0 
holds the starting address of this array. 

~packed struct X { 
uint8 t a; 
int32_t b; 
int16_t Cj 

int32_t d; 
uint8_t e; 

} x[2]; 

2. Translate the following C statement into the assembly. 

x[l].c += 100; 

The structure array is defined below. Assume register r0 contains the starting 
address of this array. 

struct Y { 
uint8_t a; 
int32_t b; 
int16_t Cj 

int32_t d. , 
uint8_t e; 

} y[2] j 

3. Write a subroutine in the assembly that removes all occurrences of a given 
character in a string. The subroutine takes two parameters: the string pointer, and 
the character to be deleted. Write a C code that calls this subroutine. The string is 
defined as global in the C code. 

4. Suppose we have the following strcat function written in C, which concatenates 
the second string to the first string. Write an assembly program that calls the strcat 
function. These two strings are defined in the data area in the assembly code. 

void strcat (char * dst, char * src) { 
while(*dst++); 
while(*dst++ = *src++); 

} 



Mixing C and Assembly IJ~W 

5. Write a subroutine swap in assembly that swaps two strings, and write a C 
program that calls the swap subroutine. These two strings are defined in the C 
program. (Hint: There is no need to swap all characters in the strings, and 
swapping the memory pointers in the assembly is sufficient.) 

6. Write an assembly program that calls the following C function that returns the 
memory address of the last occurrence of a given character in a string. 

char * search (char * s, char c) { 
char *p = NULL; 
for(; *s; s++) 

if (*s == c) 
p = s; 

return p; 
} 

7. Suppose the following structure array is defined as global in a C program. Write 
an assembly program that iterates through the array and finds the total scores. 

struct Student_T { 
char cl; 
char c2; 
int score; 
char c3; 

} students[10]; 

8. Write a subroutine max4 in assembly to find the maximum value among four 
signed integers. These integers are passed to the subroutine via registers. Write a 
C program to test the max4 subroutine. 

9. Write an assembly subroutine that checks whether a given integer is a palindrome 
number. For example, 9, 11, 1234321, 141, 1221, and 120021 are palindrome 
numbers. Write a C program that calls the assembly subroutine. The input is an 
unsigned integer. The return is 1 if the number is a palindrome and 0 if not. 

10. Identify and correct the errors in the following inline assembly program that 
calculates the sum of four integers. 

- asm int sum4(int a, int b, int c, int d) 
II arguments stored in re - r3 
MOV r4, r0 ; re = 1st argument 
ADD r4, r4, rl ; rl = 2nd argument 
ADD r4, r4, r2 ; r2 = 3rd argument 
ADD r0, r4, r3 ; r3 = 4th argument, re = return 

} 



10.6 - Exercises 

int main (void){ 

} 

int s = sum4(1, 2, 3, 4); 
while(l); 

11. Identify and correct the errors in the following inline assembly code that 
calculates the sum of four integers. 

int sum4(int a, int b, int c, int d){ 
int t; 
_ asm { 

ADD t, r0, rl; 
ADD t, r2; 
ADD t, r3; 

} 
return t; 

} 

int main(void){ 
int s = sum4(1, 2, 3, 4); 
while(l); 

} 

12. Identify and correct the errors in the following two programs. 

C Program (main.c) Assembly Program (strcpv.s) 

char src[9] = "Hello!"; AREA stringCopy, CODE 
char dst[9]; ALIGN 

strcpy PROC 
loop LDRB r2, [rl] , Load a byte, rl = *src 

int main(void){ STRB r2, [r0] ; Store a byte, re = *dst 
strcpy(dst, src); ADD rl, #1 ; Increase memory pointer 
while(l); ADD r0, #1 ; Increase memory pointer 

} CMP r2, #0 ; Zero terminator 
BNE loop ; Loop if not nuLL terminator 
ENDP 
END 



Interrupts IJD 

CHAPTER 

11 

Interrupts 
This chapter introduces the basic concepts of interrupts and interrupt service routines. We 
illustrate the programming of interrupts using the system timer (SysTick), external 
interrupts (EXTI), and software interrupts (SVC). 

11.1 Introduction to Interrupts 
An interrupt leverages a combination of software and 
hardware to force the processor to stop its current 
activity and begin to execute a particular piece of 
code called an interrupt service routine (ISR). An ISR 
responds to a specific event generated by either 
hardware or software. When an ISR completes, the 
processor automatically resumes the activity that 

An interrupt is simply a 
hardware-invoked 

function call. 

had been halted. The halted process continues as if nothing had happened. 

Interrupts are widely used to respond to both internal and external hardware requests 
efficiently. For example, interrupts can inform a program of some timely external events 
(such as pushing a button and receiving a message in a communication port). Interrupts 
allow a processor to gracefully shutdown when there are critical errors (such as memory 
access violations, and detection of undefined instructions). 

Interrupts also allow a processor to perform multiple tasks simultaneously. At any given 
time, the microcontroller is serving only one program activity. However, interrupts 
enable the processor to serve multiple computation tasks alternately in a multiplexing 
fashion. Multiple tasks can be handled in a preemptive or non-preemptive manner. 

• In the preemptive scenario, if a new task is more urgent than the current task, this 
new task can stop the current one without requiring any cooperation. The new 



Mji:I 11.2 - Interrupt umbers 

task will take over control of the processor. The processor resumes the old task 
after the new task completes. 

• In the non-preemptive scenario, a new task cannot stop the current task until the 
current task voluntarily gives up control of the processor. A non-preemptive 
system often relies on the system timer, described in Chapter 23, to serve multiple 
tasks periodically in a round-robin fashion. 

Interrupts enable a microcontroller to respond to human inputs or latency-sensitive 
events rapidly. An alternative to interrupts is busy-waiting or periodic polling. In the 
polling scheme, the processor continually queries the I/O devices to check whether a 
specific event has happened, and handles the event. The latency of detecting the event is 
determined by the polling period. In the interrupt scheme, the processor provides a 
hardware mechanism that allows an internal or external device to generate a signal to 
immediately inform the processor of events that have occurred. 

We use a telephone as an example to compare polling efficiency and 
interrupt efficiency. Suppose you are expecting a call. In the polling • 
scheme, you pick up your telephone every 10 seconds to check whether 
there is anyone on the line calling you. In the interrupt scheme, you 
continue to perform whatever tasks you are supposed to complete while 
waiting for the telephone to ring. When the telephone finally rings (i.e., you are 
interrupted), you can stop your current task and answer the phone. As you can see from 
this analogy, polling is much less efficient than using interrupts. With the polling scheme, 
you waste time that could be spent on other tasks picking up the telephone repeatedly 
without successfully receiving any calls. 

11.2 Interrupt Numbers 
Cortex-M processors support up to 256 types of interrupts. Each interrupt type, 
excluding the reset interrupt, is identified by a unique number, ranging from -15 to 240. 
Interrupt numbers are defined by ARM and chip manufacturers collectively. These 
numbers are fixed and software cannot re-define them. Interrupt numbers are divided 
into two groups. 

• The first 16 interrupts are system interrupts, also called system exceptions. 
Exceptions are the interrupts that come from the processor core. These interrupt 
numbers are defined by ARM. Specifically, the ARM CMSIS library defines all 
system exceptions by using negative values. CMSIS stands for Cortex 
Microcontroller Software Interface Standard. 



Interrupts IJ§M 

• The remaining 240 interrupts are peripheral interrnpts, also called non-system 
exceptions. The peripheral interrupt numbers start at 0. Peripheral interrupts are 
defined by chip manufacturers. The total number of peripheral interrupts 
supported varies among chips. 

This numbering scheme allows software to distinguish system exceptions and peripheral 
interrupts easily. Table 11-1 shows the definition of all interrupt numbers for STM32L4. 
Although Cortex-M processors support 256 interrupts, not all interrupt numbers are used 
onSTM32L4. 

Cortex-M4 Processor 
Exceptions Numbers 

-14 Non-maskable interrupt 

-13 Hard fault 

-12 Memory management 

-11 Bus fault 

·10 Usage fau lt 

-5 Supervisor ca ll (SVCall) 

-4 Debug monitor 

-2 PendSV 

-1 Sys Tick 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

WWOG 16 DMA1 _CH6 

PVD 17 DMA1_CH7 

TAMPER_ STAMP 18 ADC1_ADC2 

RTC_WKUP 19 CAN1 _TX 

FLASH 20 CAN1 _RXO 

RCC 21 CAN1 _RX1 

EXTIO 22 CAN1_SCE 

EXTl1 23 EXTl9_5 

EXTl2 24 TIM1_BRK 

EXTl3 25 TIM1_UP 

EXTl4 26 TIM1_TRG 

DMA1_CH1 27 TIM1_CC 

DMA1_CH2 28 TIM2 

DMA1_CH3 29 TIM3 

DMA1_CH4 30 TIM4 

DMA1 _CHS 31 12C1_EV 

STM32L4 specific 
Interrupt Numbers 

32 12C1_ER 48 

33 12C2_EV 49 

34 12C2_ER 50 

35 SPl1 51 

36 SPl2 52 

37 USART1 53 

38 USART2 54 

39 USART3 55 

40 EXTl15_10 56 

41 RTC_Alarrn 57 

42 DFSDM3 58 

43 TIM8_BRK 59 

44 TIM8_UP 60 

45 TIM8_TRG 61 

46 TIM8_CC 62 

47 ADC3 63 

FMC 64 COMP 80 

SDMMC1 65 LPTIM1 81 

TIMS 66 LPTIM2 

SPl3 67 OTG_FS 

UART4 68 DMA2_Channel6 

UART5 69 DMA2_Channel7 

TIM6_DAC 70 LPUART1 

TIM7 71 QUADS Pl 

DMA2_Channel1 72 12C3_EV 

DMA2_Channel2 73 12C3_ER 

DMA2_Channel3 74 SAl1 

DMA2_Channel4 75 SAl2 

DMA2_Channel5 76 SWPMl1 

DFSDMO 77 TSC 

DFSDM1 78 LCD 

DFSDM2 79 

Table 11-1. CMSIS Definition of interrupt numbers for STM32L4 

RNG 

FPU 

1 30 29 28 27 26 25 24 23 22 21 20 19 16 17 16 15 14 13 12 11 10 9 6 7 6 5 4 3 2 0 

Z C V Q IT[7 :6] T Reserved IT[5:0] Interrupt Number 

Reserved 

Figure 11-1. Program status register 

When an interrupt is processed, the interrupt number is stored in the program status 
register (PSR), as shown in Figure 11-1. However, ARM Cortex-M does not store interrupt 
numbers in two's complement. Instead, the interrupt number in PSR adds a positive offset 
of 15 to the CMSIS interrupt number. 

Interrupt number in PSR = CMSIS interrupt number+ 15 

In the rest of the book, unless specified otherwise, interrupt numbers are the ones defined 
by CMSIS. As will be introduced later, each interrupt number is used as an index into the 
interrupt vector table to search for the starting memory address of its corresponding 
interrupt service routine. 



11.3 - Interrupt Service Routines 

11.3 Interrupt Service Routines 
An interrupt service routine (ISR), also called an interrupt handler, is a special subroutine 
that hardware invokes automatically in response to an interrupt. Each ISR has a default 
implementation in the system startup code (such as the assembly file 
startup_stm32xxxx. s). The default implementation of most ISRs is simply a dead loop, 
such as the interrupt handler for the system timer shown below. 

SysTick_Handler PROC 
EXPORT SysTick_Handler (WEAK] 
B 
ENDP 

; dead Loop 

Example 11-1. Default implementation of interrupt handler for the system timer (SysTick) 

All ISRs are declared as weak in the system startup code. The keyword weak means that 
another non-weak subroutine with the same name defined elsewhere can override this 
one. Example 11-2 gives two implementations in C and assembly, respectively. ISRs do 
not return any values because they are called by hardware (there is no software caller). 
Furthermore, ISRs (excluding SVC_Handler) do not take any input arguments. 

CCode Assembly Code 
void SysTick_Handler (void) { SysTick_Handler PROC 

EXPORT SysTick_Handler ... 
. .. 

} 
ENDP 

Example 11-2. User implementation of interrupt handler for the system timer (SysTick) 

The Reset_Handler ISR, as shown below, is executed when the processor is reset or 
powered up. Reset_Handler eventually calls the main function. For a C program compiled 
in ARM Keil, Reset_Handler calls _main, which copies data segments from the instruction 
memory to the data memory, and then calls the user function main. 

Reset_Handler PROC 
EXPORT Reset Handler [WEAK] 
IMPORT main 

1r , c I 1 vqr'Jm S Wrttt_r: fl ':>Se'11b[~1, mQ/( :.LJrt ~0 

Jpy :Jato .St iments to date. mJr 

LDR R0, = main 
BX R0 
ENDP 

Example 11-3. Default implementation of Reset_Handler 



11.4 Interrupt Vector Table 
There is an interrupt service routine (ISR) associated 
with each type of interrupt. Cortex-M stores the 
starting memory address of every ISR in a special 
array called the interrupt vector table. For a given 
interrupt number i defined in CMSIS, the memory 
address of its corresponding ISR is located at the (i + 
16)th entry in the interrupt vector table. The interrupt 
vector table is stored at the memory address 
0x00000004. Because each entry in the table 
represents a memory address, each entry takes four 
bytes in memory. 

Interrupts Bl 

An interrupt number is 
used as an index into the 
interrupt vector table to 
locate the corresponding 
interrupt service routine. 

Address of !SR = lnterruptVectorTable[i + 15] 

For example, the interrupt number of SysTick is -1, the memory address of 
SysTick_Handler can be founding by reading the word stored at the following address. 

Address of SysTick_Handler = Ox00000004 + 4 x (-1+15) = Ox0000003C 

The interrupt number of reset is -15. Thus, the memory address of Reset_Handler is 

Address of Reset_Handler = Ox00000004 + 4 x ( -15 + 15) = Ox00000004 

The following describes the booting process of Cortex-M. When an ARM Cortex 
processor is turned on or reset, the processor fetches two words located at 0x00000000 
and 0x00000004 in memory. The processor uses the word located at 0x00000000 to 

Booting process: 

1. MSP - memory[O]; 

2. PC - memory[ 4]; 

initialize the main stack pointer (MSP), and the 
: other one at 0x00000004 to set up the program 
,[ counter (PC). The word stored at 0x00000004 is 

I! the memory address of the Reset_Handler() 
1: procedure, which is determined by the compiler 

I': 

and link script. Typically, Reset_Handler calls 
main(), which is the user's application code. 
After PC is initialized, the program begins 
execution. 

While the very first word in memory stores the memory address used to initialize MSP, 
the following words starting at 0x00000004 represent a vector table. This vector table 
stores the memory addresses of all interrupt and exception handling routines. 



WJJI 11.4 - Interrupt Vector Table 

13 Ox00000074 OMA 1 _ Channel3 _ I RQHandler 

12 Ox00000070 OMA 1_ Channel2_1RQHandler 
void OMA1 _Channel1 _1 RQHandler () { 

11 Ox0000006C OMA1 _Channel 1_1RQHandler -- .. . 
} 

10 Ox00000068 EXT14_1RQHandler . 
9 Ox00000064 EXT13_1RQHandler void EXTl1_Handler () { 

8 Ox00000060 

7 OxOOOOOOSC 

_r} ... 
EXT12_1RQHandler 

EXTl1_ 1RQHandler 
void EXTIO_Handler () { 

6 Ox00000058 EXTIO_IRQHandler :::- .. . 
} 

5 Ox00000054 RCC_IRQHandler 

4 Ox00000050 FLASH_IRQHandler 

3 Ox0000004C RTC_WKUP _ IRQHandler 

2 Ox00000048 TAMPER_STAMP _ IRQHandler 

Ox00000044 PVO_IRQHandler 

0 Ox00000040 WWOG_IRQHandler 
void SysTick_Handler () { 

-1 Ox0000003C SysTick_Handler ... 
} 

-2 Ox00000038 PendSV _Handler 

-3 Ox00000034 Reserved 

-4 Ox00000030 OebugMon_Handler 
void SVC_ Handler () { 

-5 Ox0000002C SVC_Handler -- ... 
} 

-6 Ox00000028 Reserved 

-7 Ox00000024 Reserved 

System -8 Ox00000020 Reserved 
Exceptions 

-9 Ox0000001C Reserved . . . 
-10 Ox00000018 UsageF au It_ Handler 

-11 Ox00000014 BusFault_Handler 

-12 Ox00000010 MemManage _Handler void Reset_ Handler () { 
... 

-13 OxOOOOOOOC Hardfault_Handler .--.. main(); 
... 

-14 Ox00000008 NMl_Handler } 

Ox00000004 Reset_ Handler - Value to initialize the Program Counter ( PC) 

OxOOOOOOOO Top_ of_ Stack Value to initialize the Stack Pointer (SP) 

Interrupt Memory 
Number Address 

Memory Contents (32 bits) 

Figure 11-2. Interrupt vector table 

Cortex-M processors use the nested vectored interrupt controller (NVIC) to manage 
interrupts. NVIC allows applications to enable specific interrupts and set their priority 



Interrupts IJ@I 

levels. The processor serves all interrupts based on their priority levels. The processor 
stops the currently running interrupt handler if a new interrupt with a higher priority 
occurs. The new interrupt task preempts the current lower-priority task, and the 
processor resumes the low-priority task when the handler of the new interrupt completes. 
A higher value of the interrupt priority number represents a lower priority (or urgenC1J) . The 
Reset_Handler() has top priority, and its priority number is -3. 

Among all interrupts defined in the interrupt vector table, the first 15 interrupts 
(including reserved ones) deal with system abnormalities. These are called system 
exceptions. The remaining interrupts deal with the activities of peripherals. These are 
called external interrupts. 

Examples of system exceptions include supervisor call interrupts, system timer 
interrupts, and fault-handling interrupts. Faults include bus faults for prefetch and 
memory accesses, memory management faults, instruction usage faults, and hard faults. 

Examples of external interrupts include ADC interrupts, USB interrupts, and serial 
communication interrupts (SPI, PC, and USART). These are used to inform the 
microcontroller of external events efficiently. Without these interrupts, the 
microcontroller then would have to resort to inefficient polling to check peripherals 
repeatedly, wasting precious computation cycles. 

The interrupt vector table can 
be relocated to different 
regions (SRAM or FLASH). 
Thus, the processor can boot 
from different memory devices. 

The interrupt vector table is relocatable. While 
[\ the interrupt vector table is located at the 

memory address 0x00000004, this low 
memory address can be physically re-mapped 
to different regions, such as on-chip flash 
memory, on-chip RAM memory, or on-chip 
ROM memory. This allows the processor to 
boot from various memory regions. On 
STM32L4, the memory address 0x00000004 is 
an alias to 0x08000004 by default, which is in 

the address space assigned to the on-chip flash memory. 

11.5 Interrupt Stacking and Unstacking 
When serving an interrupt, the Cortex-M microcontroller performs automatic stacking 
and unstacking. Chapter 12.4.1.4 discusses automatic stacking and unstacking related to 
floating-point registers. 



11.5 - Interrupt Stacking and Unstacking 

• Interrupt Stacking. Before executing the interrupt handler, the stacking process 
automatically pushes eight registers to preserve the running environment. These 
eight registers include the lowest four registers (r0, rl, r2, and r3) and four other 
registers (r12, LR, PSR, and PC). 

• Interrupt Unstacking. After the interrupt handler completes, the unstacking 
process automatically pops the values of these eight registers off the stack. This 
recovers the environment that existed at the time instant immediately before the 
interrupt handler started to run. At the same time, the processor clears the 
corresponding active bits in the NVIC status registers. 

User Program 

Interrupt 
Signal 

Thread Mode 

Interrupt Exit 

Interrupt Handler 

_________ Unstacking 

-----.. __ Stacking 

User Program 

Handler Mode Thread Mode 

Figure 11-3. Automatic stacking and unstacking for interrupt handler 

main program start Main() 

void main () { e 

Interrupt Vector Table 

A PC = Memory Address 
V of Sys Tick_ Handler 

Time 

1. Interrupt signal detected. 

Interrupt Service Routine (ISR) 

void SysTick_Handler () { 
2. Processor stops main. Execute ISR 
3. Auto stacking: PUSH {RO-r3,r12 ,LR,PC,PSR} 

Continue to the execution 
of main program 

1. Interrupt returns. Active bits will be cleared. 
2. Auto unstacking: POP {RO-r3.r12,LR,PC,PSR} 

Figure 11-4. Steps of stacking and unstacking for interrupt handler 

Since an interrupt may occur at any time, the program counter (PC) is preserved during 
interrupt stacking and then is recovered during interrupt unstacking. Thus, the processor 
can successfully continue executing the computation that had been interrupted. 



Old SP 

. 
r New SP 

<xxxxxxxx> 

xPSR 

PC (r15) 

LR (r14) 

r12 

r3 

r2 

r1 

rO 

Interrupts IJI 

• The processor automatically pushes 
these eight registers into the main stack 
before an interrupt handler starts. 

• The processor automatically pops these 
eight registers out of the main stack 
when an interrupt hander exits. 

Figure 11-5. Stacking and unstacking when an interrupt handler starts or exits (Assume there 
is no FPU. See Chapter 12.4.1.4 for stacking and unstacking of floating-point registers.) 

The interrupt service routine exits by running " BX LR". Note that LR in an interrupt service 
routine has a meaning different from LR in a normal subroutine. 

• LR in a regular subroutine represents the return address to the caller. When a 
regular subroutine is called, LR holds the memory address of the instruction to be 
processed after exiting the subroutine. The value of LR is copied to PC when a 
regular service routine exits. 

• LR in an interrupt service routine indicates whether the processor uses the main 
stack or the process stack in the push and pop operations. Since the interrupt 
service routine preserves and recovers PC via stacking and unstacking, the LR 

register is not copied to set PC when an interrupt service routine exits. Instead, the 
LR register shall be fixed to a special value (see Chapter 23.1.2), to indicate 
whether the processor should unstack data out of the main stack (MSP) or the 
process stack (PSP). Chapter 23.1 gives a detailed explanation of LR for interrupts. 

11.6 Nested Vectored Interrupt Controller (NVIC) 
The nested vectored interrupt controller (NVIC) is built into Cortex-M cores to manage 
all interrupts. It offers three key functions: 

1. Enable and disable interrupts 
2. Configure the preemption priority and sub-priority of a specific interrupt 
3. Set and clear the handing bit of a specific interrupt 

The Cortex-M microcontroller supports up to 256 interrupts, in which the first 16 
interrupts are system exceptions, and the rest 240 interrupts are peripheral interrupts. 



11.6 - Nested Vectored Interrupt Controller (NVIC) 

The number of interrupts supported by a specific microcontroller, stored in !CTR 

(interrupt controller type register), differs among different manufacturers. 

Each interrupt has six control bits, as listed in Table 11-2. 

Interrupt control bit Corresponding register (32 bits) 

Enable bit Interrupt set enable register (ISER) 

Disable bit Interrupt clear enable register (ICER) 

Pending bit Interrupt set pending register (ISPR) 

Un-pending bit Interrupt clear pending register (!CPR) 

Active bit Interrupt active bit register (IABR) 

Software trigger bit Software trigger interrupt register (STIR) 

Table 11-2. Interrupt control bits 

Each interrupt has an interrupt number, ranging from 0 to 256 for Cortex-M processors. 
A Cortex-M processor includes 16 system interrupts (0-15) defined by ARM. System 
interrupts are also called system exceptions or processor exceptions. The rest 240 interrupts 
are peripheral interrupts (also known as non-system interrupts), which are defined by 
chip manufacturers. Note that in the Cortex-M code library, the interrupt number of 
peripherals starts with 0. 

Cortex-M defines eight registers for each control bit. For example, there are ISER0, 

ISERl, ... , and ISER7, which can enable 256 interrupts. 

1. Enable and disable an interrupt. Writing an enable bit to 1 can enable the 
corresponding interrupt. Writing an enable bit to 0 does not turn off the 
corresponding interrupt. Write a disable bit to 1 can disable the interrupt. Writing 
a disable bit to 0 has no impacts on the related interrupt. Separating enable bits 
and disable bits allows us to disable an interrupt conveniently without affecting 
the other interrupts. 

2. Pend and clear an interrupt. If an interrupt occurs, the corresponding pending bit 
is set if the microcontroller cannot process this interrupt immediately. Writing the 
clear pending bit to 1 removes the corresponding interrupt from the pending list. 
When an interrupt is disabled but its pending bit has already been set, this 
interrupt instance remains active, and it is serviced before it is disabled. 

3. Trigger an interrupt. Setting an active bit by software or hardware activates the 
related interrupt, and the microcontroller starts the corresponding interrupt 
handler. If software writes a trigger bit of the software trigger interrupt register 
(STIR) to 1, the related interrupt is also activated. Most system exceptions can 
only be activated by hardware. 



Interrupts IJW 

11.6.1 Enable and Disable Peripheral Interrupts 
Cortex-M has eight 32-bit Interrupt Set-Enable Registers (ISER), ISER0 - ISER7, and eight 
32-bit Interrupt Clear-enable Register (ICER), ICER0 - ICER7. Writing a bit to 1 in ISER 

and ICER enables and disables the corresponding interrupt, respectively. 

Figure 11-6 shows ISER0, ISERl and ISER2 registers for enabling a peripheral interrupt 
for STM32L4 processors. 

Interrupt Set Enable Register 0 (ISERO) 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Enable Bit I 0 I 0 J 0 J 0 J 0 I 0 I 0 J 0 I 0 J 0 J 0 I 0 I 0 I 0 I 0 J 0 J 0 J 0 I 0 J 0 I 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 

Interrupt Number 31 30 29 28 21 26 25 24 23 22 21 20 19 18 11 16 15 14 13 12 11 10 9 8 1 8 5 4 3 2 1 

;;:; -i -i -i -i -i -i -i m () () () () )> 0 0 0 0 0 0 0 m m m m m ;u ..., ;u ~ -0 

~ ~ ~ ~ ~ ~ ~ ~ ~ x )> )> )> )> 0 ;:: ;:: ;:: ;:: 
~ 

;:: ;:: x x x x x () s;; -i < .... "' N -i z ~ ~ z () 
~ ~ ~ )> )> ~ -i -i -i =t -i () () ;:: 0 

I I 1-i I I I~ I~ I~ 1; I~ I~ 
:;;: w ;;:; 5 CJ) 

'::E -0 0 m () c Ill I I I I I I 'o 
I m Gl < () ;u -0 ;u ;u ;u () () () () ;>< ,;u 

Gl ;>< () ~ x x 0 I I I I I I ~ c m 0 () ..... m U1 .... "' N -0 CJ) 
N 

~ 
-0 

Interrupt Set Enable Register 1 (ISER1) Address of ISER1 =Address of /SERO + 4 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Enable Bit J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 J 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 
Interrupt Number 63 62 81 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 

0 0 0 0 0 0 0 0 -i -i c c CJ) -i CJ) ..., )> -i -i -i -i 0 ;u rn c c c CJ) CJ) ;;:; ;;:; ;;:; ..., ..., ..., ;:: ;:: ;:: ;:: 
~ ~ ~ )> )> -0 ~ 0 ;:: 0 ~ ~ ~ ~ 

..., -i x CJ) CJ) CJ) -0 ~ () () ~ CJ) CJ) CJ) 

~ ~ ~ ~ ..... 
1°' 

;u ;u w U1 ;:: () () Q) Q) 
1°' 1°' 

CJ) () =t )> )> )> ;;:; 
IN IN 0 0 0 -i ~ ;:: "' I 1-i 0 I)> ;u ;u ;u I 

;:: ~ ;:: 'o 'o 'o 'o 'o 0 U1 
~ 

() c Ill ;:: U1 -i ;j j m ~ m 
N 0 )> () ;u -0 ;u "' iU I "' ;u ;u 

=r =r =r =r =r () Gl ;>< 3 a 11> 11> 11> 11> 11> 
:0 :0 :0 :0 :0 'o :0 :0 :0 :0 :0 
(!) (!) (!) (!) (!) 0 
Oi :;;: w ;;:; = ;:: 

Interrupt Set Enable Register 2 (ISER2) Address of ISER2 = Address of /SERO + 8 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Enable Bit I 0 I 0 I 0 I 0 J 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 
Interrupt Number 81 80 19 18 11 15 1s 14 13 12 11 10 69 68 s1 66 65 64 

..., ;u r -i CJ) CJ) CJ) ;;:; ;;:; 0 r 0 0 0 r 
-0 z () CJ) 

~ 
)> )> () () c -0 ;:: ;:: -i -0 

c Gl 0 () ;;:; = 1"' "' )> c 

I~ ,'?'$ 
Gl -i 

~ 
I 0 )> I ~ m ~ CJ) ;u ..., 

N ;u 
~ j () CJ) 

=r =r 
11> 11> 
:0 :0 
:0 :0 
(!) !R ::::; m 

Figure 11-6. Interrupt Set Enable Registers for Peripheral Interrupts in STM32L 

Each bit in an ISER register can enable one peripheral interrupt. The interrupt number of 
peripheral interrupts ranges from 0 to 240. Not all peripheral interrupts are used. For 
example, STM32L has only 45 peripheral interrupts. Note that all NVIC registers are little 
endian regardless of whether the processor deploys big endian or little endian. 

r () 
-0 0 -i ;:: 
~ -0 



11.6 - ested Vectored Interrupt Controller (NVIC) 

The following C program can enable a peripheral interrupt whose interrupt number is 
IRQn. Bit j in register ISER i enables interrupt I RQn = j + 32 x i. 

WordOffset = IRQn >> 5; 
BitOffset = IRQn & 0x1F; 
NVIC->ISER[WordOffset] 1 « BitOffset; 

II Word Offset = IRQn/32 
II Bit Offset = IRQn mod 32 
II Enable interrupt 

Since each ISER register has 32 bits, the ISER register array index is obtained by shifting 
right the interrupt number IRQn by five bits. Note that the peripheral interrupt number 
starts with 0. For example, the interrupt number of Timer 5 is 50. Therefore, the following 
code can enable the Timer 5 interrupt: 

NVIC->ISER[l] = 1 << 18; II Enable Timer 5 interrupt 

Similarly, the following C program can disable the interrupt IRQn. 

WordOffset = IRQn >> 5; 
BitOffset = IRQn & 0x1F; 
NVIC->ICER[WordOffset] 

; Input arguments: 

II WordOffset = IRQn/32 
II BitOffset = IRQn mod 32 

1 << BitOffset; // Disable interrupt 

; re: interrupt number of a peripheral interrupt 
; rl: 1 = Enable, 0 =Disable 

Peripheral_Interrupt_Enable PROC 
PUSH {r4, lr} 
AND r2, r0, #0x1F ; Bit off set in a word 
MOV r3, #1 
LSL r3, r3, r2 ; r3 = 1 << (IRQn & exlF) 
LDR r4, =NVIC_BASE 

CMP rl, #0 , Check whether enable or disable 
LORNE rl, =NVIC_ISER0 , Enable register base address 
LDREQ rl, =NVIC ICER0 ; Disable register base address 

ADD rl, r4, rl ; rl = addr. of NVIC->ISERe or NVIC->ICERe 
LSR r2, r0, #5 ; Memory offset (in words): IRQn » 5 
LSL r2, r2, #2 , Calculate byte offset 
STR r3, [rl, r2] , Enable/Disable interrupt 
POP {r4, pc} 
ENDP 

Example 11-4. Enabling/disabling a peripheral interrupt 

Example 11-4 shows the assembly implementation of enabling or disabling a peripheral 
interrupt. The program takes two arguments: an interrupt number held in register r0 and 
a Boolean option of enabling and disabling stored in register rl . 



Interrupts mm 

The memory address [rl, r2] in the STR instruction is the memory address of 
NVIC->ISER[i] or NVIC->ICER[i], depending on whether the interrupt is to be enabled 
or disabled. Because each ISER or ICER register controls 32 interrupts, the program uses 
the following two instructions to calculate the address: 

LSR r2, r0, #5 , Memory offset in words = IRQn >> 5 
LSL r2, r2, #2 ; Off set in bytes = 4 x Offset in words 

These two operations are equivalent to: 

. (Interrupt number) 
L =floor 

32 

Byte Offset= 4 xi 

For example, the program is to enable the interrupt numbered 77. The corresponding 
register is NVIC- >ISER [2 ], which controls all interrupts from 64 to 95. 

Byte Offset= floor G~) x 4 = 2 x 4 = 8 

Thus, the memory address offset between the NVIC base address and NVIC->ISER[2] is 8. 
In most computer systems, memory is byte addressable, and thus the offset is in bytes. 
The registers NVIC->ISER[0] and NVIC->ISER[l] take 4 bytes each in memory. 
Accordingly, the offset of NVIC->ISER[2] from the NVIC base is 8 bytes. 

11.6.2 Interrupt Priority 
Priority determines the order of interrupts to be 
serviced. Each interrupt has an interrupt priority 
register (IP), which has a width of 8 bits. Each consists 
of two fields : the preemption priority number and the 
sub-priority number. A lower value of a priority number 
represents a higher priority or a higher urgency. Priority 
value 0 has the highest priority (or the highest 
urgency). 

Lower priority value 
means higher urgency. 

Usually, the peripheral interrupts have a positive interrupt level while a microcontroller 
core interrupt can have negative priority numbers, not changeable by software. When 
there are multiple pending interrupts, the interrupt that has the lowest interrupt number 
is serviced first by the processor. 

Preemption is a widely-used technique that allows a time-sensitive and urgent 
computation task to take control of the processor from a relatively less urgent 
computation task. The preemption priority number defines the priority for preemption. 



11.6 - ested Vectored Interrupt Controller (NVIC) 

If the processor receives a new interrupt that has 
a lower preemption priority number than the 
preemption priority number of the current 
interrupt in progress, the current interrupt is 
stopped, and the processor starts to serve the 
new interrupt. The preempted interrupt is 
resumed after the new interrupt handler routine 
completes. 

"Don't interrupt me while 
I'm interrupting." 

Winston Churchill 
Former British Prime Minister 

While Cortex-M processors use eight bits to store the priority number, STM32L 
processors only implement four bits. Thus, the STM32L microcontroller only supports 16 
interrupt priority levels, ranging from 0 to 15. For a different Cortex-M processor, the 
interrupt priority byte might be different. 

STM32L processors allow five different schemes to split the four-bit priority number. If 
we use n bits for the preempt priority number, then the sub-priority number has 4 - n 
bits, where n = 0, 1, 2, 3, or 4. By default, two bits are used for the preempt priority 
number, and two bits are used for the sub-priority number, as shown in Figure 11-7. 

Priority Byte 

5 4 3 

Preemption Sub-priority 
Priority Number 

2 1 

Not 
Implemented 

0 

Figure 11-7. Interrupt Priority Byte of STM32L by default 

For a system interrupt IRQn, its priority can be set as follows. Note that SHP (System 
Handler Priority) is defined as a byte array, instead of a word array. 

typedef struct { 

volatile uint8_t SHP[12]; II System handler priority array 

} SCB_Type; 

II Set the priority of a system interrupt IRQn 
SCB->SHP[((uint8_t)IRQn) & 0xF) - 4] = (priority << 4) & 0xFF; 

SCB is the base memory address of the System Control Block (SCB). SHP is the base 
memory address of the System Handler Priority registers. Cortex-M has three SHP 

I: ,, 



Interrupts Dli 

registers, as shown in Figure 11-8. For example, the interrupt number of SysTick is -1. 
The byte offset in the system handler priority array is as follows 

((uint8_t)IRQn) & 0xF) - 4 ((uint8_t)-1) & 0xF) - 4 
(0xFF & 0xF) - 4 
11 

Therefore, the following code sets the priority of SysTick to 1: 

SCB->SHP[ll) = (lUL << 4) & 0xFF; 

32 bits 

memory address base+ 3 base+ 2 
Exceptions Numbers -10 

System Handler Priority 
Reserved 

Priority for 
Register 1 (SHPR1) Usage Fault 

memory address base+ 7 base+ 6 
Exceptions Numbers - 5 

System Handler Priority Priority for 
Reserved Register 2 (SHPR2) SVCall 

memory address base + 11 base + 10 
Exceptions Numbers -1 -2 

System Handler Priority Priority for Priority for 
Register 3 (SHPR3) SysTick PendSV 

base+ 1 
- 11 

Priority for 
Bus Fault 

base+ 5 

Reserved 

base+ 9 
-3 

Reserved 

Figure 11-8. Priority registers for system interrupts 

base+ 0 
-12 

Priority for Mem 
Management 

base+ 4 

Reserved 

base+ 8 
- 4 

Priority for 
Debug Monitor 

For a peripheral interrupt IRQn, its priority can be set as follows. Note that the interrupt 

priority (IP) array is defined as an array of bytes, not words. 

typedef struct { 

volatile uint8_t IP[240); II Interrupt Priority Register 

} NVIC_Type; 

II Set the priority of a peripheral interrupt IRQn 
NVIC->IP[IRQn) = (priority << 4) & 0xFF; 

Figure 11-9 shows the memory layout of interrupt priority registers for the first 16 
peripheral interrupt. For example, the following code sets the priority of EXTI Line 0, 
whose interrupt number is 6, to the lowest priority. Both the preemption priority and the 
sub-priority number are 0b11 (i.e., 3). 

II Set the priority for EXTI 0 (Interrupt number 6) 
NVIC->IP[6) = 0xF0; 



11.6 - Nested Vectored Interrupt Controller (NVIC) 

base= NVIC_BASE + NV/C_/PRO J • 
8 bits 

·I 
base+ 16 15 OMA 1 Channel 5 

base + 15 14 OMA 1 Channel 4 

base+ 14 13 OMA 1 Channel 3 

base+ 13 12 OMA 1 Channel 2 

base+ 12 11 OMA 1 Channel 1 

base+ 11 10 EXTI Line 4 

base+ 10 9 EXTI Line 3 

base+ 9 8 EXTI Line 2 

base+ 7 7 EXTI Line 1 

base + 6 6 EXTI Line 0 
base + 5 5 RCC 

base + 4 4 FLASH 

base + 3 3 RTC_WKUP 

base+ 2 2 TAMPER_ STAMP 

base+ 1 PVD 

base+ O 0 Window Watch Dog 

Memory Interrupt Interrupt Interrupt 
Address Priority Number Name 

Figure 11-9. Example of interrupt priority (IP) registers for the first 16 peripheral interrupts. 

Example 11-5 and Example 11-6 give two example assembly subroutines that set the 
priority of a system exception and a peripheral interrupt, respectively. 

• Both functions use the STRB (store a byte) instruction, instead of STR (store a word) . 
As discussed previously, the priority array is a byte array, instead of an integer 
array. 

• Also, the subroutine shifts the priority left by four bits because the lower four bits 
of each priority register are not used in STM32L processors (see Figure 11-7). 

; Input arguments: 
j re: Interrupt Number IRQn 
; rl: Interrupt Priority 

Set_System_Exception_Priority PROC 

PUSH 
LSL 
LDR 
LOR 
ADD 
AND 
SUB 
STRB 
POP 

ENDP 

{r4, lr} 
r2, rl, #4 
r3, =SCB BASE 
r4, =SCB_HP_l_ 
r3, r3, r4 
r4, r0, #0x0F 
r4, r4, #4 
r2, [ r3, r4] 
{r4, pc} 

12 

; r2 = priority << 4 
; System control block base address 
; System handler priority registers 

; Save priority; Do not use STR 

Example 11-5. Setting priority of system interrupts 



; Input arguments: 

j 

re: Interrupt Number IRQn 
rl: Interrupt Priority 

Set_Peripheral_Interrupt_Priority PROC 

PUSH {r4, lr} 
LSL r2, rl, #4 , r2 = priority << 4 
LDR r3, =NVIC_BASE ; NVIC base address 
LDR r4, =NVIC_IP0 , Interrupt priority register 
ADD r3, r3, r4 
STRB r2, [r3, r0] , Save priority; Don't use STR 
POP {r4, pc} 

ENDP 

Interrupts ID.I 

Example 11-6. Setting priority of peripheral interrupts 

11.6.3 Global Interrupt Enable and Disable 
Besides using NVIC to configure individual interrupts, the Cortex-M processors also 

allow us to enable and disable a group of interrupts by using change processor state (CPS) 
instructions. 

We use the priority mask register (PRIMASK) to enable or disable interrupts excluding 

hard faults and non-maskable interrupts (NMI). Also, we use the fault mask register 

(FAUL TMASK) to enable or disable interrupts except for non-maskable interrupts (NMI). 

Instruction Action Equivalent 

CPS ID i Disable interrupts & configurable fault handlers 
MOVS r0, #0 
MSR PRIMASK, r0 

CPSID f Disable interrupts and all fault handlers 
MOVS r0, #1 
MSR FAULTMASK, r0 

CPS IE i Enable interrupts and configurable fault handlers 
MOVS r0, #0 
MSR PRIMASK, r0 

CPS IE f Enable interrupts and fault handlers 
MOVS r0, #1 
MSR FAULTMASK, r0 

N/A Disable interrupts with priority 0x05 - 0xFF 
MOVS r0, #5 
MSR BASEPRI, r0 

Table 11-3. Instructions for enabling or disabling interrupts (excluding hard faults and NMI) 

When the base priority mask register (BASEPRI) is non-zero, all interrupts with a priority 

value higher than or equal to BASEPRI are disabled. In this case, we also say that 

interrupts with a priority value lower than BASE PR I are unmasked (i.e., enabled). A larger 

priority value represents lower priority (i.e., lower urgency). 

In the equivalent instructions given in Table 11-3, MSR transfers the content of a general

purpose register to a special-purpose register. Note that MOV or MOVS cannot access these 
special registers. 



• +i• 11.7 - System Timer 

11.7 System Timer 
The system tick timer (SysTick) is a simple 24-bit down counter to produce a small fixed 
time quantum. Software uses SysTick to create time delays or generate periodic 
interrupts to execute a task repeatedly. 

• The timer counts down from N-1 to 0, and the processor generates a SysTick 
interrupt once the counter reaches zero. 

• After reaching zero, the SysTick counter loads the value held in a spedal register 
named the SysTick Reload register and counts down again. 

• The SysTick timer does not stop counting down when the processor is halted. The 
processor still generates SysTick interrupts during the process of debugging. 

Another usage of SysTick timer is to create a useful hardware timer for the CPU 
scheduler in real-time operating systems (RTOS). When multiple tasks run concurrently, 
the processor allocates a time slot to each task according to some scheduling policy, such 
as the round robin. To achieve that, the processor utilizes a hardware timer to generate 
interrupts at regular time intervals. These interrupts inform the processor to stop the 
current task, save the context registers of the present task to the stack, and then select a 
new task in the job waiting queue to serve. Chapter 23 gives a detailed discussion. When 
SysTick timers are used as a system level function, processors often protect SysTick 
timers from being modified by software running in the unprivileged mode. 

There are four 32-bit registers for configuring system timers. Their memory addresses 
are listed in Table 11-4. Chip manufacturers may have different names for these registers, 
but their memory addresses are the same for each ARM Cortex-M family. 

SysTick_CTRL EQU (0xE000E010) 
SysTick_LOAD EQU (0xE000E014) 
SysTick_VAL EQU (0xE000E018) 
SysTick_CALIB EQU (0xE000E01C) 

; SysTick control and status register 
, SysTick reload value register 
, SysTick current value register 
; SysTick calibration register 

Table 11-4. Memory address of control registers for SysTick timer 

(1) SysTick control and status register (SysTick_CTRL) 

31 

Reserved 

COUNTFLAG 

17 16 15 2 1 0 

Reserved 

Clock Source 

TICKINT--~ 

ENABLE---~ 



Interrupts 1.)919• 

• CLKSOURCE indicates the clock source: 
0 = External clock. The frequency of SysTick clock is the frequency of the 

AHB clock divided by 8. 
1 = Processor clock 

RCC_CFGR[1 :O] 

MSI 

HSI 

PLLCLK 

HSE 

01 

10 

11 

AHB 
Prescaler 

4-to-1 
MUX 

/8 

Processor Clock 

Sys Tick 
External Clock 

Figure 11-10. Two different clock sources for SysTick on STM32 processor. The default 
AHB prescaler is 1. RCC_CFGR register selects MSI, HSI, PLLCLK, or HSE. 

Figure 11-10 shows the clock selection configured by the RCC_CFGR register. A 
different ARM Cortex processor might use a different clocking scheme. 

• TICKINT enables SysTick interrupt request: 
0 =Counting down to zero does not assert the SysTick interrupt request 
1 =Counting down to zero asserts the SysTick interrupt request 

• ENABLE enables the counter: 
0 = Counter disabled 
1 = Counter enabled 

To enable SysTick interrupt, the program needs to set up three bits: 
1. Set bit TICKINT in SysTick_CTRL to enable SysTick interrupt. 
2. Enable SysTick interrupt in the NVIC vector. Note that SysTick 

interrupt is enabled by default in the NVIC vector. 
3. Set bit ENABLE in SysTick_CTRL to enable the SysTick timer. 

• COUNTFLAG indicates whether a special event has occurred. 
1 = Counter has transitioned from 1 to 0 since the last read of 

SysTick_CTRL 

0 = COUNTFLAG is cleared by reading SysTick_CTRL 

or by writing to SysTick_VAL. 



11.7 - System Timer 

(2) SysTick reload value register (SysTick_LOAD) 

31 24 23 0 

RELOAD 

As the SysTick counter wraps on zero, the SysTick_LOAD register provides the 
wrap-around value. After the counter counts down to zero, the counter restarts 
from the value in SysTick_LOAD. 

If the SysTick interrupt is required once every N clock pulses, software should set 
SysTick_LOAD to N - 1. SysTick_LOAD supports any 24-bit values between 1 and 
0x00FFFFFF or 16, 777, 215 in decimal. For example, if an application needs to 
generate a SysTick interrupt for each 100 clock pulses sent to the timer, 
SysTick_LOAD should be set to 99. 

(3) SysTick current value register (SysTick_VAL) 

31 24 23 0 

CURRENT 

When SysTick is enabled, the 24-bit current counter value in the SysTick_VAL 

register is copied from the SysTick_LOAD register initially. However, this value in 
SysTick_VAL is arbitrary on reset. 

The processor automatically decrements SysTick_VAL by one at each clock pulse 
sent to the timer. Writing any value to SysTick_VAL resets it to zero, making the 
counter restart from SysTick_LOAD on the next clock pulse. Reading SysTick_VAL 

returns the current timer value. 

(4) SysTick calibration register (SysTick_CALIB) 

• The TENMS value in the 
calibration register (stored 
in the TENMS field) is the 
required preload value for 
generating a time interval 
of 10 ms (i .e. , a timer of 100 

31 30 

Reserved 

SKEW 

~- NOREF 

23 0 

TEN MS 

Hz). Software can use an external reference clock with high accuracy to calibrate 
the system timer. If TENMS is zero, we can calculate its value from the clock 
frequency that drives the timer's counter. The TENMS value provides a convenient 
way to generate a specific time interval. For example, to generate a SysTick 
interrupt every 1 ms, we can set SysTick_LOAD to TENMS/10. 



Interrupts 1)91'1 

• The SKEW indicates whether the 10 ms calibration is exact or inexact. If it is 0, the 
TENMS field cannot generate exactly 10 ms due to small variations in clock frequency. 

• The NOREF indicates whether the processor chip has implemented a reference clock. 
If TENMS is 1, the reference clock has not been applied by the chip manufacturer. 

Example of calculating the system timer interval 

Figure 11-11 shows an example of how to calculate the time interval between two 
consecutive SysTick interrupts. In this example, SysTick_LOAD is 6. If the processor clock 
is 1 MHz and the SysTick counter takes it as the input clock, then we can calculate the 
SysTick interrupt period as follows: 

1 
SysTick Interrupt Period= (1 + SysTick_LOAD) XS r· k C Cl k F 

ys ic ounter oc requency 

Sys Tick 
Counter 

6 

5 

4 

3 

2 

1 
=(l+ 6)x1MHz 
= 7µs 

SysTick_LOAD = 6 

SysTick Interrupt Time Period = 
(SysTick_LOAD + 1) ><Clock Period 

Figure 11-11. Example of SysTick interrupt when SysTick_LOAD is 6. 

Sys Tick 
Interrupt 

Figure 11-12 shows the flowchart of the SysTick initialization and an endless loop that 
use the delay function. The processor executes concurrently the SysTick interrupt 
handler (shown in Example 11-8) and the delay function (shown in Example 11-9). 

The interrupt handler decrements the ticks variable by one whenever a SysTick interrupt 
is generated. The delay function uses polling to check constantly whether the SysTick 
handler decreases ticks to zero. The delay function exits when ticks reaches zero. To delay 
one second, the program should initialize ticks to 1000 if SysTick generates an interrupt 
every 1 ms. Note that SysTick_Initialize() function sets SysTick_LOAD to ticks - 1. 



llJml 11.7 - System Timer 

START 

• Initialize the GPIO clock and pin output for the LED 

• Configure SysTick 
1. Set SysTick control and status register (SysTick_CTRL) 

to disable SysTick IRQ and SysTick timer 
2. Set SysTick reload value register (SysTick_LOAD) and 

specify the number ticks between two interrupts 
3. Clear SysTick current value register (SysTick_ VAL) 
4. Set interrupt priority by programming SCB->SHP 
5. Enable SysTick interrupt by setting the TICKINT bit (SysTick_CTRL) 
6. Set SysTick control and status register (SysTick_CTRL) 

to enable SysTick IRQ and SysTick timer 

..... 
~ ,, 

I 
Delay 1 second 

I Toggle LED 
I 

Figure 11-12 Flowchart of the main program to toggle an LED periodically 

START 

Ticks = Ticks - 1; 

Exit 

Figure 11-13. SysTick interrupt handler 

No 

START 

Set Ticks to a desired 
delay interval value 

Exit 

Figure 11-14. Delay function 



Interrupts lj9ii 

To enable the SysTick interrupt request, we can use the following C statement to set bit 
2 of SysTick_CTRL to 1 by using bitwise OR. 

II Set bit 2 in SysTick_CTRL 
*((volatile uint32_t *) 0xE000E010) I= 1UL«2; 

This statement first casts the memory address of SysTick_CTRL to a memory pointer, 
which points to a 32-bit unsigned integer. Then, it uses dereferencing to access the 
memory. Dereferencing a pointer mean, getting the value that is stored in the memory 
location pointed by the pointer. 

However, directly dereferencing a numeric memory address is inconvenient to use in 
practice and its code is hard to read. To improve the code readability and create 
convenience in programming, we can cast a contiguous block of physical memory to a 
data structure. 

Table 11-5 shows the key data structure of SysTick. The SysTick data structure includes 
four registers introduced previously. The memory address pre-defined is converted to a 
pointer variable pointing to the SysTick structure. Chapter 10.2.2 discusses the keyword 
"volatile". 

II Permission definitions 
#define _I volatile const II defines as read only 
#define _O volatile 11 defines as write only 
#define _IO volatile 11 allows both read and write 

II Memory mapping structure for SysTick 
typedef struct { 

_IO uint32_t CTRL; 
_IO uint32_t LOAD; 
_IO uint32_t VAL; 

I uint32_t CALIB; 
} SysTick_Type; 

II SysTick control and status register 
II SysTick reload value register 
II SysTick current value register 
II SysTick calibration register 

II Memory address pre-defined by the chip manufacturer 
#define SysTick_BASE 0xE000E010 

II Cast a pointer to the SysTick struct 
#define SysTick ((SysTick_Type *) SysTick_BASE) 

Table 11-5. Data structure of SysTick 

The following gives a few example functions in C and assembly to show how to set up 
the SysTick timer and perform time delay. The SysTick_Initialize() function sets the 
SysTick to generate interrupts at a fixed-time interval. The input parameter ticks equals 
the time interval divided by the clock period. 



•ta·• 11.7 - System Timer 

II Input: ticks = number of ticks between two interrupts 
void SysTick_Initialize (uint32_t ticks) { 

} 

II Disable SysTick IRQ and SysTick counter 
SysTick ->CT RL = 0; 

II Set reload register 
SysTick->LOAD = ticks - 1; 

II Set interrupt priority of SysTick 
II Make SysTick Least urgent (i.e., highest priority number) 
II ~NVIC_PRIO_BITS: number of bits for priority levels, defined in CMSIS 
NVIC_SetPriority (SysTick_IRQn, (l<<~NVIC_PRIO_BITS) - 1); 

II Reset the SysTick counter value 
SysTick->VAL = 0; 

II Select processor clock 
II 1 = processor clock; e = external clock 
SysTick->CTRL I= SysTick_CTRL_CLKSOURCE_Msk; 

II Enables SysTick exception request 
II 1 = counting down to zero asserts the SysTick exception request 
II e = counting down to zero does not assert the SysTick exception request 
SysTick->CTRL I= SysTick_CTRL_TICKINT_Msk; 

II Enable SysTick timer 
SysTick->CTRL I= SysTick_CTRL_ENABLE_Msk; 

Example 11-7. Generating an interrupt periodically with a fixed-time interval in C 

The SysTick interrupt handler decrements the TimeDelay variable, as shown below. 

void SysTick_Handler (void) { II SysTick interrupt service routine 
II TimeDeLay is a global variable declared as volatile 
if (TimeDelay > 0) II Prevent it from being negative 

TimeDelay--; II TimeDeLay is a global volatile variable 
} 

Example 11-8. SysTick Interrupt Handler in C 

The Delay function initializes the TimeDelay variable and waits until TimeDelay is 
decremented to zero by SysTick_Handler(). 

void Delay(uint32_t nTime) { 
II nTime: specifies the delay time Length 
TimeDelay = nTime; II TimeDeLay must be declared as volatile 
while(TimeDelay != 0); II Busy wait 

} 

Example 11-9. Delay function in C 



Interrupts DI 

The following shows the complete codes in assembly to initialize the system timer. 

SysTick_Initialize PROC 
EXPORT SysTick_Initialize 

; Set SysTick_CTRL to disabLe SysTick IRQ and SysTick timer 
LDR r0, =SysTick_BASE 

; DisabLe SysTick IRQ and SysTick counter, select external clock 
MOV rl, #0 
STR rl, [r0, #SysTick_CTRL] 

; Specify the number of cLock cycles between two interrupts 
LDR r2, =262 , Change it based on interrupt interval 
STR r2, [r0, #SysTick_LOAD] ; Save to SysTick reload register 

; Clear SysTick current value register (SysTick_VAL) 
MOV rl, #0 
STR rl, [r0, #SysTick_VAL] ; Write e to SysTick value register 

; Set interrupt priority for SysTick 
LDR r2, =SCB_BASE 
ADD r2, r2, #SCB_SHP 
MOV r3, #1«4 
STRB r3, [r2, #11] 

; Set priority as 1, see Figure 11-7 
; SCB->SHP[ll), see Figure 11 -8 

; Set SysTick_CTRL to enable SysTick timer and SysTick interrupt 
LDR rl, [r0, #SysTick_CTRL] 
ORR rl, rl, #3 ; Enable SysTick counter & interrupt 
STR rl, [r0, #SysTick_CTRL] 

BX lr ; Exit 

ENDP 

Example 11-10. Configuring SysTick timer in assembly 

We can implement SysTick_Handler() in assembly as follows. It decreases the TimeDelay 

variable (assume it is saved in register r10) by one when a SysTick interrupt is generated, 
i.e., the SysTick counter counts down to zero. 

SysTick_Handler PROC 
EXPORT SysTick_Handler 

; NVIC automatically stacks eight registers: re - r3, r12, LR, PSR and PC 
SUB r10, r10, #1 , Decrement TimeDelay 
BX lr ; Exit and trigger auto-unstacking 

ENDP 

Example 11-11. SysTick interrupt handler in assembly 



•Ml 11.8 - External Interrupt 

The delay function given in Example 11-12. Register r0 is the input argument, 
representing the amount of delay in time units set by the SysTick_Handler. The function 
deploys a busy-waiting loop, which exits when the TimeDelay variable has been 
decreased to zero by the SysTick interrupt handler SysTick_Handler(). 

delay PROC 
EXPORT delay 

; re is the TimeOeLay input 
MOV r10, r0 , Make a copy of TimeOeLay 

loop CMP r10, #0 , Wait for Time De Lay = 0 
BNE loop , r10 is decreased periodicaLLy by SysTick_HandLer 
BX lr ; Exit 
ENDP 

Example 11-12. Delay subroutine in assembly 

A common mistake in Example 11-11 and Example 11-12 is that a programmer might 
choose register r0, rl, r2, r3, or r12, instead of r10 to hold TimeDelay. The processor 
automatically pushes these registers onto the stack when SysTick_Handler starts, and 
then automatically pops them off the stack. Therefore, SysTick_Handler would fail to 
change TimeDelay if SysTick_Handler uses one of these registers to represent TimeDelay. 

11.8 External Interrupt 
External interrupts are interrupts triggered by peripherals or devices, external to the 
microprocessor core, such as push buttons and keypads. External interrupts are very 
useful because they allow the microcontroller to monitor external signals efficiently and 
promptly response to external events. 

The external interrupt controller supports 16 external interrupts, named EXTI0, EXTil, ... , 

EXTilS. Each of these interrupts is only associated with one specific GPIO pin. However, 
a microcontroller has more than 16 GPIO pins. How does the microcontroller map GPIO 
pins to external interrupts? 

The GPIO pins with the same pin number in all GPIO ports are assigned to the same 
external interrupt, as shown in Figure 11-15. In other words, only pins with the pin 
number k can be the source of external interrupt EXTI k. For example, the processor can 
map GPIO pin PA 0 to EXTI 0, PA 1 to EXTI 1, PA 2 to EXTI 2, and so on. 

Also, there is only one external interrupt on all pins with the same number out of all 
GPIO ports. For example, if the pin PA 3 has an external interrupt on it, we cannot use 
the pins PB 3, PC 3, PD 3, or PE 3 as the external interrupt source. 



EXTl_k bits in 
SYSCFG_EXTICR1 ,2,3,4 registers 

PAk 

PB k 

PCk 

PDk 

PE k 

PF k 

PG k 

reserved 

001 

010 

011 x 
100 

::> 
~ 

101 

k=O , 1, 2, ... , 15 

Select pin k from a GPIO 
port to trigger EXTI k. 

1---+ EXTI k 

Interrupts l.$11 

Figure 11-15. Mapping between external interrupt (EXTI) and GPIO pins. A multiplexer 
(MUX) is a circuit that selects one of its inputs and forwards the selected input to the output. 

Figure 11-16 shows an example in which a button is connected to pin PA 3. When the 
button is pressed, the voltage on PA 3 goes high. Software should configure Pin PA 3 to 
be pulled down internally so that PA 3 remains low when the button is not pressed. 

Processor Chip 

Pull down 
resistor 

Input Pin 
PA.3 

r 

+3V 

T1000 
Joy_up ~ 

Figure 11-16. Interfacing an external button via external interrupt. 

The external interrupt controller has a voltage monitor module that has a programmable 
edge detector. This hardware monitor module can monitor the voltage signal on GPIO 
pins. Software can select the rising edge, the falling edge, or both edges of the voltage 
signal on PA 3 to trigger an interrupt request named EXTI3. The EXTI3 interrupt request 
is then sent to the NVIC controller. Finally, the microcontroller responds to the interrupt 
request and executes the interrupt service routine EXTl3_1RQHandler() . 



mm'.I 11.8 - External Interrupt 

The following shows the software configuration to select GPIO pink as the trigger source 
for external interrupt EXTI k. 

1. Enable the clock of SYSCFG and corresponding GPIO port. 

2. Configure the GPIO pink as input. 

3. Set up the SYSCFG external interrupt configuration register (SYSCFG_EXTICR) to 

map the GPIO pin k to the external interrupt input line k. 

4. Select the active edge that can trigger EXTI k. The signal can be a rising edge, a 

falling edge or both. This is programmed via the rising edge trigger selection 

register (EXTI_RTSRl or EXTI_RTSR2) and the falling edge trigger selection 

register (EXTI_FTSRl or EXTI_FTSR2). 

5. Enable EXTI k by setting the kth bit in EXTI interrupt mask register (EXTI_IMRl or 

EXTI_IMR2) . An interrupt can only be generated if the corresponding bit in the 

interrupt mask register is 1 (or called unmasked). 

6. Enable interrupt EXTI k on NVIC controller via NVIC_EnableIRQ. 

7. Write the interrupt handler for EXTI k. The EXTI pending register (EXTI_PRl or 

EXTI_PR2) records the source of the interrupt. The function name of the interrupt 

handler is given by the startup assembly file startup_stm32l476xx.s. For example, 

the handler for EXTI 3 is called EXTI3_IRQHandler(). 

8. In the interrupt handler, software needs to clear the corresponding pending bit to 

indicate the current request has been handled. Surprisingly, writing it to 1 clears 

a pending bit. 

The following shows an example program that uses the external interrupt to light up the 
LED when the user push button is pressed. Example 11-13 illustrates the initialization for 
connecting EXTI 3 to pin 3 of GPIO port A. 

void EXTI_Init(void) { 

II Enable SYSCFG clock 
RCC->APB2ENR I= RCC_APB2ENR_SYSCFGEN; 

II Select PA.3 as the trigger source of EXTI 3 
SYSCFG->EXTICR[0) &= -SYSCFG_EXTICR1_EXTI3; 
SYSCFG->EXTICR[0) I= SYSCFG_EXTICR1_EXTI3_PA; 
SYSCFG->EXTICR[0) &= -(0x000F); 

II Enable rising edge trigger for EXTI 3 
II Rising trigger selection register (RSTR) 
II e = disabled, 1 = enabled 
EXTI->RTSR I= EXTI_RTSR_RT3; 



} 

II Disable falling edge trigger for EXTI 3 
II Falling trigger selection register (FSTR) 
II e = disabled, 1 = enabled 
EXTI->FTSR &= ~EXTI_FTSR_RT3; 

II Enable EXTI 3 interrupt 
II Interrupt mask register: e = masked, 1 = unmasked 
II "Masked,, means that processor ignores the corresponding interrupt. 
EXTI->IMRl I= EXTI_IMR1_IM3; II Enable EXTI Line 3 

II Set EXTI 3 priority to 1 
NVIC_SetPriority(EXTI3_IRQn, 1); 

II Enable EXTI 3 interrupt 
NVIC_EnableIRQ(EXTI3_IRQn); 

Example 11-13. Initialize and enable EXTI 3 for pin PA.3 

Interrupts l%D 

Example 11-14 shows the code of the external interrupt handler of EXTI 3, which toggles 
an LED when PA 3 triggers an external interrupt. 

One mistake that new programmers often make is that interrupt handlers do not clear interrupt 
pending flags. If the interrupt handler does not clear an interrupt pending flag after 
processing the interrupt, the microcontroller would mistakenly think another interrupt 
request has arrived and then repeatedly execute the interrupt handler. 

void EXTI3_IRQHandler(void) { 

II Check for EXTI 3 interrupt flag 
if ((EXTI->PRl & EXTI_PR1_PIF3) EXTI_PR1_PIF3) { 

I I Toggle LED 
GPIOB->ODR A= 1<<8; II Toggle PB.8 output 

II Clear interrupt pending request 
EXTI->PRl I= EXTI_PR1_PIF3; II Write 1 to clear 

} 

} 

Example 11-14. External interrupt handler for EXTI 3 

External interrupts can not only monitor the external voltage applied to GPIO pins, but 
also monitor internal events, such as RTC alarm, COMP outputs, or internal wakeup 
events. Also, software can trigger EXTI interrupts by writing to the EXTI software 
interrupt event register (EXTI_SWI ER). 



11.9 - Software Interrupt 

11.9 Software Interrupt 
Interrupt signals can be generated by hardware, such as hardware timers and peripheral 

hardware components. Software can also generate interrupt signals by setting the 

interrupt pending registers or by using special instructions. There are two major usages 

of software interrupt: exception handling and privileged hardware access. 

Exception Handling: When exceptional conditions occur during execution, such as 
division by zero, illegal opcode, and invalid memory access, the processors should 

handle these abnormal situations to potentially correct software errors. The processor can 

capture two software faults, including division by error and unaligned memory access, 

if software enables these fault capture features. A software interrupt invoked by software 

faults is often referred to as a trap. Example 11-15 enables the trap of dividing by zero. 

LDR r2, =SCB Base ; Base address of system control block (SCB) 
LDR r3, [r2, #SCB_CCR] , Read Configuration and Control Register 
ORR r3, r3, #16 ; Enable trap on dividing by e 
STR r3, [r2, #SCB_CCR] ; Write Configuration and Control Register 

MOV r0, #0 
MOV r1, #1 
UDIV rl, r1, r0 ; Invoke hard fault 

Example 11-15. A trap that handles abnormal situations 

If the software enables the dividing-by-zero trap and a division instruction (UDIV or SDIV) 

generates such a trap, the processor halts and invokes the hard fault handler shown in 

Example 11-16. The fault handler may print out the error message or reboot the processor. 

HardFault_Handler PROC 

EXPORT HardFault_Handler 

, Handle the error of division by e 
, For example, force the processor to reboot 

BL NVIC_SystemReset 
ENDP 

; Reboot the system using AIRCR register 

Example 11-16. Hard fault interrupt handler 

Privileged Hardware Access: When a user application runs in unprivileged mode and 
needs to access a hardware resource that is only accessible in privileged mode, a special 

instruction (supervisor call) generates a software interrupt and makes the processor 
switch from the unprivileged mode to the privilege mode. Chapter 23.2 introduces the 
supervisor call (SVC). 



Interrupts li&A 

11.10 Exercises 

1. Compare two methods of responding to external events: polling and interrupts. 
Discuss the advantages and disadvantages of each approach. 

2. Give two example instructions that make an interrupt service routine exit. 

3. The MSI (multi-speed internal) oscillator clock is selected as system clock source 
after s_tartup from Reset, wakeup from Stop or Standby low power modes. The 
MSI clock has seven optional frequency ranges available: 100 KHz, 200 KHz, 400 
KHz, 800 KHz, 1 MHz, 2 MHz, 4 MHz (default value), 8 MHz, 16 MHz, 24 MHz, 
32 MHz, and 48 MHz. Write an assembly program that selects MSI 8 MHz as the 
system clock. 

4. If the MSI 4.094 MHz clock is selected as the system clock and the SysTick selects 
it as the clock, what should the SysTick_LOAD register be to generate a SysTick 
interrupt every microsecond? What is the SysTick_LOAD value to produce a 
SysTick interrupt every millisecond? 

5. Suppose software selects the default MSI (4 MHz) to drive the system timer 
(SysTick). Can you use this MSI to generate a SysTick interrupt every minute? If 
yes, show how do you set up the system timer registers. If not, give a solution to 
solve this problem. 

6. Is it possible to use the SysTick Timer to generate an interrupt once every 12 
seconds if there is only a clock of 2.097 MHz? If not, name two ways that you can 
solve this problem. If yes, how to set up the timer registers? 

7. Suppose register i (i ~ 12) is initialized to have a value of i (e.g. r0 = 0, rl= 1, r2 = 
2, r3 = 3, etc.). Assume the main stack (MSP) is used. Also, in the interrupt handler, 
if LR= 0xFFFFFFF9, then the main stack (MSP) is used. If LR= 0xFFFFFFFD, then the 
process stack (PSP) is used. The program status register (PSR) = 0x00000020, PC= 
0x08000020, and LR = 0x20008020, when the interrupt occurs. 

(1) Show the stack content immediately before the PUSH instruction runs. 
Suppose the stack pointer SP (i .e., MSP in this case) was 0x20000600 
immediately before the system timer interrupt occurs. 



11.10 - Exercises 

SysTick_Handler PROC 
PUSH {r4, rs, r6} 
ADD r0, r0, #1 
ADD rl, rl, #1 
ADD r2, r2, #1 
ADD r3, r3, #1 
ADD r4, r4, #1 
ADD rs, rs, #1 
ADD r6, r6, #1 
ADD r7, r7, #1 
ADD r8, r8, #1 
ADD r9, r9, #1 
ADD r10, r10, #1 
ADD rll, rll, #1 
ADD r12, r12, #1 
POP {r4, rs, r6} 
BX LR 
ENDP 

(2) What are the values of these registers (R0-R12, LR, SP, and PC) immediately 

after the interrupt exits? 

8. Suppose the SysTick interrupt occurs when PC= 0x08000044, XPSR = 0x00000020, 

SP= 0x20000200, LR= 0x08001000, and register Ri = i, i = 0, 1, 2, ... , 12. 

Memory Address Instruction 

main PROC - ... 
0x08000044 MOV r3, #0 

... 
ENDP 

SysTick_Handler PROC 
EXPORT SysTick_Handler 

0x0800001C ADD r3, #1 
0x0800001E ADD r4, #1 
0x08000020 BX lr 

ENDP 

(1) Show the stack contents and the value of PC and SP when immediately 

entering the SysTick interrupt service routine. 

(2) When executing the instruction " BX LR", how does the processor know 

whether it is exiting a standard subroutine or an interrupt service routine? 

What operations does the processor perform when a standard subroutine 
exits? What operations does the processor perform when an interrupt service 

routine exits? 



Fixed-point and Floating-point Arithmetic RI 

CHAPTER 

12 
Fixed-point and Floating-point Arithmetic 
Let us review how real numbers work. In general, a real number can often be written in 
the following format: 

where bis the base (or radix) and each di is a digit (0 ~ di < b). 

The decimal system, the most widely used number system in daily life, is based on 
powers of 10. Each digit represents a coefficient that multiplies the power of 10 
represented by its position. For example, 

654.32110 = 6 x 102 + 5 x 101 + 4 x 10° + 3 x 10-1 + 2 x 10-2 + 1x10-3 

All information is stored in the form of binary numbers in computers. A binary real 
number works in a similar way to a decimal real number. 

101.0112 = 1 x 22 + o x 21 + 1 x 2° + o x 2-1 + 1 x 2-2 + 1 x 2- 3 

If we convert it to the decimal notation, we get 

101.0112 = 4 + 0 + 1 + 0 + 0.25 + 0.125 = 5.375 

There are two common ways to represent an approximation of a real number: fixed-point 
format and floating-point format. It is an approximation because a finite number of digits 
cannot represent all real numbers. For example, the actual value of 1/3 is 0.333333 ... , 
which has an infinite number of digits. 

As introduced previously, the fixed-point format has a fixed number of digits after the 
decimal point. In contrast, the floating-point format can have a various number of digits 
after the decimal point depending on the scale of the real number. 



•11·• 12.1 - Fixed-point Arithmetic 

While fixed-point arithmetic has fixed resolution 
for a given representation range and simple math 
allowing easy and fast computation, floating-point 
arithmetic trades manufacturing cost and 
computation efficiency for better precision and a 
wider range of representation. The processor often 
includes a special component, called floating-point 
unit (FPU), to speed up floating-point processing. 

In embedded systems, not all microcontrollers have 
FPU on the chip. In the absence of an FPU, fixed-
point arithmetic is often preferred, because the 
software implementation of floating-point 
arithmetic is much more complex than the fixed-
point arithmetic. 

"There is no sense in 
being precise when you do 

not even know what you 
are talking about." 

John von Neumann 
mathematician, computer 

scientist 

Furthermore, if the dynamic range of an application's data set is small, the fixed-point 
format is preferred to improve the computational performance and accuracy. For 
example, video processing systems often use fixed-point arithmetic because pixel values 
have a fixed and regular format. On the contrary, audio systems often deploy floating
point arithmetic because the value of audio signals changes over a wide range. 

While most desktops and servers use floating-point systems, the decision of using fixed
point or floating-point in an embedded system is sometimes difficult to make, as the cost 
of on-chip FPU has decreased sharply. For small applications running on limited 
computation capability or requiring long battery lifetime, fixed-point arithmetic is often 
preferred for simplified computation and improved energy efficiency. However, 
floating-point arithmetic can represent a wider dynamic range, and it is easier to develop 
a software program. The hardware has implemented complex floating-point functions, 
and the software can directly execute floating-point instructions supported by the 
hardware. Therefore, software programs do not need to worry about these functions. 

12.1 Fixed-point Arithmetic 
As its name suggests, a fixed-point number assumes there are a predefined number of 
binary bits to the right of the binary point. Assembly programs treat a fixed-point number 
as a normal integer and use integer arithmetic to handle these numbers. However, for 
programmers, there is a virtual decimal place at a fixed location of the binary 
representation. When two fixed-point numbers are added or subtracted, the bit strings 
can be treated as two integers and can be directly added or subtracted because their 



Fixed-point and Floating-point Arithmetic I.HM 

virtual decimal points are naturally aligned. However, when two fixed-point numbers 
are multiplied or divided, shift operations are required to fit the result into the same 
format as the operands. 

12.1.1 Unsigned Fixed-point Representation 
Unsigned fixed-point numbers often use the UQm.n notation, where m is the number of 
bits representing the integer portion, and n is the number of bits representing the 
fractional portion, as shown in Figure 12-1. When mis 0, the notation is simplified to UQn, 
such as UQ8. 

m bits n bits 

Integer Fraction 

Radix point 

Figure 12-1. VQtn.n representation of unsigned fixed-point numbers 

In the UQm.n notation, the decimal value of an unsigned fixed-point number is calculated 
as follows: 

where Ah and A1 are the integer value of the integer portion and the fraction portion (h 
stands for high, 1 stands for low), respectively. 

Integer 27 26 25 24 23 22 i 20 

Fixed Point 24 23 22 i 20 2·1 2-2 z 3 

0 

1 10 i 0 

\. ~ y 
Integer (m = 5) Fraction (n = 3) 

Radix Point 

Figure 12-2. An example unsigned fixed-point number in UQS.3 format. 

In the example given in Figure 12-2, the integer portion Ah= 011012 = 13, and the 
fraction portion A1 = 1012 = 5. Therefore, we have 

01101.1012 = Ah+ A1 x 2-3 = 13 + s x 2-3 = 13.625 

Suppose IA and fare the integer value and the unsigned fixed-point value that a 
sequence of binary digits represents, respectively. Then we have 



12.1 - Fixed-point Arithmetic 

For example, 

01101.1012 
1 x 26 + 1 x 25 + 1 x 23 + 1 x 22 + 1 x 2° 109 

=-8 = 13.625 23 

This concept is crucial because the computer usually implements fixed-point arithmetic 
by using integer operations. The key idea is that the computer processes these binary 
digits as if they were integers when in fact you, as the programmer, know that you are 
handling fixed-point numbers. 

We can also use the radix or base to calculate the unsigned fixed-point value directly, as 
shown in the following example. 

01101.1012 = 1 x 23 + 1 x 22 + 1 x 2° + 1 x 2-1 + 1 x 2-3 = 13.625 

12.1.2 Signed Fixed-point Representation 
Signed fixed-point numbers often use the Qm.n notation. The total number of bits N ism 
+ n + 1, with m bits for the integer portion, n bits utilized for the fractional portion, and 1 

bit for the sign. In digital signal processing, m is often 0, such as Q0.7 and Q0.15 

(simplified as Q7 and QlS). 

m bits I ._I __ n_b_its _ ___. 

Radix point J ~j' 
Sign bit 

Figure 12-3. Qm.n representation of fixed-point numbers (m + n + 1 bits totally) 

Suppose binary digits bN-l ··· b2 b 1 b0 represent a signed fixed-point number in the Qm.n 
format. The signed integer value that these binary digits represent in two's complement 
is 

N-2 m+n-1 

A= -1 x bN-1 x 2N-l + L (bi x 2i) = -1 x bm+n x 2m+n + L (bi x 2i) 
i=O i=O 

where N = m + n + 1. Then the signed fixed-point value is 

m+n-1 

r = :n = -1 x bm+n x 2m + I (bi x zi-n) 
i=O 



Fixed-point and Floating-point Arithmetic IJJI 

Example: Find the Q4.3 signed fixed-point value that 10010011 represents. 
-1 x 21 + 1 x 24 + 1 x 21 + 1 x 2° -109 

10010.0112 = 23 = -8- = -13.625 

Like the unsigned fixed-point number, we often convert a signed fixed-point number fA 

to an integer to facilitate the computation. In the above example, we have IA = 
1010100112 = -173, because the binary integer is two's complement format. 

12.1.3 Converting to Fixed-point Format 
We can convert a real number to the fixed-point format Qm.n or UQm.n by multiplying 
it with 2n and then rounding the product towards nearest integer A. 

In the signed fixed-point format Qm.n, the integer A is represented in two's complement. 

A = round(! x 2n) 

Example 1: Convert f = 3.141593 to unsigned fixed-point UQ4.12 format. 

(1) Calculate f x 212 = 12867.964928 
(2) Round the result to an integer, round(12867.964928) = 12868 
(3) Convert the integer to binary: 12868 = 11_0010_0100_01002 
(4) Organize into UQ4.12: 0011. 0010_0100_01002 
(5) Final result in Hex: 0x3244 

( ) 12868 f 5 -6 6 Error: 2'12""" - = -8. 625 x 10 

Example 2: Convert f = -3.141593 to signed fixed-point Q3.12 format. 

(1) Calculate f x 212 = -12867.964928 
(2) Round the result to an integer, round(-12867.964928) = -12868 
(3) Convert the absolute value to binary: 12868 = 11_0010_0100_01002 

Note that the integer is represented in two's complement. 
(4) Make the result into 16 bits: 0011_0010_0100_01002 
(5) Find the two's complement: 1100_1101_1011_11002 
(6) Final result in Hex: 0xCDBC 

12868 -6 
(7) Error: -2'12"""- f = 8.5625 x 10 

It is interesting that the signed and unsigned fixed-point representation in the above two 
examples are two's complement to each other. 



12.1 - Fixed-point Arithmetic 

12.1.4 Fixed-point Range and Resolution Tradeoff 
An unsigned fixed-point number UQm.n uses m + n bits. For a signed fixed-point number 
Qm.n, an extra sign bit is used and thus a total of m + n + 1 bits are used. Since the total 
number of bits available is given, the fixed-point representation must play a tradeoff 
between the range and resolution, depending on the application's needs. 

The resolution is defined as the smallest non-zero real number representable. It equals 
the gap between two consecutive numbers that are representable in fixed-point format. 
For UQm.n and Qm.n, the resolution of n is 2-n. For example, the resolution of Q3.3 is 
2-3 (i .e., 0.125). 

Note resolution differs from accuracy. 

• Accuracy refers to the closeness of a numeric representation of a number to its 
true value. For example, when representing a real number, such as rr, in UQ16.16, 
the error is the difference between the true value and the approximation in 
UQ16.16. Naturally, the maximum error is less than the resolution 2-n. 

• Resolution describes precision. It is the smallest change that is representable in 
the digital system. The precision or resolution does not measure how close a 
representation is from its true value; instead, it measures how close the values of 
different representations in the same format can be from each other. 

We define the representable range as the maximal and minimal values that can be 
represented. 

• Range of unsigned fixed-point numbers 
The range of unsigned integers represented by using m + n bits is (0, 2m+n - 1]. 
Therefore, the representable range of unsigned fixed-point numbers is 
[O, 2m+n - 1] x 2-n, i.e., [O, 2m - z-n] . 

• Range of signed fixed-point numbers 
The range of signed integers, represented in two's complement by using m + n + 
1 bits, is (- 2m+n, 2m+n - 1] . Therefore, the representable range of signed fixed
point numbers is (-2m+n, 2m+n - 1] x z-n, i.e. , [- 2m, 2m - 2-n] . 

Figure 12-4 and Figure 12-5 shows the range and resolution of UQ5 unsigned fixed-point 
numbers and Q4 signed fixed-point numbers, respectively. 

The fixed-point representation plays a tradeoff between range and resolution. If n is too 
small, then we have a poor resolution, but a Large representation range. On the other 
hand, if n is too large, then we have a good resolution, but a small representation range 
and high risk of overflow. For unsigned fixed-point numbers, we can choose to use 



Fixed-point and Floating-point Arithmetic IR• 

UQ16.16. However, if we need a larger range, we may use UQ20.12; if a higher resolution 
is needed, we may use UQ12.20. 

1100 

10011 

10010 01110 
10001 10000 01111 

Figure 12-4. UQS unsigned fixed-point Figure 12-5. Q4 signed fixed-point 

If the dynamic range of application's data set does not fit in the representable range of a 
given Qm.n format, we often use a predefined linear scaling and offsetting operation to 
transform the application's data set into the representation range. When the arithmetic 
operation completes, we perform a reverse scaling and shifting to recover the true data. 

The linear scaling and offsetting are performed as follows . If the actual value of an 
application's data is V, and the represented approximation is V, then we have 

v = v x zscale +offset 

where scale and offset are two constants (can be positive or negative value) predefined 
by the application to ensure that V falls in the available fixed-point range. 

12.1.5 Fixed-point Addition and Subtraction 
Suppose fA, fs and fc are three unsigned fixed-point numbers in the UQ16.16 format, or 
three signed fixed-point numbers in the QlS.16 format. We define fc as: 

fc = fA + fs 

The following shows how to calculate fc by using integer arithmetic. 

If the radix point (or binary point) is ignored, the integer value that is represented by the 
bit string of fA, fs and fc is IA, ls, and le, respectively. For signed fixed-point numbers, 
IA, ls and le may be negative because each bit string denotes an integer in two's 
complement. 



12.1 - Fixed-point Arithmetic 

The following equations show the conversion between fAJ fa, fe and IA, la, le. 

{

IA = fA x 2
16 

{fA = IA x 2-
16 

la =fa x 216 ~ fa =lax 2-16 

le = fe x 216 fe = le x 2-16 

Thus, we can calculate the fixed-point addition fA +fa as follows: 

fe = fA +fa 
= IA x 2-16 +la x 2-16 

= (IA +la) X 2-16 

Since 
fe =le x 2-16 

Thus, we have the following equation: 

lex 2-16 = (IA+ Ia) x 2-16 

We multiply 216 on both sides of the above equation, and we have: 

le = IA +la 

The above equation shows that fe can be directly obtained by adding these two bit
strings that represent fA and fa· Adding two fixed-point numbers is performed in the 
same way as if these two bit-strings were representing two integers. 

Similarly, for unsigned or signed fixed-point subtraction: 

fe = fA - fa 
we have 

fe=IA-la 

Therefore, the binary result digits of fixed-point subtraction are the same as integer 
subtraction. 

In sum, the addition and subtraction are simple. If bit strings represent fixed-point 
numbers, the program can treat them as integers during subtraction and addition. In 
other words, although they are fixed-point numbers, we can use integer "add" and "sub" 

instructions to calculate the addition and subtraction of two fixed-point numbers. The 
program tricks the processor into thinking adding or subtracting two integers while the 
program knows that fixed-point numbers are processed in fact. 

; re = fixed-point number fa 
; rl = fixed-point number fb 
; r2 = fixed-point number fc 
add r2, r0, rl ; fc = fa + fb 
sub r2, r0, rl ; fc = fa - fb 

Example 12-1. Adding and subtracting two fixed-point numbers in UQ16.16 or QlS.16 



Fixed-point and Floating-point Arithmetic IW 

12.1.6 Fixed-point Multiplication 

This section shows how to calculate the fixed-point multiplication between IA and 18 , i.e. 

le= IA x IB 
where IA , 18 and le are all unsigned fixed-point numbers in the UQ16.16 format or 
signed fixed-point numbers in the Q15.16 format. Mathematically, we have 

le= IA x IB 
= UA x z-16) x UB x z-16) 

= UA x lB) x z-32 

We also know that 
le = le x 2-16 

Therefore, we get 
le x Z-16 = (IA x lB) x 2-32 

We can multiply 216 on both sides of the above equation, and then we have 

le = (IA x IB) x 2-16 

The above equation shows that we can treat fixed-point numbers IA and 18 as integers 
first and calculate the product of these two integers. The result that we want is the middle 
32 bits of the 64-bit product. Therefore, we need to shift the 64-bit product right by 16 
bits, and the product is the least significant 32 bits of the shifted product. 

r3 

r2 

rO I Ah (16 bits) A1 (16 bits) 

r1 I Bh (16 bits) 81 (16 bits) 

r3 

Most Significant 32 Bits of AxB 

Least Significant 32 Bits of AxB 

Result (32 bits) 

Logic shift left 
r3 by 16 bits 

Logic shift right 
r2 by 16 bits 

r2 

LSB-16 of r3 

ch (16 bits) 

0000 ... 0 

MSB-16 of r2 

C1 (16 bits) 

r4 

Figure 12-6. Multiplying two fixed-point numbers in UQ16.16 or QlS.16 



W}l:I 12.1 - Fixed-point Arithmetic 

Unsigned fixed-point format UQ16.16 Signed fixed-point format QlS.16 

; re = fixed-point number A 
, rl = fixed-point number 8 
, r4 = fixed-point product = A x 8 

; Unsigned Long multiply 
; r2 = Low word, r3 = high word 
UMULL r2, r3, r0, rl 

; Shift Left high word 
LSLS r3, r3, #16 

; Shift right Low word 
LSRS r2, r2, #16 

; Pack two halfwords into a word 
ORR r4, r2, r3 

; re = fixed-point number A 
, rl = fixed-point number 8 
, r4 = fixed-point product = A x 8 

; Signed Long multiply 
, r2 = Low word, r3 = high word 
SMULL r2, r3, r0, rl 

; Shift Left high word 
LSLS r3, r3, #16 

; Shift right Low word 
LSRS r2, r2, #16 

, Pack two halfwords into a word 
ORR r4, r2, r3 

Example 12-2. Multiplying two fixed-point numbers in UQ16.16 or QlS.16 

The multiplication should be unsigned for UQ16.16 and signed for QlS.16. 

• Note that SMULL treats two source operands r0 and rl as two's complement 
signed integers and produces a 64-bit product. If the exact product has 65 bits, we 
only keep the most significant 64 bits. SMULL places the least significant 32 bits of 
the 64-bit result into register r2 and the most significant 32 bits into register r3. 

• For multiplying unsigned fixed-point numbers, we should use UMULL to multiply 
their corresponding integers. 

12.1.7 Fixed-point Division 

This section shows how to calculate the fixed-point division of fA by f8, i.e. 

fc = fA + fB 

where fA, f 8 and fc are fixed-point numbers in UQ16.16 notation. 

Mathematically we have, 
fc = fA + fB 

= (IA x z-16) + (IB x z-16) 

=IA+ 18 

We also know that 

fc =le X Z-16 

Therefore, we have 



Fixed-point and Floating-point Arithmetic IHI 

The above equation shows that we can treat fixed-point numbers fA and f8 as integers 
first. Then we shift the dividend IA left by 16 bits to make it a 64-bit number. After that, 
we divide this 64-bit number by the 32-bit divisor 18 . The 32-bit quotient is the result. 

rO I Ah (16 bits) q r1 1 Sign_Ext(A) Ah (16 bits) 

A1 (16 bits) I 
rO I A1 (16 bits) 0000 .. . 0 

q r3 \ Sign_Ext(8) 

81 (16 bits) I 
r2 1 8h (16 bits) 81 (16 bits) 

r2 8h (16 bits) 

Figure 12-7. Dividing two fixed-point numbers in the format of UQ16.16 or Q15.16 

; re = fixed-point number A 
; r2 = fixed-point number B 
, r4 = fixed-point quotient = A + B 

ASRS rl, r0, #16 , 16-bit sign in upper word 
LSLS r0, r 0, #16 ; [rl:re) stores sign extended A 
ASRS r3, r2, #31 ; [r3:r2] stores sign extended B 
BL division_64_bits , Take four input register (re:rl, r3:r2) 
MOV r4, r0 ; division_64_bits places result in re 

Example 12-3. Dividing two fixed-point numbers in the format of UQ16.16 or Q15.16 

ARM does not have any instructions that perform 64-bit integer division. Chapter 9.9 
presents the implementation of 64-bit integer division. 

12.2 Floating-point Arithmetic 
The IEEE Standard for Floating-point Arithmetic (IEEE 754) is a de facto technical 
standard to store and operate real numbers in computers. It aims to provide portability 
across different platforms by defining a shared method of representing floating-point 
numbers and implementing floating-point operations. IEEE 754 has been widely 
supported by many processors with FPU and by many software libraries written for 
processors without FPU. 

12.2.1 Floating-point Representation 
The IEEE 754 standard uses a normalized notation, which includes three fields: the sign 
bit, the fraction, and the true exponent, as shown in Figure 12-7. We call it true exponent 
to differ from the biased exponent introduced later in this section. 



12.2 - Floating-point Arithmetic 

The normalized notation implicitly assumes there is only one digit before the decimal 
point, and this digit must be 1. This bit is also called the hidden bit or the hidden 1 in 
IEEE 754. 

Hidden Bit 

J , --~ True Exponent 
1. 75 xi:'?) 

T T 
Sign Fraction 

(excluding 
hidden bit) 

Figure 12-8. Normalized notation. 

For example, the following numbers are not in normalized format: 10.746 x 26 , 

5.023 x 23, -0.5 x 2-7, and 0.05 x 29, because their integer part (all digits to the left of 

the decimal point) is not exactly 1. Additionally, 1.025 x 103 is not in the normalized 

format because the exponential part is based on 10, instead of 2. 

We can convert 10.746 x 26 to the normalized format as follows: 

10.746 
10.746 x 26 = 8 x 8 x 26 = 1.34325 x 29 

Single-precision and double-precision, defined in IEEE 754, are two of the most 

commonly used formats. Half-precision is often used in digital signal processing 
applications. The half-precision, single-precision, and double-precision use 16, 32, and 64 
bits to store a floating-point number, respectively. In C, the statement "float x" declares 
a single-precision variable, and "double y" declares a double-precision variable. 

Half Precision (16 bits) 

Single Precision (32 bits) 

11 :it1-1--• 8 bits ••-------• 23 bits -•-----< 
Exponent Fraction 

Double Precision (64 bits) 

1 bit>----- 11 bits -----+-----------. 52 bits -------------< 
s Exponent Fraction 

Figure 12-9. IEEE 754 single-precision and double-precision format 



Fixed-point and Floating-point Arithmetic di 

Compared with single precision, double precision has higher accuracy and can represent 
a much wider range of numbers. However, double-precision takes more memory space 
and bandwidth and is less computationally efficient. While most scientific applications 
running on desktops or servers use double precision, many embedded systems use single 
precision to reduce the hardware cost and improve the energy efficiency. 

Each format has three fields. As shown in Figure 12-9, the half-precision has a sign bit, a 
5-bit biased exponent, and a 10-bit fraction. The single-precision has a sign bit, an 8-bit 
biased exponent, and a 23-bit fraction. The double-precision has a sign bit, an 11-bit 
biased exponent, and a 52-bit fraction. The following discusses these three fields . 

• The sign bit indicates whether the number is positive or negative. A value of 0 in 
the sign bit stands for a positive number, whereas a value of 1 denotes a negative 
number. 

• The biased exponent is defined as the sum of the actual exponent and a bias 
constant. In other words, the true exponent equals the biased exponent minus the 
bias constant. The bias constant is 15 for half precision, 127 for single precision, 
and 1023 for double precision. For single precision, the actual exponent has a 
value falling between -127 and 128, and, therefore, the biased exponent is always 
non-negative, ranging from 0 to 255. You may wonder why the exponent field 
does not use two's complement of the true exponent, instead of the biased 
exponent. The key reason is that comparing two unsigned numbers can be 
executed much faster than comparing two signed numbers represented in two's 
complement. This can speed up floating point comparison. 

• The fraction field consists of all bits to the right of the binary point. In the 
normalized format, as shown in Figure 12-7, the leading bit (the bit to the left of 
the decimal point) is always 1. This hidden bit is therefore not stored in the 
fraction field. When calculating the decimal value of a binary format, the hidden 
bit should be included. For example, if the fraction field is 0b0100101 in binary, 
the actual fraction is 1. 0100101 in binary, which includes the fraction bits and the 
hidden leading bit with a value of 1. 

We can calculate the floating-point number represented in IEEE 754 format by using the 
following formula (except a few special numbers discussed later): 

where 

f = (-l)s x (1 +Fraction) x zExponent-Bias 

l 
15, 

Bias= 127, 
1023, 

Half Precision 
Single Precision 
Double Precision 



MJ:Jj 12.2 - Floating-point Arithmetic 

The following gives two examples of converting floating-point numbers between 
different formats. 

Example 1: Decoding 0xC1F F0000 into a floating-point number 

We need to convert the hex value to a 32-bit binary bit string. These bits are divided 
into three groups: with bit 31 (the leftmost bit) being the sign bit, bits 30-23 (the next 
eight bits) being the exponent, and bits 22-0 (the rest) being the fraction. 

B bits 23 bits 

~ 
1,10000011,11111110000000000000000 

Si(n Bit Exponent Fraction 

Figure 12-10. Partitioning bits of 0xC1FF0000 into three parts 

1. The first step is to check the sign bit, which is the leading bit of the bit string. 
In this case, we have S = 1. 

2. Convert the exponent 10000011 into a decimal integer. 

100000112 = 131 

3. Convert the fraction 11111110000000000000 into a decimal real number. 

0.1111111 2 = 1x2-1 +1x2-2 +1x2-3 +1x2-4 +1x2-s+1 x 2-6 

+ 1 x 2-7 

= 0.5 + 0.25 + 0.125 + 0.0625 + 0.03125 + 0.015625 + 0.078125 
= 0.9921875 

4. Calculate the represented real number as follows: 

f = ( - l)s x (1 + Fraction) x 2Exponent-127 

= (-1)5 X (1 + 0.9921875) X 2131- 127 

= -1x1.9921875 x 24 

= -31.875 

Example 2: Encoding 14.5 into single-precision IEEE 754 format 

The encoding involves the following five steps: 
1. First, set up the sign bit. The sign bit Sis cleared for a positive number and is 

set for a negative number. Therefore, S = 1 in this case. 



Fixed-point and Floating-point Arithmetic i.A:fSM 

2. Rewrite the floating number in the base-2 normalized format. Since 14.5 is 
larger than 2, we can repeatedly divide it by 2 until the quotient is smaller than 
2 but greater than 1. Note, if the floating-point number to be converted is 
smaller than 1, we multiply it by 2, instead of dividing it by 2. 

Therefore, we have 

14.5 + 2 = 7.25 
7.25 + 2 = 3.625 
3.625 + 2 = 1.8125 

14.5 = 1.8125 x 23 

= (1 + o.8125) x 23 

3. Calculate the exponent by adding the actual exponent and the bias. The bias is 
127 for the single-precision. 

Exponent= 3 + 127 = 130 = 10000102 

4. Calculate the fraction by converting 0.8125 into binary. The conversion is 
achieved by repeatedly multiplying the fraction part (all digits to the right of 
the decimal point) of the product with 2 until the product becomes 1. 

0.8125 x 2 = 1.625 = 1 + 0.625 

0.625 x 2 = 1.25 = 1 + 0.25 

0.25 x 2 = 0.5 = 0 + 0.5 

0.5 x 2 = 1 

Thus, the binary representation of 0.8125 is 0 .1101, which combines the leading 
digit of the products (the digit to the left of the decimal point) of the above 
multiplications. The following can help you understand why the above 
conversion process works. 

1 
0.8125 = 2 x (1 + 0.625) 

= ~ x ( 1 + ~ x (1 + 0.25)) 

= ~ x ( 1 + ~ x ( 1 + ~ x (0 + 0.5))) 
=~+ +~x (i +~x (o +~x 1))) 

1 -1 1 -2 1 -3 1 -4 

= 1 x (2) + 1 x (2) + o x (2) + 1 x (2) 
= 2-1 + 2-2+2-4 
= 0.11012 



12.2 - Floating-point Arithmetic 

Thus, the fraction is 11010000000000000000000, which appends 0 to the result 
to make the length of the fraction bit string 23 bits. 

5. The single-precision floating point format of 14.5 is 
01000001011010000000000000000000 in binary and 0x41680000 in hex. 

12.2.2 Special Values 
Figure 12-11 shows bit patterns representing special values including 0, ±oo, and NAN. 

• We cannot represent zero in IEEE 754 format directly. Instead, we represent zero 
with a special pattern in which all bits of exponent and fraction are cleared. 
Because it is not required to clear the sign bit, there is a positive zero and negative 
zero, and hardware should treat them as equal. 

• We denote the positive infinity and the negative infinity by a special pattern in 
which all exponent bits are one, and all fraction bits are zero. 

• NaN (Not any Number) means that a floating-point arithmetic is invalid. We 
represent a NaN by any particular patterns in which all exponent bits are one, 
and the fraction is non-zero. For example, the following operations produce NaN: 
0.0/0.0, -oo + oo, 0 x (±oo), ±00/±00, sqrt(-1.0), and log(-10.0). There are two types of 
NaN: QNaN (Quiet NaN) and SNaN (Signaling NaN). A SNaN generates a 
hardware exception signal to let the software handle the anomaly. A QNaN does 
not raise such a hardware signal. 

Sig\ n Exponent (8 bits) Fraction (23 bits) 
? ~~~~~~~~~~~~~~~~~ 

+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

+co 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-co 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NaN x 1 1 1 1 1 1 Any Non-zero Va l ue 

L Do not care O: Quiet NaN (QNaN) 
1: Signalling NaN (SNaN) 

Figure 12-11. Special values in IEEE 754 single-precision 

Floating operations normally use QNaN and let the NaN result propagate through most 
of all following arithmetic operations. For example, 0xNaN =NaN, sqrt(NaN) =NaN, 
logic expressions "0 <NaN", "0 >NaN", and "0 ==NaN" are false, but "0 !=NaN" is true. 
Many processors, including ARM Cortex-M, are configurable so the same operation can 
produce either a QNaN or a SNaN to meet the application's need. In the default setting, 
QNaN is preferred over SNaN. 



Fixed-point and Floating-point Arithmetic 11!1 

12.2.3 Overflow and Underflow 
Now let us find the smallest and largest values that the single-precision format can 
represent. 

• Numbers closest to zero. Since 0b00000000 is reserved in the exponent field, the 
minimal value of the exponent is 0b00000001. The fraction can be as small as 
0b000 ... 00. Thus, the numbers closest to zero are 

c-1)5 x c1 + o) x 21- 127 = ±z-126 :::::: ±1.18 x 10-30 

• Numbers farthest from zero. The maximum value of the exponent is 0b11111110 

because 0b11111111 is reserved. The fraction can be as large as 0b111 ... 111. Thus, 
the biggest finite values are 

Overflow 

~ 

I 

(-l)s x ( 1 + (1 _ 2-23)) x 22s4-127 = ±cz120 _ 2104) :::::: ± 3.40 x 1030 

Underflow Overflow 

-3. 40x1038 -1.17x10- 38 0 1.17x10-38 3 .40x1038 

L Zero is not underflow. 
Figure 12-12. Representation range of IEEE 754 single-precision 

Underflow and overflow can occur during computation. 

• Underflow. If the exact result is non-zero and smaller than the smallest 
representable value, an underflow occurs, which may cause a loss of precision and 
create a significant computation error. 

• Overflow. If the exact result is finite but exceeds the largest representable value, 
an overflow happens, which is another common cause of software failures. 

When a processor detects an underflow or overflow, the hardware returns zero or the 
maximum number, respectively, and simultaneously generates an exception signal to 
provide an opportunity for the software to handle anomalies. 

Overflow and underflow can cause strange and unexpected software failures that can be 
disastrous. On June 4, 1996, the Ariane 5 rocket veered off the designed course and 
destructed itself because an overflow occurred when assigning a floating-point number 
to an integer. That simple software failure caused an estimated loss of $370 million. 



MJ:fl 12.2 - Floating-point Arithmetic 

At the hardware level, overflow and underflow can be detected by checking whether the 
exponent of a floating-point arithmetic operation is too large or too small. The processor 
can generate a particular hardware signal upon overflow or underflow. 

However, it is difficult for programmers to write software to handle the anomaly because 
the signal can be raised at any point in the program. For example, in the following simple 
C statement, if the subtraction causes an underflow, most processors automatically 
return zero as the result of the subtraction. Consequently, a divide-by-zero anomaly takes 
place, even though the if-statement aims to prevent it. 

if(a!=b) 
c = 1/(a - b); // Divide-by-zero can stiLL occur. 

Example 12-4. An if-statement fails to prevent divide-by-zero error. 

12.2.4 Subnormal Numbers 
IEEE 754 standard also defines a subnormal format for a class of floating-point numbers 
filling between 0 and the minimum positive number that the normalized format can 
represent. Upon an underflow in the normalized presentation, the data can be 
"deformalized" to the subnormal format to trade the numeric range for accuracy. 
Formerly the subnormal format was called denormal format. 

A bit string is a subnormal format if all bits of the exponent are zero, but at least one bit 
of the fraction is non-zero. Specifically, for single-precision, the decimal value it 
represents can be calculated as follows: 

(-1) 5 x Fraction x 2-126 

Note the subnormal format differs from the normalized format introduced previously in 
two major aspects: 

1. The subnormal allows a leading zero in front of the decimal point in the fraction, 
while the normalized format assumes the fraction always has a leading hidden 1 

to the left of the decimal point. Thus, when calculating the decimal values, the 
normalized format uses (1 +Fraction) while the subnormal uses Fraction only. 

2. All subnormal floating numbers have the same exponent, which is always 0. 

The smallest positive number that the subnormal format in single-precision is 

0,00000000,00000000000000000000001, 

whose fraction value is 2-23 . Therefore, the smallest positive number is 

z-23 x z-126 = z-149 :::: l.4o x 10-4s 



Fixed-point and Floating-point Arithmetic llD 

The largest positive number of single-precision subnormal format is 

0,00000000,11111111111111111111111, 

whose fraction value is 1- r 23
• 

Therefore, the largest positive subnormal number in the single-precision format is 

c1 _ 2-23) x 2-126 = 2-126 _ 2-149 

::::: 1.175 x 10-38 

12.2.5 Tradeoff between Numeric Range and Resolution 
Compared with the fixed-point system, the floating-point system with the same number 
of bits can represent a larger numeric range at the cost of degraded resolution. 
Specifically, all floating-point numbers are not distributed uniformly across the 
represented range. 

If the total number of bits is given, the fixed-point format must play a tradeoff between 
the representation range and the representation resolution. It has either a large range but 
inferior resolution, or a narrow range but superior resolution. 

Let us consider a hypothetical floating-point system that is like the IEEE 754 standard. 
This system has only five bits: the sign bit, an exponent with two bits and a fraction with 
two bits. The bias for the normalized representation is 1. Therefore, the corresponding 
decimal value is as follows: 

(-1) 5 x (1 + Fraction) x 2Exponent-l 

For example, if the binary is 10110, its corresponding floating-point nurnber is 

(-1)1 x (1+0.10)2 x 22- 1 = -3/4 

If the exponent is zero but the fraction is not zero, then it is in subnormal format, and its 
decimal value is 

(-1)5 x Fraction x 2° = (-1)5 x Fraction 

For example, if the binary is 10010, the decimal is then 

(-1)1 x (0.10)2 = -1/2 

We consider a fixed-point system in the format of Q3.2, with three bits set aside for the 
integer portion and two bits used for the fractional portion. The integer portion uses 
two's complement. For a fair comparison, we also require the fixed-point system uses the 
same bit patterns to denote special values, including ±oo, QNaN, and SNaN. 



Wl:f:I 12.2 - Floating-point Arithmetic 

Table 12-1 lists the values represented by all possible bit s trings in both fixed-point Q3.2 

and 5-bit floating-point systems. 

Binary Floating-point Notation for Fixed-
floating-point point 

00000 0.0 Reserved 0.0 

00001 Y. (0. 01)2 Y. 

00010 x (0.10)i x 
00011 Y. (0. ll)i Y. 
00100 1.0 (1+0.00)ix21 - 1 1.0 

00101 lY. ( 1+0. 01)ix21 - 1 lY. 

00110 lX (1+0.10)ix21 - 1 lX 

00111 1% (1+0. ll)ix21 - 1 1% 

01000 2.0 (1+0.00)ix22- 1 2.0 

01001 2X ( 1+0. 01 )ix22- 1 2Y. 
01010 3.0 (1+0.10)ix2 2- 1 2X 

01011 3X (1+0.ll)ix22- 1 2% 

01100 +oo Reserved +oo 

01101 QNaN Reserved QNaN 
01110 SNaN Reserved SNaN 
01111 SNaN Reserved SNaN 
10000 -0.0 Reserved -0.0 
10001 -Y. -(0.01)2 -Y. 

10010 -x -(0.10)2 -x 
10011 -Y. -(0.ll)i -Y. 
10100 -1. 0 -(1+0.00)ix21 - 1 -1. 0 
10101 -lY. -(1+0.01)ix21 - 1 -lY. 
10110 -lX -(1+0.10)ix21 - 1 -lX 

10111 -1% -(1+0.ll)ix21 - 1 -1% 
11000 -2.0 - ( 1+0. 00 )ix22- 1 -2.0 
11001 -2X -(1+0.01)ix22- 1 -2Y. 
11010 -3.0 - ( 1+0 .10 )ix22- 1 -2X 
11011 -3X -(1+0.ll)ix22 - 1 -2% 

11100 - 00 Reserved - 00 

11101 QNaN Reserved QNaN 
11110 SNaN Reserved SNaN 
11111 SNaN Reserved SNaN 

Table 12-1. Resolution and range comparison of floating-point and fixed-point numbers 

Figure 12-13 plots the representable floating-point and fixed-point numbers listed in the 

above table on the same axis. 

1. The fixed-point system has a smaller range of representable real numbers than 

the floating-point system. 



Fixed-point and Floating-point Arithmetic RD 

2. The fixed-point system uniformly distributes representable numbers across the 
representable range, with same gaps between any two consecutive numbers. 
Thus, its resolution remains fixed. The resolution means the closeness of two 
consecutive numbers. However, the difference between two consecutive floating
point numbers becomes larger as the exponent increases. Accordingly, the 
resolution of the floating-point system degrades gradually as the absolute value 
increases. When we consider subnormal numbers, the resolution of the floating
point system becomes reasonable. 

Range of floating-point numbers 

+ r + I ++ ++ :"·i§§~poin_t nu_'b"-; +_+_+_+ _
1 

~, l + 
- ~ -~-3 -3 -~-3 - 2 -H-~ -~ - 1 -I -X -X 0 X X I 1 ~ ~ ~ 2 3 ~ 3 3 ~ ~ 

Resolution = X Resolution = X Resolution = X Resolution = X 
· --------------------------------------------------------------- ---------------------------------------------------------------· 

Resolution degrades Resolution degrades 

• Normalized numbers o Subnormal numbers 

Figure 12-13. Comparing a floating-point and a fixed-point system with 5 bits. In the floating
point system, resolution degrades as the exponent increases. This is because the gap between 

two consecutive floating numbers increases. In this 5-bit example, overflow occurs if the 
absolute value is non-infinity but larger than 3 1/2. Underflow takes place if the absolute value 

is non-zero but smaller than %. 

12.2.6 Rounding Rules 
A finite number of binary digits cannot represent all real numbers without any error. 
Therefore, we must find an approximate of each un-representable real number. The 
process of finding a representable approximation is called rounding. 

IEEE 754 defines four different rounding rules: 

• Round to the nearest value, 
• Round toward zero (truncation), 
• Round toward +oo (round-up), and 
• Round toward -oo (round-down). 

When a number is rounded to the nearest and the number is exactly halfway between its 
two nearest numbers, we break the tie by choosing the one whose least significant bit in 
the fraction field is zero. 



12.2 - Floating-point Arithmetic 

We use decimal numbers to illustrate the four rounding rules. To simplify the 
presentation, we assume only 5 digits are allowed after the decimal point, and Table 12-2 
gives the rounded result of four rounding modes. 

Rounding Rule Data Rounded 
Result 

Nearest 
+0.123456 +0.12346 
-0.123456 -0.12346 
+0.123456 +0.12345 

Truncate 
-0.123456 -0.12345 

+0.123456 +0.12346 
Rounding up 

-0.123456 -0.12345 

+0.123456 +0.12345 
Rounding down 

-0.123456 -0.12346 

Table 12-2. Four different rounding rules 

Rounding to the nearest is often the default rounding rule. The other three rounding rules 
are statistically biased. 

• For example, when we repeatedly add a set of randomly generated numbers, the 
rounded sums are statistically smaller than the true sums if rounded down, and 
are statistically larger if rounded up. 

• For a set of negative numbers, the sums are statistically larger than the exact sum 
if truncated. 

Rounding to the nearest is unbiased statistically. Its error is symmetrical and has an equal 
chance of being positive and negative. It uses both truncate and round up. 

Round to m bits after the decimal point 

1. bi b, b, .... 11.1 b-1 ~b_m+_2_b_m+ ...... 3_·_·_·_b_n_, 

Guard Bit Sticky Bit bs == bm+2 + bm+3 + · · · + bn 

~--- Round Bit 

Figure 12-14. A binary number that is rounded tom bits after the point 

Table 12-3 gives the algorithm of "rounding to nearest." It keeps m bits to the right of the 
point, as shown in Figure 12-14. It checks three bits: 

1. the guard bit bm 

2. the round bit bm+1 

3. the sticky bit bs, which is the bitwise logical OR of all bits to the right of the 
round bit. 



Fixed-point and Floating-point Arithmetic i.ijM 

1. Calculate sticky bit bs = bm+2 + bm+3 + ... + bn 
2. If round bit bm+i = 0, directly truncate and remove bi ts bm+1bm+2bm+2 · · · bn 
3. If round bit bm+1 = 1 and sticky bit bs = 1, round up 
4. If round bit bm+1 = 1 and sticky bit bs = 0, round to even 

• If guard bit bm = 0, directly truncate and remove bm+1bm+2bm+2· · · bn 
• If guard bit bm = 1, round up 

Table 12-3. Algorithm of rounding to nearest with ties rounding to even 

As shown in Table 12-3, there are three different scenarios when a number is rounded to 
the nearest. In the last scenario, when the round bit bm+1 is 1 and the sticky bit bs is 0, this 
is a tie. The value has an equal distance to two nearest neighbor numbers. The tie is 
broken by using the "round to even" rule, i.e., choose the one that has 0 as its guard bit. 

Table 12-4 gives a few examples to illustrate the above nearest rounding algorithm. 
Suppose we want to keep two binary digits after the binary point (i.e., m = 2). 

Binary Round bit Sticky Bit Rounded Round to 
Real Number bm+l bs Result Nearest Method 

0.000001 0 Do not care 0.00 Truncate 
0.000011 0 Do not care 0.00 Truncate 
0.000101 0 Do not care 0.00 Truncate 
0.000111 0 Do not care 0.00 Truncate 

0.011000 1 0 0.10 
Round to Even 

(Round up) 

0.001000 1 0 0.00 
Round to Even 

(Truncate) 
0.001011 1 1 0.01 Round up 
0.001101 1 1 0.01 Round up 
0.001111 1 1 0.01 Round up 

Table 12-4. Examples of rounding to nearest (m = 2) 

Tiebreaker: Round to Even 

We use 0. 011000 as an example to illustrate the "round to even" rule for breaking the 

tie. It has two nearest values, 0. 01 and 0. 10. It is precisely halfway between these two 
nearest values. We use round-to-even to break the tie, i.e., we select the closest value 
as the one in which the trailing bit is zero. 

Specifically, the round bit is 1, and the sticky bit is 0. Thus, we should use the round 

to even method, i.e., the step 4 of the rounding algorithm listed in Table 12-3. Because 
the guard bit is 1, we select the round-up method, and the result is 0 .10. 

Similarly, when 0. 001000 is rounded to the nearest, it uses truncate to break the tie. 



- 12.3 - Software-based Floating-point Operations 

12.3 Software-based Floating-point Operations 
A floating-point unit (FPU) is a coprocessor that carries out floating-point arithmetic 
operations. FPU is not available on Cortex-M3/MO, bu t it is optional on Cortex-M4/M7. 

Let us compare the assembly implementation of floating point multiplication on Cortex
M processors with and without FPU. The following is a simple C function that calculates 
the area of a rectangle. 

f l oat area_of_rectangle (f l oat length, f loat width ) { 
float ar ea ; 
ar ea = length * width; 
return ar ea; 

} 

Example 12-5 shows the assembly implementation of the above C function . 

• Without any FPU coprocessor, the compiler makes the program call the software 
floating point library to perform multiplication. The library uses integer-based 
instructions to implement floating-point multiplication. 

• If FPU is available, multiplication can be carried out by simply calling the 
assembly instruction VMUL. F32. Note s0 and sl are two registers of the FPU 
coprocessor, and they are different from r 0 and r l of the processor core. 

Chapter 12.4 gives detailed information about FPU programming. This section focuses 
on software-based floating-point operations. 

Software-based Multiplication Hardware-based Multiplication 

; Inputs: , Inputs: 
; re = Length , se = Length 
; rl = width ; sl = width 
, Return: ; Return: 
, re = area ; se = area 

area_of _rectangle PROC area_of_rectangle PROC 
PUSH {LR} ; area = Length * width 
, area = Length * width 
; call software Library , Call FPU instructions 

BL aeabi_fmul VMUL. F 32 s0, s0, sl 
-

POP {PC} return area in re BX lr , return area in se , 
ENDP ENDP 

Example 12-5. Comparison of software- and hardware-based floating-point multiplication 



Fixed-point and Floating-point Arithmetic DJ 

12.3.1 Floating-point Addition 
Assume two floating numbers have the same sign: 

!1 = (- 1)5 x (1+ F1) x 2£1 

and 

!2 = ( -1) 5 x (1 + F2) x 2£2 

Without loss of generality, we also assume El ;::: £2. Then mathematically, the addition 
is performed as follows: 

!1 + !2 = C -1)5 x c1 + Fi) x 2£1 + c - 1)5 x c1 + F2) x 2£2 

= (-1)5 X ((1 + F1) + (1 + F2 ) x 2E2-E1 ) x zEl 

- ( )S ( l+F2) El - -1 x c1 + F1) + zE1-E2 x 2 

We can implement the division operation in the above equation by using shift operations. 

When the sign of two floating-point numbers differs, the adjusted fraction parts are 
subtracted, instead of added. 

As shown in Figure 12-15, the core procedure of adding two floating-point numbers 
involves the following steps: 

(1) shift the smaller fraction to match the larger one, 
(2) add or subtract the fraction based on its sign bits, 
(3) normalize the sum, 
(4) round the sum to appropriate bits, and 
(5) detect overflow and underflow. 

The following illustrates the above algorithm by using a simple example. Suppose we are 
adding x and y, where 

x = ci.1011011101)2 x 24 

and 

y = (1.1110101111)2 x 25 

First, because the exponent of y is larger than x, we shift the fraction of x right by one bit 
to make the exponent match the larger one. Note we should not shift left the fraction of 
the operand with a larger exponent to match the lower exponent. The reason is that we 
may create a significant computational error if a larger operand causes an overflow when 
it is shifted. 

x = (0.11011 011101)z x 25 



•»• 12.3 - Software-based Floating-point Operations 

Inputs (float x, floaty) : 
Sign bit: Sx, Sy 
Fraction: Fx, Fy 
Exponent: Ex, Ey 

Yes No 

Shift My right by (Ex-Ey) bits Shift Mx left by (Ey-Ex) bits 

Yes No 

R =Mx+My 
R = Mx - My if Sy = 1 or 
R = My - Mx if Sx = 1 

Set S based on sign of R 

Normalize R: Either shift right and increment the exponent or shift 
left and decrement the exponent 

Round R to appropriate bits 

Detect overload and underflow 

Return 

Figure 12-15. Flowchart of adding two floating numbers 

Then we perform a simple addition. We do not need to worry about the alignment of the 
decimal points because both fraction bit strings have the same length. 

x 0 11011011101 

y 1 1 1 1 0 1 0 1 1 1 1 0 

x + y 1 0 1 1 0 0 0 1 1 1 0 1 1 

Thus, we get the sum: 

x + y = (10.11000111011)z x 25 



Fixed-point and Floating-point Arithmetic IJt• 

The next step is to normalize the sum. In this case, we should shift the sum right by one 
bit because the integer part of the fraction of the sum has two bits. If the fraction of the 
sum has many leading zeros, including the integer part, then we should shift the fraction 
of sum left and reduce the exponent accordingly. The following is the sum after 
normalization. 

x + y = (1.011000111011)2 x 26 

During the normalization, the hardware can detect overflow or underflow by checking 
whether the result falls out of the representable data range. 

While the implementation is complex because it needs to consider special inputs, such as 
±oo and NaN, the following shows a simplified implementation that ignore special inputs 
and does not detect overflow and underflow. 

; Adding two floating-point numbers 
; Input: re =first operand, rl = second operand 
; Output: re = sum 

, For each register, 
; bits[31} = sign (1 bit) 
; bits[3e-23] = exponent (8 bits) 
; bits[22:e] = fraction (23 bits) 

fadd PROC 
; If inputs have different signs, flip the sign bit of the second operand 
; and call the subtraction function. 
TEQ r0, rl , If re and rl have the same sign, then N = e 

; Otherwise N = 1 
EORMI rl, rl, #0x80000000 ; If N = 1, flip sign bit of second operand 
BM! fsub , call subtraction, return re - (-rl) 

; re and rl are guaranteed to have the same sign 
; If re < rl (unsigned comparison), swap them 
SUBS r2, r0, rl ; r2 = re - rl 
SUBSCC r0, r0, r2 , if re < rl, swap re and rl 
ADDSCC rl, rl, r2 ; Guarantee re > rl 

; Find the difference of exponents 
; Now it has guaranteed that re > rl (unsigned comparison) 
; r3[B:e] = [sign:exponent] of re - [sign:exponent] of rl 
LSR r2, r0, #23 ; r2[B:e] = [sign:exponent] of re 
SUB r3, r2, rl, LSR #23 ; r3 = difference of exponents 

; Shift right the fraction of the smaller operand (rl) to make 
; their exponents match and then add the fractions 
MOV r12, #0x80000000 ; Set the Leading hidden 1 



12.3 - Software-based Floating-point Operations 

ORR r0, r12, r0, LSL #8 , re = l:fraction:eeee,eeee 
ORR rl, r12, rl, LSL #8 ; rl = l:fraction:eeee,eeee 
LSR r12, rl, r3 ; r12 = rl >> difference between exponents 
ADDS r12, r0, r12 ; r12 = sum of both fractions 
BCS fraction_too_large ; If fraction sum is 11.xxxx or 1e.xxxx, skip 

; Pact finaL resuLt into re 
; The actuaL vaLue of the fraction sum is l.xxxxx 
LSRS r0, r12, #8 ; re(22:e] = first 23 bits of fraction of sum 

; Guard bit is shifted into carry 
ADC r0, r0, r2, LSL #23 , re(31:23) = [sign:exponent] of sum, 

; also add guard bit into re 
BXCC lr ; if guard bit is e, return truncated resuLt 

fraction_too_large 
; The actuaL vaLue of the fraction sum is 11.xxxxx or 1e.xxxxx 
RRX r0, r12, rl ; Shift carry back into re 

; If guard bit is 1, perform rounding to even or round up 
; and pack finaL resuLt into re 
RSB r3, r3, #32 ; r3 = 32 - r3, r3 = diff of exponents 
LSLS rl, rl, r3 
BICEQ r0, r0, #1 

LSRS r0, r0, #8 

ADC r0, r0, r2, 

BX lr 
ENDP 

, 
; 
; 
, 
, 

LSL #23 ; 
; 
, 

rl = aLl sticky bits 
CLear the round bit if all sticky bits 
are zero (round to even) 
re[22:e] = first 23 bits of fraction of sum 
Guard bit is shifted into carry 
re(31:23] = [sign:exponent] of sum 
also add guard bit into re 
return 

Example 12-6. Simplified implementation of adding two floating-point numbers 

The sum of adding two aligned fraction parts (including their leading hidden 1 bit) can 
have three possible results, 1. xxxxx, 10. xxxxx, or 11. xxxxx. When the integer part has 
two bits (10. xxxxx or 11. xxxxx), we need to shift the leading bit back to the fraction of 
the sum by running the instruction "RRX r0, r12, #1". 

Furthermore, when the statement "ADC r0,r0,r2,LSL #23" packs the result into the 
single-precision format, the leading bit of the fraction sum is added to the exponent part 
because the leading bit is removed from the fraction sum before the packing operation. 
Therefore, if the fraction sum is 10. xxxxx or 11. xxxxx, then the "ADC" instruction 
automatically increases the exponent of the result by 1. 

As the standard suggests, the default rounding should be the nearest rounding. When 
packing the results, "ADC" instead of" ADD" is used. The carry bit is added to the fractional 
part of the result to achieve the nearest rounding. In fact, the carry bit holds the guard 



Fixed-point and Floating-point Arithmetic I.JD 

bit. If the guard bit is 0, extra bits are truncated by the " LSRS r0, r0, #8" instruction. If 
all sticky bits are 0, then the round bit (the least significant bit of the fraction sum) is set 
to zero. If the sticky bits are not all zero, the guard bit is 1 and is added to the result. 

12.3.2 Floating-point Multiplication 
Suppose we multiply the following two floating-point numbers: 

!1 = c-1)s1 x c1 + F1) x zE1 

fz = ( -1)52 X (1 + F2) X zEZ 

Mathematically, the product of two floating-point numbers 

f1 x fz = ((-1)51 x (1+F1)x2£1) x ((-1)51 x (1+F1)x2El) 
= c -1)si+sz x (1 + F1) x c1 + F2) x zEi+Ez 

As the above equation indicates, the multiplication involves the following four steps: (1) 
identify the sign of the product, (2) add the exponents together, (3) multiply the fractions, 
including the leading hidden one, and (4) normalize the result to the standard format. 

The following gives a simplified implementation of multiplying two single-precision 
floating point numbers. The program does not handle special cases, such as overflow, 
underflow, and input of infinity and NaN. 

The trick is to manage the multiplication of two fractions. Two fractions include their 
hidden leading 1. When a program multiplies two fractions of the same length, i.e., 

1. xx ... x x 1. yy ... y 

where x and y are either 1 or 0, their product must be truncated to the same length. 
Suppose each fraction has n bits, their product has either 2n or 2n - 1 bits because the 
leading bit of both fractions is 1. 

We can use n = 2 as a simple example. In binary, we have three different scenarios: 

1.1 x 1.1 
1.1 x 1.0 
1.0 x 1.0 

10. 11 
01.10 
01.10 

In other words, the most significant two bits of the product of 1. xx ... x and 1. yy ... y can 
only be either 10 or 01. 

• If the most significant bits are 01, we need to remove the leading zero bit. 

• If the most significant bits are 10, we need to renormalize the result by shifting 
the fraction product right by one bit and then increasing the exponent by 1. 



M$1:1 12.3 - Software-based Floating-point Operations 

, Function of multiplying two single -precision floating-point numbers 
; Input: re = first operand, rl = second operand 
j Output: re= product 
; For each register, 
j bits[31] = sign (1 bit) 

bits[3e-23] = exponent (8 bits) 
bits[22:e] = fraction (23 bits) 

fmul PROC 
j Add two exponents 
MOV r12, #0x000000FF j mask 
ANDS r2, r12, r0, LSR #23 , r2[7:e] exponent of re 
ANDS r3, r12, rl, LSR #23 j r3[7:e] exponent of rl 
ADD r2, r2,r3 , r2[7:e] sum of both exponents 

; If operands have different signs, set the product as negative 
TEQ r0, rl ; check whether re and rl have different signs 
ORRMI r2, r2, #0x100 ; i.e., check r2[8] = 1 

; Multiply fractions 
MOV r12, #0x80000000 
ORR r0, r12, r0, LSL #8 
ORR rl, r12, rl, LSL #8 
UMULL rl, r3, r0, rl 

; Mask for Leading hidden 1 
; re = l:Fraction:eeeeeeee (binary) 
; rl = l:Fraction:eeeeeeee (binary) 
, rl:r3 = 64-bit product of both fractions 

; Perform rounding up and discard Lower 32 bits of the fraction product 
CMP rl, #0 ; Are tailing 32 bi ts of the product 

; of two fractions are zero? 
ORRNE r3, r3, #1 ; if rl -= e, round up, set r3[e] = 1 

; Remove Leading zero bit of fraction product 
; Note there is at most one Leading zero bit in the product 
LSLS r3, r3, #1 ; r3 « 1, shift out Leading bit 
RRXCS r3, r3, #1 ; If the Leading bit was 1, recover it 

; Pack final result into re 
LSRS r12, r3, #8 

ADC r0, r12, r2, LSL #23 

BXCC lr 
LSL r12, r3, #24 
CMP r12, #0x80000000 

BICEQ r0, r0, #1 
BX lr 

ENDP 

j 

, 
j 

j 

j 

, 
j 

, 
, 
, 
j 

r12 = eeee,eeee:24-bit fraction (binary) 
Guard bit is shifted into carry 
Pack result into re 
r2[B:e) = [sign:exponent] of product 
Guard bit (carry bit) is added to fraction 
If the guard bit is e, return 
r12 = [guard bit : aLL sticky bits] 
if guard bit is zero and sticky bits are 
zero, clear the Last bit of fraction 
round to even by setting re[e] = e; 
return 

Example 12-7. Simplified implementation of multiplying two floating-point numbers 



Fixed-point and Floating-point Arithmetic ifi 

12.4 Hardware-based Floating-point Operations 

Cortex-M4 and Cortex-M7 can optionally have a floating-point Unit (FPU) coprocessor. 
An FPU coprocessor has its own data and control registers, and it supports single
precision arithmetic, accessing memory data, integer and precision conversion, and some 
double-precision arithmetic. This section introduces how to program FPU and handle 
exceptions in assembly. 

12.4.1 FPU Registers 
The FPU consists of 32 single-word general-purpose registers (50, 52, ... , 531) and four 
special-purpose registers (CPACR, FPCCR, FPCAR, and FP5CR), as shown in Figure 12-16. 

I· 32 bits ·I I· 32 bits ·I 
DO S1 so 
01 S3 S2 

02 S5 S4 
Caller 03 
Saved 

04 Registers 

S7 

S9 

S6 

sa 
05 S11 S10 

06 S13 S12 

07 S15 S14 

08 S17 S16 

09 S19 S18 

010 S21 S20 
Callee 011 S23 S22 
Saved 

012 Registers 
013 

S25 

S27 

S24 

S26 

014 S29 S28 

015 S31 S30 

I· 
64 bits 

·I 

Memory 
address 

Coprocessor 
0xE000EDBB I CPACR Access Control 

Register 

Floating-point 
0xE000EF3C I FPSCR Status and Control 

Register 

Floating-point 
0xE000EF38 I FPCAR Context Address 

Register 

Floating-point 
0xE000EF34 I FPCCR Context Control 

Register 

I· 
32 bits .. , 

These addresses are defined by 
ARM , not by chip manufacturers. 

Figure 12-16. Floating-point registers (32 general-purpose 32-bit registers and 4 special 
registers). The processor remaps two 32-bit general-purpose registers to a 64-bit register. For 
example, Sl and SO are remapped to DO. DO uses the same hardware resources as Sl and SO. 

The callee subroutine must preserve registers D8-D15 or S16-S31 if it writes to them. 

12.4.1.1 Floating-point General-purpose Registers (SO-S31, or DO-D15) 
Each general-purpose floating-point register (50, 52, . .. , 531) can hold one single
precision floating number. The prefix "5" stands for single-precision. 

These 32 general-purpose floating-point registers can be mapped into 16 double-word 
registers (00, 01, ... , 015) for holding double-precision floating point numbers. The prefix 



12.4 - Hardware-based Floating-point Operations 

"D" stands for double-precision. For example, a double-precision register 00 consists of 
single-precision registers 51 and 50, with 51 holding the most significant word of D0, and 
50 holding the least significant word of 00. 

When a subroutine takes single- or double-precision floating point numbers as input 
arguments, registers 50-515 or 00-07 hold these input arguments. 

• If the subroutine takes only single-precision numbers as input arguments, up to 
16 arguments can be passed via registers. These arguments come in via registers 
50-515 in a sequential order. If more than 16 arguments are passed, the caller 
must push all additional arguments onto the stack. 

• If only double-precision numbers are passed, up to 8 arguments can be passed 
via registers Dl-07. Extra arguments, if needed, should be passed via the stack. 

• If a mixed of single-precision and double-precision numbers are passed, each 
number is assigned in turn to the next free register of the corresponding type. 

Figure 12-17 shows an example that passes a mixed of float and double variables to a 
subroutine. 

double fun(double al, float a2, double a3, float a4, float as, double a6, float a7, double a8) 

64 bits 
,...------"--. 

Double-precision View 00 01 02 03 04 OS 06 07 

Single-precision View s0 I s1 52 53 54 I SS 56 57 ss I sg s10 I s11 s12 I s13 5141 515 

Argument View al a2 a4 a3 as a7 a6 as 

Figure 12-17. Passing arguments to a subroutine via floating-point registers 

If a subroutine returns a floating-point number, the return value is saved in register 50 
for single-precision or D0 for double-precision. For other data types, such integers, the 
return value is in register r0- r4 (in Chapter 8). 

When a subroutine takes as an input argument a pointer that points a single- or double
precision floating-point value, the pointer is not a floating-point value but a memory 
address, and thus it is passed via an integer register, instead of a floating-point register. 

Example: passing float/double array pointers 

float * fun(float * arrayl, double * array2, int array_size) 

The variable arrayl and array2 are array pointers, and they are passed via register r0 
and rl, respectively. The array_size is passed in register r2. Additionally, this 
function returns a float pointer, which is saved in register r0. 



Fixed-point and Floating-point Arithmetic lml 

12.4.1.2 Coprocessor Access Control Register (CPA CR) 
Cortex-M has two coprocessors: CPlO and CP11 . They are vector floating point (VFP) 
coprocessors and carry out floating point arithmetic operations. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved CP11 CP10 Reserved 

Access privileges for coprocessor 10 

~-- Access privileges for coprocessor 11 

0b00 =Access denied. Any attempted access generates a NOCP fault. 
0b01 = Privileged access only. An unprivileged access generates a NOCP fault. 
0b10 = Reserved. The result of any access is Unpredictable. 
0bll = Full access. 
NOCP: No Co-processor 

Figure 12-18. Coprocessor Access Control Register (CPACR) 

FPU is disabled by default. To use FPU, software must enable CP10 and CPll. The 
program should use the data synchronization barrier (DSB) to ensure the completion of 
all memory accesses. The instruction synchronization barrier (ISB) should also be used 
to flush the processor pipeline and ensure that all instructions are fetched from cache or 
memory again. 

C Program 

void FPU_Enable(void) { 

} 

II EnabLe CP10 and CPll 
SCB->CPACR I= (0xF << 20); 

II Ensure the compLetion of 
II memory accesses 
_DSB(); 

II FLush the processor pipeLine 
II fetch buffers 
_ISB(); 

return; 

Assembly Program 

FPU_Enable PROC 
EXPORT FPU_Enable 
; Load SCB base address (0xE000ED00) 
LDR r0, = SCB_BASE 

; Read from SCB->CPACR 
LOR rl, [r0, #SCB_CPACR] 

; EnabLe full access to CP10 and CPll 
ORR rl, rl, #(0xF << 20) 

; Write to SCB->CPACR 
STR rl, [r0, #SCB_CPACR]; 

DSB 
ISB 

, Data Synchronization Barrier 
; Instruction Syn. Barrier 

BX LR ; Return 
ENDP 

Example 12-8. Enabling VFP coprocessors 

Similarly, to disable FPU, software must clear the enable bits of coprocessors 10 and 11 

used by FPU: "SCB->CPACR &= ~(0xF « 20); ". 



•••• 12.4 - Hardware-based Floating-point Operations 

Additionally, the processor must be in the privileged mode to enable or disable FPU. FPU 

must be enabled before any floating-point instruction is executed; otherwise, the 

processor generates a NOCP (No Coprocessor) usage fault. In most template projects 

provided in ARM Keil, we can enable FPU in the start-up assembly file (such as 

startup_stm32f407xx.s) before the instruction " BL _main". Chapter 23.1 introduces the 

processor modes. 

12.4.1.3 Floating-point Status and Control Register (FPSCR) 
The FPSCR register stores the FPU configuration, the condition flags and the exception 
flags. We only use VMRS to read FPSCR and VMSR to write to it. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I N I z I c I v I I AHP I ON I FZ I RMode I Reserved i 1oc I Reserved I ixc I UFC I DFC I ozc i 1ocj 

I 
L Rounding Mode control field 

Input Denormal .J 
cumulative exception bit 

Flush-to-zero mode control bit Inexact Cumulative _ 

:- Default NaN mode control bit 
exception bits -

Underflow cumulative _ 
:: Alternative half-precision control bit exception bit 

Overflow flag Overflow cumulative 
exception bit 

Carry/Borrow flag 
Division by Zero cumulative _ 

- Zero flag exception bit -

:: Negative or less than flag Invalid Operation cumulative _ 
exception brt 

Figure 12-19. Floating-Point Status and Control Register (FPSCR) 

N, Z, C, V Flags. The FPSCR register has the negative (N), zero (Z), carry (C), and overflow 
(V) flag bits. These bits are set by the single-precision comparison instructions VCMP. F32 

and VCMPE. F32 (to be introduced later in this chapter). 

The processor cannot directly use these flags to perform the conditional execution. 
Software program must use the VMRS instruction to transfer these flags to the processor's 
APSR for conditional execution, as shown below. 

VMRS r4, FPSCR ; Copy FPSCR to register r4 
VMSR APSR_NZCV, FPSCR ; Copy N, Z, C, V f Lags from FPSCR to APSR 

APSR_nzcv includes a bit specifier to specify the APSR bits to be updated. The following 

gives a few examples of the bit specifier. 

• APSR_NZCV is to access the N, Z, C, V bits in APSR. 

• APSR_G is to access the GE[3:0] bits in APSR. 

• APSR_NZCVQ is to access the N, Z, C, V, Q bits in APSR. 

• APSR_NZCVQG is to access the N, Z, C, V, Q, GE[3:0] bits in APSR. 



Fixed-point and Floating-point Arithmetic IDD 

Rounding Modes. FPU carries out floating-point arithmetic with extra precision, and 

then rounds the result to fit into the destination precision. This internal extra precision 

ensures arithmetic results are as precise as the source operands. FPU supports four 

rounding modes, determined by two RMode control bits in FPSCR (i .e., FPSCR[23:22]), as 

described below. 

• 00: Round to nearest mode (default) 

• 01: Round towards +oo mode 

• 10: Round towards -oo mode 

• 11: Round towards 0 mode 

FPU->FPDSCR &= ~FPU_FPDSCR_RMode_Msk; / / Clear rounding mode bits 
FPU->FPDSCR I= 2 << 22; //Select round toward positive infinity 

Example 12-9. Selecting round to +00 

The ARM FPU architecture provides three special modes, including the flushing-to-zero 

mode, the default NaN mode, and the alternative half-precision mode. These three 

modes are not compatible with the IEEE 754 standard. 

• The flush-to-zero mode can be enabled by setting the FPSCR[24] bit. If this mode 

is enabled, all operands in the subnormal format are flushed to zero, except for 

instructions VABS, VNEG, and VMOV. Specifically, the input or the result of a single

precision arithmetic operation is treated as zero if its absolute value is larger than 

zero but smaller than 2-126 . If this mode is enabled, the FPU computation speed 

is improved at the expense of some accuracy. 

• The default NaN mode can be enabled by setting the FPSCR[25] bit. NaN stands 

for not a number. As shown in Figure 12-11, there are many possible NaNs. In the 

IEEE 754 standard, two NaNs are different if they differ in any bit. IEEE 754 

requires that any operation, which takes one or more quiet NaN operands, should 

return the input NaN as its result. If the default NaN mode is disable, FPU strictly 

follows IEEE 754 standard. However, if the default NaN mode is enabled, the 

result of any operation involving one or more NaNs is always the same pre

defined quiet NaN, which is 0x7FC00000. 

• The alternative half-precision mode can be enabled by setting the FPSCR[26] bit. 

It selects either IEEE 754 half-precision floating point representation or ARM 

Cortex special 16-bit mode. The ARM alternative offers a larger range than IEEE 

754 but does not support infinity and NaN. 



•t.1• 12.4 - Hardware-based Floating-point Operations 

Exceptions arise during abnormal events. Floating-point numbers are finite-precision 
approximation of real numbers. A floating-point operation may have range violation 
(overflow or underflow), rounding errors (inexact), invalid operation, or divide-by-zero. 
Cortex-M supports the following six exceptions. Once these exception flags are set, 
hardware does not automatically reset them. 

• The underflow exception (UFC) and the overflow exception (OFC) are set 

respectively if the result has an absolute value greater than the largest floating

point number, or it is non-zero and smaller than the smallest non-zero floating

point number. 

• The inexact exception flag (IXC) is set if the result of a single-precision float 

operation does not equal to the value that would be obtained if the operation were 

performed with unbounded precision and exponent range. This happens if the 

result lies between two floating-point numbers, leading to a rounding error. 

• The invalid operation exception flag (IOC) is set if the result has no mathematical 

value or cannot be represented, such as 0 x (±oo), oo + (-oo), (±00)/(±00), and 

sqrt(-1.0). The default output is either SNaN or QNaN. 

• The divide-by-zero (DZC) exception flag is set if the divisor of a divide operation 

is zero, but its dividend is not zero. 

• If a value is flushed to zero, the input denonnal cumulative (IDC) exception flag 

bit of FPSCR is set. 

12.4.1.4 Floating-point Context Address Register (FPCAR) 
As introduced previously in Chapter 11, the processor performs automatic stacking 
when an interrupt/exception occurs. Without FPU support, the processor automatically 
pushes eight registers, including r0-r3, r12, LR, PC, and xPSR, onto the stack. 

If FPU auto-stacking has been enabled (see the next section), the processor automatically 
pushes 17 additional registers, including s0-s15 and FPSCR onto the stack when interrupt 
takes place. The processor stores the stack location holding the value of register 50 to the 
floating-point context address register (FPCAR), as shown in Figure 12-20. 

Additionally, the processor uses lazy stacking to reduce the interrupt latency. The lazy 
stacking allows the processor to skip the stacking of FPU registers, if not required, i.e., 

• if the interrupt handler does not use FPU, or 
• if the interrupted program has not used FPU. 



Fixed-point and Floating-point Arithmetic a 

The processor reserves space in the stack for FPU registers. However, it only pushes FPU 
registers if FPU has been used and the interrupt handler will also FPU. Register FPCAR 

points to the unpopulated stack location reserved for FPU register 50 if stacking is 
deferred. 

Standard Stack Frame Extended Stack Frame 
Old SP Old SP ~ <xxxxxxxx> 

~---~ 

<xxxxxxxx> Old SP ~ <xxxxxxxx> 

8 regist 
32 byt 

New SP 

ers, 
es 

- I-+ 
'-

xPSR 

PC (r15) 

LR (r14) 

r12 

r3 

r2 

r1 

rO 

Stack frame when 
FPU auto-stacking is not 

enabled. 

ters , 17 regis 
68 byt es "' 

FPC AR-

ers, 8 regist 
32 byt es 

~ 
> 

Padding 

I 
I . 
I 
I . 
I . 
I 
I 

xPSR 

PC (r15) 

LR (r14) 

r12 

r3 

r2 

r1 

I 
I 
I 
I 
I 
I 
I 

If lazy stacking is 
enabled, stack space 
are allocated but FPU 
reg isters are not 
pushed . 

FPCA R-+ 

Padding 

FPSCR 

S15 

S14 

S2 

S1 

so 
xPSR 

PC (r15) 

LR(r14) 

r12 

r3 

r2 

r1 

- ~ rO New SP New SP ---> rO 

Lazy stacking if FPU has Stack frame if FPU 
not been used has been used 

Figure 12-20. Lazy stacking on interrupt entry defers pushing FPU registers if FPU has not 
been used or the interrupt handler does not use FPU. FPCAR points to the memory location 
reserved for register 50. A 4-byte padding is added to make SP aligned to double words. 

104 
bytes 

When the processor services an interrupt, it decides at runtime whether these FPU 
registers should be stored in the reserved stack space. The decision is made by checking 
the floating-point context active (FPCA) bit flag in the CONTROL register, which is a special 
register on Cortex-M processors. 

• When the processor runs a floating-point instruction, it sets the FPCA bit flag in 
the CONTROL register automatically. The FPCA bit is automatically cleared when a 
new context, such as an interrupt service routine, is started. 

• When the FPCA bit in the CONTROL register is 1 and the interrupt handler first uses 
any FPU instruction, the processor automatically pushes 17 additional registers 
onto stack and stores in the FPCAR register the memory address where the value 
of register s0 is in the stack. 



12.4 - Hardware-based Floating-point Operations 

The following example shows how to retrieve the previous FPSCR value from the stack, 
which is for the floating-point operations before the interrupt take places. The interrupt 
handler performs a dummy read to force the deferred FPU stacking in case that lazy 

stacking has been used. 

void Example_IRQHandler(void) { 

uint32_t status, *fpscr; 

} 

II Get the address where FPSCR is stored in the stack 
* fpscr = (uint32_t *)(FPU->FPCAR + 64); II FuLL descending stack 

II Dummy access to popuLate the stack in case that Lazy stack is active 
(void) _get_FPSCR(); II dummy read to FPSCR to force state preservation 

II Read FPSCR from stack 
status = *fpscr; 

II Check exception fLag bits 

Example 12-10. Retrieve FPSCR of previous FPU operations from the stack 

12.4.1.5 Floating-point Context Control Register (FPCCR) 
The Floating-point Context Control Register (FPCCR) controls the behavior of context 
saving and restoring during an interrupt. There are three different settings. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Reserved 

LSPEN: Enable/disable automatic lazy stacking 

~-- ASPEN: Enable/disable automatic setting of FPCA 
bit in the CONTROL register 

Three FPU context save/restore configurations: 
(1) Lazy save/store (default): LSPEN = 1, ASPEN = x 
(2) No FPU reg ister saving: LSPEN = 0, ASPEN = 0 
(3) Automatic save/restore: LS PEN = 0, ASPEN = 1 

MONROY: Enable/disable DebugMonitor 

Reserved 

BFRDY: Enable/disable BusFault ----~ 

MMRDY: Enable/disable MemManage -----~ 

HFRDY: Enable/disable HardFault -------~ 

THREAD: Control thread mode --------~ 

Reserved ---------~ 

USER: Control privilege level -----------~ 

LSPACT: Lazy state preservation active 
status ..-----------~ 

Figure 12-21. Floating-point Context Control Register (FPCCR) 

• By default, the LSPEN (lazy state preservation enable) bit is 1, and it allows lazy 
stacking to reduce the exception or interrupt latency. When space has been 
allocated on the stack for FPU registers but pushing them onto the stack has been 
deferred, the lazy state preservation active status (LSPACT) flag is set. 



Fixed-point and Floating-point Arithmetic EDI 

• If both LS PEN and ASPEN (always state preservation enable) are 0, no floating-point 
registers are saved in the stack by the hardware when an interrupt occurs. 

• If LSPEN is 0 and ASPEN is 1, floating-point registers are always automatically 
saved onto the stack by the hardware upon an interrupt. 

Example 12-11 gives C functions that modify the stacking settings. 

void FPU_enableAutoStacking_disablelazyStacking(void) { 
II Disable Lazy stacking 

} 

FPU->FPCCR &= -FPU_FPCCR_LSPEN_Msk; 
II Enable automatic stacking 
FPU->FPCCR I= FPU_FPCCR_ASPEN_Msk; 

void FPU_enableStacking(void) { 
II Enable automatic and Lazy stacking 
FPU->FPCCR I= FPU_FPCCR_ASPEN_Msk I FPU_FPCCR_LSPEN_Msk; 

} 

void FPU_disableStacking(void) { 
II Disable automatic and Lazy stacking 
FPU->FPCCR &= -(FPU_FPCCR_ASPEN_Msk I FPU_FPCCR_LSPEN_Msk); 

} 

Example 12-11. Enable and disable FPU automatic and lazy stacking 

The FPCCR register also controls whether the processor can raise exceptions when it 

allocates the floating-point stack frame. These exceptions include the debug monitor 

exception, the bus fault, the memory management exception, and the hard fault. 

When the floating-point stack frame is allocated, FPCCR also provides two flag bits, 

including USER and THREAD, to indicate whether the processor is in the user mode and the 

privileged mode, respectively. 

If lazy stacking is enabled, the lazy state preservation active (LSPACT) bit in the FPCCR 

register indicates whether actual stacking of FPU registers has taken place. The processor 

sets LSPACT to 1 if stack space has been allocated but FPU stacking has been deferred on 

the entry of the interrupt handler. If LSPACT is 1, the processor stops the pipeline and 

starts to perform the deferred FPU stacking when the current interrupt handler runs a 

floating-point instruction. After FPU stacking completes, the processor clears the LS PACT 

flag to zero. Then, the processor continues the execution of the current interrupt handler. 



Miti:i 12.4 - Hardware-based Floating-point Operations 

12.4.2 Load and Store Floating-point Numbers 
The following instructions access floating-point numbers stored in memory. 

VLDR.F32 Sd, (Rn) Load one single-precision float 
VLDR.F64 Dd, (Rn) Load one double-precision float 
VSTR.32 Sd, [Rn] Store one float registers 
VSTR.64 Dd, (Rn] Store one double register 
VLDM.32 Rn{!}, list Load multiple single-precision floats 
VLDM.64 Rn{!}, list Load multiple double-precision floats 
VSTM.32 Rn{!}, list Store multiple float registers 
VSTM.64 Rn{!}, list Store multiple double registers 
VPOP.32 list Pop float registers from stack 
VPOP.64 list Pop double registers from stack 
VPUSH.32 list Push float registers to stack 
VPUSH.64 list Push double registers to stack 

The memory access instructions VLDR and VSTR support three addressing modes: 

VLDR.F32 s0, (r0, #4) ; Pre-index, se = mem[re + 4) 
VLDR.F32 s0, [r0], #4 ; Post-index, se = mem[re], re+= 4 
VLDR.F32 s0, [r0, #4) ! ; Pre-index with update, se = mem[re + 4}, re+= 4 

Multiple floating-point numbers can be loaded or stored in one instruction: 

VLDM.64 r0, {d0-d7} ; Load 8 double precision numbers 
VSTM.64 r0, {d0-d7} ; Store 8 double precision numbers 

Like LDM and STM introduced in Chapter 5.5, VSTM and VLDM can also have the suffix IA 
(Increment After) and DB (Decrement After), such as, 

VSTMIA.64 r0, {d0-d7} 
VSTMDB.64 r0, {d0-d7} 

The push and pop operations are useful to save and restore registers via the stack. 

VPUSH.32 {s16-s31} 
VPOP.32 {s16-s31} 

; Save f Loating point registers 
; Restore floating point registers 

For the convenience of the programmer, VLDR. F32 and VLDR. F64 can be used as a 
pseudo-instruction to load a constant into a floating-point system register. 

VLDR.F32 s0, =2.71828 
VLDR.F64 d2, =3.14159 

The compiler translates the constant into IEEE 754 format, stores it in the instruction 
memory, and then uses PC-relative addressing to load the constant from memory. The 
compiler determines the offset relative to PC. When the processor calculates the target 
address, bit PC[l] is ignored to ensure that the target address is word-aligned. 

VLDR.F32 s0, [pc, #0xA8] , Load a float from PC+ 4 + exAB 
VLDR.F64 d2, (pc, #0xC4) ; Load a double from PC+ 4 + exC4 



Fixed-point and Floating-point Arithmetic B 

12.4.3 Copy Floating-point Numbers 
The following table lists instructions that copy floating-point numbers to a register. 

VMOV.F32 Sd, #imm Move an immediate float to float-register 

VMOV.F32 Sd, Sm Copy from single-precision register to single-
precision register 

VMOV.F64 Dd, Om Copy from double-precision register to double-
precision register 

VMOV Sn, Rt Copy ARM core register to float register 

VMOV Sml, Sm2, Rtl, Rt2 Copy 2 ARM core registers to 2 float registers 

VMOV Dd [x], Rt Copy ARM core register to a half of a double-precision 
floating point register, where x is 0 or 1. 
Copy a half of a double-precision floating point VMOV Rt, Dn[x] register to ARM core register, where x is 0 or 1. 

The VMOV instructions can be transfer content between ARM core registers and FPU 
coprocessor registers. For example, 

VMOV s0, sl, r0, rl 
VMOV rl, d0[1] 

, se = re, sl = rl 
; rl = d0{1}, i.e., rl = sl 

Note we can also use VMOV to initialize a single-precision register with a constant. 

VMOV.F32 sl, #3.25 ; sl = 3.25 

12.4.4 Copy and Set the Status and Control Register 

The FPSCR register holds the N, Z, C, and V flags, exception flags, and FPU configuration. 
VMRS and VMSR are special instructions to transfer contents between FPSCR and a general

purpose register. 

VMRS Rt, FPSCR Copy FPSCR to ARM core register or APSR 

VMSR FPSCR, Rt Copy to FPSCR from ARM Core register 

The following shows example codes to set the rounding mode to round toward zero. 

VMRS r0, FPSCR ; Read current FPSCR 
ORR r0, r0, #(3«22) ; Set bits 22 and 23 to 1 
VMSR FPSCR, r0 ; Save FPSCR 

Note that conditional execution of floating-point arithmetic operations, such as VMOVL T 

and VADDEQ. F32, evaluate the N, Z, C, and V flags of APSR, not FPSCR. 

The following instruction copies the N, Z, C, and V flags from FPSCR to APSR. 

VMRS APSR_nzcv, FPSCR ; Copy NZCV flags from FPSCR to APSR 



12.4 - Hardware-based Floating-point Operations 

12.4.5 Single-precision Arithmetic Operations 
FPU in Cortex processors supports a limited number of single-precision floating point 
arithmetic operations, as listed below. 

VADD.F32 {Sd,} Sn, Sm Add floating points, Sd = Sn + Sm 
VSUB.F32 {Sd,} Sn, Sm Subtract float, Sd = Sn - Sm 
VDIV.F32 {Sd,} Sn, Sm Divide single-precision floats, Sd = Sn/Sm 
VMUL.F32 {Sd,} Sn, Sm Multiply float, Sd = Sn * Sm 
VNMUL. F32 {Sd,} Sn, Sm Negate and multiply float, Sd = -1 * Sn * Sm 
VNEG.F32 Sd, Sm Negate float, Sd = -1 * Sm 
VABS.F32 Sd, Sm Absolute value of floats, Sd = I Sm I 
VSQRT.F32 Sd, Sm Square-root of float 

The following program shows a subroutine in C and assembly that calculates the area of 
a circle. The subroutine takes the input argument radius via the single-precision floating 
point register s0. The calculated area is also returned in register s0. 

C Function Assembly Function 
float area_of_circle(float radius){ area_of_circle PROC 

EXPORT area of circle 
float PI = 3.14; VLDR.F32 sl,=3.14 ; Pseudo-instruction 
float area; VMUL.F32 sl,sl,s0 j re = radius 
area = PI * radius * radius; VMUL.F32 s0,sl,s0 return area in se , 
return area; BX LR 

} ENDP 

AC function can call an assembly floating-point function, as shown below. 

Main Program Assembly Function 
extern float sum(float *a, AREA fun, CODE, READONLY, ALIGN=3 

int size); EXPORT sum ; make sum visibLe 

sum PROC 
int main(void){ VLDR.F32 s0, =0.0 ; s = e.e 

float b = sum(a, 5); MOVS r3, #0 ; i = e 
while(l); B check 

} 
loop VLDR sl, [r0], #4 , post-index 

VADD.F32 s0, s0, sl ; s += a{i] 
ADDS r3, r3, #1 ; i++ 

check CMP r3, rl 
BLT loop 

BX lr , return 

ENDP 
END 



Fixed-point and Floating-point Arithmetic MIM 

The multiply-accumulate (MAC) instructions compute expression ±a ± b x c efficiently 
in one instruction. The following table lists all MAC instructions. 

VLMA.F32 {Sd,} Sn, Sm Multiply float, then accumulate float, 
Sd = Sd + Sn*Sm 

VLMS.F32 {Sd,} Sn, Sm Multiply float, then subtract float, 
Sd = Sd - Sn*Sm 

VNMLA.F32 Sd, Sn, Sm Multiply float, then accumulate, then negate float, 
Sd = -1 * (Sd + Sn * Sm) 

VNMLS. F32 Sd, Sn, Sm Multiply float, then subtract, then negate float, 
Sd = -1 * (Sd - Sn * Sm) 

The following table lists fused MAC instructions. 

VFMA.F32 {Sd,} Sn, Sm 
Multiply (fused) then accumulate float, 
Sd = Sd + Sn*Sm 

VFMS.F32 {Sd,} Sn, Sm 
Multiply (fused) then subtract float, 
Sd = Sd - Sn*Sm 

VFNMA.F32 {Sd,} Sn, Sm 
Multiply (fused) then accumulate then negate float, 
Sd = -1 * Sd + Sn * Sm 

VFNMS.F32 {Sd,} Sn, Sm 
Multiply (fused) then subtract then negate float, 
Sd = -1 * Sd - Sn * Sm 

A fused operation performs no intermediate rounding. For example, the floating-point 
fused multiply-add instruction "VLMA. F32 Sd, Sn, Sm" calculates "Sd + Sn*Sm" as if 
with unlimited range and precision, and the rounding is only performed once at the end. 
A fused operation reduces rounding error but runs slower. 

12.4.6 Single-precision comparisons 
The comparison instructions, as shown below, compare two floating-point values and set 
the N, Z, C, and V bit flags of the Floating-point Status and Control Register (FPSCR). "MVRS 
APSR_nzcv FPSCR" copies the current N, Z, C, and V flag bits from the FPU's FPSCR register 
to the processor's APSR register. 

VCMP.F32 Sd, <Sm I #0.0> 
Compare two floating-point registers, or one 
floating-point register and zero 
Compare two floating-point registers, or one 

VCMPE.F32 Sd, <Sm I #0.0> floating-point register and zero, and raise 
exception for a signaling NaN 

The following program shows a simple subroutine that returns the maximum of two 
floating-point values. Following the EABI standard, the floating-point input arguments 
come in via register 50 and 51, and the result comes out via register 50 . The VCMPE 
instruction updates the NZCV flags in FPSCR. However, conditional execution does not 
check FPSCR. Therefore, we need to copy these flags to APSR. 



12.4 - Hardware-based Floating-point Operations 

C Program Assembly Program 
float max(float a, float b){ max PROC 

if (a > b) EXPORT max 
return a; VCMPE.F32 s0, sl 

else ; Copy NZCV flags to APSR 
retu r n b; VMRS APSR_nzcv, FPSCR 

} BGT exit 
VMOV.F32 s0, sl 

exi t BX lr 
ENDP 

Example 12-12. Selecting the max between two single-precision floating point numbers 

The following gives two different assembly functions of finding the absolute value. 

C Program Assembly Program 1 Assembly Program 2 
float fabs(float f) { fabs PRO( fabs PROC 

if (f < 0) VCMPE . F32 s0, #0.0 
return -1. 0*f; ; Copy NZCV flags to APSR VABS.F32 s0, s0 

else VMRS APSR_nzcv, FPSCR 
return f; BCS exit BX lr 

} 
VNEG.F32 s0, s0 ENDP 

exit BX lr 
ENDP 

Example 12-13. Calculating the absolute value of a single-precision floating point number 

12.4.7 Precision Conversion 
The following table lists all instructions that convert values to a different format. The 
option "R" forces the operation to use the rounding mode specified by FPSCR. Otherwise, 
rounding towards zero is used. 

VCVT{R}.S32.F32 Sd, Sm Convert from single -precision float to signed 32-
VCVT{R}.U32.F32 Sd, Sm bit (S32) or unsigned 32-bit (U32) integer. 

VCVT{R}.F32.S32 Sd, Sm Convert to s i ngle-precision float from signed 32-
VCVT{R}.F32.U32 Sd, Sm bit (S32) or unsigned 32-bi t (U32) integer. 

VCVT{R}.Td.F32 Sd, Sm, #n Convert between single - pr ecision and fixed-point. 
VCVT{R} . Td.F32 Sd, Sd, #n Td can be S16 (signed 16-bit), U16 (unsigned 16-

bit), S32 (signed 32-bit), and U32 (unsigned 32-
VCVT{R}.F32.Td Sd, Sm, #n bit). #n is the number of fraction bits in the fixed-
VCVT{R}.F32 . Td Sd, Sd, #n point number. 

VCVT<BIT>.F32.F16 Sd, Sm Converts half-precision float to single-precision 
(B = bottom half of Sm, T = top half of Sm) 

VCVT<BIT>.F16.F32 Sd, Sm Converts single-precision float to half-precision 
(B = bottom half of Sd, T = top half of Sd) 



Fixed-point and Floating-point Arithmetic IJI 

~xample 1~-:4 illustrates the assembly implementation of converting an integer to a 
smgle-prec1s1on floating point format with and without FPU. 

With FPU 
VMOV.F32 sl,#3 
VCVT.F32.S32 s0,s0 

Without FPU 
MOV 
BL 

r0, #3 
_aeabi_i2f 

_aeabi_i2f PROC 
ANDS rl,r0,#0x80000000 ; r[31} =Sign 
RSBSMI r0,r0,#0 j If re< e~ re= 0 - re 
CLZ r3, r0 , Count Leading zeros 

LSLS r2,r0,r3 ; Remove Leading zeros 
RSB r3, r3,#157 , exp = 157 - # Leading zeros 

; Note that it is not 158, 
; extra 1 is added Later 

BEQ exit ; if r2 is e, return e 
ORRS rl,rl,r3,LSL #23 , r1[3B:23} = Exponent 
ADD r0,rl,r2,LSR #8 ; rB[22:0] = Significand 

; Exponent = Exponent + 1 
; Round to Nearest 
LSLS r3,r2,#25 ; carry= round bit 

BXCC 
ADD 
BICEQ 

exit BX 
ENDP 

lr 
r0,r0,#1 
r0,r0,#1 
lr 

; r3 holds sticky bits 

; round down if round bit is e 
; round up since round bit is 1 
, if sticky bits are e 

Example 12-14. Converting integer to single-precision float 

We will give two examples to explain the basic procedures of converting an integer to a 
single-precision floating point number without using FPU. 

Example 1: Converting 7 to single-precision float 

1) Input: r0 = 00000000_00000000_00000000_00000111 
2) Obtain sign: rl = 00000000_00000000_00000000_00000000 
3) Count the leading zeros of input: r3 = 29 
4) Remove leading zeros: r2 11100000_00000000_00000000_00000000 
5) Bias = 127 
6) Obtain exponent_minus_l: 

r3 = 157 - 29 = 128 = 00000000_00000000_00000000_10000000 
7) Place exponent: rl = 00100000_00000000_00000000_00000000 
8) Obtain significant: r2 LSR #8 = 00000000_11100000_00000000_00000000 
9) Combine sign, exponent, and significant: 

rl + r2 LSR #8 = 01000000_11100000_00000000_00000000 



1111 12.4 - Hardware-based Floating-point Operations 

Example 2: Converting -3 to single-precision float 

1) Input: r0 = 11111111_11111111_11111111_11111101 
2) Obtain sign: rl = 10000000_00000000_00000000_00000000 
3) Obtain absolute value: r0 = 00000000_00000000_00000000_00000011 

4) Count the leading zeros of input: r3 = 30 
S) Remove leading zeros: r2 = 11000000_00000000_00000000_00000000 

6) Bias = 127 
7) Obtain exponent_minus_l: 

r3 = 157 - 30 = 127 = 00000000_00000000_00000000_01111111 

8) Place exponent: rl = 10111111_10000000_00000000_00000000 

9) Obtain significant: r2 LSR #8 = 00000000_11000000_00000000_00000000 

10) Combine sign, exponent, and significant: 
rl + r2 LSR #8 = 11100000_01000000_00000000_00000000 

12.4.8 FPU Exception and Exception handling 
As introduced previously, there are six floating-point exceptions, including input 
denormal (IDC), inexact (IXC), underflow (UFC), overflow (OFC), divide by zero (DZC), and 

invalid operation {IOC). 

The following gives example instructions that set the exception flags in the FPSCR register. 

VLDR.F32 s0, =0.0 ; Pseudo-instruction 
VLDR.F32 sl, =-1. 0 ; Pseudo-instruction 
VDIV.F32 s2, 51, 50 ; s2 : -Infinity, Set DZC f Lag in FPSCR 
VDIV.F32 s3, 50, 50 ; s3 : Quiet NaN (QNaN), Set IOC f Lag in FPSCR 
VSQRT.F32 54, 51 , s4 : QNaN, Set IOC f Lag in FPSCR 

VLDR.F32 sS, =2.12e30 ; A Large constant, 
VMUL. F32 56, 55, 55 ; Set OFC and IXC f Lags in FPSCR 

VLDR.F32 55, =2.12e-30 ; A Large constant, (I 

VMUL.F32 56, sS, 55 ; Set UFC and IXC f Lags in FPSCR 

By default, most processors do not handle these exceptions proactively. They do nothing 
more than setting exception flags to indicate an exception has occurred. This allows the 
computation to continue with a default output value specified by the IEEE 754 standard. 

For example, the default output of the overflow, underflow, and invalid operator is 
infinity, zero, and NaN, respectively. Floating-point operations can propagate the 
infinity and NaN consistently throughout the computation. However, such default 
outputs may introduce devastating inaccuracies in some applications. 



Fixed-point and Floating-point Arithmetic ID) 

We can change the default output of floating-point exceptions. In general, a processor 
can handle an exception in two approaches: a trap or an interrupt. 

• A trap handler returns an alternate result, instead of an exceptional result, and 
allows the program to resume execution. 

• An interrupt handler takes over the control and performs alternate calculation 
when an exception occurs. 

However, Cortex-M4 processors do not support traps. All floating-point exceptions are 
handled through via interrupts. As shown in Figure 12-22, five exceptions, including UFC, 
OFC, IDC, DZC, and roe, are connected via a logical OR operator to generate FPU interrupts. 
Cortex-M4 processors do not allow the Inexact Exception (IXC) to produce FPU interrupts 
because rounding errors occur very frequently. Some processors allow the enabling and 
disabling the interrupt for each individual FPU exception. 

Underflow Exception (UFC) 

Overflow Exception (OFC) 

Input Denormal Exception {IDC) -------1 

Divide by zero Exception (DZC) 

Invalid Operation Exception (IOC) 

FPU Interrupt 

Figure 12-22. Cortex-M4 handles all floating-point exceptions via interrupts 

The following assembly program shows how to process the overflow exception (OFC) in 
the FPU interrupt handler. Various methods are available to handle overflow. For 
example, the interrupt handler can convert the single-precision operation to a double
precision one to extend the range, or the handler can multiply the operands by a proper 
scaling factor to make the result within the current range. Software should enable FPU 
interrupts in NVIC by running "NVIC_EnableIRQ( FPU_IRQn); ". 

FPU_IRQHandler PROC 
EXPORT FPU_IRQHandler 

VMRS r0, FPSCR ; Read current FPSCR 

; Overflow cumulative exception (OFC) 
check_OFC ANDS r0, #(1<<2) 

BEQ exit 

; Handle OFC exception 

; Clear OFC flag 

exit BX LR 
ENDP 



.,. 12.4 - Hardware-based Floating-point Operations 

Clearing the FPU exception flags depends on the context save-and-restore behavior 
setting in the Floating-point Context Control Register (F PCCR) register. The following 

shows that example assembly code that clears all FPU exception flags. 

1. Lazy save/store (default) : LSPEN = 1, ASPEN = x 

VMRS r0, FPSCR , Dummy access to force context saving 
LDR rl, =FPU_BASE , Load the base memory address of FPU 
LDR r0, [rl, #FPU_FPCAR) , re = FPU->FPCAR 
LDR r2, [r0, #64) , stacking 16 registers (s0-s15) and FPSCR 
BIC r2, r2, #0x8F , Clear all flags 
STR r2, [r0, #64) , Save into stack 

, When an interrupt exits, FPSCR is 
, updated during automatic unstacking 

2. No FPU register saving: LSPEN = 0, ASPEN = 0 

VMRS r0, FPSCR 
BIC r0, r0, #SF 
VMSR FPSCR, r0 

; Read FPSCR 
; Clear all flags 
, Save FPSCR 

3. Automatic save/restore: LSPEN = 0, ASPEN = 1 

; Clear FPSCR flags by using a dummy read 
VMRS rl, FPSCR ; Automatically cleared after read 

; Clear exception flags saved in stack 
TST lr, #4 
MRSEQ r0, msp ; If LR = 0xFFFFFFF9, SP = MSP 
MRSNE r0, psp , If LR = 0xFFFFFFFO, SP = PSP 
LDR r2, [r0, #96) , FPU stack = 16 registers(s0-s15) 
BIC r2, r 2, #0x8F ; Clear all flags 
STR r2, [r0, #96) , Save into stack 

12.4.9 Example Assembly Programs 

12.4.9.1 Look up a Float Array 

+ FPSCR 

Example 12-15 shows a simple subroutine that looks up a specific float number in a float 

array. The C subroutine takes three arguments, the array memory address, a target float 

number, and the array size. If the subroutine finds the target float in the array, it returns 

its location index; otherwise, it returns -1. 

The subroutine takes three arguments, including the float array address, the target float, 

and the array size, in register r0, s0, and rl, respectively. Note that the float array address 

is a 32-bit integer, and thus it is passed via a core register instead of a floating-point 

register. 



Fixed-point and Floating-point Arithmetic IJI 

The VCMP. F32 instruction compares two float numbers and sets up the NZCV flags in the 

FPSCR register based on the comparison result. We need to copy these flags to the APSR 

register for the subsequent conditional branch or conditionally executed instructions. 

C Function Assembly Function 
int32_t lookup(float *fArray, 

float f, uint32_t size){ 
lookup PROC 

EXPORT lookup ; Make Lookup visible 

} 

int i; MOV r2, r0 
MOV r3, #0 
B check 

; re = array address 
; Loop index i = 0 

for (i = 0; i < size; i++) { loop ; Find address of fArray[i] 

} 

ADD r0, r2, r3, LSL #2 
if (fArray[i] == f) VLDR sl, [r0, #0] ; sl = fArray[i] 

return i; 

check 

; Compare f and fArray[i] 
VCMP.F32 sl, s0 
VMRS APSR_nzcv, FPSCR ; copy flags 

; Return index i if equal 
MOVEQ r0, r3 
BXEQ lr 

ADDS r3, r3, #1 ; Loop index ++ 
CMP r3, rl ; rl = array size 
BCC loop 

return -1; MOV r0, #0xFFFFFFFF 
BX LR ; return -1 if fai.Led 

ENDP 

Example 12-15. Looking up a single-precision floating point array 

12.4. 9.2 Sine Function of Argument in Radians 
Example 12-16 shows the C and assembly function that calculates the value of sin(x) 
based on the following Taylor expansion. The input x is in radians, not in degrees. 

00 

"'\"' (-l)k x3 xs x7 
sin(x) = L (2k + 1)! xk+1 ~ x - 3! + 51- 7T + ... 

k=O 

The computation loop repeats until the program achieves the desired maximum error. 
The input x is passed via register 50, and the result is returned also in register 50. 

According to EABI, a subroutine must preserve in the stack any single-precision registers 
516-531 (double-precision registers d8-d15) that are written in the subroutine. It is not 
required to preserve registers 50-515 (d0-d7) across subroutine calls. In this example, 
the instruction "VPUSH.32 {516-s21}" is equivalent to "VPUSH.64 {d8-d10}" . When 
multiple registers are pushed onto or popped off the stack, similar to PUSH and POP (see 



Ml:I 12.4 - Hardware-based Floating-point Operations 

Example 8-3), VPUSH pushes the largest numbered register first, and VPOP pops the 
smallest numbered register first. However, different from PUSH and POP, VPUSH and VPOP 
require that registers must be consecutive in their names. 

C Function Assembly Function 
float sine(float x) { sine PROC 

EXPORT sine 
float ret = 0.0; PUSH {r4, lr} 
floa t pow = x; VPUSH.32 {s16-s21} 
float term = pow; VMOV. F32 s16, s0 ; s16 = x 
float sign = 1. 0; VLDR.F32 s18, =0 ; s18 = ret = e.e 
float fact = 1. 0; VMOV.F32 s17, s16 , s17 = pow = x 
int k = 1; VMOV.F32 s19, s16 ; s19 = term = x 

VMOV.F32 s20, #1 ; s2e = sign = 1 
VMOV . F32 s21, #1 ; s21 = fact = 1 
MOVS r4, #1 ; r4 = k = 1 
B check 

while(fabs(term) >= 0.00001f){ loop 
te rm = sign * pow/ fact; VMUL.F32 s0,s20,s17 ; se = sign * power 

VDIV.F32 s19,s0,s21 , term = se/fact 
ret += term; VADD.F32 s18,s18,s19 , ret += term 

VMUL.F32 s0,s16,s16 , se = x*x 
pow *= x * x· , VMUL.F32 s17,s0 , s17 ; pow *= x*x 

LSLS r0, r4, #1 ; re = 2*k 
ADDS rl, r0, #1 , rl = 2*k + 1 
MULS r0, rl , r0 ; re 

VMOV s0, r0 
VCVT.F32.S32 s0, s0 ; convert to f Loat 

fact *= 2*k * (2*k+l); VMUL.F32 s21,s0,s21 ; fact *= 2k*(2k+l) 

VLDR.F32 s0, =0 
sign = 0 - sign; VSUB.F32 s20,s0,s20 sign = e - sign , 
k++; ADDS r4, r4, #1 ; k++ 

check 
VABS.F32 s0, s19 
VLDR. F32 sl, =0.00001 
VCMPE.F32 s0, sl 
VMRS APSR_nzcv, FPS CR ; copy NZCV f Lags 

} BGE loop 
VMOV.F32 s0, 518 ; return ret in se 
VPOP.32 {s16-s21} 

return r et; POP {r4, pc} 
} ENDP 

Example 12-16. Calculating sine value based on Taylor expansion 



Fixed-point and Floating-point Arithmetic IJll 

12.5 Exercises 

1. Suppose two real numbers A and B are in the UQ16.16 format. Show the basic 
procedure to calculate the product C. C =Ax B. Note C is also in UQ16.16 format. 
List all key operations and write an assembly program to conduct the multiplication. 

2. Convert 3.1415 to UQ8.8 format, and convert -3.1415 to Q7.8 format. 

3. Convert the binary real number 1111. 1101 to decimal. 

4. Write an assembly program that calculates the sum of an array of UQ8.8 numbers. 

5. Write an assembly program that calculates the sum of an array of UQ16.16 numbers. 

6. Convert 3.1415 to IEEE 754 single-precision format. 

7. Convert 0xC1F54000 to IEEE 754 single-precision decimal 

8. Manually subtract the following two IEEE 754 single-precision numbers: 

0xC1D15053-0xC3FD5053 

9. Manually add the two IEEE 754 single-precision numbers given in the previous 

question. 

10. Manually multiply the following IEEE 754 single-precision numbers. 

0xC0D40000 x 0x41C20000 

11. Manually divide the following IEEE 754 single-precision numbers. 

0xC0D40000 + 0x41C20000 

12. How many byte(s) boundary should a "float" type be aligned to in C? 

13. Given the following C functions, what registers are used to pass these arguments? 

Which register holds the return value? 

(l)float funl(float a, float b, float c, uint8_t d, int32_t e); 

(2)double fun2(float fl, double f2, float f3, double f4); 

(3)uint16_t fun3(uint8_t al, int32_t a2, float fl, float f2, float f3, 
double f4) 

(4)float * fun4(float *fl, float *f2, double *f3, float f4, double f5); 



12.5 - Exercises 

14. How many bytes of the stack are needed to pass arguments when the following 

function is called? 

(1) float funl(float a, float b, float c, float d, 
float d, float e, float f); 

(2) float fun2(uint8_t al, float fl, uintl6_t a2, uint8_t a3, 
float f2, int32_t a4, float f3, uint8_t as, 
float f4, int32 t a6, uint8_t a7); 

(3) float fun3(float fl, float f2, float f3, float f4, 
float fS, float f6, float f7, float f8, 
float f9, float fl0, float fll, float fl2, 
float f13, float fl4, float flS, float f16, 
float fl7, float fl8, float fl9, float f20, float f21); 

(4)double fun4(double dl, double d2, double d3, double d4, double dS, 
double d6, double d7, double d8, double d9, double dl0); 

15. Write an assembly function that finds the maximum value in a single-precision 

floating-point array. 

float maxf(float *array, int array_size) 

16. Write an assembly function that calculates the exponential value ex. 

float expf(float x) 

The function should be based on the following Taylor expansion. 

17. Write an assembly function that calculates the cosine value cos(x) . 

float cos(float x) 

The function should be based on the following Taylor expansion. 

00 

L 
x2k x2 x4 x 6 xs 

cos(x) = ( - l)k -- ~ 1 - - + - - - + - - ... 
(2k)! 2! 4! 6! 8! 

k=O 

18. When multiple registers are pushed onto or popped off the stack in one instruction, 
the register list is sorted. The largest numbered register is pushed first onto the stack, 
and the smallest numbered register is popped first. Assume stack pointer (sp) == 

0x20006000, register Ri = i and Si = 1.0*i (r0 = 0, rl = 1, ... , and s0 = 0.0, 



Fixed-point and Floating-point Arithmetic ID 

sl = 1.0, s2 = 2.0, ... ).Show the stack memory content in hex immediately after 
the processor executes the following two instructions. 

push {r3-r5,rl,r9,r7} ; Registers do not have to be Listed consecutively 
vpush.32 {s16-s18} ; Registers in the List must be consecutive 

19. Translate the following assembly function into a C function. Explain what this 
function does and give the function a meaningful name. 

myfun PROC 
EXPORT myfun 
VMUL.F32 s0, s0, 50 
VLMA.F32 s0, sl, sl 
VLMA.F32 s0, s2, s2 
VSQRT. F32 s0, s0 
BX lr 

ENDP 

20. Assume the main stack (MSP) is used. 
• Stackpointer(sp)=0x20006000,RegisterRi = iandSi = 1.0*i(r0 = 0, rl 

= 1, ... , and s0 = 0.0, sl = 1.0, s2 = 2.0, ... ) 

• Additionally, the program status register (PSR) = 0x00000020, PC = 
0x08000020, LR= 0x20008020, and FPCAR = 0x03000000. 

Show the stack memory content in hex immediate after an interrupt service routine 
is called in the following scenarios. 

(1) There is no FPU or FPU has not been used. 
(2) FPU has been used before the interrupt occurs, and the interrupt service 

routine will run floating-point instructions . 

21. What is the value in register Si (i = 0, 1, ... , 31) after the following SysTick interrupt 
handlerhasbeenexecutedonce?Assumeinitially Si = 1.0*i(s0 = 0.0, sl = 1.0, 

s2 = 2.0, ... ). 

SysTick_Handler PROC 
VPUSH {s17-s19} 
VMOV.F32 s3, #1 
VADD.F32 s0, s3, sl 
VADD.F32 s4, s3, sl 
VADD.F32 s13, s3, sl 
VADD.F32 slS, s10, sl 
VADD.F32 518, slS, sl 
VADD.F32 s20, s7, sl 
VADD.F32 s31, s10, s12 
VPOP {s17-s19} 
BX LR 
ENDP 



ml 12.5 - Exercises 

22. Suppose the SysTick interrupt occurs when 
• PC= 0x08000044, XPSR = 0x00000020, 
• SP= 0x20000200, LR= 0x08001000, 
• FPCAR = 0x03000000, 
• Processor's Register Ri = i, i = 0, 1, 2, ... , and 
• FPURegistersSi = 1.0*i(s0 = 0.0, sl = 1.0, s2 2.0, ... ). 

Memory Address Instruction 

main PROC - ... 
0x08000044 VMOV.F32 s3, #2 

... 
ENDP 

SysTick_Handler PROC 
EXPORT SysTick_Handler 

0x0800001C VADD.F32 s15, s15, sll 
0x08000020 VADD.F32 s17, s16, s10 
0x08000024 BX lr 

ENDP 

(1) Show the stack contents and the value of PC and SP when immediately 
entering the SysTick interrupt service routine. 

(2) What is the value in register s15 and s17? 



Instruction Encoding and Decoding Bl 

CHAPTER 

13 

Instruction Encoding and Decoding 
ARM has multiple instruction sets. The legacy ARM instruction set includes 32-bit 
instructions. All instructions in the Thumb instruction set have only 16 bits. The Thumb-
2 consists of all 16-bit Thumb instructions as well as many 32-bit instructions, as shown 
in Figure 13-1. 

The Cortex-M family has a series of processors that are backward compatible. Cortex-M3 
series extends Cortex-MO series by adding more instructions for advanced data 
processing and bit field manipulations. Cortex-M4 extends Cortex-M3 by adding digital 
signal processing and floating-point arithmetic instructions. 

ARM 
(32-bil Instructions) 

Figure 13-1. Comparison of Thumb, Thumb-2, and ARM instruction sets 

13.1 Tradeoffbetween Code Density and Performance 
These instruction sets play different tradeoffs between code density and performance, as 
shown in Figure 13-2. Code density measures the size of a binary executable program. A 
high code density means that the binary program has a less number of bytes. A high code 
density is often preferred in embedded systems because less memory is required, thereby 
directly reducing cost and power consumption. 



•. ,. 13.2 - Dividing Bit Streams into 16- or 32-bit Instructions 

The 16-bit Thumb instructions decrease the size of the program code and accordingly 
reduce the memory requirement. The 32-bit legacy ARM instructions increase the 
flexibility of encoding, such as directly encoding large immediate numbers and including 
more operands, thus improving performance. 

The Thumb-2 instruction set, consisting of a mix of 16-bit and 32-bit instructions, 
provides a good tradeoff between code size and performance. Accordingly, the 
performance and code size ratio of Thumb-2 is the highest. 

~. Performance 

Code Size 

-. 
Thumb Thumt>-2 ARM 

Figure 13-2. Thumb-2 plays a good tradeoff between the code density and performance. 

13.2 Dividing Bit Streams into 16- or 32-bit Instructions 
The processor always fetches four bytes (i.e. 32 
bits) from the instruction memory addressed by 
the program counter. Therefore, the program 
counter is incremented by four after each fetch. 
The fetched four bytes represent either one 32-bit 
instruction or two 16-bit instructions. 

• If the most significant five bits are 11101, 

11110, or 11111 in binary, this halfword is 
the least significant two bytes of a 32-bit 
instruction. The fetched four bytes 
represent one 32-bit instruction. 

• Otherwise, these four bytes consist of two 
16-bit instructions 

"Looking at a program 
written in machine language 

is vaguely comparable to 
looking at a DNA molecule 

atom by atom." 

Douglas Hofstadter 
cognitive scientist 

ir 

f.; 



Instruction Encoding and Decoding l.m 

16-bit half-word 

I x x 1 x I x 1 x 1 x 1 x 1 x 1 x I x 1 x I x I x I x I x I x I 

\. ) 
y 

11101 
If bit[15-11] = 1111 O then this half-word is the first half-word of a 32-bit instruction. 

11111 

Otherwise, this half-word is a 16-bit instruction . 

Figure 13-3. Identification of 16-bit and 32-bit Thumb instructions 

Instruction 
Stream 

Each machine instruction includes a binary operation code (opcode) and zero or more 

operands. 

• The opcode specifies the operation that the processor carries out. The total 
number of bits in an opcode varies, depending on specific instructions. An opcode 
sometimes consists of two bit-fields: a major opcode that specifies the major 
category of this instruction, and a minor opcode that identifies a specific option 
within this category. 

• If the operand is a register, four bits are required to represent a register if there 
are 16 registers. Most 16-bit instructions can only access the lower registers (r0 -
r7) because only three bits are used to address a register operand in a 16-bit 
instruction. 

• If the operand is an immediate number, 16-bit instructions usually limit it to 5 or 
8 bits, and 32-bit instructions limit it to 8, 16, or 24 bits. It is interesting that 32-bit 
instructions can also encode some special 32-bit immediate numbers that have 
special bit patterns. 

The encoding of immediate numbers is complex in ARM. Let us look at the 12-bit 
immediate number. ARM uses a combination of a 4-bit rotation and an 8-bit immediate 
number to decode a 12-bit immediate number stored in the instruction. The 8-bit 
immediate number is extended with zero to 32 bits, and then all bits are rotated to the 
right by n bit positions, where n is twice as much as the 4-bit rotation field specified. The 
8-bit immediate number can only be rotated to even positions 

For example, if the 8-bit immediate number is 0b11001100, and the 4-bit rotation amount 
is 0b1001 (i. e., 9), the 32-bit immediate encoded is obtained as follows: 

0b11001100 ROR 2 x 9 = 0b00110011,00000000,00000000,00000000. 

Note that not every immediate number can be directly encoded by using this method. 



•• 13.3 - Encoding 16-bit Thumb Instructions 

13.3 Encoding 16-bit Thumb Instructions 
The following table lists the major opcode of 16-bit Thumb instructions. Appendix F 
gives a detailed list of all 16-bit instructions. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 minor opcode Shift, add, subtract, move, & compare 
0 1 0 0 0 0 minor opcode Rm/Rn Rd/Rn Data processing 

0 1 0 0 0 1 minor opcode Rm Rd/Rn Special data instructions & branch 

0 1 0 0 1 x minor opcode Load from Literal Pool 

0 1 0 1 x x Load/store single data item 

0 1 1 x x x Load/store single data item 

1 0 0 x x x Load/store single data item 

1 0 1 0 0 Rd imm8 Generate PC-relative address 

1 0 1 0 1 Rd imm8 Generate SP-relative address 

1 0 1 1 minor opcode Miscellaneous 16-bit instructions 

1 1 0 0 0 Rd register list Store multiple registers 

1 1 0 0 1 Rd register list Load multiple registers 

1 1 0 1 minor opcode offset-8 Conditional branch, & supervisor call 

1 1 1 0 0 offset-11 Unconditional branch 

The minor opcode of those data processing instructions in which the destination operand 

is one of the source operands has four bits (i.e., bits[9-6]), as listed below. 

Bits [7-6] 
Bit[9-8] 

00 01 10 11 

00 AND EOR LSL LSR 

01 ASR ADC SBC ROR 

10 TST RSB CMP CMN 

11 ORR MUL BIC MVN 

For example, the minor opcode for the bitwise logic OR instruction is 1100 in binary, and 
thus the instruction of "ORR rl, r0" is encoded 0x4301, shown as follows. Note that 
register rl is both the source operand and the destination operand. It is equivalent to 
"ORR rl, rl, r0". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 ORR rl, r0 

major minor 
Rn Rd 

opcode opcode 

When there are three different register operands, a 32-bit instruction is required . For 
example, "ORR r2, rl, r0" cannot be encoded by a 16-bit instruction. 



Instruction Encoding and Decoding M M 

13.4 Encoding 32-bit Instructions 
The decoding scheme of 32-bit instructions is summarized in a table given on the next 
page. Let's take data processing instructions with registers as operands as an example. 
These instructions share the same major opcode, which is 1110101. However, their minor 
opcode and bit fields are different, as defined in Table 13-1. Appendix G shows the 
format of all 32-bit instructions. 

31 - 25 24 - 21 20 19-16 15 14-12 11-8 7 I 6 5 I 4 3-0 

major opcode minor s Rn 0 imm3 Rd imm2 shift Rm 
opcode 

1110101 0000 s Rn 0 imm3 Rd imm2 type Rm AND 

1110101 0000 1 Rn 0 imm3 1111 imm2 type Rm TST 

1110101 0001 s Rn 0 imm3 Rd imm2 type Rm BIC 

1110101 0010 s Rn 0 imm3 Rd imm2 type Rm ORR 

1110101 0011 s Rn 0 imm3 Rd imm2 type Rm ORN 

1110101 0011 s 1111 0 imm3 Rd imm2 type Rm MVN 

1110101 0100 s Rn 0 imm3 Rd imm2 type Rm EOR 

1110101 0110 s Rn 0 imm3 Rd imm2 tb I T Rm PKHBT, PKHTB 

1110101 1000 s Rn 0 imm3 Rd imm2 type Rm ADD 

1110101 1000 1 Rn 0 imm3 1111 imm2 type Rm CMN 

1110101 1010 s Rn 0 imm3 Rd imm2 type Rm ADC 

1110101 1011 s Rn 0 imm3 Rd imm2 type Rm SBC 

Table 13-1. Major and minor opcode of commonly used 32-bit instructions 

Example: Encoding "ORRS r3, rl, re, LSL #2" 

According to Table 13-1, the minor opcode of ORR is 0010. Following the instruction 
format in Appendix F, the 32-bit ORR instruction with three register operands has a 
format presented in Table 13-2. The S bit should be 1 because it is required to update 
the NZCV flags due to the "S" suffix. The shift type is 00, representing logic shift left 
(LSL). The five-bit shift amount (imm3: imm2) is 00010. 

31 - 25 24 - 21 20 19 - 16 15 14 - 12 11 - 8 716 514 3 - 0 
major minor s Rn 0 imm3 Rd imm2 type Rm opcode opcode 

1110101 0010 1 0001 0 000 0011 10 00 0000 

Table 13-2. Instruction format of the 32-bit ORRS instruction with three registers 

Therefore, the binary encoding of "ORRS r3, rl, r0, LSL #2" is 
1110, 1010, 0101, 0001, 0000, 0011, 1000, 0000, which is EA510380 in hex. 



3 3 2 2 2 2 2 2 2 2 2 2 1 1 

1 0 9 8 7 6 5 4 3 2 1 0 9 8 

1 1 1 0 1 0 0 op 0 w L 

1 1 1 0 1 0 0 opl 1 op2 

1 1 1 0 1 0 1 op 5 

1 1 1 0 1 1 opl 

1 1 1 0 1 x 0 op 

1 1 1 1 0 x 1 op 

1 1 1 1 0 op 

1 1 1 1 1 0 0 0 opl 0 

1 1 1 1 1 0 0 opl 0 0 1 

1 1 1 1 1 0 0 opl 0 1 1 

1 1 1 1 1 0 0 opl 1 0 1 

1 1 1 1 1 0 0 x x 1 1 1 

1 1 1 1 1 0 1 0 opl 

1 1 1 1 1 0 1 1 0 opl 

1 1 1 1 1 0 1 1 1 opl 

1 1 1 1 1 1 opl 

Encoding of 32-bit Thumb2 Instructions 

1 1 1 1 1 1 1 1 
7 1 6 9 8 5 4 3 

7 6 5 4 3 2 1 0 

Rn x 0 Register list 

Rn x op3 

Rn x imm3 Rd imm2 

x coproc I op 

Rn 0 imm3 Rd imm8 

Rn 0 I 
1 opl I 
x op2 

Rn Rt op2 

Rn Rt op2 

Rn x 0)2 

x I 
Rn x 1 1 1 1 op2 

x Ra o I o op2 

x op2 

x coproc I op 

2 1 0 

Load/ store multiple 

Load/ store dua l or exclusive, table branch 

Rm Data processing (sh ifted register) 

Coprocessor instructions 

Data processing (modified immediate) 

Data processing (plain binary immediate) 

Branches and miscellaneous control 

Store single data item 

Load byte, memory hints 

Load halfword, memory hints 

Load world 

Undefined 

Rm Data processing (register) 

Rm 
Multiply, multiply accumulate, and absolute 

difference 

Rm 
Long multiply, long multiply accumulate, 

divide 

I Coprocessor instructions 

I 
....... 
w 
;i::. 

I 

rrJ 
::l 
() 

0 
Q., 

s· 
OQ 
w 
N 

I g: 
..... 
...... 
::l 
t/l 

2 
() 

::r. 
0 

~ 



Instruction Encoding and Decoding ID) 

13.5 Calculating Target Memory Address 
Cortex-Muses PC-relative addresses for branch and load/store instructions. In PC-relative 
addressing, the processor calculates the target memory address as follows. 

Target address = PC + 4 + Offset 

where PC is the memory address of the current branch or load/store instruction. Note that 
Thumb instructions are always halfword aligned and thus the least significant bit of the 
PC is always 0. 

PC-relative addressing has two advantages. First, it helps to achieve position
independent code, which allows the instructions to be placed in different memory 
regions. Second, it allows programs to store immediate numbers in the instruction 
memory. Many immediate numbers, especially very large ones with no specific patterns, 
cannot be directly encoded into a 16-bit or 32-bit instruction. 

Example 1: Decoding 0100101000000110 

This 16-bit instruction is decoded as "LDR Rt, [pc, #imm8«2 ]",where #imm8 
is 6 {00000110 in binary), according to the 16-bit instruction format given in 
Appendix F. The offset is #imm8 « 2 (i.e., 24). Therefore, we can decode it as 
"LDR r2, [pc, #24] ".If the memory address of this instruction is 0x080001CC, 
then it will load a word stored at the following target memory address: 

Target address= PC+ 4 +Offset= Ox080001CC + 4 + 24 = Ox80001£8 

Example 2: Decoding 1101101111110111 

This 16-bit branch instruction is decoded as "B ( cond) #imm8« 1", where the 
conditional code is 1011, representing "Less Than (LT)" (see Table 13-4), and 
#imm8 is 11110111. The offset is 1111011«1 = 111110110, representing-18 in 
two's complement. 

Suppose the memory address of this branch instruction is 0x080001E2, then this 
branch instruction will jump to the instruction stored at the following target 
address if the comparison result is "less than." 

Target address = PC + 4 + Offset = Ox080001E2 + 4 + (-18) = Ox080001D4 

If we put a label, such as "loop", on the instruction stored at 0x080001D4, then 
we can translate this binary instruction to "BLT loop" . 



Mij1i 13.6 - Instruction Decoding Example 1 

13.6 Instruction Decoding Example 1 
We will show how to decode the following hex numbers into assembly instructions. 

F04F, 0003, F04F, 0104, F04F, 0300, 2900 
0003, 4403, FlAl, 0101, E7F9, 4618, E7FE 

The first step is to divide all bits into instructions. If the most significant five bits of a 
halfword are 11101, 11110, or 11111, then this halfword starts a 32-bit instruction. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 16 or 32 

0xF04F 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 32-bit 
0x0003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 instruction 

0xF04F 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 32-bit 
0x0104 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 instruction 

0xF04F 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 32-bit 
0x0300 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 instruction 

0x2900 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 16-bit 

0xD003 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 16-bit 
0x4403 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 16-bit 
0xF1Al 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 32-bit 
0x0101 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 instruction 

0xE7F9 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 16-bit 

0x4618 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 16-bit 
0xE7FE 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 16-bit 

Table 13-3. Binary representation of the instructions 

Decoding: 0xF04F, 0x0003 ==> MOV r0, #3 
The five most significant bits of the first halfword is 11110, indicating that this 
halfword and the next halfword are parts of a 32-bit instruction. By looking up 
the opcode from the 32-bit decoding table (Appendix G), we know that this is an 
MOV instruction. According to the format of MOV instruction, we know that the 
destination register is 0000 (i.e., r0), and the 11-bit immediate number is 
00000000011 (i.e. , 3). Moreover, the S suffix is 0. Thus it is MOV, instead of MOVS. 
Therefore, this instruction is decoded as "MOV r0, #3". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0xF04F I ~ I 
1 

I 

1 

I 

opl 
I or .1:1 I ~ 1.1. I 

1 1 1 0 0 1 1 1 1 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0x0003 I 
0

: I 
imm3 

I 
Rd imm8 

I 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 



Instruction Encoding and Decoding iiji 

Decoding: 0xF04F, 0x0104 ==> MOV rl, #4 
Like the previous instruction, we can decode this as "MOV rl, #4". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0xF04F I ~ I 
1 

I 

1 

I 
opl I op2 

.1:1 I ~ I 0 I 0 I 1 1 1 0 0 1 1 1 1 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0x0104 I 
0

: I 
imm3 

I 
Rd imm8 

I 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

Decoding: 0xF04F, 0x0300 ==> MOV r3, #0 
Similar to the first instruction, we can decode this as "MOV r3, #0". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0xF04F I : I 

1 

I 

1 

I 

opl 
I · r .1:1 I ~ 1.1. 1 1 1 0 0 1 1 1 1 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0x0300 I 
0

: I 
imm3 

I 
Rd imm8 

I 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

Decoding: 0x2900 ==> CMP rl, #0 
The most significant five bits is not 11101, 11110, nor 11111. Thus, it is a 16-bit 
instruction. The opcode is 001010, specifying it is a CMP instruction that compares 
a register with an 8-bit immediate number. The source operands include register 
rl and an immediate number 0. Therefore, this instruction is decoded as "CMP rl, 
#0". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0x2900 I 0 :plco0del 0 I 0 R; 1 I 0 I 0 I 0 r0ml 0 I 0 I 0 I 

Decoding: 0xD003 ==> BEQ exit 
Again, this is a 16-bit instruction. The condition code is listed as 0000, which 
represents EQ according to Table 13-4. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0xD003 I ~ I ~ I : I ~ I 0 c0on0d 0 I 0 I 0 I 0 I !T! I 0 I 1 I 1 I 



- 13.6 - Instruction Decoding Example 1 

The 8-bit immediate number is 3. The immediate number is in two's complement 
format. Thus, the memory address offset can be negative, and the branch 
instruction can jump backward. The processor updates the program counter (PC) 
as follows if the branch is taken. 

PC =PC+ 4 + SignExtend_to_32Bits(imm8: 'O') 

In this example, we have PC = PC + 4 + 3 x 2 = PC + 10, and the instruction that 
is branched to is 0x4618, to which we give a label "exit". Therefore, this 
instruction is decoded as " BEQ exit". 

Condition Code Suffix Description 
0000 EQ EQual 
0001 NE Not Equal 
0010 CS/HS unsigned Higher or Same 
0011 CC/LO unsigned LOwer 
0100 MI Minus (Negative) 
0101 PL PLus (Positive or Zero) 
0110 vs o Verflow Set 
0111 vc o Verflow Clear 
1000 HI unsigned Higher 
1001 LS unsigned Lower or Same 
1010 GE signed Greater or Equal 
1011 LT signed Less Than 
1100 GT signed Greater Than 
1101 LE signed Less than or Equal 
1110 AL AL ways 

Table 13-4. Condition code 

Decoding: 0x4403 ==> ADD r3, r3, r0 
This is a 16-bit instruction. The opcode shows it is "ADD". The destination register 
is DN: Rdn, i.e., 0011 (r3). Register r3 is also a source operand. For this instruction, 
the S suffix is 0. Therefore, it is decoded as "ADD r 3, r 3, r0", or "ADD r 3, r0" . 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0x4403 ~1 -0~-1~1-:_pc~j0-:-e~j-0~~1--+--0-0---+-l-~-N-1~0~:-:~0~1--0-R_~_nl-----< 



Instruction Encoding and Decoding IJll 

Decoding: 0xF1A1, 0x0101 ~ SUB rl, rl, #1 
This is a 32-bit instruction. The opcode indicates that it is SUB. The S suffix bit is 

0, and thus it is not SUBS. The 12-bit immediate number (i: imm3: imm8) is 1. Thus, 

we have "SUB rl, rl, #1". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 opl 
i 0 0 1 s Rn 

0xF1Al 1 1 1 1 0 0 0 0 1 0 0 0 0 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
imm3 Rd imm8 

0x0101 I 
0

: I 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

Decoding: 0xE7F9 ~ B loop 
This 11-bit immediate number in this branch instruction is two's complement, 

representing -7. The program counter PC = PC + 4 + (-7) x 2 = PC - 10, 
pointing to the instruction 0x2900, i.e., "CMP rl, #0". We labeled the CMP 
instruction as "loop", and this instruction is decoded as "B loop". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 
~pc ode immll 

0xE7F9 ~~~l~l~l-0~0~~-+-~~-1~1-l~l~l-1~1~1-0~0~1~~_, 

Decoding: 0x4618 ~ MOV re, r3 
The destination register of this 16-bit instruction is D: Rdn, i.e., 0000 (r0) . 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

opcode opcode2 
Rm Rdn I I D 

0x4618 0 I 1 I 0 I 0 I 0 I 1 1 10 10 0 0 1 1 0 0 0 

Decoding: 0xE7FE ~ B stop 
This is a branch instruction, the program counter PC =PC+ 4 + (-2) x 2 =PC, 
which points to the instruction itself and creates a dead loop. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 
opcode immll 

0xE7FE r-~-1~1'--1~0-0~~-1-~~~1-1~1~1~1~1-1~1~1~1-0~~----1 



Mil 13.7 - Instruction Decoding Example 2 

In summary, the following bit stream in hex format is decoded into 10 assembly 
instructions. 

F04F,0003,F04F,0104,F04F,0300,2900,D003,4403,FlA1,0101,E7F9,4618,E7FE 

Address 
Offset 

0 
4 
8 

12 
14 
16 
18 
22 
24 
26 

Label 

loop 

exit 
stop 

Binary 
Instruction 

F04F0003 
F04F0104 
F04F0300 

2900 
D003 
4403 

F1A10101 
E7F9 
4618 
E7FE 

Decoded 
Instruction 

MOV r0, #3 
MOV rl, #4 
MOV r3, #0 
CMP rl, #0 
BEQ exit 
ADD r3, r3, r0 
SUB rl, rl, #1 
B loop 
MOV r0, r3 
B stop 

This program multiplies two integers, stored in register r0 and rl, respectively . The 

program saves the product in register r3 temporally during the execution and moves it 
to register r0 at the end. We can translate the above assembly program to a C program, 
which multiplies two integers via repeatedly adding the multiplicand to the product. 

Assembly Program c Program 

MOV r0, #3 j Multi.pli.cand int a = 3; II Multi.pli.cand 
MOV rl, #4 j Multi.plier int b = 4; II Multi.plier 
MOV r3, #0 j Product int product = 0; 

loop CMP rl, #0 for(int i = b; i > 0; i--) { 
BEQ exit product += a; 
ADD r3, r3, r0 } 
SUB rl, rl, #1 while(l); 
B loop 

exit MOV r0, r3 

stop B stop 

13. 7 Instruction Decoding Example 2 
In this example, we will convert the following machine instructions into an assembly 
program. We examine the five most significant bits of each halfword to check whether it 
is a 16-bit instruction or part of a 32-bit instruction. 



Instruction Encoding and Decoding fiW 

We find that two words, 0xF8511020 and 0xF84D1020, stored at the memory address 
0x080001D6 and 0x080001DA respectively, are 32-bit instructions. The rest are 16-bit 
instructions. 

Memory Address HEX Binary 
0x080001C8 B08A 1011000010001010 
0x080001CA 2100 0010000100000000 
0x080001CC 4A06 0100101000000110 
0x080001CE 6011 0110000000010001 
0x080001D0 2000 0010000000000000 
0x080001D2 E005 1110000000000101 
0x080001D4 4905 0100100100000101 
0x080001D6 F851 1111100001010001 
0x080001D8 1020 0001000000100000 
0x080001DA F84D 1111100001001101 
0x080001DC 1020 0001000000100000 
0x080001DE 1(40 0001110001000000 
0x080001E0 280A 0010100000001010 
0x080001E2 DBF7 1101101111110111 
0x080001E4 BF00 1011111100000000 
0x080001E6 E7FE 1110011111111110 
0x080001E8 0028 0000000000101000 
0x080001EA 2000 0010000000000000 
0x080001EC 0000 0000000000000000 
0x080001EE 2000 0010000000000000 

Table 13-5. Layout of instruction memory 

The program also places two constants (0x20000028 and 0x20000000) in the binary 
instruction. They are the memory addresses of two variables in the data memory. The 
data memory layout is given as follows: 

Memory Address HEX 
0x20000000 0 

. . . ... 
0x20000028 0x0001 
0x2000002C 0x0002 
0x20000030 0x0003 
0x20000034 0x0004 
0x20000038 0x0005 
0x2000003C 0x0006 
0x20000040 0x0007 
0x20000044 0x0008 
0x20000048 0x0009 
0x2000004C 0x000A 

Table 13-6. Layout of data memory 



13.7 - Instruction Decoding Example 2 

Following Appendix F and G, we can decode each binary instruction as follows. 

Address HEX Binary and 
Decoded Instruction 

0x080001C8 B08A 1011_00001_0001010 
SUB SP, SP, #40 

0x080001CA 2100 00100_001_00000000 
MOVS rl, #0 

0x080001CC 4A06 01001_010_00000110 
LOR r2, [pc, #24] 

0x080001CE 6011 01100_00000_010_001 
STR rl, [r2, #0] 

0x080001D0 2000 00100 000 00000000 
MOVS re, #0 

0x080001D2 E005 11100 00000000101 
B check 

Explanation 

SUB SP, SP, #imm7< <2 
#imm7 = 00010102 
#imm7 « 2 = 40 

MOV Rd, #imm8 
#imm8 = 000000002 
Rd = 0012 

LDR Rt, [pc, #imm8«2] 
# imm8 = 000001102 
#imm8 << 2 = 110002 = 24 
Rt = 0102 

Target address = pc + 4 + #i mm8<< 2 
= 0x080001CC + 4 + 24 
= 0x80001E8 

Load the memory address of 
the integer array. As results, 
r2 = 0x20000028 

STR Rt, [Rn, #imm5<<2] 
#imms = 000002 
Rt = 0012 
Rn = 0102 

MOV Rd, #imm8 
#imm8 = 000000002 
Rd = 0002 

B #immll«l 
#immll = 00000000101 
#immll«l = 10 
Target pc = pc + 4 + 10 
= 0x080001D2 + 14 = 0x080001E0 

0x080001D4 4905 01001_001_00000101 LDR Rt, [pc, #imm8<<2] 
loop LOR rl, [pc, #20] #imm8 = 000001012 

#imm8<<2 = 101002 = 20 
Rt = 001 

Target add r ess = pc + 4 + #imm8<< 2 
= 0x080001D4 + 4 + 20 
= 0x080001EC 

Load the memory add r ess of 
the total variable . As results, 
rl = 0x20000000 



Instruction Encoding and Decoding WM 

0x080001D6 F851 111110000101_0001 This halfword is part of a 
32-bit instruction. 

0x080001D8 1020 0001_000000_10_0000 LDR Rt, [Rn, Rm, LSL #imm2] 
LOR rl, [rl,r0,LSL #2] #imm2 = 102 

Rt = 00012 
Rn = 00012 
Rm = 00002 

0x080001DA F84D 111110000100_1101 This halfword is part of a 
32-bit instruction. 

0x080001DC 1020 0001_000000_10_0000 STR Rt, [Rn, Rm, LSL #imm2] 
STR rl, (sp,r0,LSL #2] #imm2 = 102 

Rt = 00012 
Rn = 11012 
Rm = 00002 

0x080001DE 1(40 0001110_001_000_000 ADD Rd, Rn, #imm3 
ADDS r0, r0, #1 #imm3 = 0012 

Rd = 0002 
Rn = 0002 

0x080001E0 280A 00101_000_00001010 CMP Rn, #imm8 
check CMP r0, #10 #imm8 = 000010102 = 10 

Rn = 0002 

0x080001E2 DBF7 1101_1011_11110111 B(cond) #imm8«1 
BLT loop Cond = 10112 = Less Than 

#imm8 = 111101112 
#imm8<<1 = 1111011102 = -18 

Target pc = pc + 4 - 18 
= 0x080001E2 - 14 
= 0x080001D4 

0x080001E4 BF00 1011111100000000 
NOP 

0x080001E6 E7FE 11100_11111111110 B #immll«l 
self B self #immll = 111111111102 

#immll<<l = 1111111111002 = -4 

Target pc 
= pc + 4 + #immll«l 
= pc + 4 - 4 
= pc 



13.7 - Instruction Decoding Example 2 

The final decoded assembly program and its corresponding C program are given in the 
following table. The program uses PC-relative addressing to access the integer array a and 
the integer variable total. It is inferred from the binary code that the memory address of 
the array starts at 0x20000028, and the variable total is stored at 0x20000000. 

Binary Program 
Refer to the 
memory 

Assembly Program 
data AREA myData, DATA 

total DCD 0 

C Program 

int total; 

a DCD 1,2,3,4,S,6,7,8,9,10 int a[10] = {1, 2, 3, 4, 

B08A 
2100 
4A06 
6011 
2000 
E005 

4905 
F8511020 
F84D1020 
1C40 
280A 
DBF7 
BF00 
E7FE 

0028 ; addr of a 
2000 , 0x20000028 
0000 ; addr of total 
2000 ; 0x20000000 

AREA myCode, CODE 
EXPORT _main 

_main PROC 

loop 

check 

self 

SUB sp, sp, #0x28 
MOVS rl, #0 
LDR r2, [pc, #24] 
STR rl, [r2, #0] 
MOVS r0, #0 
B check 

LDR rl, [pc, #20] 
LDR rl, [rl,r0,LSL 
STR rl, [sp,r0,LSL 
ADDS r0, r0, #1 
CMP r0, #10 
BLT loop 
NOP 
B self 

DW 0x0028 
DW 0x2000 
DW 0x0000 
DW 0x2000 

ENDP 
END 

5, 6, 7, 8, 9, 10}; 

int main(void){ 

int i; 
int b[10]; 

total = 0; 

for (i=0;i<10;i++){ 
#2] 
#2] b[i] = a[i]; 

} 

while(l); 
} 



Instruction Encoding and Decoding Im 

13.8 Exercises 

1. Translate the following 16-bit binary instructions into assembly instructions 
240A, 3430, 7004, 2A00, 
1E40, 1C49, 4288, 8030, 
4680, 0000, 6568, 6(20, 7A61 

2. Translate the following 32-bit binary instructions into assembly instructions 
F801F000, F882F5F4, F8042415, 
F2430039, F0210107, E8AC09C0, 
EA4F2030, EA804130, F04F0001, 
F0000301, EA4F0050 

3. Translate the following binary program into an assembly program. What does the 
program perform? Transl t th bl b ck to a C program. ae e assem Ly program a 

0x080001FC 4601 
0x080001FE 2941 
0x08000200 0804 
0x08000202 295A 
0x08000204 OC02 
0x08000206 F1010020 
0x0800020A 82(1 
0x0800020C 2961 
0x0800020E 0007 
0x08000210 2965 
0x08000212 0005 
0x08000214 2969 
0x08000216 0003 
0x08000218 296F 
0x0800021A 0001 
0x0800021C 2975 
0x0800021E 0101 
0x08000220 2001 
0x08000222 4770 
0x08000224 2000 
0x08000226 E7FC 
0x08000228 4A08 
0x0800022A 4614 
0x0800022C E007 
0x0800022E 7813 
0x08000230 4618 
0x08000232 F7FFFFE3 
0x08000236 8908 
0x08000238 7023 
0x0800023A 1(64 



- 13.8 - Exercises 

0x0800023C 1(52 
0x0800023E 7810 
0x08000240 2800 
0x08000242 D1F4 
0x08000244 7020 
0x08000246 BF00 
0x08000248 E7FE 
0x0800024A 0000 
0x0800024C 0000 
0x0800024E 2000 
... . .. 
0x20000000 6854 
0x20000002 2065 
0x20000004 7571 
0x20000006 6369 
0x20000008 2068 
0x2000000A 7262 
0x2000000C 776F 
0x2000000E 206E 
0x20000010 6F66 
0x20000012 2078 
0x20000014 756A 
0x20000016 7060 
0x20000018 2073 
0x2000001A 766F 
0x2000001C 7065 
0x2000001E 7420 
0x20000020 6568 
0x20000022 6(20 
0x20000024 7A61 
0x20000026 2079 
0x20000028 6F64 
0x2000002A 0067 

4. Convert the binary search assembly program given in Chapter 7.12 to machine code 
manually. 



General Purpose I/O (GPIO) #!IM 

CHAPTER 

14 

General Purpose 1/0 (GPIO) 
This chapter illustrates how a processor uses a GPIO pin as a digital input or digital 
output. Example applications presented include lighting an LED, interfacing a push 
button and scanning a keypad. 

14.1 Introduction to General Purpose 1/0 (GPIO) 

The number of pins available on a processor is usually limited . A processor 
pin that can be configured by software at runtime to perform various 
functions is called a general-purpose input/output (GPIO) pin. GPIO 
provides high flexibility of use and enormous convenience of system design. 

1111 

1111 

It enables a processor to meet the needs of a broad range of embedded system 
applications. However, the flexibility comes with a price tag. Software must perform a 
sophisticated initialization. 

Software can program a GPIO pin as one of the following four different functions: 

1. Digital input that detects whether an external voltage signal is higher or lower 
than a predetermined threshold 

2. Digital output that controls the voltage on the pin 

3. Analog functions that perform digital-to-analog or analog-to-digital conversion 

4. Other complex functions such as PWM output, LCD driver, timer-based input 
capture, external interrupt, and interface of USART, SPI, PC and USB 
communication 

We call the last category of functions alternate functions (AF). The software can 
dynamically change the function of a GPIO pin at runtime. In this chapter, we focus on 



- 14.2 - GPIO Input Modes: Pull Up and Pull Down 

digital input and digital output, which are simply called input or output. Analog and 
other complex functions are introduced in the later chapters. 

A GPIO port consists of a group of GPIO pins, typically 8 or 16, which share the same 
data and control registers. 

• When a GPIO pin i is set as a digital input, the binary data read from this pin of 
this GPIO group is saved at bit i in the input data register (IDR). Each bit in !DR 

holds the digital input of the corresponding pin. 

• When a GPIO pin i is configured as a digital output, bit i in the output data 
register (ODR) holds the output of this pin. Therefore, when changing the output 
of a GPIO pin, the programmer should only alter the value of the corresponding 
bit of ODR, without affecting the other bits in ODR. Chapter 4.6 introduces how to 
test, clear, set, and toggle a specific bit of a register in C and assembly. 

• All GPIO pins in a GPIO port can be configured as input or output independently. 

14.2 GPIO Input Modes: Pull Up and Pull Down 
When a GPIO pin is used as digital input, the pin has three states: high voltage, low 
voltage, or high impedance (also called floating or tri-stated) . Pull-up and pull-down are 
used to ensure the input pin has a valid high (logic 1) or a valid low (logic 0) when the 
external circuit does not drive the pin. 

When software configures a pin as pull-up, the pin is internally connected to the power 
supply via a resistor, as shown in Figure 14-1. The pin is always read as high (logic 1) 

unless the external circuit drives this pin low. 

Processor Chip 

Vee 

Input 

Figure 14-1. The GPIO pin is 
pulled up internally. 

Input Pin 

Processor Chip 

Input 

Pull down 
resistor 

Figure 14-2. The GPIO pin is 
pulled down internally. 

Input Pin 



General Purpose I/0 (GPIO) i!M 

Similarly, when a pin is configured as pull-down, the pin is then 
internally connected to the ground via a resistor, as shown in Figure 
14-2. The pin is always read as low (logic 0) unless the external circuit 

drives this pin high. 

When a pin is neither pulled up nor pulled down internally, then the pin has high 
impedance, and the analog signal on the GPIO pin cannot reliably represent a logic value. 
Software can change the pull-up and pull-down setting of a GPIO pin dynamically at 
runtime. 

When a pin is internally pulled up, but the external circuit drives the pin 
low, a pull-up current is generated and is drawn internally from the 
processor chip. Similarly, when a pin is pulled down within the chip, but 
the external circuit drives the pin to high, a pull-down current is drawn 
to the processor chip. To limit the pull-up/pull-down current, the 
internal resistors usually have a large impedance (> lOKO). 

When an external circuit connected to a GPIO pin has a fair 
amount of capacitance, the process of pulling the pin 
voltage to the level of logic high or logic low takes a long 
time because the impedance of the pull-up and pull-down 
resistors is too large. We call pulling via large resistors weak 
pull-up or weak pull-down. The internal pulling often does 
not meet the speed requirement for fast communication 
protocols, such as PC. To change the pin voltage rapidly, a 

Strong vs Weak 
pull-up/pull-down 

GPIO pin can be externally pulled up or down via a smaller resistor (several KOs). 
Pulling via small resistors is often called strong pull-up or strong pull-down. 

14.3 GPIO Input: Schmitt Trigger 
Each GPIO input module usually includes a Schmitt trigger. A Schmitt trigger uses a 
voltage comparator to convert a noisy or slow signal edge into a clean edge with 
instantaneous transition. 

In real systems, an input signal from external devices usually cannot change instantly. 
Such input signal tends to have a low slew rate (see definition in Chapter 14.5) because 
of inherent parasitic capacitance, resistance, or induction in the input data path. A 
processor chip usually has built-in Schmitt triggers to increase slew rate and enhance 
noise immunity for external input signals. 



- 14.3 - GPIO Input: Schmitt Trigger 

Figure 14-3 gives an example implementation of non-inverting Schmitt trigger with a 
reference voltage. The voltage comparator is an operational amplifier (op-amp) with 
positive feedback. The positive feedback is achieved by connecting the op-amp output to 
its non-inverting terminal (i.e., the plus input lead). 

The output voltage Vout responds rapidly to the difference between two input voltages 
V+ and V_. If V+ is greater than V_, Vout is quickly saturated to VsAT; otherwise, Vout is 
zero in this example. 

RI 
Figure 14-3. Circuit of non-inverting Schmitt trigger with hysteresis. Non-inverting means V1n 

is connected to the non-inverting terminal (i.e., the plus input lead). 

For an ideal op-amp, the current flowing through resistor R3 is zero and thus we have 

Vref = V_ 

The op-amp output Vout has two saturation values, as shown below 

fVsAT 
Vout = l 0 

if V_ < V+ 
if V_ > V+ 

However, V+ depends on Vout and Vin· Therefore, Vout depends on both the input Vin and 
the recent history of Vout· Such an effect is called hysteresis. 

Because the current flow into the positive input lead of the op-amp is assumed to be zero 
for an ideal op-amp, we can obtain the following equation by applying Kirchhoff's 
Current Law (KCL): 

Using the above equation, we can obtain the following expression: 

Rz Ri 
V+ = Ri + Rz Vout + Ri + Rz Vin 



General Purpose I/0 (GPIO) M!teW 

At the time instant when Vout transits from one saturation value to the other saturation 

value, we have 

Thus 

_ R_2_ V + Ri V = V 
Ri + Rz out Ri + Rz m ref 

Solving the above equation, we have 

As discussed earlier, Vout has only two possible values. If Vout = 0 initially and Vin 
increases, we can obtain the trigger high threshold VTH at which Vout transits to VsAr: 

( R2 ) R2 ( Rz) Vrn = 1 + Ri Vref - Ri x 0 = 1 + Ri Vref 

On the other hand, if Vout = VsAr initially and Vin decreases, we can obtain the trigger low 
threshold Vn at which Vout transits to 0: 

Therefore, Vout can be determined by comparing it with two thresholds VTH and Vn. 

Figure 14-4 shows the relationship of Vout and Vin· When Vin climbs through VrHi Vout is 
rapidly switched to the upper limit VsAr· Conversely, once Vinfalls below Vn, Vout makes 
a transition to the lower limit. Note that VTH > Vn, i.e., the threshold for switching to high 
is greater than the threshold of switching to low. 

t 
I 

VSAT: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ...__......,_....._ __ , - -· - - - - - - - • Vin 

VTL VTH 
Trigger Trigger 

Low High 

Figure 14-4. Relationship between Vaut and V 1n of inverting Schmitt trigger with reference 
voltage. V TL and V TH are the low and high switching thresholds. 



14.4 - GPIO Output Modes: Push-Pull and Open-Drain 

Figure 14-5 compares the output voltage Vout of Schmitt trigger and a simple comparator 
when the input signal varies irregularly. Compared with a simple comparator, Schmitt 
trigger provides better noise rejection. The threshold of Schmitt trigger is larger than that 
of a simple comparator for switching high, and lower for switching low. If the input 
signal fluctuates slightly, the output of Schmitt trigger does not change. For this reason, 
Schmitt trigger is immune to undesired noise. 

VTH 
} Immunity 

VTL 
Band 

VDD 
v out 

Schmitt 

0 
Trigger 

v out 
VDD 

Simple 

0 
Comparator 

Figure 14-5. Comparing the voltage output of Schmitt trigger with a simple comparator. 
Schmitt trigger converts an irregular-shaped signal V 1n into a square wave Vout based on two 

switching thresholds. The simple comparator uses a single threshold (the dotted line between 
Vn and Vrn) to generate the output. 

14.4 GPIO Output Modes: Push-Pull and Open-Drain 
Software can configure a GPIO output pin as either push-pull or open-drain. Push-pull 
mode allows the pin to supply and absorb current. However, a GPIO pin in open-drain 
(also called collector) mode can only absorb current. 

14.4.1 GPIO Push-Pull Output 
A push-pull output consists of a pair of 
complementary transistors, as shown in Figure 
14-6. Only one of them is turned on at any time. 

• When logic 0 is outputted, the transistor 
connected to the ground is turned on to 
sink an electric current from the external 
circuit, as shown in Figure 14-7. 

PUSH PULL 



General Purpose I/0 (GPIO) MM 

• When the pin outputs logic 1, the transistor connected to the power supply is 
turned on, and it provides an electric current to the external circuit connected to 

the output pin, as shown in Figure 14-8. 

GPIO 
Oulpul Bil 

~ 

GPIO 

Controller 

+Vee 

D 

PMOS 

s 

D 

NMOS 

s 

GPIO 
Output Pin 

Figure 14-6. A push-pull GPIO digital output 

+Vee 

PMOS 

NMOS 

GPIO 
Output Pin 

Output is 
Grounded 

GPIO 
Output Bit 

~ 

+Vee 

f NMOS 

1 

GPIO 
Output Pin 

Output is 
+Vee 

Figure 14-7. If the digital output is 0, then 
the GPIO output pin is pulled down to the 

ground in a push-pull setting. 

Figure 14-8. If the digital output is 1, then the 
GPIO output pin is pulled up to the Vee in a 

push-pull setting. 

14.4.2 GPIO Open-Drain Output 
An open-drain output consists of a pair of the 
same type of CMOS or transistors, as shown in 
Figure 14-9. 

• When software outputs a logic 0, the 
open-drain circuit can sink an electric 
current from the external load connected 
to the GPIO pin. 

• t 
OPEN DRAIN 



14.4 - GPIO Output Modes: Push-Pull and Open-Drain 

• However, when software outputs a logic 1, it cannot supply any electric current 
to the external load because the output pin is floating, connected to neither the 
power supply nor the ground. 

An open-drain output has only two states: low voltage (logic 0), and high impedance 
(logic 1). It often has an external pull-up resistor. 

GPIO 
Output B~ 

GPIO 
Output Pin 

~ 
D 

NMOS 
s 

Figure 14-9. An open-drain GPIO digital output 

GPIO 
Output Bit 

~ 

GPIO 
Output Pin 

Output is 
Grounded 

NMOV I Current 

Figure 14-10. If the digital output is 0, then 
the output pin is pushed to the ground in an 

open-drain setting (the scenario of drain). 

GPIO 
Output Bit 

~ 

GPIO 
Output Pin 

Output is 
Floating 

t NMOS 

1 
Figure 14-11. If the digital output is 1, then 
the output pin is floating in an open-drain 

setting (the scenario of open). 

One important usage of open-drain outputs is to connect directly several outputs 
together and implement wired logic AND (active high) or OR (active low) circuit in an easy 
way. If multiple open-drain output pins are connected and are pulled up via a shared 
resistor, any output pin can drive the output voltage low. The pin voltage is high if and 
only if all pins output a high voltage level. 

• If a high voltage level represents logic state 1 (i .e., active high), it implements a 
wired-AND function. The final output is 1 (high) only if all outputs of connected 
pins are 1 (high). 

• If a low voltage level represents logic state 1 (i .e., active low), it implements a 
wired-OR function. The final output is 1 (low) if the output of any pins is 1 (low). 



General Purpose I/O (GPIO) MiiM 

For example, the I2C communication protocol uses wired-OR to allow multiple master 

devices to operate on the same bus. 

Figure 14-12 shows the implementation of wired-AND by using open drain and external 
pull-up when active high logic is used. The output C is determined by the following table. 

Inputs 

Logic A Logic B Circuit A 

GPIO Input 
Logic A 

0 

0 

1 
1 

0 

1 
0 

1 

~ 

GPIO Input 
Logic B 

~ 

Drain 
Drain 
Open 
Open 

GPIO Pin A 

D 

NMOS 

s 

D 

NMOS 

s 

Circuit B 
Output 

Drain 0 

Open 0 

Drain 0 

Open 1 

,·· ... .. 
•, ..... +---------Output C ...... 

Wired-AND 

Figure 14-12. Implementation of Wired AND by using open drain and external pull up 

Compared to open-drain, push-pull mode has the advantage of faster speed, because it 
can change the pin voltage faster if the external circuit has some capacitance. Another 
advantage is that it can supply current and simplify the circuit. For example, a push-pull 
output can directly control an external LED while an open-drain output cannot light up 
an LED without external voltage source. 

However, the wired-OR characteristics can only be provided in open-drain outputs. 
Usually, push-pull output pins cannot be directly connected, because it might cause a 
potential short circuit. Additionally, open-drain output allows the pin to be pulled up to 
any voltage. This feature can be helpful when a GPIO pin is used as an input to another 
system that requires a higher level of input voltage. 



mlmJ 14.5 - GPIO Output Speed: Slew Rate 

14.5 GPIO Output Speed: Slew Rate 
The slew rate of a GPIO pin is the speed of change of its output voltage per unit of time, 
as defined as follows. 

If the logic output of a 
GPIO pin changes from 0 

to 1 and accordingly the 
voltage output of this pin 
rises from OV to 3V in 3µs, 
then the slew rate is 1 volt 
per µs. Figure 14-13 shows 
an example of LW and Llt 

when the output voltage 
increases from low to 
high. The slew rate 
definition applies to both 
the rising edge and the 
falling edge of a voltage 
output. 

LlV 
Slew Rate = 

GPIO 
Output 
Voltage 

Voo 

GPIO 
Output 
Voltage 

Voo 

Llt 

Desired 

/ OIJtput 

I 
o~~:~t I 

I 

n 
Time 

Figure 14-13. Comparing a desired square wave voltage output 
with the real GPIO output 

The higher the slew rate, the shorter time the output voltage takes to rise or fall to desired 
values. Therefore, a higher slew rate allows faster speed at which the processor can toggle 
the logic level of a GPIO pin. Figure 14-13 also compares the desired square wave output 
and the real output when the logic output of a GPIO pin is toggled periodically. A shorter 
rise and fall time allows a GPIO pin to change its logic value more rapidly. 

However, a large slew rate often causes high electromagnetic interference (EMI), also 
called radio frequency interference (RFI) to neighbor electronic circuits. A fast rising and 
falling signal has large-amplitude and high-frequency harmonics, which can transfer to 
a victim circuit via radiation, conduction, or induction, and may cause malfunctions. A 
slower valid slew rate is often preferred to minimize EMI disturbance. 

The slew rate of the GPIO circuit is programmable by setting the GPIO output speed. For 
example, the digital output speed of a GPIO pin can be low speed (400 kHz), medium 
speed (2 MHz), fast speed (10 MHz), or high speed (40 MHz) in the STM32L processors. 



General Purpose I/0 (GPIO) IMM 

14.6 Memory-mapped 1/ 0 
Typically, an on-chip peripheral device has a few registers, such as control registers, 
status registers, data input registers, and data output registers. A peripheral may also 
have data buffers, such as the display memory of the LCD controller. Input/output or I/O 
refers to data communication between the processor core and a peripheral device. 

There are two complementary approaches to performing I/0 operations: port-mapped 
I/0, and memory-mapped I/0. 

• Port-mapped I/O uses special machine instructions, which are designed 
specifically for I/O operations. The memory address space and the I/O device 
address space are independent of each other. Each device is assigned one or more 
unique port numbers. For example, Intel x86 processors use IN and OUT 

instructions to read from or write to a port. 

• Memory-mapped I/O does not need any special instructions. The memory and 
the I/O devices share the same address space. Each peripheral register or data 
buffer is assigned to a memory address in the memory address space of the 
microprocessor. Memory-mapped I/O is performed by the native load and store 
instructions of the processor. Therefore, memory-mapped I/0 is a more 
convenient way to interface I/O devices. The most significant disadvantage is that 
memory-mapped I/O has a more complex address decoding unit than port
mapped I/0. 

Memory 
Address 
Space 

1/0 Device 
Address 
Space 

Port-mapped 1/0 has two independent 
address spaces. 

1/0 Devices 

Memory 2 

1/0 Devices 

Memory 1 

Memory-mapped 1/0 has a single shared 
address space. 

Figure 14-14. Comparison between port-mapped 1/0 and memory-mapped 1/0 



14.6 - Memory-mapped I/0 

ARM Cortex-M processors use memory-mapped I/0 to access peripheral registers. All 
peripheral registers on STM32L4 are mapped to a small memory region starting at 
0x40000000. This region includes the memory addresses of all on-chip peripherals, such 
as GPIO, timers, UART, SPI, and ADC. The memory address of each peripheral register 
is determined by chip manufacturers, and usually cannot be changed by software. 

A peripheral register usually takes four bytes in memory. For example, the output data 
register (ODR) of Port B on STM32L4 is mapped to memory addresses 0x48000414 to 
0x48000417, with the upper halfword being reserved. Note that values stored in 
peripheral registers are in the format of little-endian (see Section 5.2). 

0x4800041B 

0x4800041A 

0x48000419 

0x48000418 

{

0x48000417 
Register ODR of 

GPIO B are 0x48000416 
mapped to these 0x48000415 

four bytes. 
0x48000414 

Memory 
address 

The qualifier volatile informs the compiler that the value may 
have changed even though no statements in the prog ram update it. 

·---... , ___ Method 1: Using numeric memory address directly 

····---... .._ Dereferencing the casted pointer 

0x00 
f----1 

0x00 

0x00 

0x00 

0x00 

0x00 

0x00 

0x00 ....__ _ _, 

r----1 
8 bits 

, .. ::~:.;: ---- ---- - -- --------------- ---~"---- - ------------ --- ------- - --- --------.. 
*((volatile uint32_t *) 0x48000414) I= 1UL«l3; 

------------------------------------.,----------- ------------------------/ 
Converting the address to a pointer to a 32-bit unsigned integer 

Method 2: Casting an address to a pointer 

#define GPIOB_ODR ((volatile uint32_t *) 0x48000414) 

*GPIOB_ODR I= 1UL<<l3; 

Method 3: Casting to a pointer and then dereferencing it 

#define GPIOB_ODR (*((volatile uint32_t *) 0x48000414)) 

GPIOB_ODR I= 1UL<<l3; 

Figure 14-15. Three different approaches to casting a memory address to a pointer 

To output high on pin i, i = 0, 1, 2, .. . , 15, software needs to set bit i in ODR to 1. For example, 
to set the output of GPIO pin B 13 to high, software can use the following statement: 

*((volatile uint32_t *) 0x48000414) I= 1UL<<13; 

First, this C statement casts the numeric memory address to a pointer, which points to a 
volatile 32-bit unsigned variable. Note that we put a volatile qualifier on each register. 
When a variable is declared as volatile, the compiler is informed that even though no 
statements in the program appear to change it, the value might still change. Typically, 
compilers minimize the number of memory accesses, by temporally storing the memory 
value in a register, and then repeatedly using it without accessing the memory. The 
volatile qualifier on a variable prevents the compiler from making such optimization on 
this variable. 



General Purpose I/O (GPIO) &J 

Then, it uses dereferencing to access the value stored in the memory location pointed to 
by the pointer. However, this C statement is difficult to read and maintain. 

Figure 14-15 shows two better approaches (Methods 2 and 3), which use a macro to 
improve the code's readability. The macro in the second method represents type-casting. 
The macro in the third method represents both type-casting and dereferencing. 

Nevertheless, these approaches are still inconvenient for two reasons. 

• First, we must define many macros, one for each peripheral register, even though 
some peripherals share the same register layout. 

• Second, if a function takes a peripheral as input, it is cumbersome to pass all 
registers of this peripheral as function arguments. 

A better approach is to use structures and pointers . Typically, all registers of a peripheral, 
such as those of GPIO port B (shown in Figure 14-16), are mapped to a contiguous block 
of physical memory. Therefore, we can define a data structure whose memory layout 
matches the address assignment given by the chip manufacturer. In C, a struct 
encapsulates related variables into a single structure. All variables in a struct are stored 
contiguously in memory. 

#define IO volatile II allows read and write 

typedef struct{ 
~IO uint32_t MODER; //Mode register 

IO uint16 t OTYPER; //Output type register 
~ uint16=t rev0; // Padding two bytes 

IO uint32_t OSPEEDR; //Output speed register 
~IO uint32_t PUPDR; // Pull-up/pull-down register 
==IO uint16 t IDR; // Input data register 

uint16=t revl; // Padding two bytes 
IO uint16 t ODR; //Output data register 

uint16=t rev2; // Padding two bytes 
IO uint16_t BSRRL; // Bit set/reset register(low) 
IO uint16_t BSRRH; // Bit set/reset register(high) 

~IO uint32_t LCKR; // Configuration lock register 
IO uint32_t AFR[2]; //Alternate function registers 

~IO uint32 t BRR; // Bit reset register 
~IO uint32=t ASCR; //Analog switch control register 

} GPIO_TypeDef 

#define GPIOB {(GPIO_TypeDef *) 0x48000400)) 

Memory 
Address 

I• 32 bits .. 1 

0x4800042C ASCR 
1-------1 

0x48000428 BRR 
1-------1 

0x48000424 AFR[l] 
1-------1 

0x48000420 1---A_F_R"""[ 0-']~--i 
0x4800041C LCKR 
0x48000418 BSRRH BSRRL 
0x48000414 rev2 ODR 
0x48000410 revl IDR 
0x4800040C PUPDR 
0x48000408 OSPEEDR 
0x48000404 rev0 OTYPE 
0x48000400 MODER 

Figure 14-16. Casting the memory address of GPIO B to a GPIO structure pointer. 

Let's take GPIO port Bas an example. Each GPIO port has a set of registers, such as the 
mode register (MODER), the output data register (ODR), and the output speed register 
(OSPEEDR) . 

• The memory addresses of the registers are defined during the chip design stage. 
Software cannot change them. 



-~i• 14.6 - Memory-mapped I/O 

• Each GPIO port has up to 16 pins, and each pin may take 1, 2, or 4 bits in a control 
register. For example, two bits are required to specify the mode of a GPIO pin. 
Therefore, the size of these control registers can be either 2, 4, or 8 bytes. 

• Because the memory address of each register is word-aligned (i.e., is a multiple of 
four, see Chapter 10.1.2), dummy bytes are padded in the data structure to 
correctly map the fixed physical memory layout to the data structure. 

To conveniently access a set of registers which are contiguous in memory, we can cast 
the base memory address of a GPIO port to a pointer to a data structure, as shown below. 

I #define GPIOB ((GPIO_TypeDef *) 0x48000400)) 

In Figure 14-16, six bytes are padded in the GPIO_ TypeDef structure, making its structure 
members align properly with their pre-defined memory addresses. Also, in the 
GPIO_ TypeDef struct, we put a volatile qualifier on each register. This informs the 
compiler that the variable might change spontaneously by another task thread or by 
hardware. 

If we want to set the output of GPIO port B pin 6 to high, we can use the following C 
statement. lUL is an unsigned long integer with a value of 1. Note the pins are numbered 
0 - 15, instead of 1 - 16. 

GPIOB->ODR I= 1UL<<6; II Set bi.t 6 

Encapsulating all registers of a peripheral inside a structure provides several advantages. 

1. It allows software to access registers in a very convenient way. 
2. We can reuse the structure for all peripherals with the same sets of registers. For 

example, we can reuse the GPIO_TypeDef struct for all GPIO ports, as shown 
below. 

#define GPIOA ((GPIO_TypeDef *) 0x48000000)) 
#define GPIOB ((GPIO_TypeDef *) 0x48000400)) 
#define GPIOC ((GPIO_TypeDef *) 0x40000800)) 

3. We can pass all registers of a peripheral to a function via a single struct pointer. 

void GPIO_Init (GPIO_TypeDef * GPIO); 

void main(void){ 
GPIO_Init(GPIOA); 
GPIO_Init(GPIOB); 

} 



General Purpose I/O (GPIO) IM•W 

14.7 Lighting up an LED 
The following shows the basic procedure for lighting up an LED. The software 
initialization involves two key steps. First, it enables the clock of the GPIO port B via the 
RCC module. Second, it configures pin 2 of GPIO port B as a general-purpose output pin, 
with the output type as push-pull. To light up the red LED, we need to output logic "1" 

to pin 2. 

Red LED 

Figure 14-17. Connection diagram between a processor pin and LED 

In assembly, a load-modify-store sequence is required to change the register value stored 
in memory. Also, we can use "EQU" directive to create symbols for the GPIO B base 
address and ODR register offset, which make the assembly program more readable and 
self-documenting. The following is an example. 

GPIOB_BASE EQU 0x48000400 ; Base memory address 
GPIO ODR EQU 20 , Byte off set of ODR from the base 

LDR r7, =GPIOB_BASE ; Load GPIO port B base address 
LDR rl, [r7, #GPIO_ODR] , Read GPIOB->ODR 
ORR rl, rl, #(1«6) ; Set bit 6 
STR rl, [r7, #GPIO_ODR] ; Write to GPIOB->ODR 

Additionally, we also need to enable the clock of GPIO port B. To save energy, every 
peripheral's clock is turned off by default. We can enable the clock of a peripheral by 
setting the corresponding bit of the clock control register defined in the reset and clock 
control (RCC) structure, as shown below. 

II Reset and clock control 
typedef struct { 
~IO uint32_t CR; 
~IO uint32_t ICSCR; 
~IO uint32_t CFGR; 

~IO uint32_t AHBlENR; 
~IO uint32_t AHB2ENR; 
~IO uint32_t AHB3ENR; 

} RCC_TypeDef ; 

II Clock control register 
II Internal clock sources calibration register 
II Clock configuration register 

II AHBl peripheral clocks enable register 
II AHB2 peripheral clocks enable register 
II AHB3 peripheral clocks enable register 

#define RCC ((RCC_TypeDef *) 0x40021000)) 



14.7 - Lighting up an LED 

The following C statements enable the clock of GPIO port B. 

#define RCC_AHB2ENR_GPIOBEN (0x00000002) 

RCC->AHB2ENR I= RCC_AHB2ENR_GPIOBEN; 

Figure 14-18 shows the flowchart of initializing a GPIO pin as digital output with push
pull. 

Start 

Enable GPIO port B clock { 1 bit per peripheral 

(RCC_AHB2ENR) • 0 =Clock disable (default) 
• 1 = Clock enable 

{ 
2 bits per pin , 16 pins per port 

Set pin as digital output • 00 = Digital input mode 

(GPIO_MODER) • 01 = Digital output mode 
• 10 = Alternative function mode 
• 11 =Analog mode (default) 

Select output type { 1 bit per pin, 16 pins per port 

(GPIO _ OTYPER) • 0 = Push-pull (default) 
• 1 = Open-drain 

{ 
2 bits per pin , 16 pins per port 

Select output speed 
• 00 = Low speed 
• 01 = Medium speed 

(GPIO _ OSPEEDR) • 10 =Fast speed 
• 11 =High speed 

{ 
2 bits per pin, 16 pins per port 

Select pull-up/pull-down • 00 = No pull-up, no pull-down 
(GPIO_PUPDR) • 01 =Pull-up 

• 10 = Pull-down 
• 11 = Reserved 

Set pin output to high { 1 bit per pin , 16 pins per port 

(GPIO_ODR) • 0 = Output low 
• 1 = Output high 

Dead loop 

Figure 14-18. Flowchart of GPIO initialization 

The following C program demonstrates how to set up a GPIO pin and light up an LED 
in detail. Suppose we use the GPIO pin PB 2 to drive a red LED. 

• When we change the value of specific bits in a register, we need to preserve the 
value of the other bits in this register to avoid creating unexpected negative 



General Purpose I/0 (GPIO) -

impacts. For example, if we want to set the least significant bit in register R, " R = 
0x1;11 is incorrect because it also clears all the other bits. Instead, we should use a 
bitwise logical OR operation "R I= 0xl; 11

• 

• When we change the value of multiple bits, it is a good practice to reset these bits 
before updating them. For example, if we want to set the least significant four bits 
b3 b2 b1 b0 in register R to 1001, we need to clear these four bits first by running "R 
&= -0xF; R I= 0x9; /1 If we do not clear these four bits first, we may fail to set 
the register correctly if their initial values are not 0. For example, if the value of 
b3 b2 b1 b0 is 0111 initially, "R I= 0x9;" w ill lead a binary result of 1111. 

Each GPIO port has a data output register (ODR) and a data input register (IDR). 

• Each bit in ODR controls the output of a corresponding GPIO pin in this port. In a 
push-pull setting, if the bit value is 1, the output voltage on its corresponding 
GPIO pin is high; if the bit value is 0, the output voltage then is low. 

• The IDR register records the input of all pins of a GPIO port. 

II Red LED is connected PB 2 (GPIO port B pin 2) 
void GPIO_Clock_Enable(){ 

} 

II Enable the clock to GPIO port B 
RCC - >AHB2ENR I= RCC_AHB2ENR_GPIOBEN; 

void GPIO_Pin_Init(){ 

} 

II Set mode of pin 2 as digital 
II ee = digital input, 
II 10 = alternate function, 
GPIOB->MODER &= -(3UL<<4); 
GPIOB->MODER I= 1UL<<4; 

output 
e1 = digital output 
11 = analog (default) 
II Clear mode bits 
II mode = e1, digital 

II Set output type of pin 2 as push-pull 
II e = push-pull (default) 
II 1 = open-drain 
GPIOB->OTYPER &= -(1<<2); 

II Set output speed of pin 2 as Low 
II ee = Low speed, e1 =Medium speed 
II 1e = Fast speed, 11 = High speed 

output 

GPIOB->OSPEEDR &= -(3UL«4); II Clear speed bits 

II Set pin 2 as no pull-up, no pull-down 
II ee = no pull-up, no pull-down e1 = pull-up 
II 10 = pull-down, 11 = reserved 
GPIOB->PUPDR &= -(3UL«4); II no pull-up, no pull-down 



M1:1 14.7 - Lighting up an LED 

int main(void){ 
GPIO_Clock_Enable(); 
GPIO_Pin_Init(); 
GPIOB->ODR I= 1UL<<6; 
while(l); 

} 

II Set bit 6 of output data register (ODR) 
II Dead Loop & program hangs here 

Example 14-1. Lighting up an LED in C 

The implementation in assembly is like the above C program. In the program, 

• GPIOB_BASE and RCC_BASE are pre-defined memory addresses 
• GPIO_MODER, GPIO_OTYPER, GPIO_OSPEEDR, GPIO_PUPDR, and GPIO_ODR are byte 

offset of its corresponding variable in the data structure GPIO _ TypeDef defined 
previously. 

It is a good practice to define a frequently used constant as some symbols associated with 
meaningful semantics. We can use the "EQU" directive to define symbols in assembly. 
This practice can effectively make a program easier to read and debug. 

, Constants defined in file stm32L476xx_constants.s 
j 

, Memory addresses of GPIO port B and RCC (reset and clock control) data 
; structure. These addresses are predefined by the chip manufacturer. 
GPIOB_BASE EQU 0x48000400 
RCC_BASE EQU 0x40021000 

; Byte offset of each variabLe in the GPIO_TypeDef structure 
GPIO_MODER EQU 0x00 
GPIO_OTYPER EQU 0x04 
GPIO_RESERVED0 EQU 0x06 
GPIO_OSPEEDR EQU 0x08 
GPIO PUPDR EQU 0x0C 
GPIO_IDR EQU 0x10 
GPIO_RESERVEDl EQU 0x12 
GPIO_ODR EQU 0x14 
GPIO_RESERVED2 EQU 0x16 
GPIO_BSRRL EQU 0x18 
GPIO BSRRH EQU 0x1A 
GPIO_LCKR EQU 0x1C 
GPIO AFR0 EQU 0x20 ; AFR[0} 
GPIO_AFRl EQU 0x24 ; AFR[l} 
GPIO AFRL EQU 0x20 
GPIO_AFRH EQU 0x24 

; Byte offset of variabLe AHB2ENR in the RCC_TypeDef structure 
RCC_AHB2ENR EQU 0x4C 



General Purpose I/O (GPIO) i~W 

The following shows the assembly program that sets pin B.2 output to high. 

INCLUDE stm321476xx_constants.s 

AREA main, CODE, READONLY 
EXPORT 
ENTRY 

_main PROC 

_main ; make main visibLe to Linker 

; Enable the clock to GPIO port B 
; Load address of reset and cLock control (RCC) 
LDR r2, =RCC_BASE ; Pseduo instruction 
LDR rl, [r2, #RCC_AHB2ENR] ; rl = RCC->AHB2ENR 
ORR rl, rl, #2 ; Set bit 2 of AHB2ENR 
STR rl, [r2, #RCC_AHB2ENR] ; GPIO port B cLock enable 

; Load GPIO port B base address 
LDR r3, =GPIOB_BASE ; Pseudo instruction 

; Set pin 2 I/O mode as general-purpose output 
LDR rl, [r3, #GPIO_MODER] ; Read the mode register 
BIC rl, rl, #(3 << 4) , Direction mask pin 6, cLear bits 5 and 4 
ORR rl, rl, #( 1 « 4) ; Set mode as digitaL output (mode 01) 
STR rl, [r3, #GPIO_MODER] ; Save to the mode register 

; Set pin 2 the push-puLL mode for the output type 
LDR rl, [r3, #GPIO_OTYPER] ; Read the output type register 
BIC rl, rl, #(1<<2) Push-puLL(e), open-drain (1) 
STR rl, [r3, #GPIO_OTYPER] ; Save to the output type register 

; Set I/O output speed value as 
LDR rl, [r3, #GPIO_OSPEEDR] 
BIC rl, rl, #(3<<4) 
STR rl, [r3, #GPIO_OSPEEDR] 

Low 
, Read the output speed register 
; Low(ee), Medium(01), Fast(01), High(ll) 
; Save to the output speed register 

; Set I/O as no puLL-up, no puLL-down 
LDR rl, (r3, #GPIO_PUPDR] , rl = GPIOB->PUPDR 
BIC rl, rl, #(3«4) ; No PUPD(ee), PU(01), PD(10), Reserved(ll) 
STR rl, [r3, #GPIO_PUPDR] ; Save puLL-up and puLL-down setting 

; Light up LED 
LDR rl, [r3, #GPIO_ODR] 
ORR rl, rl, #(1<<2) 
STR rl, (r3, #GPIO_ODR] 

stop 

; Read the output data register 
; Set bit 2 
; Save to the output data register 

B stop ; dead Loop & program hangs here 
ENDP 
END 

Example 14-2. Lighting up an LED in an assembly program 



14.8 - Push Button 

14.8 Push Button 
When a mechanical button is pressed, two metal contacts bang together and immediately 
rebound a couple of times before setting. These rebounds produce multiple signals 
within a few milliseconds due to the bounce effects. Figure 14-19 shows the voltage signal 
across a push button when it is pressed at the time instant 0. Because the processor runs 
at a fast speed, the processor can observe these falling and rising transitions and 
mistakenly thinks the push button has been pressed multiple times. 

2.5 

5 2 
:: 
:::> 
.0 
.s::. 
~ 1.5 
c. 

"' e 
~ 1 
Q) 

"' g 
g 05 

-0~.os o.os a., o 1s 0.2 o.2s o 3 o.Js 0.4 
Time (microseconds) 

Figure 14-19. The voltage across a push button when there is no hardware debouncing 

Vdd 

100oF rl P"'h 
I Button 

330n 
10Kn 

Figure 14-20. A push button with RC 
de bouncer 

Red LED 

I' I' 
'">--'\/\ \r-----1:>1----t 11 

R 

Green LED 

Figure 14-21. Red and green LED 

There are both hardware and software solutions to eliminate the bouncing effects. These 
solutions are called debouncing. 



General Purpose I/0 (GPIO) UI 

The hardware debouncing usually uses a simple RC circuit, which includes a capacitor 
connected in parallel with the pushbutton to filter out any high-frequency signals, as 
shown in Figure 14-20. When the switch is open, this capacitor is fully charged. Therefore, 
there is no current on these resistors, and the voltage on the processor pin is zero. As 
soon as the button is pressed, the capacitor is quickly discharged. If the button rebounds 
and the switch is open briefly, the capacitor cannot be recharged fast enough to pull the 
processor pin low. Figure 14-22 shows the voltage signals when the LED is lit up after 
the push button is pressed. It indicates that the voltage on the pin (PA 0) connected to 
the push button rises smoothly without generating any bouncing signals . 

3 

2 

...... .. .. Voltage output of GPIO pin for LED 
--Voltage input to GPIO pin for push button 

o ..... ;i;mct--------..--------
-o.5 .__ __ ~ ___ __.__ ___ _._ ___ ..__ __ __, 

-5 0 5 10 15 20 
time (microseconds) 

Figure 14-22. Voltage signals on the LED pin when the push button is pressed 

The easiest software debouncing technique is wait-and-see, as shown in Example 14-3. 

When the program detects that a button is pressed, it re-examines the input signal after 
a short delay, typically between 20 and 50 ms. If the input signal still shows the button is 
pressed, the program then reports that the button has been pressed indeed. 

bool is_button_pressed(){ 
read button input; 

} 

if (button is not pressed) return false; 
wait 50 ms; 
read button input again; 
if (button is not pressed) return false; 
return true; 

Example 14-3. Pseudocode of wait-and-see software de bouncing 



.,. 14.8 - Push Button 

However, the response time of the wait-and-see technique is significant and is not 
acceptable in many applications, such as gaming or mission-critical systems. A better 
software debouncing technique is counter debouncer. It polls the button input at regular 
intervals and requires a few consecutive positive readings to confirm the button has been 
pressed. In Example 14-4, the pin is polled every 5 ms during the debounce period 50 ms, 
and it requires 4 consecutive positive readings. If a button is pressed, this approach has 
less response time than the wait-and-see method. 

bool is_button_pressed(){ 

} 

read button input; 
if (button is not pressed) 

return false; 

counter 0; 

10; i++){ 

input; 

for(i = 0; i < 
wait 5 ms; 
read button 
if (button is not pressed) { 

counter 
} else { 

0· , II bounce, reset counter 

counter counter + 1; 11 stable, increase counter 
if (counter >= 4) II require 4 consecutive positive readings 

return true; 
} 

} 
return false; 

Example 14-4. Pseudocode of counter-debouncer software de bouncing 

One issue in software debouncing methods is how to implement the time delay. Many 
new programmers use a large for or while loop to achieve the delay, as shown below. 

void wait_ms(uint32_t ms){ 
uint32_t i, j; 
for(i = 0; i < ms; i++) 

for(j = 0; j < 255; j++); II adjust 255 to achieve 1 ms delay 
} 

Example 14-5. Loop-based time delay 

The loop-based time delay is not recommended for real-time embedded systems. First, 
these busy loops tie up the processor and prevent other tasks from running, wasting 
processor time and energy. Second, the timing may change dramatically based on 
compiler versions, compiler optimization levels, and processor speed. 



General Purpose I/O (GPIO) l!B 

A better implementation is to use timer interrupts, as shown in Example 14-6. 

volatile uint8_t counter 0; 
volatile uint8_t pressed = 0; 

II Set up timer 4 to generate an interrupt every 5 ms 

void TIM4_IRQHandler(void) { 

if((GPIOA->IDR & 0xl) == 0xl){ II check input on pin PA.0 
counter++; II button is pressed 
if (counter >= 4) { 

pressed 1; II set the flag 
counter 0; I I reset counter 

} else { /I button is not pressed 
counter 0; 11 reset counter 

} 
} 

} 

Example 14-6. Using timer interrupts to implement counter debouncer 

The following shows a polling I/O method (busy waiting) to constantly query the input 
of external devices. Software repeatedly checks whether the push button is pressed or 
not. Although the polling method is simple, it is inherently inefficient because the CPU 
wastes many cycles on querying or waiting for input. A method based on interrupts is 
more efficient than polling. See Chapter 11.8 external interrupts. 

Suppose a push button is connected to the GPIO pin PA 0, and an LED is attached to the 
GPIO in PB 2, as shown in Figure 14-20 and Figure 14-21. Because hardware debouncing 
is used for the push button, software debouncing is not deployed in this example. All 
inputs of a GPIO port are stored in its input data register (IDR) . Specifically, the input of 
pin 0 is saved at bit 0 in IDR. A low voltage input yields to a value of 0, and a high voltage 
generates a value of 1. Figure 14-23 gives the program flowchart. 

II Enable the clock to GPIO port A and B 
RCC->AHB2ENR I= RCC_AHB2ENR_GPIOAEN I RCC_AHB2ENR_GPIOBEN; 

II Set mode of pin 0 as general-purpose input 
II 00 = Digital input, 01 = Digital output 
II 10 =Alternate function, 11 = Analog 
GPIOA->MODER &= -3UL; II Set mode as input (00) 

II Set IIO as no pull-up, no pull-down 
II 00 = No pull-uplpull down, 01 = Pull-up 
II 10 = Pull-down, 11 = Reserved 
GPIOA->PUPDR &= -3UL; II PuLL-up puLL-down mask 



Mil 14.8 - Push Button 

II Set PB.2 as digital output with push-pull, no pull-up/pull -down 
II See Example 14-1 

while (1) { 

} 

II Toggle red LED when button PA.e is pushed 

if((GPIOA->IDR & 0xl) == 0xl){ 
GPIOB->ODR A= GPIO_ODR_ODR_2; II Toggle pin PB .2 

while((GPIOA->IDR & 0xl) != 0x00); II Wait until button is released 

} 

Example 14-7. Read pin PA.O, and toggle pin PB.2 if the input on PA.O is 1. No software 
de bouncing is used because pin PA.O has been de bounced by hardware. 

Toggle the LED 

Yes 

Is button 
released? 

Enable the clock of GPIO Port A 
and Port B (RCC->AHB2ENR) 

Set PB.2 as output with push
pull , no pull-up pull-down 

Set PAO as Input without pull-up 
pull-down 

Yes 
pressed? 

No 

No 

Figure 14-23. Flowchart of programming a pushbutton to control an LED 



General Purpose I/0 (GPIO) Im 

14. 9 Keypad Scan 
Suppose we have a keypad that has 12 keys, as shown in Figure 14-24. One simple way 
is to interface each key in the same approach as a push button, with each key having a 
dedicated pin to detect whether it is pressed or not. However, this would require 12 I/O 
pins, which is not desirable for many applications because the total number of pins 
available for use on a microcontroller is limited. To reduce the number of pins required, 
a keypad usually organizes its keys in a matrix, as shown in Figure 14-25. This matrix 
scheme decreases the number of I/0 pins from 12 to 7 in this example. 

On most processors, a GPIO pin provides only weak pull-up and weak pull-down 
internally. The internal pull-up and pull-down circuit consists of a 60KO resistor in series 
with a switchable PMOS/NMOS. The pull-up and pull-down configuration bits of a GPIO 
pin turn on or turn off the PMOS and NMOS. 

When the load has a fair amount of capacitance, applications often require a strong pull
up or pull-down to shorten the rising or falling time of the voltage signal on a pin. In a 
strong pull-up or strong pull-down setting, the pin should be externally connected to the 
ground or high voltage via a resistor with a much lower resistance than the internal pull
up and pull-down resistors. In Figure 14-25, each pin connected to the input port (Cl, C2, 

and C3) is pulled up to 3.3V via a 2.2KO resistor. Because these pins are externally pulled 
up, they should be configured as no pull-up and no pull-down internally. 

R1 

R2 

R3 

R4 

C1 C2 CJ 

Figure 14-24. 3x4 keypad 

Output Port 
(Output from 
Processor} 

+3.3V +3.3V +3.3V 

C2 
y 

Input Port 
(Input to the processor) 

2.2KO 

Figure 14-25. Input and output setting 



EN 14.9 - Keypad Scan 

Scanning algorithm is widely used to detect which key is pressed. The algorithm has 
two iterations of loops: looping over the row pins and then looping over the column pins. 
Suppose all row pins are set as output and all column pins are set as input. Each column 
pin is pulled up to a high-level voltage via a small resistor. The algorithm involves two 
steps. 

1. Identify the column number of the pressed key. Set the output of all row pins as 
zero and read all column pins. If all columns are read as 1, then no key has been 
pressed. If one of them is zero, then at least one of the keys in that corresponding 
column is pushed down. 

2. Identify the row number of the pressed key. Drive the output of the first row low 
(zero) while keeping the other rows at high (one). For example, suppose the input 
of column C2 is read as zero. If the input of C2 is still zero when the output of row 
Rl is high, then the pressed key is not located in row Rl. Otherwise, row Rl is the 
row in which the pressed key is located. We repeat the process for all the other 
rows until the row is identified successfully. 

The following gives a simple example how the scanning algorithm works when the key 
"0" is pressed. 

1. Before key "0" is pressed, the row output port is set as low, i.e., Rl,R2,R3,R4 = 0000. 

If the input port is read now, Cl, C2, and C3 are read as one, i.e., Cl,C2,C3 = 111. 

2. When key "0" is pressed, the column C2 is connected to the ground via the R4 pin 
(because R4 is set to 0). Thus, we have Cl,C2,C3 = 101 and we successfully identify 
that the pressed key is in the C2 column. 

3. After the column is identified, we scan the output row by row. 

(1) Set the row output (R1,R2,R3,R4) as 0111, and read the column input. In 
this case, we have Cl,C2,C3 = 111. The pressed key is not in row Rl. 

(2) Set the row output (Rl,R2,R3,R4) as 1011, and read the column input. In this 
case, we have Cl,C2,C3 = 111. The pressed key is not in row R2. 

(3) Set the row output (Rl,R2,R3,R4) as 1101, and read the column input. In this 
case, we have Cl,C2,C3 = 111. The pressed key is not in row R3. 

(4) Set the row output (Rl,R2,R3,R4) as 1110, and read the column input. In this 
case, we have Cl,C2,C3 = 101. Because C2 is read as zero, the pressed key 
is in row R4. 

4. After identifying that the pressed key is in column C2 and row R4, we can look up 
the pre-defined mapping table of the matrix keypad to find that key "0" has been 
pressed. 



Start 

Set row output 
to ObOOOO 

Yes 

No key is 
pressed. 

General Purpose I/0 (GPIO) if&i 

Short delay for 
software 

debouncing 

Set row output 
to Ob1110 

No 

Identify the 
column that 
inputs zero 

Identify key 
pressed by table 

lookup 

Return 

No 

Set row output 
to Ob1101 

No 

Set row output 
to Ob1011 

No 

Figure 14-26. Keypad scanning algorithm. 
All rows are set as output, and all columns are set as inputs. 

Set row output 
to Ob0111 

Yes 

Figure 14-26 gives the flowchart of the keypad scanning algorithm introduced previously. 

In the following, we will show partial implementation scanning algorithm in C. 



14. 9 - Keypad Scan 

To facilitate the key lookup, we define a key-map array, which is used to convert the key 
position (row, column) to its corresponding logic number or letter. 

unsigned char key_map [4][3] = { 
{'1', '2', '3'}, II 1st row 
{'4', '5', '6'}, II 2nd row 
{'7', '8', '9'}, II 3rd row 
{'*', '0', '#'}, II 4th row 

}; 

The sketch of the scanning subroutine is given below. It identifies the row and column of 
the key pressed, and returns the ASCII value of the key pressed. When no key has been 
pressed, it returns 0xFF. 

unsigned char keypad_scan(void) { 

} 

unsigned char row, col, ColumnPressed; 
unsigned char key= 0xFF; 

II Check whether any key has been pressed 
II 1 . Output zeros on all row pins 
II 2. Delay shortly, and read inputs of column pins 
II 3. If inputs are 1 for all columns, then no key has been pressed 

if ( ... ) II If no key pressed, return exFF 
return 0xFF; 

II Identify the column of the key pressed 
for(col = 0; col < 3; col++) { II Column scan 

if ( ... ) 
ColumnPressed = col; 

} 

II Identify the row of the column pressed 
for(row = 0; row < 4; row++) { II Row scan 

II Set up the row outputs 

} 

II Read the column inputs after a short delay 

II Check the column inputs 
if ( ... ) II If the input from the column pin ColumnPressed is zero 

key= key_map[row][ColumnPressed]; 
} 

return key; 



General Purpose I/O (GPIO) DI 

The main function repeatedly performs the scan operations, stores keys that have been 
pressed in a string array, and displays the string array on LCD. The keys'*' and'#' can 
be used to implement special functions. For example, we can use '*' to delete the last key 

pressed. 

int main(void){ 

} 

unsigned char key; 
char str[50]; 
unsigned char len = 0; 

II GPIO and clock configurations 
II LCD initializations 
II Configure row pins as open-drain to prevent potential 
II circuit shortage (see detailed explanation in the text beLow) 

while(l){ 

} 

key = keypad_scan(); 

switch (key) { 

} 

case '*' : 

break; 
case'#': 

break; 
case 0xFF: 

break; 

II If * pressed 

II If# pressed 

II No key pressed 

Default: II Add key pressed to string 
str[len] key; 
str[len + 1] = 0; II NULL string terminator 
len++; 
if (len >= 48) len = 0; II Avoid buffer overflow 

LCD_Display5tring((uint8_t *)str); 

The algorithm presented in Figure 14-26 has one serious problem: it may cause a short 
circuit. During the second step, two row pins are shorted if multiple keys in the same 
column are pressed simultaneously. Specifically, the row pins that outputs 1 (i .e., 3 V) is 
directly connected to the row pins that output 0 (i.e. , 0 V), thus potentially damaging the 
microcontroller. Figure 14-27 gives one example in which row pins R2 and R3 are 



MW1i 14.9 - Keypad Scan 

connected if two keys marked are pressed simultaneously. When software scans row 2 
or row 3, a short circuit is generated, causing potential hardware damage. 

This circuit shortage issue can be resolved by either software or hardware. 

• The hardware solution is to configure all output pins as open-drain, instead of 
push-pull. When a pin outputs one, the pin is then in HiZ state, and no circuit 
short can occur. 

• The software solution is to switch the row pin from output to input when the 
rows are scanned. Specifically, when the output of a row pin is set to zero, 
software should change the mode of the other row pins from GPIO output to 
GPIO input. For example, when the third row is tested during the row locating 
process, row 3 is set to output zero, but row 1, 2, and 4 are set as input, instead of 
output, to avoid a circuit short. 

+3.3V 

1 (High Voltage) -+ R1 

1 (High Voltage) -+ R4 

l C1 

+3.3V 

C2 

y 
Input Port 

+3.3V 

C3) 

Figure 14-27. The GPIO pins connected to R2 and R3 are shorted if two keys marked by a 
circle are pressed simultaneously and the GPIO output is 1101. 

Another method to avoid damage when multiple keys are pressed is to use reverse 
scanning algorithm. This approach changes the mode of the row port and the column 
port alternatively to GPIO input and GPIO output to detect the row and the column of a 



General Purpose I/0 (GPIO) h)M 

pressed key. This method requires both the row pins and the column pins to be pulled 
up by some small resistors. It involves two steps described below. 

• During the first step, like the scanning algorithm described previously, it sets the 
row port as output and the column port as input and then reads the column input 
to identify the column. 

• During the second step, it reverses the direction, sets the row port as input and 
the column port as output, and reads the row input to identify the row. 

How does the microcontroller know when a keypad is pressed? There are two methods: 
polling or interrupt. 

• The polling method scans the keypad periodically with a small time interval. This 
method is simple but causes a waste of time of microcontrollers. Additionally, 
because the microcontroller usually has multiple tasks, other tasks may 
potentially delay the scanning process, so the system is not responsive when a 
keypad is pressed. 

• The interrupt method generates a signal to the processor when the keypad is 
pressed. This interrupt informs the processor to stop the current tasks and start 
to execute the scanning code. This method saves the microcontroller from 
periodically executing the scanning algorithm, thus saving the processor time. 
Also, the interrupt reduces the latency in responding when a keypad is pressed. 
However, the interrupt program is more complex to write and debug than polling. 

14.10 Exercises 
1. Write an assembly program that toggles an LED when the push button is pressed. 

2. Write an assembly program that blinks an LED with a time interval of one second. 

3. Write an assembly program that scans the keypad to verify a four-digit password. 
The password is set as 1234. If the user enters the correct password, the program 
turns the red LED on. Otherwise, the program turns the red LED on. 

4. Write an assembly program to blink an LED to send out an SOS Morse code. 
• Blinking Morse code SOS ( · · · - - - ···)DOT, DOT, DOT, DASH, DASH, 

DASH, DOT, DOT, DOT. 
• DOT is on for % second and DASH is on for V2 second, with % second between 

them. 



mD 14.10 - Exercises 

• At the end of SOS, the program has a delay of 2 seconds before repeating. 

5. Write an assembly program to implement software debouncing for push buttons. 

6. Use the logic analyzer to measure the time latency between pressing a button and 
lighting up an LED. 

7. In STM Cortex processors, each GPIO port has one 32-bit set/reset register 
(GPIO_BSRR). We also view it as two 16-bit fields (GPIO_BSRRL and GPIO_BSRRH) as 
shown in Figure 14-16. When an assembly program sends a digital output to a 
GPIO pin, the program should perform a load-modify-store sequence to modify 
the output data register (GPIO_ODR). The BSRR register aims to speed up the GPIO 
output by removing the load and modify operations. 

• When writing 1 to bit BSRRH(i), bit ODR(i) is automatically set. Writing 0 to 
any bit of BSRRH has no effect on the corresponding ODR bit. 

• When writing 1 to bit BSRRL(i), bit ODR(i) is automatically cleared. Writing 
0 to any bit of BSRRL has no effect on the corresponding ODR bit. 

Therefore, we can change ODR(i) by directly writing 1 to BSRRH(i) or BSRRL(i) 

without reading the ODR and BSRR registers. This set and clear mechanism not only 
improves the performance but also provides atomic updates to GPIO outputs. 

Write an assembly program that uses the BSRR register to toggle the LED. 



General-purpose Timers MM 

CHAPTER 

15 

General-purpose Timers 
Timers are special hardware components that provide accurate timestamps, 
time-interval measurements, and timer-related periodic events for both 
hardware and software. This chapter presents two example uses of timers: 
measuring the pulse lengths of input signals (input capture) or generating 
output waveforms (output compare and PWM). 

15.1 Timer Organization and Counting Modes 
A timer is a free-run hardware counter that increments or decrements once for every 
clock cycle. The counter runs continuously until the timer is disabled. The counting 
process restarts automatically when the counter reaches 0 during down-counting or 
some maximum value during up-counting. Software can select the frequency of the timer 
clock so that the free-run counter increments or decrements at some desired speed. 

If a timer works as output compare, as shown in Figure 15-1, the comparator consistently 
compares the counter value with some given constant, and generates an output or an 
interrupt if they are equal. Software can program the constant value to control the timing 
of outputs or interrupts. 

Clock 
Signal 

Constant 
Value 

Set by software 

Timer 
Counter 

Counter++ (or Counter--) 
for each clock cycle 

A=B 
Generating 

an interrupt if 
equal 

Figure 15-1. A timer is used as output compare. The timer counter is a hardware register, and 
it automatically increments or decrements by 1 for each clock cycle. 



15.1 - Timer Organization and Counting Modes 

If the function of a timer is input capture (see Figure 15-2), the hardware automatically 
logs the counter value into a special register (called CCR) and generates an interrupt when 
the desired event occurs. Typically, the interrupt handler needs to copy register CCR to a 
user buffer to record the timing of past events. Then, software calculates the difference 
between two logged values and finds the time span of two events. 

External 
Signal 

Clock 
Signal 

Edge 
Detector ··.... Trigger 

~---~ \\he copy 

Timer 
Counter 

Counter++ (or Counter--) 
for each clock cycle 

Generating 
an interrupt 

Captured 
Value 

CCR Register 

Figure 15-2. A timer is used as input capture. The edge detector triggers the hardware to copy 
timer counter to register CCR on rising or falling edges of monitored signal. 

The hardware timer counter has three different counting modes: up-counting, down
counting, or center-aligned counting, as illustrated in Figure 15-3. 

• In the up-counting mode, the counter starts from 0 to a constant and then restarts 
from 0. Software sets up the constant and stores it in a special register called the 
auto-reload register (ARR). For example, if ARR is 4, the counter value is 0, 1, 2, 3, 
4, 0, 1, 2, 3, 4, and repeats until the timer is disabled. 

• In the down-counting mode, the counter starts from the auto-reload value down 
to 0 and then restarts from the auto-reload value. For example, if ARR is 4, the 
counter value is 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, and repeats until the timer is disabled . 

• The third one is the center-aligned counting mode, which performs up-counting 
and down-counting alternatively. For example, if ARR is 4, the counter value is 0, 
1, 2, 3, 4, 3, 2, 1, 0, and repeats until the timer is disabled. 

The timer counter forms a periodical sawtooth or triangle wave. The period is controlled 
by both the clock frequency to the counter (fcwcK_cNT) and the value stored in the ARR 

register. For up-counting and down-counting, the counting period of the sawtooth 
waveform is 

1 
Counting Period of Sawtooth Waveform= (1 +ARR) x ---

fcwcK _CNT 

For center-aligned counting, the counting period of the triangle waveform is 
1 

Counting Period of Triangle Waveform= 2 x ARR x ---
fcwcK_CNT 



Counting Period = (1 + ARR) x f 
1 

CLOCK_CNT 

r~~~~~ ------------------"------------------, __ ,-- Overflow 

value 
(ARR) 

auto
reload 
value 
(ARR) 

auto
reload 
value 
(ARR) 

Counting Period = (1 + ARR) x f 
1 

, CLOCK_CNT ,,-----------------' .. ________________ , 

/ 

Underflow 
/ 

----· Overflow 

Underflow 
,,// 

''"--- ---- ----------------------------,~ .. -----------------------------------" ! 
Counting Period = 2 x ARR x f 

1 
CLOCK_CNT 

Underflow 

General-purpose Timers Im 

----· Overflow 

/ 

, Underflow 
/ 

Figure 15-3. Three counting modes: up-counting, down-counting, and center-aligned counting 

A timer counter has two update events: overflow and underflow, as shown in Figure 15-3. 
In the up-counting mode, overflow occurs when the counter is reset to 0. In the down
counting mode, underflow occurs when the counter is reset to ARR. In the center-aligned 
counting mode, underflow and overflow occur alternatively. 

When using the timer to measure a large time span between the occurrences of two 
events, software must consider the overflow and underflow to avoid underestimating 
the time span. The timer interrupt handler can check appropriate flags in the timer's 
status register to count how many times overflow or underflow has occurred. 



•• 15.2 - Compare Output 

15.2 Compare Output 
Figure 15-4 shows the basic diagram of the output compare of a timer. The timer counter 
(CNT) has 16 bits. The capture/compare register (CCR) holds the value that is compared 
with the timer counter. 

In STM32L, four output channels share the same free-run timer counter. Therefore, the 
timer hardware compares the timer counter with four CCR registers simultaneously and 
generates four independent outputs based on the comparison results. 

The clock to drive the timer counter (CLOCK_CNT) can be slowed down by a constant 
factor called prescaler to generate output that spans over a long period. 

fcwcK PSC 
fcwcK_CNT = Prescal~r + 1 

A large prescaler reduces the timer's resolution, but decreases the chance of overflow 
and underflow and improves the energy efficiency. 

Different clocks can drive the timer. These clocks include built-in clocks within the 
processor chip, external crystal oscillators, or some internal trigger signal such as the 
output of another timer. External clocks are preferred over internal clocks because 
external clocks are more accurate than internal clocks. 

Internal Clocks 

External Clocks 

Clock 
selection 

Trigger & Clock 
Controller 

16-bit Auto 
Reload Register 

(ARR) 

16-bit Prescaler CK_CNT 16-bit Counter 
(PSC) (CNT) 

Internal Trigger Input 

16-bit Capture Compare 
Re ister 1 CCR1 

16-bit Capture Compare 
Re ister 2 CCR2 

16-bit Capture Compare 
Re ister 3 CCR3 

16-bit Capture Compare 
Re ister 4 CCR4 

I CNT > CCR1 ? I 
I CNT > CCR2 ? I 

I CNT > CCR3 ? I 
I CNT > CCR4 ? I 

Compare 
Four Channels 

,..--------c_~ Channel 1 

Output 
Controllers 

Channel 2 
Channel 3 

L_ ____ ___r~ Channel 4 

Figure 15-4. Output compare diagram of a timer with four channels. Some timers have more 
than four channels, with extra channels used internally, such as for triggering ADC. 



General-purpose Timers Im 

15.2.1 Setting Output Mode 
When the timer counter (CNT) equals the compare value (CCR), the output of a channel 
(OCREF) is programmable. The output can have different values, depending on the output 
compare mode (OCM), as shown in Table 15-1. 

Output Compare Mode (OCM) Timer Reference Output (OCREF) 

Timing mode (0000) Frozen 

Active mode (0001) Logic high if CNT = CCR 

Inactive mode (0010) Logic low if CNT = CCR 

Toggle mode (0011) Toggle if CNT = CCR 

Forced inactive mode (0100) Forced logic low (always low) 

Forced active mode (0101) Forced logic high (always high) 
In up-counting: 

PWM output mode 1 (0110) 
Logic high if CNT < CCR, else logic low 

In down-counting: 
Logic high if CNT ~ CCR, else logic low 

In up-counting: 

PWM output mode 2 (0111) 
Logic high if CNT ~ CCR, else logic low 

In down-counting: 
Logic high if CNT > CCR, else logic low 

Table 15-1. Control of timer channel output 

The active and inactive mode outputs a logic high and logic low, respectively, when the 
free-run counter CNT matches the capture and compare register (CCR). The toggle mode 
reverses the output whenever CNT and CCR match, making the output switch between 
logic high and logic low alternatively. The forced inactive and active mode makes the 
output stay low and high, respectively. 

In digital circuits, there are two options to represent logic values: active high and active 
low, as shown in the table below. Software can change the logic representation for the 
output of each timer channel independently by programming the output polarity bit in 
the control register CCER. When the polarity bit is 0, active high is chosen to generate 
voltage outputs. Otherwise, active low is used. 

Lo 
Lo 

Figure 15-5 shows the channel reference output OCREF when the output mode is toggled, 
non-one-pulse high, and one-pulse high. In this example, the counter repeatedly counts 
up from 0 to ARR. Active high is always used for OCREF . However, depending on the 
polarity selection, the channel output is either OCREF or the negation of OCREF. 



M1:1 15.2 - Compare Output 

C~unter Counting Period= (1 +ARR) x - 1-
( NT) Counter f cLocK_CNT 

Auto Reload \ 
Value (ARR) -------------- -

I 
I 
I Compare/Capture 

Value(CCR) 
_____ T ___ _ 

I 
I 

I 
I 
I _ ____ I _____ _ 

I 
I 

I 
I 
I _____ T ___ _ 

I 
I 

0 ~---+----"-----+----><-----+-----"'-----. 

i 
Timer Output ! Toggle i Toggle ! Toggle 

Output Toggl:oc]R'" ~ o""'"' )1/ o"""' )1/ 0 "''"' 

Mode 

30v ~----+-· --------+'': _______ ,_____ _____ __., 
1. . .I 

Timer Output Set 
Output Period= 2 x (1 +ARR) x - 1-

fcLocK_CNT 
High Mode wlth(OC]REF) y High 

None one pulse 30V ~---+---------+--------+--------+ None one-pulse 
Mode i 

Timer Output 
(OCREF) 

Set Set 
High 

Set 
High 

~ "'" ~. 
with one pulse 30V ~---1. ___ _,__ __ ~I· ___ _,_ ___ ,___ __ __,_ __ ___ 

- . On~:d~se I . I 

Output Period= (1 +ARR) x - 1-
fcLocK_cNT 

Figure 15-5. OCREF output in the mode of toggle, non-one-pulse high, and one-pulse high. 

A timer channel may have two outputs: main output OC and complementary output OCN, 
which are the exclusive-OR between the channel reference output OCREF and its 
corresponding polarity bit in the CCER register, as shown below. The CCP and CCNP bits in 
the CCER register are the polarity bit of OC and OCN, respectively. 

• If only OC or OCN is enabled: 

OC = OCREF + Polarity bit for OC 
OCN = OCREF +Polarity bit for OCN 

• If both OC and OCN are enabled: 
OC = OCREF + Polarity bit for OC 
OCN = (not OCREF) +Polarity bit for OCN 



General-purpose Timers WWW 

Active high logic is always used for OCREF. However, OC and OCN can be either active high 
or active low, depending on their polarity bits. If the polarity bit is 0, the corresponding 
channel output is active high. Otherwise, it is active low. 

If timer interrupt is enabled, an interrupt is generated if CNT matches CCR, or CNT has an 
overflow or underflow. The timer interrupt service routine must check the timer status 
register to find what event has occurred. The update interrupt flag (UIF) is set for an 
overflow or underflow, and the capture and compare interrupt flag (CCIF) is set when 
CNT matches CCR. 

A separate DMA interrupt can also be generated to load a value stored in the data 
memory into ARR or CRR automatically. Chapter 19 introduces DMA operations. 

15.2.2 Example of Toggling LED 
This section uses the output compare mode of a timer to toggle a green LED attached 
GPIO pin PE6 every second, as shown below. 

Green LED 

Figure 15-6. The green LED is connected to pin PE 8 on STM32L4 Discovery Kit. 

Each GPIO pin can perform multiple hardware functions. Functions that a pin supports 
vary among chips and manufacturers, but also differ between pins. Due to chip 
complexity and costs, it is impractical for a pin to support all functions. For STM32L4, 
the functions that pin PE8 supports are shown in Table 15-2. In this example, we use the 
alternative function 1 (timer 1, complementary output of channel 1) to toggle the LED. 

PIN A Fl AF6 AF12 AF13 AF15 

PE8 TIMl_CHlN DFSDM_CKIN2 FMC_DS SAll_SCK_B EVENTOUT 

Table 15-2. Available alternate functions for PE 8 on STM32L4 

Suppose the system clock is 80 MHz and it is selected as the timer clock that drives the 
timer 1. driving the timer is 2.097 MHz. The following calculates the prescaler that slows 
down the clock of the timer counter to 2 KHz. Since we have 

We get 

fcwcK PSC 
fcwcK_CNT = Prescal;r + 1 

fcwcK PSC 80MHz 
Prescaler = F - - 1 = ZKH - 1 = 40000 - 1 = 39999 

J CLOCK_CNT Z 



Mimi 15.2 - Compare Output 

To tum an LED on for 1 second and then off for 1 second repeatedly, the auto-reload 
register (ARR) should be 1999 because the clock frequency of the free-run counter is 2 KHz. 
The timer counts from 0 to 1999 repeatedly, taking 2000 cycles in each counting period. 
Register CCR can be set to any integer value between 0 and 1999. 

The following is the C implementation. Software sets TIMl_CHlN (the complementary 

output of channel 1 of timer 1) as compare output and toggles the external LED connected 

to pin PE 8 every second. 

int main() { 

System_Clock_Init(); II Switch System Clock= Be MHz 

RCC->AHB2ENR I= RCC_AHB2ENR_GPIOEEN; II Enable GPIOE clock 

II Set mode of pin 8 as alternate function 
II ee = Input, el = Output, le = Alternate Function, 11 = Analog 
GPIOE->MODER &= N(3UL « 16); II Clear bit 17 and bit 16 
GPIOE- >MODER I= 2UL « 16; 11 Set mode as 16 

II Select alternate function 1 (TIMl_CHlN). See Appendix I 
GPIOE->AFR[l] &= N(0xF); II ARF[e] for pin e-7, ARF{l]: pin 8-15 
GPIOE->AFR[l] I= lUL; II TIMl_[HlN defined as el 

II Set IIO output speed value as Low 
II e0 = Low, 01 = Medium, 10 = Fast, 11 = High 
GPIOE->OSPEEDR &= N(3UL<<16); 

II Set pin PEB as no puLl-uplpuLL-down 
II 00 = No PUPO, 01 = Pull up, 10 = Pull down, 11 = Reserved 
GPIOE->PUPDR &= N(3UL<<16); 

II Enable timer 1 clock 
RCC->APB2ENR I= RCC_APB2ENR_TIM1EN; 

II Counting direction: 0 = up-counting, 1 = down-counting 
TIMl->CRl &= NTIM_CRl_DIR; 

II Clock prescaler (16 bits, up to 65,535) 
TIMl->PSC = 39999; 

II Auto-reload: up-counting (0-->ARR), down-counting (ARR-->e) 
TIMl->ARR = 2000-1; 

II Can be any value between 0 and 1999. 
TIMl->CCRl = 500; 

II Main output enable (MOE): 0 = Disable, 1 = Enable 
TIMl->BDTR I= TIM_BDTR_MOE; 

II Clear output compare mode bits for channel 1 
TIMl->CCMRl &= NTIM CCMRl OClM; 



} 

General-purpose Timers Ill 

II Select toggle mode (ee11) 
TIMl->CCMRl I= TIM_CCMR1_0C1M_0 I TIM_CCMRl_OClM_l; 

II Select output polarity: e = active high, 1 = active Low 
TIMl->CCER &= ~TIM_CCER_CClNP; II select active high 

II Enable output for channel 1 complementary output 
TIMl->CCER I= TIM_CCER_CClNE; 

II Enable timer 1 
TIMl->CRl I= TIM_CRl_CEN; 

while(l); II dead Loop 

Example 15-1. Lighting up an LED by using the compare-output function of a timer 

Counter 

1999 

CCR 

Channel 1 
Reference 

output (OCREF) 

3V 

OCREF is 
always 

active high. 

0 

Channel 1 
OCN output 

3V 

f cLOCK_CNT 

fcLOC~CNT= -p-,.-.c-.1.-, .-1-
80MHz 

39999 + 1 
= 2 KHz 

Counting Period= (1 +ARR) x -
1 

-
1
- = (1+1999) x -

2 
K
1 

H c 1 second 
CLOCK,_CNT l 

CCR can be any 
value between 0 
and 1999. 

r 

Assume 
initial state is 

0. 

~ 

Polarity bit = 0 

1 second 
i 
j 

1 second 

OCN a Polarity bit+ (not OCREF) =not OCREF 

1 second ! 
A 

1 

1 second 

Figure 15-7. Voltage output signal on pin PE 8 

Figure 15-7 shows the signals of the timer counter, the reference output (OCREF), and the 
complementary output (OCN) of channel 1. The initial state of OCREF is assumed to be 0 or 
low. If the initial state is critical, software can use the forced output mode to force OCREF 
to 1 (high) or 0 (low). Note that OCREF always uses active high logic. 



M!:Jj 15.2 - Compare Output 

15.2.3 Timer Update Events 
An update event (UEV) is generated on each overflow in up-counting, on each underflow 
in down-counting, on both overflow and underflow in center-counting. 

1 
UEV Period= (1 +ARR) x (1 + Prescaler) x ---

fcK_CNT 

UEV events serve three purposes: 

• Generate trigger output (TRGO) for other internal modules, such as timers, DMA, 
ADC, and DAC. 

• Make updates of registers ARR, PSC, and CCR take effect immediately if the 
buffering (also called preload) mechanism is enabled. If the channel's preload 
enable bit (OCPE) in the CCMRl register and the auto-reload preload enable bit (ARPE) 

in the CRl register are set, the preload mechanism is enabled. 

• Generate a timer interrupt request if the update interrupt flag bit (UIF) of the 
control register CRl is set. Interrupt requests are sent to the interrupt controller 
(NVIC). In response, the processor executes the corresponding interrupt handler. 

Software can disable UEV by setting the update disable bit (UDIS) in the CRl register. If so, 
update events are not generated. 

Software can also generate UEV events. If the update request selection bit (URS) in the CRl 

register is set, setting the update generation bit (UG) in the event generation register (EGR) 

generates an UEV event. 

MSI 
4MHz 

Timer Input Clock 
(4 MHz) 

JUUUUUUlil Prescaler 
= 3999 

Timer Counter Clock 
(1 KHz) 

____JL____JI 

4 MHz/ (1 + 3999) = 1 KHz 

Timer 
Counter 

ARR= 
delay - 1 
(in ms) 

Timer Counter 

ARR+ 1 ms 

Figure 15-8. Implementation of hardware-precision delay 

As shown in Example 15-2, software can use the timer update events to achieve 

hardware-precision delay. At 30 °C, MSI and HSI can reach an accuracy of ±0.6%. Assume 

MSI 4 MHz is selected to drive the timer, the prescaler is set to 3999, and the timer 
counters are in the up-counting mode, as shown in Figure 15-8. Thus, the timer counter 
is incremented by 1 every millisecond. Timer 7 is selected because it is a basic timer 
without advanced functions. We reserve advanced timers for complicate usage. 



General-purpose Timers Im 

void delay(uint16_t ms) { 

} 

if ( ms == 0 ) //Sanity check 
return; 

II Enable timer 7 clock 
RCC->APBlENRl I= RCC_APB1ENR1_TIM7EN; 

TIM7->CR1 &= ~TIM_CRl_CEN; // Disable timer 7 
TIM7->SR 0; // Clear status register 
TIM7- >CNT 0; // Clear counter 
TIM7- >PSC 3999; I I 4 MHz/ (1 + 3999) = 1 KHz 
TIM7->ARR ms - 1; 
TIM7->CR1 I= TIM_CRl_CEN; 

II Loop until UIF is set 

II ARR + 1 cycles 
II Enable timer 7 

while ( (TIM7->SR & TIM_SR_UIF) == 0 ); 

Example 15-2. Use timer updates to implement hardware-precision delay 

Example 15-3 counts the number of overflows that have taken place on up-counting. If 
the UIF flag in the timer's status register (SR) is set, the timer interrupt handler increments 
the overflow counter and clears the flag bit UIF to 0 to prevent the interrupt handler from 
executing again. 

volatile uint32 t overflow 0· , 

int main(void) { 

} 

II Initialization 

II Select counting direction 
II e = up-counting, 1 = down-counting 
TIMl->CRl &= ~TIM_CRl_DIR; 

II Enable update interrupts 
TIMl->DIER I= TIM_DIER_UIE; 

II Enable TIM4 interrupt in NVIC 
NVIC_EnableIRQ(TIMl_IRQn); 

II Enable the counter 
TIMl->CRl I= TIM_CRl_CEN; 

while(l); 



M:il 15.3 - PWM Output 

void TIMl_IRQHandler(void) { 

II Check whether an overflow event has taken place 
if((TIMl->SR & TIM_SR_UIF) != 0) { 

} 

} 

II Increment the overflow counter 
overflow++; 

II Clear flag UIF to prevent reentrance 
TIMl->SR &= ~TIM_SR_UIF; 

Example 15-3. Counting the number of update events 

In this example, the global variable overflow 
is declared as "volatile". This is to inform 
the compiler that no optimization should be 
made on this variable. While the compiler can 
observe that the interrupt handler changes 
the value of this variable, it is still possible 
that the compiler incorrectly reuses an old 
value if overflow was not volatile. The reason 
is that the compiler notices that the interrupt 
handler does not appear to be called in 
software and mistakenly assumes that the 
value of overflow would not change. 

15.3 PWM Output 

volatile: characterized by 
or subject to rapid or 

unexpected change 

-- Merriam-Webster 
Dictionary 

., 

,: 

Pulse width modulation (PWM) is a simple digital technique to control the value of an 
analog variable . PWM uses a rectangular waveform to quickly switch a voltage source 
on and off to produce a desired average voltage output. Although the output is binary at 
any time instant, the average output over a time span can be any value between 0 and 
the maximum voltage. 

Specifically, the percentage of time in the on state within one period is proportional to 
the mean value of the voltage output. Consequently, when software changes the duration 
of the on state, the output voltage is adjusted accordingly to emulate an analog signal. 



General-purpose Timers E!I 

PWM has been widely used in a variety of applications, such as motor speed and 
torque control, digital encoding in telecommunications, DC-to-DC power 
conversion, and audio amplification. This section uses PWM to control the 
brightness of an LED. 

' , ,,. 

~ 
We should select the PWM switching frequency carefully to avoid serious negative 
impacts on applications. For example, the PWM switching frequency of an LED light 
must be at least 120 Hz to prevent the flickering effects that humans can see. 

The average value of a simple PWM output based on a sawtooth carrier signal and a 
constant reference, as illustrated in Figure 15-9 and Figure 15-10, is linearly proportional 
to the duty cycle. 

The duty cycle is defined as follows: 

where 

pulse on time (T0 n) 
duty cycle = x 100% 

pulse switching period (T5 ) 

T 
on X 100% 

Ton +Taff 

1 
pulse switching period = ----------

PW M switching frequency 

By changing the duty cycle, software can control this average value. In the LED example, 
the brightness is determined by the PWM duty cycle. Figure 15-9 and Figure 15-10 give 
three examples in which the average output is 1/6 and 1/2, respectively. 

Counter 

Switching period Ts 
Auto Reload 
Value (ARR) r--___,'-----~ 

Com pa ref 
Capture 

Value (CCR) 

! I 
I I 
! i 
I : 

!Toni 
v r--------<!r''-,:! 

Taff 

PWM 
Output 

Carrier Signal 

~ --------- - ---------- - --------- -

Reference 
Signal 

Average 
Output ------

Figure 15-9. Example of simple PWM when duty cycle is 1/6 



15.3 - PWM Output 

Counter 
Switching period Ts 

Auto Reload i,---~~-~ 
Value (ARR) 

Compare/ 
Capture 

Value (CCR) 

PWM 
Output 

Toff Ton 

Carrier Signal 

Reference 
Signal 

v~ ----- ----- ----- ------ ----- -----

Average 
Output 

Figure 15-10. Example of simple PWM when duty cycle is 1/2 

The PWM output signal is determined by three factors: 

1. comparison between the timer counter (CNT) and the given reference valued 
stored in the compare and capture register (CCR), 

2. the PWM output mode, and 
3. the polarity bit. 

As shown in Table 15-3, there are two PWM modes, which are opposite to each other. 

• PWM Mode 1: If the counter is less than the reference signal, the timer reference 
output (OCREF) is then held at logic high; otherwise, it is held at logic low. 

• PWM Mode 2: The timer reference output (OCREF) in mode 2 is the opposite of 
mode 1. If the counter is greater than the reference signal, OCREF is then held at 
active; otherwise, OCREF is held at inactive. 

Counting Mode 
PWM Reference Output (OCREF) 

PWMMode 
Logic High Logic Low 

Up-counting CNT < CCR CNT ~ CCR 
Model 

Down-counting CNT .$. CCR CNT > CCR 

Up-counting CNT ~ CCR CNT < CCR 
Mode2 

Down-counting CNT > CCR CNT .$. CCR 
Table 15-3. Timer reference output (OCREF) of PWM mode 1 and mode 2 



General-purpose Timers Im 

OCREF is an internal output, which always uses active high logic. However, the actual 
output (OC or OCN) can be active high or active low. 

• In active high, a high voltage represents logic high (or called active), and a low 
voltage represents logic low (or called inactive). 

• The output of active low is the opposite of active high. 

• Selection of active high or active low is controlled by the polarity bit. 

In sum, the actual PWM output (OC or OCN) is determined by both the PWM mode and 
the polarity bit. 

Figure 15-11 shows an example of the timer reference output (OCREF) for center-counting. 

Auto-Reload Value 
(ARR) 

CCR 

Reference Output 
(OCREF) 

PWM Mode 1 

Reference Output 
(OCREF) 

PWM Mode 2 

Average 
Output 

i t 

! 

Average 
Output 

Figure 15-11. Reference output (OCREF) in PWM mode 1 and PWM mode 2 

PWM Signal Period: 

For up- or down-counting: 

Clock Period of Timer 
PWM Period = (1 +ARR) x 

1 + Prescaler 

For center-counting mode: 

Clock Period of Timer 
PWM Period= 2 x ARR x --------

1 + Prescaler 



W!:!:I 15.3 - PWM Output 

PWM Duty Cycle: 

Depending on the PWM mode and the polarity bit, the duty cycle of the main output OC 

or the complementary output OCN in up-counting or down-counting is 

{ 

CCR 

Duty Cycle = ARR + l 
CCR 

1- ----
ARR+ 1 

Figure 15-12 gives an example of PWM mode 1 output on up-counting. The duty cycle of 
the main output (OC) is either 3/7 or 4/7, depending on polarity bit. 

CCR= 3 
ARR= 6 

Timer 
Clock 

Timer 
Counter 

Value 

OCREF 
PWM Mode 1 

(Always active high) 

OC of Mode 1 
when polarity = 0 

OC of Mode 1 
when polarity = 1 

PWM Period = (1 +ARR) x Clock Period 

...................................... >., ................................ ... 

6 

PWM Mode 1 & Up-counting: 

{ 

High if CNT < CCR 

OCREF = 
Low if CNT 2: CCR ....._ _____ _ 

CCR 
Duty Cycle= 1 - ARR + 

1 

Duty Cycle= 
CCR 

ARR+ 1 

Figure 15-12. PWM outputs in Mode 1, up-counting, and different polarity bits 

Similarly, as shown in Figure 15-13, depending on the PWM mode and the output 
polarity, the PWM duty cycle for center-counting is 

{ 

CCR 

Duty Cycle - ARR - CCR 
l - ARR 

If the center-aligned counting mode, when register CCR is 0 or ARR, the timer reference 
output OCREF is 1or0, depending on the PWM mode. 



CCR=3 
ARR=6 

Timer Clock 

Timer 
Counter Value 

(ARR= 6) 

PWM Period = 2 x ARR x Clock Period 

I 
I 

I I 

: 2 x (ARR- CCR) x Clock Period : r A 1 

General-purpose Timers B 

OCREF Output ------.1 ,_I ______ CCR 
PWM Mode 1 Duty Cycle= _A_R_R_ 

(CCR= 3) . . 
I I 
I I 

OCREF Output I I CCR 
PWM Mode 2 -------i 1----o_u_ty_c_y_cle = 1 - _A_R_R_ 

(CCR= 3) . . 
I 

Figure 15-13. PWM outputs in center-aligned counting 

15.3.1 PWM Alignment 
A timer typically has multiple channels, as shown in 
Figure 15-4. Each channel can generate a PWM output 
signal. All channels share the timer counter and the 
ARR register. Thus, all PWM signals produced by the 
same timer have the same period. However, their 
duty cycle can be different because each channel has 
its own CCR register. 

All PWM outputs of the 
same timer has the same 
period. 

For a timer with up- or down-counting, its PWM signals are edge-aligned. 

• In the example, given in Figure 15-14, all rising edges of the PWM signals are 
aligned with the overflow events of the timer counter. These PWM signals are 
also called left-edge aligned (or rising-edge aligned, or leading-edge aligned) 
because all pulses are turned on at the beginning of each PWM period. 

• If the polarity bit is changed to 1, the PWM outputs of these three channels 
become right-edge aligned, or called falling-edge aligned, or trailing-edge aligned 
in which all pulses are turned off at the end of each PWM period. 



MU.I 15.3 - PWM Output 

Timer 
Clock 

Timer 
Counter 
Value 

(ARR= 6) 

Channel 1 
Output OC1 
(CCR1 = 1) 

Channel2 
OutputOC2 
(CCR2 = 3) 

Channel 3 
output OC3 
(CCR3 =5) 

n h 
f f 
f f 

The rising edges of all PWM signals are 
L aligned to the left in each period. ~ 
r-------------------------------i 

PWM Period 

6 

Figure 15-14. Rising edge aligned PWM outputs from multiple channels (up-counting, PWM 
mode 1, polarity bit= 0, Prescaler = 0). 

Timer 
Clock 

Timer 
Counter 

Value 
(ARR= 6) 

Channel 1 _J 
Output OC1 
(CCR1=1 ) 

Channel 2 
Output OC2 
(CCR2 = 3) 

Channel 3 
output OC3 
(CCR3 = 5) 

L 

All pulses are aligned to the center in each period. 
r------------------ --------------------------------1 

PWM Period 

Figure 15-15. Center-aligned PWM outputs from multiple channels (center-counting, PWM 
mode 2, polarity bit= 0, Prescaler = O) 



General-purpose Timers 108 

For a timer with center-counting, the PWM signals of all associated channels are center
aligned, as shown in Figure 15-15. Both the rising edge and falling edge of each pulse are 
modulated. All pulses are centered in each PWM period. Center-aligned PWM signals 
are often preferred to edge-aligned in electronic circuits, such as motor control and power 
converters. Center-aligned PWM signals are symmetrical and thus have fewer harmonics, 
reducing noise interference and power consumption. 

15.3.2 PWM Programming Flowchart 
This section will show how software programs a timer to generate a PWM output signal 
to increase or decrease the brightness of an LED gradually. We will use the green LED 
on STM32L4 as an example (see Figure 15-20). 

All alternate functions that pin PE 8 supports are listed in Table 15-2. Pin PE 8 will be the 
complementary output of channel 1 of timer 1 (TIMl_ CHlN) if software sets its GPIO mode 
to alternate function (AF) and its AF value to 1. In sum, pin PE 8 is physically connected 
to the external LED, and software needs to make PE 8 function as TIMl_CHlN internally. 

On STM32L4, the clock that drives the processor core and its peripherals, such as timers, 
has a frequency of 4 MHz by default. In this example, the prescaler factor is set as 39, thus 
the frequency at which the counter increments is 

ii - fci_Psc - 4MHz - 100 KHz 
CK_CNT - Prescaler + 1 - 39 + 1 -

Suppose the refresh rate of the LED is 100 Hz. Putting it differently, the LED is turned 
off and then turned on in each cycle. There are 100 such cycles each second. Normally 
the human eye cannot detect flicker at a refresh rate higher than 100 Hz. Thus, we will 
see a steady and continuously source of light even though the LED is switched on and 
off 100 times per second. 

For a given clock frequency, ARR determines the PWM period. Assume the counting mode 
is up-counting, and the LED refresh rate is 100 Hz. Thus, the PWM period should be 

1 1 
PWM Period= - - 0 01 second 

LED Refresh Rate - 100 Hz - · 

At the same time, we have 

Thus, we have 

1 
PWM Period= (1 +ARR) x F 

J CK_CNT 

ARR = PWM Period X fcKcNr - 1 = 0.01X100 X 103 - 1 = 999 



15.3 - PWM Output 

When ARR is kept at a fixed value, CCR controls the duty cycle. Assume timer 1 uses PWM 
mode 1, in which the reference output (OCRE F) is high for up-counting if the timer counter 
is less than CCR, and otherwise, OCREF is low. 

Figure 15-16 shows that as CCR increases gradually, the duty cycle of OCREF also increases. 

Timer 
Counter 

Up counting 
PWM Period= 0.01 s 

999 - - - - - - - - - - - - - - - - - - - -

CCR= 833 

CCR= 500 

CCR= 167 

PWM 
Mode 1 

OCREF 

CCR 
Duty Cycle= ARR+ 1 

Duty Cycle= 16.7% Duty Cycle = 50% 

CCR= 167 CCR= 500 
PWM Period = 0.01 s 

Duty Cycle= 83.3% 

CCR= 833 

Figure 15-16. CCR controls the duty cycle of PWM output if ARR is fixed. 

In this example, the complementary output of time 1 channel 1 (TIMl_CHlN) drives the 
LED. As discussed previously, the complementary output (OCN) of a channel is 

OCN = OCREF +Polarity bit for OCN 

If we use CCR to represent the LED brightness, we need to set the polarity bit (CCNP) for 
the complement output to 0. In other words, OCN waveform is the same as OCREF. 

Figure 15-17 shows the program flow chart. The variable direction is either 1 or -1. The 
LED gets brighter and dimmer alternatively. A short delay is added between two 
consecutive updates to CCR to adjust the speed of brightness change. 

In this example, software does not program the reset and clock controller (RCC). 

Accordingly, the processor uses the default clock settings. By default, the system clock is 
derived from the internal multi-speed internal RC oscillator (MSI). While MSI offers 
clocks signal with multiple clock frequencies ranging from 100 KHz to 49 MHz on 
STM32L4, its frequency is 4 MHz after reset. 



General-purpose Timers ID 

START 

Enable Peripheral Clocks via RCC Registers 
1. Enable the clock of GPIO port E 
2. Enable the clock of Timer 1 

Configure GPIO (Pin PE 8) 
1. Set GPIO mode as alternative function (GPIOE->MODER) 
2. Set alternate function as TIM1 _CH1 N (GPIOE->AF) 
3. Set the pin as push-pull mode with no pull-up pull-down (GPIOE->PUPDR) 

Configure Timer (TIM1_CH1N) 
1. Select the counting direction as up-counting (TIM 1->CR 1 ): 0 = up-counting, 1 = down-counting 
2. Program the prescaler (TIM1->PSC): Counter frequency= Timer frequency/(1 + PSC) 
3. Program the auto-reload value (TIM1->ARR): PWM frequency= Counter frequency/(1 +ARR) 
4. Select PWM mode 1 on channel 1 (TIM1 ->CCMR1 ): OCREF =HIGH if CNT < CCR; else LOW 
5. Enable TIM1_ARR register preload (TIM1_CR1 ): Changes to ARR take effect at UEV event 
6. Enable all outputs (MOE bit in TIM1->BDTR): 1 =output enabled, 0 =output disabled 
7. Enable complementary output of channel 1 (CC1 NE bit TIM1->CCER): 1 =enabled, 0 =disabled 
8. Clear polarity bit to 0 (CC1NP in TIM1 _CCMR1): OC1N = OCREF +polarity 
9. TIM1 ->CCR1 = 500: Duty cycle of OC1N = 50% 
10. Enable the counter of channel 1 (CEN bit in TIM1->CR1 ): 1 =enabled, 0 =disabled 

Brightness= 1; 
Direction = 1; 

Direction = 0 - Direction 

YES 

NO 

Brightness = Brightness + Direction 

TIM1->CCR1 =Brightness 

Short Time Delay 

YES 



15.3 - PWM Output 

Figure 15-17. Flowchart for dimming an LED via PWM output of a timer 

Example 15-4 initializes channel 1 of timer 1 to generate a PWM signal. The counting 
direction is up-counting. The PWM output is in mode 1. 

• Each channel may have two outputs: the main output and the complementary 
output. Both can be enabled and disabled independently. Typically, these two 
outputs are connected to different GPIO pins on the processor chip. 

• PE 8 is connected internally to the complementary output TIMl_CHlN, instead of 
the main output TIMl_CHl. 

void TIMl_Init() { 

} 

II Enable TIMER 1 clock 
RCC->APB2ENR I= RCC_APB2ENR_TIM1EN; 

II Counting direction: e = Up-counting, 1 =Down-counting 
TIMl->CRl &= ~TIM_CRl_DIR; II Select up-counting 

II PrescaLer, slow down the input clock by a factor of (1 + prescaLer) 
TIMl->PSC = 39; II 4 MHz I (1 + 39) = we KHz 

II Auto-reload 
TIMl->ARR = 999; II PWM period = (999 + 1) * 111eeKHz = e .e1s 

II Clear output compare mode bits for channel 1 
TIMl->CCMRl &= ~TIM_CCMRl_OClM; 

II Select PWM Mode 1 output on channel 1 (OC1M = 110) 
TIMl->CCMRl I= TIM_CCMRl_OClM_l I TIM_CCMR1_0C1M_2; 

II Output 1 preLoad enable 
TIMl->CCMRl I= TIM_CCMRl_OClPE; 

II Select output polarity: e = Active high, 1 = Active Low 
TIMl->CCER &= ~TIM_CCER_CClNP; II OC1N = OCREF + CC1NP 

II Enable complementary output of channel 1 (CH1N) 
TIMl->CCER I= TIM_CCER_CClNE; 

II Main output enable (MOE): e = Disable, 1 Enable 
TIMl->BDTR I= TIM_BDTR_MOE; 

II Output Compare Register for channel 1 
TIMl->CCRl = 500; II Initial duty cycle 50% 

II Enable counter 
TIMl->CRl I= TIM_CRl_CEN; 



General-purpose Timers Im 

Example 15-4. Initialization of Timer 1 to generate PWM output in C 

Example 15-5 changes the duty cycle of the PWM output. The code does not configure 
the system clock and thus the default MSI 4 MHz is selected. The GPIO initialization code 
is not given in the demo code. Within the endless loop, the compare and capture register 
for channel 1 (CCRl) is increased or decreased gradually after a short delay. 

void main() { 

} 

int i; 
int brightness = 1; 
int stepSize = 1; 

II Pin PE.8 initialization: 
II AF mode, AF value = 1 (TIMl_CHlN), high-speed, push-pull 

while(l) { 

if ((brightness >= 999) I I (brightness <= 0 )) 
stepSize = - stepSize; 11 Reverse direction 

brightness += stepSize; II Change brightness 

TIMl->CCRl brightness; II Change duty cycle of channel 1 outputs 

for(i = 0; i < 1000; i++); II Short delay 
} 

Example 15-5. Example program to change the brightness. 

15.4 Input Capture 
As presented previously, a timer can be used for triggering an output at a specified time 
to general output signals (PWM output, comparator output). This section discusses the 
usage of timers as input capture. 

Input capture is to find the time span between two rising or falling transitions in an 
internal or external signal. As shown in Figure 15-18, a capture occurs on (1) either rising 
or falling edges, (2) only falling edges, or (3) only rising edges. 

When the desired transition is detected, the timer hardware automatically captures this 
time instant by copying the value of the free-run counter (CNT) to the compare and 
capture register (CCR). At the same time, the timer hardware generates an interrupt or 
DMA request and sets the CCIF flag in the status register (SR). 



.. 15.4 - Input Capture 

The difference between two consecutive transitions measures an elapsed time span, as 
shown in Figure 14-19. 

• If the input signal is periodic, the difference of the counters captured at two 
consecutive rising edges or at two consecutive falling edges measures the period 
of the waveform. 

• Similarly, the difference between a rising edge and a falling edge measures the 
pulse width. 

(9 (9 
---+1.----T-i_m_e_s-pa-n----.-+1---· time 

External Signal 1 

One falling transition and one rising transition 

External Signal 2 

Only falling transitions or only rising transitions 

t t 
CCR_ Last CCR_New 

If up-counting , no overflow or underflow: 
Time Span = CounterClockPeriod x {CCR_New - CCR_Last) 

Figure 15-18. Input capture measures the time span between two events. 

!------------- Time span ------------j 

External Signal 

counter : 
I 
I ---r-----ARR 
1 

CCR_New ----}---- -

CCR_Last 

I 
I 
I 
I 

/ '' OC++; 
Capture 
Interrupt 

OC: overflow counter 

OC++; 

I 
I 
I 
I -------..,-

OC++; 

1 

";7 
Capture 
Interrupt 

Time Span = CounterClockPeriod x (CCR_New - (CCR_Last) + ( 1 + ARR) x OC) 

Figure 15-19. Measuring the pulse width if the timer is up-counting. A variable OC (overflow 
counter) is used when measuring a long time span. 



General-purpose Timers Im 

We can calculate the pulse width, the period, and the duty cycle of the input waveform 
by using two or three consecutive captures. As shown in Figure 15-19, when measuring 
a time span longer than the counting period, software must consider the overflow and 
underflow events of the free-running counter. 

Each input channel has a configurable input source, a digital input filter, and an edge 
detector. 

• The input source of the capture module has a few options. The capture signal can 
be an external signal applied to different timer channels (i.e. , on different GPIO 
pins) or an internal trigger signal made by other timers. 

• The edge detector can be programmed to detect only falling edges, only rising 
edges or both. 

• The filter specifies the number of events needed to validate a transition on the 
input. If we need to capture each valid transition, software should disable the 
external trigger filtering by setting the external trigger filter (ETF) to zero. 

The digital input filter removes noise pulses in an input signal. For example, if the input 
signal of a push button takes 10 internal clock cycles to become stable, then we can make 
the filter duration last longer than 10 clock cycles. We can validate the transition by 
repeatedly sampling the inputs. 

• If a sequence of consecutive samples remain unchanged and stay at the same level, 
then this level is considered as a stable input. 

• If a noise spike occurs causing the input to change during any of the consecutive 
sampling points, the input is unstable and can be ignored, thus filtering out noisy 
transitions. 

External 
Signal 

Sampling 
Clock 

f t 

A fall ing transition is confirmed if 
two consecutive readings are low. 

1•t 2nd 

Confirmation Confirmation 

t t 

t 
A falling transition is 

confirmed . 

t • time 

Figure 15-20. An example of filtering noise in the external signal. Two consistent readings are 
required to confirm a valid transition. 



Mitl:i 15.4 - Input Capture 

The sampling frequency of the filter is configurable. The number of consistent 
consecutive readings to validate a transition ranges from 0 to 8. If it is zero, then the noise 
filtering is disabled. Figure 15-20 shows an example in which the number of consistent 
readings is set to 2. 

Software can select internal clocks, external clocks, or internal trigger input (such as 
another timer) as the clock of the 16-bit free-running counter. The clock frequency can be 
divided by a 16-bit clock prescaler (PSC) to reduce the clock frequency for the free
running counter. 

Input 
signal 

Filter 
downcounter 

Set filter duration 

ICF[3:0] 

TIMx_CCMR1 
TIMx_CCMR2 

Edge 
detector 

Interrupt enable 

CCIE 

TIMx_OIER 

Input 
prescaler 

Interrupt 
request 

Interrupt flag Over-capture flag 

CCIF CCOF 

TIMx_SR TIMx_SR 

16-bit counter 

Select active edge 
Set input Trigger 
prescalar 

Capture 

CCNP/CCP 

TIMx_CCER 

ICPSC[1:0] 

TIMx_CCMR1 
TIMx_CCMR2 

Capture & compare 
register (CCR) 

OMA enable 

CCOE 

TIMx_OIER 

OMA 
request 

Figure 15-21. Diagram of input capture 

Figure 15-21 shows the timer diagram for input capture. When the number of transitions 
on an input channel reaches the threshold defined by the input capture prescaler bits 
(ICPSC) in the capture/compare mode register (CCMR), a capture occurs, and the processor 
automatically performs the following operations. 

• It latches the value of the free-running counter (CNT) to the capture/compare 
register (CCR) corresponding to that channel. There is a 16-bit capture/compare 
for each capture channel (CCRl for channel 1, CCR2 for channel 2, CCR3 for channel 
3, and CCR4 for channel 4). 

• In the status register (SR), the capture/compare interrupt flag (CCIF) 

corresponding to that channel is set by hard ware on a capture. If the CCI F flag has 
already been set, then hardware sets the corresponding capture/compare over
capture flag (CCOF) in the status register (SR). Software clears the CCIF flag by 
writing it to 0, or hardware automatically clears it if software reads the 
corresponding CCR register. Only software can clear the CCOF flag. 



General-purpose Timers Im 

• If software enables the interrupt by setting the capture/compare interrupt enable 
bit (CCIE) in the DMA interrupt enable register (DIER), the timer hardware 
generates an interrupt. 

• If software enables DMA by setting the capture/compare DMA request enable bit 
(CCDE) of the DIER register, the timer hardware generates a DMA request. 

15.4.1 Configuring Input Capture 
In the following, we use the channel 1 of timer 4 as an example to illustrate the basic 
procedure for capturing a rising edge transition of an external signal. Figure 15-23 shows 
the flowchart of setting the GPIO pin PB.6 as input capture. 

1. Select the active input. Each timer supports four capture/compare channels in the 
STM32L processor, and software can configure each channel as a compare output 
or a capture input connected to one of the timer's external input or trigger sources. 
The CC15[1:0] bits in the CCMRl register configures the direction of channel 1 (input 
or output) and the input source of channel 1. 

The usage of CC15[1:0] bits are defined as follows: 

• 00: Channel 1 is set as output. 
• 01: Channel 1 is set as input, and it is mapped to timer input 1 (Til). 

• 10: Channel 1 is set as input, and it is mapped to timer input 2 (TI2). 
• 11: Channel 1 is set as input, and it is mapped to TRC. The trigger output 

of another timer is used as the input. 

Input Channel 1 
PB6or PD12 Input filter & 

(TIM4_Ch1) edge detector 

PB 7 or PD 13 Input filter & 
(TIM4_Ch2) edge detector 

Input Channel 2 

PB 8 or PD 14 Input filter & 
(TIM4_Ch3) edge detector 

Input Channel 3 

PB 8 or PD 15 Input filter & 
(TIM4_Ch4) edge detector 

Input Channel 4 

Figure 15-22. Selecting an input source for each capture channel 

To link to the timer input 1 (Til), we need to set CClS bits to 01. Note, if CClS bits 
are 00, then the channel is configured as a compare output. When a channel is set 
up as capture input, its corresponding CCR register becomes read-only. 



Munl 15.4 - Input Capture 

2. Set the input filter. The IClF bits in the CCMRl register define the frequency used 
to sample Til and the length of digital filtering applied to Til. The digital filtering 
is to check whether a number of consecutive readings of an input remain the same. 
If yes, the input is stable, and the input transition is valid. For example, 

• If IClF is 0000, the digital filtering is disabled. 
• If IClF is 0010, the sampling frequency is the counter frequency, and if 

four consecutive samplings remain the same, then the transition is valid. 

3. Set the active edge. The CClP bit and CClNP bit in the CCER register collectively 
determine the edge of an active transition on the Til channel. 

• If CClNP = 0 and CClP = 0, then the edge detection is configured to capture 
only rising edges. 

• If CClNP = 0 and CClP = 1, only falling edges are captured. 
• If CClNP = 1 and CClP = 1, then both falling and rising edges are captured. 

4. Set the input prescaler. If we want to capture 
the event each time an edge is detected in 
channel 1, the prescaler, defined by the 
IClPSC bits in the CCMRl register, should be 
reset to 0. 

• When IClPSC is 01, 10, and 11, the 
input capture is then performed once 
every 2, 4, and 8 events, respectively. 

• Depending on applications' needs, 
such as noise filtering, we might 
want to wait for multiple valid 
transitions before the counter is 
latched. 

Input filtering is to 
reduces noise. 

Input prescaler, also 
called frequency divider, 

is to reduce the frequency 
signal of input signals. 

5. Enable the input capture. The input capture of channel 1 can be enabled by setting 
the CClE bit in the CCER register. 

6. Enable interrupt and DMA if needed. The related interrupt request is enabled by 
setting the CClE bit in the DIER register. 

• The OMA request is enabled by setting the CClDE bit in the DIER register. 
• The TIE bit enables trigger interrupt, and the UIE bit enables the update 

interrupt. 

7. Enable the timer counter. Sets the counter enable bit (CEN) in the CRl register. 



General-purpose Timers IDJI 

START 

• Configure GPIO Pin 
1. Enable the clock for GPIO port B (RCC_AHBENR_GPIOBEN) 
2. Set Pin PB.6 as alternative function 2 (TIM 4) 
3. Note: PB.6 can be used as 12C1_SCL/TIM4_CH1/USART1_ TX. When used 

as a generic timer, it is connected to channel 1 . 

• Configure Timer 4 Input Capture (Channel 1) 
1. Enable the clock of timer 4 (RCC_APB1 ENR1_ TIM4EN) 
2. Set the prescaler (TIM4_PSC) to configure frequency of free-run counter 
3. Select the active input (TIM4->CCMR1) 
4. Program the input filter duration (TIM4->CCMR1) 
5. Select the edge of the active transition (TIM4->CCER) 
6. Program the input prescaler (TIM4->CCMR1 ). To capture each valid 

transition, set the input prescaler to zero. 
7. Enable capture from the counter (TIM4->CCER) 
8. Enable the interrupt (TIM4->DIER) 
9. Enable the counter (Tl M4->CR 1) 

• Enable Interrupt 
1. Set the interrupt priority of TIM4_1RQn 
2. Enable the interrupt TIM4_1RQn 

- 1 
~. 

I Dead loop I 
I 

Figure 15-23. Flowchart to set the GPIO pin PB.6 as input capture 

Example 15-6 shows the implementation of the timer interrupt service routine, which 
calculates the pulse width. It is assumed that the timer is up-counting and captures are 
made on both rising and falling edges. Assuming the input signal is low initially, it uses 
a global variable to track the signal polarity. The interrupt handler flips the signal 
polarity. The pulse duration is calculated only when the signal is low. 

This example code does not take care of the counter overflow and, therefore, the time 
interval may be negative occasionally. A more robust code should check the update 
interrupt flag (TIM_SR_UIF) of the timer status register (TIM4- >SR). If the update event 



MU>i 15.4 - Input Capture 

occurs (i .e., overflow during up-counting or underflow during down-counting), the time 
interval should be calculated differently. 

interrupt interrupt 
request request 

interrupt 
request 

Input Signal '-, '-r 

0 

Assume 
input is 

low 
initially . 

~ 

signal polarity = 1 signal polarity = 1 

signal polarity= O ~ signal polarity= O 
• Pulse • 
f Width f 

Last Currently Pulse Width = Currently Captured Value - Last Captured Value 
Captured Captured 

Value Value 

Figure 15-24. Calculating the pulse width by using input capture 

volatile uint32 t pulse_width = 0; 
volatile uint32_t last_captured = 0; 
volatile uint32_t signal_polarity= 0; II Assume input is Low initially 

void TIM4_IRQHandler() { 

} 

uint32_t current_captured; 

if((TIM4->SR & TIM_SR_CClIF) != 0) { II Check interrupt flag is set 

} 

II Reading CCRl clears CClIF interrupt flag 
current_captured = TIM4->CCR1; 

II Toggle the polarity flag; 
signal_polarity= 1 - signal_polarity; 

if (signal_polarity == 0){ II Calculate only when the current input is Low 
pulse_width = current_captured - last_captured; II Assume up-counting 

} 

last_captured current_ captured; 

if((TIM4- >SR & TIM_SR_UIF) ! = 0) { 11 Check if overflow has taken place 
TIM4->SR &= ~TIM_SR_UIF; II Clear UIF flag to prevent re-entering 

} 

Example 15-6. Timer interrupt handler in C. Assume the timer is up-counting. 



General-purpose Timers lnM 

Table 15-4 shows the configuration of pin PB 6 as timer function. The pin is set as no 
pull-up and no pull-down, and alternate function mode. 

GPIOPin Connection Mode AF Pull-up/Pull-down 

Port B pin 6 (PB 6) LED AF TIM4_CH1 No pull-up, No pull-down 

Table 15-4. Connecting PB.6 to channel 1 of timer 4 internally 

The following gives an example code of setting pin PB 6 (TIM4_CH1) as input capture. 
Register CCR stores the value of the counter after a transition detected. When a capture 
occurs, CCIF flag is set in the status register SR. 

#include <stdint.h> 
#include "stm3211xx.h" 

int main(void) { 

II Enable GPIO Port B clock and configure GPIO port B pin 6 as 
II AF function 2 (i.e., TIM4_CH1) with no pull-up/pull-down 

II Enable the clock to timer 4 
RCC->APBlENRl I= RCC_APB1ENR1_TIM4EN; 

II Set up an appropriate prescaler to slow down the timer's input clock 
TIM4->PSC = 127; 

II Set Auto-reload value to maximum value 
TIM4->ARR = 0xFFFF; //Maximum 16-bit value 

II Set the direction of channel 1 as input, and select the active input 
TIM4->CCMR1 &= -TIM_CCMRl_CClS; //Clear capture/compare 1 selection bits 
TIM4->CCMR1 I= TIM_CCMR1_CC15_0; // CClS[l:e] for channel 1: 

II ee = output 
II e1 = input, CCl is mapped on timer input 1 
II 1e = input, CCl is mapped on timer input 2 
II 11 = input, CCl is mapped on slave timer 

II Program the input filter duration: Disable digital filtering by clearing 
II IC1F[3:0) bits because we want to capture every event 
TIM4->CCMR1 &= -TIM_CCMRl_IClF; //No filtering 

II Set the active transition as both rising and falling edges 
II CClNP:CClP bits: ee = rising edge e1 =falling edge 
11 10 = reserved 11 = both edges 
TIM4->CCERl=TIM_CCER_CC1PITIM_CCER_CC1NP; II Both edges generate interrupts 

II Program the input prescaler: Clear prescaler to capture each transition 
TIM4->CCMR1 &= -(TIM CCMRl !ClPSC); 



} 

15.4 - Input Capture 

II Enable capture for channel 1 
II CClE: e = disabled, 1 = enabled 
TIM4->CCER I= TIM_CCER_CClE; 

II Allow channel 1 of timer 4 to generate interrupts 
TIM4->DIER I= TIM_DIER_CClIE; 

II Allow channel 1 of timer 4 to generate OMA requests 
TIM4->DIER I= TIM_DIER_CClDE; II Optional. Required if OMA is used 

II Enable the timer counter 
TIM4->CR1 I= TIM_CRl_CEN; 

II Set priority of timer 4 interrupt to e (highest urgency) 
NVIC_SetPriority(TIM4_IRQn, 0); 

II Enable timer 4 interrupt in the interrupt controller (NVIC) 
NVIC_EnableIRQ(TIM4_IRQn); 

while(l); 

Example 15-7. Implementation of the initialization of a timer for input capture 

15.4.2 Input Capture in Slave Mode with Reset 
The interrupt handler in Example 15-6 can be simplified to the following if software sets 

timer 4 channel 1 as the slave mode with automatic reset. 

volatile uint32_t pulse_width = 0; 

void TIM4_IRQHandler(void) { 

} 

if((TIM4->SR & TIM_SR_UIF) != 0) 
TIM4->SR &= -TIM_SR_UIF; 

II Check if overflow has taken place 
II Clear UIF Flag to prevent re-entering 

if((TIM4->SR & TIM_SR_CClIF) != 0) II Check interrupt flag is set 
pulse_width = TIM4->CCR1; II Reading CCRl clears CClIF flag 

Example 15-8. Interrupt handler if timer is in slave mode 

Figure 15-25 illustrates the basic concepts. The timer uses each rising edge to reset the 

timer counter, and each falling edge to make a capture and generate a timer interrupt. 
For up-counting, the timer counter is re-initialized to zero upon a reset. Example 15-9 is 

the additional configuration that selects the slave mode with reset. This code should be 

added before the channel is enabled, i.e., before software sets the CClE bit in the CCER 
register. In this mode, a rising edge of the input signal reinitializes the counter, and a 

falling edge generates a timer interrupt. The pulse width is the CCR value captured. 



General-purpose Timers ln~W 

Input Signal 

Interrupts are generated 
only on falling edges 

t·-······································y········································i 
I I 
1 Pulse Width = CCR x Counter Clock Period 1 
I I 

Timer Counter I I Up-counting 
I I 
I I 
I 

CCR ----,------------ --------

1 
I 
I 
I 
I 
I 

Rising edge resets timer 
counter. 

Falling edge triggers an 
capture and an interrupt 

Figure 15-25. Input capture when the timer is set as slave mode with automatic reset 

II Select falling edges as the active transition to generate interrupts 
II CClNP:CClP bits: 00 = rising edge 01 =falling edge 
11 10 = reserved 11 = both edges 
TIM4->CCER &= -(TIM_CCER_CClP I TIM_CCER_CClNP); II Clear polarity bits 
TIM4->CCER I= TIM_CCER_CClP; II Only falling edges generate interrupts 

II Select the input trigger source 
TIM4->SMCR &= -TIM_SMCR_TS; II Clear the trigger selection bits 
TIM4->SMCR I= 4UL « 4; II 100: Til Edge Detector (TilF_ED) 

II Select slave mode with reset 
TIM4->SMCR &= -TIM_SMCR_SMS; 
TIM4->SMCR I= 4; 

II Clear slave mode bits 
II 0100 Slave mode with reset 

Example 15-9. Setting Timer 1 as the slave mode with reset 

Figure 15-26 shows the selection of the input signal to the slave mode controller and the 
capture signal to the capture module for channel 1. 

• The input signal input (TGRI) to the slave mode controller can be selected from 
TilF _ED, TilFPl, TI2FP2, ETF, and various ITR from other timers. Depending on 
SMS bits in the SMCR register, the input signal can be used to trigger the reset of the 
timer counter (reset mode), stop and start the time counter based on polarity (gate 
mode) or start the counter on rising edges of TGRI (trigger mode). In Example 15-9, 
TGRI is used to reset the time counter. Specifically, it selects TilF _ED as the trigger 
source. As a result, the counter is reset on both rising and falling edges of TilF. 



15.4 - Input Capture 

• The capture signal to the capture module can be TI1FP1, TI2FP2 or TRC. Example 
15-9 selects TilFPl as the capture signal. Also, a capture is made on each falling 
edge of TI1F . 

In SMCR: ETP bit for polarity, ETPS bits for 
prescaler, ETF bits for filtering , 

ET Polarity selection, ETF (External Trigger after Filtering) 

Prescaler, and Filter 

Trigger output ITRO, ITR1 , ITR2, ITR3 

Tl1 Timer Input 
Filter 

IC1F bits in CCRM1 

Tl1 : Timer Input of Channel 1 

Tl1F 

(TRGO)from 
other timers 

Edge 
Detector 

Tl1F _Rising 

Tl1F _Falling 

Tl1 F: Timer Input of Channel 1 after Filtering 
Tl1 FP: Timer Input of Channel 1 after Filtering and Polarization 
Tl1 F _ED: Timer Input of Channel 1 after Filtering and Edge Detector 
ET: External Trigger 
ITR: Internal Trigger 

CC1NP :CC1P 
bits in CCER 

TRC 

TRC from slave 
mode controlelr 

TS bits in SMCR 

Trigger input 
(TRGI ) to slave 
mode controller 

Capture signal 
to the capture 

module 

CC1S bits in CCRM1 

Figure 15-26. Internal trigger and capture signals for channel 1 

Figure 15-27 shows an example time diagram of measuring the pulse width. It is assumed 
that no filtering has been applied to the input signal (Til). 

Counter 
Clock 

Timer Input Tl1 , t 
Tl1F (no filtering) 

'----y-----J 
Pulse Width Pulse Width 

Tl1F_Rising n n 
·'--------' '------

• Interrupt , Interrupt 

Tl1F _Falling ~ ~ 
Tl1F _ED n n n n 

Reset Capture & Reset Capture & 
Counter Reset Counter Counter Reset Counter 

Figure 15-27. Counter reset events and capture events in slave mode with reset 



General-purpose Timers lnrM 

15.4.3 Interfacing to Ultrasonic Distance Sensor 
An ultrasonic distance sensor has one transmitter and one receiver. The transmitter 
generates short bursts of high-frequency ultrasonic waves. The receiver detects any wave 

reflected back from the target, as shown in Figure 15-28. 

Without contacting with the target physically, it measures the difference in time between 
sending waves and receiving reflected waves. The distance is then calculated as follows: 

. Round Trip Timex Speed of Sound 
Distance = 

2 

One example application is an automatic door opener, which opens a door when a person 
approaches. Compared with optical distance sensors, ultrasonic distance sensors are low 

cost but less accurate. 

Figure 15-28. Ultrasonic distance sensor of HC-SR 04 
(VCC = +SV, Trig= Trigger input to sensor, Echo = Echo time output of sensor) 

To start a distance measurement, the processor should send a high pulse signal (~3.2V) 
with a width of 10 µs to the trig pin. The ultrasonic transmitter then sends out 8 cycles of 
40-KHz ultrasonic waves (i .e., for 200 µs), which is greater than the upper limit of human 
hearing range (typically 20 KHz). 

When the ultrasonic receiver detects any waves reflected within a predefined time 
window, it generates a high pulse (SV) on the echo pin. The pulse width is linearly 
proportional to the distance of the nearest objects. 

Specifically, if the width of the pulse on the echo pin is in microseconds (µs), the distance, 
measured in centimeters, is calculated as follows: 

. Pulse Width (µs) 
Distance = cm 

58 
or 

Pulse Width (µs) . 
Distance= 

148 
mch 



15.4 - Input Capture 

The sensor can measure a distance between 2 cm and 400 cm, with a resolution of 0.3 cm, 
and the corresponding echo pulse width is between 150 µsand 25 ms. When the sensor 
detects no object, the echo pulse width is 38 ms. 

Trigger Signal 

':I 
10 µs 
,-·'"'•, n n n .. . . ......................... , .......................... . 

0.655 second 

Echo Signal 
150 µs 5 Pulse Width 5 38 ms 

Figure 15-29. Trigger and echo signals 

Suppose we want to measure the distance every 0.655 seconds, as shown in Figure 15-29 
and Figure 15-30. We can use two timers to interface the ultrasonic distance sensor. 

• The first timer, which is set as PWM output mode 1 and connected to the trigger 
pin of the sensor, generates a pulse signal with a width of 10 µs. 

• The second timer, which is set as input capture and connected to the echo pin of 
the sensor, measures the pulse width of the echo signal. The second timer should 
be able to detect both the rising and falling edge of the echo signal. 

OxFF

0

FFt ./1 ./1 
Timer1 ~ 

ARR= 
OxFFFF 

'-v-' 
Period= 10µs x 216 = 0.655s 

0.655s 
~ 

TriggerLL 

PE.11 -+lt+-Timer 1 
Channel 2 

PWM 
Output 
Mode t---tt--, 

10µ s .--------. 

5Vo 
HSI 

16MHz 

Timer4 
Channel 1 

PSC = 159 

PSC = 15 

1 

CNT 

Edge detector triggers logging 
the CNT value into CCR1 . 

v .. 

'-----tH-- Trigger 
.-------i-- Echo 

PB.6 

Proportional to distance 

Echo J 
Figure 15-30. Setup of timers for interfacing the ultrasonic distance sensor. 



General-purpose Timers it.pi 

As shown Figure 15-30, we use Timer 1 Channel 2 to drive the trigger pin. Suppose 16 
MHz HSI is selected to drive the timers. The following shows the calculation of the period 

and pulse width of sensor trigger signal. 

TimerllnputClock 16MHz 
0 

MH 
Timer 1 Counter Clock = 1 + Prescaler = 1 + 159 = .1 z 

1 
PWM Period = (1 +ARR) x Counter Clock Period= (1 + OxFFFF) O.l MHz= 0.655 s 

1 
PWM pulse width= CCR x Counter Clock Period = 1 x O.l MHz= 10 µs 

The distance measured is only in one direction with limited angular resolution. We can 
use multiple ultrasonic sensors to detect objects in several directions. Also, it is possible 
that an object reflects ultrasonic waves away if the target surface is oriented at 
unfavorable angles, resulting in the object being undetected. Additionally, objects with a 
soft or irregular surface might not reflect enough ultrasonic waves back, and accordingly, 
ultrasonic sensors fail to detect them. Moreover, sounds travel slower in colder air, and 
thus the program should perform some calibration to achieve better accuracy. 

The following assembly code selects the 16MHz HSI clock as the system clock. 

; Select HSI (16 MHz, 1% accuracy) as the system clock. 
HSI_init PROC 

EXPORT HSI_init 

; Turn on HSI oscillator 
LDR r0, =RCC_BASE 
LDR rl, [r0, #RCC_CR) 
ORR rl, rl, #RCC_CR_HSION 
STR rl, [r0, #RCC_CR) 

; Select HSI as system clock 
LDR rl, [r0, #RCC_CFGR) 
BIC rl, rl, #RCC_CFGR_SW 
ORR rl, rl, #RCC_CFGR_SW_HSI 
STR rl, [r0, #RCC_CFGR) 

; Wait for HSI stable 
WaitHSI LDR rl, [r0, #RCC_CR) 

AND rl, rl, #RCC_CR_HSIRDY 
CMP rl, #0 
BEQ WaitHSI 
BX LR 
ENDP 

Example 15-10. Configuring high-speed internal clock (HSI) 



15.4 - Input Capture 

Timer 4 uses the input capture to record the time instant when a rising or falling edge 
takes place in the echo signal, as shown in Figure 15-30. Software should set the update 
interrupt enable flag (UIE) and the capture event flag (CClIE for channel 1) in the 
OMA/interrupt enable register (DIER) to allow these interrupts. 

Timer 4 is set as counting upward. A counter overflow occurs when the 16-bit timer 
counter reaches 0xFFFF. Because the counter increments every lµs, an overflow occurs 
every 216 x 1 µs = 6.5 ms in this example. When an overflow occurs, the timer generates 
an interrupt and sets up the UIF flag bit in the interrupt status register (SR). 

Even though the duration of the echo signal from the sensor is limited to 38 ms, it is 
possible that the counter can overflow when measuring the pulse width of the echo signal, 
as shown in Figure 15-31. 

ECHO Signal 

Timer Counter Overflow ., 

CCR_New ------------f------------------------------------------------------- ---
0 

Figure 15-31. Overflow occurs between two capture events 

Thus, we need a variable (named overflow in the following code) that counts the number 
of overflows within one pulse. The time span can be calculated as follows: 

Time Span (µs) = (CCRNew - CCRLast) + 65536 x Overflows 

in which is CC RNew is currently captured value and CC RLast is the last captured value. 
The variable Overflows should be reinitialized to zero after the time span is calculated. 
After calculating the time span, the program should use the current counter value to 
update the last counter value to prepare the next calculation. 

Example 15-11 shows the assembly implementation of the interrupt handler for timer 4 

(TIM4_IRQHandler). The three variables timespan, lastCounter, and overflow should be 
defined in the data area. 



General-purpose Timers IEIIm 

; These three variables should be defined in the data area 
timespan DCD 0 , Pulse width 
lastCounter DCD 0 ; Timer counter value of Last capture event 

overflow DCD 0 ; Counter the number of overf Lows 

; The following should be in the code area 
TIM4_IRQHandler PRO( 

EXPORT TIM4_IRQHandler 

PUSH {r4, r6, r10, lr} 

LDR r0, =TIM4_BASE , Pseudo instruction 
LDR r2, [r0, #TIM_SR] ; Read status register 
AND r3, r2, #TIM_SR_UIF ; Check update event f Lag 
CBZ r3, check_CCFlag ; Compare and branch on zero 

LDR r3, =overflow 
LDR rl, [r3] ; Read overflow from memory 
ADD rl, rl, #1 ; Increment overf Low counter 
STR rl, [r3] ; Save overf Low to memory 

BIC r2, r2, #TIM_SR_UIF ; Clear update event flag 
STR r2, [r0, #TIM_SR] ; Update status register 

check_CCFlag AND r2, r2, #TIM_SR_ CClI F , Check capture event f Lag 
CBZ r2, exit , Compare and branch on zero 

LDR r0, =TIM4_BASE ; Load base memory address 
LDR rl, [r0, #TIM_CCRl] ; Read the new captured value 

LDR r2, =lastCounter 
LDR r0, [r2] , Load the Last counter value 
STR rl, [r2] ; Save the new counter value 
CBZ r0, clearOverflow ; Compare and branch on zero 

LDR r3, =overflow 
LDR r4, [r3] , Load the overf Low value 
LSL r4, r4, #16 , Multiply by 2A16 (i.e., 65536) 
ADD r6, rl, r4 
SUB r10, r6, r0 ; r10 = timer counter difference 
LDR r2, =timespan 
STR r10, [r2] ; Update timespan in memory 

clearOverflow MOV r0, #0 
LDR r3, =overflow 
STR r0, [r3] ; clear overflow counter 

exit POP {r4, r6, r10, pc} 
ENDP 

Example 15-11. Implementation of interrupt handler in assembly for measuring pulse width 



15.4 - Input Capture 

In the above code, we use "LSL r4, r4, #16" instruction to replace multiplication with 
65536 (i.e., 216

). A shift instruction runs much faster than a multiplication instruction. 
Additionally, the lastCounter variable is initialized to 0. 

The code above calculates the time span between a rising edge and a falling edge. We can 
improve the code by only calculating the time span from a rising edge to a falling edge, 
and ignore the time span from a falling edge to a rising edge. 

One common mistake is that the interrupt handler 
does not clear the update event flag in the 
interrupt status register (SR). In the above code, 
the hardware sets up interrupt flags in SR. 

• If the UIE bit in the DMA/interrupt enable 
register (DIER) is set, hardware sets the 
update flag when a counter overflow (or a 
counter underflow if the counter counts 
down) occurs. 

• If the capture/compare interrupt enable 

Interrupt handlers must 
clear interrupt flags in the 
status register to prevent 

the processor from re
entering the handler. 

(CCIE) bit is set in the DIER register, hardware sets the capture flag (CCIF) when a 
rising edge or a falling edge of an external signal is detected. Hardware also sets 
the over-capture flag (CCOF) if a new capture is made while the CCIF flag is set. 

Hardware automatically clears the capture flag (CCIF) when software reads register (CCR). 

Therefore, TIM4_IRQHandler does not clear the CCIF flag explicitly. 

31 30 29 28 TT 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CCxIF: Interrupt flag on channel x 
For output on channel x, hardware sets this flag when the counterCNT matches register CCR. 

CD :::! 
:;; -n 

For input on channel x, hardware sets this flag when the counter CNT has been latched into register CCR. 
ccxoF: Over-capture flag on channel x 

For input on channel x, hardware sets this flag when a new capture has been made whileCCxIF was already set. 
UIF: Update interrupt flag 

Hardware sets this flag when the counterCNT overflows during up-counting or the counter CNT under-flows during down-rounting . 

Figure 15-32. Timer status register (SR) 

However, the interrupt handler must clear the update flag (UIF) in the status register (SR). 
If it were not cleared, the timer interrupt handler would repeatedly be called, which not 
only generates errors in calculating a time duration but also makes the processor have no 
time to run other codes with a lower priority. 

,, 



General-purpose Timers 11$1 

15.5 Exercises 
1. Suppose we want to use a timer to generate a PWM signal. 

• PWM has a duty cycle of 25%. 
• PWM has a fixed frequency of 320 Hz 
• The input clock to the timer is 32 MHz. 
• The timer uses PWM mode 2: the output is high if the counter is larger 

than or equal to the content of CCR. 

How would you design the prescaler (PSC), the auto-reload register (ARR), and the 
compare and capture (CCR)? Show your calculation. 

2. Use an oscilloscope to measure duty cycles. Timer input clock has 2.097 MHz. 
a. What is the relationship between the timer input clock, the counter clock 

CK_CNT, the prescaler PSC, and the pulse period measured? 

b. We want to keep TIM4_ARR fixed, but set TIM4_CCR1 to three different values, 
as listed below. How would you set up the ARR, PSC, and CCR register values? 
Calculate the duty measured and verify the correctness. 

• Case 1: TIM4_CCR1=1/6 * (TIM4_ARR + 1) 

• Case 2: TIM4_CCR1 = 1/3 * (TIM4_ARR + 1) 

• Case 3: TIM4_CCR1=1/2 * (TIM4_ARR + 1) 

3. Suppose the HSE (high-speed external clock) of 16 MHz is selected as the clock of 
the timer. To generate a lHz square wave with a duty cycle of 50%, how would 
you set up the timer? Indicate your counting mode and show the value of ARR, 
CCR, and PSC registers. 

4. Write an assembly program that uses the output compare function of a timer to 
toggle an LED every second. 

5. Write an assembly program that generates a PWM output signal to dim an LED 
periodically. 

6. Write an assembly program that uses PWM to generate a square wave signal with 
a frequency of 440 Hz and a duty cycle of 50% (i .e., musical tone A). 

7. Write an assembly program that uses PWM to control a stepper motor via micro 
stepping. 

8. Write an assembly program that uses the input capture function to measure the 
frequency of an external signal. Use a function generator to generate a lHZ square 



15.5 - Exercises 

wave. Send the square wave to the STM32L board to verify the correctness of your 
assembly program. 

9. Write an assembly program that uses the HC-SR04 ultrasonic distance sensor 
presented in Chapter 15.4.3 to measure the distance to an object. 

10. In the timer interrupt handler, we need to increment the overflow counter if an 
overflow occurs. Register r3 holds the overflow counter. However, the main 
function cannot observe any changes in register r3 even though overflow events 
have occurred. Explain why. 

; r3 = overflow counter 

TIM4_IRQHandler PROC 
EXPORT TIM4_IRQHandler 

LDR r0, =TIM4_BASE 
LDR rl, [r0, #TIM_SR) 
AND r2, rl, #TIM_SR_UIF 
CBZ r2, check_CCIF 

ADDS r3, r3, #1 

check_CCIF 

ENDP 

, Read status register 
; Check update event flag 
; Compare and branch on zero 

, Increment the overflow counter 



Stepper Motor Control iiteW 

CHAPTER 

16 

Stepper Motor Control 
DC motors are often used in applications as diverse as robots, printers, machine tools, 
household appliances, medical equipment, automotive devices, and computer hard 
drives. DC motors can be classified into two broad categories: servo motors and stepper 
motors. 

• A servo motor operates in a closed loop system because it needs continuous 
position feedback to control the motor to achieve some desired speed or position. 
Thus, servo motors are more expensive than stepper motors. We often use PWM 
signals to control a servo motor. 

• A stepper motor rotates to a specific position in discrete steps. The control of a 
stepper motor can be an open loop system, which requires no position feedback. 

Compared with stepper motors, servo motors are more suitable for applications that 
require high speed or high torque, or applications that have dramatic load changes. 
Stepper motors tend to have lower torque capacity at high speeds, lose steps if 
overloaded, and have a greater level of vibration due to the stepwise motion. However, 
stepper motors are less expensive due to the cost savings of the sensors and the controller 
and easier to interface with microprocessors. They are also suitable for applications that 
require low or medium accelerations or applications that have a constant load. 

16.1 Bipolar and Unipolar Stepper Motor 

Stepper motors are either bipolar or unipolar. 

• A bipolar stepper motor often requires a power source with switchable polarities, 
such as a complicated H-bridge (see Figure 16-3). Such a power source can reverse 
the electric current and the electromagnetic polarity of each coil winding. 



16.1 - Bipolar and Unipolar Stepper Motor 

• A unipolar stepper motor requires only one power supply, and the electric 
current does not reverse its direction in each coil winding (see Figure 16-4). The 
unipolar motor uses half of its winding coil to generate the electromagnetic field 
while a bipolar motor uses a full winding coil. Therefore, a bipolar stepper motor 
usually has a higher torque capacity than a unipolar one of the same weight. 
However, a unipolar stepper motor has a simpler control circuit. 

Stator 
Brown (1) N 

/--··-·--._ 
. ""' 

A N~S 

Black (2) s 

B 
Orange (3) Yellow (4) 

Figure 16-1. Bipolar stepper motor with two 
phases (A, B) on the stator, and two permanent 

magnetic poles on the rotor 

vcc 

SW1 SW2 SW5 SW6 

A B 
Brown Black Orange Yellow 

SW3 SW4 SW7 SWB 

Figure 16-3. Circuit to drive a bipolar stepper 
motor. Each winding is fully utilized, but its 

electrical current reverses the direction 
alternatively. 

L!J Stator 
Brown (1) 

A /.--------, 
. " 

Green (2) ~s 
A 

Black (3) s 

B B 
Orange (4) Red (5) Yellow (6) 

Figure 16-2. Unipolar stepper motor with two 
phases (A, B) on the stator, and two permanent 

magnetic poles on the rotor 

vcc 

Green Red 

A B B 

Brown Black Yellow 

SW1 SW2 SW3 SW4 

Figure 16-4. Circuit to drive a unipolar stepper 
motor. The electrical current always flows in one 

direction, but only half of each winding is 
utilized. 

This chapter uses a unipolar stepper motor as an example to show how a processor 
controls stepper motors. The model is Mabuchi #PF35T, as shown in Figure 16-5. The 
motor has 2 phases and 48 steps per revolution (i.e., 7.5 degrees per step). The rotor has 

10 teeth. 



Stepper Motor Control llJM 

Figure 16-5. A six-lead unipolar stepper motor 

16.2 Step Angle 
For each pulse, the shaft of a stepper motor rotates a fixed angle. Depending on the 
activation sequence of coil windings, the shaft can rotate a full step, a half step, or a 
specific fraction of a full step. The corresponding activation sequence is called full 
stepping, half stepping, and micro-stepping. 

When the shaft rotates a full step, the angle it moves is referred to as step angle. We can 
calculate the step angle as follows: 

360° 
Step Angle = -------

steps per revolution 

steps per revolution = P x T 

where P is the total number of phases on the stator, and T is the total number permanent
magnetic poles available on the rotor. In Figure 16-1 and Figure 16-2, there are only two 
poles on the rotor. In reality, there are more magnetic poles on the rotor to achieve a small 
step angle, as shown in Figure 16-6. 

$ N 

(/) -z. 
s N 

-z. (/) 

Rotor with only two poles 

N $ 

Rotor with 12 poles 

Figure 16-6. Number of magnetic poles on the rotor of a stepper motor 



16.3 - Wave Stepping 

Usually, a stepper motor has two or three phases. A typical number of steps per 

revolution is 48, 72, 144, 180, and 200, resulting in a step angle of 7.5°, 5°, 2.5°, 2°, and 1.8°, 

correspondingly. The motor shown in Figure 16-5 has 2 phases on its stator and 24 poles 
on its rotor. Thus, its step angle is 

360° 
Step Angle = 

2 
x 

24 
= 7.5° 

For full stepping, a stepper motor rotates by one step angle for each input pulse. For half
stepping, it rotates half of a step angle. For micro stepping, the motor rotates a specific 
fraction of a step angle. Rotating a fixed angle for each pulse enables open loop position 
control. The number and the rate of the pulses control the position and the speed of the 
motor shaft, respectively. 

16.3 Wave Stepping 
As the simplest stepping method, wave stepping turns on one switch and energizes a 
single phase at a time. Figure 16-7 shows the control sequence of four switches of four 
winding coils (A, B, A, and B). For each switch, if its control signal is high, then the switch 
is turned on, and electric current flows through the corresponding winding coil. For 
example, when the signal of SWl is high, the corresponding coil A is energized. Software 
turns on these switches alternatively in this control sequence. 

SW1 (A) n----------h1--·'·::, ____,__........______. 
SW2 (A) i f 

: : 

SW3 (B) l ! 

SW4 (B) ,_i _,__ ___ ____.n"'"""": _.__ _____ fl:. ':. 

1 f 

1 2 3 4 1 2 3 4 

Figure 16-7. The sequence of wave stepping for two-phase unipolar stepper motors. The stator 
is energized in the sequence of A, B, A, and B. 

To simplify the presentation, we assume the rotor has only two permanent magnetic 
poles, as shown in Figure 16-8. In reality, the rotor often has more poles to obtain a small 

step angle. 



Stepper Motor Control ID.I 

Therefore, the rotor rotates 90 degrees for each pulse in this simplified example. If the 
load on a stepper motor is not too large, the rotor is eventually locked at an angular 
position where the permanent-magnet rotor is aligned with the electromagnetic field of 
the activated coil winding. Figure 16-8 shows that the rotor is being pulled from the 
previously locked position when a new phase is energized. 

This control sequence is called wave stepping. At any time, only one coil winding is 
energized, and thus it offers a relatively small torque. Therefore, wave stepping is not 
widely used in real systems. 

Step 1 Step 2 Step 3 Step 4 

Vex; Vee 

Vee 

Figure 16-8. Wave stepping sequence of a simplified bipolar stepper motor with two phases 

on the stator and two poles on the rotor (90° stepping) 

16.4 Full Stepping 
While wave stepping activates one coil winding each time, full stepping energizes two 
coil windings alternatively. 

• To turn the shaft clockwise, the coil activation sequence is AB, AB, AB, and AB, as 
shown in Figure 16-9. 

• Reversing the activation sequence makes the shaft to rotate counterclockwise. 

Both wave stepping and full stepping rotate the shaft a step angle each time and have the 
same number of steps in one revolution. However, the full stepping produces a higher 
torque than wave stepping because two coil windings push or pull the shaft 
simultaneously. 

Figure 16-8 shows that the rotor starts to move from the angular position locked in the 
previous step. Reversing the control sequence supplied to the switches can change the 
rotation direction. For clockwise rotation, the coil activation sequence is AB, AB, AB, and 
AB. For counter-clockwise rotation, the coil activation sequence is Ali, AB, AB, and AB. 



16.4 - Full Stepping 

SW1 (A) I 
!:· SW2 (A) I : 

SW3 (B) ,_LJ_...,., _ __. .__....___,r----+---1~ 

SW4 (B) H.___....__--1 H 
! j i j 

2 3 4 2 3 4 
Figure 16-9. Sequence of full stepping for two-phase unipolar stepper motors 

Step 1 Step 2 Step 3 Step 4 

Figure 16-10. Full stepping sequence (90° stepping) on a simplified bipolar stepper motor 

Example 16-1 and Example 16-2 show incomplete C programs that use full stepping to 
rotate a stepper motor 360 degrees clockwise and counter-clockwise, respectively. 

/I Full step: eb1ee1, eb1e1e, ebe11e, ebe1e1 
// Each four-bit sequence represents the ON/OFF control of 4, A, H, and f . 

unsigned char Ful1Step[4) = {0x9, 0xA, 0x6, 0x5}; 

for(int j = 0; j < 48; j++){ II ,> ~ p - 56u 

} 

for(int i = 0; i < 4; i++){ // CLock~11ise rotation 

} 

for(int k = 0; k < 6000; k++) {;} //A short delay 

II Winding 1 

II Winding 

(FuLLStep[i] & ex8) >> 3 

(FuLlStep[i] & ex4) >> 2 
/I Winding 1 (FuLLStep[i] & 6x2) >> 1 

II Winding ' FulLStep[i] & exl 
//Set the value of the GPIO output data register (ODR) 

Example 16-1. Incomplete C program rotating a stepper motor clockwise by full stepping 



Stepper Motor Control IFJI 

II Full Step: 0b1001, 0b1010, 0b0110, 0b0101 

// Each four-bit sequence represents the ON/OFF control of 1, 1: , , and . 

unsigned char Fu11Step[4] = {0x9, 0xA, 0x6, 0x5}; 

for(int j = 0; j < 48; j++){ // '> ,. 

} 

for(int i = 3; i >= 0; i--){ //Counter-clockwise rotation 
for(int k = 0; k < 6000; k++){;} //A short delay 

} 

II Winding (FullStep[i] & 0x8) >> 3 
II Winding 
11 Winding I 

(FullStep[i] & 0x4) >> 2 
(FullStep[i] & 0x2) >> 1 

II Winding , FullStep[i] & 0xl 
II Set the value of the GPIO output data register (ODR) 

Example 16-2. Incomplete program rotating counter-clockwise by full stepping 

16.5 Half Stepping 
Figure 16-11 shows the activation sequence of half-stepping: AB, A, AB, B, AB, A, AB, and 
B. It energizes one winding coil and two winding coils alternatively. Half stepping 
provides less torque but twice as much rotation resolution as full stepping. Half stepping 
can rotate the shaft more smoothly than full stepping. However, it sometimes has only 
one half-coil winding activated and produces less torque than full stepping. 

Figure 16-12 shows the rotation sequence of a simplified motor with only two poles on 

the rotor. It includes eight half-steps, and the shaft rotates 45° in each half-step. 

SW1 (A) 

LJ 
I I 

SW3(8) .____....____. 
j j 
i i 

i 

SW4 (B) n--------------1 
1 j 

2 3 4 5 6 7 8 2 3 4 5 6 7 8 

Figure 16-11. Sequence of half stepping for two-phase unipolar stepper motors 



16.5 - Half Stepping 

Step 1 Step 2 Step 4 

Vee 

Step 5 Step 6 Step 7 Step 8 

~-llil ~--llil 

Vee / .. § S l 
"· .. 

z 

N Vee 

Vee 

Figure 16-12. Half-stepping sequence for unipolar stepper motors (45° stepping) 

Example 16-3 shows an incomplete C program that uses half-stepping to rotate a stepper 
motor 360 degrees clockwise. 

II Half Step: 0b1001, 0b1000, 0b1010, 0b0010, 0b0110, 0b0100, 0b0101, 0b0001 

II Each four-bit sequence represents the ON/OFF control of 4,4,8,and a . 

unsigned char HalfStep[8] = {0x9, 0x8, 0xa, 0x2, 0x6, 0x4, 0x5, 0xl}; 

for(int j = 0; j < 96; j++){ // % 'l ·p.<; x '3.75' 1 L 'JJ 360' 

} 

for(int i = 0; i < 8; i++){ //Clockwise rotation 
for(int k = 0; k < 6000; k++){;} //A short delay 

11 Winding A (HalfStep[i] & exB) » 3 

II Winding 1 = (HalfStep[i] & 0x4) >> 2 
II Winding P = (HalfStep[i] & 0x2) >> 1 

II Winding F = HalfStep[i] & 0xl 
// Set the value of the GPIO output data register (ODR) 

} 

Example 16-3. Incomplete C program that rotates a stepper motor clockwise by half stepping 



Stepper Motor Control 1111 

16.6 Micro-stepping 
As introduced previously, a microcontroller can use full stepping or half stepping to 
control a stepper motor. A stepper motor rotates exactly a full step angle or a half step 
angle in each excitation in full or half stepping, respectively, resulting in jerky and noisy 
movements of the motor. 

In this section, we use the PWM to perform micro-stepping, which rotates a fraction of a 
full step angle in one excitation, such as 1/4, 1/8, 1/16, or 1/32 of a full step. 

Micro-stepping divides a full step into multiple smaller steps. It moves the shaft in a 
smaller angle increment, provides a much smoother movement, and reduces the 
problems of movement noise and vibration. 

The goal of micro-stepping is to adjust the electrical current dynamically in each winding 
to make the acceleration or deceleration of the shaft less noticeable. We can use PWM to 
generate a fast binary signal with an appropriately chosen duty cycle to adjust the 
amplitude of the voltage across each winding dynamically. Usually, the applied voltage 
on a winding is linearly proportional to the current generated. 

Sine-cosine micro-stepping is a widely-used method to adjust the amplitude of the 
voltage on each winding. When two windings a and b are excited simultaneously, the 
overall static magnetic torque generated by both windings is 

T = -kia sin() + kib cos() 

where k is a constant, () is the shaft mechanical angle from the last full-step position, and 
ia and ib are the electrical current in windings a and b. 

When the shaft remains at a stable angle, the torque force is balanced, and thus we have 
T = 0. In sine-cosine micro-stepping, to make the overall torque force to be zero, we can 
set the electrical current in both windings as follows: 

where Im is a constant. Therefore, the overall static magnetic torque is 

T = -kia sin() + kib cos() 
= -klm cos() sin() + klm sin() cos() 
=0 



16.6 - Micro-stepping 

Microprocessors use discrete sine and cosine wave to drive both windings. Figure 16-13 
shows the voltage signal of each phase of unipolar stepper motors if 1/4 micro-stepping 
is used. Figure 16-14 shows the voltage signal across each coil winding. 

~:'.V:\ . z·s '. l 
0 90 180 270 360 450 540 630 720 

~ :'.r.____.__: ___..._Z-----'----'-'\._____.__: ___..._z-'----'-':~ 
0 90 180 270 360 450 540 630 720 

~:'. ~~ z~s~~: z~:s~1 
0 90 180 270 360 450 540 630 720 

~:Js : z:\ : ZJ 
0 90 180 270 360 450 540 630 720 

Figure 16-13. 1/4 sine-cosine micro-stepping for four-phase unipolar stepper motors 

d 
~ 0.7 

;;: 04 

I 
~ 0 
~ 

>-04 

-0.7 

-0:~ 
0 90 180 270 360 450 540 630 720 

o3 
11'.Q' 0.7 

;;: 04 

I 

CO' 
0 

.___, 
> -04 

-0 .7 

90 180 270 360 450 540 630 720 

Figure 16-14. 1/4 sine-cosine micro-stepping for each coil winding of unipolar stepper motors 



Stepper Motor Control IFJI 

Suppose the auto-reload register (ARR) of a timer is 1000 - 1 (i.e., 999), software should 
set the compare and capture register (CCR) of the timer to the following sequence 
repeatedly for 1/4 micro-stepping. 

uint16_t CCR_MicroStepping[] = {0, 383, 707, 924, 1000}; 

For 1/2 micro-stepping, the sequence of CCR should be 

uint16_t CCR_MicroStepping [] = {0, 707, 1000}; 

For 1/8 micro-stepping, the sequence of CCR should be 

uint16_t CCR_Microstepping [] = {0, 195, 383, 556, 707, 832, 924, 981, 1000}; 

16. 7 Driving Stepper Motor 
ULN2803 

OUT1 

OUT2 

OUT3 

OUT4 

OUT5 

OUTS 

OUT? 

OUT8 

COM 

Figure 16-15. Connection diagram of driving a stepper motor 

We cannot directly drive a stepper motor by using the GPIO pins of the microprocessor 
because the GPIO ports cannot provide sufficient electric current required by the stepper 
motor. The maximum electric current supplied by a GPIO pin is approximately 10 mA. 
The stepper motor used in this lab has only 20 Os, and it draws 3V /200 = 150 mA, which 
exceeds the maximum current that can be supplied by a GPIO pin. Software should 
configure the mode of these GPIO pins as digital output with push-pull. 



. ..,. 16.8 - Exercises 

Another important reason for not using GPIO pins to drive a motor directly is that the 
motor may cause a back electromotive force in the circuit while it is accelerating or 
decelerating. This generates a voltage that pushes against the current that induces it, 
which could potentially damage the microprocessor. 

We can use the 8-channel Darlington driver (ULN2803) to drive the stepper motor, as 
shown in Figure 16-15. The ULN2803 is a high-voltage, high-current Darlington 
transistor array, which consists of eight NPN Darlington pairs. Each Darlington pair can 
collect currents up to 500 mA. The output pin can withstand at least 50V in the off state. 
Suppression diodes are included for inductive load driving. Outputs may be paralleled 
for high current capability. 

For each Darlington pair, if a high positive voltage is applied to the input pin, then the 
corresponding output pin is grounded, and it can draw the electric current up to 500 mA. 
If the input pin has a low voltage supply, then the corresponding output pin cannot drain 
any current. An input pin takes -1 mA current only. 

16.8 Exercises 
1. Write an assembly program that turns the stepper motor 360 degrees clockwise 

by using full stepping. What is the highest update frequency of the full-stepping 
control signals while the motor does not drop any steps? You might need to use 
an oscilloscope to find your update frequency. 

2. Write an assembly program that turns the stepper motor 360 degrees counter
clockwise by using half-stepping. What is the highest update frequency of the 
half-stepping control signals while the motor does not drop any steps? You might 
need to use an oscilloscope to find your update frequency. 

3. Write an assembly program that changes the rotation speed when the push 
button is pressed. 

4. What would happen if the update frequency were higher than the maximum 
allowed in Question 1 and 2? 

5. Write an assembly program that uses pulse-width modulated (PWM) to perform 
micro-stepping. Micro-stepping is a digital technique to turn a stepper motor 
smoothly. 



Liquid-crystal Display (LCD) 1111 

CHAPTER 

17 

Liquid-crystal Display (LCD) 
An LCD is a cost-effective interface to display information to users in a friendly way. 
LCD modules are categorized into two groups: 

• External hardware driver. These have an external LCD controller chip, such as 
the Hitachi HD44780, the Toshiba T6963, and the Seiko-Epson SED1330. They use 
standard protocols to exchange data and commands between the microprocessor 
and the LCD controller chip. The advantage of using an external hardware driver 
is that fewer processor pins are required, and the software to interface the LCD 
module is relatively easier. 

• Internal hardware driver. These have a built-in hardware driver within the 
microprocessor chip. STM32L processors have a built-in LCD controller. The 
advantage of having an internal hardware LCD driver is that the system can be 
made smaller. However, it uses many processor pins and requires complex 
software to drive the LCD. 

In this chapter, we first introduce the processors that already have an on-chip LCD 
hardware driver. Specifically, we focus on two important aspects. (1) How does the on
chip LCD hardware driver generate voltage signals to turn a display pixel on or off? (2) 
How does a software driver display a string on the LCD? The goal of the first aspect is to 
reduce the pin requirements, and the target of the second aspect is to provide a flexible 
and easy-to-use interface to application developers. 

Additionally, this chapter also discusses how to interface off-chip (external) HD44780-
compatible LCDs, which have been widely used in the industry. We explain the 
connection diagram, font encoding, sending data and commands, and generating and 
displaying customized characters on the LCD. The goal is to understand LCD 
communication protocols and signal timing. 



17.1 - Static Drive 

17 .1 Static Drive 
When the voltage across a segment is greater than some threshold (V), the resulting 
electric field forces liquid crystals in this segment to align themselves to the electric field. 
Change of crystal orientation modifies light polarization and controls the amount of light 
that can pass through between two crossed polarizers. The crystals themselves do not 
emit any light, but those aligned crystals prevent light from passing through polarizers, 
causing the dark appearance. Applying the same voltage for a long period of time 
damages liquid crystals. Thus, the segment voltage is alternated. Usually, an LCD 
segment is driven by two square waveforms of the same frequency. 

There are two types of LCD drivers: static drive and multiplexed drive. The static drive 
uses one dedicated pin to turn on or off an LCD segment (also called a pixel). Figure 17-1 
shows an eight-segment display (including seven segments for the digit display and the 
dot). All segments share the same com signal. If the signals to drive the eight segment 
lines (SL i, i = 1to8) are set as in Figure 17-1, then the number 2 is displayed. The voltage 
across segment lines 1, 2, 4, 5, and 7 has an alternative voltage with amplitude larger than 
the threshold voltage. However, the voltage across segment 3 and 6 is a constant zero. 

X = SL1 = SL2 
= SL4 = SLS 
= SL7 = SL8 

Y = SL3 = SL6 

Difference between X 
and COM (X - COM) 

SL1 

cb 
:~~ G ~·•U 
SLS - (J fcl SL3 r 
VCDV~ 

' COM SL4 

- V/2 
0 

--V/2 

- V/2 
0 

- -V/2 

- V/2 
0 

- -V/2 

- V 

--V 

Difference between Y ----------------- - ~12 
and COM (Y - COM) - -V/2 

Figure 17-1. Static driving. There is only one common terminal in static driving. When a 
segment line has the same voltage waveform as the waveform of COM, this segment is 

turned off; otherwise, this segment line is turned on. 



Liquid-crystal Display (LCD) l.FJI 

The static drive is simple but requires many pins. An LCD usually has many pixel 
segments. For example, the LCD on the STM32L kit can display up to six decimal 
numbers at once and has 96 pixel segments. If the processor uses one pin to drive each 
pixel segment, then 97 pins would be required. However, it is not desirable for a 
processor to use 97 pins for an LCD. This motivates the use of a multiplexed driver, 
introduced in the next section. 

17.2 Multiplexed Drive 
To reduce the number of pins required, LCD modules often use a special hardware 
technology, called a multiplexed drive. While all display segments in the static drive have 
a single shared terminal, a multiplexed drive shares two or more common terminal lines 
to reduce the number of pins. 

Segment 
Line 0 (SLO) 

Common Terminal 
O(COMO) --~ 

.... 
(!) 
w 
(/) 

Common Terminal ____ ___, 
1 (COM1) 

Figure 17-2. Example with duty ratio of 1/2. Each 
segment line drives two display segments. 

Segment 
Line 0 (SLO) 

Common Terminal 
O(COMO) 

0 ..- N 
(!) (!) (!) 
w w w 
"' "' "' 

Common Terminal ___ ___, 
1 (COM1 ) 

Common Terminal 
2 (COM2) -----~ 

Figure 17-3. Example with duty ratio of 1/3. Each 
segment line drives three display segments. 

Two of the key concepts of multiplexed LCD drives are duty ratio and bias. 

1 
Duty Ratio = ------------

Number of Common Terminals 

1 
Bias = -----------

Number of Voltage levels - 1 

Figure 17-2 and Figure 17-3 give two examples in which the duty ratio is 1/2 and 1/3, 

respectively. In these examples, there are two and three common terminals, respectively, 
and all segments are connected to one of these common terminals. In addition, two or 
three segments share the same segment line, respectively. 

In the static drive given in Figure 17-1, nine pins are required, including one for the 
common terminal and eight for the display segments. If a multiplexed drive with a duty 
ratio of 1h is used to drive the same display, only six lines (or pins) are required, as shown 



Mini 17.2 - Multiplexed Drive 

in Figure 17-4. As discussed previously, the static drive would require 97 pins. A 
multiplexed drive with a duty ratio of % can reduce the total pins needed to drive the 
LCD from 97 to 28, including 4 common terminals and 24 segment lines. In this setting, 
each segment line drives four display segments. 

COM1 L1 

COMO 

Figure 17-4. Multiplexed drive scheme of a segment digit display (Duty ratio= 1/2). It has two 
common terminal lines. Each segment line drives two display segments. 

Compared with a static drive, a multiplexed drive reduces the total number of pins 
required at the cost of the brightness. The duty ratio represents the fraction of each time 
cycle that a segment is activated . In a multiplexed drive, each visible display segment is 
switched on and off with a frequency typically larger than 30 Hz. Human eyes usually 
cannot notice fast switching between on and off. If the duty cycle is 1/2, each visible 
display segment is on 50% of the time and off 50% of the time. By contrast, the static drive 
keeps each visible display segment on continuously. 

Example 17-1 and Example 17-2 illustrate the basic concept of a multiplexed drive when 
the duty ratio is 1/ 2. These two segments share the same segment line signal. The following 
presents four different cases: (1) turning on both segments, (2) turning off both segments, 
(3) turning on only the first segment and (4) turning on only the second segment. The 
signals of two common terminals and the segment line are shown for each case. Note 
there are three voltage levels (0, ±V/2, ±V) for the voltage across each segment. Therefore, 
the bias is V2. 

• When a segment is turned on, the magnitude of the voltage across this segment 
is either V /2 or V at any given time. If the activation threshold between V /2 and 
V, this segment is switched on or off quickly. The frequency of switching on and 
off is usually very fast so that the naked eyes cannot detect the flashing. However, 
the brightness is reduced by one half. 

• When a segment is turned off, the magnitude of the voltage across the segment is 
either 0 or V/2 at any given time. These voltage levels are less than the activation 
threshold. Thus, the segment is constantly off. 



Case 1: Setup of signals 
to tum on both 
segments 

Segment 
Line 0 (SLO) 

Common Terminal 
0 (COMO) 

Common Terminal ___ __, 
1 (COM1) 

1 
Duty Ratio = 

2 

Bias= 

SEG 0 is visible. 
SEG 1 is visible. 

1 

2 

Case 2: Setup of signals 
to turn off both 
segments 

Segment 
Line 0 (SLO) 

Common Terminal 
0 (COMO) 

0 
(!) 
w 
en 

(; 
w 
en 

Common Terminal ___ ____, 
1 (COM1) 

1 
Duty Ratio = 

2 
1 

Bias= 
2 

SEG 0 is invisible. 
SEG 1 is invisible. 

COMO 

COM1 

SLO 

SLO-COMO 

SLO-COM1 

COMO 

COM1 

SLO 

SLO-COMO 

SLO-COM1 

Liquid-crystal Display (LCD) Ill 

V/2 

-- 0 

-V/2 

V/2 

0 

-V/2 

----------------- --- v 
V/2 

-V/2 

---------------· -V 

--------· v 
V/2 

0 

-V/2 

-- -V 

V/2 

--· 0 

-V/2 

V/2 

0 

-V/2 

-----------------------------------------------------------------------------------------------------· v 
V/2 

-V/2 

-------------------------------------------------------------------------------------------------------· -V 

·------------------------------------------------------------------------------------------------------· v 
V/2 

-- 0 

-V/2 

------------------------------------------------------------------------------------------- ------- --- - -V 

Example 17-1. Multiplexed drive with duty ratio of V2 (Case1: both on, and Case 2: both off). 
COMO and COMl are the same for all cases. SLO determines which segments are on. 



17.2 - Multiplexed Drive 

Case 3: Setup of signals 
to turn on only SEG 0 

Segment 
Line 0 (SLO) 

Commoo T"mlool ® 
O (COMO) 

.... 
Cl 
w 
fl) 

Common Terminal ----~ 
1 (COM 1) 

1 
Du ty Ratio = 

2 
1 

Bias = 
2 

SEC 0 is visible. 
SEC 1 is invisible. 
(SEC 0 is switched on 
and off quickly.) 

Case 4: Setup of signals 
to turn on only SEG 1 

Segment 
Line 0 (S LO) 

Commoo To,mlool @ 
0 (COMO) 

Common Terminal ----~ 
1 (COM1) 

1 
Du ty Rat io = 

2 
1 

Bias= 
2 

SEC 0 is invisible. 
SEC 1 is visible. 
(SEC 1 is switched on 
and off quickly.) 

COMO 

COM1 

SLO 

SLO-COM1 

COMO 

COM1 

SLO 

SLO - COMO 

SLO - COM1 

V/2 

0 

-V/2 

v 
V/2 

-V/2 

-V 

---------------------------------------------------------········------------------------------------· v 
V/2 

-- 0 

-V/2 

------------------------·······-------------------------------------------------------------------··· -V 

V/2 

... 0 

-V/2 

------------------------------------ ---------------------------·---------------------------------- v 
V/2 

-V/2 

------------------------- ----------------------------------------------------------------------------- -V 

-------- v 
V/2 

-V/2 

.. -V 

Example 17-2. Multiplexed drive with duty ratio of Vi (Case 3 & 4: one on and the other off). 
COMO and COMl are the same for all cases. SLO determines which segments are on. 



Liquid-crystal Display (LCD) Im 

17.3 STM32L Internal LCD Driver 

17.3.1 Basic Introduction 
1 2 3 4 5 6 

er> er> er> er> er> er> 

~~A ~~A ~~A ~~A ~~A ~~A Bar 3 

D D D D 
Bar2 

~ 
COLON 

~ 
COLON 

~ 
COLON <mm:> COLON 

~ ~ D D D ~~~ D Bar 1 

e e e e Baro 

CL> CL> CL> CL> CL> CL> 

Figure 17-5 LCD on board with 6 digits and 4 bars 

The LCD of the STM32L discovery kit has a total of 28 pins, including 24 segment lines 
(SEG0 - SEG23) and 4 common terminals (COM0 - COM3). The LCD can show six digits and 
four bars. There are 14 segments in each digit. There are 96 segments (pixels) in total. 
Each segment line drives four segments. Thus, the duty ratio is 1/4. Each GPIO pin that 
drives the LCD must be in alternate function (AF) mode. 

Each segment/pixel can be turned on or off by setting or clearing the corresponding bit 
in the display memory. For example, to display the number "2" in the sixth character 
position, software needs to set six bits in the display memory, which are mapped to these 
six segments 6A, 6B, 6G, 6M, 6E, and 6D, respectively. 

Nilo 
v~~ ~, 
~ e 

Figure 17-6. Displaying the number "2" by turning on segments 6A, 68, 6G, 6M, 6E, and 6D. 

In the following, we will explain the mapping relationship between bits in the display 
memory of the microcontroller and the segments of the external LCD module. For 
example, to display the number "2" at the 6th position on the LCD, which bits in the 
display memory should be set to 1? 

• The mapping between LCD pins and LCD segments are fixed. It is determined by 
the LCD designers. Table 17-1 shows the mapping for the LCD module on the 
STM32L discovery kit. 

• The mapping between display memory bits in the processor and processor pins 
is determined by the chip manufacturer. The display memory consists of 8 words, 



Mill 17.3 - STM32L Internal LCD Driver 

as shown in Figure 17-7. There are 4 COM pins and 44 SEG pins, controlling a 
maximum of 176 pixels. All pixels controlled by a COM pin take two words in the 
display memory. 

• Typically, a processor has more pins capable of driving an LCD than the number 
of pins on the LCD module. For a given board, software cannot choose which pins 
are used to drive the LCD module. It is up to circuit board designers to (1) select 
the subset of processor pins to drive the LCD module, and (2) determine the 
connection between the selected processor pins and the LCD pins. Table 17-1 
shows the processor pins selected, and the connections between LCD pins (COM0 

- COM3, SEG0 - SEG23, and VLCD) and the processor's GPIO pins. 

Circuit Board Connection 

Subset of STM32L4 Internal connection of LCD module 
Pins Selected LCD Pin COM3 COM2 COM1 COMO 

PA7 (LCD_SEG4) 1 (SEG 0) 1N 1P 1D 1E 
PCS (LCD SEG23) 2 (SEG 1) 1DP 1COLON 1C 1M 
PB1 (LCD_SEG6) 3 (SEG 2) 2N 2P 2D 2E 

PB13 (LCD SEG13) 4 (SEG 3) 2DP 2COLON 2C 2M 
PB1S (LCD_SEG15) 5 (SEG 4) 3N 3P 3D 3E 
PD9 (LCD SEG29) 6 (SEG 5) 3DP 3COLON 3C 3M 
PD11 (LCD SEG31 ) 7 (SEG 6) 4N 4P 4D 4E 
PD13 (LCD SEG33) 8 (SEG 7) 4DP 4COLON 4C 4M 
PD1S (LCD_SEG35) 9 (SEG 8) SN SP SD SE 
PC7 (LCD SEG2S) 10 (SEG 9) BAR2 BAR3 SC 5M 
PA1S (LCD_SEG17) 11(SEG10) 6N 6P 6D 6E 

PB4 (LCD SEG8) 12 (SEG11) BARO BAR1 6C 6M 
PB9 (LCD_COM3) 13 (COM 3) COM3 

PA10 (LCD COM2) 14 (COM 2) COM2 
PA9 (LCD COM1) 15(COM1) COM1 
PA8 (LCD COMO) 16 (COM 0) COMO 
PBS (LCD SEG9) 17 (SEG 12) 6J 6K 6A 6B 

PC8 (LCD SEG26) 18 (SEG 13) 6H 6Q 6F 6G 
PC6 (LCD SEG24) 19 (SEG 14) SJ SK SA SB 

PD14 (LCD SEG34) 20 (SEG 1S) SH 5Q SF SG 
PD12 (LCD SEG32) 21 (SEG 16) 4J 4K 4A 4B 
PD10 (LCD SEG30) 22 (SEG 17) 4H 4Q 4F 4G 
PD8 (LCD SEG28) 23 (SEG 18) 3J 3K 3A 3B 
PB14 (LCD SEG14) 24 (SEG 19) 3H 3Q 3F 3G 
PB12 (LCD SEG12) 25 (SEG 20) 2J 2K 2A 2B 

PBO (LCD SEGS) 26 (SEG 21 ) 2H 2Q 2F 2G 
PC4 (LCD SEG22) 27 (SEG 22) 1J 1K 1A 1B 
PA6 (LCD SEG3) 28 (SEG 23) 1H 1Q 1F 1G 

Table 17-1. Mapping between LCD pins and LCD segments 



Liquid-crystal Display (LCD) lid 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 4 3 

LCD_RAM[O] 
en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 
~ " " " " " " " § § ~ " ~ ~ ~ ~ ~ " 3 ~ ~ ~ Sl " e &l ~ ~ e s ~ !l ~ :l: !.: !:l ill ~ ~ :!l ;: .. 

x x en en en en en en en en en en en en 
x x x x x x m m m m m m m m m m m m 

x x 
x x 

x 
x " " " ~ " " § ~ ~ ~ " § x x x x x x x x x x x x x x x e ~ ~ ::l !.: t: 

LCD_RAM[1 ] 

en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en 
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 
~ " " " " " " " § " ~ " ~ ~ ~ ~ ~ ~ 3 ~ ~ " Sl &l e &l f;l " e s ~ " ~ :l: !.: !:l ill ~ ~ l:l :!l c: .. 0 

LCD_RAM[2] 

en en en en en en en en en en en en 
x x x x m m m m m m m m m m m m 
x x x " " " " ~ " " " ~ " § § x x x x x x x x x x x x x x x e ~ ~ t :;: !:: :;: ~ 

LCD_RAM[3] 

en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 
~ " " ~ " " " " " § ~ " ~ " " ~ ~ " 3 " ~ ~ Sl " e &l f;l ~ e s ~ !l ~ :l: !:l ill ~ ~ N :!l ;: ~ ;: ;; .. 

"' 
LCD_RAM[4] 

x x en en en en en en en en en en en en 
x x x m m m m m m m m m m m :R x 
x 

x 
x x ~ £ ~ " " " " ~ ~ " § x x x x x x x x x x x x x x x x x t ::l :;: !:: ~ ::: 

LCD_RAM[5] 

en en en en en "' en "' en en "' en "' "' "' en "' en en "' "' "' "' en "' "' en "' "' "' en en m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 
~ " " " " " " " " " ~ " " ~ ~ ~ ~ " 3 ~ ~ ~ Sl &l e &l ~ " e s ~ !l ~ :l: :;: !:l ill ~ ~ tl l:l :!l ;: ;: N .. LCD_RAM[6] 

x x x en "' "' "' "' "' "' "' en "' en en 
x x I m m m m m m m m m m m m 
x 

x 
x 

x 
I 

x 

~ £ ~ " " " " " " " " § x x x x x x x x x x x x x x x x x x t ::l :;: !:: :;: ti ~ t: 
LCD_RAM[7] 

Figure 17-7. LCD display memory 

Figure 17-8 shows the mapping between the display memory bits and LCD segments. 
The following uses segment 2D as an example to explain how this mapping is obtained. 

Finding the mapping bit in the display memory for LCD segment 2D: 

LCD_RAM[O] 

LCD_RAM[1] 

LCD_RAM[2] 

LCD_RAM[J] 

LCD_RAM[4] 

LCD_RAM[5] 

LCD_RAM[S] 

LCO_RAM[7] 

• The LCD internal connection in Table 17-1 indicates that segment 2D is 
controlled by LCD pin COMl and pin SEG2. 

• The circuit board connection in Table 17-1 shows that the LCD's COMl pin is 
connected to processor's PA9 (COMl) pin, and the LCD SEG2 pin is connected to 
processor's PBl (LCD_SEG6) pin. 

• Thus, segment 2D is mapped to SEG6 of COMl. According to Figure 17-7, SEG6 of 
COMl is bit 6 of LCD _RAM [ 2]. 

• Therefore, LCD segment 2D is mapped to bit 6 of LCD _RAM [ 2] in the processor. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 4 3 2 

4E 4G 3M JB 6G 5M 5B 1M 1B IE JE JG 2M 2B 6B 8M 2E 2G 1E 1G 

x 
xx x x x x x x x x x x x x x 5E 5G 4M 

40 4F JC JA SF 5C 5A 1C 1A 80 JO JF 2C 2A 8A 6C 2D 2F 10 1F 

x 50 5F 4C x x x x 
x x x x x x x x x x x x 

4P 40 3 JK 60 3 5K 1 1K SP JP JO 2 2K 6K 1 
2P 20 1P 10 Col 88' Col Col ""' 

5P 50 • x x 
x x x x x x x x x x x x x x x Col 

4N 4H 3 
JJ SH 2 5J 1 

1J SN JN JH 2 2J SJ 0 2N 2H 1N 1H DP 88' DP DP ""' 
5N 5H • 

x x xx x x x x x x x x x x x x DP 

Figure 17-8. The mapping between display memory bits to LCD segments. Segments of "2" 
on the 6th position are shaded. 

Displaying "2" in the 61h position on the screen: Software needs to set six bits mapped 
to segments 6A, 6B, 6G, 6M, 6E, and 6D in the LCD data memory (LCD_RAM). 

LCD_RAM(0] I= 0x04020300; 

LCD_RAM(2] I= 0x00020200; 

COMO 

COM1 

COM2 

COM3 

4B 

4A 

4K 

4J 



17.3 - STM32L Internal LCD Driver 

When software slowly generates display pixels or segments, the displaying process may 
take long enough for the human eye to notice. As a result, this may cause two problems: 
screen tearing and flickering. 

• Screen tearing is a visual effect in which the LCD shows partial contents of 
multiple frames concurrently. Thus, the screen shows incoherent information. 

• Usually, the display buffer needs to be cleared before the next frame is generated. 
Flickering refers to sudden brightness or contrast fluctuations. When buffer 
clearing becomes observable, pixels or segments intermittently appear and 
disappear, leading to the flickering problem. 

One solution to this problem is double buffering, which is used on the LCD display 
controller on STM32 processors. As shown in Figure 17-9, it utilizes two buffers: an off
screen buffer (also called a back buffer) and an on-screen buffer (also known as a front 
buffer). The rationale behind double buffering is that copying to the on-screen buffer 
takes much less time than generating display data. 

(1) Software writes display 
data as long as the off
screen buffer is not locked. 

(2) Software sets UDR flag in register SR to make a request to 
copy from the off-screen buffer to the on-screen buffer. 

Off-screen buffer 
(LCD_RAM) 

'--

-----,,,---' R~ender E_Js C On-screen 
buffer 

(3) Hardware locks the off-screen buffer, then quickly copies 
data to the on-screen buffer, and finally frees up the lock. 

LCD Display 

Figure 17-9. Double buffering technique to reduce flickers and ensure coherency 

Software does not directly modify the display information in the on-screen buffer. 
Instead, all data are written to the off-screen buffer (LCD_RAM). After software writes a 
whole display frame to the off-screen buffer, the LCD controller takes three steps: 

1. locks the off-screen buffer first to prevent any modification by clearing UDR flag 
in status register SR, 

2. quickly copies data from the off-screen buffer to the on-screen buffer, and 
3. finally frees up the lock to allow modification to the off-screen buffer. 

The LCD software driver should follow the above double buffering protocol to ensure 
the coherency of the displayed information. Specifically, the following is the procedure 
to update the displayed information on the LCD. 



Liquid-crystal Display (LCD) 1111 

START 

LCD Clock Initialization 
1. Disable RTC clock protection (RTC and LCD share the same clock). Write 

0xCA and 0x53 to RTC _ WRP register to unlock the write protection 
2. Enable LSI clock (RCC_CSR) 
3. Select LSI as LCD clock source (RCC_CSR RTCSEL field) 
4. Enable LCD/RTC clock (RCC_CSR RTCEN field) 

Configure LCD GPIO Pin as Alternative Functions 
1. Enable the clock of GPIO port A, B, C and D 
2. Configure Port A Pin 6, 7, 8, 9, 10, and 15 as AF 11 (0xB) 
3. Configure Port B Pin 0, 1, 4, 5, 9, 12, 13, 14, and 15 as AF 11 (0xB} 
4. Configure Port C Pin 3, 4 , 5, 6, 7, and 8 as AF 11 (0xB) 
5. Configure Port D Pin 8, 9, 10, 11 , 12, 13, 14, and 15 as AF 11 (0xB} 

LCD Configuration 
1. Configure BIAS[1 :OJ bits of register LCD_CR and set the bias to 1/3 
2. Configure DUTY[2:0] bits of LCD_CR and set the duty to 1/4 
3. Configure CC[2:0] bits of LCD _FCR and set the contrast to max va lue 111 
4. Configure PON[2:0] bits of LCD_FCR and set the pulse on period 

to 111 , i.e., 7/ck_ps. A short pulse consumes less power but might not 
provide satisfactory contrast. 

5. Disable the MUX_SEG segment of LCD_CR 
6. Select internal voltage as LCD voltage source 
7. Wait until FCRSF flag of LCD_SR is set 
8. Enable the LCD by setting LCDEN bit of LCD_CR 
9. Wait until the LCD is enabled by checking the ENS bit of LCD_SR 
10. Wait until the LCD booster is ready by checking the ROY bit of LCD_SR 

YES 

Set up the value of LCD_RAM[0-7) 

Set the UDR flag of LCD_SR register to request update dlsplay 

NO 

STOP 

Figure 17-10 Program flowchart to drive the LCD 



Mij:i 17.3 - STM32L Internal LCD Driver 

1. The LCD software driver should wait until the LCD controller clears the update 
display request (UDR) flag in the LCD status register (LCD_SR). The LCD controller 
sets UDR to 1 if the LCD controller has not copied the data stored in LCD_RAM to the 
display memory yet. 

2. After the LCD controller clears the UDR flag, the driver starts to write the on/off 
setting (i.e., 0 and 1) for each segment in the LCD_RAM. 

3. The LCD software driver sets the UDR flag to inform the controller that the data 
are ready to be copied into the display memory. The UDR flag stays set until the 
end of the update, and during this period, the LCD _RAM is write-protected. The 
controller then generates the signals of common terminals (COM0 - COM3) and 
segment lines (SEG0 - SEG43) to drive the external LCD. 

4. After setting the UDR flag, the software driver should wait until the controller sets 
the update display done (UDD) flag in the LCD status register (LCD_SR). 

Figure 17-10 shows the flowchart for initializing the LCD controller. The LCD clock is the 
same clock as the real-time clock (RTC). Because the RTC clock domain is protected, the 
RTC domain needs to be unlocked first to configure the LCD clock source. 

void LCD_RTC_Clock_Enable(void) { 

II Enable write access to the backup domain 
if ((RCC->APBlENRl & RCC_APBlENRl_PWREN) == 0) { 

II Enable power interface clock 

} 

RCC->APBlENRl I= RCC_APBlENRl_PWREN; 
II Short delay after enabling an RCC peripheral clock 
(void) RCC->APBlENRl; 

II Select LSE as RTC clock source 
II RTCILCD Clock: (1) LSE is in the backup domain (2) HSE and LSI are not 
if ((PWR->CRl & PWR_CRl_DBP) == 0) { 

} 

II Enable write access to RTC and registers in backup domain 
PWR->CRl I= PWR_CRl_DBP; 
II Wait until the backup domain write protection has been disabled 
while((PWR->CRl & PWR_CRl_DBP) == 0); 

II Reset LSEON and LSEBYP bits before configuring LSE 
II BDCR = Backup Domain Control Register 
RCC->BDCR &= ~(RCC_BDCR_LSEON I RCC_BDCR_LSEBYP); 

II RTC Clock selection can be changed only if the backup domain is reset 
RCC->BDCR I= RCC_BDCR_BDRST; 
RCC->BDCR &= ~RCC_BDCR_BDRST; 



} 

II Wait until LSE clock is ready 
while((RCC->BDCR & RCC_BDCR_LSERDY) == 0) { 

Liquid-crystal Display (LCD) Im 

RCC->BDCR I= RCC_BDCR_LSEON; II Enable LSE oscillator 
} 

II Select LSE as RTC clock source 
II RTCSEL[l:B]: ee = No Clock, Bl = LSE, 1e = LSI, 11 = HSE 
RCC->BDCR &= ~RCC_BDCR_RTCSEL; II Clear RTCSEL bits 
RCC->BDCR I= RCC_BDCR_RTCSEL_0; II Select LSE as RTC clock 

II Disable power interface clock 
RCC->APBlENRl &= ~RCC_APBlENRl_PWREN; 

II Enable LCD peripheral Clock 
RCC->APBlENRl I= RCC_APBlENRl_LCDEN; 

Example 17-3. Program to enable the RTC clock and the LCD clock 

17.3.2 Generic LCD Driver to Display Strings 
In this section, we develop the key ideas needed to write a generic software function that 
can display a string. An LCD can usually show multiple alphanumeric characters. The 
on-chip driver maps each pixel of the LCD to a binary bit in the display memory. 

The display memory is a special memory region used by the hardware driver to hold the 
on or off setting of each display pixel. If a bit in the display memory is set, the 
corresponding pixel should be visible. On the other hand, all string characters are stored 
as ASCII values (see Chapter 2.5) in the data memory. 

Therefore, we need to create a function that sets up the display memory according to two 
key inputs: 

1. the ASCII value of a given letter or number, and 
2. the location where this letter or number should be displayed on the LCD. 

D 
COLON 

D 

Figure 17-11. A display digit has 16segments:14 digit segments, 1 colon, and 1 decimal point. 



17.3 - STM32L Internal LCD Driver 

Each digit consists of 16 display segments: 14 segments for the digit, 1 segment for the 
colon, and 1 segment for the decimal point, as shown in Figure 17-11. We use a 16-bit 
binary value to encode an alphanumeric character. When a segment is visible, the 
corresponding bit in its 16-bit code is set. If a segment is invisible, the corresponding bit 
is zero. For example, the letter "A" can be encoded as 0xFE00, because it turns on 
segments G, B, M, E, F, A, and C. Similarly, the number "2" can be encoded as 0xF 500, 
making segments G, B, M, E, and A visible. 

~ 
Segments G B M E 

l\~11 D 

Encoding 1 1 1 1 
Segments F A c D 
Encoding 1 1 1 0 

0xF 

0xE 

~ .. COLON Segments Q K Colon p 

V~\I D 

8 ~ 

Encoding 0 0 0 0 
Segments H J DP N 
Encoding 0 0 0 0 

0x0 

0x0 

Encoding" A" as 0xFE00 

-~~A D 

Segments G B M E 

Encoding 1 1 1 1 

Segments F A c D 
Encoding 0 1 0 1 

0xF 

0x5 

Gli. COLON Segments Q K Colon p 

V~\G D 

e CC• 

Encoding 0 0 0 0 

Segments H J DP N 

Encoding 0 0 0 0 

0x0 

0x0 

Encoding "2" as 0xF500 

Figure 17-12. Encoding" A" and "2" 

Table 17-2 gives more examples of encoding five letters (A-Z) and five numbers (1-5). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
G B M E F A c D Q K Col p H J DP N Encoding 

A 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0xFE00 
B 0 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0x6714 
c 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0x1D00 
D 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0x4714 
E 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0x9D00 

1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0x4200 
2 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0xF500 

3 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0x6700 
4 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0xEA00 
5 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0xAF00 

Table 17-2. Encoding characters A, B, C, D and E, and numbers 1, 2, 3, 4 and 5 



Liquid-crystal Display (LCD) Ill 

We use an array to encode all capital letters as follows. 

uint16_t Letters[26] = { 
II A B c D E F G H I 

0xFE00, 0x6714, 0x1000, 0x4714, 0x9D00, 0x9C00, 0x3F00, 0xFA00, 0x0014, 

II J K L M N 0 p Q R 

0x5300, 0x9841, 0x1900, 0x5A48, 0x5A09, 0x5F00, 0xFC00, 0x5F01, 0xFC01, 

II s T u v w x y z 
0xAF00, 0x0414, 0x5B00, 0x18C0, 0x5A81, 0x00C9, 0x0058, 0x05C0 

}; 

For any given capital letter, we can perform a simple array look-up to find its encoding. 
Chapter 2.5 gives functions to test for a lower-case or upper-case character in C, as well 
as the function to convert all alphabetic characters to their upper-case versions. For 
example, the ASCII values for' A' and 'D' are 0x41 and 0x44, respectively. The encoding 
of 'D' is Letters['D' - 'A'], i.e., Letters[3]. The following C program is used to find the LCD 
encoding of a given alphabetic character. If the character is lower-case, the LCD displays 
its corresponding upper case. 

II if c points to an upper-case Letter 
if ( (*c < 0x5B) && (*c > 0x40) ) { II ASCII 'A' = Bx41, 'Z' = ex5A 

encoding= Letters[ *c - 'A']; 
} 

II if c points to a Lower-case Letter, convert it to upper case 
if ( (*c < 0x7B) && (*c > 0x60) ) { II ASCII 'a' = ex61, 'z' = ex7A 

encoding= Letters[ *c - 'a']; 
} 

Similarly, the encoding of the digits 0-9 is stored in a separate array, as given below. 

uint16_t Numbers[10] = { 
II e 1 2 3 4 
0x5F00, 0x4200, 0xF500, 0x6700, 0xEA00, 

II 5 6 7 8 9 
0xAF00, 0xBF00, 0x4600, 0xFF00, 0xEF00 

}; 

Suppose the variable c points to a numeric digit. Its LCD encoding can be found using 
the above Numbers array, with the array index equal to the difference between the ASCII 
value of this number and the ASCII value of '0' . Chapter 2.5 gives a function to test for a 
decimal digit (0 through 9). 

encoding = Numbers [*c - 0x30]; II ASCII 'B' = ex3e 



Mbj 17.3 - STM32L Internal LCD Driver 

We can clear the LCD screen by turning off all segments. 

II Wait untiL the off-screen buffer has been unLocked 

while ((LCD->SR & LCD_SR_UDR) != 0); 

for (i = 0; i <= 8; i++) 
LCD->RAM[i] = 0; II CLear the buffer 

II Request to transfer data from off-screen buffer to on-screen buffer 
LCD->SR I= LCD_SR_UDR; 

We can convert the encoding of a number or a letter into a character array C [ 4] by using 
the following C program. For example, the encoding of "A" is 0xF E00. The character 
array C[4] will have the following content: C[0] = 0xF, C[l] = 0xE, C[2] = 0x0, and 
C[3] = 0x0. 

uint8_t C[4]; 

for (offset = 12, i = 0; i < 4; offset -= 4, i++) 
C[i] = (encoding >> offset) & 0x0f; 

The following program uses the 1st position as an example to illustrate how to decode 
and display a number or a letter. Following Figure 17-8, we can obtain the bits in LCD_RAM 

that are mapped to all segments at the }st display position, as shown in Table 17-3. 

Segments 1G lB lM lE 

LCD_RAM[0] Bit4 Bit 23 Bit 22 Bit 3 C[0] 

Segments lf lA lC 10 

LCD_RAM[2] Bit 4 Bit 23 Bit 22 Bit 3 C[l] 
Segments lQ lK 1Colon lP 

LCD_RAM[4] Bit 4 Bit 23 Bit 22 Bit 3 C[2] 

Segments 1H 1J 1DP lN 

LCD_RAM[6] Bit 4 Bit 23 Bit 22 Bit 3 C[3] 
Table 17-3. Bits in LCD _RAM that are mapped to segments at the 1st position. 

Based on the character array C [ 4], the following C program controls all segments at the 
1st display position. The code that turns on or turns off segments at the other display 
positions is very similar. 

II Clear corresponding bits in the off-screen buffer LCD->RAM 

II lE -> Bit 3, lG -> Bit 4, lM -> Bit 22, lB -> Bit 23 in RAM[B] 
LCD->RAM[0] &= ~( lU << 3 I lU << 4 I lU << 22 I lU << 23 ); 

II 10 -> Bit 3, lF -> Bit 4, lC -> Bit 22, lA -> Bit 23 in RAM[2) 
LCD->RAM[2] &= ~( lU << 3 I lU << 4 I lU << 22 I lU << 23 ); 



Liquid-crystal Display (LCD) IHM 

II lP -> Bit 3, lQ -> Bit 4, lCoL -> Bit 22, lK -> Bit 23 in RAM[4] 
LCD->RAM[4] &= -( lU << 3 I lU << 4 I lU << 22 I lU << 23 ); 

II lN -> Bit 3, lH -> Bit 4, lDP -> Bit 22, lJ -> Bit 23 in RAM[6) 
LCD->RAM[6] &= -( lU << 3 I lU << 4 I lU << 22 I lU << 23 ); 

II Segments: 16 lB lM lE 
LCD->RAM[0] I= ((C[0] & 0xl) << 4) I (((C[0] & 0x2) >> 1) << 23) 

I (((C[0] & 0x4) >> 2) << 22) I (((C[0] & 0x8) >> 3) << 3); 

II Segments: lF lA lC lD 
LCD->RAM[2] I= ((C[l] & 0xl) « 4) I (((C[l] & 0x2) » 1) « 23) 

I (((C[l] & 0x4) >> 2) << 22) I (((C[l] & 0x8) >> 3) << 3); 

II Segments: lQ lK lCoL lP 
LCD->RAM[4] I= ((C[2] & 0xl) << 4) I (((C[2] & 0x2) >> 1) << 23) 

I (((C[2] & 0x4) >> 2) << 22) I (((C[2] & 0x8) >> 3) << 3); 

II Segments: lH 11 lDP lN 
LCD->RAM[6] I= ((C[3] & 0xl) << 4) I (((C[3] & 0x2) >> 1) << 23) 

I (((C[3] & 0x4) >> 2) << 22) I (((C[3] & 0x8) >> 3) << 3); 

The following C code drives four bars shown in Figure 17-5. 

void LCD_bar(uint32_t bar) { 

II Wait untiL the off-screen buffer has been unLocked 
while ((LCD->SR & LCD_SR_UDR) != 0); II Wait for Update DispLay Request Bit 

II Bar 0: LCD (SEGll, COM3) -> Processor (SEGB, COM3) -> Bit 8 of RAM{6) 
II Bar 1: LCD (SEGll, COM2) -> Processor (SEGB, COM2) -> Bit 8 of RAM[4) 
II Bar 2: LCD (SEG9, COM3) -> Processor (SEG25, COM3) -> Bit 25 of RAM{6) 
II Bar 3: LCD (SEG9, COM2) -> Processor (SEG25, COM2) -> Bit 25 of RAM[4) 

} 

LCD->RAM[6] &= -(lU << 8 
LCD->RAM[4] &= -(lU << 8 

lU « 25); 
lU « 25); 

II Turn off Bar 0 and Bar 2 
II Turn off Bar 1 and Bar 3 

if (bar & 0xl) LCD->RAM[6] I= lU << 8; II Bar 0 
if (bar & 0x2) LCD->RAM[4] I= lU << 8; II Bar 1 
if (bar & 0x4) LCD->RAM[6] I= lU << 25; II Bar 2 
if (bar & 0x8) LCD->RAM[4] I= lU << 25; II Bar 3 

II Request to transfer data from off-screen buffer to on-screen buffer 
LCD->SR I= LCD_SR_UDR; 

We can also display some special characters as listed below. The percentage sign takes 
two spots on the screen to display. See Figure 17-12 for the encoding scheme. 

? * % 
0x6084 0xA0DD 0x00C0 0xEC00, 0xB300 



17.4 - Interfacing with External Character LCD Controllers 

17 .4 Interfacing with External Character LCD Controllers 
A character liquid crystal display (LCD) module often integrates an internal LCD 
controller. The HD44780-compatible interface is a de-facto industry controller for a broad 
range of character LCDs. Hitachi developed HD44780 controllers in the 1990s and 
nowadays a wide variety of LCD drivers, such as ST7066, KS0066U, and SED1278, are 
compatible to HD44780. 

17.4.1 External Connection Diagram 
A microprocessor can interface with the LCD module in two modes: 4- or 8-bit data bus 
mode, as shown in Figure 17-13 and Figure 17-14. 

I 
LCD Display 

I 
0 Q N ... "' "' ... • 6 "' 3:: Iii ~ 0 sv "' 0 0 "' aJ aJ aJ aJ aJ aJ w w 

> > > a: a: w 0 c 0 0 0 0 0 0 -' -' 

f 1 l 1 I I 
'---y--/ 

sv Backlight 
(optional) 

Microprocessor 

GPIO 
Pins 

Figure 17-13. Interfacing LCD via 8-bit data bus 

I 
LCD Display 

I 
0 N ... "' "' ... . 6 "' ~ 

Q Iii ~ 0 
SV "' 0 0 "' aJ aJ al al al al w w 

> > > a: w 0 0 0 0 0 0 0 0 -' -' 

f 1 1 1 I I I I I I 
l '---y--/ 

sv Backlight 
(optional) 

Microprocessor r 
GPIO 
Pins 

L 
Figure 17-14. Interfacing LCD via 4-bit data bus (Pins DB3-0 are tied to the ground) 



Liquid-crystal Display (LCD) IU• 

The 4-bit mode is more popular because it requires fewer pins from a microprocessor 
than the 8-bit mode. The microprocessor can write data to or read data from the LCD via 
the data bus (pins DBO - DB7). 

• Software can use the input VO to adjust the contrast. 
• If the microprocessor does not need to read data from the LCD module, the RW 

pin can be set as write-only by connecting it to the ground. 
• The LED+ and LED- pins provide SV voltage to power on backlights if available. 
• The E (Enable) pin provides a clock signal. 
• The RS (Register Select) selects whether the command register or the data register 

should be the destination when writing data to the LCD controller. 

The LCD module has two key registers: the data register and the command register. Both 
registers have 8 bits. The microprocessor sends a byte (such as an ASCII character) to the 
data register for display. The microprocessor initializes and controls the LCD by sending 
instructions to the command register via the data bus. Each instruction is a byte. 

8-bit Data Bus Mode 

E --11-
I 

RS I+== 
I 

DB[7 .. 0] I+== 
Latch 
8 bits 

4-bit Data Bus Mode 

E ---D-Il-
I I 

RS ~ i i 
I I 

DB[7 .. 4]nu= 

~ ~ 
/ ' 

/ ' 
Latch upper Latch lower 

4 bits 4 bits 

Figure 17-15. A falling signal on the E pin triggers the latch of data placed on the data bus. 

Figure 17-15 shows example signal sequence of sending a byte to the LCD controller in 
8- and 4-bit bus modes. 

• If the RS (Register Select) pin is low, data bits placed on the data bus are stored in 
the command register; otherwise, the LCD controller saves data bits in the data 
register. 

• When the voltage on the E (Enable) pin goes from high to low, the data on the bus 
are latched into the data or command register, depending on the RS signal. 

In the 4-bit data bus mode, two falling signals are required to transfer the upper 4 bits 
followed by the lower 4 bits. In computing, a set of 4 bits or half a byte is a nibble. When 



17.4 - Interfacing with External Character LCD Controllers 

sending a byte, the upper nibble is transmitted first. After the first falling edge of E, the 
microprocessor must place the lower nibble onto the data bus pins. 

Assuming the data bus is configured to use only four bits, the following C program places 
the lower four bits of a byte on the data bus. Note that pins DBO, 1, 2, and 3 are not used. 

#define LCD_Port GPIOA II GPIO Port A 

#define LCD_RS 2 II RS (Register Select): e = command, 1 = data 
#define LCD_EN 3 II Enable Pin 

#define LCD D4 4 II GPIO pin for DB 4 
#define LCD_DS 5 II GPIO pin for DB 5 
#define LCD D6 6 II GPIO pin for DB 6 
#define LCD_D7 7 II GPIO pin for DB 7 

void LCD_PutNibble(uint8_t c) { 

if(c & 0x8) II Place 4th bit on pin DB 7 
LCD_Port->ODR I= 1<<LCD_D7; 

else 
LCD_Port->ODR &= -(1<<LCD_D7); 

if(c & 0x4) II Place 3rd bit on pin D8 6 
LCD_Port->ODR I= 1<<LCD_D6; 

else 
LCD Port->ODR &= -(1<<LCD_D6); 

if(c & 0x2) II Place 2nd bit on pin D8 5 
LCD_Port->ODR I= l<<LCD_DS; 

else 
LCD_Port->ODR &= -(l<<LCD_DS); 

if( c & 0x1) 11 Place 1st bit on pin D8 4 
LCD_Port->ODR I= 1<<LCD_D4; 

else 
LCD_Port->ODR &= -(1<<LCD_D4); 

} 

The following C program generates a falling edge on the E (Enable) pin. 

void LCD_Pulse(void) { 

LCD_Port->ODR I= l<<LCD_EN; 
Delay(4); 

} 

LCD_Port->ODR &= -(l<<LCD_EN); 
Delay(4); 

II Set E high 
II Delay 4eus 
II Set E Low 
II Delay 40us 



Liquid-crystal Display (LCD) IEW 

17.4.2 Internal Font Encoding 
An LCD display consists of k lines with n characters in each line (denoted as nxk). 
Common sizes are 8xl, 16xl, 16x2, 20x2, 20x4, and 40x2. Typically, each character has 40 
pixels (5 columns x 8 rows) or 50 pixels (5 columns x 10 rows), organized in a dot matrix 
format. The LCD can display standard ASCII printable characters, a few pre-defined 
symbols, as well as 8 user-programmable symbols. Note that an LCD with multiple 
displayable lines physically can be either one line or multiple lines logically from the 
programming point of view, depending on its manufacturer. 

The image pattern of a character is encoded in binary, with one bit representing a dot 
pixel. If the pixel is visible, the corresponding bit is 1. The encoded binaries of a character 
are called a font. All fonts are stored as a simple linear table in the read-only memory 
(ROM) for fixed characters (ASCII letters and pre-defined symbols) and the RAM 
memory for programmable characters defined by applications. The RAM can hold the 
fonts of eight programmable characters. 

Figure 17-16 shows the key data path of displaying the letter "R". The microprocessor 
sends the ASCII value (0x52) of letter "R" to the data register. The data register has 8 bits 
and can only hold one character. The LCD controller copies the data register into its 
internal display memory (DDRAM), which stores all characters to be displayed on the 
LCD. If the LCD size is 16x2, the display memory has at least 32 bytes. 

For each character in the display memory, the LCD controller looks up the font table and 
obtains the binary pixel values of the target character. The controller then sends the 
binary font to the LCD driver to control the common terminal (COM) and segment lines 
to turn on or off individual pixels, based on the duty ratio introduced previously. 

"R" DB 
ASCII Ox52 

RS 
0 

LCD Module 

Data Register 

Command Table 
Register Lookup 

.... 
Register Select (RS) 
RS = 0: Command, 
RS= 1: Data 

Display Memory (DDRAM) 
(It stores all characters 

received.) 

RAM for user-defined fonts 

ROM (Read-only Memory) for 
standard fonts 

Character Generator (CG) 

R 

11110 
10001 
10001 
11110 COM 
10100 Signals 
10010 
10001 
00000 

LCD Driver 
Binary 

Encoding 

Figure 17-16. Key data path of displaying "R" on the LCD 

1 1 1 1 0 
1 0 0 0 1 
1 0 0 1 
1 1 1 1 0 Image 
1 0 1 0 0 Pattern 

I 1 0 1 0 
/ 1 0 0 1 

I 00000 

LCD Display 

SEG 
Signals 



17.4 - Interfacing with External Character LCD Controllers 

An LCD may have multiple displayable lines physically. However, from the 
programming point of view, these physical lines may be organized by its manufacturer 
as one logical line with contiguous display memory (DDRAM) address across all lines. 

Figure 17-17 compares the addressing scheme of one logic line and two logic lines. 

• When two display lines are organized as one logic line, the DDRAM addresses 
for all characters are contiguous. 

• When they are arranged as two separate logic lines, there is some gap between 
the address of the end of a line and the start of the next line. 

DDRAM I 00 I 01 I 02 I 03 I 04 I 05 I 06 I 07 I 

Address I 08 I 09 I A I B I c I D I E I F I 

1 00 I 01 1 02 1 03 1 04 1 05 1 06 1 07 1 

I 40 1 41 1 42 I 43 1 44 1 45 1 46 1 47 1 

Figure 17-17. One logic line vs. two logic lines 

17.4.3 Sending Commands and Data to LCD 
Table 17-4 lists instructions for sending commands, and reading or writing data. Note 
that in Figure 17-14, the RW pin is tied to the ground because in the following demo the 
microprocessor does not need to read data from the LCD. 

RS RW DB7 DB6 DBS DB4 DB3 DB2 DBl DB0 

0 0 0 0 0 0 0 0 0 1 Clear screen, and write OORAM address to 0 
0 0 0 0 0 0 0 0 1 - Return home (write OORAM address to 0) r 

n 0 0 0 0 0 0 0 1 I/D s Entry mode set Cl 

n 0 0 0 0 0 0 1 D c B Control display on/off, cursor, and blink 0 
3 0 0 0 0 0 1 SC RL - - Cursor/display shift 3 
QJ 
:::i 0 0 0 0 0 DL N F - - Set of data length, lines, and font type 0.. 
vi 

0 0 0 1 AS A4 A3 A2 Al A0 Set code generator CG-RAM address AS-AO 
0 0 1 A6 AS A4 A3 A2 Al A0 Set display memory OORAM address A6-AO 

0 1 BF A6 AS A4 A3 A2 Al A0 Ready busy flag (BF) and address A6-AO 
1 0 07 D6 DS 04 D3 D2 Dl 00 Write data 07-00 to OORAM or CG-RAM 
1 1 07 D6 DS 04 D3 D2 Dl 00 Read data 07-00 from OORAM or CG-RAM 

Table 17-4. LCD instruction set 

The following explains the parameters used in the above LCD commands. 

• In the entry mode set command, 
• Increment/Decrement (I/D): 

0 = decrement mode, cursor/blink moves to left, and DDRAM address is 
decreased by one; 



Liquid-crystal Display (LCD) IHI 

1 = increment mode, cursor/blink moves to right and DDRAM address is 
increased by one 

• Shift (SH): 0 =entire shift off; 
1 = entire shift on, shift entire display per the I/D 

• In the display control command, 

• 

• 

• Display (D): 0 = display off; 1 = display on 
• Cursor (C): 0 =cursor off; 1 = cursor on 
• Blink (B): 0 =blink off; 1 =blink on 

In the cursor/display shift command, 
• S/C: 0 = move cursor; 
• Right or left (R/L): 0 =left; 

In the function set command, 
• Data bus length (DL): 0 = 4 bits; 
• Number of lines (N): 0 = 1 line; 
• Font size (F): 0 = 5 x 8 dots; 

1 = shift display 
1 =right 

1=8 bits 
1=2 lines 
1=5 x 11 dots 

Figure 17-18 gives the flowchart of initializing the LCD into 8- or 4-bit data bus mode. 
The delay timing may differ for various LCD controllers. 

Power On 

1. Wait for ~ 30 ms 
2. Send command Ox30 
3. Wait for~ 4.1 ms 
4. Send command Ox30 
5. Wait for ~ 160 µs 
6. Send command Ox30 
7. Wait for~ 160 µs 

4-bit data bus mode 
8-bit data bus mode 

Ba. Send command Ob0011 NF** 
Sb. Wait for ~ 40 µs 

Yes No 
Ba. Send command Ox2 to switch to 4-bit mode 
Sb. Wait for ~ 40 µs 

>---+I Sc. Send command Ob0010NF** 
Bd. Wait for ~ 40 µs 

9. Send command Ox01 to clear display 
10. Wait for~ 1.5 ms 
11 . Send command Ox06 to set entry mode 
12. Wait for~ 40 ps 
13. Send command OxOF to control display ON/OFF 
14. Wait for~ 40 ps 

Figure 17-18. Flowchart of Initializing LCD controller 



17.4 - Interfacing with External Character LCD Controllers 

The following shows the implementation of C functions that send a command byte or a 
data byte to the LCD controller. 

Sending Command to LCD Sending Data to LCD 
void LCD_SendCmd(uint8_t c) { void LCD_SendData(uint8_t c) { 

} 

II RS: e = command, 1 = data 
LCD_Port->ODR &= -(l<<LCD_RS); 

II Send Upper 4 bits 
LCD_PutNibble( c >> 4 ); 
LCD_Pulse(); 

II Send Lower 4 bits 
LCD_PutNibble( c & 0xF ); 
LCD_Pulse(); 

II Return to default 
LCD_Port->ODR I= l<<LCD_RS; 

} 

II RS defaults to 1 
II No need to change RS 

II Send Upper 4 bits 
LCD_PutNibble( c >> 4 ); 
LCD_Pulse(); 

II Send Lower 4 bits 
LCD_PutNibble( c & 0xF ); 
LCD_Pulse(); 

Figure 17-19 shows the microprocessor's output signals to display "hello" if the LCD uses 
the 4-bit bus mode. The RS is set to high to select the data register as the destination. The 
microprocessor generates two falling edges to send one ASCII byte. The upper nibble of 
each ASCII byte is sent first, followed by its lower nibble. The data bits are latched into 
the data register at the falling edge of the E signal. 

E 

RS 

DB? 

DB6 

085 

084 

I 
I 

I I I 

_r:--w I 
I 
I 

I 

I I I 
I I 
I I I 
I I I 
I I I 
I I I 
I rn r-: I 
I I I 

0110 1000 0110 0101 0110 1100 0110 1100 0110 1111 
'-----..,-----' '-----..,-----' '-----..,-----' '-----..,-----' '-----..,-----' 

0x68 = 'h' 0x65 = 'e' 0x6C = 'l' 0x6C = 'l' 0x6F = 'o' 

Figure 17-19. Pin signals of display "hello" 



Liquid-crystal Display (LCD) Ill 

17.4.4 Programming Fonts 
The LCD controller can display up to eight customized characters simultaneously. The 
microprocessor must store the font of special characters in the code generator (CG) RAM 
within the LCD controller. 

The following gives an example of displaying a smiling face on the LCD with a font size 
of 5 x 8 dots. Figure 17-20 shows the font definition. 

The font takes eight bytes. The least significant five bits of each byte specify the setting 
of on or off for each pixel in the corresponding row. The leading three bits of each byte 
are zero. 

Software takes four steps to display the smiling face . 

0 

0 

0 

0 

0 

1 

0 

0 

1. Software first uses LCD_SendCmd() to send a CG-RAM addressing command to 
ensure that data latched into the data register is to be saved into the CG-RAM, 
instead of the display memory (DDRAM). 

2. Software uses LCD _SendData () to send eight bytes of the font definition to the CG
RAM. 

3. After sending the fonts, software must send a DDRAM addressing command to 
ensure data sent later is copied to the DDRAM. 

4. Software selects the font in DDRAM, making it displayed. 

0 0 0 0 0b000 00000 0x00 

1 0 1 0 0b000 01010 0x0A 

1 0 1 0 0b000 01010 = 0x0A 

1 0 1 0 0b000 01010 0x0A 

0 0 0 0 0b000 00000 0x00 

0 0 0 1 0b000 10001 0xll 

1 1 1 0 0b000 01110 0x0E 

0 0 0 0 0b000 00000 0x00 

Figure 17-20. Bitmap of Smile Face 

II Select CG-RAM and set address to exee 
LCD_SendCmd(0x40 + 0x00); 
Delay(4); II Wait> 39us 

II Define smile face 
LCD_SendData(0x00); 
LCD_SendData(0x0A); 
LCD_SendData(0x0A); 
LCD_SendData(0x0A); 
LCD_SendData(0x00); 
LCD_SendData(0x11); 
LCD_SendData(0x0E); 
LCD_SendData(0x00); 

11 1st row byte 
11 2nd row byte 
11 3rd row byte 
11 4th row byte 
11 5th row byte 
11 5th row byte 
11 -,th row byte 
11 gth row byte 

II Select display RAM & set address to 0 
LCD _SendCmd ( 0x80); 11 1st character 
Delay(4); II Wait> 39us 

LCD_SendData(0x00); II Display smile face 



17.5 - Exercises 

17.5 Exercises 
1. Suppose the duty ratio of an LCD is % and it has 100 display segments (pixels). 

How many pins are required to drive this LCD? 

2. Write an assembly program that displays the animation of moving a ball from left 
to right. 

3. Write an assembly program to display your last name on the LCD screen. 

4. Write an assembly program to show any A-Z character at any position. 

5. Write a generic assembly function that can display a string of characters. 

6. Write a generic assembly function that can display any integer less than 999,999. 

7. Write an assembly function that can display a floating-point number. 

8. How is the data speed between an HD44780-compatible LCD and the processor 
adjusted? 

9. How is an 8-bit data sent to an HD44780-compatible LCD if the LCD is configured 
as 4-bit bus mode? 

10. How does an HD44780-compatible LCD distinguish between data and LCD 
commands? 

11. Write an assembly program that interfaces with the external HD44780-compatible 
LCD and display "ARM" on the LCD. 

12. Write an assembly program that interfaces with the external HD44780-compatible 
LCD and displays special character"±" on the LCD. 



Real-time Clock (RTC) Im 

CHAPTER 

18 

Real-time Clock (RTC) 
A real-time clock (RTC) is a digital component that keeps track 
of calendar time and date. RTC modules are present in many 
appliances and electronic devices, such as washing machines, 
cameras, phones and medical devices. RTC can be used to 
implement functions such as maintaining calendar time, periodically triggering the 
execution of a specific task, waking up the processor from sleep or low-power mode, 
providing a timestamp for sampled data, and calibrating internal hardware clocks. 

RTC modules typically have very low power consumption. Many systems use a 
dedicated small battery or a supercapacitor to provide power for the RTC module. 
Consequently, even when the system is reset, put into sleep mode, or even turned off, 
the RTC does not stop. Thus, the microprocessor never loses track of time and date. 

18.1 Epoch Time 
The calendar time and date can be encoded in a single 
signed integer, which represents epoch time or UNIX 
time. If epoch time is positive, it is the number of 
seconds that have elapsed since 00: 00: 00 (midnight) 
on Thursday, January 1, 1970, UTC. If it is negative, it 
is the number of seconds before that time instant. 

If epoch time has 32 bits, the farthest representable 
time in the past is 20: 45: 52 UTC on December 13, 
1901, when epoch time is -231 . The farthest 

"The future is something 
which everyone reaches 

at the rate of 60 minutes 
an hour, whatever he 
does, whoever he is." 

C. S. Lewis, novelist 

representable time in the future is 03: 14: 07 UTC on January 19, 2038, when epoch time 
is 231 

- 1. If no action is taken, many systems will fail when the epoch time integer 



MHI 18.1 - Epoch Time 

overflows, causing January 19, 2038 to wrap around to 
December 13, 1901. This is called the year 2038 problem. 

Epoch time does not account for leap seconds. Due to the 
tidal drag of the moon, the Earth's spin slows at an average 
rate of 1.4 ms per century. To keep the time of day in phase 
with the rotation of the Earth, one second is added to UTC 
time approximately once per year. This second is called a 
leap second. The goal of leap seconds is to ensure the Sun, 

Universal time is 
measured by the 

Earth's rotation with 
respect to the Sun. 

on average over a year, is directly overhead on the Greenwich meridian at noon. Between 
1972 and 2017, 27 leap seconds have been added to UTC. Even though epoch time does 
not account for leap seconds, it meets the needs of many embedded applications, 
particularly those not related to astronomy, geodetics, and navigation. 

Due to its simplicity, epoch time has been widely used in embedded systems for things 
such as clock synchronization between independent microcontrollers, and timestamping 
of events and data. However, the interface provided by the RTC module in many 
microprocessors is based on the human calendar, instead of epoch time. 

For example, on an STM32L microprocessor, the time "08: 30: 45: 09 AM, MON AUG 14, 

2017" is directly stored in the time register (TR), the date register (DR), and the sub-second 
register (TSSR). Software can read or modify each individual component of the date and 
time. Internally, the RTC maintains epoch time and its hardware automatically converts 
epoch time to the calendar date and time. This approach simplifies software, reduces 
memory space, and saves processor time, especially for real-time applications or 
resource-constrained systems. 

Software can make conversions between human calendar and epoch time. The following 
example shows how to convert a calendar date and time to epoch time. 

Example of converting 08: 30: 45 AM, AUG 14, 2017 (UTC) to epoch time 

• There are 17,392 days between August 14, 2017, and January 1, 1970. 
• Each day has 86,400 seconds (24 x 60 x 60 = 86400). 

Epoch Time 
86400 seconds 3600 seconds 

= 17392 days x d + 8 hours x 
ay hour 

60 seconds 
+ 30 minutes x + 45 seconds 

minute 
= 1502699445 seconds 
= Ox59915FBS 



Real-time Clock (RTC) I~.,.. 

Example 18-1 converts epoch time to human calendar time. The process of getting the 
day, month and year is slightly more complex and is not shown in the code below. The 
complexity is due to the various number of days in a month, including 31, 30, 29, and 28 
(leap year). The leap year can be checked by evaluating the following logic statement: 

!((year) % 4) && (((year)% 100) I I !((year) % 400))) 

Details can be found in the gmtime function in the open-source GNU C Library. 

int second, minute, hour, weekday; 
int seconds_into_day, days_since_epoch; 

II 24 * 60 * 60 = 86,400 seconds per day 
seconds_into_day (unsigned long) epoch_time % 86400; 
days_since_epoch = (unsigned long) epoch_time I 86400; 

second = seconds_into_day % 60; II 0 <= second < 60 
II 0 <= minute < 60 minute = (seconds_into_day % 3600) I 60; 

hour = seconds_into_day I 3600; II 3600 seconds per hour 
weekday = (days_since_epoch + 4) % 7; II January 1, 1970 is Thursday. 

Example 18-1. Converting epoch time to calendar time 

18.2 RTC Frequency Settings 
The UNIX time number is incremented at a frequency of 1 Hz. Therefore, we must derive 
a 1-Hz clock from an input clock. The input clock is selected from among three sources: 
low-speed internal (LSI), low-speed external (LSE), or high-speed external (HSE) divided 
by 32, as shown in Figure 18-1. 

External clocks are preferred over internal clocks for two important reasons: (1) internal 
clocks are less accurate, and (2) internal clocks are stopped if the system is powered down. 

Low Speed Internal 
(LSI ) Clock 

Low Speed External (LSE) 
Clock (32768Hz = 21s Hz) 

High Speed External 
(HSE) Clock 

Subsecond Register 
(SSR) 

Asynchronous 
Prescaler 

(default= 27 - 1) Default 

Synchronous 
Prescaler 

(default= 28 - 1) 
~---~ 256Hz ~-----' 

Clock selection: RTCSEL bits in RCC- >BDCR 

Figure 18-1. Diagram of real-time clock (RTC) 

Default 
1 Hz 

Calendar 

seconds, minutes, 
hours, AM/PM 

Time Register 
(TR) 

RTC Controller 

Date Register 
(DR) 

day, month, 
year, weekday 



18.3 - Oscillator Frequency Accuracy 

The RTC module uses two configurable prescaler registers (an asynchronous prescaler 
and a synchronous prescaler) to slow down the frequency of the input clock to 1 Hz, as 
shown below. 

fRTC 
frnz = = 1 Hz 

(Asynch_Prescaler + 1) x (Synch_Prescaler + 1) 

The word asynchronous is used for the first prescaler because the RTC input clock is 
usually a clock that is not synchronized with the processor clock. 

Low-speed external (LSE) crystal oscillators are highly recommended to drive RTC 
modules. A typical frequency is 32.768 kHz (215 Hz, often called 32 kHz). This frequency 
has been widely used in quartz clocks and watches. These crystals are very inexpensive 
due to the massive volume production in the digital watch industry. 

Typically, fRrc is 32.768 kHz (i .e. , 215 Hz), Asynch_Prescaler is 27-1 (i.e., 127), and 
Synch_Prescaler is set as 28-1 (i .e., 255). As shown below, this generates a 1-Hz clock. 

fRTC 
f = (Asynch_Prescaler + 1) x (Synch_Prescaler + 1) 

21s 21s 

= (127 + 1) x (255 + 1) = 27 x 28 = lHz 

A battery usually powers the real-time clock module so that the processor does not lose 
any time or date information when the system is shut down. As such, the energy 
efficiency is critical to the real-time clock module. A larger Asynch_Prescaler value is 
preferred because it makes the real-time clock module more energy efficient. 

18.3 Oscillator Frequency Accuracy 
The RTC module's accuracy is determined by its oscillators. The error in the oscillation 
frequency is measured in parts per million (PPM). 

Actual Frequency - Theoretical Frequency 
PPM= x 106 

Theorectical Frequency 

Since there are 24 x 60 x 60 = 86400 seconds in a day, a PPM of 12 means a maximum 
error of approximately one second after one day has passed. 500 PPM implies the clock 
is off by up to 43 seconds per day. 



Real-time Clock (RIC) l~iA 

The STM32L4 has three internal RC oscillators and two external oscillators. The internal 
oscillators are the 16-MHz HSI (high-speed internal), the MSI (multi-speed internal), and 
the 32.768 kHz LSI (low-speed internal). 

The frequency of the oscillators drifts over time • 
due to aging. It also decreases as the ambient 
temperature increases. Table 18-1 shows the Parts per Million (PPM)= 10·6 

frequency accuracy of the internal and external 
oscillators. With an accurate LSE (low-speed 
external clock), the STM32L4 can use built-in 
digital calibration circuitry to calibrate its internal oscillators automatically. The 
correction range is± 480 ppm, and the correction resolution can be as small as± 0.48 ppm. 
An accuracy close to ±20 ppm is common for LSE. An accuracy of ±20 ppm translates to 
± 1.2 ms in a minute,± 51.8 seconds in a month, or± 10 minutes per year. 

16MHzHSI MSI LSI LSE 
3o·c 

Table 18-1. Oscillator frequency accuracy at room temperature 

18.4 Binary Coded Decimal (BCD) Encoding 
The RTC module encodes time and date in Binary Coded Decimal (BCD) format, in which 
each digit (0 through 9) of a decimal number is represented by a fixed number of binary 
bits. Table 18-2 shows 4-bit BCD encoding. 

Note that the BCD encoding is not the binary equivalent of a decimal. For example, the 
binary equivalent of 2018 is 0111_1110_0010, while the corresponding BCD code is 
0010_0000_0001_1000, as shown in Figure 18-2. 

Decimal Digit BCD 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 2018 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 ~fe1~0~ BCD 
7 0 1 1 1 

8 1 0 0 0 
Figure 18-2. BCD encoding of 2018 

9 1 0 0 1 

Table 18-2. Binary coded decimal (BCD) 



18.4 - Binary Coded Decimal (BCD) Encoding 

In the RTC time and date registers, the unit's digit of the month, day, hour, minute, 
second, and last two digits of the year are encoded by two four-bit BCD codes. Some 
other digits are represented by only two or three bits. For example, the ten's digit for the 
second (ST) has a maximum value of 6, and thus only three bits are required. The date 
register does not record the first two digits of the year. 

Figure 18-3 and Figure 18-4 shows how to set the time and date. The time can be in 12-
or 24-hour format, with the PM bit indicating whether the time is in AM or PM. ST and SU 

stand for the second's ten's and unit's digit, respectively. 

II Set time as 11:32:43 am 

RTC->TR = 0U<<22 I 1U<<20 I 1U<<16 I 3U<<12 2U<<8 I 4U<<4 I 3U; 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 

Reserved HT HU 0 MNT MNU 0 ST SU 

0: AM or 24-hour format 
1: PM Hour Minute Second 

31 30 29 28 

Figure 18-3. RTC time register TR (T =ten's place, U =unit's place) 

II Set date as 2018l0Sl27, Sunday ..-! 01 =Monday. ~ ~1 1 =Sunday ] 

RTC->DR = 1U<20 I 8U<<16 I 7U<<13 0U<<12 SU<<8 I 2U<<4 I 7U; 

... ... .. ~ ... 
27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 

... 
4 3 

Reserved YT YU I WDU IMTI MU 1°1°1 OT 

y "--y---A y 

Year Weekday Month Day 

Figure 18-4. RTC date register DT (T =ten's place, U =unit's place) 

DU 

Although BCD requires more bits than the binary 
format to represent the time and date, the BCD 
format is more convenient for extracting and 
displaying the digits of the time and date. For 
example, if 8-bit BCD is used, software does not 
have to perform division or modular operations 
to get the ten's digit and the unit's digit of the 
minute. 

It is easy to decode BCD into 
characters for display. 

... 

.. 



Real-time Clock (RTC) IHM 

18.5 RTC Initialization 
By default, the RTC registers are write-protected to prevent malicious or accidental 

modification. Software must perform the following actions to remove write-protection. 

• First, the disable backup-domain protection bit (DBP) in the power controller 

control register (PWR->CRl) must be set to enable write accesses to the RTC 

registers, as shown in Example 17-3 in Chapter 17. 
• Second, software must write the keys " 0xCA" and "0x53" to the RTC write 

protection register (RTC- >WPR). 

void RTC_Init(void) { 

} 

II Enable RTC clock 
LCD_RTC_Clock_Enable (); II See Example 17-3, select LSE as the clock 
RCC->BDCR I= RCC_BDCR_RTCEN; II Enable the clock of RTC 

II Disable write protection of RTC registers by writing disarm keys 
RTC->WPR = 0xCA; 
RTC->WPR = 0x53; 

II Enter initialization mode to program TR and DR registers 
RTC->ISR I= RTC_ISR_INIT; 

II Wait until INITF has been set 
while((RTC->ISR & RTC_ISR_INITF) == 0); 

II Hour format: e = 24 hour/day; 1 = AM/PM hour 
RTC->CR &= -RTC_CR_FMT; 

II Generate a lHz clock for the RTC time counter 
II LSE = 32.768 kHz= 2~15 Hz 
RTC->PRER I= (2U«7 - 1) « 16; II Asynch_Prescaler = 127 
RTC->PRER I= (2U«8 - 1); II Synch_Prescaler = 255 

II Set time as 11:32:ee am 
RTC->TR = 0U<<22 I 1U<<20 1U<<16 3U<<12 I 2U<<8; 

II Set date as 2016105127 
RTC->DR = 1U<<20 I 6U<<16 0U<<12 5U<<8 I 2U<<4 I 7U; 

II Exit initialization mode 
RTC->ISR &= -RTC_ISR_INIT; 

II Enable write protection for RTC registers 
RTC->WPR = 0xFF; 

Example 18-2. Initializing RTC in C 



18.5 - RTC Initialization 

_main 

Wait 

AREA RTC_Demo CODE, READONLY 
EXPORT _main 
INCLUDE stm321476xx_constants.s 
ALIGN 
ENTRY 

; Power interface clock enable 
LDR r0, =RCC_BASE 
LDR rl, [r0, #RCC_APBlENR] 
ORR rl, rl, #RCC_APBlENR_PWREN 
STR rl, [r0, #RCC_APBlENR] 

; Disable backup domain write protection 
LDR r0, =PWR_BASE 
LDR rl, [r0, #PWR_CR] 
ORR rl, rl, #PWR_CR_DBP 
STR rl, [r0, #PWR_CR] 

; Write '0xCA' and '0x53' to unlock the write protection 
LDR r0, =RTC_BASE 
MOV rl, #0xCA 
STR rl, [r0, #RTC_WPR] 
MOV rl, #0x53 
STR rl, [r0, #RTC_WPR] 

; Select and enable LSE Clock 
LDR r0, =RCC_BASE 
LDR rl, [r0, #RCC_CSR] 
ORR rl, rl, #RCC_CSR_RTCSEL - LSE 
ORR rl, rl, #RCC_CSR_RTCEN 
ORR rl, rl, #RCC_CSR_LSEON 
STR rl, [r0, #RCC_CSR] 

; Wait until LSE clock ready 
LDR r0, =RCC_BASE 
LDR rl, [r0, #RCC_CSR] 
AND rl, rl, #RCC CSR LSERDY 
CMP rl, #0 
BEQ Wait 

; Generate a 1-Hz clock for the calendar counter 
LDR r0, =RTC BASE 
LDR rl, [r0, #RTC_PRER] 
ORR rl, rl, #0xFF 
ORR rl, rl, #0x7F0000 
STR rl, [r0, #RTC_PRER] 

LDR r0, =RTC_BASE 
LDR rl, [r0, #RTC !SR) 



Real-time Clock (RTC) IMI 

ORR rl, rl, #RTC_ISR_INIT 
STR rl, [r0, #RTC_ISR] 

; Wait until INITF flag is set 
Wait2 LDR r0, =RTC_BASE 

LDR rl, [r0, #RTC_ISR] 
AND rl, rl, #RTC_ISR_INITF 
CMP rl, #0 
BEQ Wait2 

; Set time as 11:32:ee am 
LDR r0, =RTC_BASE 
MOV r2, #0 
MOV rl, #1 , 1 = pm, e = am 
ORR r2, r2, rl, LSL #22 
MOV rl, #1 ; hour's tens 
ORR r2, r2, rl, LSL #21 
MOV rl, #1 ; hour's ones 
ORR r2, r2, rl, LSL #16 
MOV rl, #3 ; min's tens 
ORR r2, r2, rl, LSL #12 
MOV rl, #2 ; min's ones 
ORR r2, r2, rl, LSL #8 
STR rl, [r0, #RTC_TR] 

; Exit initialization mode 
LDR r0, =RTC_BASE 
LDR rl, [r0, #RTC_ISR] 
BIC rl, rl, #RTC_ISR_INIT 
STR rl, [r0, #RTC_ISR] 

; Enable the RTC protection 
LDR r0, =PWR_BASE 
MOV rl, #0xFF 
STR rl, [r0, #PWR_CR] 

stop B stop 
END 

Example 18-3. Initializing RTC in assembly 

The assembly file stm321476xx_constants. s defines many constants, such as the base 

memory addresses: 

RCC_BASE 
RTC_BASE 

EQU (AHBlPERIPH_BASE + 0x1000) 
EQU (APBlPERIPH_BASE + 0x2800) 

It also includes the byte offset from corresponding base memory addresses, such as 
RCC_APBlENRl EQU 0x58 
RTC_ISR EQU 0x0C 



.. 18.6 - RTC Alarm 

18.6 RTC Alarm 
The RTC module also provides alarm functions that allow the 
processor to execute a task at a scheduled time. For example, the 
RTC alarm can wake up the processor at a certain time after it has 
entered a low-power mode. 

The STM32L RTC module has two programmable alarm units: alarm 
A and alarm B. 

• The alarm time and date for alarm A are saved in the RTC_ALRMAR register, 
whereas for alarm B they are stored in the RTC_ALRMBR register. They can be 
written only if the ALRAWF flag is 1 in the RTC_ISR register. 

• The alarm time and date are compared with the RTC date held in the RTC_DR 

register and the RTC time stored in the RTC_ TR register. 
• If enabled, the hardware module generates an RTC alarm interrupt if the time 

and date match. 

The RTC module allows software to select the alarm time and date flexibly. The day of 
the week, the hour, the minute, and the second can be individually chosen by their mask 
bits to take part in the comparison. If a mask bit is 1, its corresponding time component 
is ignored during the alarm time comparison. These masks can be used to generate 
periodic alarms. 

Suppose the alarm time register is set to 21: 25: 37 on Monday. Table 18-3 shows a few 
examples of various settings of the mask bits. 

MSK 4 MSK 3 MSK 2 MSK 1 
When does the alarm occur? 

(day of week) (hour) (minute) (Second) 

0 0 0 0 At 21: 25: 37 on each Monday 

1 0 0 0 At 21: 25: 37 every day 

1 1 1 0 At the 37th second of every minute 

0 0 0 1 At every second of 21: 25 on each Monday 

1 0 0 1 At every second of 21: 25 every day 

0 0 1 1 At every second of the 21•1 hour on each Monday 

0 1 1 1 At every second on Monday 

Table 18-3. Example of mask bit setting for various alarm time comparisons 

The following program sets up alarm A, which occurs at the 30th second of each minute. 



Real-time Clock (RTC) if&M 

void RTC_Set_Alarm(void) { 

} 

uint32_t AlarmTimeReg; 

II Disable alarm A 
RTC->CR &= NRTC_CR_ALRAE; 

11 Remove write-protection of RTC registers by writing "0xCA" 
II and then "0x53" into the WPR register 
RTC- >WPR 0xCA; 11 WPR: write protection register 
RTC->WPR = 0x53; 

II Disable alarm A and its interrupt 
RTC->CR &= NRTC_CR_ALRAE; II Clear alarm A enable bit 
RTC->CR &= NRTC_CR_ALRAIE; II Clear alarm A's interrupt enable bit 
II Wait until access to alarm registers is allowed 
II Write flag (ALRAWF) is set by hardware if alarm A can be changed. 
while((RTC->ISR & RTC_ISR_ALRAWF) == 0); 

II Set off alarm A if the second is 30 
II Bits[6:4] = Ten's digit for the second in BCD format 
II Bits[3:0] = Unit's digit for the second in BCD format 
AlarmTimeReg = 0x3 << 4; 

II Set alarm mask field to compare only the second 
AlarmTimeReg I= RTC_ALRMAR_MSK4; 
AlarmTimeReg I= RTC_ALRMAR_MSK3; 
AlarmTimeReg I= RTC_ALRMAR_MSK2; 
AlarmTimeReg &= NRTC_ALRMAR_MSKl; 

II RTC alarm A register (ALRMAR) 
RTC->ALRMAR = AlarmTimeReg; 

II Enable alarm A and its interrupt 

II 1: Ignore day of week in comparison 
II 1: Ignore hour in comparison 
II 1: Ignore minute in alarm comparison 
II 0: Alarm sets off if the second match 

RTC->CR I= RTC_CR_ALRAE; II Enable alarm A 
RTC->CR I= RTC_CR_ALRAIE; II Enable alarm A interrupt 

II Enable write protection for RTC registers 
RTC->WPR = 0xFF; 

Example 18-4. Initializing alarm A to generate an alarm on the 30th second of each minute 

All RTC interrupts are connected to the EXTI controller. For 

example, the RTC alarm signal is linked to EXTI line 18 I RTC lf----+1•1 EXTI 1 a i 
internally, and the RTC wakeup signal is connected to EXTI 

Alarm . . 

line 20. More details can be found in the STM32L4 reference I RTC I ·I EXTI 20 I 
Wakeup 

manual. To enable the alarm interrupt, we must enable EXTI . . 
line 18, which is connected to the RTC alarm signals. 



18.6 - RTC Alarm 

void RTC_Alarm_Enable(void){ 

} 

II Other initialization (see Example 18-2) 

II Configure EXTI 18 
II Select triggering edge 
EXTI->RTSRl I= EXTI_RTSR1_RT18; // 1 Trigger at rising edge 

II Interrupt mask register 
EXTI->IMRl I= EXTI_IMR1_IM18; // 1 Enable EXTI 18 Line 

II Event mask register 
EXTI->EMRl I= EXTI_EMR1_EM18; // 1 Enable EXTI 18 Line 

II Interrupt pending register 
EXTI->PRl I= EXTI_PR1_PIF18; //Write 1 to clear pending interrupt 

II Enable RTC interrupt 
NVIC->ISER[l] I= 1«9; // RTC_ALarm_IRQn = 41, See Chapter 11.6.1 
II It is equivalent to: NVIC_EnabLeIRQ(RTC_WKUP_IRQn); 

II Set interrupt priority as the most urgent 
NVIC_SetPriority(RTC_WKUP_IRQn, 0); 

Example 18-5. Connecting RTC alarm interrupt to EXT! 18 

In this example, when an RTC alarm interrupt takes place, we toggle the LED connected 
to GPIO pin PB 2. The RTC alarm interrupt handler must clear the interrupt pending flag 
of EXTI line 18 and the interrupt status flag of alarm A. 

void RTC_Alarm_IRQHandler(void){ 

} 

// RTC initialization and status register (RTC_ISR) 
/I Hardware sets the Alarm A flag (ALRAF) when the time/date registers 
// (RTC_TR and RTC_DR) match the alarm A register (RTC_ALRMAR), according 
II to the mask bits 

if(RTC->ISR & RTC_ISR_ALRAF){ 
GPIOB->ODR A= 1UL<<2; 
RTC->ISR &= -(RTC_ISR_ALRAF); 

} 

II Clear the EXTI Line 18 
EXTI->PRl I= EXTI_PR1_PIF18; 

II Toggle GPIO pin PB.2 
II Clear the alarm A interrupt flag 

/I Write 1 to clear pending interrupt 

Example 18-6. RTC Alarm interrupt handler 



Real-time Clock (RTC) IMeW 

18. 7 Using RTC to Wake Processors up from Sleep Mode 
Power requirements are one of the most critical constraints in embedded rl L I 
systems, especially in mobile and portable systems. Cortex-M processors y 7 . 
provide several operating modes, which offer various tradeoffs between ..__ _ _ _ ___. 
energy efficiency and performance (e.g. processor speed and wake-up time). A mode that 
consumes less energy often requires a longer wake-up time. 

The STM32L4 has eight power modes, as shown in Figure 18-5. After power-on or a 
system reset, the processor enters run mode. By changing on-chip peripherals to low
power modes or by turning off the clock to the peripherals and core, software can switch 
the processor to different power modes. 

A typical approach is to use software to switch the processor to sleep or 
standby mode during idle periods, and wake the processor up when an 
interrupt or event occurs. In both modes, all clocks except LSI and LSE 
are stopped, and the processor core is turned off. Sleep and standby 
mode differ from each other in three major aspects. 

• First, in standby mode, data in peripheral registers and SRAM 
are lost by default. However, data are retained in sleep mode. 

• Second, peripherals are active in sleep mode but are turned off in standby mode. 
• Third, when the processor exits from standby mode, a reset signal is generated 

internally, and the processor reboots. However, a reboot is not required when 
exiting from sleep mode. Therefore, the wake-up time for sleep mode is much 
shorter than it is for standby mode. 

Low-power 
Sleep 

c 
.Q 
15. 
E 
:J 

"' c 
8 

! 
a._ 

No clocks except LSI and 
LSE. Data in SRAM and 

peripheral registers are lost. 

Sleep 

Low-power 
Run 

Run 

All clocks are Core stopped, Core and peripherals 
stopped except peripherals are running, main 
LSI and LSE. kept running, regulator off 

Figure 18-5. STM32L4 supports 8 power modes, which offer various performance levels and 
energy efficiencies. 



18.7 - Using RTC to Wake Processors up from Sleep Mode 

Driven by LSI and LSE, the RTC module is an ultra-low power module which takes only 
a few nA of electric current. A small button battery can supply power to a RTC module 
for many years. Therefore, RTC keeps working even in standby or shutdown mode. 
Naturally, RTC is widely used to make the processor wake up from low-power modes 
periodically. 

This section demonstrates how to switch the processor to 
sleep mode, and how to use the RTC to wake the processor 
up from sleep mode. Suppose we want to wake the processor 
up every five seconds. Software can program the RTC 
wakeup time by 

• selecting the clock (WUCKSE L bits in register CR), which 
drives the wakeup timer, 

• setting the timer auto-reload value (register WUTR). 

Avoid waking-up 
too frequently 

Example 18-7 shows a subroutine that programs the RTC wakeup timer to generate a 
wakeup event every 5 seconds. This subroutine can only be called after RTC write 
protection has been disabled (see Example 18-2). 

void RTC_Wakeup_Configuration(void){ 

} 

II Wakeup initialization can only be performed when wakeup is disabled. 
RTC->CR &= -RTC_CR_WUTE; II Disable wakeup counter 

II WUTWF: Wakeup timer write flag 
II e: Wakeup timer configuration update not allowed 
II 1: Wakeup timer configuration update allowed 
while( (RTC->ISR & RTC_ISR_WUTWF) == 0 ); 

II WUCKSEL{2:0]: Wakeup clock selection 
II 10x: ck_spre (usually 1 Hz) clock is selected 
RTC->CR &= -RTC_CR_WUCKSEL; 
RTC->CR I= RTC_CR_WUCKSEL_2; 11 Select ck_spre (lHz) 

II RTC wakeup timer register (Max = exFFFF) 
RTC->WUTR = 5; II The counter decrements by 1 every pulse of 

II the clock selected by WUCKSEL. 

II Enable wake up counter and wake up interrupt 
RTC->CR I= RTC_CR_WUTIE; II Enable wake up interrupt 
RTC->CR I= RTC_CR_WUTE; II Enable wake up counter 

Example 18-7. Programming RTC to generate a wake-up interrupt every 5 seconds 

The processor enters sleep mode by executing "_WFI( )"or "_WFE( )",which run the 
assembly instruction "WFI" (Wait For Interrupt) and "WFE" (Wait For Event), respectively. 



Real-time Clock (RTC) llJ 

• If _WFI() is executed, the processor can be woken up by interrupt requests, 
system reset and debug operations. 

• If _WF E () is executed, the processor can be woken up by events. Example events 
include interrupts, debug events, and events sent by the SEV (send event) 
instruction. 

The behavior of the processor after being woken up depends on the Sleep-on- Exit bit 
in the System Control Register (SCR), as shown in Figure 18-6. When an interrupt request 
arrives, the processor is woken up from sleep mode and starts to execute the 
corresponding interrupt service routine. 

• If the Sleep-on-Exit bit is 1, the function _WFI() does not return to its caller 
after the interrupt service routine completes. Instead, the processor will 
immediately enter sleep mode again if there are no new interrupt requests. 

• If the Sleep-on-Exit bit is 0, the function _WFI() returns to its caller after the 
interrupt service routine completes. This allows the caller to resume the 
computation and execute the code after the _WFI() statement. 

int main(void) { 

while (1) { 

_WFI();~~~~--' 

} Interrupt Handler 
} 

yes 

Figure 18-6. Continuous sleep if the Sleep-on-Exit bit is set 

Example 18-8 shows the code that switches the processor to sleep mode. Depending on 
the application need, the Sleep-on-Exit bit can be either set or cleared. On STM32L4, 
the RTC wakeup interrupt is internally connected EXTI line 20. To enable RTC wakeup 
interrupts, we need to enable interrupts and events for EXTI line 20. 

void Enter_SleepMode(void){ 

II Cortex system control register 
SCB->SCR &= -SCB_SCR_SLEEPDEEP_Msk; II e = sleep, 1 = deep sleep 



Mffi:I 

} 

18.8 - Exercises 

II SLEEPONEXIT: Indicates sleep-on-exit when returning from handler 
II mode to thread mode: 
II e = do not sleep when returning to thread mode. 
II 1 = enter sleep, or deep sleep, on return from an ISR. 
SCB->SCR &= -SCB_SCR_SLEEPONEXIT_Msk; 

II RTC wakeup interrupt is connected to EXTI Line 20 internally. 
II Enable EXTI20 interrupt 
EXTI->IMRl I= EXTI_IMR1_IM20; 

II Enable EXTI20 event 
EXTI->EMRl I= EXTI_EMR1_EM20; 

II Select rising-edge trigger 
EXTI->RTSRl I= EXTI_RTSR1_RT20; 

NVIC_EnableIRQ(RTC_WKUP_IRQn); 
NVIC_SetPriority(RTC_WKUP_IRQn, 0); 

_DSB (); I I Ensure that the Last store takes effect 
_WFI (); I I Switch processor into the sleep mode 

Example 18-8. Entering the sleep mode by using WF I 

18.8 Exercises 
1. Write a C program that converts the UNIX Epoch time to a calendar date and time. 

2. Write a C program that converts a given calendar date and time to the UNIX 
Epoch time. 

3. Write an assembly program that sets up the RTC date and displays the current 
date on an LCD. 

4. Write an assembly program that sets up the RTC time and displays the current 
time on an LCD. 

5. Implement an assembly program to allow users to change the date and time via 
the keypad. 

6. Write an assembly program that utilizes the RTC alarm to toggle an LED every 
five seconds. 



Direct Memory Access (DMA) lrlJ 

CHAPTER 

19 

Direct Memory Access (DMA) 
Direct memory access (DMA) is a useful 
technique for transferring data between 
peripherals and memory, or between 
memory and memory, without using 
many processor cycles. The processor 
needs to program the DMA controller 
and send a command to start the DMA 
transfer. However, during the transfer 
process, the processor is not involved 
and can execute other tasks. Therefore, 
DMA is a very efficient and widely-used 

Without OMA 

Processor 
Core 

Memory Peripherals 

bus 

...... ....... .. 
············· ···················· 

'• 
••• OMA • .......... ________ _ 

bus 

approach to interface peripherals. Figure 19-1. DMA runs on behalf of the processor 

• For slow peripherals, DMA releases the processor from waiting for peripheral 
data and allows the CPU to serve other tasks. 

• For fast peripherals, such as ADC and DAC, DMA improves the data transfer 
throughput because memory accesses take place without the involvement of the 
processor. 

• For high-speed peripherals, DMA can help significantly reduce the rate at which 
interrupts are generated. Thus, DMA decreases the performance overhead from 
interrupts. 

With DMA support, a peripheral does not need to have local memory to store data. 
Instead, data can be efficiently stored in data memory via DMA. This design not only 
reduces the cost but also improves the energy efficiency of embedded systems. This 
chapter presents the implementation of the bus matrix within the processor and gives an 
example of how to program a DMA controller. 



MW1i 19.1 - Advanced Microcontroller Bus Architecture (AMBA) 

19.1 Advanced Microcontroller Bus Architecture (AMBA) 
The Advanced Microcontroller Bus Architecture (AMBA) is an open on-chip 
communication standard for embedded microcontrollers. Chip designers can use AMBA 
without paying royalties. AMBA was first introduced by ARM in 1996. AMBA 2.0, 
released in 1999, specifies the architecture and communication protocol of three bus 
standards, including the Advanced High-performance Bus (AHB), the Advanced System 
Bus (ASB), and the Advanced Peripheral Bus (APB). A bus is a set of physical connections 
that allows two or more components to communicate. Each bus architecture provides a 
set of separate communication paths to transfer data, instructions, and control signals. 
AMBA deploys a master/slave communication model in which only a master can control 
the bus and initiate data transfer. 

• The AHB or ASB is the backbone bus that has high-performance and high clock 
frequency. It supports pipelined operation to achieve high bandwidth, burst 
transfers to reduce the latency of bus access arbitration, and multiple bus masters 
to allow several components to initiate data transfer. Bus arbitration refers to the 
process of deciding which bus master will be allowed to control the bus when 
there are multiple masters. AHB supports wider data transfer and has a higher 
bandwidth than ASB. AHB is used on ARM Cortex-M microprocessors. 

• The APB is a simple, low-power, and low-bandwidth bus that is suitable for low
speed peripherals such as timers, USART, SPI, and LCD. These peripherals 
typically use memory-mapped registers to provide a simplified interface. Unlike 
AHB, communications in APB are not pipelined. All peripherals on the APB bus 
can only act in the role of a slave, which cannot initiate a transfer. 

Processor On-chip 
Core Memory 

Timer USART 

AHB/ 
AHB APB APB 

Bridge 

External 
OMA Engine 

Memory 
SPI LCD 

Figure 19-2. A simple system consisting of AHB, APB, and AHB/APB bridge 

The AHB bus is connected to a bus matrix. The matrix uses a priority-based round-robin 
scheduling algorithm to ensure that no modules can block the data transmission of the 
other modules for a long time. The bus matrix also arbitrates any conflicts when multiple 
accesses are attempted simultaneously. 



Direct Memory Access (DMA) Ill 

A bridge is required to connect the AHB and APB buses. The bridge allows a master on 
the AHB bus to communicate with a peripheral device on the APB bus, even though they 
use different communication protocols. The bridge acts as the only master on the APB 
bus and as a slave on the AHB bus. Due to the speed gap between AHB and APB, the 
bridge buffers addresses, controls and data from AHB to ensure that there is no data loss 
during the communications. The bridge also drives the APB peripherals and provides 
response signals to the AHB. 

DMA controllers reside on the AHB bus. A DMA controller acts as a bus master and a 
bus slave. It has two ports. The slave port can accept data and commands from the 
processor when the processor sets up DMA transfers. The master port can initiate data 
transfer within the AHB bus or across the AHB/APB bridge. A DMA controller often 
manages multiple channels that can be programmed independently. While all channels 
of a DMA controller share the same interface to the AHB bus, each channel has its own 
dedicated interface to peripherals. Thus, multiple channels can perform DMA transfers 
simultaneously. 

Processor 
Core 

Memory 

\ Flow-through 

Peripherals 

\ OMA __._ _____ _._...,,._--.....-----,,,.._....._ bus .. ··.. " .... ----
OMA 

Controller 

Processor 
Core 

Memory Peripherals 

'•.. Fly-by OMA ,/ .......... _____ ..... --" 

OMA 
Controller 

Figure 19-3. Flow-through vs fly-by OMA 

DMA transfers can be either flow-through or fly-by, as shown in Figure 19-3. 

• A flow-through (or fetch-and-deposit) DMA transfer involves two steps: (1) data 
are read one at a time from the source into a register in the DMA controller, and 
(2) data are written to the destination. 

• A fly-by DMA transfer only requires one bus transfer. Data are directly 
transferred from the source to the destination without being read into the DMA 
controller. 

Flow-through transfers are less efficient than fly-by transfers. However, flow-through 
transfers can be used for DMA operations between devices with different register sizes. 
For example, it can read twice from a 16-bit source and then write once to a 32-bit 
destination. Also, fly-by transfers cannot be used for memory-to-memory DMA in any 
embedded systems in which memory cannot be read and written in the same memory 
clock cycle. The DMA controllers on STM32L processors use flow-through transfers. 



19.2 - Interfacing a Peripheral without and with DMA 

19.2 Interfacing a Peripheral without and with DMA 
Figure 19-4 and Figure 19-5 compare operations when data is transferred from the serial 
port (USART) to RAM without and with DMA. STM32L4 divides on-chip peripherals 
into two groups, with one APB bus for each group (APBl and APB2). There are two AHB
to-APB bridges that connect the AHB bus matrix to APBl and APB2, respectively. 
STM32L4 provides two DMA controllers, offering 7 channels on each controller. Only 
one DMA controller is shown in Figure 19-4 and Figure 19-5. 

Without DMA, the processor is fully occupied during the data transfer. It needs to 
perform two operations explicitly to read data from a peripheral. The first operation is a 
load instruction that copies a peripheral data register to a register in the processor core. 
The second operation is a store instruction that saves data to memory. 

Similarly, the processor must perform a load and a store operation to write data to a 
peripheral. The processor reads the data from memory and writes the data to the 
peripheral. 

Furthermore, without DMA, the processor uses either busy-waiting or interrupt methods 
to make sure that the peripheral' s data register is ready to read or write. The busy-waiting 
method is simple but inefficient because it prevents the processor from performing other 
tasks. The interrupt approach is more efficient than busy-waiting. However, it is not 
suitable for high-speed peripherals because high-frequency interrupts can create a large 
performance overhead. Chapter 22.1.4 and Chapter 22.1.5 give a detailed implementation 
of sending and receiving data from a USART serial port by using busy-waiting (also 
known as polling) and interrupts. 

I 
Flash 

I I SRAM I Memory 

I 2. Store data to RAM 

Cortex-M / LCD USART2 USB 2.0 FS 

Processor Core 
/ 

J AHBtoAPB J 
APB1 TIM2 USART3 DAC1 / 

TIM4 DAC2 -- Bridge 1 SPl2 
[ registers \.:::-

--- !--

.2 ...... I I TIM6 12C1 USB RAM 
.... AHB TIM? 12C2 WWDG .... - Bus Matrix r- 1. Load data to --- CPU registers 

- -·1· - - - - [AHBtoAPBf )!J:>82 
USART1 ADC 
EXT TIM9 

OMA Engine 
I Bridge 2 I WKUP TIM10 

SPl 1 TIM11 

i DMA Request I 
OMA Request 

Figure 19-4. Receiving data from a USART serial port without DMA. The processor must 
execute load and store instructions to copy data from peripherals to the data memory. 



Direct Memory Access (OMA) Im 

On the contrary, if DMA is used, data exchange between memory and peripherals, or 
between two different memory regions, occurs without processor intervention. The 
processor only needs to set up the DMA transfers by programming the DMA controller 
and start the transfer by enabling the DMA channel. Once the transfer is in progress, the 
processor becomes available for other tasks. 

For example, after the processor configures and initiates the DMA channel that responds 
to the USARTl receive register not empty (RXNE) events, the OMA engine copies data in the 
USARTl RX register to memory as soon as it is received. 

• The "write to" and "read from" operations are offloaded from the processor core 
to the DMA controller. 

• The DMA engine uses flow-through transfers. Each DMA transfer still takes two 
bus transfers to move data from USARTl to memory. Although OMA does not 
reduce the total latency of these two data transfers, this latency can be hidden 
from the processor. 

• The OMA controller can generate an interrupt at the end of each OMA transfer 
sequence to inform the processor that data has been saved to memory and is 
ready to be processed. 

In this way, OMA allows data computation and data transfer to take place in parallel, 
leading to performance improvement. DMA may stop the processor's access to the AHB 
bus for a short time if both are trying to access the same destination (memory or 
peripherals) at the same time. 

Chapter 22.1.6 provides a detailed example of controlling USART 1 via OMA. 

I 
Flash 

I I SRAM I Memory 

~ 
Cortex-M / LCD USART2 USB 2.0 FS 

Processor Core // I AHBtoAPB I APB1 TIM2 USART3 DAC1 

J registers I / I Bridge 1 I 
TIM4 SPl2 DAC2 >---

,2/ AHB TIM6 12C1 USB RAM 

Store data to RAM TIM7 12C2 Wl/llDG / Bus Matrix 
i-"' without involving CPU 

/ .... ----1--- ,__ ----------:;.-- - • USART1 ADC 
I AHB to APB I APB2 EXT TIMS OMA Engine 
I Bridge 2 I WKUP TIM10 

SPl1 TIM11 

i OMA Request I 
OMA Request 

Figure 19-5. Receiving data from USART 1 by using OMA. The OMA engine reads data from 
the peripheral and then writes it to memory without the intervention of the processor. The 

OMA engine can inform the processor via interrupt upon completion. 



Mkji 19.3 - DMA Channels 

19.3 DMA Channels 
Let us take the STM32L4 as an example to illustrate the concept of a DMA channel. 
STM32L4 has two DMA controllers, with seven channels in each. Each channel can 
perform DMA transfers independently. Each channel has its own source, destination, 
transfer direction, transfer width, data amount, and trigger. 

If a DMA channel is enabled, it performs a DMA transfer automatically for each trigger 
received. Figure 19-6 shows one DMA controller. Each channel can be programmed to 
be triggered by one event selected among eight events available to that channel. This is 
achieved by programming DMA controller's CSEL R register. Software trigger is one of 
the eight trigger options on every channel. 

:------------Aoc-: 
Analog i DAG : 

1_ ______ _ ____________ 1 

:----------12c-R"x-1 

i 12C TX : 
. i SPI RX : 

Senal : SPI TX : 
Communication ! QUADSPI ; 

i USART RX : 
i USART TX : !... ___________________ ! 

:-------riM-cH1--: 
i TIM CH2 : 
f TIM CH3 ' 

Timers i TIM CH4 : 
i TIM TRIG : 
l TIM COM ' 
i TIM UP : 
'--------------------1 
r-- ------AEs-;N-: 

Security i AES 0-UT : 
i HASH_IN ; 
L-------------------' 
:------------oc_M_1_1 

i DFSDM FL TO : 
. i DFSDM FLT1 ' 

Audio & : OF SOM FL T2 : 
Video i OF SOM FL T3 : 

i SAl1 A : 
i SAl(B : 
'--------------------! 

Software Trigger 

Hardware 
defined 

connection 
table 

(Software 
cannot 

change it) 

C1S [3 :0] in CSELR 

• 
• 
• 

C1S [3:0] in CSELR 

Channel 1 

Channel 7 

Figure 19-6. Selecting one trigger signal for each OMA channel 

To reduce a chip's cost and complexity, each channel can only support up to eight trigger 
signals (also called requests) defined by the chip manufacturer. For a given DMA channel, 
software can only select one available trigger for that channel. In other words, not all 
triggers are available for a channel at the same time. 



Direct Memory Access (DMA) iijeW 

Table 19-1 and Table 19-2 show the possible triggers on each channel of DMA 1 and DMA 
2. To avoid DMA conflicts, we need to consider the following questions when 
programming DMA: (1) Which DMA controller should we use? (2) Which channel 
should we use? (3) Which trigger should we select? 

Trigger Channell Channel2 Channel3 Channel4 Channels Channel6 Channel7 

0 AD Cl ADC2 ADC3 DFSDMl_FLTO DFSDMl_FLTl DFSDM1_FLT2 DFSDM l_FL T3 

1 - SPl l _RX SP ll_TX SPl2_RX SPl2_TX SAl2_A SAl2_B 

2 - USART3_TX USART3_RX USART!_ TX USARTl_RX USART2_RX USART2_TX 

3 - 12C3_TX 12C3_RX 12C2_TX 12C2_RX 12Cl_TX 12Cl_RX 

4 TIM2_CH3 TIM2_UP 
TIM16_CH1 

- TIM2_(Hl 
TIM16_CH1 TIM2_CH2 

TIM16_UP TIM16_UP TIM2_(H4 

s 
TIM17_CH1 

TIM3_(H3 
TIM3_CH4 TIM7_UP 

QUADSPI 
TIM3_CH1 TIM17_CH1 

TIM17_UP TIM3_UP DAC2 TIM3_TRIG TIM17_UP 

6 TIM4_CH1 -
TIM6_UP 

TIM4_CH2 TIM4_CH3 - TIM4_UP 
DACl 

TIM1_CH4 
TIMlS_CHl 

7 - TIMl_CHl TIM1_CH2 TIMl_TRIG 
TIMlS_UP 

TIMl_UP TIM1_CH3 

TIMl_COM 
TIMlS_TRIG 

TIMlS_COM 

Table 19-1. DMA triggers (requests) supported in each channel of DMA controller 1 

Trigger Channell Channel2 Channel3 Channel 4 Channels Channel6 Channel7 

0 12C4_RX 12C4_TX AD Cl ADC2 ADC3 DCMI -

1 SAll_A SAl l_B SAl2_A SAl2_B - SAll_A SAll_B 

2 UARTS_TX UARTS_RX UART4_TX - UART4_RX USART!_ TX USARTl_RX 

3 SP13_RX SPl3_TX - TIM6_UP TIM7_UP 
QUADSPI 

DACl DAC2 

4 SWPMll_RX SWPMll _TX SPll_RX SPll_TX DCMI LPUARTl_TX LPUARTl_RX 

s 
TIMS_CH4 TIMS_CH3 

TIMS_CH2 TIMS_(Hl 12Cl_RX 12Cl_TX 
TIMS_TRIG 

-
TIMS UP -

6 AES_IN AES_ OUT AES_OUT - AES_IN - HASH_IN 

TIM8_CH3 
TIM8_CH4 

7 
TIM8_UP 

TIM8_TRIG - SDMMCl SDMMCl TIM8_CH1 TIM8_(H2 
TIM8_COM 

Table 19-2. DMA triggers (requests) supported in each channel of DMA controller 2 

Each channel has a software priority and a hardware priority. When multiple channels 
are active, the DMA controller uses the priority level to determine the order of bus access 
when a bus resource conflict occurs. If two or more DMA channels have the same 
software priority level, the DMA controller uses the hardware priority to break the tie. 



19.4 - Programming OMA 

• Software priority. Programs can configure the software priority of each channel. 
When multiple channels are used, software should give a high priority to a 
channel that requires a high bandwidth, to achieve continuous data transfers and 
provide sustained data rates. There are four levels of priority, including very high 
(0b11), high (0b10), medium (0b01), and low (0b00). 

• Hardware priority. On STM32L4 processors, channel 1 has the highest hardware 
priority, and channel 7 has the lowest. Users cannot change the hardware priority 
of OMA channels. When multiple channels have the same software priority, the 
DMA engine uses their hardware priority to arbitrate the bus accesses. 

19.4 Programming DMA 
Each DMA channel has four registers: the channel memory address register (CMAR), the 
channel peripheral address register (CPAR), the channel number of data register (CNDTR), and the 
channel configuration register (CCR) . As shown in Figure 19-7, CMAR and CPAR specify the 
starting address of the data memory and the peripheral, respectively. The transfer 
between the memory and the peripheral can take place in either direction. 

The CCR register specifies the data transfer direction, whether increment mode is used, 
whether circular mode is used, and the channel priority. The CCR register is also used to 
enable or disable transfer error interrupts, half-transfer interrupts, and transfer-complete 
interrupts. Software must specify the total number of data to transfer in the CNDTR register. 

Memory Address 
Register (CMAR) 

Transfer direction: 
Peripheral to memory 

Data Memory 

Peripheral 
Memory 

Peripheral Address L_--~~====Y 
Register (CPAR) I 

Transfer direction: 
Memory to peripheral 

Figure 19-7. DMA transfer direction. On STM32L, memory-to-memory DMA is allowed, but 
peripheral-to-peripheral DMA is not. 

Increment mode determines whether CPAR or CMAR increments after each OMA transfer, 
(see Figure 19-8). This mode can be programmed separately for CPAR and CMAR. For 
example, if increment mode for CMAR is enabled and MSIZE is four bytes, then the memory 
address stored in CMAR automatically increments by four after each DMA transfer. 



Peripheral transfer size 
(PSIZE) = 32 bits 

Direct Memory Access (DMA) lfiil 

Memory transfer size 
(MSIZE) = 32 bits 

1•1 transfer -
2 nd transfer ··············• 

I Peripheral Address I ..... -·····• 
Register (CPAR) I 

Peripheral 
Memory/Registers 

.. / m 
OMA 

En ine g 

~-• 
Data 

Memory 

-. ............ I Memory Address I 
I Register (CMAR) 

Figure 19-8. Example transfer from peripheral to data memory 

Figure 19-9 configures the receive buffer not empty (RXNE) event of USART 1 as the trigger 
of DMA 2 channel 7 by programming the channel selection register (CSE LR). All available 
triggers that can make DMA requests on channel 7 of DMA 2 are listed in Table 19-2. 

When USART receives a byte, hardware sets the RXNE flag. If the channel enable bit (EN) 
is set in the CCR register, each RXNE event triggers one DMA transfer request. Example 
19-1 gives the implementation in C. 

f-;,-,;;;;;;,-ccR-,;i~t;;;~~----------------------------1 

! (1) Set peripheral data size as byte ~--- i ~----D-M_A_2-Ch_a_nn-el-7---~ 

! (2) Ser memory data s'.ze as byte -----~ 
i (3) Disable periphenf!I increment mode !- -~ CCR 
: (4) Enable memory increment mode : . 

l-~~-~~!~~~~~~-~~~-~~.:_~~~~!'_~~'!_~~-~~'!!_~_"!_j Ch~n~~~~~n[~~~)tlon 

r ......... -j 0x40013s24 I 
! Channel Peripheral 

Channel Number of Data 
Register (CNDTR) 

I 0x20000100 I 
Channel Memory 

Address Register (CMAR) OMA2 Channel7->CPAR ! Address Register(CPAR) 

: (uint32_t}&{USART1- >RDR ) .i j '-----'T'-"rigrge"--r ________ __, 

i DMA2_Channd7- >CMAR 
~---------USA-RT~l_-RX_N_E-~ a (uint32_t) Buffer ; 

0x40013824 9x75 
Memory '---~R~ec-e1v-e~Oa-ta__, 
Address Register (RDR) 

USART1 

Peripheral increment 
mode is disabled 

Memory increment 
mode is enabled. 

Memory 

High Address 

0x20000105 

0x20000104 

0x20000103 

0x20000102 

0 1<20000101 

0:1129900100 

Low Address 

Figure 19-9. Configure DMA 2 channel 7 to receive 6 bytes from USART 1 

RCC->AHBlENR I= RCC_AHB1ENR_DMA2EN; II Enable OMA clock 
DMA2_Channel7->CCR &= -DMA_CCR_EN; II Disable OMA channel 

Buffer[ SJ 

Buffer[4] 

Buff er[ 3] 

8uffe r[2] 

Buffer[ l ] 

Buffer(0} 

DMA2_Channel7->CCR &= -DMA_CCR_PSIZE; II Peripheral data size ee = 8 bits 
DMA2_Channel7->CCR &= -DMA_CCR_MSIZE; II Memory data size: ee = 8 bits 
DMA2_Channel7->CCR &= -DMA_CCR_PINC; II Disable peripheral increment mode 
DMA2_Channel7->CCR I= DMA_CCR_MINC; II Enable memory increment mode 
DMA2_Channel7->CCR &= -DMA_CCR_DIR; II Transfer direction: to memory 
DMA2_Channel7->CNDTR 6; II Number of data to transfer 
DMA2_Channel7->CPAR = (uint32_t)&(USART1->RDR); II Peripheral address 
DMA2_Channel7->CMAR = (uint32_t) Buffer; II Receive buffer address 
DMA2_CSELR->CSELR &= -DMA_CSELR_C65; II See Table 19-2 
DMA2_CSELR->CSELR I= 2«24; II Map channel 7 to USARTl_RX 
DMA2_Channel7->CCR I= DMA_CCR_EN; II Enable OMA channel 7 

Example 19-1. Program DMA 2 Channel 7 to receive 6 bytes from USART 1 



19.5 - DMA Circular Mode 

19.5 DMA Circular Mode 
The DMA channel can run in circular mode or normal mode. 

• If the CIRC bit in the CCR register is cleared, the DMA channel runs in nonnal mode. 
For each DMA transfer, hardware decrements the CNDTR register by 1. The DMA 
channel is disabled once CNDTR reaches 0. Once the DMA channel is enabled, 
software cannot modify CNDTR. 

• If CIRC in CCR is set, the DMA channel runs in circular mode. Circular mode is 
often used for memory to implement a circular buffer. After CNDTR reaches 0, CPAR, 
CMAR, and CNDTR are automatically reset to the value originally programmed. 
Therefore, DMA can start the next round of DMA transfers. Circular mode is 
useful for DMA transfers for continuous data streams. 

As shown in Figure 19-10, the CNDTR register of a DMA channel is set to 6. After the DMA 
completes 6 transfers, the buffer is automatically reused for subsequent DMA transfers. 

High Address 

0x20000105 Buffer[S) 

0x20000104 Buffer[ 4) 

0x20000103 Buffer[3) 

0x20000102 Buffer[2) 

0x20000101 Buffer[l) 

0x75 0x20000100 Buffer[0) 

Low Address 

Memory 

Figure 19-10. DMA in circular mode 

Circular mode: After 
every 61

h transfer, 
hardware resets register 
CPAR, CMAR and CNDTR to 
their initial values. 

Each DMA channel can generate three interrupts: transfer finished (TC), half-finished (HT), 
and transfer error (TE). The following code enables the TC interrupt of DMA 2 Channel 7. 

II Enable the transfer complete interrupt 
DMA2_Channel7->CCR I= DMA_CCR_TCIE; 

II Disable the half transfer interrupt 
DMA2_Channel7->CCR &= -DMA_CCR_HTIE; 

II Set the priority as the most urgent 
NVIC_SetPriority(DMA2_Channel7_IRQn, 0); 

II Enable NVIC interrupt 
NVIC_EnableIRQ(DMA2_Channel7_IRQn); 

Example 19-2. Enabling the TC interrupt for DMA 2 channel 7 



Direct Memory Access (DMA) llJI 

19.6 DMA Interrupts 
Software can identify the type of a DMA interrupt by checking the DMA interrupt status 
register (DMA_ISR), as shown in Example 19-3. 

• Once half of the number of bytes (specified in the CNDTR register) are transferred, 
the half-transfer flag (HTIF) is set, and the DMA engine generates an interrupt if 
the half-transfer interrupt enable bit (HTIE) is set. 

• At the end of the transfer, the transfer complete flag (TCIF) is set, and the DMA 
engine generates an interrupt if the transfer complete interrupt enable bit (TCIE) 
is set. 

• If a DMA transfer accesses a restricted memory region, a DMA error takes place, 
and the hardware sets the transfer error flag (TEIF). The DMA controller 
automatically disables a faulty channel by clearing its EN bit, minimizing the 
performance impacts on the other active channels. 

• If any of the transfer complete, half transfer and transfer error interrupts take 
place, hardware sets the global interrupt flag (GIF). 

• Software clears these interrupt flags by writing 1 to the corresponding bit in the 
interrupt flag clear register (IFCR). 

void DMA2_Channel7_IRQHandler(void) { 

} 

if ( (DMA2->ISR & DMA_ISR_TCIF7) DMA_ISR_TCIF7 ) {// transfer complete 
DMA2->IFCR I= DMA_IFCR_CTCIF7; // Clear flag TCIF by writing 1 to it 

} 

if ( (DMA2->ISR & DMA_ISR_HTIF7) == DMA_ISR_HTIF7 ) {// half transfer 
DMA2->IFCR I= DMA_IFCR_CHTIF7; //Clear flag IFCR by writing 1 to it 

} 

if ( (DMA2->ISR & DMA_ISR_GIF7) == DMA_ISR_GIF7 ) {//global interrupt 
DMA2->IFCR I= DMA_IFCR_CGIF7; //Clear flag HTIF by writing 1 to it 

} 

if ( (DMA2->ISR & DMA_ISR_TEIF7) == DMA_ISR_TEIF7 ) {// transfer error 
DMA2->IFCR I= DMA_IFCR_CTEIF7; // Clear flag CTEIF by writing 1 to it 

} 

Example 19-3. Interrupt handler for OMA 2 channel 7 



19.7 - Exercises 

19.7 Exercises 
1. How does the software know which specific event generates the interrupt when 

a DMA interrupt occurs? 

2. Why is using DMA interrupt to retrieve data from a peripheral more efficient than 
repeatedly polling the peripheral? 

3. Write an assembly program that uses DMA to copy 256 bytes of data from one 
memory region to another memory region. 

4. Write an assembly program that uses DMA to perform analog-to-digital 
conversion (ADC). (Requires the background of Chapter 20). 

5. Write an assembly program that uses DMA to perform digital-to-analog 
conversion (DAC). (Requires the background of Chapter 21) 



Analog-to-Digital Converter (ADC) Bl 

CHAPTER 

20 

Analog-to-Digital Converter (ADC) 
An analog-to-digital converter (ADC) produces a finite-precision signed or unsigned 
digital number to represent approximately the size of an analog voltage relative to a 
reference voltage. The reference voltage is a fixed voltage provided by the internal circuit 
of the microprocessor or by an external circuit connected to a pin of the microprocessor. 
It does not convert a voltage larger than the reference voltage. 

Three key performance parameters of ADCs are sampling rate, resolution, and power 
dissipation. 

• The sampling rate indicates how many conversions an ADC performs in a second. 
An ADC can perform up to several million or billion samples per second. 

• The number of bits in the ADC output is called resolution. While standard 
resolutions vary between 6 to 24 bits, the resolution has not been improved much 
in the past few years because a 12-bit or 24-bit resolution is often sufficient for 
most modern applications. 

• The power dissipation measures the power efficiency of ADC converters. In 
many mobile embedded systems, it is the power budget, not the hardware speed, 
which limits the throughput of ADC converters. 

20.1 ADC Architecture 
There are three most popular ADC architectures: sigma-delta ADC for low-speed 
applications, successive-approximation (SAR) ADC for low-power applications, and 
pipelined ADC for high-speed applications. 

• Sigma-delta ADCs are mostly used in applications requiring low sampling rates, 
but high resolution, typically less than 100 kilo samples per second and 12 to 24-



P·l:fl 20.1 - ADC Architecture 

bit resolution, such as voice band and audio applications. They have been widely 
used in modern cell phones. 

• SAR ADCs are suitable for applications with low-power data acquisitions and 
moderate sampling rates, typically less than 5 million samples per second (MSPS). 

• Pipelined ADCs are widely used for high-speed applications, such as digital 
oscilloscopes, HDTV, and radar communication, requiring fast sampling rates 
greater than 5 MSPS and relatively low resolution less than 18 bits. 

The ADC on STM32 microcontrollers is based on the successive-approximation (SAR) 
architecture, as shown in Figure 20-1. The architecture includes two major components: 
the sample-and-hold amplifier (SHA), and SAR digital quantization. 

Analog 
Input 

V ;n 

20.1.1 

C ade 

Sampling and I 
Hold Amplifier 

(SHA) -=-

DAC 

TIMING 

SAR 
Control 
Logic 

ADC Output 

Figure 20-1. Basic architecture of successive-approximation (SAR) ADC 

Digital Quantization 
The digital quantization works as follows. The SAR control logic uses the binary search 
algorithm to find the digital number (ADC output) that represents the analog input most 
closely. The SAR control logic dynamically changes the ADC output so that the digital
to-analog converter (DAC) output V<lac gradually approaches the DAC input voltage Vin. 

(1) The conversion starts with setting the internal DAC output Vdac to V2VREF and then 
compares the DAC output V <lac with the ADC input Vin. 

(2) If Vin is larger than V2VREF, the SAR logic controller sets the most significant bit 
(MSB) of the ADC result. Otherwise, the MSB of the ADC is cleared. 

(3) Next, the DAC output Vdac is set to either %VREF or %VREF, depending on the 
comparison result between Vin and V dac. 

(4) This process repeats until all bits of the ADC output have been determined. 



Analog-to-Digital Converter (ADC) Ill 

If the ADC has a resolution of n bits, the successive-approximation conversion takes n 
steps to complete. It plays a tradeoff between the resolution and sampling rate. A higher 
resolution usually reduces the ADC conversion rate. 

1 . 000 --------------------------------------------------------------------------------------------------

0.875 

1100 
------------------------------------------------.----.-------------------------------------0.750 

0.687 

0.625 

---+---+------- 0.690 ---------------------------- ------------------ ----------- ------------..---------------
1011 

-------------------------------
1010 

0. 500 ----------------- -------------------'--------------------------------------------------
1000 

0 

Time (cycles) 

Sampling Conversion 

Figure 20-2. An example of four-bit successive-approximation (SAR) ADC. Suppose the input 
voltage is between 0 and 1 V. 

Figure 20-2 shows an example of converting an input voltage of 0.690V into a 4-bit binary 
value by using SAR ADC. Suppose the range of the input voltage is between OV and 1 V. 

(1) After the input voltage is sampled, the SAR control logic starts the conversion by 
setting Vdac as O.SV (i.e., the ADC output is 0b1000) and comparing it with Vsampie. 

(2) Since Vsampie is larger than Vdac, the control logic then sets Vdac as 0.750V (i.e., the 
ADC output is 0b1100). 

(3) Because Vsampie is smaller than Vdac, the control logic then sets Vdac as 0.625V. 

(4) The above process repeats and the final output of the ADC is 0b1011. In this 
example, the conversion process takes four cycles. 



20.1 - ADC Architecture 

20.1.2 Sampling and Hold 
The sample-and-hold amplifier (SHA) includes a switched capacitor and one operational 
amplifier, which is used to sample the analog input voltage Vin and hold the value over 
a certain amount of time for subsequent ADC processing. The sampling and hold circuit 
is a simple resistor-capacitor circuit. 

When the switch is closed, the voltage across the capacitor Ve increases exponentially, as 
shown in the following equation: 

Ve(t) = Vin x ( 1 - e -:c) 
where Tc = (Rin + Rade) x Cade· This shows that the input voltage Vin cannot be sampled 
instantly. For example, when the switch is closed for a time period of 3Tc, the voltage 
across the capacitor Ve is only 95.02% of the input voltage Vm, as shown in Figure 20-3. 

Thus, to achieve accurate analog-to-digital conversion, software should let the capture 
switch close for enough time. The amount of time that the capture switch remains closed 
is called sampling time. 

0.5 
t/Tc 

Figure 20-3. The change of the ratio of Ve (voltage across the capacitor) to Vin (Input voltage) 

On STM32L processors, ADC uses the HSI as the default clock, no matter what clock the 
processor uses. ADC can use a clock divider to change the ADC clock speed. The divider 
is 1 for full speed (16 MHz), 2 for medium speed (8 MHz), and 4 for low speed (4 MHz). 
Each ADC channel can select its own sampling time, by setting the SMP [ 2: 0] bits of the 
corresponding SMPRx registers (x = 1, 2, or 3). 



Analog-to-Digital Converter (ADC) Ii:~· 

The total ADC conversion time is as follows. Note, if the ADC has a resolution of n bits, 
the conversion time of successive-approximation takes n cycles to complete. 

Tconversion =Sampling Time+ Channel Conversion Time 

For 12-bit ADC conversion, if the sampling time is set to 4 cycles and the ADC clock is 
set to 16 MHz, then we have 

Tconversion = 4 + 12 = 16 cycles = 1µs 

A larger sampling time is recommended if the ADC meets the application's speed 
requirement. As discussed earlier, to achieve accurate analog-to-digital conversion, the 
capture switch in the sample-and-hold component should be closed for a sufficient 
amount of time. 

20.2 ADC Sampling Error 

Suppose the ADC output has n bits, the ADC result of an input voltage V can be 
calculated as follows: 

( 
V - VRL ) 

Digital Result= round zn x V V 
RH - RL 

where VRH and VRL are the high-reference voltage and the low-reference voltage, 
respectively. There are two conversion modes: the single-end mode and the dual-end 
mode. In the single-end mode, VRL is 0 and the digital output is an unsigned number. 
Then we have 

Digital Result = round ( zn X V~H) 

In the dual-end mode, VRL is equal to -VRH often and the digital output is a signed 
number represented in two's complement format. 

Digital Result= round ( zn xv 2:::H) = round ( zn-l xv :R~RH) 

The ADC output approximates the analog input signal in time and amplitude. An analog 
signal is continuous in time and amplitude, and it has an infinite number of possible 
values. However, the ADC input is sampled with a fixed time interval, and the ADC 
result has only a limited number of possible values. Using a higher sampling frequency 
or using more bits to represent the digital output can reduce the error. 



20.2 - ADC Sampling Error 

The difference between the actual analog value and the analog value represented by the 
quantized digital value is called quantization error. In the single-end mode, it is assumed 
that the input voltage is in the range [0, VREF ]. Figure 20-4 and Figure 20-5 show two 
different quantization methods in the single-end mode, in which VREF is 5V. The digital 
ADC output in these examples has only three digits, which can only represent 8 possible 
values. Figure 20-4 uses the following quantization. 

Digital Result= floor ( 23 x v:J 
Note the floor operation is to truncate the decimal part during the division, which is the 
default behavior of integer division in C. 

Figure 20-5 uses the quantization method introduced previously. 

Digital Result= round (z3 x ~)=floor (z3 x VV + -
2

1
) 

VR EF REF 

Apparently, the average quantization error in Figure 20-5 is half of the quantization of 
Figure 20-4. The quantization result based on the round function can be obtained from 

the result of the floor function by shifting the input voltage toward left by 0.5 x vR
8
EF. 

1 -ADC Result 
110 r - - ADC Ideal Result 

1od 
::J 

gi 100 ~ 
CC I 
g 011 f 
<( 

010 I 
.; 

001 r ,, ,, ,, ,, 

OOO "-~~-~~~~~~~~ 

0 2 3 4 
ADC Input Voltage (V) 

Figure 20-4. ADC result based on floor 
function in the single-end mode 

5 

11 1 ~ - ~ - ~ 

-ADC Result 
110 ' - - ADC Ideal Result 

I 
101 > - I 

:i 
gi 100 ' 
cc 
u 011 " 
0 
<( 

010 i 

000 
0 2 3 

ADC Input Voltage (V) 

4 5 

Figure 20-5. ADC result based on the round 
function in the single-end mode 

In the single-end mode, if the ADC result has n bits, we can calculate the conversion 

result of an input voltage V as follows: 

Digital Value 
v = zn x VREF 



Analog-to-Digital Converter (ADC) li:W 

20.3 ADC Diagram 
STM32L4 has three ADC modules, named ADCl, ADC2, and ADC3. Software can set ADCl 

and ADC2 to the dual mode, in which both ADC modules perform conversion 
simultaneously. The resolution can be 12, 10, 8 or 6 bits, depending on the application's 
need. By using a technique called oversampling, the resolution can increase to 16 bits. 

The voltage input range of each channel is in Wref-1 Vref+] , where the Vref- and Vref+ are 
two dedicated input pins on some processors and serve as external voltage references. 
Most processors also provide an internal reference voltage, which is measured 
individually at the manufacturing stage. For example, the internal reference voltage of 
STM32L is 3±0.01 V, and its corresponding converted value is stored in a protected 
memory area during the manufacturing process. 

External 
signals 

SysCLK 

PLLSAl1 

PLLSAl2 

Internal 
signals 

Divider (1, /2, /4) 

CKMODE(1:0] in ADCx_CCR 

PLLADC2CLK 

Upto4 
Injected 

Channels 

Up to 16 
Regular 

Channels 

Analog Watchdog 

High Threshold Register 

Low Threshold Register 

ADCSEL[1 :O] in 
RCC_CCIPR 

flJlJlI 
ADC Clock 

Analog to Digital Converter 

Injected Channels 

Regular Channels 

OMA Request 

'-----I~ End of Conversion 

'-------.-~ End of Injected Converstion 

'------• Overrun 

r--------1~~ Analog Watchdog Event 

Figure 20-6. Analog-to-digital converter (ADC) 

Injected Data Register 1 (JDRl) 

Injected Data Register 2 (JDR2) 

Injected Data Register 3 (JDR3 ) 

Injected Data Register 4 (JDR4) 

Regular Data Register (DR) 

NVIC 
Interrupts 
if enabled 

All ADC modules are driven by the same clock, which can be selected from three 
different clock sources, as shown in Figure 20-6. The ADC clock can be independent of 
the processor's clock. If the ADC clock runs at 80 MHz, one ADC module can achieve 



--~ 20.4 - ADC Conversion Modes 

5.33 million samples per second, with a resolution of 12 bits. If the resolution decreases, 
the ADC conversion rate can be even higher. 

Each ADC module also has integrated analog watchdogs (AWD). Each watchdog has two 
programmable thresholds: an upper threshold and a lower threshold. AWD continuously 
monitors the ADC input voltage. If the ADC result is below the lower threshold or above 
the upper threshold, ADC can generate an interrupt or a signal named (AWD_OUT). The 
signal AWD_OUT is high if the threshold is violated. AWD_OUT can be selected as an external 
trigger (ETR) of a timer to start or stop a timer. An example usage of analog watchdogs is 
to monitor sensor data, such as internal temperature, and raise alarms and perform 
software actions if data is out of the target range. Without watchdogs, software would 
have to read and compare ADC results constantly. Thus, analog watchdogs can save 
processor's time and energy. 

20.4 ADC Conversion Modes 
The ADC module performs conversions on selected conversion channels in either the 
single conversion mode or the continuous conversion mode, as shown in Figure 20-7. 

20.4.1 One Input Channel 

Let's first consider single conversion on one input channel. 

• For a channel in the regular group, the target channel is determined by the SQl [ 4: 0] 
bits in the SQRl register. The 16-bit ADC data register (ADC_DR) holds the 
conversion result. After the conversion, the end of regular conversion flag (EOC) is 
set in the !SR register. The ADC module generates an interrupt request if the 
EOCIE bit is set in the interrupt enable register (IER). 

• For a channel in the injected group, the JSQl [ 4: 0] bits in the JSQR register selects 
the conversion channel. The 16-bit register ADC_JDRl holds the conversion result. 
After the conversion, the end of injected conversion flag (J EOC) is set in the !SR 

register. An ADC interrupt will be generated if the JEOCIE bit is set in the 
interrupt enable register (IER). 

If the continuous conversion mode is used on one input channel, the ADC module 
automatically starts a new conversion immediately after it finishes one. The last 
conversion result is saved in the ADC_DR register for a regular channel and register 
ADC_JDRl for an injected channel. The CONT bit in the CFGR register enables the continuous 
mode. 



Analog-to-Digital Converter (ADC) li:GM 

20.4.2 Multiple Input Channels 
The ADC module can perform sampling and conversions on a set of pre-defined input 
channels in a round-robin fashion. This conversion scheme is called scan mode. For a 
regular group, this mode scans all channels defined in registers ADC_SQRl, ADC_SQR2, 

ADC_SQR3, and ADC_SQR4. For an injected group, the channels to be scanned are selected 
by the ADC_JSQR register. The ADC converts one channel of the group and then continues 
successively to convert the next channel of the group. 

The conversion operation can be set up to perform only once or repeatedly, depending 
on bit CONT bit in the ADC_CFGR register. For the injected group, there is one data register 
for each injected channel. However, for a regular group, there is only one data register 
that is shared by all channels in this group. Therefore, after each conversion in a regular 
group, the software needs to read the data register between continuous sampling. 

After each conversion, ADC result should be copied to a user buffer because ADC may 
overwrite the ADC data registers (DR, JDRl, JDR2, JDR3, and JDR4). An interrupt request 
or a DMA request can be triggered at the end of each conversion if enabled. Thus, to 
reduce the software overhead, we often use the ADC interrupt handler or the DMA 
controller to copy the ADC results to a user buffer. 

Start Start 

Channel x Channel x 

STOP 

Single Channel, Single Single Channel, Continuous 
Conversion Conversion 

CONT in ADC_CFGR = 0 CONT in ADC_CFGR = 1 

i---lfeii ii1ai ciiariri-.;1:----------------------------: 
i 1. Set bit ADSTART in register ADC_ CR i 
: 2. Channel is selected by SQ1 [4:0] in SQR1 ! 
: 3. Result is stored in ADC DR : 
] 4. EOG is set after converSion ! 
: 5. Interrupt is generated if EOCIE is set : 
' ' ' ' ' ' i Injected channel: ! 
i 1. Set JADSTART in register ADC_ CR i 
: 2. Channel is selected by JSQ1 [4:0] in JSQR : 
: 3. Result is stored in ADC JDR1 : 
: 4. JEOC is set after conversion : 
i 5. Interrupt is generated if JEOCIE is set i 
L-- - --------------------- --------- -- ---- - - --------- ~ 

Start 

Channel x 

Channel z 

STOP 

Scan with Single 
Conversion 

CONT in ADC_CFGR = 0 

Start 

Channel x 

Channel z 

Scan with Continuous 
Conversion 

CONT in ADC_CFGR = 1 

r- - - - -- - - --- - - - - - -- -- ---- -- - - - - - - --- -- --- - -- - - - - - - -- ----- - ---- - - - ------ ---- - - - - - , 
: 1. Channels are selected by ADC_SQRx registers for regular channels, and by : 
i ADC_JSQR reg ister for injected channels i 
i 2. All channels in a regular group share the same result register ADC_DR. ! 
L -----~~~~-~~~~~~~~-a-~~_":_t~-~~~~-~~ -c-~~~~=~'.i~~-~~~~~~?~ - - ----- --- - ------- ---- -' 

Figure 20-7 ADC conversion: single mode and continuous mode 



20.5 - ADC Data Alignment 

20.5 ADC Data Alignment 
Software can change the ADC resolution. The resolution can be either 12, 10, 8 or 6 bits, 
determined by the RES[1:0] bits in the ADC configuration register ADC_CFGR. 

However, each ADC data register (DR, JDRl, JDR2, JDR3, and JDR4) has 16 bits. Because 
ADC results have fewer bits than ADC data registers, alignment must be considered 
when a data result is stored in a data register. Figure 20-8 shows different data alignment 
formats. ADC output data registers can be either right-aligned or left-aligned. 

ADC results are signed when an offset is applied to a channel. If the OFFSET _EN bit flag 
is set in the ADC offset register (OFR), ADC results are subtracted by a constant defined 
in the OFR register before they are saved into ADC data register. If the OFFSET_EN bit is 
set in the OFR register, sign extension must be performed for both right and left alignment. 
A sign extension operation duplicates the left-most bit of a signed number (i .e., the sign 
bit) to all bits to the left. 

All output data except 6-bit ones are aligned based on halfwords, and their memory 
addresses are a multiple of 2. For 6-bit output, the alignment of the data portion is aligned 
to the byte boundary . Two zero bits are appended at the end of the 6-bit output for a 
regular channel, and one zero bit is added for an injected channel. 

16 0 16 0 

0000000000 1 xxxxxx 6 bits 6 bits Sign Ext [9 :0] I xxxxxx 

00000000 I xxxxxxxx Sign Ext [7 :0] 
I xxxxxxxx 8 bits 8 bits 

000000 I xxxxxxxx Sign Ext [5:0] I xxxxxxxx 10 bits 10 bits 

0000 I xxxxxxxxxxxx Sign Ext I xxxxxxxxxxxx [3:0] 12 bits 12 bits 

16 

Right alignment for a regular Right alignment for an injected 
channel channel 

0 16 0 

00000000 xxxxxx I 00 6 bits Sign Ext [8:0] xxxxxx jo 6 bits 

xxxxxxxx 00000000 8 bits s xxxxxxxx 0000000 8 bits 

xxxxxxxx I 000000 10 bits s xxxxxxxx I 00000 10 bits 

xxxxxxxxxxxx I 0000 12 bits s xxxxxxxxxxxx I ooo 12 bits 

Left alignment for a regular 
channel 

Left alignment for an injected s = Sign bit 

channel 

Figure 20-8 Data alignment of ADC data registers 



Analog-to-Digital Converter (ADC) Ill 

20.6 ADC Input Channels 
STM32L4 has three ADC modules (ADCl, ADC2, and ADC3) . Each module consists of 
a 12-bit successive-approximation (SAR) converter. Each converter has up to 19 channels. 
Table 20-1 shows the connection between ADC input channels and GPIO pins. 

Analog Input Channel Pin Analog Input Channel Pin 
ADC123_IN 1 PCO ADC12_IN 13 PC4 
ADC123_IN 2 PC 1 ADC12_IN 14 PCS 
ADC123_IN 3 PC2 ADC12_IN 15 PB 0 
ADC123_IN 4 PC3 ADC12_IN 16 PB 1 
ADC12_IN 5 PAO ADC3_IN 6 PF 3 
ADC12_IN 6 PAl ADC3_IN 7 PF4 
ADC12_IN 7 PA2 ADC3_IN 8 PF S 
ADC12_IN 8 PA3 ADC3_IN 9 PF 6 
ADC12_IN 9 PA4 ADC3_IN 10 PF 7 

ADC12_IN 10 PAS ADC3 IN 11 PF 8 
ADC12_IN 11 PA6 ADC3_IN 12 PF 9 
ADC12_IN 12 PA7 ADC3_IN 13 PF 10 

Table 20-1. Pin definition for analog input signal of STM32L4 processors 

A GPIO pin can only be connected to a pre-defined input channel of an ADC module. 
For example, Pin PC 0 can be internally connected to the input channel 1 of all ADC 
modules (ADC123_IN1), including ADCl, ADC2, and ADC3. Pin PA 1 can be internally 
connected to the input channel 6 of ADCl and ADC2 (ADC12_IN6). Some ADC input 
channels are connected to internal signals, such as internal temperature sensor, and 
battery monitor voltage. Detailed information can be found on the STM32L4 reference 
manual. 

The program in Example 20-1 connects pin PAI to the channel 6 of ADCl and ADC2. 

• The GPIO mode bits must be set to select the analog mode, which is the default 
GPIO mode when the processor is reset. 

• In this example, pin PA 1 is configured as no pull-up and no pull-down internally. 
The pin will be floating, and the ADC result is random if the pin is temporarily 
not driven. Depending on the application's need, selecting pull-up or pull-down 
(either internally or externally) may be a better option to prevent the pin from 
floating. 

• In addition, software sets a bit in the ASCR register to connect the corresponding 
pin and ADC. 



20.6 - ADC Input Channels 

II GPIO Mode : 
II 00 =Digital input, 01 = Digital output, 
II 10 =Alternate function, 11 = Analog(default) 
GPIOA->MODER I= 3U<<2; II Configure PAl as analog mode 

II GPIO Push-Pull: 
II 00 = No pull-uplpull-down, 01 = Pull-up, 
II 10 = Pull-down, 11 = Reserved 
GPIOA->PUPDR &= -(3U<<2); II No pull-up, no pull-down 

II GPIO port analog switch control register (ASCR) 
II 0 = Disconnect analog switch to the ADC input (reset state) 
II 1 = Connect analog switch to the ADC input 
GPIOA->ASCR I= lU<<l; II pin 1 

Example 20-1. Configuring GPIO pin PA.1 as ADC input ADC12_IN6 

Input channels of an ADC module care divided into two groups: injected group and 
regular group, as shown in Figure 20-6. 

• A program can select up to four input channels to join the injected group. A 
channel in the injected group is referred to as an injected channel. Each injected 
channel has its own ADC data register. 

• Software can also put input channels into a regular group. An input channel in 
the regular group is called a regular channel. All regular channels share an ADC 
data register. 

Each channel can be single-ended input or differential input by configuring register 
DIFSEL. In the single-end mode, VREF - is internally connected to the ground. In the 
differential mode, the ADC input is the difference between two external voltage inputs: 
ADC_IN i and ADC_IN i+ 1. 

Bit DIFSEL[i] = 0: 
ADC analog input 

channel i is single-ended 

ADC_IN i 

ADC 

Bit DIFSEL[i] = 1: 
ADC analog input 

channel i is differential 

ADC_IN i 

ADC 

ADC_IN i+1 

Figure 20-9. ADC input channels can be programmed to be single-ended or differential. 



Analog-to-Digital Converter (ADC) IPJI 

20.7 ADC Triggers 
The ADC conversion can be triggered by using software or external signals. 

• Software trigger. If EXTEN[1:0] bits in the CFGR register are zero, software trigger 
is selected. ADC conversion for the regular group starts immediately after 
software sets the ADSTART bit in the ADC_CR register. Similarly, if JEXTEN[1:0] bits 
are zero, setting the JADSTART bit starts the ADC conversion for the injected group 
immediately. Hardware automatically clears the ADSTART and JADSTART bits 
when (1) ADC is in the single conversion mode with software trigger, or (2) 
software sets the ADSTP or JADSTP bits to stop conversion. Therefore, if single
conversion with software trigger is used, software needs to set ADSTART or 
JADSTART again to make another ADC conversion. 

• External trigger. Hardware signals can be used to trigger ADC conversions, 
leading to reduced CPU workload. External triggers can be selected from the 
outputs of a timer (channel outputs CCl, CC2, CC3, CC4, trigger output TRGO) and 
external processor pins. 

o Trigger polarity. The EXTEN[1:0] bits in the CFGR register and the 
JEXTEN[1:0] bits in the JSQR register select trigger edges for regular 
channels and injected channels, respectively. The trigger edge can be 
rising edges, falling edges, or both rising and falling edges. 

o Trigger source. The trigger source is selected by the J EXTS EL [ 3 : 0] bits in 
the CFGR register and the JEXTSEL[1:0] bits in the JSQR register select 
trigger source for regular channels and injected channels, respectively. 

When ADC uses the software trigger, one common programming error is that the 
software does not set up the length of delay at the end of each regular conversion. 
Accordingly, the ADC conversion was only performed once, instead of continuously. 

In defaulting setting, there is no delay before a new 
regular conversion can start. If the system clock is slow, 
there is no enough time for the processor to read the 
ADC data register (DR) before a new conversion 
completes. Therefore, it is a good practice to set the delay 
(DE LS [ 2: 0] bits in the ADC_ CR2 register) as waiting until 
software has read the ADC_DR register or hardware has 
cleared the EOC flag (end of conversion) in the ADC_SR 

register. This delay setting is also called ADC freeze 
mode. 

Tip: Insert some 
delay between 

conversions when the 
system clock is slow. 

I! 

' 



20.7 - ADC Triggers 

v,, 

Timer Clock 
JlJlJL 

ADC 

clock trigge 

n n n Periodic 
_J L_J L_J L Trigger Signal 

.--------'----. ~ 
TRGO Sampling Interval; (1+ARR)•Tume' ciod< 

1+PSC 
Timer4 

OC1REF 

Channel 1 

! ! i ' 
! ! l ! j I 

~ JlilULlL .t 
'-y--1 

Sampling Interval ; 0.1 ms 

1 Ok samples per second 

Figure 20-10. Selecting Timer 4's TRGO as ADC's trigger 

The following C program sets the trigger output (TRGO) of timer 4 as the trigger signal of 
the ADC converter, as shown in Figure 20-10. Suppose the ADC sampling rate is 10 kHz. 
Therefore, timer 4 needs to generate 10,000 TRGO outputs per second. The master mode 
selection bits (MMS [ 2: 0]) in the CR2 register select which timer's internal signal is used as 
the TRGO. This example selects the reference output of channel 1 (OC1REF) as TRGO. 

void TIM4_Init(void){ 

} 

RCC->APBlENRl I= RCC_APB1ENR1_TIM4EN; 
TIM4->CR1 &= -TIM_CRl_CMS; 

II Enable clock of Timer 4 
II Clear edge-aligned mode bits 

TIM4->CR1 &= -TIM_CRl_DIR; II Counting direction: Up counting 

II Master mode selection 
II 000: UG bit from the EGR register is used as trigger output (TRGO). 
II 001: Enable - the Counter Enable signal is used as trigger output (TRGO). 
II 010: Update - The update event is selected as trigger output (TRGO). 
II 011: Compare Pulse - The trigger output sends a positive pulse when the 
II CClIF flag is to be set (even if it was already high). 
II 100: Compare - OClREF signal is used as trigger output (TRGO) 
II 101: Compare - OC2REF signal is used as trigger output (TRGO) 
II 110: Compare - OC3REF signal is used as trigger output (TRGO) 
II 111: Compare - OC4REF signal is used as trigger output (TRGO) 
TIM4->CR2 &= -TIM_CR2_MMS; II Clear master mode selection bits 
TIM4->CR2 I= TIM_CR2_MMS_2; II Select 100 = OClREF as TRGO 

II OClM: Output Compare 1 mode 
TIM4->CCMR1 &= -TIM_CCMRl_OClM; 
TIM4->CCMR1 I= TIM_CCMRl_OClM_l I TIM_CCMR1_0C1M_2; 

II Clear mode bits 
II 0110 = PWM mode 1 

II Timer driving frequency = 80 MHzl(l + PSC) = 80 MHzl(1+7) = 10MHz 
II Trigger frequency = 10MHz I (1 + ARR) = 10MHzl1000 = 10KHz 
TIM4- >PSC 7; 11 max 65535 
TIM4- >ARR = 999; 11 max 65535 
TIM4->CCR1 = 500; II Duty ration 50% 

TIM4->CCER I= TIM_CCER_CClE; II OCl signal is output 
TIM4->CR1 I= TIM_CRl_CEN; II Enable timer 

Example 20-2. Selecting channel l's reference output (OClREF) as the trigger output (TRGO) 



Analog-to-Digital Converter (ADC) llJI 

The following C code selects ADC l's trigger signal. These trigger signals are hardware 
signals generated by timers or external clock signal applied to a GPIO pin (EXTI 11). This 
example selects the external trigger 12 (EXT12), i.e., the trigger output (TRGO) of timer 4, 
as the trigger signal for the regular group. For regular channels, if ADC has not been 
started, i.e., ADSTART = 0, ADC ignores selected trigger signals. Similarly, the injected 
group also ignores hardware trigger signals if JADSTART = 0. 

II ADC clock and GPIO initialization 

II ADC External Triggers (EXT0 - EXT15) 
11----------------------------------------------------------------
11 Regular Channels I Injected Channels 
11----------------------------------------------------------------
11 EXT0 TIMl_CCl event 0000 I JEXT0 TIMl_TRGO event 0000 
II EXTl TIM1_CC2 event 0001 I JEXTl TIM1_CC4 event 0001 
II EXT2 TIM1_CC3 event 0010 I JEXT2 TIM2_TRGO event 0010 
II EXT3 TIM2_CC2 event 0011 I JEXT3 TIM2_CC1 event 0011 
II EXT4 TIM3_TRGO event 0100 I JEXT4 TIM3_CC4 event 0100 
11 EXTS TIM4_CC4 event 0101 I JEXTS TIM4_ TRGO event 0101 
I I EXT6 EXTI line 11 0110 I JEXT6 EXTI line 15 0110 
II EXT7 TIMB_TRGO event 0111 I JEXT7 TIMB_CC4 event 0111 
II EXTB TIMB_TRG02 event 1000 I JEXTB TIM1_TRG02 event 1000 
11 EXT9 TIMl_ TRGO event 1001 I JEXT9 TIMB_ TRGO event 1001 
11 EXT10 TIM1_ TRG02 event 1010 I JEXT10 TIM8_ TRG02 event 1010 
II EXTll TIM2_TRGO event 1011 I JEXTll TIM3_CC3 event 1011 
11 EXT12 TIM4_ TRGO event 1108 I JEXT12 TIM3_ TRGO event 1100 
11 EXT13 TIM6_ TRGO event 1101 I JEXT13 TIM3_CC1 event 1101 
II EXT14 TIM15_TRGO event 1110 I JEXT14 TIM6_TRGO event 1110 
11 EXT15 TIM3_CC4 event 1111 I JEXT15 TIM15_ TRGO event 1111 
11------------------------------------- --------- ------------------

II Select TIM4_TRGO event (1100) as external trigger for regular channels 
ADCl->CFGR &= ~ADC_CFGR_EXTSEL; 
ADCl->CFGR I= ADC_CFGR_EXTSEL_3 I ADC_CFGR_EXTSEL_2; 

II Select rising edges of hardware triggers 
II 00: Software trigger 
II 01: Hardware trigger detection on the rising edge 
II 10: Hardware trigger detection on the falling edge 
II 11: Hardware trigger detection on both the rising and falling edges 
ADCl->CFGR &=~ ADC_CFGR_EXTEN; 
ADCl->CFGR I= ADC_CFGR_EXTEN_0; 

II Trigger becomes immediately effective once software starts ADC. 
ADCl->CR I= ADC_CR_ADSTART; 

Example 20-3. Selecting rising edge of timer 4's TRGO as ADCl's triggers (regular channels) 



20.8 - Measuring the Input Voltage 

20.8 Measuring the Input Voltage 
A potentiometer, informally a pot, is a three-terminal variable resistor. It uses a sliding 
contact and works as an adjustable voltage divider. When two outer terminals are 

connected to Vee and the ground respectively, the center terminal generates a voltage 
that varies from 0 to Vee depending on the position of the sliding contact. 

In the following sections, we use the internal voltage reference, which is 3V. In this 
example, we measure the input voltage adjusted by a potentiometer. If the input voltage 
Vinput is larger than Vi of Vee, then we turn on an LED. An interesting application is that 

we use the potentiometer to control the brightness of an LED dynamically if a PWM 
controls the LED. The Vmput is used to adjust the duty cycle of the PWM output signal. 

Vee (3V) 

Figure 20-11. Measuring the voltage output of a potentiometer 

Suppose the ADC result has 12 bits and ADC is configured as single-ended. Then, we 

have the following conversion result: 

v. 
ADC Result= mput x 4096 

VREF 

Therefore, we have 

ADC Result 
Vinput = 4096 X VREF 

20.9 ADC Configuration Flowchart 
Figure 20-12 shows the flowchart of initializing the continuous ADCl conversion for 
channel 6 (GPIO Port A Pin 1, i.e., PA 1) with a software start of conversion. ADC 



Analog-to-Digital Converter (ADC) IJDI 

generates an interrupt request at the end of each ADC conversion if the corresponding 
ADC interrupt is enabled. 

• For a regular channel, hardware sets the end of conversion (EOC) flag at the end 
of each conversion, indicating that new ADC result has been stored in the ADC_DR 
register. Software must clear the EOC flag explicitly by writing 1 to it or implicitly 
by reading register ADC_DR. 

• For an injected channel, hardware sets the injected end of conversion (J EOC) flag 
at the end of the conversion of each injected channel in the injected group. Only 
software can clear the J EOC flag. 

• For a regular group, hardware sets the end of regular sequence (EOS) flag when 
ADC converts all channels in this group. Software clears EOS by writing 1 to it. 

• Similarly, for an injected group, hardware sets the end of injected sequence (J EOS) 

flag when all channels in this group have been converted. Writing 1 to JEOS clears 
this flag. 

At the beginning of the flowchart, the program turns on the HSI clock and waits until it 
is ready. The processor clock is independent of the ADC clock and can be higher or lower 
than the HSI clock. 

By default, ADC modules are in the deep-power-down mode to improve energy 
efficiency. In this mode, ADC modules are disconnected from the internal power supply 
to reduce leakage currents. Example 20-4 shows the C function that wakes up the ADC 
1. 

void ADCl_Wakeup (void) { 

int wait_time; 

II To start ADC operations, the following sequence should be applied 
II DEEPPWD = e: ADC not in deep-power down 
II DEEPPWD = 1: ADC in deep-power-down (default reset state) 
if ((ADCl->CR & ADC_CR_DEEPPWD) == ADC_CR_DEEPPWD) { 

} 

II Exit deep power down mode if still in that state 
ADCl->CR &= ~ADC_CR_DEEPPWD; 

II Enable the ADC internal voltage regulator 
II Before performing any operation such as Launching a calibration or 
II enabling the ADC, the ADC voltage regulator must first be enabled and 
II the software must wait for the regulator start-up time. 
ADCl->CR I= ADC_CR_ADVREGEN; 

II Wait for ADC voltage requlator start-up time. The software must wait for 



y,W:I 20.9 - ADC Configuration Flowchart 

II the startup time of the ADC voltage regulator (T_ADCVREG_STUP, i.e., 20 
II us) before Launching a calibration or enabling the ADC. 
wait_time = 20 * (80000000 / 1000000); 
while (wait_time != 0) { 

wait_time--; 
} 

} 

Example 20-4. Waking up ADCl 

( Start ) 
• 

1. Turn on HSI (RCC_CR_HSION) 
2. Wait for it is ready (RCC_CR_HSIRDY). 

i 
Configure pin PB.2 as output with push-pull to drive the red LED 

i 
Configure pin PA.1 as analog mode 
Note: PA.1 is connected the ADC Channel 6 (PA.1 = ADC12_ /N6) 
1. Enable the clock of GPIO A 
2. Set the mode of PA.1 as analog (GPIO_MODER) 
3. Set bit 1 in ASCR to close the analog switch 

i 
Initialization ADC 1 
Note: HSI (16MHz) is always used for ADC on STM32L. 
1. Enable ADC clock bit RCC_AHB2ENR_ADCEN in register RCC->AHB2ENR. 
2. Disable ADC1 by clearing bit ADC_CR_ADEN in register ADC1->CR. 
3. Enable 1/0 analog switches voltage booster (SYSCFG_CFGR1_BOOSTEN) in register SYSCFG_CFGR1 . 
4. Set ADC_CCR_ VREFEN bit in register ADC123_COMMON->CCR to enable the conversion of internal channels. 
5. Configure the ADC prescaler to select the ADC clock frequency in ADC123_COMMON->CCR (select clock not divided ). 
6. Configure ADC_CCR_CKMODE bits in ADC123_COMMON->CCR to select synchronous clock mode (HCLK/1 ). 
7. Configure all ADCs as independent (clear ADC_CCR_DUAL bits) in ADC123_COMMON->CCR 
8. By default, the ADC is in deep-power-down mode where its supply is internally switched off to reduce the leakage currents. 

Therefore, software needs to wake up ADC . The ADC_Wakeup() function is provided in this chapter. 
9. Configure RES bits in ADC1->CFGR to set the reso lution as 12 bits. 

10. Select right al ignment in the ADC1 ->CFGR register. 
11 . Clear ADC_SQR1_L bits in ADC1->SQR1 to select 1 conversion in the regular channel conversion sequence. 
12. Specify the channel number 6 as the 1st conversion in regular sequence (ADC1 ->SQR1 ) 
13. Configure the channel 6 as single-ended (ADC1->DIFSEL). 
14. Select ADC sample time in ADC1->SMPR1 . The sampling time must be long enough for the input voltage source to charge the 

embedded capacitor to the input voltage level. 
15. Select ADC as discontinuous mode by clearing the ADC_CFGR_CONT bits in ADC1->CFGR. 
16. Clear ADC_CFGR_EXTEN bits in register ADC1->CFGR to select software trigger 
17. Enable ADC1 by setting the ADC_CR_ADEN bit in register ADC1->CR 
18. Wait until ADC1 is ready (i.e., wait until ADC_ISR_ADRDY bit in ADC1->ISR is set by hardware) 

~ I -. 
Using the software to trigger one ADC conversion : 
1. Software can start one ADC conversion by setting the ADC_CR_ADSTART bit in the ADC1 ->CR reg ister 
2. Software has to wait the completion of ADC conversion by checking whether ADC_CSR_EOC_MST in the 

ADC123_COMMON->CSR register has been set by the hardware. 
3. The conversion result is saved in reg ister ADC1->DR. 

I 

Figure 20-12. Flowchart of configuring channel 6 of ADCl (GPIO pin PA 1) 



Analog-to-Digital Converter (ADC) -

The following is an example C code of the ADC interrupt handler. 

void ADC1_2_IRQHandler (void) { 
if ((ADC1->ISR & ADC_ISR_EOC) == ADC_ISR_EOC) { 

II For a regular channeL, check End of Conversion (EOC) fLag 
II Reading ADC data register (DR) cLears the EOC fLag 
Result = ADC1->DR; 

} else if ((ADC1->ISR & ADC_ISR_JEOS) == ADC_ISR_JEOS) { 
II For injected channels, check End of Sequence (JEOS) fLag 
II Reading injected data registers does not clear the JEOS flag 
II Each injected channel has 
Result_l ADC1->JDR1; 
Result_2 = ADC1->JDR2; 
Result_3 ADC1->JDR3; 
Result_4 ADC1->JDR4; 

a dedicated data register 
II Injected channel 1 
II Injected channel 2 
II Injected channel 3 
II Injected channeL 4 

ADC1->ISR I= ADC_ISR_EOS; II CLear the flab by writing 1 to it 
} 

} 

Example 20-5. Interrupt handler routine for ADC 

The following shows how to select a conversion sequence in a regular group. Configuring 

the ADC regular sequence takes two steps. The first step is to set the total number of 

regular input channels. The second step is to place the target input channels in the regular 

sequence registers (SQR), starting from SQRl to SQRS. The following shows the code for 

setting up an ADC sequence that includes only one regular channel. 

II ADC regular sequence register 1 (ADC_SQRl) 
II eeeee: 1 conversion in the regular channeL conversion sequence 
ADC1->SQR1 &= -ADC_SQRl_L; 

II Specify the channel number of the 1st conversion in regular sequence 
ADC1->SQR1 &= -ADC_SQR1_SQ1; 
ADC1->SQR1 I= ( 6U « 6 ); II PAl: ADC12_IN6 
ADC1->DIFSEL &= -ADC_DIFSEL_DIFSEL_6; II SingLe-ended for PAl: ADC12_IN6 

Example 20-6. Configuring ADC conversion sequence 

,,-----
Channel 8 I 

PA3 • I • 
Channel 9 I V;n 

PA4 • I • 
PA 5 • Channel 10 I 

I • -----" 
Regular sequence registers (SQR) 

selects regular channels and controls 
the order of closing switches. 

JUUl 
ADC Clock 

ADC 
Result 

(2 bytes) 

Figure 20-13. Setting the ADC sampling sequence for regular channels. 



Kimi 20.9 - ADC Configuration Flowchart 

Suppose we want to perform a sequence of ADC conversion on three regular channels: 
channel 8 (PA 3), channel 9 (PA 4) and channel 10 (PA 5), as shown in Figure 20-13. We 
sample channel 9 first, channel 8, channel 10, and again channel 8. The following is the C 
program code. 

II Set the sequence Length: eee1e = 3 conversions in the regular sequence 
ADCl- >SQRl &= ~0xF; 11 Clear the sequence Length 
ADCl->SQRl I= 3UL; II 4 samples in this sequence 

II 1st conversion in the regular sequence 
ADCl->SQRl I= 9U « 6; II Select ADC12_IN9 as the 1st conversion 

II 2nd conversion in the regular sequence 
ADCl->SQRl I= 8U « 12; II Select ADC12_IN8 as the 2nd conversion 

II 3rd conversion in the regular sequence 
ADCl->SQRl I= 10U << 18; II Select ADC12_IN1e as the 3rd conversion 

II 4th conversion in the regular sequence 
ADCl->SQRl I= 8U « 24; II Select ADC12_IN8 as the 4th conversion 

Example 20-7. Configuring an ADC conversion sequence: channel 9, 8, 10, and 8 

All channels in a regular group share the data register {ADC->DR). Therefore, the interrupt 
handler needs to differentiate the results of these channels. We use a simple counter to 
indicate which channel is being sampled, i.e., which channel the value in the data register 
(ADC- >DR) belongs to. 

volatile int counter = 0; 
volatile uint16_t ADC_results[4]; 

II Following the ADC sequence defined in Example 28-7 
II ADC_results[e] = 1st conversion, ADC12_IN9 
II ADC_results[1] = 2nd conversion, ADC12_IN8 
II ADC_results[2] = 3rd conversion, ADC12_IN18 
II ADC_results[3) = 4th conversion, ADC12 INB 

void ADC1_2_IRQHandler (void) { 

} 

II Check End of Conversion (EOC) Flag 
If ((ADCl->SR & ADC_SR_EOC) == ADC_SR_EOC) { 

if (counter % 4 == 0) { 

} 

counter = 0; II reset counter 
} 
ADC_results[counter] = ADCl->DR; 
counter++; 

Example 20-8. Saving ADC results of a regular conversion sequence 



Analog-to-Digital Converter (ADC) ii.JI 

20.10 ADCwithDMA 
As presented in Chapter 19, direct memory access (DMA) is a hardware technology that 
provides efficient and fast data exchange between peripheral data registers and the main 
memory, without involving the processor. As presented in Table 19-1, ADCl can be 
connected by the channel 1 of the DMA controller 1 on STM32L4. 

Suppose the conversion sequence of a regular group is as follows: channel 9, 8, 10, and 8. 
Whenever the end of conversion flag (EOC) is a set, ADC generates a trigger signal and 
sends it to the DMA. Immediately after receiving the trigger signal, DMA automatically 
transfers the ADC result (stored in the AD's date register DR) to the memory buffer. 

PA 3 • Channel 8 

PA 4 • Channel 9 

PA 5 • Channel 10 

OMA Trigger Signal 

_JLJLJl_ 

EOC ADC Result (2 bytes) 

_JLJLJl_ 
.....----'--. ADC Trigger 

Timer4 Signal 

JUUl 
Timer Clock --~ 

trigger 

DMA1 

Channel 1 

Figure 20-14. Configure DMAl with circular mode 

Memory 

ADC_Results[4] 
ADC Channel 9 

ADC_Results[3] 
ADC Channel 8 

ADC_Results[2] 
ADC Channel 1 O 

ADC_Rosults[1] 
ADC Channel B 

High 
memory 
address 

Low 
memory 
address 

In the previous section, we give a short example code to set up a sequence of 4 
conversions: channel 9, 8, 10, and 8. As shown in Figure 20-14, DMA automatically saves 
the results in the memory buffer ADC_Results . ADC_Results[0] holds the result of 
channel 9. ADC_Results[l] holds the result of channel 8. ADC_Results[2] holds the 
result of channel 10, and ADC_Resul ts [ 3] holds the result of channel 8. 

If the DMA channel 1 is in circular mode, the memory buffer ADC_Resul ts is reused for 
the next round of ADC conversions. The circular mode allows the processor to reuse the 
result array ADC_Resul ts repeatedly during each sequence of ADC conversions. At the 
end of the third ADC conversion, hardware automatically resets the destination memory 
address register (CMAR) to the address of ADC_Results [0], making the array 
continuously serve DMA requests. 

The following programs DMA 1 channel 1 to transfer the results of ADC 1 to 
ADC_Results. Because all regular channels share the same data register (ADCl->DR), as 
shown in Figure 20-6, the address increment mode for the peripheral is turned off. 



20.10 - ADC with DMA 

II Suppose ADC runs three regular channels 
uint16_t ADC_Results[4]; II buffer for four ADC results 

II Initialization of ADC, GPIO, and clocks is not shown here 

II Enable DMAl Clock 
RCC->AHBlENR I= RCC_AHBlENR_DMAlEN; 

II DMAl channel 1 configuration for ADCl 
DMAl_Channell->CCR &= -DMA_CCR_MEM2MEM; II Disable memory to memory mode 

II Channel priority Level 
II 00 = Low, 01 = Medium, 10 = High, 11 = Very high 
DMAl_Channell->CCR &= -DMA_CCR_PL; 
DMAl_Channell->CCR I= DMA_CCR_PL_l; II High priority 

II Peripheral size: 00 = 8-bits, 01 = 16-bits, 10 = 32-bits, 11 = Reserved 
DMAl_Channell- >CCR &= -DMA_CCR_PSIZE; 
DMAl_Channell->CCR I= DMA_CCR_PSIZE_0; II data size= 16 bits 

II Memory size: 00 = 8-bits, 01 = 16-bits, 10 = 32-bits, 11 = Reserved 
DMAl_Channell->CCR &= -DMA_CCR_MSIZE ; 
DMAl_Channell->CCR I= DMA_CCR_MSIZE_0; II data size = 16 bits 

II Peripheral increment mode (0 = disabled, 1 = enabled) 
DMAl_Channell->CCR &= -DMA_CCR_PINC; II peripheral in non-increment mode 

II Memory increment mode (0 = disabled, 1 
DMAl_Channell->CCR I= DMA_CCR_MINC; 

II Circular mode (0 = disabled, 1 = enabled) 

enabled) 
II memory in increment mode 

DMAl_Channell->CCR I= DMA_CCR_CIRC; II Circular mode 

II Data transfer direction (0: Read from peripheral, 1: Read from memory) 
DMAl_Channell->CCR &= -DMA_CCR_DIR; II from peripheral to memory 

II Number of data to transfer 
DMAl_Channell->CNDTR = 4; II Length of ADC sequence = 4 

II Peripheral address register 
DMAl_Channell->CPAR = (uint32_t) &(ADCl->DR); 

II Memory address register 
DMAl_Channell->CMAR = (uint32_t) ADC_Results; 

II OMA Channel Selection 
II Map OMA channel 1 to ADCl 
DMAl_CSELR->CSELR &= ~DMA_CSELR_ClS; II 0000: Channel 1 mapped on ADCl 

II Enable OMA channel 
DMAl_Channell->CCR I= DMA_CCR_EN; 

Example 20-9. Configuring OMA in circular mode to repeatedly transfer a sequence of four 
16-bit ADC results 



Analog-to-Digital Converter (ADC) i11jl 

20.11 DMA with Ping-Pong Buffering 
Ping-pong buffering, also called double buffering, is a software technique that uses two 
buffers to overlap data transfer and data processing, as shown in Figure 20-15. Software 
alternates between processing the ping buffer and the pong buffer. This scheme gives the 
processor more time to process data without pausing ADC conversion. 

I I Filling data into Pong Buffer 
~~~~~~~~~~~~~ 

Filling data into Ping Buffer

I Processing data in Ping Buffer I Processing data in Pong Buffer
Time

OMA completion
interrupt request

OMA completion
interrupt request

Figure 20-15. Using two buffers to overlap data transfer and data processing

While the OMA controller is filling the ping buffer with ADC data, the processor is
processing the data stored in the pong buffer. Once the ping buffer is full, the processor
starts to process the pong buffer while new data is being filled into the pong buffer.
Therefore, data transfer and data processing are performed in parallel.

As shown in Figure 20-16, when OMA completes its data transfer, an interrupt request
can be generated, and the DMA interrupt handler swaps the OMA source memory
address between these buffers.

pReady_to_Process //' '
data processi:~__.//

pReady _to_ Write --------------·---------

Ping Buffer H+¥iijF
__ •• ---> i ,i _______________________ _

pReady_to_Process --r- data processing

pReady_to_Write j

DMAl_Channell->CMAR = (u1nt 32_t) Ping_Buffer ; DMAl _Cha nnell- >CMAR • (ui nt 32_t) Pong_Buffer ;

Figure 20-16. DMA controller fills these two buffers alternatively.

Example 20-10 shows the basic code that implements the ping-pong buffering.

111!!1 20.11 - DMA with Ping-Pong Buffering

uint32 t Buffer_Ping[SAMPLE_LENGTH];
uint32 t Buffer_Pong[SAMPLE_LENGTH];
ui nt32 t * pReady_to_Write = Buffer_Ping;
uint32 t * pReady_to_Process = Buffer_Pong;
volatile uint32_t ADC_DMA_Done = 0;

int main(void){

}

while(l){

}

while(ADC_DMA_Done == 0); II Wait until OMA done
II Processing data stored in pReady_to_Process

ADC DMA Done = 0;

void DMAl_Channell_Initialization(void){

}

DMAl_Channell->CMAR = (uint32_t) pReady_to_Process;
II Transfer complete interrupt enable
DMAl_Channell->CCR I= DMA_CCR_TCIE;
II Enable OMA interrupt
NVIC_EnableIRQ(DMAl_Channell_IRQn);

void DMAl_Channell_IRQHandler(void) {

}

if ((DMAl - >ISR & DMA_ISR_TCIFl) -- DMA_ISR_TCIFl) {

}

DMAl->IFCR I= DMA_IFCR_CTCIFl; II Write 1 to clear TCIF flag

if (pReady_to_Write == Buffer_Ping) {
pReady_to_Write = Buffer _Pong; II Fill the pong buffer
pReady_to_Process = Buffer _Ping; 11 Process the ping buffer

} else {

}

pReady_to_Write = Buffer _Ping; II Fill the ping buffer
pReady_to_Process = Buffer _Pong; 11 Process the pong buffer

II OMA memory address register
DMAl_Channell->CMAR = (uint32_t) pReady_to_Write;
ADC_DMA_Done = 1;

DMAl->IFCR I= (DMA_IFCR_CHTIFl I DMA_IFCR_CGIFl I DMA_IFCR_CTEIFl);

Example 20-10. Configuring DMA with ping-pong buffering

Analog-to-Digital Converter (ADC) ii1~W

20.12 ADC Calibration
Calibration is a process that removes the offset error caused by process variation during
manufacture. The offset error varies chip by chip.

7 ~~~~~~~~~~-.---..-~~~,---,,,.

... f"'
6

5
:;
.9- 4
::J
0
U3
<
0

2

0 ...

0

" ~ ... : .. ::: .. - -
,; .. :::":.:: ~

... ~··:::·, ,. ·
- .,. .. :::·,
l·"" ·,

,-:: .. '"' :: Ideal ADC result
_ ,., .. :::i' - - ADC result with no offset

• · --ADC result with offset
.. ·1

2 3 4 5 6
Voltage Input

7

Figure 20-17. ADC output with offset error

On STM32L4, software can program ADC to calibrate itself automatically, as shown
below. Calibration should be performed if the reference voltage changes more than 10%
or the processor wakes up from a lower-power state.

void ADC_Calibration(void) {

}

II Ensure ADC is off
ADCl->CR &= -ADC_CR_ADEN;

II Wait until ADRDY is reset by hardware
while((ADCl->ISR & ADC_ISR_ADRDY) == ADC_ISR_ADRDY);

II Calibration for single ended input conversion
// ADCALDIF: e = Single Ended, 1 = Differential Input
ADCl->CR &= -ADC_CR_ADCALDIF;

II Each ADC provides an automatic calibration procedure which drives all
II the calibration sequence including the power-on/off sequence of the ADC.
II Calibration can only be initiated when the ADC is disabled (when ADEN=B).
ADCl->CR I= ADC_CR_ADCAL; / / Initiated the calibration

II ADCAL bit stays at 1 during all the calibration sequence.
II It is then cleared by hardware as soon the calibration completes.
II Wait for calibration to complete
while ((ADCl->CR & ADC_CR_ADCAL) == ADC_CR_ADCAL);

Example 20-11. ADC calibration

llir'!?I 20.13 - Exercises

20.13 Exercises
1. Suppose VREF = 1.SV, what is the minimum number of bits required to achieve a

resolution of 1 m V?

2. Successive-approximate (SAR) ADC is widely used. Suppose the ADC has a
resolution of 14 bits, and the time for sampling and hold is set as 6 clock cycles.
How many clock cycles are required to complete one analog-to-digital conversion?

3. Write an assembly program that monitors an input voltage, as shown in Figure
20-11. When the voltage input is higher than Vcc/2, the LED is lit up. When the
voltage is lower than Vcc/2, the LED is off. The input voltage can be controlled
manually by using a potentiometer.

4. Write an assembly program that uses a potentiometer to control the brightness of
an LED.

5. Write an assembly program that uses a potentiometer to control the rotation
speed of a stepper motor.

6. Write an assembly program that uses a timer to trigger the ADC periodically.

7. Write an assembly program that uses the potentiometer to control the brightness
of an LED.

8. Write an assembly program that shows the ADC measurement on an LCD.

9. Write an assembly program that uses the potentiometer to control the rotation
speed of a stepper motor.

Digital-to-Analog Converter (DAC) i11W

CHAPTER

21

Digital-to-Analog Converter (DAC)
A digital-to-analog converter (DAC) transforms a finite-precision digital number to an
analog voltage. For example, music players use DAC to generate audio signals based on
digital values encoded in a music file. This chapter introduces DAC architecture and
programming, and presents an example application that uses DAC to synthesize music.

21.1 DAC Architecture

R ref

>---- V out

Figure 21-1. Basic architecture of a four-bit digital-to-analog converter (DAC). Note that we
use the negative reference voltage -Vref·

Figure 21-1 shows a simple implementation of a four-bit DAC. Suppose the digital value
to be converted to an analog voltage has four bits in binary: D3D2 D1 D0, with D3 being the
most significant bit. Di is either 0 or 1, for i = 0, 1, 2, and 3. If Di is 0, the corresponding
switch is open. Otherwise, the corresponding switch is closed.

Then the analog voltage output Vaut can be calculated as follows:

- 21.2 - DAC on STM32L Processors

We can rewrite the above equation as follows:

- Rnt 3
Vaut - Vref X R X (D3 X 2 + D2 X 22 + D1 X 2 + D0)

As we can see in the above equation, the voltage output is linearly proportional to the
digital value to be converted. The output ranges between 0 and Vref. For a 12-bit DAC,
the conversion is performed as follows:

DOR
DACoutput = Vref X 4096

DAC is often evaluated by its resolution, settling time, and glitches.

• Resolution is the smallest change that can occur in the analog output as the digital
input varies. For an n-bit DAC, the total number of possible output levels is 2n. If
the output voltage range is between 0 and 5V, then the minimum change in the
output of an 8-bit DAC is 5/28 = 0.0195V = 19.5mV. For simplicity, we sometimes
use the number of bits in the DAC input to represent its resolution.

• Settling time is the interval from an update of DAC's digital input to the instant
when the DAC output becomes stable within a specified percentage (also called
error band, such as 0.025% for 12-bit DAC, i.e., 1 LSB). The slew rate of an
amplifier output and the amount of swinging and signal overshoot can affect
settling time.

• The glitch is the first peak transient that appears at the DAC output. Ideally, when
the input changes, the DAC output should move monotonically to the new value.
In practice, the output may have overshoot, undershoot, or both, due to capacitive
coupling and switch timing skew. For example, some switches in Figure 21-1
operate faster than the others, resulting in a transient surge in current. The glitch
is often measured by the glitch impulse area, which equals the area under the
curve on a voltage-vs-time graph.

21.2 DAC on STM32L Processors
The STM32L processor has two independent DAC converters, with one channel in each
converter. Both converters can be configured as a resolution of 8 bits or 12 bits. The two
converters can update their output signals independently or synchronously. The
synchronous mode can be useful for some applications. For example, a stereo audio

Digital-to-Analog Converter (DAC) i-11§8

player requires the DAC converter to synchronize the outputs of the left and right
channels to avoid double-talk.

As shown in Figure 21-2, the DAC module includes the data holding registers (DHR),

control logic, the data output register (DOR) and the DAC converter. The DAC converter
needs the analog power supply (VooA) the analog ground (VssA) and the voltage reference
(VREF). The analog output range is from OV to VREF.

Data Holding Registers (OHR)

12-bit right-aligned DHR (DHR 12R)

12-bit left-aligned DHR (DHR12L)

8-bit right-aligned DHR (DHR8R)

8-bit left-aligned DHR (DHR8L)

Trigger
Signal

Enable
Signal

Control Logic

Noise generator

Triangle wave generator

Data Output Register
(DOR), 12 bits

Digital to Analog
Converter

Figure 21-2. Digital to Analog Converter (DAC)

OMA
Request

Vour

The control logic can add white noise and triangle wave to the output voltage VoUT. White
noise is a serially uncorrelated random disturbance with zero mean and constant and
finite variance. White noise has many applications. It is often used in the production of
electronic music to emulate instruments such as cymbals that have much noise in their
frequency band. The triangle wave can be employed for device testing and digital music.

16 0

xxxxxxx

xxxxxxx

xxxxxxxxxxx l

lxxxxxxxxxxx

8-bit right aligned

8-bit left aligned

12-bit left aligned

12-bit right aligned

Figure 21-3 Data registers in single DAC channel mode

Each DAC channel has four data registers, listed below:

• 12-bit right-aligned data holding register (DAC_DHR12Rx)

• 12-bit left-aligned data holding register (DAC_DHR12Lx)

mJrl 21.3 - Conversion Trigger

• 8-bit right-aligned data holding register (DAC_DHR8Rx)
• 8-bit left-aligned data holding register (DAC_DHR8Lx)

where x = 1 or 2. The data could be left- or right- aligned, as shown in Figure 21-3. When
DAC uses dual channels, two values to be converted need to be stored in a shared dual
channel register. These registers include DAC_DHR8RD for 8-bit right alignment,
DAC_DHR12LD for 12-bit left alignment, and DAC_DHR12RD for 12-bit right alignment.

21.3 Conversion Trigger
Software triggers, external timers, and internal timers can trigger DAC conversions.
When a conversion is triggered, the data stored in one of the data holding registers
(DAC_DHR12Rx, DAC_DHR12Lx, DAC_DHR8Rx, and DAC_DHR8Lx) is transferred to the DAC
data output register (DAC_DORx, x = 1 or 2) to generate a corresponding analog output.

• When an internal timer is chosen as the trigger, the conversion starts after
detecting a rising edge of the selected timer trigger output (TIMx_ TRGO).

• When software is used as the trigger, the conversion starts after the trigger bit in
the DAC_SWTRIGR register is set by software. The trigger bit is reset automatically
by the hardware once the data content of DAC_DHR has been loaded into DAC_DOR.

000
TIM6_TRGO

001
TIM8_TRGO

010
TIM7_TRGO

DAC 011
TIMS_TRGO Trigger

100 Signal
TIM2_TRGO

101
TIM4_TRGO

110
EXTI line 9

111
SWTRIG

TSEL[2:0]

Figure 21-4. TSEL bits in the control register DAC_CR to select DAC trigger signal

The TSEL[2:0] bits in the control register DAC_CR selects the DAC trigger. When both
DAC converters are triggered by the same source (i. e., TSELl and TSEL2 choose the same
trigger source), these two channels are synchronized, performing conversions at the same

time.

Digital-to-Analog Converter (DAC) -

21.4 Buffered Output
When the DAC output is used to drive some external load directly, such as earphones,
the voltage output may be lower than the desired value due to loading effects, as shown
in Figure 21-5. For example, when DOR (DAC data output register) is 0xFFF, the desired
output should be 3V. The actual output voltage VoUT is only l.SV if the external load has
exactly the same impedance as the DAC, i.e., RoAc = RwAo.

DAC Module

Vdeslred RoAc
OUT VouT

v: - RwAD vdesired
OUT - X OUT

RvAc + RwAo

DAC Module
RoAc

VouT

Figure 21-5. Load effects of DAC Module Figure 21-6. Buffered output to remove load effects.

We can use an internal output buffer to avoid the load impedance problem. As shown in
Figure 21-6, the voltage output buffer is implemented by using an amplifier.

• The amplifier has a high input impedance (close to infinity) so that the impact of
RoAc is diminished.

• The amplifier also has a low output impedance (close to zero) so that the effect of
RwAo is removed.

Thus, VoUT is kept close to the voltage desired.

V - RIN,Amplifier vdesired -
00 x vdesired - vdesired

IN - X OUT - OUT - OUT
RvAc + RIN,Amplifier RvAc + 00

v: RwAD V RwAD V _ V _ v:desired
0 UT = X IN :::::: R + O X IN - IN - OUT

RwAD + RouT,Amplifier LOAD

The output buffer can be enabled or disabled by the DAC_CR_BOFF bit in the control
register DAC_CR.

Kiij 21.5 - Generating a Sinusoidal Wave via Table Lookup

21.5 Generating a Sinusoidal Wave via Table Lookup
Many microcontrollers do not have a floating-point unit (FPU) and rely on software that
uses integer operations to implement a floating-point arithmetic function. While the
software approach reduces the silicon cost, its main disadvantage is slow performance.
While FPU takes two to ten clock cycles to complete a typical floating-point operation, a
software library requires 50-100 or even more cycles.

If there is no FPU available on the processor, a popular software approach to improving
the floating-point performance is to use a lookup table. The lookup table is an array that
stores pre-calculated values of a floating-point operation under different inputs. To find
the result of a given input, instead of performing expensive computations, we simply
look up the table and find the proximate result. This method takes more memory and
reduces the computation precision, but it improves the computation speed .

0.8 -

-0.4

-0.6

-0.8

-1
0

sin(6) i sin(1 80°-6) i -sin(1 80°-e)i -sin(360°-e) i
I I I
I I ~-;--' ~~~r--

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L
90 180 270

8 (degree)

I
I
I
I
I
I
I
I
I
'--'

360

Figure 21-7. Converting 0 into the range [0°, 90°]

We will use a lookup table to find the value of sin(x). Typically, we can use the following
Taylor series to compute the value of sin(x).

f (-lr X3 XS X7

sin(x) = L (Zn+ 1)! xzn+i ~ x - 6 + 120 - 5040
n=O

Fortunately, the math C library has a function sin that can be directly used. The following
program shows how to build a table if the result is limited to 12 bits (The data registers
of DAC is limited to 12 bits). The program also offsets the output by 2048, because the
DAC module cannot output a negative value.

Digital-to-Analog Converter (DAC) I.JIM

TableValue (x) = (1 +sin (1~0 rr))x 211

where the input xis in degrees. Because the value of the sine function is between [-1, 1],
the table values are between [0, 4096]. When the sine function returns zero, the
corresponding value in the table is 2048.

Additionally, 4096 has 13 bits in binary, and it is impossible to use 12 bits to represent
4096. Therefore, we use 4095 (i.e. , 0xFFF) to approximate 4096 in the table.

#include <stdio.h>
#include <string.h>
#include <math.h>

int main(void){
int i;

}

signed int sine_table[91);
float sf;

II for 12-bit ADC, [e, 2047(0xFFF)];
for (i = 0; i <= 90; i++){

}

sf = sin(M_PI * i /180);
sine_table[i] = (1 + sf) * 2048;
if(sine_table[i] == 0x1000)

sine_table[i] = 0xFFF; II sin(9e) is out of range

printf("sine_table");
for (i = 0; i < 90; i += 5){

}

printf("\tDCD\t");
printf("0x%03x,0x%03x,0x%03x,0x%03x,0x%03x\n", sine_table[i],

sine_table[i+l), sine_table[i+2), sine_table[i+3), sine_table[i+4));

printf("\tDCD\t0x%03x\n", sine_table[90));
return 0;

Example 21-1. C program to generate sine table

The following program shows how to use the pre-calculated table to find the value of
sin(x), where xis in degrees. The DAC output voltage is between 0 and 3 V. It cannot
output a negative voltage. The value found in the following program is used to set up
the data register of the DAC module. When the data register is 0, the DAC analog output
voltage is OV. When the data register is 0xFFF, the DAC output voltage is 3V.

For the sine wave, we have the following setting:

• When sin(x) is -1, the DAC data register is 0;
• When sin(x) is 0, the DAC data register is 2048;

21.5 - Generating a Sinusoidal Wave via Table Lookup

• When sin(x) is 1, the DAC data register is 4095.

uint32_t lookup_sine(int x){
I I x is the input in degrees

}

x = mod(x, 360); II x might be Larger than 36e
if (x < 90) return sine_table[x];
if (x < 180) return sine_table[180-x];
if (x < 270) return 4096 - sine_table[x-180];
return 4096 - sine_table[360-x];

Example 21-2. C program that uses the table lookup method to calculate the sine value

The following assembly program shows how to use the table lookup method to calculate
the sine value in assembly. Note the assembly program follows the standard of
embedded application binary interface (EABI), which takes the input argument in
degrees in register r0 and returns the table lookup results in register r0 too. Note it is not
required to preserve register rl.

; Input:
; re: x input argument in degrees
, Return:
; re: value of (1 + sin(x)) *2 ~11

, Register used:
;

sine

rl = sine input argument (in degrees)
r4 = starting address of sine table
r6 = copy of the sine input argument (in degrees)

PROC
EXPORT sine
PUSH {r4,r6,lr} ; preserve used registers in stack
MOV r6, r0 ; make a copy of x (in degrees)
MOV rl, r0 ; make a copy of x (in degrees)
LOR r4, =sine_ table ; Load address of sine table
CMP rl, #90 ; determine quadrant
BLS retvalue ; first quadrant (e < x s 9e)
CMP rl, #180
RSBLS rl, rl, #180 ; second quadrant (9e < x s 18e)
BLS retvalue
CMP rl, #270
SUB LE rl, rl, #180 , third quadrant (18e < x s 27e)
BLS retvalue
RSB rl, rl, #360 , fourth quadrant (27e < x s 36e)

retvalue
LOR r0, [r4, rl, LSL #2] , get sin value from table

, memory address = sine_table +

CMP r6, #180 ; if 18e < x < 36e
RSBGT r0, r0, #4096 ; 4e96 - 2e48*abs(sin(x))
POP {r4,r6,pc} ; recovery environment
ENDP

rl * 4

ALIGN
sine_ table

DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD

Digital-to-Analog Converter (DAC) iii•

; DAC has 12 bits. DCD = allocate words (4 bytes)
0x800,0x823,0x847,0x86b,0x88e,0x8b2,0x8d6,0x8f9,0x91d,0x940
0x963,0x986,0x9a9,0x9cc,0x9ef,0xal2,0xa34,0xa56,0xa78,0xa9a
0xabc,0xadd,0xaff , 0xb20,0xb40,0xb61,0xb81,0xbal,0xbcl,0xbe0
0xc00,0xcle,0xc3d,0xc5b,0xc79,0xc96,0xcb3,0xcd0,0xcec,0xd08
0xd24,0xd3f,0xd5a,0xd74,0xd8e,0xda8,0xdcl,0xdd9,0xdfl,0xe09
0xe20,0xe37,0xe4d,0xe63,0xe78,0xe8d,0xeal,0xeb5,0xec8,0xedb
0xeed,0xeff ,0xf10,0xf20,0xf30,0xf40,0xf4e,0xf5d,0xf6a,0xf77
0xf84,0xf90,0xf9b,0xfa6,0xfb0,0xfba,0xfc3,0xfcb,0xfd3,0xfda
0xfe0,0xfe6,0xfec,0xff0,0xff4,0xff8,0xffb,0xffd,0xffe,0xfff
0xfff

; sin(9e) = 1. However, 1 cannot be represented in Q12 notation
; thus, we set sin(9e) = exFFF
END

Example 21-3. Generate sine wave output by using table lookup

21.6 DAC with Software Trigger
The DAC module on STM32L has two output channels: DACl_OUTl (Pin PA 4) and
DAC1_0UT2 (Pin PA 5). Pin PA 4 is not directly accessible on STM32L4 Discovery Kit. If
two DAC channels are needed, software can program the on-chip operational amplifier
(OPAMP) and route DACl_OUTl to pin PA 3 (OPAMPl_VOUT).

II DAC channel 2: DAC_OUT2 = PA 5
void DAC_Channel2_Init(void){

II Enable DAC Clock
RCC->APBlENRl I= RCC_APBlENRl_DAClEN;

II Disable DAC
DAC->CR &= ~(DAC_CR_ENl I DAC_CR_EN2);

II DAC mode control register (DAC_MCR)
11--
11 DAC Channel 2 in normal Mode
II eee: connected to external pin with buffer enabled
II eel: connected to external pin and chip peripherals with buffer enabled
II eie: connected to external pin with buffer disabled
II ell: connected to on chip peripherals with Buffer disabled
11--
11 DAC Channel 2 in sample & hold mode
II 1ee: connected to external pin with buffer enabled
II 1e1: connected to external pin and chip peripherals with buffer enabled
II 11e: connected to external pin and chip peripherals with buffer disabled
II 111: connected to on chip peripherals with Buffer disabled
11--

}

21.6 - DAC with Software Trigger

DAC->MCR &= ~(7U<<16); II mode = eee

II Enable trigger for DAC channel 2
DAC->CR I= DAC_CR_TEN2;

II Select software trigger
DAC->CR I= DAC_CR_TSEL2;

II Enable DAC Channel 2
DAC->CR I= DAC_CR_EN2;

II Enable the clock of GPIO port A
RCC->AHB2ENR I= RCC_AHB2ENR_GPIOAEN;

II Set IIO mode as analog
GPIOA->MODER I= 3U<<(2*5); II Set the mode as analog (11)

Example 21-4. Configure DAC channel 2 with software trigger

The following program generates a sawtooth waveform on DAC channel 2 (pin PA 5).

II DAC channel 2: DAC_OUT2 = PA 5
int main(void){

}

uint32_t i, output 0· ,

DAC_Channel2_Init();

while (1) {

}

II Wait until DAC is not busy
II Hardware sets BWST2 flag when software writes to DHR12R2.
II Hardware clears BWST2 flag after hardware copies DHR12R2 to DOR.
while ((DAC->SR & DAC_SR_BWST2) != 0);

II Set DAC output
DAC->DHR12R2 = output;

II Start software trigger.

II Channel two 12-bit right-aligned data

II Hardware clears SWTRIG2 once DHR12R2 has been copied to DOR
DAC->SWTRIGR I= DAC_SWTRIGR_SWTRIG2;

for(i = 0; i <= 10; i++); II Short software delay

output = (output + 1) & 0xFFF; II Increment output voltage

Example 21-5. Using C program to generate a sawtooth analog output

Digital-to-Analog Converter (DAC) iiW

21. 7 Using Timer as a Trigger to DAC
In Example 20-2 given the previous chapter, timer 4 is configured to generate trigger
output (TRGO). This trigger output can also be used to trigger DAC.

DAC

clock trigger

JUUL
DAC Clock ----~ _JLJLJl_ Period ic

Trigger Signal

Timer4
TRGO

Timer Clock -----'

OC1REF

Channel 1

'---v---'

C
. It

1
_(1+ARR)xTumerclock

on version n erva - 1 +PSC

Figure 21-8. Using TIM4_TRGO to trigger DAC

The following C code selects TIM4_ TRGO as DAC trigger.

II DAC Trigger selection
II 000: Timer 6 TRGO event
II 001: Timer 8 TRGO event
II 010: Timer 7 TRGO event
II 011: Timer 5 TRGO event
II 100: Timer 2 TRGO event
II 101: Timer 4 TRGO event
II 110: External line9
II 111: Software trigger

II Clear trigger selection bits for channel 2
DAC->CR &= -DAC_C R_TSEL2;

II Select TIM4_TRGO as the trigger of DAC channel 2 (101)
DAC->CR I= (DAC_CR_TSEL2_0 I DAC_CR_TSEL2_2);

Example 21-6. Selecting TIM4_ TRGO as the trigger signal to DAC channel 2

In the following, we will explain how to use DAC to play music. In digital audio, a
common sampling frequency is 44,100 Hz (i .e., 44.1 kHz). That means an analog audio
signal is recorded as 44,100 digital values per second. Human ears can hear up to 20,000
Hz. The Nyquist-Shannon sampling theorem articulates that the sampling frequency

- 21.7 - Using Timer as a Trigger to DAC

must be at least twice the maximum frequency of signals audible to human ears. Most
compact discs (CD) are recorded with this rate.

If DAC is used for music applications, timer 4 needs to generate an interrupt with a
frequency of 44.1 kHz. If the 16MHz HSI is used, the prescaler (PSC) and the auto-reload
register must meet the following requirement.

fHSI

(1 + PSC)(l +ARR) =!sampling = 44.1 kHz

A large PSC is recommended to slow down the counter clock frequency. This reduces the
energy consumption of the timer hardware.

For example, if we select PSC = 18, and ARR = 18, then DAC is performed at a rate of
44.3 kHz, which is only 0.5% off from 44.1 kHz.

fHSI 16MHz
(1 + PSC)(l +ARR) = (1+18)(1+18) = 44·3kHz

The timer interrupt handler increments the angle variable by a constant step size. Once
the DAC conversion is fixed to 44.1 kHz, the frequency of the sine wave generated is
determined by the step size of the angel variable during each time interrupt. To complete
one cycle of the sinusoidal waveform, the input of the sine function should increase from
0° to 360°. The following illustrates how to calculate the step size.

If the frequency of a musical tone is f the step size of the angular variable in the
TIM4_IRQHandler can be calculated as follows:

360°
Step Size = N b f DAC . . 'd l l um er o outputs m one smusoi a eye e

Period of Sine Wave
= 360° + -----------

Time Interval of DAC Outputs

=
3600

+ G + 44.3~Hz)
44.3KHz

=360°+ - --
f

For example, iff is 440 Hz (music tone A), we have

44.3KHz
Step Size= 360° +

440
Hz ~ 3.576°

Digital-to-Analog Converter (DAC) lid

Cortex-M3 processors do not have an FPU, and they do not support floating-point
instructions. Even though STM32L4 (Cortex-M4) has FPU, sometimes we still choose to
use fixed-point format. Fixed-point arithmetic uses integer units of the processor core,
thus saving power and resource.

In the following, we will use a fixed-point format. Example 11-7 gives a simplified C
implementation. The key idea is that variable StepSize is multiplied by 1000. Variable
angle is divided by 1000 when it is passed to the table lookup function.

int StepSize = 3576; II Multiply by 1eee
angle += StepSize; 11 Increment angle
sine_value = sine_table_lookup(angle/1000);

Example 21-7. Using fixed-point format to represent the angle

The following is an example implementation of TIM4_IRQHandler() . You need to change
the variable degrees_desired to generate the desired output sine-wave frequency.

void TIM4_IRQHandler() {

}

if((TIM4->SR & TIM_SR_ CClIF) ! = 0) {

}

II Data stored in the DAC_DHRx register are automatically transferred
II to the DAC_DORx register after one APBl clock cycle.

II When using dual channels, the values stored in a shared register
II DAC->DHR12RD = sin(v)<<16 / sin(v);

II When not using dual channels, they are set separately
II DAC->DHR12Rl = sin(v); II DAC channel-1 12-bit Right aligned data
DAC->DHR12R2 = sin(v); II DAC channel-2 12-bit Right aligned data

II Adjust v appropriately for desired sine waveform frequency .
v += degrees_desired; II Must calculate degrees_desired. Not shown here.
if (v >= 360) v = 0;

II Clear CClIF flag to prevent mistakenly re-entering the interrupt.
II CClIF is cleared (1) by software or (2) by hardware if CCRl is read.
II The handler must clear CClIF because CCRl is not read.
TIM4->SR &= ~TIM_SR_CClIF;

if((TIM4->SR & TIM_SR_ UIF) != 0)
TIM4->SR &= ~TIM_SR_UIF;

return;

Example 21-8. The interrupt service handler of timer 4

mJll 21.8 - Musical Synthesizing

21.8 Musical Synthesizing
A musical tone is a fundamental element of music. A tone is a periodic
waveform, and its principal attributes include duration, pitch (frequency), 0
loudness (amplitude), and timbre (spectrum and envelope). If a piano and
a guitar play the same pitch at the same loudness with the same duration, 11!'11
they differ in timbre because they have different spectral content over lilii
time. An experienced listener can distinguish the instruments based on their timbres.

The sinusoidal waveform has been widely used to synthesize digital music due to its
simplicity and flexibility. Instruments, such as the guitar, flute, and piano, are often
mathematically modeled by sinusoids due to their fundamental physical characteristics
and harmonics.

21.8.1 Musical Pitch
The pitch of a musical tone is determined by the frequency of the sinusoidal waveform.
The musical note A above middle C, often noted as' A4' or ' A440', has been standardized
to 440 Hz. This note is often used as a reference in musical instrument tuning. The
musical instrument digital interface (MIDI) standard assigns the A note as pitch 69. For
a pitch p, we can calculate its frequency fas follows:

f = 440 x zCp-69) / 12

In other words, for a given frequency f, its pitch pis:

p = 69 + 12 x log2 (4~0)
0 1 2 3 4 5 6 7 8

c 16.352 32.703 65.406 130.813 261.626 523.251 1046.502 2093.005 4186.009

C# 17.324 34.648 69.296 138.591 277.183 554.365 1108.731 2217.461 4434.922

D 18.354 36.708 73.416 146.832 293.665 587.330 1174.659 2349.318 4698.636

D# 19.445 38.891 77.782 155.563 311.127 622.254 1244.508 2489.016 4978.032

E 20.602 41.203 82.407 164.814 329.628 659.255 1318.510 2637.020 5274.041

F 21.827 43.654 87.307 174.614 349.228 698.456 1396.913 2793.826 5587.652

F# 23.125 46.249 92.499 184.997 369.994 739.989 1479.978 2959.955 5919.911

G 24.500 48.999 97.999 195.998 391.995 783.991 1567.982 3135.963 6271.927

G # 25.957 51.913 103.826 207.652 415.305 830.609 1661.219 3322.438 6644.875

A 27.500 55.000 110.000 220.000 440.000 880.000 1760.000 3520.000 7040.000

A# 29.135 58.270 116.541 233.082 466.164 932.328 1864.655 3729.310 7458.620

B 30.868 61.735 123.471 246.942 493.883 987.767 1975.533 3951.066 7902.133

Tab le 21-1. Musical frequency (note pitch) table based on A4 = 440 Hz

Digital-to-Analog Converter (DAC) ii)M

Table 21-1 shows the frequency of different musical notes with consecutive
pitches. When the pitch increases by 12, the frequency is doubled . In this
table, each column, called an octave, has exactly 12 musical notes. The octave
is numbered from 0 to 8. The note 'A4' denotes A in the fourth octave. The
frequency of a musical note in the nth octave is the double of the corresponding note in
the (n-1)1h octave.

21.8.2 Musical Duration
The duration is the amount of time a musical tone takes, which determines the number
of beats per minute (BPM) the song should be played. For example, a BPM of 60 provides
a beat each second, and a BPM of 120 is twice as rapid. Typical BPM is between 40 and
200. A slow tempo (68-80 BPM) makes listeners relaxed, while a faster tempo (BMP 120-
140) can energize listeners. In most songs, a standard 4-4 time signature is used. What
this means is that there are four notes per measure, and a quarter note gets the beat.

Computer software can easily identify the time instants of each musical beat, and use it
to synchronize other devices, such as LED light, drum machine, and audio effects to the
audio source. The BPM is also an important criterion to identify the type of music a
specific listener likes most.

21.8.3 Amplitude Modulation of Tones
The amplitude of a tone determines its loudness or volume. Most musical instruments
do not generate tones with constant amplitude. They do not build up its volume to its
maximum amplitude instantly nor fall to zero amplitude suddenly.

The attack, decay, sustain, and release (ADSR) envelope model has been widely used to
modulate the amplitude of a tone over time to emulate how a tone is played on a musical
instrument. It divides a tone into four different phases, as shown in Figure 21-10.

• Attack. The attack phase usually is fast, and a tone quickly reaches its peak
intensity when a key is pressed on the real instrument. For most mechanical
instruments, the duration of this phase is short.

• Decay. After reaching peak amplitude, the tone starts to fade gradually from the
peak.

• Sustain. After the decay phase, the amplitude is maintained nearly at a constant
level while a key is held, or a sustain pedal is pressed.

• Release. After the music key or pedal is released, the amplitude decreases from
the sustained level to zero. While the duration of the release phase is typically
short, it can last relatively long, such as eight seconds for a foghorn, and two
seconds for a bell.

mJJI 21.8 - Musical Synthesizing

By changing the amplitude and duration of each phase, computers often use ADSR to
emulate different musical instruments. For example, a guitar is the loudest immediately
after a string is plucked, and it fades quickly after that. In contrast, when a key of a pipe
organ is pressed, its corresponding tone has an almost constant amplitude.

The digital signal of a sinusoidal waveform with a frequency f, denoted as S (n) , can be

generated based on the following formula:

(
n x f)

S(n) =sin 2rrfs

where fs is the sampling frequency to this sinusoidal wave, and n = 0,1,2, ···, fs - 1.

Thus, the modulated sinusoid signal S(n) is the product of the generated sample value
S(n) and the ADSR modulated amplitude ADSR(n).

S(n) = ADSR(n) x S(n)

The ADSR modulated amplitude ADSR(n) can be generated by using a simple digital
filter,

ADSR(n) = g x ADSR + (1 - g) x ADSR(n - 1)

where ADSR is the target modulated amplitude value, and g is the gain parameter. The
filter gradually increases or decreases to the target value at a pace determined by the gain
parameters.

ADSR has four different phases, and there are three parameters associated with each
phase: the duration, the target amplitude value, and the gain parameter. For a given
sampling frequency f5 , the duration of each phase is expressed by the number of samples
in this phase. The total number of samples in all four phases should equal the total
number of samples of the musical tone.

0.8 .

0.6

§ o.4
.!2
~ 0.2

~
Ci o,
" ·~ -o.2r
~ -0.4!--

.0.6[

.O.Br

.1~-~~-·-~-·-~~-~~-
0 0.2 0.4 0.6 0.8

Time {second)

Figure 21-9. Sinusoidal waveform for musical note CO (16.325Hz)

Q)
Q.

0.9

0.8

0.7

E 0.6
0
>
in 0.5
n:
~ 0.4
ct

0.3

0.2

0.1

Attack

0.2 0.4 0.6
Time (second)

Digital-to-Analog Converter (DAC) Ill

0.8

Figure 21-10. Attack, decay, sustain, and release (ADSR) envelope signal

Let us assume BPM is 60. Accordingly, each note is played for a duration of one second.
Figure 21-9 shows the periodical waveform of the musical note CO, which has a frequency
of 16.325Hz. Figure 21-9 shows the amplitude-modulating signal based on the ADSR
envelope. Figure 20-12 presents the final modulated sinusoidal wave signal used to drive
a speaker or headphones.

0.6
cu
§, 0.4
c;;
"C 0.2
.s
-5 0
"C
0

:::!: -0.2
ct: '
CJ) t
~ ·0.4 \

-0.6 : -

-0.8

-1 ~~~~~~~~-'--~~~-'--~~~-'----~~--'

0 0.2 0.4 0.6 0.8
Time (second)

Figure 21-11. Modulated sinusoidal waveform for musical note CO (16.325Hz)

. ., ... 21.8 - Musical Synthesizing

As discussed earlier, a common sampling frequency in digital audio is
44,lOOHz (i.e. , 44.1 kHz). If the music data is not compressed, the date
rate of CD audio is as follows: • 2 channels x 2 bytes/sample x 441 ,000 samples/channel/second=

176,400 bytes/second

A CD with 74 minutes of music has a total of 777 MB music data if it is uncompressed, as
calculated below:

176,400 bytes/second x 60 seconds/minute x 74 minutes= 777 MB

Audio data are often stored in a compressed format to save memory or storage space.

The DAC voltage output is always positive on STM32L processors. A large capacitor is
used to filter out the DC component. Additionally, a resistor is added to reduce the
current to protect your earphone, as shown in Figure 21-12.

DAC Capacitor

G~:::;: 1~ro
(OAC Channel 2) 470µF

Earphone

Figure 21-12. Filtering DC component of DAC output via a capacitor

We can use DAC to create a digital musical synthesis system. Suppose the frequency and
time duration of music notes are predefined in the data area, as shown below in assembly.

AREA myMusic, DATA
ALIGN

; Size, frequency, time duration of "Twinkle Twinkle L ittLe Star"
TT_S DCD 42 ; Number of notes
TT F DCD 262, 262, 392, 392, 440, 440,

DCD 349, 349, 330, 330, 294, 294,
DCD 392, 392, 349, 349, 330, 330,
DCD 392, 392, 349, 349, 330, 330,
DCD 262, 262, 392, 392, 440, 440,
DCD 349, 349, 330, 330, 294, 294,

; Set beats per minute (BMP) as 12e
TT T DCD 1, 1, 1, 1, 1, 1, 2

DCD 1, 1, 1, 1, 1, 1, 2
DCD 1, 1, 1, 1, 1, 1, 2

392
262
294
294
392
262

; Twinkle twinkle Little star
; How I wonder what you are
, Up above the world so high
, Like a diamond in the sky
; Twinkle twinkle Little star
; How I wonder what you are!

; Twinkle twinkle Little star
; How I wonder what you are
; Up above the world so high

Digital-to-Analog Converter (DAC) iiJeW

DCD 1, 1, 1, 1, 1, 1, 2 ; Like a diamond in the sky
DCD 1, 1, 1, 1, 1, 1, 2 , TwinkLe twinkLe LittLe star
DCD 1, 1, 1, 1, 1, 1, 2 ; How I wonder what you are!

; Size, frequency, time duration of "Happy Birthday"
HB_S DCD 25 ; Number of notes
HB F DCD 392, 392, 440, 392, 523, 494 ; Happy Birthday to You

DCD 392, 392, 440, 392, 523, 494 ; Happy Birthday to You
DCD 392, 392, 784, 659, 523, 494, 440 ; Happy Birthday to Dear (name)
DCD 349, 349, 330, 262, 294, 262 , Happy Birthday to You

; Set beats per minute (BMP) as 240
HB_T DCD 1, 1, 2, 2, 2, 4 ; Happy Birthday to You

DCD 1, 1, 2, 2, 2, 4 ; Happy Birthday to You
DCD 1, 1, 2, 2, 2, 2, 6 ; Happy Birthday to Dear (name)
DCD 2, 2, 2, 2, 2, 4 ; Happy Birthday to You
END

Example 21-9. Note frequency and time duration of two simple songs

The following shows the key functions of implementing a music player in C. It uses a
delay function to play the next note. The delay function can be implemented based on
the SysTick timer. The interrupt handler calculates the step size based on the frequency.

volatile uint32_t frequency, angle;

void play_Twinkle (void) {
int i, duration;

}

for (i = 0; i < TT_S; i++) {
frequency TT_F(i);
duration TT_T(i);

}

angle = 0; II Restart the sine wave
delay(duration);

II Assume timer 4 generates 44300 interrupts per second
void TIM4_IRQHandler() {

}

stepSize = 360 * 44300 * 1000 I frequency; II fixed-point format
angle = (angle + stepSize) % 360000;
DAC->DHR12R2 sin(angle/1000);

Example 21-10. Basic implementation of playing music

mJZI 21.9 - Exercises

21.9 Exercises
1. Assume an audio is recorded at a rate of 44,100 Hz, and the DAC is driven by the

timer trigger output (TGRO). What is the time interval between two consecutive
triggers? If the timer is driven by the HSI clock (16 MHz), how do you set the
timer prescaler register (PSC) and the auto-reload register (ARR)? Show your
calculations.

2. Assume we are required to generate a sinusoidal waveform of 293.665 Hz (music
tone D), and the DAC converter is triggered by TIM4 TRGO with a frequency of
44,lOOHz.

a. How many DAC outputs should we produce during one cycle of the
sinusoidal waveform?

b. The angle of the sine function should increase from 0° to 360° to complete one
cycle of the sinusoidal waveform. How many degrees should the angle
variable be increased in timer interrupt handler each time?

c. The processor only supports integer arithmetic. If the angle degree to be
increased is not an integer, what can you do to get around this issue?

3. Write an assembly program that uses a table-lookup method to generate a
sinusoidal wave. The built-in logic analyzer in MDK-Keil can only show the value
stored in the data memory. The logic analyzer cannot analyze the value stored in
a register. To solve this problem, we create a variable named "output" in the data
area. In your main program, within the loop over different x values, make sure to
store the lookup value into the memory address "output" so that the logic
analyzer can display the value.

AREA myData, DATA
ALIGN

output DCD 0x000

In the logic analyzer, you can click "Setup" and add a variable "(signed int)
output" to observe. Make sure to adjust the data display range to show the curve.
The logic analyzer can only monitor global variables. Thus, you need to add
"EXPORT output" after the "EXPORT _main" to make the output as a global variable .

4. Write an assembly program that generates a sinusoidal waveform with a
frequency of 440 Hz and use an oscilloscope to verify the frequency.

5. Write an assembly program to play the song of "Twinkle Twinkle Little Star."

Serial Communication Protocols ii.fl

CHAPTER

22
Serial Communication Protocols
This chapter introduces four important serial communication protocols, including
universal asynchronous receiver and transmitter (UART), inter-integrated circuit (FC),
serial peripheral interface (SPI), universal serial bus (USB). Serial communication
transfers a single bit each time and uses either a single wire for each communication
direction or a shared wire for both directions. It differs from parallel communications,
which use multiple communication wires and can transfer several bits at the same time.
Compared with parallel communications, serial communications provide lower speed,
but allow longer cable length and are less expensive.

22.1 Universal Asynchronous Receiver and Transmitter
One of the most common usages of universal asynchronous receiver and transmitter
(UART) is for exchanging data between a microprocessor and a PC serial port to debug
software or monitor systems. UART also has been widely used for various peripherals,
such as printers, terminals, and modems. The keyword "universal" means the serial
interface is programmable. UART is often configured to communicate synchronously,
which is then called USART.

The asynchronous transmission allows bits to be transmitted in a serial fashion without
requiring the sender to provide a clock signal to the receiver. However, both senders and
receivers must agree on the data transmission rate before the communication starts. The
sender and the receiver should use the same baud rate to set up the clock agreement. In
digital systems, the baud rate is the bit rate, i.e., the number of bits transmitted per second.
Usually, the UART interface can tolerate a clock shift up to 10% during the transmission.
In some analog systems, such as modems, the baud rate is larger than the corresponding
bit rate when there are more than two voltage levels and a voltage signal transmitted can
represent multiple bits.

22.1 - Universal Asynchronous Receiver and Transmitter

Device 1

TX

UART RX
lnteface

Full-duplex

Device 2

TX
UART

RX lnteface

GND 1-------; GND

Single-wire half-duplex

~10KO
Device 1 Device 2

TX TX - -
UART UART

lnteface lnteface

GND GND

Figure 22-1. Connection between two UART devices in asynchronous mode

The transmission involves two communication lines (TX and RX), as shown in Figure 22-1.

• With full-duplex communication, data is always transmitted out bit by bit from
the TX line and is received by the other device on its RX line. The receiver
reassembles bits received into bytes.

• With the single-wire half-duplex communication, TX and RX are internally
connected, and only one wire is used. TX is used for both sending and receiving
data. In this mode, TX pins are pulled up externally because these two pins must
be configured as open-drain.

For synchronous serial communication, the clock (CLK) pin of the devices must be
connected. Also, the CTS (clear to send) line must connect with the RTS (request to send)
line of the other device.

22.1.1 Communication Frame
UART divides data to be transmitted into frames. A frame is the smallest unit of
communication. In a frame, the data length (7, 8, or 9 bits), the parity bit (even, odd, or
no parity), the number of stop bits (0.5, 1, 1.5, or 2 bits), and the data order (MSB or LSB
first) are configurable. Figure 22-2 shows one commonly used data frame: 8-P-1 (8 data
bits, parity, 1 stop bit).

One frame (1 start bit, 8 data bits , 1 parity bit, and 1 stop bit)

3.0V
Sender START bO

ov

Receiver t t t t t t t t t
bO b1 b2 b3 b4 b5 b6 b7 p time

Time instants of sampling

Figure 22-2. 8- P-1 frame (a start bit, eight data bits, one parity bit, and one stop bit). The least
significant (LSB) of the data is sent out first in this example.

Serial Communication Protocols i.JJM

Each frame begins with a start bit, represented by a low-level voltage. After the start bit,
the individual bits of each frame are shifted out of one UART interface and into another.
Software can configure the data transmission order. Either the least significant bit (LSB)
or the most significant bit (MSB) can be sent first. For example, suppose the LSB is sent
first. When UART sends 0xE1, the bit stream 10001111 (read from left to right) is seen on
the transmission line. The number of bits in the data can be programmed to be 7, 8 or 9.

When the sender sends a frame, the sender can optionally calculate the parity of this
frame and send the parity bit to the receiver for error checking. The optional parity bit
helps improve the data integrity. The parity bit uses a high-level voltage to represent a
logic 0 and a low-level voltage to represent a logic 1. Software can configure logic 1 on
the parity bit to represent either an odd or even number of ones in the transmitted data.

• Even parity. The combination of data bits and the parity bit contains an even
number of ls.

• Odd parity. The total number of l s in the data bits and the parity bit is an odd
number.

For example, if the data bits are 00010001 in binary, the parity bit will be 1 if odd parity
is used, and 0 if even parity is used.

Each frame ends with a stop bit, represented by a high voltage. If no further data is
transmitted, the voltage of the transmission line remains high. If the receiver does not
obtain the stop bit, the current frame is considered corrupted and discarded.
Additionally, the number of stop bit in each frame is usually one by default. However, it
can be programmed to have 0.5, 1, 1.5, or 2 stop bits.

One frame (1 start bit, 8 data bits, 1 parity bit, and 1 stop bit)

,....---. ,.----.. ,....---. ,.----.. ,....---. ,.----.. ,....---. ,.----.. ,....---. ,....--- 3.0V
Sender START bO b1 b2 b3 b4 b5 b6 b7 p STOP

ov
!

Receiver tt
bO b1 b2 b3 b4 b5 b6 b7 p time

Figure 22-3. Receiver oversamples each bit 8 times

As the transmitter and receiver clocks are independent of each other, oversampling is an
effective approach to mitigate the effects of clock deviation and avoid corruption by high
frequency noise. The most commonly used sampling rate is 8 or 16 times the baud rate
(introduced in the next section). The receiver samples each bit 8 or 16 times and uses
these values to estimate the middle of each bit pulse, resulting in a more reliable and
robust transmission link.

mJ!I 22.1 - Universal Asynchronous Receiver and Transmitter

22.1.2 Baud Rate
Historically the baud rate was used in
telecommunications to represent the number of
pulses or transitions physically transferred per
second.

• By using phase shift and other technologies,

Baud Rate'#- Bit Rate

a pulse on phone lines can represent multiple binary bits, resulting in a bit rate
larger than the baud rate.

• In digital communication systems, because each pulse represents a single bit, the
baud rate is the number of bits physically transferred per second, including the
actual data content and the protocol overhead, leading to a bit rate lower than the
baud rate.

For example, if the baud rate is 9600, and an 8-N-1 frame consists of a start bit, 8 data bits,
a stop bit, and no parity bit, then the transmission rate of actual data is not 9600 bits per
second/8 = 1200 bytes per second. Instead, it is 9600/(1+8 + 1) = 960 bytes per second. The
start and stop bits are the protocol overhead.

On STM32L4, the baud rate is calculated as follows:

(1 +OVERS) x fPCLK

Baud Rate= USARTDIV

where fPcLK is the clock frequency of the processor. The divider USARTDIV is stored in
the Baud Rate Register (BRR) . The value of OVER8 is defined as follows.

OVERS= {
0

• 1,
Signal is oversampled by 16
Signal is oversampled by S

Also, the divider USARTDIV can be calculated from BRR.

{
BRR,

USART DIV = BRR[15: 4] x 16 + BRR[2: O] x 2 I

Signal is oversampled by 16
Signal is oversampled by S

Example 1: Oversampling by 16, processor core 80 MHz, baud rate= 9600. Find BRR.

OVERS= 0

(1 +OVERS) x f PCLK
USARTDIV = -------

Baud Rate

sooooooo
9600 = S333.33 ::::: S333

BRR = USARTDIV = S333 = Ox20SD

Serial Communication Protocols i-iji

Example 2: Oversampling by 8, processor core 80 MHz, baud rate= 9600. Find BRR.

22.1.3

OVERS= 1

(1 +OVERS) x fPCLK
USARTDIV = -------

Baud Rate
~ 16667

The hex equivalent of 1667 is 0x411B.

2 x sooooooo
9600 = 16666.6 7

BRR[3 : O] = USARTDIV[3: O] » 1 = OxB » 1 OxS

BRR[lS: 4] = USARTDIV[lS: 4] = Ox411

BRR = BRR[lS: 4]: BRR[3: O] = Ox4115

UART Standards
Voltage signals for UART are defined in different standards, such as RS-232, RS-422, and
RS-485. The prefix RS stands for "recommended standard." Table 22-1 compares these
three standards. While the voltage of the TX and RX line in RS-422 and RS-485 is
differential, with two separate wires for each line, RS-232 uses a single-ended voltage
with a shared ground.

Figure 22-4 compares single-ended and differential signaling. Besides the shared ground,
single-ended signaling uses just one wire to transmit signals. Differential signaling uses
two twisted wires with equal but opposite signals to transmit digital data. Electrical noise
can be inducted into the signal wires or can be generated by the voltage difference
between two ground references. Noise is coupled into both wires equally. Therefore, the
noise can be canceled out at the receiver. Compared with single-ended signaling,
differential signaling can transmit a higher frequency signal over a greater distance.

Single-ended Signal ing

I 1° -r---1 ----+-I D I

!
Noise

Ov -~--~--
'~~--/

Noise sources: (1) induction picked up on the wired ,
(2) voltage difference between two grounds

Twisted-pair wires

-=- ~,--\ ,. Noise _ : \.ir o• ,
Ov ----0:-------------- ---\~~)--- ------------ -------------

n Requires more wires
'(7 but eliminates noise

o• ~ ~: m --\-mm/ -\ -mm
Figure 22-4. Comparison of single-ended and differential signaling

m.IJ 22.1 - Universal Asynchronous Receiver and Transmitter

In RS-232, a voltage signal between +5V and + 15V represents a logic one being
transmitted, whereas a signal between -5V and -15V represents a logic zero. The receiver
must interpret a voltage with +3V and +25V as a logic one, and a voltage with -3V to -25V
as a logic zero. Any voltage signals between -3V and + 3V are invalid data. When the line
is idle, the line must be driven to logic zero.

RS-232 RS-422 RS-485

Single-ended
Differential Differential

Voltage signal (logic 1: +5 to + 15V,
(-6V to +6V) (-7V to+ 12V)

logic 0: -5 to -15 V)
Max distance 50 feet 4000 feet 4000 feet

Max speed 20 Kbit/s 10 Mbit/s 10 Mbit/s
Number of 1 master, 1 master, 32 masters,

devices 1 receiver 10 receivers 32 receivers

Mode Full duplex
Full duplex, half Full duplex, half

duplex duplex
Table 22-1. Comparing popular UART interfaces

Most modern computers only provide USB ports, not UART ports. Some old computers
have RS-232 serial ports. However, we cannot directly connect an STM32 processor to
the RS-232 port on a computer due to the voltage incompatibility. The STM32 processors
can only tolerate voltage signals under 5V. Additionally, STM32 uses OV to represent
logic zero and 3V to represent logic one.

The FT232R chip converts a UART port to a standard USB interface, as shown below.

Figure 22-5. Serial communication via a USB-to-UART converter

The following diagram displays the voltage signal of the UART port when transmitting
two data bytes, 0x32, and 0x3C. Each data frame includes one start bit, 8-bit data, and one
stop bit. No parity bit is used in this example. After the start bit, the least significant bit

Serial Communication Protocols iw

of the data is transmitted first. For example, the binary value of 0x32 is 0b00110010, and
the bit sequence seen on the transmission (TX) line is 01001100. The baud rate is set to
9,600, and thus each bit takes approximately 0.104ms. When the TX line is idle, the voltage
on it is 3V. The start bit has OV while the stop bit has 3V.

Data (LSB first) Data (LSB first)

3.4V s~~~I o 1 0 0 1 0 0 r~~r s~~~lo 0 1 0 ol s~~r

i•v

1.4V

o•v

C2 ~

I
-OGV

-2 .S ms LJ - 1.5 ms - 1 ms -0 .Sms

22.1.4

0.104ms = 1/9600

Figure 22-6. Voltage signal when transmitting Ox32 and Ox3C via UART
(1 start bit, 1 stop bit, 8 data bits, no parity, baud rate= 9,600)

UART Communication via Polling
The following sections introduce how to send or receive data via UART ports by using
three different methods: polling, interrupt, and DMA. Polling is the simplest but most
inefficient method. The interrupt approach is more efficient but not suitable for high data
transfer rates. The DMA method is complex but the most effective.

Figure 22-7 shows the connection of two UART ports between two processors. The TX

pin of one processor is connected to the RX pin of the other processor, and vice versa.
Because the polling method blocks the processor from running other tasks, software
cannot use polling to send and receive data simultaneously.

STM32L4 STM32L4

PB 6 (UART1_ TX)-----... ,,...------ PA 0 (UART4_ TX)

Figure 22-7. Connecting two UART ports

22.1 - Universal Asynchronous Receiver and Transmitter

The code in Example 22-1 initializes a UART port in asynchronous mode (no hardware
flow control) with oversampling by 16. Assume the UART clock is 80 MHz, and the baud
rate is 9600. The data frame consists of 8 data bits, 1 start bit, 1 stop bit, and no parity bit.
Software can initialize the UART ports using the following functions.

USART_Init(UART4);
USART_Init(USARTl);

UART4 and USARTl are struct variables defined in the device header file (stm321476xx. h) .

void USART_Init (USART_TypeDef * USARTx) {

}

II Disable USART
USARTx->CRl &= -USART_CRl_UE;

II Set data Length to 8 bits
II ee = B data bits, e1 = 9 data bits, 1e = 7 data bits
USARTx->CRl &= -USART_CRl_M;

II Select 1 stop bit
II ee = 1 stop bit e1 = e.s stop bit
II 1e = 2 Stop bits 11 = 1.5 Stop bit
USARTx->CR2 &= -USART_CR2_STOP;

II Set parity control as no parity
II e = no parity,
II 1 = parity enabled (then, program PS bit to select Even or Odd parity)
USARTx- >CR1 &= - USART_ CRl_PCE;

II Oversampling by 16
II 0 =oversampling by 16, 1 =oversampling by 8
USARTx->CRl &= -USART_CR1_0VER8;

II Set Baud rate to 9600 using APB frequency (Be MHz)
II See Example 1 in Section 22.1.2
USARTx->BRR = 0x208D;

II Enable transmission and reception
USARTx->CRl I= (USART_CRl_TE I USART_CRl_RE);

I I Enable USART
USARTx->CRl I= USART_CRl_UE;

II Verify that USART is ready for transmission
II TEACK: Transmit enable acknowledge flag. Hardware sets or resets it.
while ((USARTx->ISR & USART_ISR_TEACK) == 0);

II Verify that USART is ready for reception
II REACK: Receive enable acknowledge flag. Hardware sets or resets it.
while ((USARTx->ISR & USART_ISR_REACK) == 0);

Example 22-1. Initializing a UART port

Serial Communication Protocols -

Example 22-2 selects the system clock to drive USARTl and UART 4.

int main(void){

}

II Enable GPIO clock and configure the Tx pin and the Rx pin as:
II Alternate function, High Speed, Push-pull, Pull-up

11------------------- GPIO Initialization for USART 1 -----------------
11 PB.6 = AF7 (USARTl_TX), PB.7 = AF7 (USARTl_RX), See Appendix I
RCC->AHB2ENR I= RCC_AHB2ENR_GPIOBEN; II Enable GPIO port B clock

II 00 = Input, 01 = Output, 10 = Alternate Function, 11 = Analog
GPIOB->MODER &= ~(0xF « (2*6)); II Clear mode bits for pin 6 and 7
GPIOB->MODER I= 0xA « (2*6); II Select Alternate Function mode

II Alternative function 7 = USART 1
II Appendix I shows alL alternate functions
GPIOB->AFR[0] I= 0x77 « (4*6); II Set pin 6 and 7 to AF 7

II GPIO Speed: 00 = Low speed, 01 = Medium speed,
II 10 = Fast speed, 11 = High speed
GPIOB->OSPEEDR I= 0XF<<(2*6);

II GPIO Push-Pull: 00 = No pull-uplpuLl-down, 01 = Pull-up (01)
II 10 = Pull-down, 11 = Reserved
GPIOB->PUPDR &= ~(0xF<<(2*6));
GPIOB->PUPDR I= 0x5«(2*6); II Select pull-up

II GPIO Output Type: 0 = push-pull, 1 = open drain
GPIOB->OTYPER &= ~(0x3<<6);

11------------------- GPIO Initialization for USART 4 -----------------
11 PA.e =AFB (UART4_TX), PA.1 =AFB (UART4_RX), See Appendix I
II The code is very similar to the one given above.

RCC->APB2ENR I= RCC_APB2ENR_USART1EN;
RCC->APBlENRl I= RCC_APB1ENR1_UART4EN;

II Select system clock (SYSClK) USART clock
II 00 = PCLK, 01 = System clock (SYSCLK),
II 10 = HSI16, 11 = LSE
RCC->CCIPR &= ~ (RCC_CCIPR_USARTlSEL
RCC->CCIPR I= (RCC_CCIPR_USART1SEL_0

USART_Init(USARTl);
USART_Init(UART4);

II Enable UART 1 clock
II Enable UART 4 clock

source of UART 1 and 4

RCC_CCIPR_UART4SEL);
RCC_CCIPR_UART4SEL_0);

Example 22-2. Enable and select the clock of UART ports

••ifj 22.1 - Universal Asynchronous Receiver and Transmitter

When UART receives a byte, hardware sets the receive register not empty flag (RXNE) in

the status register (ISR). In the polling approach, software constantly checks the RXNE flag

and reads the receive data register (RDR) once it is set. Reading register RDR clears the RXNE
flag automatically.

Example 22-3 shows the implementation of receiving data by polling. This polling

method is inefficient, and the while loop prevents the processor from running other tasks.

void USART_Read (USART_TypeDef *USARTx, uint8_t *buffer, uint32_t nBytes) {

int i;

for (i = 0; i < nBytes; i++) {
while (!(USARTx->ISR & USART_ISR_RXNE)); II Wait until hardware sets RXNE
buffer[i] = USARTx->RDR; II Reading RDR clears RXNE

}
}

Example 22-3. Receive data from a UART port via busy polling

When UART sends a byte, software must wait until the TxE (transmission data register

empty) flag is set in the status register (ISR). Hardware sets the TxE flag when the content

of the transmission data register (TDR) has been transferred into the shift register.

Additionally, writing to the USART data register (DR) clears the TxE flag automatically.

After exiting the for loop, software must wait for the transmission complete (TC) flag to

ensure the last byte has been sent out.

Example 22-4 shows the implementation of sending data by polling. Again, the while

loop prevents the processor from performing other tasks.

void USART_Write (USART_TypeDef *USARTx, uint8_t *buffer, uint32_t nBytes) {

int i;

for (i = 0; i < nBytes; i++) {
while (!(USARTx->ISR & USART_ISR_TXE)); II Wait until hardware sets TXE
USARTx->TDR = buffer[i] & 0xFF; II Writing to TOR clears TXE flag

}

II Wait until TC bit is set. TC is set by hardware and cleared by software.
while (!(USARTx->ISR & USART_ISR_TC)); II TC: Transmission complete flag

II Writing 1 to the TCCF bit in ICR clears the TC bit in ISR
USARTx->ICR I= USART_ICR_TCCF; II TCCF: Transmission complete clear flag

}

Example 22-4. Send data out via a UART port via busy polling

Serial Communication Protocols i§M

22.1.5 UART Communication via Interrupt
An USART interrupt can be generated upon the occurrence of several events, such as
transmission data register empty (TxE), transmission complete (TC), received data register
not empty (RXNE), overrun error detected (ORE), idle line detected (IDLE), and parity error

(PE).

TX pin

u RXpin

USART 1

TX Shift
Register

TDR
Register

Hardware sets TXE flag if TOR i
is copied to TX shift register. :

Hardware sets RXNE flag if RX ,
shift register is copied to RDR. !

RX Shift
Register

RDR
Register

...........

Set by hardware. Reading RDR automatically clears RXNE.

~ (/'''""~;.~~"'~'~,---- \,'',,,',,, Receive Register Not
Empty Signal (RXNE) USART 1

Interrupt
Re uest

Processor Core

vo i d USARTl_IRQHandler(void) { i
------ _ if{USARTl- >ISR & USART_ISR_RXNE){/

- - --------- --- - - ---)> buffer [counter] = USARTl- >RDR; :
counter++ ;

Figure 22-8. Using interrupt to receive data from USART 1

When UART receives a byte, an interrupt request is generated, and the processor
responds to the request by executing the corresponding UART interrupt handler. The
interrupt handler reads the receive data register (RDR) and copies it to the next empty
buffer, as shown in Figure 22-8. Because several UART events can generate interrupts,
the interrupt handler must check whether an RXNE event has taken place.

Software must enable UART interrupts to send or receive data, as shown in Example 22-5.

USARTl->CRl I= USART_CRl_RXNEIE; //Receive register not empty interrupt
USARTl->CRl &= -USART_CRl_TXEIE; // Transmit register empty interrupt
NVIC_SetPriority(USARTl_IRQn, 0); //Set the highest urgency
NVIC_EnableIRQ(USARTl_IRQn); //Enable NVIC interrupt

Example 22-5. Enable UART sending and receiving interrupts

Example 22-6 shows the implementation of receiving data from UART by using
interrupts. There are two global counter variables to record the number of bytes that have
been received. The receive() function is generic, and is called by different UART interrupt
handlers. Therefore, it takes three input arguments to differentiate UART ports, the
receive buffers, and the byte counters.

22.1 - Universal Asynchronous Receiver and Transmitter

#define BufferSize 32
uint8_t USARTl_Buffer_Rx[BufferSize], USART4_Buffer_Rx[BufferSize];
volatile uint32_t Rxl_Counter = 0, Rx4_Counter = 0;

void USARTl_IRQHandler(void) {
receive(USARTl, USARTl_Buffer_Rx, &Rxl_Counter);

}

void UART4_IRQHandler(void) {
receive(UART4, USART4_Buffer_Rx, &Rx4_Counter);

}

void receive(USART_TypeDef *USARTx, uint8_t *buffer, uint32_t *pCounter) {

}

if(USARTx->ISR & USART_ISR_RXNE) { II Check RXNE event
buffer[*pCounter] = USARTx->RDR; II Reading RDR clears the RXNE flag
(*pCounter)++; II Dereference and update memory value
if((*pCounter) >= BufferSize) { II Check buffer overflow

(*pCounter) = 0; 11 Circular buffer
}

}

Example 22-6. Receiving data from a UART port via interrupt

Example 22-7 gives a generic implementation to transmit data via a UART port by using

interrupts. For example, software can send out the data by executing the following

statement: UART_Send(USARTl,buffer), which writes only the first byte to the transmit

data register (TDR). This will start the transmission process. This function will

immediately return to the caller after enabling TXE interrupt and write the first byte to

the transmit data register (TDR). This allows the caller to continue to execute other tasks

while the transmission is being performed in the background, as shown in Figure 22-9.

An interrupt will be generated after each byte has been sent. The interrupt handler writes

the next byte to TOR to start the next transmission. This process repeats until a total of

BufferSize bytes have been sent. The interrupt disables the interrupt for the TXE events.

volatile uint32_t Txl_Counter = 0, Tx4_Counter = 0;

void UART_Send (USART_TypeDef *USARTx, uint8_t *buffer){
USARTx->CRl I= USART_CRl_TXEIE; II Enable TXE Interrupt

}

II Write to Transmit Data Register (TOR) to start transmission
II An interrupt will be initiated after data in TOR has been sent.
USARTx->TDR = buffer[0];

void USARTl_IRQHandler(void) {
send(USARTl, USARTl_Buffer_Tx, &Txl_Counter);

}

Serial Communication Protocols ij§i

void UART4_IRQHandler(void) {
send(UART4, USART4_Buffer_Rx, &Tx4_Counter);

}

void send(USART_TypeDef *USARTx, uint8_t *buffer, uint32_t *pCounter){

}

if(USARTx->ISR & USART_ISR_TXE) { II Check TXE flag

}

(*pCounter)++;
if(*pCounter <= BufferSize - 1) {

USARTx->TDR buffer[pCounter] & 0xFF;
} else {

(*pCounter) 0;
USARTx->CRl &= ~USART_CRl_TXEIE;

}

II Bytes that have been sent
II Transmit the next byte
II Writing to TOR clears TXE
II Transmission completes
II Clear the counter
II Disable TXE interrupt

Example 22-7. Send data out via a UART port by using interrupt

main()

USARTl_IRQHandler()

·,.,Disable TXE
----- Interrupt

UART
Hardware Sending 1" Byte Sending 2"" Byte Sending 3•• Byte

TXE
Interrupt

TXE
Interrupt

TXE
Interrupt

Figure 22-9. Sending three bytes via USARTl by using interrupts

Time

Due to the non-blocking feature of interrupt, we can send and receive data
simultaneously between two UART ports on the same processor, as shown in Figure
22-10.

STM32L4

PA 0 (UART4_ TX) PB 6 (UART1_ TX} ---'!'--
PA 1 (UART4_RX} PB 7 (UART1_RX}

Figure 22-10. Communication between two ports on the same processor

TX pin

22.1 - Universal Asynchronous Receiver and Transmitter

22.1.6 UART Communication via DMA
Using a direct memory access (OMA) controller to move data between a buffer and
UART data registers is the most efficient way to perform UART communication. Chapter
19 introduces OMA in detail.

Figure 22-11 shows the basic idea. As shown in Table 19-2, USARTl_ TX and USARTl_RX can
be connected to channels 6 and 7 of OMA controller 2, respectively. A TXE or RXNE event
triggers a OMA request on channel 6 and channel 7, respectively.

• Whenever the TXE bit is set in the ISR register, OMA controller 2 transfers one
byte via channel 6 from the memory buffer (pointed to by the CMAR register of
OMA 2 channel 6) to the transmit data register TDR (pointed to by the CPAR register
of OMA 2 channel 6).

• Similarly, whenever the RXNE bit is set in the ISR register, OMA controller 2
transfers one byte via channel 7 from the receive data register RDR to the buffer.

USART 1

DMA copies data from
the address CMAR to

the address CPAR

Transmit Buffer

TX Shift
Register

TOR
Register

------------------- i CPAR

Hardware sets TXE flag if TOR ~ _ -
is copied to TX shift register. '

Hardware sets RXNE flag 1f RX.._
shift register is copied to RDR. i -

RX Shift RDR

RXNE
DM;1 re triggers

qoesto
- .E._h!f!'!!J 7 n

I CMAR

DMA2
Channel 6

DMA2
Channel7

- - -- - - ---- - -~---- ~~-CP_A_R_
Register Register

DMA copies data from
the address CPAR to

the address CMAR

I CMAR h")
/

UART_Transfer_Done_Flag = 0;

void DMA2_Channel6_IRQHandler (void) {

II Check transfer complete flag (TCIF)
if ((DMA2- >ISR & DMA_ISR_TCIF6)) {

II Write 1 to cl ea r the TCIF flag
DMA2 -> IFCR I= DMA_IFCR_CTCIF6;
UART_Transfer_Done_Flag = 1;

NVIC
Interrupt

Controller

.--------
Channel 6 Interrupt
Request

Channel 7 Interrupt
Request

void DMA2_Channel7_IRQHandler (void) {

II Check transfer complete flag (TCIF)
if ((DMA2 - >ISR & DMA_ISR_TCIF7)) {

II Write 1 to clear the TCIF flag
DMA2 -> IFCR I= DMA_IFCR_CTCIF7;
Lightweight_data_processing () ;

Figure 22-11. Using DMA to receive data from USART 1

To enable OMA for the transmission, software must set the DMAT bit in the CR3 register.

USART1->CR3 I= USART_CR3_DMAT;

To enable OMA for the reception, software must set the DMAR bit in the CR3 register.

USART1->CR3 I= USART_CR3_DMAR;

Serial Communication Protocols iiiM

If OMA interrupts are enabled, the DMA controller can generate interrupt requests to
execute the corresponding interrupt handler.

Example 22-8 and Example 22-9 give C code that configures channel 6 and 7 of DMA
controller 2 to serve TX and RX of UART 1, respectively. Data transmission or reception
takes place immediately when UARTl_DMA_Transmit or UARTl_DMA_Receive is called.

void UARTl_DMA_Transmit (uint8_t *pBuffer, uint32_t size) {

}

RCC->AHB1ENR I= RCC_AHB1ENR_DMA2EN; //Enable DMA2 clock
DMA2_Channel6->CCR &= NDMA_CCR_EN; //Disable OMA channel
DMA2_Channel6->CCR &= -DMA_CCR_MEM2MEM; //Disable memory to memory mode
DMA2_Channel6->CCR &= -DMA_CCR_PL; // Channel priority Level
DMA2 Channel6->CCR I= DMA_CCR_PL_l; II Set OMA priority to high
DMA2_Channel6->CCR &= -DMA_CCR_PSIZE; II Peripheral data size ee = 8 bits
DMA2_Channel6->CCR &= -DMA_CCR_MSIZE; II Memory data size: ee = 8 bits
DMA2_Channel6->CCR &= -DMA_CCR_PINC; II Disable peripheral increment mode
DMA2_Channel6->CCR I= DMA_CCR_MINC; II Enable memory increment mode
DMA2_Channel6->CCR &= -DMA_CCR_CIRC; II Disable circular mode
DMA2_Channel6->CCR I= DMA_CCR_DIR; II Transfer direction: to peripheral
DMA2_ Channel6- >CCR I= DMA_CCR_ TCIE; 11 Transfer complete interrupt enable
DMA2_Channel6->CCR &= -DMA_CCR_HTIE; II Disable Half transfer interrupt
DMA2_Channel6->CNDTR size; II Number of data to transfer
DMA2_Channel6->CPAR = (uint32_t)&(USART1->TDR); //Peripheral address
DMA2_Channel6->CMAR = (uint32_t) pBuffer; II Transmit buffer address
DMA2_CSELR->CSELR &= -DMA_CSELR_C6S; II See Table 19-2
DMA2_CSELR->CSELR I= 2«20; II Map channel 6 to USART1_TX
DMA2_Channel6->CCR I= DMA_CCR_EN; II Enable OMA channel

Example 22-8. Configure OMA 2 channel 6 for UART 1 transmit

main()

UARTl_DMA_
Transmit()

UART
Hardware

OMA controller automatically
writes the next bytes to

register TOR without
involving the processor.

DMA2_Channel6_
IRQHandler()

',,-. Disable TXE
.---------1 i--------1 f-------~ Interrupt

Sending 1 •t Byte Sending 2 nd Byte Sending 3 rd Byte

OMA Completion Interrupt

Figure 22-12. Sending three bytes via OMA.

Time

22.1 - Universal Asynchronous Receiver and Transmitter

void UARTl_DMA_Receive (uint8_t *pBuffer, uint32_t size) {

}

RCC->AHBlENR I= RCC_AHB1ENR_DMA2EN; II Enable DMA2 clock
DMA2_Channel7->CCR &= -DMA_CCR_EN; II Disable OMA channel
DMA2 Channel7->CCR &= -DMA_CCR_MEM2MEM; ll Disable memory to memory mode
DMA2_Channel7->CCR &= -DMA_CCR_PL; II Channel priority Level
DMA2_Channel7->CCR I= DMA_CCR_PL_l; II Set OMA priority to high
DMA2_Channel7->CCR &= -DMA_CCR_PSIZE; II Peripheral data size ee = 8 bits
DMA2_Channel7->CCR &= -DMA_CCR_MSIZE; II Memory data size: ee = B bits
DMA2_Channel7->CCR &= -DMA_CCR_PINC; II Disable peripheral increment mode
DMA2_Channel7->CCR I= DMA_CCR_MINC; II Enable memory increment mode
DMA2 Channel7->CCR &= -DMA_CCR_CIRC; II Disable circular mode
DMA2_Channel7->CCR &= ~DMA_CCR_DIR; II Transfer direction: to memory
DMA2_Channel7->CCR I= DMA_CCR_TCIE; II Transfer complete interrupt enable
DMA2_Channel7->CCR &= -DMA_CCR_HTIE; /I Disable Half transfer interrupt
DMA2_Channel7->CNDTR size; II Number of data to transfer
DMA2_Channel7->CPAR = (uint32_t)&(USART1->RDR); II Peripheral address
DMA2_Channel7->CMAR = (uint32_t) pBuffer; II Receive buffer address
DMA2_CSELR->CSELR &= -DMA_CSELR_C65; II See Table 19-2
DMA2_CSELR->CSELR I= 2«24; II Map channel 7 to USART1_RX
DMA2_Channel7->CCR I= DMA_CCR_EN; II Enable OMA channel

Example 22-9. Configure OMA 2 channel 7 for UART 1 receive

Comparing Figure 22-9 and Figure 22-12, we can see that DMA is more efficient than the
interrupt approach. When DMA completes, a DMA interrupt request will be generated.
The DMA interrupt handler can change the completion flag, as shown below.

volatile uint8_t TransmissionCompleteFlag = 0;

void DMA2_Channel7_IRQHandler(void) { II USARTl RX

}

if ((DMA2->ISR & DMA_ISR_TCIF7) == DMA_ISR_TCIF7) {
II Write 1 to clear the corresponding TCIF flag
DMA2->IFCR I= DMA_IFCR_CTCIF7;
TransmissionCompleteFlag = 1;

}

if ((DMA2->ISR & DMA_ISR_HTIF7)
DMA2->IFCR I= DMA_IFCR_CHTIF7;

if ((DMA2->ISR & DMA_ISR_GIF7)
DMA2->IFCR I= DMA_IFCR_CGIF7;

if ((DMA2->ISR & DMA_ISR_TEIF7)
DMA2->IFCR I= DMA_IFCR_CTEIF7;

DMA_ISR_HTIF7) II half transfer

DMA_ISR_GIF7 II global interrupt

OMA ISR TEIF7) II transfer error

Example 22-10. OMA interrupt handler

Serial Communication Protocols 1!11

22.1.7 Serial Communication to Bluetooth Module
Bluetooth is a low-power, low-cost wireless communication protocol
operating in the 2.4GHz band, which is a globally unlicensed radio frequency
band for industry, science and medical (ISM) applications.

Bluetooth is based on a master-slave model. Up to seven active slave devices
can be connected to the master to form a local network (called a piconet), while there may
be other inactive slave devices in the piconet. The disadvantages of Bluetooth include
that it has a short communication range (15-30 feet) and it is relatively insecure.

Bluetooth uses a technique of time division duplex (TDD) to coordinate the access to the
physical channel. It divides the time into a fixed length interval (625 microseconds) called
slots . Each second is divided into 1,600 slots. The master sets the ratio frequency and
initiates a data communication.

• Master sets the frequency hopping sequence. Bluetooth divides the 2.4GHz band into
79 channels with their frequencies 1 MHz apart. To avoid interference on one
specific channel, in each slot both the master and the slave device switch to a
different channel. Such frequency hopping is performed 1,600 times per second,
which allows a retransmission to occur soon on a different channel, hopefully on
a clean one without any interference. We call this technique FHSS (frequency
hopping spread spectrum). The master sets the frequency hopping sequence, and
the slave devices follow the hopping sequence by using a special algorithm.

• Master initiates communication. The master transmits data to a slave in even
numbered slots and receives data from a slave in odd numbered slots. A slave
device is only allowed to transmit data in a slot if the master has polled it or sent
a data packet to it in the preceding slot. The slave then responds to the master by
sending a data packet or a NULL packet if the slave has nothing to send.

• Each Bluetooth device has a unique fixed 48-bit address, which is assigned at
manufacture time. Two communicating devices need to know each other's
address. Software programs can specify the address if programmers know it. The
address can also be discovered during the device discovery process. The
discovery process searches all devices nearby and identifies the one that matches
a user-friendly name such as "Joe's Phone."

22.1.7.1 Bluetooth Transfer Protocols
There are many transfer protocols available between two Bluetooth devices. A
standardized set of protocols designed for a particular type of device is termed as a
Bluetooth device profile. The following gives a few examples.

22.1 - Universal Asynchronous Receiver and Transmitter

• The radio frequency communication (RFCOMM) profile emulates the serial cable
line and guarantees reliable delivery of every packet. It is used for devices such
as PC, printers, and modems.

• The generic audio/video distribution profile (GA VDP) is used to stream video or
audio data to devices such as stereo headphones and laptops.

• The audio/video remote control profile (A VRCP) provides a standard interface to
control audio or video devices. Example devices include headphones, speakers,
and TVs.

In this section, we focus on the RFCOMM profile designed for serial communication.
There are inexpensive Bluetooth-UART modules such as the HC-05 (master or slave) and
HC-06 (slave only) that support the RFCOMM profile. They include a UART interface for
serial communication between the Bluetooth module and microprocessors, and a
Bluetooth interface for wireless communication between two Bluetooth modules, as
shown in Figure 22-13.

3-SV Bluetooth to Serial Bluetooth to Serial 3-SV
Port Module Port Module

Vee Vee

GPIO Pin x Reset 2.4GHz 2.4GHz
radio radio

GPIO Piny Key Bluetooth))) (C< Bluetooth TX UART TX

UART TX TX Master Slave RX UART RX

UART RX RX

GND GND LED LED GND GND

STM32 STM32
Discovery Kit - - Discovery Kit

- -
Figure 22-13. Serial port Bluetooth modules. Bluetooth modules communicate with each other

in wireless. Each Bluetooth module transfers data to or from the processor via UART.

22.1. 7.2 Pairing Bluetooth Modules
Two Bluetooth modules need to be paired and bound together before they can exchange
data. The master device must know the 48-bit address of the slave device and the pairing
password set by the slave device.

The microprocessor needs to send string commands via the serial interface to the
Bluetooth master device to complete the pairing and binding process. These string
commands start with "AT" (abbreviation for "attention") and end with a terminator
"return", i.e. , with ASCII values of "0x0D, 0x0A". Therefore, they also called "AT
commands".

Serial Communication Protocols ii~•

The following shows the procedure for configuring and
pairing Bluetooth modules. It also lists frequently used
AT commands that the microprocessor performs to set
up the Bluetooth master module. In this example, we
assume that the slave Bluetooth module has a MAC

ll'lf'-::~ .. . -+ sT A TE 9

• JY -MCU :~:;
VCC:3.6--6V +-GND II

BT OOARD Vl.04 +-vcc ,..
- +-KEYO

address of "0018, e4, 0c680a" and a pairing password of "1234".

1. Pull the KEY pin high to put the Bluetooth master device in command mode

2. Pull the RESET pin low for a short time and then pull it high to reset
the Bluetooth master module

3. Software sends the following commands via the UART interface to the
Bluetooth master module. (The quote signs are not part of the command.)

"AT+RESET\r\n" j add a return) i.e. J "0xBD, 0x0A))_, to the end
, ASCII 0x00 = CR (carriage return)
; ASCII 0x0A =NL (new Line),

"AT+UART=57600,0,0\r\n" ; Baud rate: 57, 600 bits/s, 1 stop bit, no parity bit
; 1st parameter: baud rate
; 2nd parameter: 0 = 1 stop bit
; 1 = 2 stop bits
; 3rd parameter: 0 = no parity bit
; 1 = parity bit

"AT+ROLE=l\r\n" ; A BLuetooth module can be either master or
, Set the module as a Bluetooth master.
, 0 = Slave,
, 1 = Master,
; 2 = Slave Loop

"AT+PSWD=1234\r\n" ; Password code for pairing. The password
, the BLuetooth slave module.

"AT+PAIR=0018,e4,0c680a\r\n" ; Paired with a 48-bit slave address

"AT+BIND=0018,e4,0c680a\r\n" ; Bound with the target slave device

"AT+CMODE=0\r\n" ; 0 = Connect to the specified address
; 1 = Connect to any address
; 2 = Slave Loop

is

slave.

set by

4. Pull the KEY pin low to let the Bluetooth master device exit command mode
and enter communication mode

5. Pull the RESET pin low for a short time and then pull it high to reset
the Bluetooth master module

Table 22-2. Process of using AT commands to pair two Bluetooth devices

111!1 22.2 - Inter-Integrated Circuit (I2C)

22.2 Inter-Integrated Circuit (12C)
Inter-integrated circuit (FC) is a standard bus protocol, originally developed by Philips
in the late 1980s. It enables the communication between microprocessors and their
peripheral devices by using two wires: a serial data line (SDA) and a serial clock line
(SCL). The two-wire design reduces the number of physical pins, making it inexpensive
and simple to interface. The data transfer rate of FC can be up to 100 Kbit/s in standard
mode, up to 400 Kbit/s in fast mode, and up to 3.4 Mbit/s in high-speed mode.

Master
Device

Vee

1--~~-.~---~--~------~- SDA

Peripheral
Device

1

Peripheral
Device

2

SCL

Figure 22-14. An example of J2C bus that connects one master and two peripheral devices. It
uses two bidirectional open-drain wires: the serial data (SDA) line and the serial clock (SCL)

line. Both wires are pulled up to a positive voltage supply. The combination of open-drain
and external pull-up realizes a Boolean AND logic.

Each device, including master devices and peripheral devices, has a unique address,
which typically has 7 bits, 10 bits, or 16 bits. Depending on the function, each device can
serve as a transmitter, a receiver, or both. For example, a digital temperature sensor may
operate only as a transmitter, an LCD driver may operate only as a receiver, and a
memory device can be both a transmitter and a receiver.

The master device initializes a data transfer on the bus, and then generates the clock
signals to permit that data transfer, and finally terminates the transfer after receiving all
requested information. The device addressed by the master is called a slave. Multiple
masters can co-exist on the same FC bus. When multiple masters want to control the bus,
an arbitration procedure is then performed. The bus capacitance limits the number of
devices that can be connected to the bus.

22.2.1 PC Pins
The pins of the master and peripheral devices connected to the SDA and SCL lines should
be internally configured as open-drain, also known as open collector (see chapter 14.4.2).

Serial Communication Protocols mFI

An open-drain is a special type of output. The output pin connects to a positive voltage
source if an active high (logic 1) is outputted. The output pin is in a high impedance state
if a low (logic 0) is outputted. The high impedance is often achieved by keeping the
output floated, i.e., not connected to either the ground or the positive voltage source.

Software can configure the SDA and SCL pins of the processor as open-drained. However,
the pull-up resistor within the processor is too large, often in the order of 100 kn. Such a
large resistor provides pull-up power that is too weak for FC. To reduce the rise time of
the FC lines, smaller resistors, such as 3 kn, are often used.

As shown in Figure 22-14, the SDA and SCL lines are connected to a positive supply
voltage via two small pull-up resistors. The recommended resistance value is 4.7 kn for
low speed, 3 kn for standard speed, and 1 kn for the fast speed.

22.2.2 12C Protocol
r-,

SDA --:\: /..
I I ~_..

SCL I I
L_I 1....J 1....J 1....J 1....J 1....J 1....J 1....J

START Bit (S) Bit 7 Bit 6 Bit 5 • • • Bit 0 ACK/NACK STOP Bit (P)

Figure 22-15. The timing diagram of sending N bits with the start bit (S) and the stop bit (P).
The most significant bit (MSB) is sent out first. SDA can be updated when SCL is low. SDA
must be held stable when SCL is high. The hexagonal shape on SDA line means SDA can be

either high or low during that period.

The communication begins with a START bit (S) and terminates by a STOP bit (P).

• A START bit is defined as a high-to-low transition of SDA while SCL is high.
• A STOP bit is defined as a low-to-high transition of SDA while SCL is high.

The master generates both START and STOP bits. The FC interfacing hardware of all
peripheral devices is capable of detecting START and STOP. After the START bit, the master
begins to send data byte by byte. For each byte, the most significant bit is transferred first.
The slave sends an acknowledge bit to the master, informing the master that the slave
has successfully received a byte.

After a byte is transferred, the receiver should answer the transmitter with either an
acknowledge (ACK) bit or a not acknowledge (NACK) bit, as shown in Figure 22-16. The
transmitter releases the SDA line during the acknowledge clock period (the ninth clock
period) so that the receiver can pull SDA low. If the SDA line is low in the ninth clock period,
an ACK takes place. If the SDA line is high in the ninth clock period, a scenario we call NACK

occurs.

22.2 - Inter-Integrated Circuit (12C)

• When a master sends data to a slave, a NACK answered by the slave means that the
communication has failed. The master needs to either generate a STOP to abort the
current transfer or a START to restart the transfer.

• When a slave is transferring to a master, a NACK answered by the master means
that the master sends a stop bit to terminate the communication after the current
byte is transferred.

ACK: Receiver
pulls SDA low.

\

NACK: Receiver performs
no action. SDA is high .

\ ,
SDA ~~~~\~-\~'-- SDA

SCL SCL

Bit 0 Acknowledge
clock clock

f:___J._
I
I
I

Bit 0
clock Acknowledge

clock

Figure 22-16. Comparison of ACK and NACK

Although the transfer clock signal is generated by the master, the slave can also control
the transfer speed indirectly via clock stretching. If the slave is too busy to receive another
byte, it holds the SCL line low to force the master to wait. Due to the wire AND logic, the
master cannot drive SCL high if the slave holds SCL low. The master resumes data transfer
after the slave releases SCL.

Data Register

SDA Data Control Data Shift Register

12C Control Registers

SCL Clock Control 12C Status Registers

~-----; Clock Control Register

Figure 22-17. Simplified diagram of J2C

The STM32L processor has several FC modules. Figure 22-17 shows the simplified data
and clock control of one FC module. The bytes stored in the data register are shifted in
or out to the SDA line through an internal data shift register, with the most significant bit
(MSB) in or out first.

Serial Communication Protocols lid

• When the master is transmitting a byte to a slave, the master's PC hardware
automatically sets the TxE (transmitter buffer empty) flag in the status register if
the master has received an acknowledge pulse (ACK) from the slave. A TxE event
can inform software to send the next byte.

• On the other hand, if the master has received a byte successfully, the master' s PC
hardware then automatically sets the RxNE (receiver buffer not empty) flag in the
status register. A RxNE event can inform software to read the received byte.

If PC interrupts are enabled, an PC interrupt takes place under the following conditions.

• An PC master generates an interrupt if a start bit is sent, a slave address is sent,
hardware sets the TxE or RxNE flag, or the transfer of all data bytes completes.

• An PC slave generates an interrupt if the address received matches its own
address, a stop bit is received, or hardware sets the TxE or RxNE flag.

When there are multiple master devices on the PC bus, clock synchronization and bus
arbitration are required. During idle, both SCL and SDA have a high voltage level.

• Clock synchronization. The SC L interface of all devices performs a logic AND

operation. When one master pulls SC L low, no other masters can pull it high.

• Bus arbitration. On the SCL rising edge, each master checks whether the SDA

voltage level matches what it has sent. Whenever a master tries to transmit a high
but detects a low on SDA, this master loses the arbitration. Each losing master
immediately switches to slave receive mode because the winning master may be
addressing it. A losing master will restart the transfer after it detects a STOP bit.

22.2.3 JZC Data Frame

Table 22-3 and Table 22-4 gives example message protocols between a master and a slave
with a 7-bit and 10-bit address, respectively. If the address of a slave has 7 bits, the
following lists the basic procedures.

1. The master begins by sending a start bit, the slave address, and a single bit (R/W)
representing the data transfer direction. The slave whose address matches the
address sent by the master will answer with an ACK bit. The data transfer direction
is represented by a single bit (R/W). If the R/W bit is 1, then the master requests
to receive data from the slave. If the R/W bit is 0, then the master requests to send
data to the slave.

2. After the slave acknowledges the addressing successfully, data transfer takes
place in the direction specified by the R/W bit. Data are transferred byte by byte.
Each byte is followed by an ACK or NACK bit. Therefore, it takes 9 cycles to transfer
one byte.

mill 22.2 - Inter-Integrated Circuit (I2C)

s

1

3. The master completes the communication by sending a STOP bit to the slave. The
master may generate a START bit without sending a STOP bit first. This allows the
master to communication with another slave or the same slave without releasing
the bus. For example, a master may send a command to a slave and then
immediately receive data from the slave.

s Slave Address R/W A Data A Data A p

1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit
Table 22-3. Example of reading two bytes from or writing two bytes to an PC slave with a 7-

bit address (S = Start, P = Stop, A = Acknowledge, R/W = 1 for reading and 0 for writing)

s Slave Address
R/W Al

Slave Address
A2 Data

(higher 2 bits) (lower 8 bits)
A Data A p

1 7 bits 1 bit 1 8 1 8 1 8 1 1

bit (11110xx) (0) bit bits bit bits bit bits bit bit

Table 22-4. Example of writing two bytes to an PC slave with a 10-bit address. The slave
address is in the first two bytes after the start bit. (S = Start, P =Stop, A= Acknowledge)

Slave Address
R/W Al

Slave Address
A2 s Slave Address

R/W A3 Data A Data A
(higher 2 bits) (lower 8 bits) (higher 2 bits)

7 bits 1 bit 1 8 1 1 7 bits 1 bit 1 8 1 8 1

p

1

bit (11110xx) (0) bit bits bit bit (11110xx) (0) bit bits bit bits bit bit

Table 22-5. Example of reading two bytes from an PC slave with a 10-bit address. After
sending two address bytes (R/W = O), the master repeats the start bit and sends again the first

address byte, with RIW being 1 to indicate reading.

If the address of a slave has 10 bits, the communication protocol differs slightly.

• After the start bit, the first byte sent out by the master consists of a five-bit
constant (11110), two most significant bits of the slave address, and the R/W bit.
The master then sends the next byte, which is the least significant eight bits of the
slave address.

• After the master sends out the first byte, all slave devices compare it to their own
address. It is possible that more than one device finds a match between the two
leading bits of the 10-bit address. Therefore, multiple ACK bits might be generated

during the Al clock period.

• After the master sends out the lower 8 bits of the slave address, at most one device
finds an address match, and thus no multiple ACK bits are generated during the

A2 clock period.

• As shown in Table 24-4 and Table 24-5, reading from or writing to a slave have
different communication sequences.

Serial Communication Protocols i·MM

22.2.4 Interfacing Serial Digital Thermal Sensors via 12C

0
TC 74

1 2 3 4 5

(.) < c::.::: c z c z ...Jc
II)(!)~>

This section gives an example in which the
microprocessor interacts with multiple
simple digital sensors via the FC bus. In this
example, we use TC74 digital thermal
sensors from Microchip© Technology, which
provide low-power 8-bit temperature
measurements, with a resolution of ±1°C
and a conversion rate of 8 samples per
second. The sensor has five pins, as listed in
Table 22-6, supporting an FC interface. Figure 22-18. TC74 temperature sensor

Pin No. Symbol Type Description

1 NC None No internal connection

2 SDA Bidirectional FC serial data line

3 GND Ground System ground

4 SCL Input FC serial clock line

5 Vdd Power Power supply input
Table 22-6. Pin connection of TC74 digital temperature sensor

The slave address of a TC74 sensor has 7 bits. There are eight different binary addresses
(from 1001000 to 1001111), depending on the part number of the device. For example,
the default address of TC74 AS is 1001101. Software can change the address to one of the
eight allowed addresses. This programmable address is helpful particularly when there
are multiple TC74 sensors connected on the same FC bus.

7 6 5 I 4 I 3 I 2 I 1 I 0
Read/Write Read-only

1 = standby 1 = ready Reserved
0 = normal 0 = not ready

Table 22-7. The configuration register of TC74 temperature sensor

TC74 internally has two 8-bit registers: (1) a temperature register with an address of 0x00,
and (2) a configuration register with an address of 0x01.

• The temperature register holds the temperature measurement in units of degrees
Celsius, represented in two's complement binary format. For example, a reading
of 0x00 represents 0°C and a reading of 0xF F represents -1°C. The representable
temperature ranges from -65°C to 127°C.

• The configuration register is shown in Table 22-7. The most significant bit of the
configuration register sets the sensor to either the standby state or the normal
state. Bit 6 indicates whether the temperature data is ready or not. The tailing six
bits are reserved.

22.2 - Inter-Integrated Circuit (I2C)

The sensor provides two commands: (1) command code 0x00 to read the temperature
register, and (2) command code 0x01 to read or write the configuration register. The
following shows the communication sequence of reading and writing a byte from/to a
TC74 temperature sensor.

Writing a Byte to TC74

S Address R/W ACK Command ACK Data ACK P
1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

• The R/W bit is 0 for writing data to the configuration register of the sensor.
• The command byte selects which register the data is written to.
• The data byte specifies the data content to be written to the target register.
• The ACK bit is sent by the sensor to the microcontroller to acknowledge the

receipt of each byte.

Assume the 7-bit slave address of TC74 is 1001101. Figure 22-19 shows the FC
communication sequence that puts TC74 in standby mode.

0x9A

1 0 0 1 1 0 1

7-bitAddress
1001101

0

RJW
0

Select which TC74's
register is written to

{
0x00 =Temperature register
0x01 = Configuration reg ister

8-bit Command
0 0 0 0 0 0 0 1

Data written to the
selected register

8-bit Data
1 0 0 0 0 0 0 0

12C Slave
(TC 74)

1

Figure 22-19. Putting TC74 with an address of 100110 (0x4D) in standby mode

Reading a Byte from TC74

Reading from TC74 involves two phases. Each phase has its own start bit, the address
bits, and the R/W bit. The reason is that the second phase changes the transfer flow
direction. This example shows that the master takes full control of all transfers. In the
second phase, the master must re-initiate the transfer.

s Address! R/ W ACK Command ACK s Address! R/W ACK Data NACK p

bit 7 bits I 1 bit 1 bit 8 bits 1 bit 1 bit 7 bits 11 bit 1 bit 8 bits 1 bit 1 bit
0x9A 0x9B

1st phase: Select a register to read 2nd phase: Read the selected register

• The first R/W bit is 0, indicating that the master will write an 8-bit command.
The command selects which register is to be read. It is either 0x00 or 0x01.

• The second R/W bit is 1, indicating that the master will read 8-bit data.
• The sensor sends the ACK bit to acknowledge the receipt of each byte.
• The master sends NACK to inform the slave to stop.

Serial Communication Protocols

22.2.5 JZC Programmable Timings
Both FC masters and slaves must meet the timing requirement of electrical signals
defined in the FC standard. Table 22-8 gives a few examples.

Standard Fast Hiah-speed
Unit Timing Parameters

Min Max Min Max Min Max

SCL clock frequency 0 100 0 400 0 1000 kHz
Rise time of SDA & SCL - 1000 20 300 - 120 µs
Fall time of SDA & SCL - 300 20 300 - 120 µs
Low time of SCL 4.7 - 1.3 - 0.50 - µs
High time of SCL 4.0 - 0.6 - 0.25 - µs
Data hold time 5.0 µs
Data setup time 250 - 100 - 50 - µs

Table 22-8. Example timing requirements of PC electrical signals

Software can program the PC's timing register (TIMINGR) to meet timing specifications.
The timing register holds five parameters, including

• the clock prescaler (PRE SC [3: 0]),

• the clock SCL high period counter (SC LH[7:0]),

• the clock SC L low period counter (SC LL [7 : 0]),

• the data setup time counter (SC LOE L [3: 0], also called SCL delay counter), and
• the data hold time counter (SDADE L [3: 0], also called SDA delay counter).

22.2.5.1 Rise time and fall time
The rise time describes how long it takes for a voltage signal to increase from a low value
to a high value. The 30-70 rise time is the amount of time taken by a voltage signal to
increase from 30% of its final value to 70% of its final value. Similarly, the 30-70 fa ll time
is the time taken by a signal to decrease from 70% of the final value to 30% of its final
value. For the same circuit, the fall time is typically shorter than the rise time.

70% 70%
I I

30% I I
30% I I

I I I
I I I
I I I

I I I I,.__,
Rise Time Fall Time

Figure 22-20. Definition of rise time and fall time

If two conductors are insulated and have a voltage potential between them, these two
conductors form a capacitor. On circuit boards, the capacitance formed by copper traces,
plates, wires, connections, and pins is called parasitic capacitance. Although parasitic
capacitance is very small, its impacts on high-frequency signals cannot be ignored.

22.2 - Inter-Integrated Circuit (I2C)

For the FC bus, the rise time is determined by the value of pull-up resistor Rand the bus
capacitance C. The bus capacitance is the sum of the parasitic capacitances of the wires,
connectors, and pins. The maximum bus capacitance allowed for FC is 400pF, which
limits the maximum number of FC devices connected to the same bus. Figure 22-21
shows the equivalent circuit of an FC bus.

Ve

Voo 09

OB

70%1 07
06

05

04

30% 03 -- -

02

Signal
Source

Pull-up
Resistor

1
,...----,.-----+ Output Signal

Ve
R

Bus
c Parasitic

Capacitance

Figure 22-21. Equivalent circuit for PC bus

V, t
_c = 1 - e-Rc = 0.30
vdd

Therefore, t = 0.3567 x RC

Therefore, t = 1.2040 x RC

0.1 f-1-+---+-'---+----'-----+------j
Rise Time = 1.2040 x RC

0
0 i .5 1 ! 1 5 25

0.3567 1.2040

~
Rising Time

35 45

t
RC

Figure 22-22. Calculating the rise time

- 0.3567 x RC
= 0.8473 x RC

Figure 22-22 shows the calculation of the rise time. The pull-up resistors must be carefully
chosen so that the rise time is smaller than the maximum allowed rise time, and the sink
current is smaller than the maximum current allowed by an FC pin.

Therefore, we have

!
Rise Time = 0.8743 x RC $ RiseTimemax

vdd R $ SinkCurrentmax

Vdd RiseTimemax
-------<R<----
SinkCurrentmax - - 0.87 43 C

Serial Communication Protocols I{{.

22.2.5.2 Data hold time
When the falling edge of SCL is detected internally, a delay is inserted before data in the
I2C TXDR register is sent out via the SDA line. The inserted delay tsoADEL is programmed
in the SDADEL field of register TIMINGR. The SDADEL counter starts to decrement
automatically after the falling edge of SCL is detected internally. The delay completes
when the SDADEL counter reaches zero.

All input signals are required to pass through analog and digital filters and slope
detection, causing some delay. Suppose it takes tsYNCl for the internal edge detector to
detect a falling edge. As shown in Figure 22-23, the programmable SDA delay tsoADEL is

tsoADEL = [SDADEL X (1 + PRESC) + 1] X t 12c_CLK

As introduced earlier, the data line SDA is sampled periodically when the clock SCL is
high, and SDA can change when SCL is low. The data hold time is defined as the amount
of time after the falling edge of SCL during which SDA must remain at its current voltage
level. Failing to do so may lead to SDA being improperly sampled when SCL transitions
from high to low.

If tr is the rise time, the data hold time is defined as follows:

Data Hold Time = tsYNCl + tsoADEL - tr

The FC standard specifies the minimum data hold time based on the speed mode.
Because we have the following relationship:

Data Hold Time > tsoADEL

we can program the SDADEL counter in the TIMINGR register such that

tsoADEL >Minimum Data Hold Time Specified

Thus, the actual data hold time is guaranteed to be larger than the requirement specified.

SCL

SDA

Data Hold Time
Rise Time (t,) ----,',, '

~--------><

1 SDADEL count~r starts
/ after internal di!tection of

f the falling edg~ of SCL.

i I

tsvNC1 tsDADEL

Total SDA Delay= tsvNC1 + [SDADEL x (1 + PRESC) + 1 l x t12CCLK

Figure 22-23. PC data hold time.

mJ?I 22.2 - Inter-Integrated Circuit (I2C)

22.2.5.3 Data setup time
When the clock line SCL is low, the data line SDA is updated either by the master or the
slave, depending on the transfer direction. The data line is periodically sampled once the
clock line SCL becomes high. Thus, SDA must remain its current voltage level before
sampling starts, i.e., before the rising edge of the clock takes place.

The data setup time is defined as the amount of time SCL is held low after a data bit has
been placed on SDA.

SCLDEL counter starts
when the data is sent
on SDA output

tscLDEL

SCL

SDA

t
'/ ' Data Setup Time '

Rise Time (r) ---'

Figure 22-24. FC data setup time

Software can configure the SCLDEL counter in the TIMINGR register such that the
programmable SCL delay tscLDEL meets the following requirement:

tscLDEL >Minimum Data Setup Time Specified

The SCLDEL counter starts to decrement automatically after a data bit has been placed on
SDA. In addition, we have

tscLDEL = (SCLDEL + 1) x (1 + PRESC) x t12cCLK

22.2.5.4 Master clock's minimum high and low time
The PC clock timing is programmed by the SCLL and SCLH fields in the timing register.
These two counters set the clock's low- and high-level durations, as well as the clock
period, as shown below:

t10w = tsYNCl + (SCLL + 1) X (1 + PRESC) X t12ccLK

thigh = tsvNcz + (SCLH + 1) x (1 + PRESC) x t12ccLK

tperiod = tiow +thigh

Serial Communication Protocols DJ

where tsvNci and tsvNcz are the time it takes for the internal edge detector to detect a
falling edge and a rising edge respectively. These delays include the delay caused by the
analog filter, the digital filter, and the hardware edge detector.

SCL I
SDA

j t sYNC1 r
//

/

SCLL counter starts after internal
detection of the falling edge of SCL.

/
l sCLL [l sYNC2 r'

SCLH counter starts after internal
detection of the rising edge of SCL.

l scLH

, Programmable
/ SCL high time

,l t

I I '

~:,: ~--+---P-ro-gr-am_m_a_b-le-S-CL-1-ow-t-im_e__,~ 1 ~~--
! : I

' ~---___._: _ __.: ____ ~: __ ~
1:. :X I ---------+-----.----~:--~

tLow = tsYNC1 + tscLL t+l1GH = tsYNC2 + tscLH

tscLL = (SCLL + 1) (PRESC + 1) t 12ccLK tscLH = (SCLH + 1) (PRESC + 1) t12ccLK

Figure 22-25. 12C clock high and low durations

22.2.5.5 Example of setting the 12C timing
Table 22-9 lists key parameters of TC74 sensors.

Parameters Value
Min high clock period 4.0 µs
Min low clock period 4.7 µs
Min data hold time 1250 ns
Min data setup time 1000 ns
Max rise time 1000 ns
Max fall time 300 ns
Input Capacitance SDA and SCL 5.0 pF
Maximum current on any pin ±SO mA

Table 22-9. Electrical parameters of TC74 temperature sensor

Rise time: if we use lKO to pull up the SDA and SCL

trise = 0.8743 x RC= 0.8742 X 1000.fl x 5.0 x 10-12 F = 4.4 ns < 1000 ns

Fall time: the fall time is the same as the rise time.

Electric Current:

tfall = trise = 4.4 ns < 300 ns

3V
Current = ---

1000.fl
0.3 mA < 50 mA

M{j:I 22.2 - Inter-Integrated Circuit (I2C)

Let's use I2Cl in our example of setting up the timing register (TIMINGR) to meet the
timing requirements. Suppose the system clock {SYSCLK) has been set to 80 MHz.
Example 22-11 selects the SYSCLK as the source clock to drive I2Cl.

RCC->APBlENRl I= RCC_APB1ENRl_I2ClEN; II I2Cl clock enable

II ee = PCLK, 61 = SYSCLK, 16 = HSI16, 11 = Reserved
RCC->CCIPR &= -RCC CCIPR I2C1SEL; II Clear bits
RCC->CCIPR I= RCC=CCIPR=I2C1SEL_0; II Select SYSCLK

RCC->APBlRSTRl I= RCC_APB1RSTRl_I2ClRST; II 1 = Reset/2C1
RCC->APBlRSTRl &= -RCC_APB1RSTRl_I2ClRST; II Complete the reset

Example 22-11. Selecting SYSCLK to the clock to drive 12Cl

Suppose we choose the clock prescaler (PRESC) as 7. Then, the clock frequency of I2Cl is:

fsvscLK 80 MHz
fi 2ccLK = l + PRESC = l + 7 = 10 MHz

Therefore,
1 1

t12c_PRESC = F
J !2CCLK

lOMHz = O.l µs

Data setup time: We select SCLDEL as 14.

t setup > (1 + SCLDEL) X t 12c_PRESC = (1 + 14) X 0.1 µs = 1.5 µs > 1.0 µs

Data hold time: Suppose we select SDADE L as 15.

thotd > tsDADEL > (1 + SDADEL) x t 12c_PRESC = (1+15) x 0.1 µs = 1.6 µs > 1.25 µs

Low clock period: We select SCLL as 49.

t 10w > (SCll + 1) X t 12 c_PRESC = (1 + 49) X 0.1 µs = 5.0 µs > 4.7 µs

High clock period: We select SCLH as 49, too.

thigh > (SCLH + 1) x t12c_PRESC = (1 + 49) x 0.1 µs = 5.0 µs > 4.0 µs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRESC[3:0] Reserved SCLDEL[3:0] SDADEL[3 :0] SCLH[7:0] SCLL[7:0]

In sum, software can program the timing register (TIMINGR) as follows:

I2Cl->TIMINGR = 7U << 28 I 14U << 20 I lSU << 16 I 49U << 8 I 49U;

Serial Communication Protocols i{"§M

22.2.6 Sending Data to 12C Slave via Polling
During idle time, both SCL and SDA lines are pulled high. When the master wants to send
data to a slave, the master first wait until the bus is ready by checking the BUSY flag in
the !SR register, then sends a start bit by pulling SDA low, and places the clock signal on
SC L. Then, the master sends the address frame, with the least significant bit being 0 to
indicate that the master is the transmitter. After the address frame, the master starts to
transfer data byte by byte. For each transfer, software must wait until the TXIS flag or the
NACK flag is set. Hardware automatically sets the TXIS flag after it receives the
acknowledgment bit from the slave, and clears the TXIS flag when the byte to be
transferred has been written to the transmit data register (TXDR). The master stops the
data transfer by terminating the clock on SCL and pulling SDA high. Software must wait
until hardware sets the transfer complete flag (TC).

1. Configuring register CR2
• Set direction as writing to

slave
• Number of bytes to be

written
• Slave address
• Start bit

Hardware sets TXIS flag if
register TXDR is empty

2. Wait until hardware sets TXIS
flag in register ISR

3. Write data to register TXDR

Hardware clears TXIS flag if
the byte to be sent is written
to TXDR

4. Wait until hardware sets TXIS
flag in register ISR

5. Write data to register TXDR

Hardware sets TC flag when
transmission completes.

6. Wait until hardware sets TC flag
in register ISR

12C Slave
Send One Start Bit -------------------- --

-------..._
s Master pulls

end ~iglJt a· SDA low

Ifs (7-bit add -------------------
r +OJ - -------

-"-
LSB = 0

indicating the
Master is the
transmitter.

Figure 22-26. Time diagram when a master sends two bytes to a slave

22.2 - Inter-Integrated Circuit (I2C)

22.2.7 Receiving Data from 12C Slave via Polling
After the master configures control register 2 (CR2), the master sends one start bit and the
address byte on the SCL bus. The target slave responds with an acknowledgment bit (ACK)

and then starts to transfer the data to the master byte by byte. When the master receives
a byte, hardware sets the RXNE flag. Before software can read the receive data register
(RXDR), software must wait until the RXNE flag is set. Hardware automatically clears the
RXNE flag when software reads RXDR. If auto-end mode is used, the master will
automatically send a NACK and a stop bit after the last byte has been transferred.
Otherwise, software must send the stop bit explicitly. Additionally, software should wait
until hardware sets the transfer complete flag (TC).

12C Master 12C Slave

1. Configuring register CR2
• Set direction as reading from

slave
• Number of bytes to be read
• Slave address
• Start bit

Hardware sets RXNE flag
when the received byte is
copied to register RXDR.

2. Wait until hardware sets RXNE flag
3. Read data from register RXDR

Hardware clears RXNE
flag when software reads
register RXDR.

4. Wait until hardware sets RXNE flag
5. Read data from register RXDR

Hardware sets TC flag when
transmission completes.

6. Wait until hardware sets TC flag

Send One Start Bit --------------------- __ 1 ----=-==--J --------,
Master pulls

Send~; h SDA low
g t Bits(? .

·bit CJddr + 1 ;------------------- -------
---.._

LSB = 1
indicating the
Master is the

receiver.

~_, ---------....
Master pulls

SDA high

Figure 22-27. Time diagram when the master receives two bytes from a slave

12c

SCL

SDA

-
r

Serial Communication Protocols l.f&M

22.2.8 Interfacing a Temperature Sensor via Polling
This section shows a C example program that interfaces with TC74 digital temperature
sensors. Make sure that the VDD of the TC74 temperature sensor is SV, as shown in
Figure 22-28.

0 0
TC 74 TC 74

1 2 3 4 5
VDD (5V)

1 2 3 4 5

u <(0 ~ 0 u <(0 ~ 0
z 0 z d 0 z 0 z d 0

ooroo> 1Kn 1Kn OO<.!loo>

l
SDA

SCL

Figure 22-28. Connecting two TC74 digital temperature sensors via the PC bus.

°"'WR .,... lhoo !ACK ~""'
_, ... ,., lAO< lh!A - - - - - - - - - - t -· ! - - - - - - -

I
i
I

I - - - - - - - - - - - - - ;--- - - - ;:..___ :=:..-:::.- -Ii ! ! I
I
i

I --1----1-- I I I I I I I I I I I I I I I W-1- I I I I I I I I I I I --1--

WO<'""' -
I
I

;:..___- +--

I

I

-· ti _l 1 I -+-- I l+, J
l e t t l e e l e e e e e e e e e e e e l e e l e e e l e e e l l e

Start 0x90
ACK

0x00 ACK StopStart 0x91
ACK

0x1A NACK Stop

Figure 22-29. Signal capture on the SDA (the top signal) and SCL pin (the bottom signal).

There are two FC modules on the STM32L processors. In this example, we use the first
FC module, which consists of the following two pins.

Pin Connection Mode AF Output Type Pull-up/Pull-down Clock
PB.6 I2Cl_SCL AF I2Cl Open-drain Pull-up 40MHz
PB.7 I2Cl_SDA AF I2Cl Open-drain Pull-up 40MHz

The following presents the initialization of the first PC module.

22.2 - Inter-Integrated Circuit (I2C)

void I2C_Init (I2C_TypeDef * I2Cx) {

}

uint32_t OwnAddr = 0x52;

II Enable the I2C clock & Select SYSCLK as the clock source
II See Example 22-11

II I2C CRl Configuration
II When the I2C is disabled (PE=0),
I2Cx->CR1 &= NI2C_CR1_PE;
I2Cx->CR1 &= NI2C_CR1_ANFOFF;
I2Cx->CR1 &= NI2C_CR1_DNF;
I2Cx->CR1 I= I2C_CR1_ERRIE;
I2Cx->CR1 &= NI2C_CR1_SMBUS;
I2Cx->CR1 &= NI2C_CR1_NOSTRETCH;

the I2C performs a software reset.
II Disable I2C
II e: Analog noise filter enabled
II eeee: Digital filter disabled
II Errors interrupt enable
II SMBus Mode: e = I2C mode; 1 = SMBus mode
II Enable clock stretching

II I2C TIMINGR Configuration (See Section 22.2.5.5)
I2Cx->TIMINGR = 0;
II SysTimer = 80 MHz, PRESC = 7, 80MHzl(l + 7) = 10 MHz
I2Cx->TIMINGR &= -I2C_TIMINGR_PRESC; II Clear the prescaler
I2Cx->TIMINGR I= 7U << 28; II Set clock prescaler to 7
I2Cx->TIMINGR I= 49U; II SCLL: SCL Low period (master mode) > 4.7 us
I2Cx->TIMINGR I= 49U << 8; II SCLH: SCL high period (master mode) > 4.0 us
I2Cx->TIMINGR I= 14U << 20; II SCLDEL: Data setup time > 1.e us
I2Cx->TIMINGR I= 15U << 16; II SDADEL: Data hold time > 1.25 us

II I2C Own address 1 register (I2C_OAR1)
I2Cx->OAR1 &= -I2C_OAR1_0A1EN;
I2Cx->OAR1 = I2C_OAR1_0A1EN I OwnAddr; II 7-bit own address
I2Cx->0AR1 &= -I2C_OAR2_0A2EN; II Disable own address 2

II I2C CR2 Configuration
I2Cx->CR2 &= -I2C_CR2_ADD10;
I2Cx->CR2 I= I2C_CR2_AUTOEND;
I2Cx->CR2 I= I2C_CR2_NACK;
I2Cx->CR1 I= I2C_CR1_PE;

II e = 7-bit mode, 1 = 10-bit mode
II Enable the auto end
II For slave mode: set NACK
II Enable I2Cl

Example 22-12. Initializing FC

The following subroutine I2C_Start() generates a start bit. This subroutine mainly
programs the control register CR2. It selects the automatic end mode, in which a STOP bit
is sent automatically when all bytes have been transferred. Hardware clears the STOP flag
when a STOP bit has been sent successfully.

Similarly, the START bit is set by software and is cleared by hardware after the START bit
followed by the slave address is sent. The input argument Direction selects the data
transfer direction.

Serial Communication Protocols i&

void I2C_Start(I2C_TypeDef * I2Cx, uint32_t DevAddress,
uint8_t Size, uint8_t Direction) {

}

II Direction = 0: Master requests a write transfer
II Direction = 1: Master requests a read transfer

uint32_t tmpreg = I2Cx->CR2;
tmpreg &= (uint32_t)-((uint32_t)(I2C_CR2_SADD

I2C_CR2_RELOAD
I
I

I2C_CR2_RD_WRN I
I2C_CR2_STOP));

if (Direction == READ_FROM_SLAVE)
tmpreg I= I2C_CR2_RD_WRN; II Read from Slave

else
tmpreg &= -I2C_CR2_RD_WRN; II Write to Slave

I2C_CR2_NBYTES
I2C_CR2_AUTOEND
I2C_CR2_START

tmpreg I= (uint32_t)(((uint32_t) DevAddress & I2C_CR2_SADD) I
(((uint32_t) Size << 16) & I2C_CR2_NBYTES));

tmpreg I= I2C_CR2_START;
I2Cx->CR2 = tmpreg;

Example 22-13. Sending the start bit

The following subroutine generates a STOP bit. Hardware sets the STOPF flag after the
STOP bit has been detected.

void I2C_Stop(I2C_TypeDef * I2Cx){

}

II Master: Generate STOP bit after the current byte has been transferred
I2Cx->CR2 I= I2C_CR2_STOP;

II Wait until STOPF flag is reset
while((I2Cx->ISR & I2C_ISR_STOPF) == 0);

I2Cx->ICR I= I2C_ICR_STOPCF; II Write 1 to clear STOPF flag

Example 22-14. Generating a STOP bit

The bus busy flag in the ISR register indicates whether a data transfer is currently taking
place. Hardware sets this flag once a START bit is detected. Hardware clears this flag when
a STOP bit is detected.

void I2C_Waitlineidle(I2C_TypeDef * I2Cx){
II Wait until I2C bus is ready
while((I2Cx->ISR & I2C_ISR_BUSY) == I2C_ISR_BUSY); II If busy, wait

}

Example 22-15. Waiting for the line idle

mf!I 22.2 - Inter-Integrated Circuit (I2C)

The I2C_SendData() sends multiple bytes to a target slave.

• It first waits until the SDA and SCL lines are idle (i. e., the voltage of both lines are
high). Then it sends a start bit and the slave address.

• Next, it begins to send out the data byte by byte. When the master successfully
sends a byte to the target slave, the transmitter register empty (TXIS) flag is set by
hardware. Before sending the next byte, normally the master should wait until TC
is set. Writing to the data register (TXDR) clears the TXIS flag automatically.

• After all bytes have been sent, hardware sets the TC flag. Software waits until the

TC flag is set. Hardware automatically clears the TC flag when the START bit or the
STOP bit in the control register CR2 is set.

• At the end, the subroutine sends a stop bit and waits until the SDA and SCL lines
are idle.

int8_t I2C_SendData(I2C_TypeDef *I2Cx, uint8_t SlaveAddress,
uint8_t *pData, uint8_t Size) {

}

int i;
if (Size <= 0 I I pData == NULL) return -1;

II Wait until the Line is idle
I2C_WaitLineidle(I2Cx);

II The Last argument: e = Sending data to the slave
I2C_Start(I2Cx, SlaveAddress, Size, 0);

for (i = 0; i < Size; i++) {

}

II TXIS bit is set by hardware when the TXDR register is empty and the
II data to be transmitted must be written in the TXDR register. It is
II cleared when the next data to be sent is written in the TXDR register.
II The TXIS flag is not set when a NACK is received.
while((I2Cx->ISR & I2C_ISR_TXIS) == 0);

II TXIS is cleared by writing to the TXDR register
I2Cx->TXDR = pData[i] & I2C_TXDR_TXDATA;

II Wait until TC flag is set
while((I2Cx->ISR & I2C_ISR_TC) == 0 && (I2Cx->ISR & I2C_ISR_NACKF) 0);

if((I2Cx->ISR & I2C_ISR_NACKF) != 0)
return -1;

I2C_Stop(I2Cx);

return 0;

Example 22-16. Transmitting data via FC

Serial Communication Protocols -

The subroutine I2C_ReceiveData() receives data from an FC slave. The program enables
the acknowledgment in the subroutine I2C_Start(). Software waits until hardware sets
the receive data register not empty flag (RXNE). Hardware sets the RXNE flag when the
received data has been copied from the internal shift register into the receive data register
(RXDR) and is ready to read. The RXNE flag is cleared when software reads register RXDR.

int8_t I2C_ReceiveData(I2C_TypeDef * I2Cx, uint8_t SlaveAddress,
uint8_t *pData, uint8_t Size) {

}

int i;

if (Size <= 0 I I pData == NULL) return -1;

I2C_WaitLineidle(I2Cx);

I2C_Start(I2Cx, SlaveAddress, Size, 1); II 1 Receiving from the slave

for (i = 0; i < Size; i++) {
II Wait until RXNE flag is set
while((I2Cx->ISR & I2C_ISR_RXNE) == 0);
pData[i] = I2Cx->RXDR & I2C_RXDR_RXDATA;

}

while((I2Cx->ISR & I2C_ISR_TC) -- 0); II Wait until TCR flag is set

I2C_Stop(I2Cx);
return 0;

Example 22-17. Receiving data via PC

The following program shows the software that reads the temperature from the
temperature sensor TC74.

uint8_t Data_Receive[6];
uint8_t Data_Send[6];

System_Clock_Init(); II Set System Clock to 80 MHz
I2C_GPIO_init();
I2C_Initialization(I2Cl);

while(l){

}

SlaveAddress = 0x48<<1; II A0 = 1001000 = 0x4B

Data_Send[0] = 0x00; II 00 = command to read temperature register
I2C_SendData(I2Cl, SlaveAddress, Data_Send, 1);
I2C_ReceiveData(I2Cl, SlaveAddress, Data_Receive, 1);
for(i = 0; i < 50000; i++); II Short software delay

Example 22-18. Interfacing TC74 temperature sensor

22.2 - Inter-Integrated Circuit (I2C)

22.2.9 Transferring Data via DMA on J2C Master
To enable DMA transfer, the I2C_Init() function given in Example 22-12 must add the
following statements:

I2Cx->CR1 I= I2C_CR1_TXDMAEN; II Enable OMA transmission requests

I2Cx->CR1 I= I2C_CR1_RXDMAEN; II Enable OMA reception requests

In the following, we use I2Cl (PB6 and PB7) as an example to show DMA configuration
on I2. As shown in Table 19-1, I2C1_TX and I2C1_RX can be connected to the channel 6
and 7 of the DMA controller 1, respectively. Example 22-19 and Example 22-20 show the
DMA configuration. Note that the slave address cannot be transferred via DMA.

Transmit Buffer

12C1

PB7 Data Shift

(12C1_SDA) Register

TXDR
Register

TXIS ~ --

ISR
Register

void DMAl_Channel6_IRQHandler (void) {

NVIC
Interrupt

Controller

Channel 6 Interrupt
1----~ Request

1----~

RXNE event trt OMA 1
- ~Q~st on c~a9n°'" 1DIWA Channel 7

Channel 7 Interrupt
Request

PB6 Master
RXDR

(12C1 _SCL) Clock
Register

---.!2•_]
-------------------------- - j CPAR I void DMAl_Channel7_IRQHandler (void) {

Generation I CMAR f----,
~---~ \

)

Figure 22-30. OMA configuration for 12Cl on STM32L4

void DMA_Configure_I2C_TX (uint8_t *pTxBuffer, uint32_t size) {
RCC->AHBlENR I= RCC_AHBlENR_DMAlEN; II Enable DMAl clock
II Connect I2Cl_TXDR to OMA 1 Channel 6
DMA1_Channel6->CCR &= NDMA_CCR_EN;
DMAl Channel6->CCR &= NDMA_CCR_MEM2MEM;
DMAl Channel6->CCR &= NDMA_CCR_PL;
DMA1_Channel6->CCR I= DMA_CCR_PL_l;
DMA1_Channel6->CCR &= NDMA_CCR_PSIZE;
DMA1_Channel6->CCR &= NDMA_CCR_MSIZE;
DMAl Channel6->CCR &= NDMA_CCR_PINC;
DMAl Channel6->CCR I= DMA_CCR_MINC;
DMA1_Channel6->CCR &= NDMA_CCR_CIRC;
DMA1_Channel6->CCR I= DMA_CCR_DIR;
DMA1_Channel6->CCR I= DMA_CCR_TCIE;
DMA1_Channel6->CCR &= NDMA_CCR_HTIE;
DMAl Channel6->CNDTR = size;

II Disable OMA channel
II Disable memory to memory mode
II Channel priority Level
II Set OMA priority to high
II Peripheral data size ee = 8 bits
II Memory data size: ee = 8 bits
II Disable peripheral increment mode
II Enable memory increment mode
II Disable circular mode
II Transfer direction: to peripheral
II Transfer complete interrupt enable
II Disable Half transfer interrupt
II Number of data to transfer

Serial Communication Protocols 11!'11

DMA1_Channel6->CPAR = (uint32_t)&{I2C1->TXDR); //Peripheral address
DMAl Channel6->CMAR = (uint32_t) pTxBuffer; II Transmit buffer address
DMAl CSELR->CSELR &= -DMA_CSELR_C6S; II See Table 19-1
DMAl_CSELR->CSELR I= 3«24; //Map channel 6 to I2Cl_TX
DMA1_Channel6->CCR I= DMA_CCR_EN; II Enable OMA channel

}

Example 22-19. Configuring OMA 1 channel 6for12Cl transmit

void DMA_Configure_I2C_RX (uint8_t *pRxBuffer, uint32_t size) {

}

RCC->AHBlENR I= RCC_AHBlENR_DMAlEN; II Enable OMAl clock
II Connect I2Cl_RXOR to OMA 1 Channel 7
DMA1_Channel7->CCR &= -DMA_CCR_EN; II Disable OMA channel
DMA1_Channel7->CCR &= -DMA_CCR_MEM2MEM; II Disable memory to memory mode
DMA1_Channel7->CCR &= -DMA_CCR_PL; II Channel priority Level
DMA1_Channel7->CCR I= DMA_CCR_PL_l; II Set OMA priority to high
DMA1_Channel7->CCR &= -DMA_CCR_PSIZE; II Peripheral data size ee = 8 bits
DMAl Channel7->CCR &= -DMA_CCR_MSIZE; II Memory data size: ee = 8 bits
DMA1_Channel7->CCR &= -DMA_CCR_PINC; II Disable peripheral increment mode
DMA1_Channel7->CCR I= DMA_CCR_MINC; II Enable memory increment mode
DMA1_Channel7->CCR &= -DMA_CCR_CIRC; II Disable circular mode
DMA1_Channel7- >CCR I= DMA_CCR_DIR; II Transfer direction: to peripheral
DMA1_Channel7->CCR I= DMA_CCR_TCIE; II Transfer complete interrupt enable
DMA1_Channel7->CCR &= -DMA_CCR_HTIE; II Disable Half transfer interrupt
DMAl Channel7->CNDTR size; II Number of data to transfer
DMA1_Channel7->CPAR = (uint32_t)&(I2C1->RXDR); II Peripheral address
DMA1_Channel7->CMAR = (uint32_t) pRxBuffer; II Transmit buffer address
DMAl_CSELR->CSELR &= -DMA_CSELR_C7S; II See Table 19-1
DMAl_CSELR->CSELR I= 3<<20; II Map channel 6 to I2Cl_RX
DMA1_Channel7->CCR I= DMA_CCR_EN; II Enable OMA channel

Example 22-20. Configuring OMA 1 channel 7 for 12Cl reception

The following examples illustrates how to send or receive data via DMA.

void I2C_SendData(uint8_t *pTxBuffer, uint32_t size, uint8_t SlaveAddress) {
II OMA must be initialized before setting the START bit
DMA_Configure_I2C_TX(pTxBuffer, size); II Configure OMA 1 Channel 6
I2C_WaitLineidle(I2Cl); II wait until I2C is available
I2C_Start(I2Cl, SlaveAddress, Size, 0); II e =Sending to the slave

}

Example 22-21. Sending data to an PC slave via OMA

void I2C_ReceiveData(uint8_t *pRxBuffer, uint32_t size,uint8_t SlaveAddress) {
II OMA must be initialized before setting the START bit
DMA_Configure_I2C_TX(pRxBuffer, size); II Configure OMA 1 channel 7
I2C_Waitlineidle(I2Cl); II Wait until I2C is available
I2C_Start(I2Cl, SlaveAddress, Size, 1); II 1 =Receiving from the slave

}

Example 22-22. Receiving data from an FC slave via OMA

&.fd:I 22.3 - Serial Peripheral Interface Bus (SPI)

22.3 Serial Peripheral Interface Bus (SPI)
Serial peripheral interface (SPI) is a synchronous serial communication interface widely
used to exchange data between a microprocessor and peripheral devices using four wires.
For example, a digital camera often uses SPI to control its lens and save photos to a MMC
or SD media.

SPI is simple, has low power requirements, and supports high throughput.
Disadvantages of SPI include that it does not support multiple masters, and slaves cannot
start the communication or control data transfer speed. The master initiates and controls
all communications.

SCLK - SCLK ...
MOSI - MOSI SPI ...

SPI MISO ~ MISO Slave 1
Master

~

SS1 - SS ...
SS2

_____... SCLK
- MOSI SPI -

MISO Slave 2

- SS ...

Figure 22-31. A SPI master device connecting to multiple SPI slave devices

A SPI interface consists of four lines: a master-in-slave-out data line (MISO), a master-out
slave-in data line (MOSI), a serial clock line (SCLK), and an active-low slave select line (SS),
as shown in Figure 22-31. SPI is also called four-wire serial interface.

SPI only supports a single master communicating with multiple slave devices. As shown
in Figure 22-33, when the master wishes to exchange data with a slave, it pulls down the
corresponding select line (SSN). The master then generates clock pulses to coordinate the
data transmission on the MOSI and MISO lines.

Data exchange can take place in both directions simultaneously, and this two-way serial
channel is often called.full duplex. Data bits are transmitted on both the MOSI line and the
MISO line synchronously, with the flow directions opposite to each other. Note the SCLK

line has only one direction, and only the master can generate the clock signal. The slave
devices cannot control the clock line.

When there are multiple slave devices, the master decides which slave device it wants to
communicate. There is a dedicated Slave Select (SS) line for each slave device. The master

Serial Communication Protocols DI

selects the target slave device by pulling the corresponding SS line to a low voltage prior
to data transfer. The selected slave device then listens for the clock and MOS! signals.
When there is only one slave device, the SS line can be directly connected to ground
physically, or the program can make the slave continuously selected.

22.3.1 Data Exchange
SPI is a synchronous protocol, and the slave devices must send and receive data based
on the clock provided by the master. It differs from an asynchronous protocol in which
no clock signal is provided physically. SPI devices must exchange data at the same speed.

The master and a slave perform data exchange at
synchronized time steps based on the clock signal
generated by the master.

• When a bit is shifted out on the MISO line
from the slave's data register during a
clock period, a new data bit is shifted into

SPI master provides clock
signal (SCLK) to SPI slaves.

this register from the MOS! line in the same clock period, as shown in Figure 22-32.

•

•

When one device writes a bit to the data line at the rising or falling edge of the
clock, the other device then reads the bit at the opposite edge of the same clock
period.
The data transfer size is usually a byte or halfword (16 bits) .

Communication from the master to a slave and communication from a slave to the master
are always taking place concurrently. In each communication link (either MISO or MOS!),

each device sends out a data item and at the same time receives a new data item. No
devices can just be a transmitter or a receiver.

Therefore, when a slave wants to send data to the master via the MISO line, the slave must
wait for the clock signal. At the same time, the master must send some dummy data out
via the MOS! line to generate the clock signal to initiate the data transfer, as shown in
Figure 22-32.

JlJL
SCLK

SPI Master SPI Slave

b7 t6 b5 b4 b3 b2 b1 l:tl
MISO

b7 t6 b5 b4 b3 b2 b1 l:tl

x x x x x x x x x x x x x x x x

MOSI

Figure 22-32. A byte is shifted out and in simultaneously via MOS! and MISO.

•.Ji1i 22.3 - Serial Peripheral Interface Bus (SPI)

When a master exchanges data with slave n, the master must set SSn low to select slave
n, as shown in Figure 22-33. During the communication, the most significant bit of both
data registers is sent out first.

SCLK

SSn \ f
MOSI boui[O) bou1[1) bout[2) bou1[3) bou1[4) bou1(5) bou1[6) bout[?)

MISO b1n[O) b;n[1) b;n[2) b1n[3) b1n[4) b1n[5] b;n[6) bin[?)

Figure 22-33. Communication signals between a master and slave n. In this example, the most
significant bit is transferred first.

Figure 22-34 shows the signal of SCLK and MOS! when two bytes (0xAA and 0x3C) are sent
out. In this example, the least significant bit (LSB) of each data is sent out first.

SCLK

6.7V

5.7V

4.7V

3.7V

I I I I
2.7V ··- ·--- ···r· ·r···-···· ·-· i- ··························· ······-·1·· ·--

················ .1 [._........ ·---1- ······-···-···'
i ! I I I

......................... - ····-··--- -····--·· - ... ··t······· -·--······ ·-······························ -···1··- ·········· --··--··········--··l·-·····--
1 I I ! I

~.7V

1.7V

-0.3V ·---- -... - ---' !........... ; .. ·······---·············-··-·-···-··"-·-·-······-··-··--············--+ -·--·········

I I
.. · ·3 ~60L.;usLL..JLL..JLL..JLL..J- 1'-=--0-'u•-'-'-'-'-'-'-'-'4-::--'0 '-'us-'---'-'-'-'~9-=--'o "'"'us-'-'-'-'-'-'~14-=-'ou~s~~~~19-=-'o u~.~~~--:2;;-:4-=-'o u~.~

Figure 22-34. SCLK and MOS! signals when the master sends two bytes: 0xAA and 0x3C

Serial Communication Protocols ij4M

22.3.2 Clock Configuration
The clock speed determines the data transfer rate. The data rate ranges from 1 to 20
megabits per second. The master can change the clock speed by programming the clock
prescaler register. For STM32L processors, the baud rate control factor is stored in the
BR[2:0] bits of the SPI control register (CRl). The SCLK clock frequency is programmed
by setting the baud rate control factor.

Q

fsYSCLK
fscLK = z1+BR (2:0]

Clock Phase (CPHA)

CPHA = 0 CPHA = 1

~ ~ _J--L_ _J--L_
2- 0
j!- I I Mode 0 Mode 1 I I
· ~ ----------------------1------------- -1----------------------------- ___________________ !, __________ , ______________ _

~ ~ I I Mode 2 Mode 3 I I

-t3~~ r- ~ r--
8 ~ IL---li IL---li

o I I I I
Capture Toggling Toggling Capture

Edge Edge Edge Edge

Figure 22-35. Configuration of clock phase and clock polarity

Four possible clock modes are available to program the clock edge used for data
sampling and data toggling, as shown in Figure 22-35. The clock modes depend on two
parameters: clock phase (CPHA) and clock polarity (CPOL). When CPOL is 0, the SCLK line is
pulled low during idle time. When CPOL is 1, the SCLK line is pulled high during idle.
When CPHA is 0, the first clock transition (either rising or falling) is the first data capture
edge. When CPHA is 1, the second clock transition is the first capture edge.

The combination of CPOL and CPHA selects the clock edge for transmitting and capturing
data. The capture of the first bit is delayed a half cycle in mode 0 and 2.

ss.

SCLK
CPOL = 0
CPHA = 0

SCLK
CPOL = 1
CPHA= 0

:
Capture

Edge
Capiure

Edge
' Capture

Edge
Capture

Edge
Capture

Edge
Capture

Edge
' Capture

Edge
Capture

Edge

Figure 22-36. Receiving 8 bits under different settings of CPOL and CPHA

22.3 - Serial Peripheral Interface Bus (SPI)

22.3.3 Using SPI to Interface a Gyroscope
This section shows how to interface the 3-axis gyro sensor L3GD20 which provides the
angular velocity in three axes (yaw, pitch, and roll). The L3GD20 sensor supports two
digital interfaces: FC and SPI. When the voltage on the GYRO_CS pin is low, the SPI
interface is selected. Otherwise, the FC interface is selected.

SPI Master
(STM32L4)

SPl2_Clock (PD1)

SPl2_MOSI (PD4)

SPl2_MISO (PD3)

GPIO PD7

GPIO PD2

GPIO PE8

GPIO PEO

GPIO PCO

SPI Slave
(L3GD20 Gyro)

MEMS_SCK

MEMS_MOSI

MEMS_MISO

GYRO_CS

GYRO_INT1

GYRO_INT2

XL_CS

MAG_CS

z
(yaw)

Figure 22-37. Connection between STM32L4 and L3GD20 gyroscope

y

,,...~'f"'(Pitch)

' x
(Roll)

The L3GD20 gyroscope internally has a set of 8-bit registers. The following program first
reads the status register and checks whether angular velocity data are ready to read. If
yes, the program reads 6 bytes of raw data and converts them into angular velocities.

#define L3GD20_STATUS_REG_ADDR 0x27 II Status register

#define L3GD20_0UT_X_L_ADDR 0x28 II Output Register

struct {
float x· , II X axis rotation rate, degrees per second
float y; II Y axis rotation rate, degrees per second
float z; II Z axis rotation rate, degrees per second

} gyro;

int16_t gyro_x, gyro_y, gyro_z;
uint8_t gyr[6], status;

GYRO_IO_Read(&status, L3GD20_STATUS_REG_ADDR, 1); II Read status register
if ((status & 0x08) == 0x08) { // ZYXDA ready bit set

}

II Read 6 bytes from gyro starting at L3GD20_0UT_X_L_ADDR
GYRO_IO_Read(gyr, L3GD20_0UT_X_L_ADDR, 6);
II Assume Little endian (check the control register 4 of gyro)
gyro_x (int16_t) ((uint16_t) (gyr[1]<<8) + gyr[0]);
gyro_y = (int16_t) ((uint16_t) (gyr[3)<<8) + gyr[2]);
gyro_z = (int16_t) ((uint16_t) (gyr[5]<<8) + gyr[4));
II For +l-2000dps, 1 unit equaLs to 70 milLidegrees per second
gyro.x (float) gyro_x * 0.070f; II X anguLar velocity
gyro.y (float) gyro_y * 0.070f; II Y angular veLocity
gyro.z (float) gyro_z * 0.070f; II z anguLar velocity

Example 22-23. Reading x, y, and z rotation rates from the gyro sensor

Serial Communication Protocols ijji

7 6 5 4 3 2 0

R/W M/S ADS AD4 AD3 AD2 ADl AD0

1: Send/receive multiple bytes
0: Send/rece ive single byte

1 : Read data from gyroscope
O: Write data to gyroscope

Figure 22-38. Command and address byte of internal registers in L3GD20 gyroscope

Example 22-24 and Example 22-25 show the procedure of writing data to and reading
data from the gyro sensor by using the SPI interface. Figure 22-38 illustrates the bit
definitions of the command and address byte. Bit 7 indicates the data transmission
direction. Bit 6 shows whether single or multiple bytes will be transmitted. When the
M /S bar is set, the address will be automatically incremented by 1 after each byte is
transmitted.

II PD7: GYRO_CS (High = I2C, Low = SPI)
#define L3GD20 cs LOW GPIOD->ODR &= -(lU << 7);
#define L3GD20_CS_HIGH GPIOD->ODR I= (lU << 7);

void GYRO_IO_Write (uint8_t *pBuffer, uint8_t WriteAddr, uint8_t size) {

}

uint8_t rxBuffer[32);

if (NumByteToWrite > 0x01) {
WriteAddr I= lU << 6; II Select the mode of writing multiple-byte

}

II Set SPI interface
L3GD20_CS_LOW; II e = SPI, 1 = I2C
Delay(10); II Short delay

II Send the address of the indexed register
SPI_Write(SPI2, &WriteAddr, rxBuffer, 1);

II Send the data that will be written into the device
II Bit transfer order: Most significant bit first
SPI_Write(SPI2, pBuffer, rxBuffer, size);

II Set chip select High at the end of the transmission
Delay(10); II Short delay
L3GD20_CS_HIGH; II 0 = SPI, 1 = I2C

Example 22-24. Writing data to the gyro sensor via the SPI interface

22.3 - Serial Peripheral Interface Bus (SPI)

void GYRO_IO_Read (uint8_t *pBuffer, uint8_t ReadAddr, uint8_t size) {

}

uint8_t rxBuffer[32];

II Select read & multiple-byte mode
uint8_t AddrByte = ReadAddr I lU << 7 I lU << 6;

II Set chip select Low at the start of the transmission
L3GD20_CS_LOW; II e = SPI, 1 = I2C
Delay(10); II Short delay

II Send the address of the indexed register
SPI_Write(SPI2, &AddrByte, rxBuffer, 1);

II Receive the data that will be read from the device (MSB First)
SPI_Read(SPI2, pBuffer, size);

II Set chip select High at the end of the transmission
Delay(10); II Short delay
L3GD20_CS_HIGH; II e = SPI, 1 = I2C

Example 22-25. Receiving data from the gyro sensor via the SPI interface

The following shows the initialization of SPI, which sets SPI as the master.

void SPI_Init(SPI_TypeDef * SPix){

II Enable SPI clock
if(SPix == SPil){

RCC->APB2ENR I= RCC_APB2ENR_SPI1EN; II Enable SPil Clock
RCC->APB2RSTR I= RCC_APB2RSTR_SPI1RST; II Reset SPil
RCC->APB2RSTR &= -RCC_APB2RSTR_SPI1RST; II Clear the reset of SPil

} else if(SPix == SPI2){
RCC->APBlENRl I= RCC_APB1ENR1_SPI2EN; II Enable SPI2 Clock
RCC->APBlRSTRl I= RCC_APB1RSTR1_SPI2RST; II Reset SPI2
RCC->APBlRSTRl &= -RCC_APB1RSTR1_SPI2RST; II Clear the reset of SPI2

} else if(SPix == SPI3){
RCC->APBlENRl I= RCC_APB1ENR1_SPI3EN; II Enable SPI3 Clock
RCC->APBlRSTRl I= RCC_APB1RSTR1_SPI3RST; II Reset SPI3
RCC->APBlRSTRl &= -RCC_APB1RSTR1_SPI3RST; II Clear the reset of SPI3

}

SPix->CRl &= -SPI_CRl_SPE; II Disable SPI

II Configure duplex or receive-only
II e = Full duplex (transmit and receive), 1 = Receive-only
SPix->CRl &= -SPI CRl RXONLY;

Serial Communication Protocols ii+•

II Bidirectional data mode enable: This bit enables half-duplex
II communication using common single bidirectional data Line.
II 0 = 2-Line unidirectional data mode selected
II 1 = 1-Line bidirectional data mode selected
SPix->CRl &= -SPI_CRl_BIDIMODE;

II Output enable in bidirectional mode
II 0 = Output disabled (receive-only mode)
II 1 = Output enabled (transmit-only mode)
SPix->CRl &= -SPI_CRl_BIDIOE;

II Data Frame Format
SPix->CR2 &= -SPI_CR2_DS;
SPix->CR2 SPI_CR2_DS_0

II Bit order

SPI_CR2_DS_l I SPI_CR2_DS_2; // 0111: 8-bit

II 0 = MSB transmitted/received first
II 1 = LSB transmitted/received first
SPix->CRl &= -SPI_CRl_LSBFIRST; //Most significant bit first

II Clock phase
II 0 = The first clock transition is the first data capture edge
II 1 = The second clock transition is the first data capture edge
SPix->CRl &= -SPI_CRl_CPHA; //1st edge

II Clock polarity
II 0 = Set CK to 0 when idle
II 1 = Set CK to 1 when idle
SPix->CRl &= -SPI_CRl_CPOL; // Polarity Low

II Baud rate control:
II 000 = f_PCLK/2 001 = f_PCLK/4 010 = f_PCLK/8 011 = f_PCLK/16
II 100 = f_PCLK/32 101 = f_PCLK/64 110 = f_PCLK/128 111 = f_PCLK/256
II SPI baud rate is set to 5 MHz
SPix->CRl I= 3U<<3; //Set SPI clock to 80MHz/16 = 5 MHz

II CRC Polynomial
SP!x->CRCPR = 10;

II Hardware CRC calculation disabled
SPix->CRl &= -SPI_CRl_CRCEN;

II Frame format: 0 = SPI Motorola mode, 1 SPI TI mode
SPix->CR2 &= -SPI_CR2_FRF;

II NSSGPIO: The value of SSI is forced onto the NSS pin and the IO value
II of the NSS pin is ignored.
II 1 = Software sLave management enabLed
II 0 = Hardware NSS management enabled
SPix->CRl I= SPI_CRl_SSM;

}

22.3 - Serial Peripheral Interface Bus (SPI)

II Set as Master: 0 = slave, 1 = master
SPix->CRl I= SPI_CRl_MSTR;

II Manage NSS (slave selection) by using Software
SPix->CRl I= SPI_CRl_SSI;

II Enable NSS pulse management
SPix->CR2 I= SPI_CR2_NSSP;

II Receive buffer not empty (RXNE)
II The RXNE flag is set depending on the FRXTH bit value in the SPix_CR2 register:
II (1) If FRXTH is set, RXNE goes high and stays high until the RXFIFO Level is
II greater or equal to 114 (8-bit).
II (2) If FRXTH is cleared, RXNE goes high and stays high until the RXFIFO Level is
II higher than or equal to 112 (16-bit).
SPix->CR2 I= SPI_CR2_FRXTH;

II Enable SPI
SPix->CRl I= SPI_CRl_SPE;

Example 22-26. Initializing SPI

The following subroutine is for the SPI master to send the data to an SPI slave.

• It checks the transmission buffer empty flag (TXE) and waits until hardware sets

TXE. If TXE is set, the transmission register is ready to accept the next data to be

transmitted.

• Writing to the SPI data register (DR) automatically clears the TXE flag.

• The subroutine also waits until the busy flag is cleared to ensure the last data has

been successfully sent.

void SPI_Write(SPI_TypeDef * SPix, uint8_t *txBuffer, uint8_t * rxBuffer, int
size) {

}

int i = 0;

for (i = 0; i < size; i++) {

}

II Wait for TXE (Transmit buffer empty)
while((SPix->SR & SPI_SR_TXE) != SPI_SR_TXE);
SPix->DR = txBuffer[i];

II Wait for RXNE (Receive buffer not empty)
while((SPix->SR & SPI_SR_RXNE) != SPI_SR_RXNE);
rxBuffer[i] = SPix->DR;

II Wait for BSY flag cleared
while((SPix->SR & SPI_SR_BSY) == SPI_SR_BSY);

Example 22-27. Send data to an SPI slave by using polling

Serial Communication Protocols ifrM

The following subroutine allows an SPI master to receive data from an SPI slave. Only
the master can initiate the data transfer and controls the communication clock (SCLK).

Therefore, the master must send a dummy byte data to the slave to start the clock.

void SPI_Read(SPI_TypeDef * SPix, uint8_t *rxBuffer, int size) {
int i = 0;

}

for (i = 0; i < size; i++) {

}

II Wait for TXE (Transmit buffer empty)
while((SPix->SR & SPI_SR_TXE) != SPI_SR_TXE);
II The clock is controlled by master.
II Thus, the master must send a byte
SPix->DR = 0xFF; II A dummy byte

II data to the slave to start the clock.
while((SPix->SR & SPI_SR_RXNE) != SPI_SR_RXNE);
rxBuffer[i] = SPix->DR;

II Wait for BSY flag cleared
while((SPix->SR & SPI_SR_BSY) == SPI_SR_BSY);

Example 22-28. Receive data from an SPI slave by using polling

In Example 22-27 and Example 22-28, the SPI master uses a polling approach to send and
receive data from an SPI slave. A more efficient approach is to use SPI interrupt or SPI
DMA. Section 22.1.5 and 22.1.6 shows how to use interrupt and DMA for UART
communication. Similarly, SPI can also use interrupt and DMA.

If enabled, a wide range of SPI events can generate interrupt requests. These events
include:

1. transmit TXFIFO ready to accept new data,
2. data received in receive RXFIFO,

3. master mode fault when a bus conflict has been detected in multi-bus
communication,

4. overrun error when RXFIFO is full and cannot accept new data,
5. TI frame format error when NSS signal does not follow the data format, and
6. CRC protocol error when the received CRC value does not match the CRC value

calculated based on the received data.

SPI communication handled via DMA is the most efficient. Software can enable DMA by
setting the RXDMAEN and TXDMAEN bit in the CR2 register. If enabled, hardware
automatically generates a DMA request each time when the TXE or RXNE enable bit in the
CR2 register is set. SPI also supports a special DMA mode in which hardware generates
DMA requests when the receive or transmit FIFO reaches a pre-defined threshold.

mlll 22.4 - Universal Serial Bus (USB)

22.4 Universal Serial Bus (USB)
Universal serial bus (USB) is a widely-used industry standard to connect multiple
peripheral devices to a host (typically a computer). Compared to other serial or parallel
communication standards, USB has the advantage of ease of use (such as plug and play,
hot swapping without rebooting, and no power supply required), low cost, low power
consumption, and fast data transfer.

USB 1.0, 2.0 and 3.0 specifications were officially released in 1996, 2000, and 2008,
respectively. They are backward compatible. USB 2.0 also includes the USB OTG (on-the
go) protocol, which allows a USB device to perform both the master and slave roles. For
example, a printer is a USB slave to a host PC, but it can also be a master when a USB
flash drive is plugged in. In this chapter, we only cover the fundamental concepts of USB
1.0 and 2.0. This book does not cover USB OTG and USB 3.0.

USB
Host

Class Layer

·~ ·~
,, ,,
Device
Driver

j ~'

1

Host
Controller

' .

..
~

' ' '

Logical F unction c hanne s

::::: : :::: : ::::::: ::(): :::: ::::::::::::::::: I• I•
I•

Logic Control Channel
--- ..

,~ ,
Token

I I
Data

I I
ACK r--- / , ---

Packet Packet Packet

Transfer speed , data encoding

Cable and Hubs

Figure 22-39. USB protocol stack

The USB protocol has three hierarchical layers.

USB
Device

Functions

••
, ,,

Physical
Device

~

,,
Bus

Interface

Jl

Logical
Function

Layer

Physical
Device
Layer

Physical
Bus

Layer

• The bus layer takes care of wire connections, power supply to peripheral devices,
transfer speed, and data signal encoding.

• The device layer establishes a logic control channel (endpoint 0) for the host to
control and set up the device, detects errors in a packet, and breaks a high-level
request into multiple packets.

Serial Communication Protocols i"f'AW

• The logic function layer establishes multiple logical function channels between a
host and a USB device. A USB device might have multiple functions. For example,
a printer may have four functions: print, photocopy, scan, and fax . A logical
channel allows the host to read data from or write data to a specific function of a

USB device.

22.4.1 USB Bus Layer
USB supports four transmission speeds:

• low speed (1.5 Mbit/s = 187 KB/s)
• full speed (12 Mbit/s = 1.5 MB/s)
• high speed (480 Mbit/s = 60 MB/s)
• super speed (4.8 Gbit/s = 600 MB/s)

A standard USB cable has four shielded wires: ground, Vbus (5 volts), data plus (D+) and
data minus (D-). The Vbus can provide power supply to USB devices. The D+ and D
wires are physically twisted to cancel out external electromagnetic interference. Voltage
under 0.3V on a wire is considered low, and voltage over 2.8V is high.

+ D-

4 3 2 1

I

[gJ = = = =
D+ D- +

- D+

Figure 22-40. USB Connector type A plug (left) and type B plug (right)

Every high-speed USB device must support a data rate of 480Mb/s, with a clock accuracy
of ±500 PPM (part per million). One PPM is 0.0001% or lE-6. A PPM of 12 means a
maximum error of approximately one second after one day has passed. 500 PPM implies
the clock is off by up to 43 seconds per day. The internal clocks of a microprocessor often
do not provide such high accuracy and, therefore, an external crystal oscillator is often
deployed to drive the USB peripheral. For example, the internal clocks of the STM32L
processor only provide an accuracy of ±600 PPM at room temperature, which implies the
clocks can be up to 52 seconds off per day and up to 26 minutes off per month. An
inexpensive external crystal oscillator is within ±20 PPM typically. STM32L4 can use a
low-speed external clock to calibrate internal clocks.

Data are transmitted via the D+ and D- wires using differential signals. One of them must
be high, and the other must be low. For example, for a full-speed connection, the wires
are either in the "J" state (D+ = high and D- = low) or the "K" state (D+ = low and D- =

22.4 - Universal Serial Bus (USB)

high). When no data is transferred (i.e. , idle state), the wires are in the J state. The states
for low-speed are the opposite of the states for full-speed.

Non-return-to-zero inverted (NRZI) is used to encode a sequence of binary bits.

• Maintaining the current state denotes a binary 1.

• A binary 0 is represented by switching from the J state to the K state or from the
K state to the J state (also called change-on-zero).

Figure 22-41 gives an example of encoding a binary bit string.

Clock

Binary
Data

i
1 i 0

I : I

0 i 1 i 1 ! 1 j 0 !
! l

1 i 0 i 1 ! 1

Figure 22-41. Example of NRZI data encoding for full speed

i
0 i

USB also uses the D+ and D- wires to transmit single-ended signals. We say the bus is in
the SEO (SE stands for single-ended) state when both are low, and in the SEl state when
both are high. SEO is used when a transfer ends, or USB devices are disconnected or reset.
SEl is an illegal state except for battery charging.

Additionally, USB uses a technique called bit stuffing to ensure enough state transitions
on D+ and D- for clock synchronization between the transmitter and the receiver. More
specifically, an additional 0 bit is inserted into the bit streams after six consecutive ones.

3.3V

USB USB
Host Device

Vb us Vb us

D+ D+
D- D-

GND GND

Figure 22-42. Full-speed mode (12 Mbit/s)
identified by 1.SKO pull-up on D+

3.3V

USB USB
Host Device

Vb us Vb us

D+ D+
D- D-

GND GND

Figure 22-43. Low-speed mode (1.5 Mbit/s)
identified by 1.SKO pull-up on D-

Serial Communication Protocols ii:il

The USB speed is determined by pulling up the D+ or D- wire.

• When neither of them is pulled up, the host assumes no devices are connected.

• If the D+ wire is pulled up via a 1.SKO resistor to 3.3V, the host assumes a full
speed USB device is connected.

• The same pull-up on the D- wire indicates a low-speed device.

• A high-speed USB device is identified by initially pulling up the D+ wire. The
host attempts to send or receive packets at high speed. If the communication is
successful, the host assumes the device operates at high speed, and the device
should remove the pull-up afterward. If the communication fails, the host
assumes the device runs at full speed.

22.4.2 USB Device Layer
USB is a token-based data transfer protocol in which only a host can initiate the transfer.
Each token has a target USB device address. The USB device with a matching address
responds to the token packet issued by the host. The token packet also includes a target
endpoint and the data transfer direction. A USB device might have multiple endpoints.
Each endpoint is a predefined buffer in the USB device's memory.

The transfer direction can be either IN or OUT, from the perspective of the host.

• An IN token packet indicates that the host is requesting to read data from the
target endpoint of the USB device .

• An OUT token packet indicates that the host is requesting to write data to the
destination endpoint of the device.

A data transfer takes place between a host and the endpoint of a USB device. USB has
four different types of data transfers: control, bulk, interrupt, and isochronous. The last
three provide different tradeoffs between bandwidth, response time and reliability.

• The host uses control transfers to obtain basic information (called descriptors) of
a USB device and to read or set the status and address of the device. All USB
devices must support control transfers.

• Bulk transfers are designed to deliver relatively large but bursty data. It provides
high bandwidth but requires the application to tolerate a long delay if the bus is
busy. Printers, scanners, and mass storage devices use bulk transfers.

• For interrupt transfers, the host periodically queries a USB device for data. It
provides less bandwidth than bulk transfers, but the maximum latency is limited
to the query period. Mice and keyboards use interrupt transfer.

• Isochronous transfers provide guaranteed latency but are unreliable due to lack
of error detection. Microphones and web cameras often use isochronous transfers.

22.4 - Universal Serial Bus (USB)

At a lower level, a transfer consists of multiple packets. There are three packet formats:
token packets, data packets and acknowledge packets. Figure 22-44 shows the packet
structure of full/low speed. Each packet includes at least an SYNC byte, a PID byte, and
EOP field.

Token SYNC PIO ENDP CRC5 EOP
Packet (8 bits) (8 bits) (4 bits) (5 bits) (3 bits)

1000_0111 OUT Token
~ways sent 1001_0110 IN Token

y host 1010_0101 SOF Token
1011_0100 SETUP Token

Data SYNC PIO Data CRC16 EOP
Packet (8 bits) (8 bits) (0-1023 bytes) (16 bits) (3 bits)

~"' ,,,,.;~ 1100_0011 DATA0

·. r IN or by 1101_0010 DATAl

ost for OUT
1110_0001 DATA2
1111_0000 MDATA

Acknowledge SYNC PIO
Packet (8 bits) (8 bits)

~""'""'
0100_1011 ACK

r IN or by 0101_1010 NACK

evice for OUT
0111_1000 STALL
0110_1001 NOT RESPOND YET

Figure 22-44. A transaction starts with a token packet sent by the host, then a data packet, and
finally a handshake packet.

• Synchronization field (SYNC). The SYNC byte is the first byte of a packet. It is used
to ensure that the receiving clock is synchronized to the transmitting clock in a packet
transfer. The value of the SYNC byte is 0b00000001. For full speed, since the idle state
is the J state, the D+ and D- wires are in a sequence of "K JKJKJKK" when the SYNC
byte is transmitted.

• Packet identification field (PID). The PID byte identifies the type of packet being
sent. The lower four bits of the PID bytes are the inverse of the upper four bits. This
inversion is used for error checking. Also, the least-significant bit is sent out first. For
example, if the PID field is 0b10000111, the actual PID code is 0b0001.

• Address field (ADDR). An ADDR that has 7 bits can address 127 devices (address 0 is
reserved). The host assigns the address. A device uses address 0 during the initial
communication until the host assigns the device address.

• Endpoint field (ENDP). It uses four bits to identify 16 endpoints within a USB device.

• Data field. The length of the data field varies from 0 to 1,023, depending on the
transfer type and the USB speed. For example, the data field size is limited to typically

Serial Communication Protocols i1:N

8 bytes in low-speed devices, and to 8, 16, 32 or 64 bytes for control transfers and 64
bytes for interrupt transfer in full-speed devices.

• Cyclic redundancy check (CRC) field. We use CRC to detect payload corruption
arising from transmission errors.

o Each token packet has a five-bit CRC, and each data packet has a 16-bit CRC.
The basic idea of the CRC calculation involves three steps. First, the data bits
to be protected are treated as a binary number. Second, we divide this binary
number by another predefined binary number. Finally, we select the
remainder of the division as the CRC code.

o The receiver performs the same steps to compare the remainder calculated
and the rest received (i .e., CRC code). Typically, we use hardware circuits to
calculate CRC for fast performance.

o We call a contiguous sequence of erroneous data bits burst errors. Ann-bit
CRC can detect all single- and double-bit errors, and any single burst error
that is shorter than or equal to n bits. It can also detect a fraction 1 - z-n of all
longer burst errors.

• End of packet field (EOP). EOP consists of SECO for two time units of a bit and a J
state for one time unit.

A transaction completes in three steps.

1. First, the host sends a token packet, indicating the recipient (specified in the
ENDPOINT field) of the target USB device (ADDR field), and the transfer direction
of the next data packet (packet ID).

2. Second, if the packet ID of the token packet is OUT or SETUP, the host sends a
data packet to the specified endpoint of the target USB device, and the device
must send an acknowledge packet back to the host. The acknowledge packet
informs the host whether the device has successfully received the data.

3. If the token packet is an IN packet, the device sends the data packet, and the host
replies with an acknowledge packet.

The USB host broadcasts a start-of-frame (SOF) packet every 1 ms for a full-speed bus
and every 125µs for a high-speed bus. The host does not expect any USB devices to return
any packet. The SOF packets provide time stamps for USB devices to schedule data
transfers. For example, the host can use the SOF to inform a USB device to prepare for
receiving or transmitting one data packet for an isochronous transfer.

START OF SYNC
FRAME (SOF) (8 bits)

Packet ID Frame Number
(8 bits) (11 bits)

CRC5
(5 bits)

Figure 22-45. Format of start-of-frame (SOF)

EOP
(3 bits)

22.4 - Universal Serial Bus (USB)

The USB hardware handles receiving a packet. The hardware automatically detects or
generates the SYNC field, identifies the packets addressed to this USB device, performs
CRC error checking, and detects or generates the end of the packet (EOP) field.

The USB hardware automatically generates interrupts for software to handle
corresponding events. For example, when CRC checking fails or the device has not
received any response from the host for a long time, the USB hardware generates an
interrupt and sets the ERR bit of the USB interrupt status register.

22.4.3 USB Function Layer
A USB device may have multiple functions. For example, a web camera may have three
functions: microphone, camera, and storage. A printer may have the functions of printing,
scanning, and photocopying. Endpoints are the interface between a function of a USB
device and the USB host. Data are transferred between the host and an endpoint. A USB
device can have multiple endpoints. All USB devices must support endpoint 0, which is
a special endpoint for the host to control USB devices .

A logic communication that takes place between the host and an endpoint is called a pipe
or channel. An endpoint contains the endpoint number, the transfer type (control,
isochronous, bulk, or interrupt), the transfer direction (IN or OUT), the maximum packet
size, and the polling intervals in terms of the number of start-of-frames.

22.4.3.1 USB Descriptors
The properties of a USB device are defined in a hierarchy of descriptors. Figure 22-46
shows example descriptors of a USB device. Each device has one and only one device
descriptor. Each device can have one or more configurations. Each configuration can
have multiple interfaces.

Endpoint
Descriptor

Device Descriptor
(bNumConfigurations = 2)

Configuration Descriptor
(bNumlnterfaces = 2)

Interface Descriptor
(bNumEndpoints = 3)

Endpoint
Descriptor

Endpoint
Descriptor

Interface Descriptor
(bNumEndpoints = 1)

Endpoint
Descriptor

Configuration Descriptor
(bNumlnterfaces = 1)

Interface Descriptor
(bNumEndpoints = 2)

Endpoint
Descriptor

Endpoint
Descriptor

Figure 22-46. An example of hierarchical descriptors

Serial Communication Protocols RBI

• The device descriptor presents important information of the whole USB device, such
as the vendor ID (signed by USB.org) and the product ID (assigned by the
manufacturer), the total number of configurations, and the maximum packet size for
endpoint 0.

• Although it is uncommon, a device might have multiple configuration descriptors.
For example, a USB device might have a configuration for USB power supply and
another configuration for battery power supply. When there are multiple
configuration descriptors, the USB host must select one. A configuration descriptor
contains information such as the total number of interfaces used for these settings
and power requirements.

• An interface descriptor is associated with a function of the USB device. A
configuration can include a set of interfaces. For example, a web camera can have one
interface for its microphone and another interface for its camera. An interface
descriptor describes information such as the number of endpoints for this interface,
and the class and subclass codes (assigned by USB.org).

Figure 22-47 shows the format of each descriptor. All descriptors have three common
fields:

(1) The length field specifies the number of bytes in the descriptor.

(2) The bDescriptor field indicates the type of descriptor (0x01 = Device, 0x02 =
Configuration, 0x04 =Interface, 0x05 =Endpoint).

(3) The bcdUSB field states the highest USB version that the device supports in BCD
code. For example, 0x0110 is USB 1.1, 0x0200 is USB 2.0, and 0x0300 is USB 3.0.
Chapter 18.4 discusses the BCD code.

The bDeviceClass, bDeviceSubClass, and bDeviceProtocols are defined by USB.org. For
example, a device class code of 0x09, 0xDC, and 0xFF specifies a USB hub, a diagnostic
device, and a vendor specific device, respectively. When the device class code is 0x00,
the interface class code determines the device class.

The blnterfaceClass is also predefined by USB.org. For example, the following are some
example codes of interface class: audio (0x01), human interface device (0x03), physical
interface device (0x05), image (0x06), printer (0x07), mass storage (0x08), smart card
(0x0B), content security (0x0D), video (0x0E), personal healthcare (0x0F), and wireless
controller (0xE0).

There is also a string descriptor, which defines an array of strings. The iManufacturer,
iProduct, iSerialNumber, iConfiguration, iFunction and ilnterface used in the above
descriptors are the index to the string array.

•"!:ti 22.4 - Universal Serial Bus (USB)

Device Descriptor

Field Name Size Offset
blength 1 0
bDescriotorType 1 1
bcdUSB 2 2
bDeviceClass 1 4
bDeviceSubClass 1 5
bDeviceProtocol 1 6
bMaxPacketSize 1 7
idVendor 2 8
id Product 2 10
bed Device 2 12
iManufacturer 1 14 Configuration Descriptor
iProduct 1 15
iSerialNumber 1 16 _______. Field Name Size Offset

bNumConfie:urations 1 17 blength 1 0
bDescriotorTvoe 1 1

Interface Descriptor wTotallength 2 2
bNumlnterfaces

Offset 1.--- 1 4
Field Name Size bConfigurationValue 1 5
blength 1 0

iConfiguration 1 6
bDescriotorTvoe 1 1

bmAttributes 1 7
blnterfaceNumber 1 2

bMaxPower 1 8 bAlternateSetting 1 3
bNumEndpoints 1 4 1------__ • Endpoint Descriptor
blnterfaceClass 1 5 ...

Field Name Size Offset bl nterfaceSubClass 1 6
blength 0 bl nterfaceProtocol 1 7 1
bDescriptorTvoe ilnterface 1 8 1 1
bEndpointAddress 2 1
bmAttributes 1 3
wMaxPacketSize 2 4
blnterval 1 6

String Descriptor

Field Name Size Offset
blength 1 0
bDescriptorTvoe 1 1
wLANGID[O] 2 2
wLANGIDfl] 2 4
wLANGIDfxl 2 6

Field Name Size Offset
blength 1 0
bDescriotorTvoe 1 1
bStrine: n 2

Figure 22-47. Format of device, configuration, interface and endpoint descriptor

Serial Communication Protocols ii:fA

22.4.3.2 Endpoint-Oriented Communication
Each transfer over USB is identified by a three-tuple: device address, endpoint, and direction.
Every device must support endpoint 0, which is used for the host to control and set up
the device. As shown in Figure 22-48, the web camera has four endpoints in the first
configuration.

• Endpoint 0 is for the host to control the device.
• Endpoint 1 forms a channel to access the microphone.
• Endpoint 2 is to access the camera.
• Endpoint 3 is to access the storage.

To meet time constraints, isochronous transfers are preferred for transmitting audio and
video signals from endpoint 1 and 2 to the host. Bulk transfers are selected for endpoint
3 IN and OUT to store and retrieve data. The web camera can have a second configuration,
which includes another set of functions. The host decides which configuration is to be
used for the web camera.

USB HOST

(Device
Address,
Endpoint,
Direction)

Host selects one
configuration. Only one
configuration Is active.

USB
HUB

USB Device 1 (Web Camera with Storage)

I
I
I
I
I
I

USB Configuration 1

Endpoint 0 (Control, IN)

Endpoint 0 (Control, OUT)

:---1

l----=~~~~~-~~ -~--~1-~-~-~-h-~~~~-~-~ '_ ~-N-~-----J
USB Interface 1 (Mic)

r·--.
: Endpoint 2 (Isochronous, IN) ; t __ J

USB Interface 2 (Camera)

r··--;
! Endpoint 3 (Bulk, IN) i

[____ :_~-~-~~'.~~-~-~~-~-'.~:--~~:.~--------------J

USB
Function 1

(Mic)

USB
Function 2
(Camera

USB
Function 3
(Stora e)

1 USB Interface 3 (Storage) I L-~~~~~~-'-~.::....;~~~~~~~___,
I
' ~~~~~~~~~~~~~~~~~~
\ USB Configuration 2

USB Device 2 (Speakers)

Figure 22-48. An USB configuration may have multiple functions (such as a microphone,
camera, and storage device). All communications occur between the host and the endpoints of

an USB configuration.

~
~ 22.4 - Universal Serial Bus (USB)

22.4.3.3 USB Enumeration
USB enumeration is the process of detecting and identifying a USB device. During a USB
enumeration, the host performs the following steps:

1. Detect whether a device has been connected. When a USB device is plugged into
a host, there is a change on the USB D+ or D- line because one of them is pulled
up by the device.

2. Determine the USB speed. As introduced previously, pulling up the D- via 1.SKO
pull-up to 3V indicates a low-speed device. The same pull-up on the D+ specifies
a high-speed device.

3. Retrieve the device descriptor and identify what device is attached.
4. Retrieve all configuration descriptors. This process may take milliseconds to

complete. The host selects one configuration.
5. Retrieve all interface descriptors.
6. Load the corresponding device driver. This is typically handled by operating

systems on the host. The host uses idVendor and idProduct to match a driver.
Binary

bmRequestType

x)()(xxxxx

Recipient:
O = Device
1 = Interface
2 = Endpoint
3 =Other
4 .. 31 =Reserved

bRequest

One byte

Type: O = Standard. 1 = Class.
2 = Vendor, 3 = Reserved

Direction: 0 = Host to Device,
1 = Device to Host

wValue wlndex

Two bytes Two bytes

Standard Device Requests
OxOO = GET_STATUS
Ox06 = GET _DESCRIPTOR
Ox08 = GET_CONFIGURATION

Ox01 = CLEAR_FEATURE
Ox03 =SET _FEATURE
Ox05 = SET _ADDRESS
Ox07 = SET_DESCRIPTOR
Ox09 = SET_CONFIGURATION

Standard Interface Requests
OxOO = GET_STATUS
OxOA = GET_INTERFACE

Ox01 = CLEAR_FEATURE
Ox03 = SET_FEATURE
Ox11 = SET_INTERFACE

Standard Endpoint Requests
OxOO = GET_STATUS
Ox12 = SYNCH_FRAME

Ox01 = CLEAR_FEATURE
Ox03 =SET FEATURE

Figure 22-49. Format of setup request

wlength

Two bytes

The host sends a series of setup requests to complete the above enumeration process. The
device responds to each setup request. Figure 22-49 shows the standardized format of a
setup request. Figure 22-50 shows the procedures of retrieving the device description.
Note the setup request is encapsulated into the data packet as its payload.

Serial Communication Protocols Ea

Binary 18 bytes

bmRequestType bRequest wValue wlndex wlength

00 00000 Ox06 Ox0001 OxOOOO Ox0012

Recipient: Device Get_ Descriptor Descriptor Type & Index Descriptor Length

Type: Standard
The data packet direction after this Get Device Descriptor: OxBO, Ox06, Ox01 , OxOO , OxOO, OxOO, Ox12, OxOO
request: Device to Host

First Transaction: Send the Get_Device_Descriptor request

SYNC PIO ADDR ENDP CRC5 EOP
Host

Ox01 2 10101 OxB4 0 SEO, J

Ob101 1,0100 LSB fi rst Iii PIO= 1101 =SETUP

SYNC DATA CRC16 EOP
Device

Ox80, 0x06, Ox01 , OxOO, OxOO, OxOO, Ox12 , 0x00 OxD768 SEO,J Ox01

Ob1100 ,0011 LSB first Iii PIO= 0011 = DATAO

Host
SYNC EOP

Ox01 SEO, J

Ob0100, 101 1 LSB first Iii PIO= 0010 =ACK

Second Transaction: Retrieve the first 16 bytes of the device descriptor

Host SYNC ADDR ENDP CRC5 EOP

2 0 10101 SEO, J 16 bytes Ox01

Ob1001 ,0110 LSBfirst Iii PIO = 1001 = IN

Device
SYNC

Ox01

DATA CRC16 EOP

Ox12,01,00 ,01 ,DC,OO,OO, 10,71 ,04,FO,FF,00,01 ,00,00 OxC383 SEO,J

Ob1101 ,0010 LSB first PIO= 1011 = DATA1

Host
SYNC

Ox01

EOP

SEO, J

Ob0100,1011 LSB first PIO= 0010 =ACK

Third Transaction: Retrieve the rest of the descriptor

Host

Device

Host

SYNC PIO ADDR ENDP CRC5 EOP

Ox01 2 0 10101 SEO, J

~--~-==-.:O:b~1:00~1~, 0~1~1:0=LS:B:fi:rst;;~Pl~D~==10=0:1===1=N==---....... 2 bytes
SYNC

Ox01

SYNC

Ox01

DATA

Ox00,0x01

Ob1100,0011

EOP

SEO, J

LSB first

CRC16 EOP

OxFCF1 SEO,J

PIO= 001 1 = DATAO

Ob0100, 1011 LSB first PIO= 0010 =ACK

USB is
Little
Endian.

Figure 22-50. An example of sending a get_device_descriptor by using three transactions.
Assume the maximum data size is 16 bytes. The request is sent as the payload of the first

transaction.

#-JU.I 22.4 - Universal Serial Bus (USB)

After detecting a USB device is attached, the host waits for at least 100 ms to allow the
completion of USB device plugging and then issues a reset request. The reset request sets
the device into the default state. Initially, the default address of a USB device is 0. Each
USB device should respond to all requests addressed to 0 before it is assigned a unique
address.

It is the host's responsibility to assign a unique address to the USB device. The host sends
an SET _ADDRESS request, which includes the assigned address, to the device, as shown in
Figure 22-51. The device shall respond to all requests targeted to the assigned address.

Binary

bmRequestType bRequest

0 00 00000 Ox05

Set_ Address Recipient: Device

'----- Type: Standard

~--- Direction: Host to Device

Host
SYNC PID ADDR ENDP

Ox01 OxB4 0 0

wValue

Ox0002

New Address

CRC5 EOP

01000 SEO, J

Ob1011 ,0100 LSB first • PID = 1101 = SETUP

SYNC DATA

wlndex

OxOOOO

CRC16
Host

Ox01 OxOO, Ox05, Ox02, OxOO, OxOO, OxOO, OxOO, OxOO OxD768

Ob1100,0011 LSB first • PID = 0011 =DAT AO

SYNC EOP
Device

Ox01 SEO, J

Ob0100, 1011
LSB first

PID = 0010 =ACK

wlength

OxOOOO

No Data Package

EOP

SEO,J

Figure 22-51. Example of sending a set_address request by using one transaction

Figure 22-52 shows the enumeration process in Windows operating systems.
• The host first uses a simple debouncing technique to wait for the USB device to

plug in successfully and become stabilized.
• Then the host issues a reset request by using the default USB address 0. Because

the host initially does not know the packet size supported by the control endpoint
(i .e. , endpoint 0) of the USB device, the host issues two GET _DESCRIPTOR requests
for the device descriptor. The first device descriptor request is to find the packet
size supported by the device. Before issuing the second device descriptor request,
the host sends another reset request to eliminate any confusion that the device
may have. Some devices get confused if the host does not let the response to the
first device descriptor request complete.

First Reset

First Device
Descriptor Request

Second Reset

Port stabilization debounce.

Host detects USB speed

Host issues a RESET request to the
default USB address 0.

Host issues GET_DESCRIPTOR request
to address 0 to get the device description

After receiving the first 8 bytes of device
description , host issues another RESET

re uest.

Host allocates a unique address and
issues a SET_ADDRESS request.

Second Device Host issues GET_DESCRIPTOR request
Descriptor Request to get the full device description

Host issues a GET_DESCRIPTOR
request to get the configuration

description .

Host issues a GET _DESCRPTOR to get
the Micscroft OS Feature Descriptors.

Host issues a GET _DESCRPTOR to get
the serial number string.

Serial Communication Protocols i.Jiji

- - - - The host waits at least 1 OOms after detecting a device is plugged in.

- -- -The speed is determined by the pull-up on either D+ or D-.

Every device must respond to the default address 0 if it has not
been assigned a unique address.

The objective is to know the correct maximum packet size for the
default control endpoint (bMaxiPacketSize field is at offset 7).

The second reset is to avoid any confusion caused by the second
- - - - device descriptor request if the device has not completed the

response to the first device description request.

The host will wait at least 1 Oms for the device to set up the
assigned address

If the request fails or times out, the enumeration is canceled and
the device is listed "Unkown Device"

The host specifies a length of 255 bytes. The host will verify the
- - - - bytes received and the length specified in the configuration

descriptor, i.e., the bLength field .

For devices supports USB 2.0 or above, the host validates the
descriptor's bVendorCode field against the registry database.

The host uses American English Language ID (Ox409) and the
serial number string index.

Figure 22-52. USB enumeration process in Windows

Windows operating systems (OS) also define proprietary descriptors for USB 2.0 and
above, which allow the OS to install and configure the device automatically, making the
process of plug and play smooth for users. The OS descriptors contain a variety of
vendor-specific information, such as the identification code of a new type of device that
incorporates new features of a standard USB device class or subclass. Figure 22-53 shows
the format of the request that retrieves a vendor-specific OS descriptor.

Binary

bm Req uestT ype bRequest wValue wlndex

10 00000 Ox01 Interface Feature Index

Recipient: Device High Byte = 0
~-- Type: Vendor GET_MS_DESCRIPTOR Low Byte= lnterfaceNumber

The data packet direction after this
request: Device to Host

wlength

Length

Ox0001 = Genre:
Ox0004 = Extended compat ID
Ox0005 = Extended properties

Figure 22-53. Format of the request to retrieve an OS descriptor

lliJ!I 22.4 - Universal Serial Bus (USB)

22.4.4 USB Class Layer
As introduced previously, a USB device can perform multiple logical functions. The
device layer allows a host to send a USB request to a given function via endpoints. Each
function follows a predefined class protocol to handle USB requests. Examples of
standardized USB class protocols include the human interface device (HID), the
communications device class (CDC), the personal healthcare device class (PHDC), the
mass storage class (MSC), the audio, and the video. Vendors can also customize the USB
class protocols.

The HID class specifies the interactions to human interface devices such as keyboards,
mice, and game controllers. We discuss HID in this chapter later.

The CDC class emulates a virtual UART to interconnect with a serial communication port,
such as RS-232 COM port. As serial ports are being gradually eliminated on personal
computers, more applications utilize the CDC function of USB to communicate devices
such as modems, fax machines, and telephony devices.

The PHDC class specifies the standards to interact with personal health devices such as
blood pressure monitors, glucose meter, cardiovascular fitness monitor, and weight
scales. The protocols are grouped into three themes: health and wellness, disease
management, and aging independently. Because low latency and high reliability are very
critical in some applications, this class defines meta-data along with the message data so
that the host can determine how to transfer data over USB to meet the latency and
reliability requirements.

The MSC class is a protocol to access a USB storage device. Modern USB storage devices
use bulk transfers to achieve high bandwidth. Another important specification is the boot
ability, which allows a computer to boot from an external USB storage device, instead of
an internal hard drive.

The audio class uses isochronous data transfers to stream audio data at a constant rate.
For full-speed USB devices, a data frame spans 1 ms, and a device can transfer 0-1023
bytes per data frame, depending on the application's need. As introduced previously,
isochronous transfers have no acknowledge packet and no error-checking ability. Thus,
a transmission error may occur.

The video class provides the function of streaming video in real time like web cameras.
Like the audio class, the video class also uses isochronous transfers. A video device shall
complete a bandwidth negotiation process with the host. The video class allows the host
to determine preferred stream parameters to the device. After the device reports to the
host, the maximum bandwidth usage based on given parameters, the host uses the

Serial Communication Protocols Bl

bandwidth information to identify alternate interfaces. An alternative interface is an
interface that the device provides for replacing the default interface. For example, a video
device with various resolutions provides different alternative interfaces that have
different bandwidth requirements.

22.4.5 Human Interface Device (HID)
The HID class consists of devices that are used by humans to interact with a computer,
such as a mouse, keyboard, touch screen, or game controller.

• One advantage of HID is that the host probably already has device drivers, and
thus a programmer might not need to write any software for the host.

• One disadvantage of HID is that its bandwidth is relatively small because its
maximum packet size for full speed is limited to 64 bytes. Because there is one
data transfer per frame (1 ms), the bandwidth of HID is limited to 64KB/s.

HID is the interface descriptor, and it is not the device descriptor. HID specifies the class
information.

• A class code of 0x03 in the interface descriptor indicates that the device is a HID
device.

• ALL HID devices must have a control endpoint (endpoint 0), an interrupt IN
endpoint, and an optional interrupt OUT endpoint.

• The device data, such letters pressed on a keyboard, are sent to the host via the
interrupt IN endpoint.

blnterfaceClass = Ox03 (HID)
blnterfaceSubClass

0 = No subclass
1 = Boot interface subclass
2 - 255 = Reserved

blnterfaceProtocol
0 =None
1 =Keyboard
2 =Mouse
3 - 255 = Reserved

' ' '
' '

Device Descriptor

Configuration Descriptor

\",,_----~-----,
Interface Descriptor

Field Name Size
blength 1
bDescriptorType 1
bed HID 2
bCountrvCode 1
bN u mDescriotors 1
bDescriotorTvoe 1
wDescriotorLenlrth 2
fbDescriatorTvael... 1
r wDescriatorLen~th 1 .. . 2

-~

Endpoint Descriptor HID Descriptor

Report Descriptor Physical Descriptor

Figure 22-54. HID Descriptor

Offset

0
1
2
4
5
6
7
9
10

•»• 22.4 - Universal Serial Bus (USB)

A special descriptor called HID descriptor defines the format of data exchanged between
the host and the USB device.

• Example input data include the pressed key on a keyboard, and the X and Y data
from a mouse.

• Example output data include LEDs indicating power status, caps lock or the
number lock on a keyboard.

The host requests the HID descriptor during the USB enumeration process. A HID
descriptor can include both report and physical descriptors.

• A report descriptor specifies the structure (data size, data type, and data meaning)
of all data items that a device generates.

• A physical descriptor is optional and describes the part or parts of the human
body used to activate the controls.

The objective of both descriptors is to help the USB host parse received data. This section
gives two example HID descriptors (a keyboard and a mouse).

The following gives an example report descriptor of a keyboard. The":" sign is to declare
a bit-field in a structure. The LED structure includes three padding bits to extend the size
of the structure to one byte.

RIGHT GUI LEFT GUI
RIGHT ALT LEFT ALT

RIGHT SHIFT LEFT SHIFT
RIGHT CTRL LEFT CTRL

Byte 0 4 3 0 Modifier

Byte 1 Reserved

Byte 2 Padding 4 3 2 1 0 LED

Byte 3 Key(O]

Byte4 Key[1]

Byte 5 Key[2]

Byte 6 Key(3]

Byte 7 Key(4]

Byte 8 Key(S]

Figure 22-55. Report format of a keyboard

typedef struct _HID_KEYBOARD_REPORT{
uint8_t modifier;
II bit flags for
II ALT, SHIFT, CTRL and GUI
uint8_t reserved;
struct {

unsigned Num Lock : 1;
unsigned Caps_Lock : 1;
unsigned Scroll_Lock : 1;
unsigned Shift_Lock : 1;
unsigned Power : 1
unsigned Padding :3;

} LED;
uint8_t key[6];

} HID_KEYBOARD_REPORT;

HID class-specific requests are used during the enumeration. Supported class-specific
requests for HID devices include GET _REPORT, SET _REPORT, GET _IDLE, SET _IDLE,

GET_PROTOCOL, and SET_PROTOCOL. Figure 22-56 shows an example of GET_REPORT

request to retrieve HID report descriptor.

Serial Communication Protocols i§•

Get HID Descriptor: Ox81 , Ox06, OxOO, Ox22, Ox03, OxOO, Ox72, OxOO
Binary

bmRequestType bRequest wValue

00 00001 Ox06 Ox2200

wind ex wlength

Ox0003 Ox0072

Recipient: Interface Get_ Descriptor Descriptor Type & Index Descriptor Length

~-- Type: Standard
The data packet direction after this
request: Device to Host

Figure 22-56. A get_report request to retrieve HID report descriptor

const uint8_t HID_Keyboard_ReportDescriptor[] = {
0x05, 0x01, II Usage page (generic desktop)
0x09, 0x06, II Usage (keyboard)

};

0xA1, 0x01, II Collection (application)
0x75, 0x01, 11 Report size (1 bit)
0x95, 0x08, II Report count (8): for 8 modifier bits
0x05, 0x07, II Usage page (key codes)
0x19, 0xE0, II Usage minimum (keyboard Left control)
0x29, 0xE7, II Usage maximum (keyboard right GUI)
0x15, 0x00, II Logical minimum (e)
0x25, 0x01, II Logical maximum (1)
0x81, 0x02, II Input (data, variable, absolute)
0x95, 0x01, II Report count (1): for reserved byte
0x75, 0x08, II Report size (8 bits)
0x81, 0x03, II Input (canst, variable, absolute)
0x95, 0x05, II Report count (5), for 5 LED outputs from the host
0x75, 0x01, II Report size (1 bit)
0x05, 0x08, II Usage page (LEDs)
0x19, 0x01, II Usage minimum (number Lock)
0x29, 0x05, II Usage maximum (kana)
0x91, 0x02, II Output (data, variable, absolute)
0x95, 0x01, II Report count (1): LED report padding
0x75, 0x03, II Report size (3 bits)
0x91, 0x03, II Output (canst, variable, absolute)
0x95, 0x06, II Report count (6): Key arrays (6 bytes)
0x75, 0x08, II Report size (8 bits)
0x15, 0x00, II Logical minimum (e)
0x26, 231, 0, II Logical maximum (231)
0x05, 0x07, II Usage page (keyboard)
0x19, 0x00, II Usage minimum (reserved)
0x29, 231, II Usage maximum (keyboard application)
0x81, 0x00, II Input (data, array, absolute)
0xC0 II End collection

Table 22-10. HID keyboard report descriptor

- 22.4 - Universal Serial Bus (USB)

Each row item in the HID descriptor includes a predefined type and value. For example,
the second row in the HID keyboard report descriptor given in Table 22-10 has a type
value pair "0x09, 0x06",

• 0x09 represents the data type, and
• 0x06 represents the value.

The type 0x09 means the upper byte of the usage definition and the value 0x06 represents
keyboard or keypad . The values are predefined, such as 0x02 for mouse, 0x0B for
telephony devices, 0x0D for digitizers, and 0x80 for monitor devices.

The HID descriptor defines a report data structure with a total of eight bytes, as shown
in Figure 22-55. The first byte of the data structure is a bitmap, which includes eight
logical flags. The following two lines define the report size and the report count.

0x75, 0x01,
0x95, 0x08,

II Report size (1 bit)
II Report count (B)

The second byte is a reserved byte. The third byte defines five LED outputs from the USB
host and three unused padding bits.

0x95, 0x05,
0x75, 0x01,

0x95, 0x01,
0x75, 0x03,

II Report count (5), for 5 LED outputs from the host
II Report size (1 bit)

II Report count (1): LED report padding
II Report size (3 bits)

Following the LED byte is a byte array, which is used to hold six key values. Note a
keyboard does not send an ASCII value to the host when a key is pressed. Instead, it
sends the HID key code, as shown in Appendix H.

Note it is often that two key inputs share the same key code. For example, the key code
of /1 a" and /1 A" is 0x04. They are differentiated by the modifier byte shown in Figure
22-55. For example, when Key[0] = 0x04, it represents /1 A" if the LEFT SHIFT or the
RIGHT SHIFT bit is set in the modifier. It represents "a" if none of these two bits is set.

The device needs to inform when a key is released. This can be done in two different
forms.

• The first one is that the device sends a report in which all key values are zero.
• The second one is that the device sends a report in which different key values are

stored, implying that previous keys have been released, and new keys are pressed.

The following gives an example report of a mouse with three buttons and a wheel. To

create a mouse "click," two reports are needed. One is to report the button down (set the

Serial Communication Protocols -

corresponding bit in the first byte), and the other is to report the button release (clear the

corresponding bit in the first byte).

Reserved
.---- Middle button

Right button

Left button
~~~~~~~_.____.~.,........_~ 

Byte 0 7 6 5 4 3 

Byte 1 

Byte 2 

Byte 3 

x 
y 

Wheel 

o Button bit flags 

Figure 22-57. Report format of a mouse 

typedef struct _HID_MOUSE_REPORT{ 
struct { 

unsigned Left : 1; 
unsigned Right : 1; 
unsigned Middle : 1; 
unsigned Padding : 5; 

} Buttons; 
uint8_t X; 
uint8_t Y; 
uint8_t Wheel; 

} HID_MOUSE_REPORT; 

const uint8_t HID_ReportDescriptor[] = { 
0x05, 0x01, II Usage page (generic desktop) 
0x09, 0x02, II Usage (mouse) 

}; 

0xA1, 0x01, II Collection (application) 
0x09, 0x01, II Usage (pointer) 
0xA1, 0x00, II Collection (physical) 
0x05, 0x09, II Usage page (buttons) 
0x19, 0x01, II Usage minimum (button #1) 
0x29, 0x03, II Usage maximum (button #3) 
0x15, 0x00, II Logical minimum (e) 
0x25, 0x01, II Logical maximum (1) 
0x95, 0x03, II Report count (3), for middle, right and Left buttons 
0x75, 0x01, II Report size (1 bit) 
0x81, 0x02, II Input (data, variable, absolute) 
0x95, 0x01, II Report count (1) 
0x75, 0x05, II Report size (5 bits), five padding bits 
0x81, 0x01, II Input (canst, variable, absolute) 
0x05, 0x01, II Usage page (generic desktop) 
0x09, 0x30, II Usage (X) 
0x09, 0x31, II Usage (Y) 
0x09, 0x38, II Usage (wheel) 
0x15, 0x81, II Logical minimum (-127) 
0x25, 0x7F, II Logical maximum (127) 
0x75, 0x08, II Report size (8 bits) 
0x95, 0x02, II Report count (3), for x, y, and wheel 
0x81, 0x06, II Input (data, array, absolute) 
0xC0 II End collection 
0xC0 11 End col Lection 

Table 22-11. HID mouse report descriptor 



#1f1:1 22.5 - Exercises 

22.5 Exercises 
1. Write an assembly program that periodically collects temperature readings from 

two TC74 digital temperature sensors. The sensors use PC protocol. 

2. Write an assembly program that periodically collects information from a Wii 
Nunchuk controller, which uses the PC standard mode (100 Kbps). A Nunchuk 
has two push buttons (labeled as C and Z), an 8-bit 2-axis analog joystick (X, Y) 
and a 10-bit 3-axis accelerometer sensor (X, Y, and Z). It has two slave addresses, 
0xA4 for writing and 0xAS for reading. The data returned from a Nunchuk consists 
of 6 bytes. Note the communication is encrypted. One possible decoding is 

Data = (Received data XOR 0x17) + 0x17 

Address Data 
0x00 Joystick X 
0x01 Joystick Y 
0x02 Accelerometer X (bit 9 to bit 2) 
0x03 Accelerometer Y (bit 9 to bit 2) 
0x04 Accelerometer Z (bit 9 to bit 2) 

0x05 Acee!. Z I Acee!. Z 
(bit 1) (bit 0) 

Acee!. Y I Acee!. Y I Acee!. X I Accel. X I C I Z 
(bit 1) (bit 0) (bit 1) (bit 0) button button 

The initialization command has two bytes (0x40, 0x00), and a conversion 
command has only one byte (0x00). The conversion command is to ask the 
Nunchuk to collect the data from all its sensors and make the data ready to 
transfer. All commands should be sent to the slave address 0xA4. After the 
conversion command, the six-byte data can read out from the slave address 0xAS. 

Joystick X 0x80 = Center, 0x00 = Full left, 0xF F = Full right 

Joystick Y 0x80 =Center, 0x00 =Full up, 0xFF =Full down 

Acceleration 0 - 1023. 
Button 0 = pressed, 1 = released 

3. Use the SPI protocol to interact with 3-axis gyroscope (Parallax L3G4200D). The 
gyroscope provides the rate of change in rotation on its X, Y and Z axes. 

4. Use the SPI protocol to read an SD memory Card. 

5. Implement a HID keyboard device. When the user button on the discovery kit 
board is pressed, the host PC automatically plays a YouTube video. 

6. Implement a HID mouse device. The device automatically draws a picture on the 
host screen (such as drawing a circle in Paint in Windows). 



Multitasking i"Wi 

CHAPTER 

23 

Multitasking 
23.1 Processor Mode and Privilege Level 
Cortex-M processors have two execution modes: handler mode and thread mode, as 
shown in Figure 23-1. On reset, the processor enters thread mode by default. The 
processor enters handler mode when it starts to serve an interrupt request. The processor 
exits handler mode after the interrupt service routine completes. 

Reset 
Privileged 

thread mode 

Interrupt 
request 

exit exit 

Handler mode 

Unprivileged 
thread mode 

Interrupt 
request 

Figure 23-1. Thread mode and handler mode 

In addition, Cortex-M provides two privilege levels: privileged or unprivileged. 

• Thread mode execution can be privileged or unprivileged. While the privileged 
state allows software to access all resources in a processor, the unprivileged state 
prevents software from configuring or controlling some protected resources 
directly. When the processor is in the unprivileged state, software can indirectly 
access protected resources via supervisor calls (SVC). 

• When the processor is reset, the processor enters the privileged thread mode by 
default. Software can change the thread mode from privileged to unprivileged, 
but not the other way around. 

• When the processor is in handler mode, software is always executed at the 
privileged level. 



~ 23.1 - Processor Mode and Privilege Level 

Providing two privilege levels increases the security of the whole system. For example, 
at the unprivileged level, software cannot configure the system timer (SysTick), NVIC, 
or the system control block (SCB). Additionally, load/store instructions cannot access 
protected memory regions or peripherals. 

23.1.1 Control Register 
Cortex-M processors have a special-purpose register named CONTROL, as shown Figure 
23-2. It has only three value bits: the floating-point context active flag (FPCA), the stack 
pointer selection bit (SPSEL) and the execution privilege in thread mode bit (nPRIV). The 
value of the CONTROL register is 0x00000000 on reset. 

31 3 2 0 
Reserved FPCA SPSEL nPRIV 

FPCA = 0: FPU has not been used.} 
FPCA = 1: FPU has been used. --~ 

SPSEL = 0: Thread mode uses MSP. (default) } 
SPSEL = 1: Thread mode uses PSP. -----~ 

nPRIV = 0: Thread mode is privileged . (default)}--------~ 
nPRIV = 1: Thread mode is unprivileged. 

Figure 23-2. CONTROL register 

• The nPRIV bit determines whether thread mode is privileged or unprivileged. 
• The SPSEL bit controls whether MSP or PSP is the current stack. The stack pointer 

r14 (SP) shadows the main stack pointer register (MSP) or the process stack pointer 
register (PSP). 

o In handler mode, PUSH and POP stack operations use MSP. Additionally, the 
processor ignores any writes to the SPSEL bit. 

o In thread mode, PUSH and POP operations use either MSP or PSP. 

o On reset, MSP is the default active stack. 
• The FPCA bit, as introduced in Chapter 12.4.1, indicates whether the processor has 

executed any floating-point instructions. 

The following program shows how to read the CONTROL register, how to modify the 
CONTROL register to select the process stack (PSP) as the active stack, and how to switch to 
the unprivileged level. 

~asm uint32_t get_CONTROL(void) { 
MRS r0, CONTROL ; MRS: Move to register from status register 
BX lr 

} 

Example 23-1. Reading the CONTROL register 



Multitasking iml 

~asm void select_PSP(void) { 
; Assume PSP has already been initialized. 
MRS r0, CONTROL , MRS: Move to register from status register 
ORRS r0, r0, #2 ; Set bit 2 to 1 
MSR CONTROL, r0 ; MSR: Move to status register from register 
!SB Ensure subsequent instructions use the new SP 
BX lr 

} 

Example 23-2. Switching to the process stack (PSP) 

~asm void select_Unprivileged(void) { 
; Assume PSP has already been initialized. 
MRS r0, CONTROL , MRS: Move to register from status register 
ORRS r0, r0, #1 ; Set bit 0 to 1 
MSR CONTROL, r0 ; MSR: Move to status register from register 
!SB ; Ensure subsequent instructions have the new privilege Level 
BX lr 

} 

Example 23-3. Switching to the unprivileged level 

After programming the CONTROL register, the processor should execute the instruction 
synchronization barrier instruction (!SB) to flush the pipeline and re-fetch instructions. 
As ARM Cortex-M processors are pipelined, there are instructions that may have been 
fetched when the processor modifies the CONTROL register. To ensure all subsequent 
instructions use the updated privilege level or the new stack pointer, the processor 
should run !SB. 

23.1.2 Exception Return Value (EXC_RETURN) 
At the entry of an interrupt handler, 
the processor generates a special 32-bit 
value called exception return value 
(EXC_RETURN) and automatically stores 
this value in the link register (LR). 

When the interrupt handler executes 
the instruction " BX LR" to return to the 
interrupted program, the value of 
EXC_RETURN is copied to the program 
counter (PC), triggering the automatic 
interrupt unstacking. 

At the entry of a subroutine, the link 
register stores the return address. 

At the entry of an interrupt handler, 
the link register holds EXC_RETURN. 

As shown in Figure 23-3, EXC_RETURN provides additional information regarding which 
mode the processor should return to after it handles an interrupt, and which registers 

ll 

' 



23.1 - Processor Mode and Privilege Level 

should be unstacked. For ARM Cortex-M4F, EXC_RETURN offers three additional 
information bits, which inform the processor of the following: 

• whether the processor should return to thread mode or handler mode, 
• whether the processor should use MSP or PSP for interrupt unstacking, and 
• whether the stack frame includes FPU registers (see Figure 12-20). 

31 5 4 3 2 
I Upper 27 bits are 1, indicating this is an EXC_RETURN value. I FTYPE I Mode I SPSEL I 

FTYPE = O: FPU Extended stack frame } ._ _ _,I 
FTYPE = 1: Standard stack frame (no FPU registers) 

Mode = 0: Handler mode} 
Mode = 1: Thread mode .__ ____ __J 

SPSEL = 0: Main stack pointer } -·-----------' 
SPSEL = 1: Process stack pointer 

Figure 23-3. Definition of EXC_RETURN 

0 

0 

I I 

For ARM Cortex-M processors without FPU, EXC_RETURN has three valid values: 
0xFFFFFFF1, 0xFFFFFFF9, and 0xFFFFFFFD. For ARM Cortex-M processors with FPU, 
EXC_RETURN has three additional valid values: 0xFFFFFFEl, 0xFFFFFFE9, and 0xFFFFFFED. 

23.1.3 Selection of MSP and PSP in Thread Mode 
While the processor always uses MSP for PUSH and POP instructions executed in an 
interrupt service routine, there are two methods for choosing between MSP and PSP in 
thread mode. 

• The first method is to modify the SPSEL bit in the CONTROL register. If SPSEL is 0, 
then MSP is used in thread mode. Otherwise, PSP is used. 

• The second method is to modify the SPSEL bit of EXC_RETURN, which is stored in 
the link register (LR) when an interrupt service routine starts. If SPSEL of 
EXC_RETURN is 0, MSP will be the active stack after the interrupt handler completes; 
otherwise, PSP will be the active stack. 

As shown in Figure 23-4, when the SPSEL bit in the CONTROL register is 0, MSP is used as 
the stack for both the user program and the interrupt handler. When entering the 
interrupt handler, hardware sets the SPSEL bit in LR to 0, indicating that the automatic 
unstacking should use MSP on interrupt exit. 

However, when the SPSEL bit in the CONTROL register is 1, PSP is used in thread mode, 
and MSP is used in handler mode, as shown in Figure 23-5. The automatic stacking and 
unstacking for the interrupt handler are performed using PSP. If the interrupt handler 



Multitasking ld1M 

uses PUSH or POP instructions, these instructions then use MSP. Hardware sets the SPSEL 

bit in LR is 1 when the interrupt handler starts, indicating that the automatic unstacking 
on interrupt exit should use PSP. 

Stack 
Used 

User Program 

Interrupt 
Signal 

I 
I 

J 
Thread Mode 

MSP 

f 
SPSEL bit in CONTROL register = 0 

Interrupt Exit 

Interrupt Handler 

', Stacking 
'on MSP 

Handler Mode 

MSP 

Unstacking 
,,.,-" from MSP 

User Program 

Thread Mode 

MSP 

SPSEL bit in LR register = 0 

Time 

-+ Thread mode uses MSP before interrupt request -+Thread mode uses MSP after interrupt completes 

Figure 23-4. Selecting MSP in thread mode 

Interrupt Exit 
I 

y 

Interrupt Handler 

User Program 

Thread Mode 

', Stacking 
'on PSP 

Handler Mode 

Unstacking 
,,./ from PSP 

User Program 

Thread Mode 

Stack I PSP MSP PSP 
Used~.~~~~~~~~~..._~~~~~~~~~--'-~~~~~~~~~ 

~.·. . i 
SPSEL bit in CONTROL register= 1 SPSEL bit in LR register= 1 
-+ Thread mode uses PSP before interrupt request -+Thread mode uses PSP after interrupt completes 

Figure 23-5. Selecting PSP in thread mode 

23.2 Supervisor Call (SVC) 
A software program can run in the privileged state or the user (unprivileged) state. When 
the processor is in the unprivileged state, the program cannot directly execute privileged 
instructions and has limited access to processor resources. For example, the program 



23.2 - Supervisor Call (SVC) 

cannot change the processor state via the CPS instruction, cannot modify the system timer, 
and has restricted access to memory, peripherals, and processor status registers. 

Supporting privileged and user states enhances the reliability and security of embedded 
systems. For example, certain areas of the memory address space and certain peripheral 
registers (such as RTC) can only be modified when the code runs at the privileged level. 
Furthermore, a user program running in the unprivileged state cannot change the 
processor to the privileged state. Thus, the aforementioned restrictions cannot be 
bypassed. However, a user program running in the unprivileged state may request some 
system level service that requires the processor to be in the privileged state. Software 
interrupts enable a user program to call for a privilege service without violating the 
restrictions. 

The user program uses the supervisor call (SVC) instruction to execute privileged 
instructions. SVC can generate an exception, which immediately puts the processor into 
the privileged state. The user program can pass parameters to the SVC handler. One 
important parameter is the SVC number, which provides a convenient way to use the SVC 

handler to run different services. For example, the instruction "SVC #0x01" passes the 
immediate number 1 to the SVC handler. 

Following the standard of stacking and unstacking, eight registers are pushed onto the 
stack before SVC_Handler() runs, and they are popped off the stack when the SVC handler 
exits, as shown below. 

SVC #number 

User State Application Code , 

Auto-Stacking: 
push {r0-r3,r12,lr,pc,psr} 

' ' ' ' ' 
' ' ' 

,, SVC Handler 

Privileged State 

' ' 

Application Code User State 
/'------~ 

Auto-Unstacking: 
pop {r0-r3,r12,lr,pc,psr} 

Figure 23-6. Process of stacking and unstacking when SVC interrupt handler is called 

If the SVC interrupt performs critical operations, such as accessing some shared resources 
or data, all interrupts should be disabled when the processor is serving an SVC interrupt. 
This is to prevent the SVC interrupt handler from being temporally stopped by some 
interrupt with higher urgency. The SVC interrupt handler should run the pseudo 
instruction "CPSID I" first to disable all interrupts excluding hard faults and non-



Multitasking ld1~W 

maskable interrupts. When the SVC handler exits, it runs the pseudo instruction "CPSIE 
I" to enable all interrupts. Chapter 11.6.3 introduces CPSID and CPSIE. 

The SVC handler can retrieve the previous PC from the stack, which points to the 
instruction before the SVC handler starts. In this case, it is the SVC instruction. After 
retrieving PC, the SVC handler can retrieve the SVC instruction and obtain the 8-bit SVC 
number directly from the SVC instruction. Table 23-1 shows the SVC instruction format. 

Instruction 15 14 13 12 11 10 9 8 7161sl413121110 

SVC 1 1 0 1 1 1 1 1 imm8 

Table 23-1. Instruction format of SVC instruction 

In the following example, the SVC handler selectively executes two different kernel 
functions based on the SVC number. Additionally, the user program can pass parameters 
to the kernel functions via registers (r0 - r3), following the standard protocol of a 
procedure call. 

This example uses the process stack (PSP) for all assembly code running in the 
unprivileged mode. The instruction "MSR psp, r0" sets the content of PSP. The user 
program uses the instruction "MSR control, r0" to switch the processor to the 
unprivileged mode. Once the processor is in the unprivileged mode, a user application 
is not capable of changing the processor back to the privileged mode. 

Note there is no corresponding statement in standard C language to call the SVC 
instruction. Inline assembly is used to make supervisor calls. 

PSP_Stack_Size EQU 0x00000400 

AREA PSP_STACK, NOINIT, READWRITE, ALIGN=3 

PSP_Stack_Mem SPACE PSP_Stack_Size 

AREA main, CODE, READONLY 
EXPORT _main 
ENTRY 

_main PROC 
; Initialize PSP 
LOR r0, =PSP_Stack_Mem 
MSR psp, r0 

; Use PSP and set state as unpriviLeged 
MOV r0, #0x3 ; bit e: e = privileged, 1 = unprivileged 

; bit 1: e = MSP, 1 = PSP 
MSR control, r0 



23.2 - Supervisor Call (SVC) 

stop 

; Prepare arguments for kernel functions 
MOV r0, #1 ; First argument to kernel function 
MOV rl, #2 ; Second argument to kernel function 
MOV 
MOV 
SVC 
SVC 
B 
ENDP 

r2, #3 
r3, #4 
0x01 
0x02 
stop 

; 

; 
; 

Third argument to kernel function 
Fourth argument to kernel function 
Call kernel function 1 
Call kernel function 2 

SVC_Handler PROC 
EXPORT SVC_Handler 
; Enter handler mode: MSP is used, processor is in privileged state 
CPSID I , Set PRIMASK to disable IRQ 
PUSH {r4-r8,lr} ; Those are pushed onto MSP 

; Processor automatically pushes r6-r3, 
; onto the PSP stack. It is PSP because 
; immediately before the interrupt. 

r12, LR, PC, and PSR 
the processor was using PSP 

MRS r7, psp 
LDR r8, [r7, #24] 
LDRH r8, [r8, #-2] 

; read saved PC from the stack 
; Load halfword 

BIC r8, r8, #0xFF00 ; Extract SVC number 

CMP 
BLEQ 
CMP 
BLEQ 
POP 
CPS IE 

r8, #0x01 
kernel func 1 
r8, #0x02 
kernel_func_2 
{r4-r8, lr} 
I 

BX lr 
ENDP 

kernel_func_l PROC 

; SVC instruction has 16 bits: 6xDF,#imm8 
; if SVC number 1, call kernel function 1 

, if SVC number 2, call kernel function 2 

; Pop from MSP 
; Clear PRIMASK to enable IRQ 

; The processor is in the privileged state, and MSP is used. 
; Run privileged instructions 

BX lr ; Exit the function 
ENDP 

kernel_func_2 PROC 
; The processor is in the privileged state, and MSP is used. 
; Run privileged instructions 

BX 
ENDP 
END 

l r ; Exit the function 

Example 23-4. Using inline assembly to make supervisor calls 



Multitasking Ea• 

23.3 CPU Scheduling 
Many embedded systems use real-time operating systems (RTOS). One of the 
fundamental functions of RTOS is to schedule multiple computation tasks on the 
processor. 

When two or more tasks are running at the same time, a scheduling algorithm is required 
to share the processor across multiple threads of execution. Round Robin is a simple and 
widely used scheduling algorithm in which the processor serves each task for a fixed 
period in circular order. 

Waiting Queue 

Task 
2 

Task 
1 

Figure 23-7. Basic concept of CPU scheduling 

This section illustrates the implementation of a round-robin scheduling algorithm by 
using the system timer (SysTick), which generates interrupts at fixed time intervals. In 
the SysTick handler, the processor first stops the task running currently, and then starts 
to execute the next task. 

Task 

Task 2 Task 2 

I Task 1 Task 1 

Main Main 

Time 

Figure 23-8. Time slices are assigned to tasks in circular order 

The processor's time is divided into time slices (small time units with a fixed length). The 
operating system kernel assigns these time slices to each task in a circular order, as shown 
in Figure 23-8. 

If the time slice is too small, frequent context switches lead to significant performance 
loss. On the other hand, if the time slice is too large, time-critical tasks might experience 
a long delay. A generic time slice has 10 to 100 ms. When a time slice ends, the processor 
switches to the next task. 



23.3 - CPU Scheduling 

The SysTick handler performs the following two operations during a context switch: 

(1) The registers, such as the program counter and the stack pointer, used by the 
current task are stored onto the stack so that the task can be restarted from the 
same point later. 

(2) The registers that belong to the new task are restored to recover the running 
environment for the new task. The SysTick handler should pop these registers off 
the stack. 

Running 

... 
Suspended 

-------------· 

Sys Tick 
Interrupt 

Sys Tick 
Interrupt 

Sys Tick 
Interrupt 

Sys Tick 
Interrupt 

Main Task 

;:o 

Task 1 

' ' ' ' ' ' 

c 
::i 
::i 

-----r-----

SysTick_Handler 

Save current context 
Find next task 
Load context of next task 

' ' ' ' ' ' ' ' ' ' ' (f) ' 
: c: : 
' (J) ' 
: "O : 
' CD ' 
: ::::> : 
' a. ' 
: CD l 

(f) 
c 
(J) 

-0 
CD 
::i 
a. 
CD 
a. 

;:o 
c 
::i 
::i 
s· 
co 

SysTick_Handler 

Save current context 
Find next task 
Load context of next task 

----L:~ _____ ------- _ _ _ ---- ---- _ _ ___ Jt . ..._~_~_!_.:_i_~_:t~-~-~--~_::_~_: '1_:_~_s_k_ 
;:o 
c 
::i 
::i 
s· 
co 

SysTick_Handler 

Save current context 
Find next task 
Load context of next task 

;:o 
c 
::i 
::i 
s· 
co 

Figure 23-9. The SysTick interrupt service routine performs a context switch. 

Task 2 

(f) 
c 
(J) 

-0 
CD 
::i 
a. 
CD a. 

;:o 
c 
::i 
::i 
s· 

co 

(f) 
c 
(J) 
-0 
CD 
::i a. 

' CD ' a. 
' ' 
' ' ' 
' ' ' ' ' 
l 
' • 



Multitasking iitM 

23.4 Example of Round Robin Scheduling 
This section implements a simple Round Robin scheduling algorithm for three tasks. As 
shown below, each task increments a global counter in an infinite loop. Each task does 
not exit and never voluntarily gives up control of the processor to other tasks. 

In most embedded systems, a task has an infinite loop and never exits. A task may 
constantly monitor inputs from external sensors, push buttons, or keyboards. A task may 
also repeatedly update outputs to the external display or to other systems via 
communication, or perform computation in response to sensed data or external events. 

II global counters 
int counter main = 0, counter_taskl = 0, counter_task2 = 0; 

int main(void){ 
int k; 
II Initialization code is not shown here 

} 

while(l){ 
counter_main++; 
for(k = 0; k < 1000; k++); 

} 

void my_task_l(void *data){ 
int i; 

} 

while(l){ 
counter_taskl++; 
for(i = 0; i < 1000; i++); 

} 

void my_task_2(void * data){ 
int j; 
while(l){ 

counter_task2++; 
for(j = 0; j < 1000; j++); 

} 
} 

II increase a global counter 
II time delay 

II increase a global counter 
II time delay 

II increase a global counter 
II time delay 

This example has a mix of C and assembly languages. We must use assembly instructions 
because some necessary machine operations do not have corresponding C statements. 
This example shows the importance of assembly programming languages. Sometimes 
there are no equivalent C statements for some special assembly instructions. Thus, many 
OS kernel functions must be written in assembly. 



23.4 - Example of Round Robin Scheduling 

To simplify the description, we assume the FPU is not used. When serving an interrupt 
request, the processor automatically pushes eight registers onto the stack: the lowest 
four registers (r0, rl, r2, and r3), and the highest four registers (r12, LR, PSR, and PC). 

When FPU is used, the stack frame is more complex (see Chapter 12.4.1.4 for details). 

The processor also automatically pops them off the stack when exiting the interrupt 
handler. Thus, software only needs to preserve the remaining eight registers (r4 - rll) 
during a context switch. In the following, we assume software pushes eight registers (r4 
- rll) onto the stack in descending order, with rll being first and r4 last. 

Memory 
address 

increases. 

typedef struct { 
II Pushed by software 
uint32_t r4; 11 15th item 
uint32_t rs; 11 15th item 
uint32 t r6; II 14th item 

uint32 t r7; 11 13th item 
uint32 t r8; II 12th item 
uint32 t r9; II 11th item 
uint32_t r10; II wth item 

uint32 t rll; II 9th item 
II Pushed by hardware 
uint32 t r0; II ath item 
uint32_t rl; II rh item 
uint32 t r2; II 5th item 
uint32 t r3; II 5th item 

uint32 t r12; II 4tn item 

uint32 t lr; II 3rd item 

uint32 t pc; II 2nd item 
uint32 t psr; 11 1st item 

} stack_frame_t; 

---+ Old PSP 

psp 

ps 

ps 

ps 

psp 

psp 

ps 

psp 

psp 

psp 

psp 

ps 

ps 

+ 60 

p + 56 

p + 52 

p + 48 

+ 44 

+ 40 

p + 36 

+ 32 

+ 28 

+ 24 

+ 20 

p + 16 

p + 12 

p+8 

sp + 4 
ps 
p 

New PSP --1 

<xxxxxxxx> 

xPSR 

PC (r15) 

LR (r14) 

r12 

r3 

r2 

r1 

rO 

r11 

r10 

r9 

r8 

r7 

r6 

rs 

r4 

Push or 
pop by 

hardware 

Push or 
pop by 

software 

Memory 
address 

decreases. 

Figure 23-10. Memory layout of a stack frame (assuming the FPU is not used). Pay attention to 
the register definition order in the stack frame structure. 

As shown in Figure 23-10, the structure stackJrame_t casts a stack frame pointer to a data 
structure pointer in the C language, for the convenience of accessing the content of each 
register pushed in the stack. 

Note that the data structure and the stack grow in opposite directions. When a data item 
is pushed onto the stack, the stack pointer is decremented. However, when a data item 
is added to a data structure definition, the memory address offset increases. Because the 
program status register (PSR) is pushed first, the PSR content has the highest memory 
address, and thus it is the last item in the data structure. 



Multitasking iiHM 

Context Switch ----------- --
~ ......... 

OldPSP ~ <xxxxxxxx> <xxxxxxxx> -+-- OldPSP 

psp + 60 xPSR 
r 

xPSR psp + 60 

psp + 56 PC (r15) PC (r15) psp + 56 

psp + 52 LR (r14) LR (r1 4) psp + 52 

psp + 48 r12 Push or Push or r12 psp + 48 

psp + 44 r3 
pop by pop by 

r3 psp + 44 hardware hardware 
psp + 40 r2 r2 psp + 40 

psp + 36 r1 r1 psp + 36 

psp + 32 rO rO psp + 32 

psp + 28 r1 1 r11 psp + 28 

psp + 24 r10 r10 psp + 24 

psp + 20 r9 r9 psp + 20 

psp + 16 r8 Push or Push or r8 psp + 16 

psp + 12 r7 
pop by pop by 

r7 psp + 12 software software 
psp + 8 r6 r6 psp + 8 

psp + 4 r5 r5 psp + 4 

NewPSP -- r4 

' / 
r4 1-+-- NewPSP 

Stack of Task 1 ~/ Stack of Task 2 

I PSP 

Figure 23-11. The process stack pointer (PSP) can switch between two stacks to perform a context switch. 
Memory 

0x FFFFFFFF~ 

I 

Memory 
address 

decreases. 

Main 
Stack 

Process 
Stack of 
Task 1 

Process 
Stack of 
Task2 

0x00000000~ 

MSP 

PSP 

Figure 23-12 Stack allocation 

II Structure of task_ table 
typedef struct { 

uint32_t sp; 
int flags; 

} task_table_t; 

II Task stack pointer 
II Task status flags 

II Allocate the task table 
task_table_t task_table[3]; 

I I task_table[e] : stack of the main task 
II task_table[l} : stack of task 1 
I I task_table[2] : stack of task 2 

II Keep track of which task is running 
int current_task = 0; 



- 23.4 - Example of Round Robin Scheduling 

The program has a global task table, recording the stack pointer and status flags for each 
task, as shown above. Figure 23-12 shows the stack allocation of these three tasks. These 
three stacks are allocated in memory contiguously. It is assumed that task_table[0] is for 
the main task, task_table[l] is for task 1, and task_table[2] is for task 2. As introduced in 
Chapter 23.1, the processor has two stack pointers. We use the main stack (MSP) for the 
main task and the process stack (PSP) for task 1 and 2. 

The following code shows how to cast the stack pointer to a stack frame pointer and 
access the content of a register stored in the stack directly. 

stack_frame_t * frame; 
frame= (stack_frame_t *)( task_table[i].sp - sizeof(stack_frame_t) ); 
frame->r0 = 0; 
frame->pc = ((uint32_t)func); 
task_table[i].sp = (uint32_t) frame; 
task_table[i].flags = TASK_FLAG_EXEC I TASK_FLAG_INIT; 

One important procedure in the above code is to set the saved PC as the memory address 
of the task function. During the context switch, the SysTick interrupt service routine 
copies this PC value saved on the stack of this task to the PC register, which instructs the 
processor to start to execute this task function . 

The following is the code for the main task. It initializes the stack and stack table for two 
tasks, sets up and enables the system timer, keeps incrementing a global variable 
(counter _main) in an infinite loop, and never exits. 

int main(void){ 
uint32_t k, var = 1; 
tasks_init(); 

} 

new_task(my_task_l, (uint32_t)&var); 
new_task(my_task_2, (uint32_t)&var); 
SysTick_Init(); 
NVIC_EnableIRQ(SysTick_IRQn); 
while(l){ 

counter_main++; 
for(k = 0; k < 1000; k++); 

} 

II Initialize task 1 and one argument 
II Initialize task 2 and one argument 
II See Chapter 11.7 for SysTick 
II Enable SysTick interrupt in NVIC 

II Increase the global counter 
II Delay 

Because MOV cannot access special-purpose registers, the program must use MRS and MSR 
to read or write the PSP and MSP registers, as shown below. 

_asm uint32_t 
MRS r0, msp 
BX lr 

} 

get_MSP(void){ II Read main stack pointer 
copy msp to re 

; re holds result returned 



Multitasking Ell 

_asm void set_MSP(uint32_t topStackPointer){ //Write main stack pointer 
MSR msp, r0 ; copy re to msp 
BX lr ; re holds result returned 

} 

_asm uint32_t get_PSP(void){ II Read process stack pointer 
MRS r0, psp ; copy psp to re 
BX lr ; re holds result returned 

} 

_asm void set_PSP(uint32_t topStackPointer){ II Write process stack pointer 
MSR psp, r0 ; copy re to psp 
BX lr ; re holds result returned 

} 

The following shows the function for creating and initializing a new task. The task takes 
one input argument. 

void new_task(void (*func)(void*), uint32_t args){ 

} 

II The first argument is a function pointer which points to the task function. 
II The second argument is the actual arguments passed to the task function. 
int i; 
stack_frame_t * frame; 
for(i=l; i < MAX_TASKS; i++){ 

} 

if( task_table[i].flags == 0 ){ 

} 

frame= (stack_frame_t *)( task_table[i].sp - sizeof(stack_frame_t) ); 
frame->r4 = 0; 
frame->rS 
frame->r6 
frame->r7 
frame->r8 
frame->r9 
frame->r10 
frame->rll 
frame->r0 

0; 
0; 
0; 
0; 
0; 
0; 
0; 
(uint32_t)args; 

frame->rl 0; 
frame->r2 0; 
frame->r3 0; 
frame->r12 0; 
frame->pc ((uint32_t)func); 
frame->lr 0; 
frame->psr 0x21000000; //Set default PSR value 
task_table[i].flags = TASK_FLAG_EXEC I TASK_FLAG_INIT; 
task_table[i].sp (uint32_t) frame 
set_PSP(task_table[i].sp); 
break; 



23.4 - Example of Round Robin Scheduling 

The system timer (SysTick) generates an interrupt after a fixed time interval. The key 
purpose of the SysTick interrupt handler is to perform a context switch, which allows all 
tasks to take over control of the processor in a circular order. 

~asm void SysTick_Handler(void){ 
IMPORT get_next_task 

} 

IMPORT update_sp 

, Before entering the handLer, eight registers (r0-r3, r12, LR, PSR, 
, and PC) have aLready been pushed automaticaLLy onto the main stack 
; or the process stack. 

CPS ID 

; save 
TST 
MRSEQ 
MRS NE 
STMDB 
MSREQ 
MSRNE 

BL 
BL 
MOV 

I ; Set PRIMASK to disabLe IRQ 

the context of current task 
lr, #0x04 ; LR=0xFFFFFFF9 => MSP; LR->0xFFFFFFFD => PSP 
r0, msp ; Get MSP if LR = exFFFFFFF9 
r0, psp J Get PSP if LR = exFFFFFFFD 
r0!, {r4-r11} ; Save partiaL context (r4-rll) onto the stack 
msp, r0 ; Update MSP if LR = 0xFFFFFFF9 
psp, r0 J Update PSP if LR = exFFFFFFFD 

update_sp 
get_next_task 
lr, r0 

; re = exFFFFFFF9 or exFFFFFFFD 
, Set the Link register 

; Load the context of new task 
TST lr, #0x04 J LR=0xFFFFFFF9 => MSP; LR->0xFFFFFFFD => PSP 
MRSEQ r0, msp ; Get MSP if LR = exFFFFFFF9 
MRSNE r0, psp ; Get PSP if LR = exFFFFFFFD 
LDMFD r0!, {r4-r11} ; Load partiaL context (r4-rll) from the stack 
MSREQ msp, r0 ; Update MSP if LR = 0xFFFFFFF9 
MSRNE psp, r0 J Update PSP if LR = exFFFFFFFD 
CPSIE I ; CLear PRIMASK to enabLe IRQ 
BX lr , Trigger unstacking (r0-r3, r12, LR, PSR, PC) 

The handler first disables all interrupts to prevent interrupt overrun and then checks bit[2] 
of the link register to identify whether PSP or MSP should be used. After registers r4 to 
rll have been pushed onto the stack, update_sp() is called to update the stack table. The 
subroutine get_next_task() uses the round-robin scheduling algorithm to identify the next 
task to be executed. 

The context switch takes the following five steps: 

1. Save the registers of the current task (r0 - rlS, and psr). Registers from r4 to rll 
are pushed onto the stack by the instruction "STMDB r0!, {r4-rll}". The 
processor automatically pushes the other eight registers, including r0 - r3, r12, 



Multitasking •i• 
LR, PSR, and PC, onto the main stack (MSP) or the process stack (PSP) during the 

auto-stacking process. When an interrupt occurs, if SP is MSP, the processor pushes 
these eight registers onto the main stack. Otherwise, the processor pushes these 

eight registers onto the process stack. 

2. Update the stack pointer and status flag of the stack table for the current task. 

3. Search the task table, and identify the next task that is ready to run. 

4. Set MSP or PSP to the stack pointer saved in the task table. 

5. Recover the registers (r4 - rll) from the stack of the next task. The processor 
automatically recovers the other eight registers from the stack when the SysTick 

handler exits. 

Either MSP (for the main task) or PSP (for task 1 and 2) is saved in the stack table. 

II Update the stack tabLe 
void update_sp(void) { 

} 

//Save the current task's stack pointer 
if (current_task == 0) { 

task_table[current_task].sp = get_MSP(); 
} else if ( (task_table[current_task].flags & TASK_FLAG_INIT) 

task_table[current_task].sp = get_PSP(); 
} 

0 ) { 

The following is the round-robin scheduler, which selects the next task in circular order. 
The return value is EXC_RETURN, which is used by the interrupt handler to set up the link 
register (LR). Hardware uses the EXC_RETURN to determine whether the main stack or the 
process stack should be used for automatic unstacking. 

II Identify the next task to be executed 
uint32_t get_next_task(void) { 

current_task++; 

} 

if (current_task == MAX_TASKS){ 

current_task = 0; 
set_MSP( task_table[current_task].sp ); 
return 0xFFFFFFF9; //Exit interrupt by using the main stack 

} else if (task_table[current_task].flags & TASK_FLAG_EXEC){ 

set_PSP(task_table[current_task].sp); 

} 

if (task_table[current_task).flags & TASK_FLAG_INIT) 
task_table[current_task].flags &= ~TASK_FLAG_INIT; 

return 0xFFFFFFFD; II Exit interrupt by using the process stack 



mlfl 23.5 - Exercises 

23.5 Exercises 
1. Immediately after the instruction "SVN #0x01" is executed, draw a memory 

diagram that shows the stack contents. 

2. Why does a software interrupt handler often disable interrupts when it starts? 

3. If multiple concurrently running tasks increase the same counter variable, will 
the counter be incremented correctly? If not, how would you solve this issue? 

4. When the processor starts to execute the interrupt handler, the processor 
automatically performs stacking. How does the processor identify whether MSP 

or PSP is used immediately before the interrupt handler is executed? 



Digital Signal Processing (DSP) llFJ 

CHAPTER 

24 

Digital Signal Processing (DSP) 
Digital signal processing (DSP) is pervasive in modern technologies, ranging from 
multimedia to communication to various special devices such as automotive, robotics, 
and medical systems. Figure 24-1 shows a common DSP scheme that uses ADC to 
quantize an external analog input signal. A low pass analog filter is often used before 
ADC sampling to remove noises above the Nyquist frequency (one-half of the ADC 
sampling rate). In the same way, another low pass analog filter is often used after the 
DAC output to limit output frequencies. 

Analogue 
input signal 

Digital Signal 
Processing 

(DSP) 
DAC 

Figure 24-1. Common diagram of a DSP system 

24.1 Fixed-point and Floating-point DSP 

Analogue 
output signal 

Based on the way numerical values are represented and operated, DSP systems are 
divided into two categories: fixed-point and floating-point. They strike different tradeoffs 
between accuracy, ease of use, cost, and power consumption. 

• Floating-point DSP can express a very wide range of numbers more accurately 
than fixed-point DSP. For example, high-end audio applications often use 
floating-point DSP to achieve a high degree of accuracy because human ears are 
very sensitive. 



M$1:1 24.2 - Fixed-point Data Types in DSP 

• Floating-point DSP is easier to program and has a shorter time to market. Due to 
the nature of floating-point representation, numbers are automatically scaled. 
Fixed-point DSP often must use assembly instructions or compiler built-in 
functions. Also, it should take consideration of the data range to avoid overflow 
and underflow. 

• To meet the speed requirement, floating-point DSP often uses high-performance 
FPU, which increases hardware cost and consumes more power. Fixed-point DSP 
only uses integer operations, which satisfy the cost and power constraints of 
many embedded systems. 

Therefore, floating-point DSP is suitable for low-volume products, or applications in 
which software development cost is a serious concern or data range is very dynamic. 
Example applications are development prototyping, audio applications, medical devices, 
and military applications. On the contrary, fixed-point DSP is preferred in high-volume 
products, or applications in which cost and power are of great concern or data range is 
predictable. Example applications include video applications, speech recognition, and 
wireless communications. 

Cortex-M4 and M7 provide SIMD (Single-Instruction Multiple-Data) instructions to 
accelerate fixed-point DSP performance cost-effectively. This chapter introduces these 
instructions in detail. 

24.2 Fixed-point Data Types in DSP 
As discussed in Chapter 12, signed fixed-point numbers are denoted as Qn, where n is 
the number of fractional bits. A Qn number is a signed (n + 1)-bit two's complement 
integer, with the fixed-point value represented as that integer divided by zn. 

07 I S I Fraction (7 bits) I 

015~ls_._l~~-F_ra_c_tio_n_(_1_5_b_its_)~~~ 

031 ~ls__._l~~~~~~~-F_ra_c_ti_on~(3_1_b_it_s)~~~~~~~~ 

S: Sign Bit (0 =positive, 1 =negative) 

Data range: (-1 , 1- Z 7
) 

i.e. (-1 , 0.9921875) 

Data range: (-1 , 1- Z 15
) 

i.e. (-1 , 0.999969482421875) 

Data range: (-1 , 1- 2-31
) 

i.e. (-1 , 0.999999999534339) 

Figure 24-2. Signed fixed-point format Q7, QlS, and Q31 

Fixed-point formats commonly used in DSP include Q7, Q15, and Q31, as shown in 
Figure 24-2_ A value in Q7, Q15, and Q31 can be stored in a byte, halfword, and word, 



Digital Signal Processing (DSP) Ila 

respectively. They can represent numbers between -1and1(excluding1). These formats 
align memory byte boundary, and thus it is efficient to load numbers from or store them 
in the data memory. 

Software treats a signed fixed-point number as if it were a signed integer represented in 
two's complement. In C, we declare the data type of signed fixed-point variables as 
signed integers, as shown below. 

II 8-bit fractionaL data type in Q7 format 
int8_t arrayA[1024]; II Q7 array 

II 16-bit fractionaL data type in Q15 format 
int16_t arrayB[1024]; II Q15 array 

II 32-bit fractionaL data type in Q31 format 
int32_t arrayC[1024]; II Q31 array 

Example 24-1. Declaring signed fixed-point variables as signed integers in C 

We can use shift operations to convert a value between Q7, Ql5, and Q31 format, as 

shown in Figure 24-3. Because they are signed, ASR should be used to shift right. 

»24 

Figure 24-3. Conversion between Q7, QlS, and Q31 

24.3 Saturation 
Processors treat fixed-point numbers as integers with a fixed range. 

• When a result of an arithmetic operation is larger than the maximum 
representable number, overflow occurs. 

• When a result is smaller than the minimum representable number, underflow 
occurs. In ARM technical documents, underflow is often called as overflow. 

When two's complement is used to represent signed fixed-point numbers, overflow and 
underflow result in a wrap-around phenomenon (see Figure 24-5). This generates 



24.3 - Saturation 

significant errors, and the results can be catastrophic in DSP applications. Therefore, DSP 
processors often support arithmetic operations with saturation. 

32767 

·16364 

-32768 

• Without saturation, overflow and underflow values are truncated, and only the 
least significant bits of the result are retained. Thus, overflow values are trimmed 
to very small values, and underflow values are wrapped around to very high 
values, leading to a wrap-around phenomenon (see Figure 24-5). 

• When overflow or underflow occurs, saturation operation clamps the result to the 
maximum or minimum limit of the representable range (see Figure 24-6). 

- 1.J x 2"'5115 1.1 x 2 1 ~ 

·16384 

·32766 

10 20 30 40 50 60 70 80 

Figure 24-4. Equivalent integer values of a signal. Overflow and underflow occur if 
represented in Q15 

- 2"'5 !I 5 21
·· - I 

-32768 

0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 

Figure 24-5. Wrapped-around output if there is 
no saturation 

Figure 24-6. Saturated output 

Chapter 4.4 introduces SSAT and USAT that saturate a 32-bit integer to a specific signed or 
unsigned range. The following are two instructions that saturate two halfwords of a 
register in parallel. 



Digital Signal Processing (DSP) R 

Signed saturate two signed 16-bit values 
SSAT16 Rd,#imm4,Rm #imm4 =saturation bit position, 

_ 2 imm4 - 1 S. X S. 2 imm4 - 1 -1 
Unsigned saturate two unsigned 16-bit values 

USAT16 Rd,#imm4,Rm #imm4 = saturation bit position, 
0 S. X S. 2imm4 - 1 

Table 24-1. Saturating two 16-bit values in parallel 

RegisterRml 31:16 I 15:0 I 
L-~~~~--.-~~~~~--'-~~~~~-r-~~~~--' 

SSAT16 Rd,#imm4,Rm 
USAT16 Rd,#imm4,Rm 

Saturate Saturate 

Register Rd I 16-bit result I 16-bit result I 
L-~~~~~~~~~~--'-~~~~~~~~~~--' 

Figure 24-7. Signed and unsigned saturation of two 16-bit operands 

When overflow or underflow occurs, the Q bit flag in the application program status 
register (APSR) is set. Software can use the MRS instruction to read the Q flag and the MSR 
instruction to clear the Q flag. The Q flag is sticky in that once it has been set, it remains 
set until software explicitly clears it. 

Read Q flag Clear Q flag 

MRS r0, APSR MRS r0, APSR ; Read APSR 
TST r0, #(1«27) ; z is 1 if Q is e BIC r0, r0, #(1«27) ; Clear Q flag 

MSR APSR_nzcvq, r0 ; Write APSR 

Example 24-2. Assembly code to read or clear Q flag. 

24.4 Arithmetic Instructions 
For DSP applications, Table 24-2 summarizes arithmetic instructions available in Cortex
M4 and M7. Note that only ADD, ADC, SUB, MUL, SDIV, UDIV, UMULL, SMULL, MLA, MLS, SMLAL, 
and UMULAL are available in Cortex-M. 

Many of the instructions listed in Table 24-2 are SIMD (Single-Instruction Multiple-Data). 
SIMD instructions leverage data-level parallelism and simultaneously apply the same 
operation to each member of a set of data. 

There exists much data-level parallelism in many applications such as multimedia, 
graphics, and encryption. For example, to increase the brightness, a constant value is 
added to the red, green, and blue values of each pixel in an image. This SIMD-based 
approach speeds up the computation cost-effectively. 



24.4 - Arithmetic Instructions 

Data Length & Operation Instructions 

8 ± 8 = 8 SADD8, QADD8, USADD8, UQADD8, SSUB8, 
QSUB8, USUB8, UQSUB8 

(8 ± 8) two = 8 SHADD8, UHADD8, SHSUB8, UHSUB8 
SADD16, QADD16, USADD16, UQADD16, SSUB16, 

16 ± 16 = 16 QSUB16, USUB16, UQSUB16, SASX, QASX, UASX, 
UQASX, SSAX, QSAX, USAX, UQSAX 

(16 ± 16) 7 two = 16 SHADD16, UHADD16, SHSUB16, UHSUB16, 
SHASX, UHASX, SHSAX, UHSAX 

32 ± 32 = 32 QADD, QSUB, ADD, ADC, SUB, ADC 
32 ± 32 x two = 32 QDADD, QDSUB 
16 x 16 = 32 SMULBB, SMULBT, SMULTB, SMULTT 
16 x 32 = 32 SMULWB, SMULWT, 
32 x 32 = 32 SMMUL, SMMULR, MUL 
32 x 32 = 64 UMULL, SMULL 
32 32 = 32 SDIV, UDIV 
32 + 16 x 16 = 32 SMLABB, SMLABT, SMLATB, SMLATT 
32 ± 16 x 32 = 32 SMLAWB, SMLAWT 
32 ± 32 x 32 = 32 SMMLA, SMMLAR, SMMLS, SMMLSR, MLA, MLS 
64 + 16 x 16 = 64 SMLALBB, SMLALBT, SMLALTB, SMLALTT 
64 + 32 x 32 = 64 SMLAL, UMULAL 
16 x 16 ± 16 x 16 = 32 SMUAD, SMUADX, SMUSD, SMUSDX 
32 + 16 x 16 ± 16 x 16 = 32 SMLAD, SMLADX, SMLSD, SMLSDX 
64 + 16 x 16 ± 16 x 16 = 64 SMLALD, SMLALDX, SMLSLD, SMLSLDX 
16 x 16 + 32 + 32 = 64 UMAAL 

4 L absolute(8 - 8)i USAD8 
i= l 

4 

32 + L absolute(8 - 8) i USADA8 
i=1 

Table 24-2. Arithmetic instruction with different data sizes 

Figure 24-8 shows an example SIMD instruction (SADD8) that adds four pairs of 8-bit 

signed integers in parallel. This approach has several advantages. 

• First, parallel arithmetic operations accelerate the computation speed. 

• Second, these concurrent operations amortize the overhead of instruction 

fetching, instruction decoding and data memory accessing. 

• Last but not the least, a less number of branch instructions are required in a loop. 

Branch instructions are detrimental to performance. Modern microprocessors 

execute instructions in a pipeline fashion. When executing a branch instruction, a 

processor has to stall the execution pipeline if there is no branch prediction or 

flush the execution pipeline when a branch prediction turns out to be incorrect. 



Digital Signal Processing (DSP) fiji 

I• 
8 bits .. I .. 8 bits .. 1 .. 

8 b~s .. 1 .. 
8 bits 

• I 
Register Rn A3 A2 Al A0 

SADD8 Rd, Rn, Rm 
Register Rm 

C3 = A3 + 83 
C2 = A2 + 82 
Cl = Al + Bl 
C0 = A0 + 80 Four identical 

operations 

Reg ister Rd C3 C2 Cl (0 

Figure 24-8. Example SIMD instruction (SADD8) that adds four pairs of 8-bit signed integers 
in parallel. The results are packed into one destination register (Rd). 

Table 24-2 summarizes all SIMD addition and subtraction instructions. The following 

sections give a detailed explanation of these SIMD instructions. 

Prefix/ Signed Signed Signed Unsigned Unsigned Unsigned 
Saturating Halving Saturating Halving 

Suffix (S) (Q) (SH) (U) (UQ) (UH) 

ADDS SADDS QADDS SHADDS UADDS UQADDS UHADDS 

SUBS SS UBS QSUBS SHSUBS USUBS UQSUBS UHSUBS 
ADD16 SADD16 QADD16 SHADD16 UADD16 UQADD16 UHADD16 

SUB16 SSUB16 QSUB16 SHSUB16 USUB16 UQSUB16 UHSUB16 

ASX SASX QASX SHASX UASX UQASX UH ASX 
SAX SSAX QSAX SH SAX USAX UQSAX UH SAX 

Table 24-3. Summary of 8- and 16-bit SIMD instructions for addition and subtraction 

24.4.1 Parallel 8-bit Add and Subtract 
As discussed previously, computers treat fixed-point numbers as if they were integers. 
The following lists instructions that add or subtract four pairs of 8-bit integers. 

SADD8 Rd,Rn,Rm Signed add 4 pairs of S-bit integers 
SSUB8 Rd, Rn, Rm Signed subtract 4 pairs of 8-bit integers 
UADD8 Rd, Rn, Rm Unsigned add 4 pairs of S-bit integers 
USUB8 Rd, Rn, Rm Unsigned subtract 4 pairs of S-bit integers 
QADD8 Rd, Rn, Rm Saturating add 4 pairs of signed S-bit integers 
QSUB8 Rd, Rn, Rm Signed saturating subtract 4 pairs of 8-bit integers 
UQADD8 Rd,Rn,Rm Unsigned saturating add 4 pairs of S-bit integers 
UQSUB8 Rd, Rn, Rm Unsigned saturating subtract 4 pairs of S-bit integers 

Table 24-4. Parallel 8-bit add and subtract 



24.4 - Arithmetic Instructions 

Register Rn 8 bits 8 bits 8 bits 8 bits 
SADD8 Rd, Rn, Rm 
UADD8 Rd, Rn, Rm 
QADD8 Rd, Rn, Rm Register Rm 8 bits 8 bits 8 bits 8 bits 
UQADD8 Rd, Rn, Rm 

SSUB8 Rd, Rn, Rm 
USUB8 Rd, Rn, Rm 
QSUB8 Rd, Rn, Rm 
UQSUB8 Rd, Rn, Rm 

Register Rd 8 bits 8 bits 8 bits 8 bits 

Figure 24-9. Add or subtract 8-bit integers 

Example 24-3 shows a simple C program, which adds the corresponding Q7 signed 
fixed-point numbers in two arrays. It executes the loops 1024 times. 

int8 t A(1024], B(1024], C(1024]; 
int i; 

for (i = 0; i < 1024; i++){ 
C(i] = A(i] + B[i]; 

} 

II Ql signed fixed-point 

Example 24-3. A C program that does not use SIMD 

We can use SADD8 to speed up pairwise addition in the above C program. Example 24-4 
shows the assembly implementation. This assembly program makes only 256 iterations, 
instead of 1024. It completes four add operations in each iteration. 

LDR r3, =A , Address of array A 
LDR r4, =B ; Address of array B 
LDR rs, =( ; Address of array C 

MOV r6, #256 ; Loop counter 

loop LDR r0, [r3], #4 ; Load four Ql numbers, post-index: r3 = r3 + 4 
LDR rl, (r4], #4 ; Load four Ql numbers, post-index: r4 = r4 + 4 
SADD8 r2, r0, rl ; Add four pairs of Ql numbers 
STR r2, [rs], #4 ; Store four Ql numbers, post-index: r5 = r5 + 4 
SUBS r6, r6, #1 , Decrement Loop counter 
BGT loop 

Example 24-4. An assembly program that uses SIMD 

If the array size is not exactly divisible by four, a compensation loop is needed to handle 

the addition of remainder Q7 values after the main loop shown in Example 24-4. In the 

compensation loop, we can load each byte and add them up. To simplify the description 



Digital Signal Processing (DSP) -

of example codes, we assume the size of Q7 arrays is always a multiple of four and the 

size of Q15 arrays is always a multiple of two. 

AC program can also call the compiler's built-in function (also called intrinsic function) 

_SADD8, as shown in Example 24-5, to utilize the SIMD capability of a microprocessor. 

int8_t A[1024], B[1024], C[1024]; 

uint32_t *pA, *pB, *pC, i; 

pA 
pB 
pc 

(uint32_t*) A; 
(uint32_t*) B; 
(uint32_t*) C; 

II Pointer-to-pointer casting. It changes compiler's 
II views on array A, B and C from signed 8-bit 
II integers to unsigned 32-bit integers 

for(i = 0; i < 256; i++) { 

} 

*pC = _SADD8(*pA, *pB); II Call compiler built-in function which 

pA++; 
pB++; 
pC++; 

/I calls the assembly SADDB instruction 
II Pointer is incremented by size of uint32_t (i.e., 4), 
II because compiler views them as arrays of 32-bit 
II unsigned integers 

Example 24-5. A C program that uses SIMD 

Example 24-6 gives the implementation of the _SADD8 function. 

uint32_t _SADD8(uint32_t opl, uint32_t op2){ 

uint32_t result; 

_ ASM { 
sadd8 result, opl, op2 

} 

return result; 
} 

Example 24-6. Implementation of the _ SADD8 function 

The results of parallel 8-bit add and subtract can be halved by using the following 
instructions, as shown in Figure 24-10. 

SHADD8 Rd,Rn,Rm Signed halving add 4 pairs of 8-bit integers 
SH SUBS Rd,Rn,Rm Signed halving subtract 4 pairs of 8-bit integers 
UHADD8 Rd,Rn,Rm Unsigned halving add 4 pairs of 8-bit integers 
UH SUBS Rd, Rn, Rm Unsigned halving subtract 4 pairs of 8-bit integers 

Table 24-5. Parallel 8-bit instructions to add (or subtract) and division by two 



24.4 - Arithmetic Instructions 

Register Rn 8 bits 8 bits 8 bits 8 bits 

Register Rm 8 bits 8 bits 8 bits 8 bits 

SHADD8 Rd, Rn, Rm 
UHADD8 Rd, Rn, Rm 

SHSUB8 Rd, Rn , Rm 
UHSUB8 Rd, Rn, Rm 

Register Rd 8 bits 8 bits 8 bits 8 bits 

Figure 24-10. Add or subtract 8-bit values, and divide results in half 

No 8-bit saturating addition and subtraction instructions change the Q flag in APSR when 
overflow occurs. Note that in ARM technical documents, underflow is distinguished 
from overflow, and underflow is referred to as overflow. 

LDR r0, =0x80808080 
UQADD8 r2, r0, r0 ; r2 = exFFFFFFFF 

, unsigned saturating, ex80 + exBe = exFF 
; Even though overfLow occurs, Q f Lag is not changed 

LDR r0, =0x70707070 
QADD8 r2, r0, r0 ; r2 = ex7F7F7F7F, 

, signed saturating, ex7e + @x7e = ex7F 
; Even though overfLow occurs, Q f Lag is not changed 

LDR r0, =0x81818181 
QADD8 r2, r0, r0 ; r2 = exBeBeBeBe, 

; signed saturating, exBl + exBl = exBe 
, Even though overf Low occurs, Q fLag is not changed 

LDR rl, =0x80808080 
LDR r2, =0x70707070 

QSUB8 r3, rl, r2 ; r3 = ex80808@Be, 

' 
signed saturating, exBe - ex7e = exBe 

; Even though overflow occurs, Q fLag is not changed 

QSUB8 r3, r2, rl , r3 = ex7F7F7F7F, 
, signed saturating, ex7e - exBe = ex7F 
; Even though overflow occurs, Q fLag is not changed 

UQSUB8 r3, r2, rl , r 3 = exeeeeeeee, 
, unsigned saturating, ex1e - exBe = exee 
; Even though overf Low occurs, Q fLag is not changed 

Example 24-7. Updating Q flags 



Digital Signal Processing (DSP) tiW 

24.4.2 Parallel 16-bit Add and Subtract 
A 16-bit parallel add or subtract instruction carries out pairwise operations on halfwords, 
as shown in Figure 24-11. 

Signed add two pairs of 16-bit integers 
SADD16 Rd,Rn,Rm Rd[T] = truncate16(Rn[T] + Rm[T]) 

Rd[B] = truncate16(Rn[B] + Rm[B]) 
Signed subtract two pairs of 16-bit integers 

SSUB16 Rd, Rn, Rm Rd[T] = truncate16(Rn[T] - Rm[T]) 
Rd[B] = truncate16(Rn[B) - Rm[B)) 
Unsigned add two pairs of 16-bit integers 

UADD16 Rd, Rn, Rm Rd[T) = truncatel6(Rn[T) + Rm[T]) 
Rd[B] = truncate16(Rn[B] + Rm[B)) 
Unsigned subtract two pairs of 16-bit integers 

USUB16 Rd,Rn,Rm Rd[T] = truncate16(Rn[T) - Rm[T]) 
Rd[B] = truncate16(Rn[B) - Rm[B]) 
Saturating add two pairs of signed 16-bit integers 

QADD16 Rd,Rn,Rm Rd[T] = signed_saturatel6(Rn[T] + Rm[T]) 
Rd[B] = signed_saturate16(Rn[B] + Rm[B)) 
Signed saturating subtract 2 pairs of 16-bit integers 

QSUB16 Rd, Rn, Rm Rd[T) = signed_saturate16(Rn[T) - Rm[T]) 
Rd[B] = signed_saturate16(Rn[B] - Rm[B]) 
Unsigned saturating add 2 pairs of 16-bit integers 

UQADD16 Rd,Rn,Rm Rd[T) = unsigned_saturate16(Rn[T] + Rm[T)) 
Rd[B) = unsigned_saturate16(Rn[B] + Rm[B)) 
Unsigned saturating subtract 2 pairs of 16-bit 

UQSUB16 Rd,Rn,Rm Rd[T) = unsigned_saturate16(Rn[T) - Rm[T]) 
Rd[B] = unsigned_saturate16(Rn[B) - Rm[B]) 

Table 24-6. Parallel 16-bit add and subtract 

SADD16 Rd,Rn,Rm 
UADD16 Rd,Rn,Rm 
QADD16 Rd,Rn,Rm 
UQADD16 Rd,Rn,Rm 

SSUB16 Rd,Rn,Rm 
USUB16 Rd,Rn,Rm 
QSUB16 Rd,Rn,Rm 
UQSUB16 Rd,Rn,Rm 

Register Rn 

Register Rm 

Register Rd 

16 bits 16 bits 

16 bits 16 bits 

16 bits 16 bits 

Figure 24-11. Add or subtract 16-bit values 

integers 

The results can also be halved, as shown in Figure 24-12. Because saturation never occurs 

on add or subtract with dividing in half, there are no corresponding halving instructions 

for saturating add or subtract. 



24.4 - Arithmetic Instructions 

Signed halving add two pairs of 16-bit integers 
SHADD16 Rd,Rn,Rm Rd[T) = (Rn[T) + Rm[T))/2 

Rd[B) = (Rn[B] + Rm[B])/2 
Signed halving subtract two pairs of 16-bit integers 

SHSUB16 Rd,Rn,Rm Rd[T) = (Rn[T) - Rm[T))/2 
Rd[B) = (Rn[B) - Rm[B))/2 
Unsigned halving add two pairs of 16-bit integers 

UHADD16 Rd,Rn,Rm Rd[T) = (Rn[T) + Rm[T))/2 
Rd[B) = (Rn[B) + Rm[B))/2 
Unsigned halving subtract two pairs of 16-bit integers 

UHSUB16 Rd,Rn,Rm Rd[T) = (Rn[T) - Rm[T))/2 
Rd[B) = (Rn[B) - Rm[B))/2 

Table 24-7. Parallel 16-bit add (or subtract), and division by two 

Register Rn 16 bits 16 bits 

Register Rm 16 bits 16 bits 

SHADD16 Rd, Rn, Rm 
UHADD16 Rd, Rn, Rm 

SHSUB16 Rd, Rn, Rm 
UHSUB16 Rd, Rn, Rm 

Register Rd 16 bits 16 bits 

Figure 24-12. Add or subtract two pairs of halfwords, and divide results in half 

All 16-bit saturating subtraction and addition instructions cannot set the Q flag in APSR. 

LDR r0,=0x80008000 
UQADD16 r2,r0,r0 ; r2=0xFFFFFFFF, 

) unsigned saturating, exBeee+exBeee=exFFFF 

LDR r0,=0x70007000 
QADD16 r2,r0,r0 ) r2=0xFFFFFFFF, 

; signed saturating, ex7eee+ex7000=0x7FFF 

LDR rl, =0x80008000 
LDR r2, =0x70007000 

QSUB16 r3, rl, r2 ) r2=exseeeseee, 
) signed saturating, exseee-ex7eee=exseee 

QSUB16 r3, r2, rl ; r2=0x7FFF7FFF, 
; signed saturating, ex7eee-ex8000=0x7FFF 



Digital Signal Processing (DSP) fi$M 

24.4.3 32-bit Add and Subtract 
Saturating add and subtract instructions (QADD and QSUB) for 32-bit integers is provided 

to eliminate the wrap-around phenomena. Note that they are not SIMD instructions 
because each of them processes only one pair of data elements. The Q flag is set if 

saturation occurs. 

QADD Rd, Rn, Rm 
Saturating add signed 32-bit integers 
Rd = saturate32(Rn + Rm) 

QSUB Rd, Rn, Rm 
Signed saturating subtract two 32-bit integers 
Rd = saturate32(Rn - Rm) 

In the following example, the QADD and QSUB operations set the Q flag. Once the Q flag is 

set, it remains as 1 until software explicitly clears it. 

LOR r0, =0x70000000 
ADD r3, r0, r0 
QADD r4, r0, r0 

, r3 = exEeeeeeee, Q is unchanged 
, r4 = ex7FFFFFFF, Q = 1 

; Q flag is sticky, and thus software has to clear it explicitly 
MRS r0, APSR ; Read flags 
BIC r0, r0, #(1<<27) , Clear Q flag 
MSR APSR_nzcvq, r0 Store flags 

LOR rl, =0x80000000 
LOR r2, =0x70000000 
SUB r3, rl, r2 ; r3 = ex1eeeeeee 
QSUB r4, rl, r2 , r4 = exBeeeeeee, Q = 1 

With saturation, the second operand can also be doubled before it is added to or 

subtracted from the first operand. The saturation is applied to both doubling and 

addition/subtraction. The Q flag is set if saturation occurs on doubling or 

addition/subtraction. 

QDADD Rd,Rn,Rm Saturating double and add 
Rd = saturate32(Rn + saturate32(Rm * 2)) 

QDSUB Rd,Rn,Rm Saturating double and subtract 
Rd = saturate32(Rn - saturate32(Rm * 2)) 

The double and add instruction (QDADD) is often used in a binary method to multiply a 

constant and a huge number such as a 256-bit number. Given a very large n-bit integer 

K = Lf:0(k12i), where k1 E {O, 1}, the product K x C can be written as 

n-1 

p = K x c =I k1 x (2 x C) 
i=O 



11111 24.4 - Arithmetic Instructions 

The basic idea is that the program scans all bits of K starting from the most significant bit. 
Each individual bit of K determines the computation. If ki = 0, the product is doubled; 
otherwise, a double and add operation is performed on the product if ki = 1. Such 
multiplication method is called the binary double-and-add algorithm. Example 24-8 
gives the pseudocode of its implementation. 

P = 0; // InitiaLization 

for i from n-1 down to 0 

if(k(i) 1) then 
P 2*P + C 

else 
P 2*P 

end if 

end for 

Example 24-8. Pseudocode of double-and-add algorithm to multiply K and C 

24.4.4 Sum of Absolute Difference 
There are two special instructions, USAD8, and USADA8, which calculate the unsigned sum 
(or accumulated sum) of the absolute difference (SAD) between four pairs of 8-bit 
integers in parallel. 

USAD8 Rd, Rn, Rm Unsigned sum of absolute differences 

USADA8 Rd, Rn, Rm, Ra Unsigned sum of absolute differences and accumulate 

The following equation defines the sum of absolute difference (SAD): 

4 

SAD = L absolute(ai - bJ 
i=l 

Computing the sum of absolute difference is often needed in block-based motion 
estimation in video compression. A video frame is divided into blocks of equal size. 
Motion estimation needs to calculate the similarity of blocks in two adjacent frames. The 
sum of absolute difference between a block in the current frame and a block in the last 
frame is often used to measure the similarity between these two blocks. In a video frame, 
each pixel typically has 24 bits, with 8 bits for each of red, green, and blue values. 

Two instructions USAD8 and USADA8 can be used to calculate the absolute differences 
between four pairs of 8-bit unsigned values in parallel. USADA8 adds the sum of the 
absolute difference in a 32-bit unsigned accumulator. 



Digital Signal Processing (DSP) hiM 

By leveraging the data-level parallelism, we can use USADA8 to calculate the sum of 

absolute difference efficiently, as shown in Figure 24-8. 

Compute the sum of absolute difference C Function with inline assembly 

II Two 16-by-16 data blocks 
uint8_t blk1(16](16]; 
uint8_t blk2(16](16]; 

uint32_t _USADA8(uint32_t opl, 
uint32_t op2, 
uint32_t sad) { 

uint32_t *a, *b; II accessing 4 bytes 
_ASM { 

USADA8 sad, opl, op2, sad 

uint32_t sad = 0; 

for(i = 0; i < 16; i++){ 
for(j = 0; j < 4; j++){ 

a = & blkl(i](4*j]; 
b = & blk2[i](4*j]; 

} 

return sad; 
} 

sad += _USADAB( *a, *b, sad); 
} 

} 

Example 24-9. Calculating the sum of absolute difference between two 16-by-16 blocks 

24.4.5 Extension and Add 
As introduced in Chapter 4.8, instructions SXTB, SXTH, UXTB, and UXTH perform signed or 
unsigned extension, which increases the bit width from a byte or halfword to a word. 

• Signed extension fills in additional upper bits with 0 if the sign bit is 0, and fills 
those upper bits with 1 if the sign bit is 1, to preserve the sign and value. 

• Unsigned extension, also called zero extension, pads the source operand with 
zeros from the left side to 32 bits. 

When adding two numbers with different bit lengths, the extension and addition 
operations can be performed in one instruction, as shown below. Note that only ROR is 
allowed for the second source operand. The other shift operations, including LSL, LSR, 

ASR, and RRX, are not permitted in these instructions. 

SXTAB Rd,Rn,Rm{,ROR #} 
Rotate, signed-extend a byte to word, and add 
Rd = Rn + sign_extend((Rm, ROR #)[7: 0]) 

UXTAB Rd,Rn,Rm{,ROR #} 
Rotate, unsigned-extend a byte to word, and add 
Rd = Rn + zero_extend((Rm, ROR #)[7:0]) 

SXTAH Rd,Rn,Rm{,ROR #} 
Rotate, signed-extend a halfword to word, and add 
Rd = Rn + sign_extend((Rm, ROR #)[15:0]) 

UXTAH Rd, Rn, Rm{, ROR #} 
Rotate, unsigned extend halfword to word, and add 
Rd = Rn + zero_extend((Rm, ROR #)[15:0]) 



24.4 - Arithmetic Instructions 

For example, we can add two 16-bit signed integers as follows: 

LDR rs, [r0] , Load two 16-bit values 
SXTAH r3, r3, rs ; sum += sign_extend(r5[B]), r3 = sum 

sum += sign_extend(r5[T)), r3 = sum SXTAH r3, r3, rs, ROR #16 ; 

For unsigned 16-bit integers, we should use UXTAH with zero extension: 

LDR rs, [r0] , Load two 16-bit values 
UXTAH r3, r3, rs 
UXTAH r3, r3, rs, ROR #16 

, sum += zero_extend(r5[B)), r3 = sum 
; sum += zero_extend(r5[T)), r3 = sum 

Similarly, we can use UXT AB to add four 8-bit unsigned integers: 

LDR rs, [r0] ; Load four 8-bit values 
UXTAB r3, r3, rs ; sum += zero_extend(r5[7:0]), r3 = sum 
UXTAB r3, r3, rs, ROR #8 ; sum += zero_extend(r5[15:8)), r3 = sum 
UXTAB r3, r3, rs, ROR #16 ; sum+= zero_extend(r5{23:16}), r3 sum 
UXTAB r3, r3, rs, ROR #24 , sum += zero_extend(r5[31:24]), r3 = sum 

As shown in Figure 24-13, Cortex-M4 and M7 provide special SIMD instructions that first 

extract two bytes from the second operand, then extend them to halfwords, and finally 

add them to the corresponding halfwords in the first operand. 

Rotate, dual extend 8 bits to 16 bits, and add 
SXTAB16 Rd,Rn,Rm{,ROR #} Rd [T] = Rn[T] + sign_extend((Rm, ROR #)[23:16]) 

Rd[B] = Rn[B] + sign_extend((Rm, ROR #)[7: 0]) 

Rotate, dual extend 8 bits to 16 bits, and add 
UXTAB16 Rd,Rn,Rm{,ROR #} Rd [T] = Rn[T] + zero_extend((Rn, ROR #)[23:16]) 

Rd [B] = Rn[B] + zero_extend((Rn, ROR #)[7: 0]) 

Register Rm 23:16 7:0 

Sign/zero Sign/zero 
Extension Extension 

16 bits 16 bits 

Register Rn 

SXTAB16 Rd, Rn, Rm 
UXTAB16 Rd, Rn, Rm 

Register Rd 16 bits 16 bits 

Figure 24-13. Dual extension from bytes to halfwords, and dual addition 



Digital Signal Processing (DSP) iiffil 

In the following program, we can add the lower two 8-bit signed integers. At the same 
time, the upper two 8-bit signed integers are also added up. The sums are saved in the 
upper and lower halfword of the destination register. 

LDR rs, [r0] ; Load four 8-bit vaLues 
SXTAB16 r3, r3, rs ; sum[B] += sum[B] + sign_extend(r5[7:e]) 

, sum[T] += sum[T] + sign_extend(r5[23:16}) 
SXTAB16 r3, r3, rs, ROR #8 , sum[B] += sum[B] + sign_extend(r5[15:8}) 

; sum[T] += sum[T] + sign_extend(r5[31:24}) 

24.4.6 Add and Subtract Halfwords with Exchange 
In many DSP algorithms, such as Fast Fourier Transform (FFT), the sum and the 

difference of numbers are needed for subsequent processing. In the traditional approach, 

an addition and subtraction are executed in a serial fashion, which limits the throughput. 

To accelerate the computation, Cortex-M4 and M7 provide SIMD instructions that can 

perform one addition and one subtraction simultaneously, as listed in Table 24-8, Table 

24-9, and Table 24-10. 

• The prefix S, U, and Q stand for signed, unsigned, and saturating, respectively. 

• In the instruction, A stands for add, S for subtracting, H for halving, and X for 

exchange. 

• For unsigned saturation instructions, including UQASX and UQSAX, the results are 

saturated in the range [-215, 215-1]. For signed saturation instructions, including 

QASX and QSAX, the results are saturated in the range [0, 216-1]. However, these 

instructions do not change the Q flag even if saturation has occurred. 

Signed add and subtract with exchange 
SASX Rd,Rn,Rm Rd[T] = truncate16(Rn[T] + Rm[B]) 

Rd[B] = truncate16(Rn[B] - Rm[T]) 
Unsigned add and subtract with exchange 

UASX Rd,Rn,Rm Rd[T] = truncate16(Rn[T] + Rm[B]) 
Rd[B] = truncate16(Rn[B] - Rm[T]) 
Saturating add and subtract with exchange 

QASX Rd,Rn,Rm Rd[T] = saturate16(Rn[T] + Rm[B]) 
Rd[B] = saturate16(Rn[B] - Rm[T]) 
Unsigned saturating add and subtract with exchange 

UQASX Rd,Rn,Rm Rd[T] = saturate16(Rn[T] + Rm[B]) 
Rd[B] = saturate16(Rn[B] - Rm[T]) 

Table 24-8. Exchange halfwords of 2nd operand, add together top halfwords, and subtract 
between bottom halfwords 



24.4 - Arithmetic Instructions 

Signed subtract and add with exchange 
SSAX Rd,Rn,Rm Rd[T] = truncate16(Rn[T] - Rm[B]) 

Rd[B] = truncate16(Rn[B] + Rm[T]) 
Unsigned subtract and add with exchange 

USAX Rd, Rn, Rm Rd[T] = truncate16(Rn[T] - Rm[B)) 
Rd[B] = truncate16(Rn[B] + Rm[T]) 
Saturating subtract and add with exchange 

QSAX Rd, Rn, Rm Rd[T] = saturate16(Rn[T] - Rm[B]) 
Rd[B] = saturate16(Rn[B] + Rm[T)) 
Unsigned saturating subtract and add with exchange 

UQSAX Rd,Rn,Rm Rd[T] = saturate16(Rn[T] - Rm[B]) 
Rd[B] = saturate16(Rn[B) + Rm[T]) 

Table 24-9. Exchange halfwords of 2nd operand, subtract between top halfwords and add 
together bottom halfwords 

SASX Rd, Rn, Rm 
UASX Rd,Rn,Rm 
QASX Rd,Rn,Rm 
UQASX Rd,Rn,Rm 

Rd[T] = Rn[T] + Rm[B] 
Rd[B] = Rn[B] - Rm[T] 

SSAX Rd, Rn , Rm 
USAX Rd, Rn , Rm 
QSAX Rd , Rn,Rm 
UQSAX Rd , Rn,Rm 

Rd[T] = Rn[T] - Rm[B] 
Rd[B] = Rn[B] + Rm[T] 

ASX: Exchange 2°• operand, add and then subtract SAX: Exchange 2°• operand, subtract and then add 

Figure 24-14. Add and subtract with exchange (ASX), and 
Subtract and add with exchange (SAX) 

The results can also be halved in parallel, as shown in Figure 24-15. 

Signed halving add and subtract with exchange 
SHASX Rd,Rn,Rm Rd[T) = (Rn[T) + Rm[B])/2 

Rd[B) = (Rn[B) - Rm[T]) /2 
Unsigned halving add and subtract with exchange 

UHASX Rd,Rn,Rm Rd[T] = (Rn[T] + Rm[B))/2 
Rd[B] = (Rn[B] - Rm[T))/2 
Signed halving subtract and add with exchange 

SHSAX Rd,Rn,Rm Rd[T] = (Rn[T) - Rm[B))/2 
Rd[B] = (Rn[B] + Rm[T])/2 
Unsigned halving subtract and add with exchange 

UHSAX Rd,Rn,Rm Rd[T] = (Rn[T) - Rm[B))/2 
Rd[B) = (Rn[B) + Rm[T))/2 

Table 24-10. Exchange, add/subtract (or subtract/add), and halving 



SHASX Rd,Rn,Rm 
UHASX Rd,Rn,Rm 
SHSAX Rd,Rn,Rm 
UHSAX Rd,Rn,Rm 

Rd(T] = (Rn(T] + Rm(B])/2 
Rd(B] = (Rn(B] - Rm[T])/2 

Digital Signal Processing (DSP) fi~W 

SSAX Rd,Rn,Rm 
USAX Rd,Rn , Rm 
QSAX Rd,Rn,Rm 
UQSAX Rd,Rn,Rm 

Rd[T] = (Rn[T] - Rm[B])/2 
Rd[B] = (Rn[B] + Rm[T])/2 

HASX: Exchange 2"" operand, halving add, and then halving subtract HSAX: Exchange 2"" operand, halving subtract and then halving add 

Figure 24-15. Exchange, add and subtract, and halving (ASXH), and 
Exchange, subtract and add, and halving (SAXH) 

24.4.7 16-bit and 32-bit Multiplication 
We can multiply two signed halfword integers selected from either the top or the bottom 
of two source operand registers. In these instructions, "T" specifies the top halfword of 
the corresponding operand, and "B" denotes the bottom halfword. The following lists 
instructions for signed halfword multiplication. 

Signed multiply bottom halfwords 
SMULBB Rd, Rn, Rm Rd = Rn[B] *Rm[B] 

Signed multiply bottom and top halfwords 
SMULBT Rd,Rn,Rm Rd = Rn[B] *Rm[T] 

Signed multiply top and bottom halfwords 
SMULTB Rd, Rn, Rm Rd = Rn[T] *Rm[B] 

Signed multiply top halfwords 
SMULTT Rd, Rn, Rm Rd = Rn[T] *Rm[T] 

Table 24-11. Signed halfword multiplication 

We can also multiply a 32-bit signed integer with a 16-bit signed integer selected from 
the top or bottom halfword of the second operand, as shown in Table 24-12. The actual 
product has 48 bits, but only the most significant 32 bits are kept. 

Signed multiply word by bottom halfword 
SMULWB Rd,Rn,Rm Rd = (Rn*Rm[B])>>16 

SMULWT Rd, Rn, Rm 
Signed multiply word by top halfword 
Rd = (Rn *Rm[T])>>16 

Table 24-12. Signed multiplication between halfword and word 

The SMULWB and SMULWT instructions can be used to implement conveniently signed 
fixed-point multiplication between QlS and Q31, with the product kept in Q31 format. 



ml!! 24.4 - Arithmetic Instructions 

We can also multiply two 32-bit signed integers, with the least significant 32 bits of the 

product truncated or rounded, as shown in Table 24-13. These two instructions multiply 

two Q31 fixed-point numbers, with the product remained in Q31 format. When the 64-
bit exact product is reduced to 32 bits, the product can be either truncated or rounded to 

the nearest. The operation of rounding to the nearest is described in Chapter 12.2.6. 

Signed most significant word multiply with truncating 
SMMUL Rd, Rn, Rm Rd = (Rn*Rm)»32 

Rd, Rn, Rm 
Signed most significant word multiply with rounding to the 

SMMULR nearest, Rd = (Rn*Rm) »32 

Table 24-13. Signed word multiplication 

We can also multiply two pairs of 16-bit signed integers in parallel, calculate the sum or 

the difference of the 32-bit products, and store the result in the destination register, as 

shown in Figure 24-14. If there is a suffix X in the instruction mnemonic, the upper and 

lower halfword of the second source operand register is swapped before the 

multiplication operations are carried out. In other words, if the suffix X exists, the 

multiplication operations are top x bottom and bottom x top ; otherwise, they are 

top x top and bottom x bottom. 

SMUAD Rd, Rn, Rm 
Signed dual multiply, then add products 
Rd = Rn[B]*Rm[B] + Rn[T]*Rm[T] 

Signed dual multiply with exchange, then add products 
SMUADX Rd,Rn,Rm Rd = Rn[T]*Rm[B] + Rn[B]*Rm[T] 

SMUSD Rd,Rn,Rm 
Signed dual multiply, then subtract products 
Rd = Rn[B]*Rm[B] - Rn[T]*Rm[T] 

subtract Signed dual multiply with exchange, then 
SMUSDX Rd,Rn,Rm products, Rd = Rn[B]*Rm[T] - Rn[T]*Rm[B] 

Table 24-14. Dual 16-bit signed multiply with addition (or subtraction) of products 

For Cortex-M3/MO, we can use the following C code to implement SMUAD instruction: 

(((x >> 16) * (y >> 16)) + (((x << 16) >> 16) * ((y << 16) >> 16))) 

where x and y are signed 32-bit integer variables, holding two Q15 values. 

Although 16-bit multiplication does not generate overflow, the addition of two 32-bit 

products may overflow. SMUAD and SMUADX set the Q flag if the addition overflows. 

LDR r0, = 0x7FFF7FFF 
SMUAD r3, r0, r0 , r3=( 215 -1) x ( 215 -1)+(215-l)x( 215 -1) = 0x7FFE6002, no overf Low 

LDR rl, =0x80008000 
SMUAD r3, rl, rl j r3 = (-215)x(-215)+(-215)x(-215 ) = 231 = exseeeeeee, overflow 
SMUAD r3, r0, rl ; r3 = (-215)x( 215 -1)+(-215)x(215-1) = exseeweee, overflow 

SMUSD and SMUSDX do not affect the Q flag because no overflow can occur. 



Digital Signal Processing (DSP) hW 

SMUAD Rd,Rn,Rm SMUADX Rd,Rn,Rm 

Rd Rd 

32 bits 32 bits 

Rd = Rn[B]"Rm[B] + Rn[T]"Rm[T) Rd = Rn[TJ•Rm[B] + Rn[Bj•Rm[T) 

SMUSD Rd,Rn,Rm SMUSDX Rd,Rn,Rm 

Rd Rd 

32 bits 32 bits 

Rd = Rn[B]•Rm[B] - Rn[T)•Rm[T) Rd = Rn[B]"Rm[T) - Rn[T]•Rm[B] 

Table 24-15. Signed dual multiply add (or subtract) 

One simple example is that we can use these instructions to calculate the sum or 
difference between two signed halfwords of a register. 

MOV r0, 
SMUAD r2, 
SMUSD r2, 
SMUSDX r2, 

0x00010001 
rl, r0 
rl, r0 
rl, r0 

; top halfword = 1, bottom halfword = 1 
; r2 = rl[T] + rl[B] 
, r2 = rl[B] rl[T} 
; r2 = rl[T] - rl[B] 

These instructions are very helpful to implement digital filtering in DSP. The current 
output y(t) of a linear digital filter consists of a linear combination of previous M filter 
outputs, including y(t - 1), y(t - 2), ... , and y(t - M), and N filter inputs including x(t), 
x(t - 1), ... ,and y(t - N + 1), as shown in the following equation: 

N-1 M 

y(t) = L ai · x(t - i) - L bj · y(t - j) 
i=O j=l 



mlJI 24.4 - Arithmetic Instructions 

where ai and bj are coefficient constants, and N and M are pre-defined integers. N is 
referred to as the feed forward filter order, and Mis known as the feedback filter order. 

When all inputs are expressed in the QlS format, these dual-multiplication instructions 
can be used to speed up the multiplication. If inputs are in the Q8 format, we need to 
extend the inputs to 16-bit signed numbers. Chapter 24.6 introduces parallel sign 
extension instructions. 

24.4.8 16-bit Multiply and Accumulate with 64-bit Result 
Multiply and Accumulate (MAC) is one of the key operations in DSP algorithms. For 
example, the output of a finite impulse response (FIR) filter, which removes all previous 
output items from the general form presented previously: 

N - 1 

y(t) = Lai ·x(t - i) 
i=O 

where N is the filter window length (or called the filter order), ai is the filter's coefficients, 
and xis the sequence of input signal. This process slides over a fixed-length window of 
signal samples to compute a sequence of outputs y(t). 

In C, the finite impulse response (FIR) uses a loop to sum up the products repeatedly. 
Note that one MAC operation is performed in each loop. 

while(l) { 

} 

y[t] = 0; //Initialization 
for (i = 0, i < N; i++) 

y[t] = y[t] + a[i] *x[t-i]; //Multiply and accumulate 

t = t + 1; 

To speed up the performance, microprocessors often have built-in hardware components 
to compute multiply and accumulate operations directly. Cortex-M4 and M7 provide 
MAC instructions with 16- or 32-bit input operands and 32- or 64-bit accumulator. 

Figure 24-16, Figure 24-17, and Figure 24-18 present assembly instructions for signed 16-
bit multiplication with a 64-bit accumulator. These instructions do not change the N, Z, C, 

V and Q flags in APSR. 

SM LALO Rdlo,RdHi,Rn,Rm 
Dual signed multiply, accumulate long 
RdHi:RdLo = RdHi:RdLo + Rn[T] *Rm[T] + Rn[B]*Rm[B] 

SMLSLD RdLo,RdHi,Rn,Rm 
Dual signed multiply, subtract long 
RdHi:Rdlo = RdHi:Rdlo + Rn[T] * Rm[T] - Rn[B] *Rm[B] 



SMLALD RdLo,RdHi,Rn,Rm 
SMLSLD Rdlo,RdHi,Rn,Rm 

32 bits 32 bits 
I.. • I" 

Rd Hi Rd Lo 

Digital Signal Processing (DSP) MM 

32 bits 32 bits 
• I.. • I 

Rd Hi Rd Lo 

RdHi:Rdlo = RdHi:Rdlo + Rn[T]xRm[T] ± Rn[B] xRm[B] 

Figure 24-16. Dual 16-bit signed multiply, addition (or subtraction), and 64-bit accumulate. 

The following shows a program that uses SMLALD to calculate the sum of squares. Given 
two arrays A and B, each of them has 1024 signed fixed-point numbers in QlS format. 
We want to calculate the sum of squares defined as follows: 

1023 

s = I cai - bi) 2 

i=O 

The following gives the assembly implementation. Because each fixed-point number has 
16 bits, a load operation retrieves two QlS values from the data memory and stores them 
in one register. After QSUB16 calculates the difference between two pairs of QlS values, 
SMLALD performs the multiply and accumulate operations based on the difference 
obtained. 

; The result is stored in registers r6:r5 
LDR r0, =A , Memory address of array A 
LDR rl, =B ; Memory address of array B 
MOV r7, #2S6 ; Loop counter 
MOV r6, #0 ; Initialize upper word of sum 
MOV rs, #0 , Initialize Lower word of sum 

loop LDR r2, [ r0], #4 , Loads two halfwords from A, post-index 
LDR r3, [rl], #4 ; Loads two halfwords from B, post-index 
QSUB16 r4, r2, r3 ; Two 16-bit subtractions in parallel 
SMLALD rs, r6, r4, r4 , r6:r5 += r4[T}A2 + r4[B)A2 
SUBS r7, r7, #1 , Decrement Loop counter 
BGT loop 

Example 24-10. Sum of squares 

The following are dual 16-bit signed multiplication and 64-bit accumulation, with the 
halfwords of the second operand swapped before the multiplication. 



24.4 - Arithmetic Instructions 

SMLALDX Rdlo,RdHi,Rn,Rm 
Signed multiply accumulate long dual with exchange 
RdHi:Rdlo = RdHi:Rdlo + Rn[T] *Rm[B] + Rn[B] *Rm[T] 

SMLSLDX RdLo,RdHi,Rn,Rm 
Signed multiply subtract long dual with exchange 
RdHi:RdLo = RdHi:Rdlo + Rn[B] * Rm[T] - Rn[T] *Rm[B] 

SMLALDX RdLo,RdHi,Rn,Rm 
SMLSLDX RdLo,RdHi,Rn,Rm 

32 bits 32 bits ,.. ., .. 
Rd Hi Rd Lo 

32 bits 32 bits 
• I.. • I 

Rd Hi Rd Lo 

RdHi:Rdlo = RdH i:Rdlo ± Rn[T]xRm[B] + Rn[B]xRm[TJ 

Figure 24-17. Exchange, dual signed multiply, addition/subtraction, and 64-bit accumulate. 

The following shows single 16-bit signed multiplication and 64-bit accumulation. 

SM LAL BB Rdlo,RdHi,Rn,Rm RdHi:Rdlo = RdHi:Rdlo + Rn[B] *Rm[B] 

SMLALBT RdLo,RdHi,Rn,Rm RdHi:RdLo = RdHi:RdLo + Rn[B] *Rm[T] 

SMLATTB RdLo,RdHi,Rn,Rm RdHi:RdLo = RdHi:RdLo + Rn[T] *Rm[B] 

SMLALTT RdLo,RdHi,Rn,Rm RdHi:Rdlo = RdHi:RdLo + Rn[T] *Rm[T] 

32 bits 32 bits 
I• • I• 32 bits • I• 32 bits • I 32 bits 32 bits 

I• •I• 
32 bits 32 bits 

• I• •I 
Rd Hi Rd Lo Rd Hi Rd Lo Rd Hi Rd Lo Rd Hi Rd Lo 

SMLALBB RdLo,RdHi,Rn,Rm SMLALBT Rdlo,RdHi,Rn,Rm 

I • 32 bits • I• 32 bits 
• I• •I 

32 bits 
I• •I• 

32 bits 32 bits 
• I• •I 

Rd Hi Rd Lo Rd Hi Rd Hi Rd Lo 

SMLATTB Rdlo,RdHi,Rn,Rm SMLALTT RdLo,RdHi,Rn , Rm 

Figure 24-18. 16-bit signed multiply with 64-bit accumulate 



Digital Signal Processing (DSP) 11111 

24.4.9 16-bit Multiply and Accumulate with 32-bit Result 
The accumulator can also be 32 bits in the MAC instructions discussed previously. Figure 
24-19, Figure 24-20, and Figure 24-21 shows detailed operations. No overflow can occur 
during the 16-bit multiplication. However, overflow may occur during the accumulation. 
SMLAD and SM LSD set the Q flag in APSR if overflow occurs. 

SM LAD Rd, Rn, Rm, Ra 
Signed multiply accumulate dual 
Rd = Ra + Rn[T)*Rm[T) + Rn[B) *Rm[B) 

SMLSD Rd,Rn,Rm,Ra 
Signed multiply subtract dual 
Rd = Ra + Rn[B)*Rm[B) - Rn[T) * Rm[T) 

SMLAD Rd,Rn,Rm,Ra 
SMLSD Rd,Rn,Rm,Ra 

32 bits 
1 .. 

Ra 

Rd = Ra± Rn(T] xRm[T] + Rn[B]xRm[B] 

32 bits 
.. 1 

Rd 

Figure 24-19. Dual 16-bit signed multiply with 32-bit accumulate (or subtract) 

The top and bottom halfwords of the second source operand can be swapped before the 
multiplication if the suffix X is appended. The multiplication is then top x bottom and 
bottom x top. The Q flag is set if the addition overflows. 

SMLADX 

SMLSDX 

Rd, Rn, Rm, Ra 
Signed multiply accumulate dual with exchange 
Rd = Ra + Rn[T) *Rm[B] + Rn[B) *Rm[T] 

Rd, Rn, Rm, Ra 
Signed multiply subtract dual with exchange 
Rd = Ra + Rn[B) *Rm[T] - Rn[T] * Rm[B] 

SMLADX Rd,Rn,Rm,Ra 
SMLSDX Rd,Rn,Rm,Ra 

32 bits 
1 .. 

Ra 

32 bits 

Rd 

Rd= Ra± Rn(T] xRm[B] + Rn[B)xRm[T] 

.. 1 

Figure 24-20. Exchange, dual 16-bit multiply, and 32-bit accumulate (or subtract) 



24.4 - Arithmetic Instructions 

We can also multiply two specific 16-bit signed values, either from the top or bottom 

halfword from two registers, and add the 32-bit signed product to an accumulator 

register. The Q flag is set if the accumulation overflows. 

SMLABB Rd, Rn, Rm, Ra 
Signed multiply bottom, accumulate long 

SMLABT Rd, Rn, Rm, Ra 

SM LA TB Rd, Rn, Rm, Ra 

SMLATT Rd, Rn, Rm, Ra 

I 16 bits I 16 bits I .. . .. . 
Rn[T] 

32 bits I .. 
Ra 

Rd = Ra + Rn[B] *Rm[B] 
Signed multiply bottom and top, 
Rd = Ra + Rn[B]*Rm[T] 
Signed multiply top and bottom, 
Rd = Ra + Rn[T]*Rm[B] 
Signed multiply top, accumulate 
Rd = Ra + Rn[T]*Rm[T] 

.. I 

I 16 bits I 16 bits I .. .. .. . 
Rn[T] Rn[B] 

32 bits I .. 
Ra 

accumulate long 

accumulate long 

long 

I 16 bits 1 16 bits I .. •1.. .. 
Rm[T] Rm[B] 

32 bits 
• I 

Rd 

SMLABB Ra,Rn,Rm,Ra SMLABT Ra,Rn,Rm,Ra 

I 16 bits I 16 bits I .. .. .. . 

32 bits I .. 
Ra 

Rn[B] 

I 16 bits I 16 bits I .. .. .. . 
Rm[T] Rm[B] 

32 bits 
.. 1 

Rd 

SMLATTB Ra,Rn,Rm,Ra 

32 bits 
J .. 

Ra 

I 16 bits I 16 bits I .. .. .. . 
Rm[T] Rm[B] 

32 bits 
• I 

Rd 

SMLATT Ra,Rn,Rm,Ra 

Figure 24-21. Single 16-bit multiply with 32-bit accumulate 

The following assembly code can be used in a loop to calculate l:b,0 ai · xi, in which ai 

and xi are 16-bit signed values, such as QlS. 

LOR r4, [rl], #4 J Load a[i], a[i+l}, rl points to a[i+2] after Loading 
LOR r3, [r0], #4 Load x[i], x[i+l], re points to x[i+2] after Loading 
SM LA BB rs, r3, r4, rs ; sum = x[i]*a[i], rs = sum 
SMLATT rs, r3, r4, rs ; sum = x[i+l}*a[i+l}, r5 = sum 



Digital Signal Processing (DSP) USM 

24.4.10 16x32 Multiply and Accumulate with 32-bit Result 
We can also multiply the bottom or top halfword of one register with another register, 

with the product accumulated. If overflow occurs upon accumulating the product, the Q 

flag bit in APSR is set. The multiplication in SMLAWB and SMLAWT cannot cause overflow. 

SMLAWB Rd, Rn, Rm, Ra 
Signed multiply word by bottom halfword, accumulate 
Rd = Ra + (Rn*Rm[B])>>16 
Signed multiply word by top halfword, accumulate 

SMLAWT Rd, Rn, Rm, Ra Rd = Ra + (Rn*Rm[T])>>16 

32 bits I 16 bits I 16 bits I 
i...1 ... 1------ .. 1 ' .. .. ' .. .. . 

Rn Rm[T] Rm[B] 

I"' 
32 bits 32 bits 

.. 1 

Ra Ra Rd 

SMLAWB Rdlo,RdHi,Rn,Rm SMLAWT Rdlo,RdHi,Rn,Rm 

Figure 24-22. Single 16x32 multiply with 32-bit accumulate 

24.4.11 32x32 Multiply and Accumulate with 32-bit Result 
SMLAL and UMLAL are two instructions that first multiply two words and then accumulate 

the product to a 64-bit sum, as introduced in Chapter 4.4. 

Cortex-M4 and M7 also support 32-bit accumulation with different rounding schemes. If 

R is specified, it uses rounding to nearest; otherwise, it uses rounding towards zero (i .e., 

truncation). 

SMMLA Rd , Rn, Rm, Ra 
Signed most significant word multiply accumulate, 
Rd = Ra + (Rn *Rm)> >32, Truncate 

SMMLAR Rd , Rn, Rm, Ra 
Signed most significant word multiply accumulate, 
Rd = Ra + (Rn *Rm)>>32, Round to nearest 

SMMLS Rd, Rn, Rm, Ra 
Signed most significant word multiply subtract, 
Rd = Ra - (Rn*Rm)>>32, Truncate 

SMMLSR Rd, Rn, Rm, Ra 
Signed mos t significant word multiply subtract, 
Rd = Ra - (Rn *Rm)>>32, Round to nearest 



- 24.4 - Arithmetic Instructions 

24.4.12 Unsigned Long Multiply with Accumulate Accumulate 
A special instruction UMAAL is implemented in hardware. It can be used to speed up the 
Separated Operand Scanning (SOS) algorithm (see reference [92] and [93]). The SOS 
algorithm multiplies two very large unsigned integers, such as 256 bits by 256 bits. UMAAL 

performs accumulation twice after the multiplication. It adds the upper word and the 
lower word of the 64-bit accumulator to the accumulator. 

UMAAL Rdlo,RdHi,Rn,Rm Unsigned multiply accumulate accumulate long 
RdHi:Rdlo = Rn*Rm + RdHi + Rdlo 

Suppose we want to multiply two large unsigned numbers A and B. Each of them has m 

words, i.e., A = Am-l ··· A2A1 A0 and B = Bm-l ··· B2 B1 B0 . Both Ai and Bi have 32 bits (0 ~ 

i ~ m - 1), and A0 and B0 are the least significant word. 

Let P = A x B and P has a total of 2m words. The SOS algorithm works similarly to 

standard pencil-and-paper multiplication. Figure 24-23 shows the procedure of 

multiplying two double-word integers A and B. Differing from standard multiplication, 

SOS uses block-based multiplications. 

64 bits .. I 
I Al A0 I 

x Bl B0 

Hl Ll I Hl:Ll = A0xB0 

H2 L2 I H2:L2 = AlxB0 

H3 L3 I H3 : L3 = A0xB1 

+ H4 L4 I H2:L2 = AlxBl 

P3 P2 I Pl I P0 I 
Figure 24-23. Multiplying two unsigned 64-bit integers 

for i = 0 to 2m-1 
P[i] +- 0; // Initialization 

for i = 0 to m-1 
c +- 0 
for j = 0 to m-1 

C:S +- A[j]*B[i] + C + P[i+j] 
P[i+j] +- S 

P [ i+m] +- C 

Example 24-11. Pseudocode for Separated Operand Scanning (SOS) algorithm 



Digital Signal Processing (DSP) i@~j 

The SOS algorithm, with pseudocode given in Example 24-11, performs two 

accumulation operations after the multiplication. The multiplication result consists of 2m 

words, including P[O], P[1] , ··· , P[2m - 1] , with the least significant word in P[O]. The 

inner loop performs multiply-accumulate-accumulate operations in the following form: 

C:5=axb+C+5 

where the size of a, b, C and 5 is a word. The UMAAL instruction performs such operation. 

SOS calculates the product P starting from the least significant word. The inner loop 
computes and accumulates partial product. It reuses the results stored in the 64-bit 
accumulator (C: 5) for the next partial product. 

During the computation process, we need to change the value of the upper or lower word 
of the accumulator before executing UMAAL. Therefore, the lower word (5) should be 
saved to the memory within the inner loop and the upper word (C) should be saved to 
the memory within the outer loop. 

Figure 24-24 shows the basic steps of multiplying two 64-bit unsigned integers. The final 

product consists of 128 bits: P[3] = C4, P[2] = 54, P[1] = 53 , and P[O] = 51. This 

example executes UMAAL four times. The second UMAAL execution does not directly 

produce any full result. However, it produces partial results, C2 and 54, which are used 

when calculating P[2] and P[1] . 

+ 

+ 

+ H4 

(4 

x 

64 bits 

I Al Aa I 
I Bl Ba 

Initialization : 
Carry ca = axaaaaaaaa 
Sum sa = axaaaaaaaa 

Cl 51 lc1:s1 = Aaxsa Cl :Sl = AaxBa + ca + sa 

.__H_2__.__L2___.I H2: L2 = AlxBa--------r. 51 = a 
C2:52 = AlxBa + Cl + 51 

C2 52 

I H3 L3 IH3 : L3 = AaxBl 
C2 = a 

C3 53 --C3:53 = AaxBl + C2 + 52 

L4 IH2:L2 = Al><Bl 

53 = C2 
54 53 I 51 I C4:54 = Al><Bl + C3 + 53 

Figure 24-24. Accelerating SOS by using UMAAL 

Pa = 51 

Pl = 53 

P3 = C4, P2 = C4 



24.5 - Packing Halfwords into a Word 

24.5 Packing Halfwords into a Word 
We can pack two halfwords from two different registers into another register, as shown 

in Figure 24-25. 

Pack halfword. Rd = Rn[B]:(Rm,Op2)[T] 
PKHBT Rd,Rn,Rm{,Op2} Op2 = LSL #n, n * 0 

Pack halfword. Rd = Rn[T]:(Rm,Op2)[B] 
PKHTB Rd,Rn,Rm{,Op2} Op2 = ASR #n, n * 0 

PKHBT Rd,Rn,Rm PKHTB Rd, Rn, Rm 

Register Rn Rn(T) Rn(B) Register Rn 

Register Rm Rm(T) " ~m(B) Register Rm 

Register Rd Rd(T) Rd~,B) ~. Register Rd 

I• 
16 bits 

• I .. 
16 bits 

.. I I• 
16 bits 

.. 1 .. 
16 bits 

.. I 

Figure 24-25. Packing two halfwords into a word (Bottom + Top, or Top + Bottom) 

The following table gives the assembly instructions of four possible halfword packing 

operations. When packing two top halfwords, the second source operand must be shifted 

right by 16 bits. When packing two bottom halfwords, the second source operand should 

be shifted left by 16 bits. This is because ASR is not permitted for the second source 

operand in PKHBT, and LSL is not allowed in PKHTB. 

Top halfword of rl Bottom halfword of rl 

Top halfword of r0 PKHTB r3, r0, rl, ASR #16 PKHTB r3, r0, rl 

Bottom halfword of re PKHBT r3, r0, rl PKHBT r3, r0, rl, LSL #16 

Example 24-12. Packing halfwords from two different registers into a word 

To facilitate 16-bit SIMD instructions, we often need to place a constant number into both 

halfwords of a register. The following example code adds a constant 0x1234 to both the 

upper and lower halfword in the r4 register. 

MOV r3, #0x1234 
PKHBT rs, r3, r3, LSL #16 
SADD16 r4, r4, rs 

; r3 = 6x1234 
; rs = ex12341234 
; add 6x1234 to both halfwords of r4 



Digital Signal Processing (DSP) 

24.6 Signed and Unsigned Extension 
As introduced in Chapter 4.8, SXTB, UXTB, SXTH, UXTH can extend a signed or unsigned 

byte or halfword to a word. 

Cortex-M4 and M7 add two SIMD instructions, SXTB16 and UXTB16, which extend two 
bytes to two halfwords in parallel, as shown in Figure 24-26. 

SXTB16 Rd,Rm {,ROR #n} 

UXTB16 Rd,Rm {,ROR #n} 

SXTB16 Rd, Rm 
UXTB16 Rd, Rm 

Register Rm 

Register Rd 

Signed extend byte to 16-bit value 
Rd(T] = sign_extend ((Rm, ROR #)(23:16]) 
Rd(B] = sign_extend ((Rm, ROR #)(7:0]) 
Unsigned extend byte to 16-bit value 
Rd(T] = zero_extend ((Rm, ROR #)(23:16]) 
Rd(B] = zero_extend ((Rm, ROR #)(7:0]) 

23:16 7:0 

Sign/Zero Extend Sign/Zero Extend 

16-bit result 16-bit result 

Figure 24-26. Signed and unsigned parallel extension of two bytes to two halfwords 

Cortex-M4 and M7 also provide instructions for signed/unsigned extension and then 
addition, as listed below. The operations can be applied to a byte or halfword, or 
simultaneously to two bytes or halfwords. 

SXTAB Rd,Rn,Rm{,ROR #} 
Signed extend byte to word, and add 
Rd = Rn + sign_extend ((Rm, ROR #)(7:0]) 

UXTAB Rd,Rn,Rm{,ROR #} 
Unsigned extend byte to word, and add 
Rd = Rn + zero_extend ((Rm, ROR #)(7:0]) 

SXTAH Rd,Rn,Rm{,ROR #} 
Signed extend halfword to word, and add 
Rd = Rn + sign_extend ((Rm, ROR #)[15:0]) 

UXTAH Rd,Rn,Rm{,ROR #} 
Unsigned extend halfword to word, and add 
Rd = Rn + zero_extend ((Rm, ROR #)[15:0]) 

Signed extend 2 bytes to 2 halfwords, and add 
SXTAB16 Rd,Rn,Rm{,ROR #} Rd[T] = Rn[T] + sign_extend ((Rm, ROR #)(23:16]) 

Rd [ B] = Rn [ B] + sign_extend ((Rm, ROR #)(7:0]) 

Unsigned extend 2 bytes to 2 halfwords, and add 
UXTAB16 Rd,Rn,Rm{,ROR #} Rd[T] = Rn[T] + zero_extend ((Rm, ROR #)(23:16]) 

Rd[B] = Rn[B] + zero_extend ((Rm, ROR #)[7:0]) 

Table 24-16. Instructions for extension and add 



- 24.7 - GE Flags 

24.7 GE Flags 
Most SIMD instructions do not change the N, Z, C, V and Q flags of the Application 
Program Status Register (APSR). However, there are SIMD instructions, as listed in Table 
24-17, which can change the GE (Greater than or Equal) flags in APSR. 

Table 24-17 summarizes the setting of GE flags for SIMD instructions. None of them is 
saturating instructions. 

GE = 1 GE = 0 
SADD8, SADD16 

The corresponding result is greater The corresponding result is smaller 
SSUB8, SSUB16 
SASX, SSAX than or equal to zero. than zero. 

UADD8 The corresponding result did The corresponding result did not 
UADD16 overflow, generating a carry. overflow. 

USUB8 
The corresponding result is greater The corresponding result is smaller 

USUB16 
than or equal to zero, meaning than zero, meaning borrow did 
borrow did not occur. occur. 

1. "A" (Add) sets GE flags in the same way as ADDS sets the C flag. If 

UASX overflow occurs, the corresponding GE flags are set. 
USAX 2. "S" (Subtract) sets GE flags in the same way as SUBS sets the C flag. If 

borrow occurs, the corresponding GE flags are cleared. 
Table 24-17. Instructions that affect the GE flags in APSR 

The GE flags are mostly used by the SEL instruction for selecting data from either the first 
or the second source operand register, as introduced in the next section. 

• For signed arithmetic operations, including SADD8, SADD16, SSUB8, SSUB16, SASX, 

and SSAX, the GE flag is set if the corresponding result is greater than or equal to 

zero. 
• For unsigned arithmetic operations, including UADD8, UADD16, USUB8, USUB16, 

UASX, and USAX, the GE flag is set if overflow occurs on unsigned addition or if no 
borrow occurs on unsigned subtraction. 

The GE flags have four bits, one flag bit for each 8-bit parallel add or subtract, or two flag 
bits for each 16-bit parallel add or subtract. 

For parallel 8-bit arithmetic operations listed in Table 24-17, 

• flag GE [0] is for bits[7:0] of the result, 
• flag GE[l] is for bits[15:8] of the result, 
• flag GE[2] is for bits[23:16] of the result, and 
• flag GE[3] is for bits[31:24] of the result. 



Digital Signal Processing (DSP) d@ 

For parallel 16-bit arithmetic operations listed above, 

• flags GE[l: 0] are for bits[lS:O] of the result, and 
• flags GE[3: 2] are for bits[31 :16] of the result. 

For example, both GE[l] and GE[0] are set if the lower halfword result of SADD16 is greater 
than or equal to zero. 

24.8 Byte Selection Instruction 
In Chapter 4.11, we have introduced the instructions UBFX and SBFX to extract bits from 
a word. Cortex-M4 and M7 provide instruction SEL, which selects bytes or halfwords 
from two source operand registers depending on the GE flags in APSR, as shown in Figure 
24-27. 

Register Rn 8 bits 8 bits 8 bits 8 bits 

Register Rm 8 bits 8 bits 8 bits 8 bits 

SEL Rd, Rn, Rm 
0 0 0 

GE[3] s 2-to-1 GE[2] s 2-to-1 GE[1] s 2-to-1 GE[O] 2-to-1 
Multiplexer. Multiplexer. Multiplexer. Multiplexer. 

Register Rm 8 bits 8 bits 8 bits 8 bits 

Figure 24-27. Select bytes from Rn or Rm based on GE flag bits in APSR 

For example, we can use the SEL instructions to find the pairwise max and min between 
four pairs of Q7 values. 

SSUB8 r3, r0, rl ; If borrow does not occur, corresponding GE f Lag is 1 
, i.e., if result~ e, GE= 1 

; Select the Larger Q7 of each pair 
SE L r4, r0, rl ; if GE is 1, select byte from re; otherwise from rl 

; Select the smaller Q7 of each pair 
SEL rS, rl, r0 ; if GE is 1, select byte from rl; otherwise from re 

Example 24-13. Select the max and min of the corresponding signed bytes of rO and r1 



24.9 - Basic DSP Functions 

For parallel halfword arithmetic operations, two GE bits are set for each pair of halfword 
operation. Two bit flags GE[1:0] are for the lower halfword operation, and GE[2:0] are for 
the upper halfword operation. A halfword operation sets its both flag bits to the same 
value. Therefore, SEL instruction can also use the GE flags to select halfwords. 

SSUB16 r3, r0, rl , If result ~ e, corresponding GE flag is 1 
SEL r4, r0, rl ; Select the Larger Q15 of each pair 
SEL rS, rl, r0 , Select the smaller Q15 of each pair 

Example 24-14. Choose the max and min of the corresponding signed halfword of rO and rl 

24. 9 Basic DSP Functions 
In this section, we focus on Q7 and QlS basic vector-based operations, including 

• Vector negate 

• Vector absolute value 

• Vector offset 

• Vector shift left 

• Vector mean 

• Vector multiplication 

• Vector dot product 

• Vector min and max 

To simplify assembly programs, we assume that the number of values is a multiple of 
four if the input arrays hold Q7 numbers and a multiple of two if the input arrays hold 
QlS numbers. 

24.9.1 Vector Negate 
The following assembly program reverses the sign of all numbers in a Q7 array. It takes 
three arguments, including a pointer to the source array, a pointer to the destination 
array, and the total number of Q7 values in the source array. The program uses SIMD 
instruction QSUB8 to negate four Q7 values in parallel by subtracting them from zero. 

vector_negate_Q7 PROC 
EXPORT vector_negate_Q7 

, re = pSrc, pointer to source Q7 array 
; rl = post, pointer to destination Q7 array 
, r2 = # of Q7 values in source array 

PUSH {r4,r5,lr} 
MOV r3, #0 



Digital Signal Processing (DSP) fiiM 

MOV r4, #0 ; Initialize Loop counter 

B check 

loop LDR rs, (r0], #4 ; Load four Q7 values, post-index 
QSUB8 rs, r3, rs ; Negate four Q7 values in parallel 
STR rs, [rl], #4 ; Store results to destination array, post - index 
ADDS r4, r4, #4 ; Processed four Q7 values in each Loop 

check CMP r4, r2 
BLT loop 

POP {r4,rS,pc} 

ENDP 

Example 24-15. Negate an array of Q7 numbers 

The following program uses QSUB16 instructions to reverse the sign of two Q16 numbers 
in parallel. 

vector_negate_Q15 PROC 

loop 

check 

24.9.2 

EXPORT vector_negate_QlS 

, re = pSrc, pointer to source Q15 array 
; rl = pDst, pointer to destination Q15 array 
; r2 = # of Q15 values in source array 

PUSH 
MOV 
MOV 
B 

LDR 
QSUB16 
STR 
ADDS 
CMP 
BLT 

POP 

ENDP 

{r4,rS,lr} 
r3, #0 
r4, #0 
check 

rs, [r0], 
rs, r3, rs 

#4 

rs, [rl], #4 
r4, r4, #2 
r4, r2 
loop 

{r4,rS,pc} 

, Initialize Loop counter 

) Load two Q15 values, post-index 
) Negate two Q15 values in parallel 
; Store two Q15 values, post-index 
; Increase Loop counter 
; Compare with array size 

Example 24-16. Negate an array of Q15 numbers 

Vector Absolution Value 
We can use SSUB8 and SEL to find the absolute values of all Q7 numbers in an array. The 
program processes four Q7 numbers in each loop. It first finds all positive values, then 



24.9 - Basic DSP Functions 

negates original numbers and finds positive ones again, and finally merges all positive 
values into the destination register. 

vector_abs_Q7 PROC 

loop 

check 

EXPORT vector_abs_Q7 

, re = pSrc, pointer to source Q7 array 
; rl = pDst, pointer to destination Q7 array 
, r2 = # of Q7 values in source array 

PUSH {r4-r8, LR} ; Preserve registers 
MOV r6, #0 
MOV r3, #0 ; Initialize Loop counter 
B check 

LDR r4, [r0], #4 ; Load four Ql values 

SSUB8 rs, r4, r6 , Set four GE bit flags, r6 = e 
SEL r7, rs, r6 , Select aLL positive Q7 based on 

SSUB8 rs, r6, r4 ; Negate r4, and set four GE f Lags 

GE flags 

SEL r8, rs, r6 ; Select aLL positive Ql based on GE flags 

ORR rs, r7, r8 ; Merge two selections 
STR rs, [r1], #4 ; Store results 

ADDS r3, r3, #4 ; Increase Loop counter 
CMP r3, r2 ; Compare with array size 
BLT loop 

POP {r4-r8, pc} 

ENDP 

Example 24-17. Find the absolution values of a Q7 array 

Similar operations can also be performed for QlS values. The following program stores 
the absolute value of a QlS array to the destination array. Within each loop, two QlS 
numbers are processed in parallel. 

vector_abs_Q15 PROC 
EXPORT vector_abs_Q1S 

; re = pSrc, pointer to source Q15 array 
; rl = pDst, pointer to destination Q15 array 
, r2 # of QlS values in source array 

PUSH 
MOV 

{r4-r8, LR} 
r6, #0 

; Preserve registers 



Digital Signal Processing (DSP) fiji 

MOV r3, #0 , Initialize Loop counter 
B check 

loop LDR r4, [r0], #4 ; Load two Q15 values 

SSUB16 rs, r4, r6 , Set GE f Lags 
SEL r7, rs, r6 ; Select all positive Q15 based on GE f Lags 

SSUB16 rs, r6, r4 ; Negate r4, and set GE f Lags 
SEL r8, rs, r6 ; Select all positive Q15 based on GE flags 

ORR rs, r7, r8 ; Merge two selections 
STR rs, [rl], #4 , Store results 

ADDS r3, r3, #2 , Increase Loop counter 
check CMP r3, r2 , Compare with array size 

BLT loop 

POP {r4-r8, pc} 

ENDP 

Example 24-18. Find the absolution values of a Q15 array 

24.9.3 Vector Offset with Saturation 
The following assembly program shows how to add a constant Q7 offset to all Q7 
numbers in an array. The program packs the 8-bit input offset into the 32-bit format 
offset:offset:offset:offset, and then uses QADD8 to add simultaneously four pairs of 8-bit Q7 
numbers with saturation. 

The program uses UXTB to zero extend the 8-bit offset input to 32 bits (i.e., making the most 
significant 24 bits as zero). This is a preventive operation in case the input offset has been 
sign-extended to 32 bits when it is passed to this function via register r3. 

vector_offset_Q7 PROC 
EXPORT vector_offset_Q7 

; re = pSrc, pointer to source Q7 array 
; rl = post, pointer to destination Q7 array 
; r2 = # of Q7 values in source array 
; r3 = Offset constant in Q7 format 

PUSH {r4-r6, lr} 

; Pack 8-bit offset to 32 bits to use SIMD addition 
MOV rS, #0xFF00 
UXTB r6, r3 ; r6 = zero extend offset to 32 bi ts 
AND rs, rs, r3, LSL #8 ; rs = ee:ee:offset:ee 



24.9 - Basic DSP Functions 

ORR r6, r6, rs ; r6 = ee:ee:offset:offset 
MOV rs, #0xFF0000 
AND rs, rs, r3, LSL #16 ; rs ee:offset:ee:ee 
ORR r6, r6, rs ; r6 ee:offset:offset:offset 
ORR r6, r6, r3, LSL #24 , r6 offset:offset:offset:offset 

MOV r4, #0 ; InitiaLize Loop counter 

B check 

loop LOR rs, [r0], #4 ; Load four Q7 vaLues, post-index 
QADD8 rs, rs, r6 ; Add four pairs of Q7 vaLues 
STR rs, [rl], #4 , Store four Q7 vaLues, post-index 
ADDS r4, r4, #4 , Increase Loop counter 

check CMP r4, r2 , Compare with array size 
BLT loop 

POP {r4-r6, pc} 
ENDP 

Example 24-19. Adding a constant offset to a Q7 array 

The following example adds an offset to all values in a QIS array. The program runs the 

PKHBT instruction to pack the 16-bit input offset into the format offset:offset to use QADD16. 

vector_offset_Q15 PROC 

loop 

check 

EXPORT vector_offset_QlS 

; re = pSrc, pointer to source QlS array 
, rl = pDst, pointer to destination QlS array 
; r2 = # of QlS vaLues in source array 
, r3 offset in QlS format 

PUSH {r4-r6, lr} 
PKHBT rS, r3, r3, LSL #16 ; rs = offset:offset 
MOV r4, #0 ; InitiaL ize Loop counter 

B check 

LOR r6, [r0], #4 , Load two QlS vaLues, post-index 
QADD16 r6, r6, rs ; Add two pairs of QlS vaLues 
STR r6, [rl], #4 ; Store two QlS vaLues, post-index 
ADDS r4, r4, #2 ; Increase Loop counter 
CMP r4, r2 ; Compare with array size 
BLT loop 

POP {r4-r6, pc} 
ENDP 

Example 24-20. Adding a constant offset to a Q15 array 



Digital Signal Processing (DSP) fi{W 

24.9.4 Vector Shift Left with Saturation 
The following program shifts left Q7 numbers with saturation. For example, with 
saturation, 0x66 « 1 = 0x7F. 

vector_shift_left_Q7 PROC 

loop 

check 

EXPORT vector_shift_left_Q7 

, re = pSrc, pointer to source Q7 array 
, r1 = pDst, pointer to destination Q7 array 
, r2 = # of Q7 values in source array 
, r3 = # of bits to be shifted 

PUSH 
MOV 
MDV 
MDV 
B 

LDRSB 
LDRSB 
LDRSB 
LDRSB 

LSL 
SSAT 
AND 

LSL 
SSAT 
AND 
ORR 

LSL 
SSAT 
AND 
ORR 

LSL 
SSAT 
ORR 

STR 

ADDS 
CMP 
BLT 
POP 
ENDP 

{r4-r10, lr} 
rs, #0xFF00 
r6, #0xFF0000 
r4, #0 
check 

r7, [r0], #1 
r8, [r0], #1 
r9, [r0], #1 
r10, [r0], #1 

r7, r7, r3 
r7, #8, r7 
r7, r7, #0xFF 

r8, r8, r3 
r8, #8, r8 
r8, rs, r8, LSL #8 
r7, r7, r8 

r8, r9, r3 
r8, #8, r8 
r8, r6, r8, LSL #16 
r7, r7, r8 

r8, r10, r3 
r8, #8, r8 
r7, r7, r8, LSL #24 

r7, [rl], #4 

r4, r4, #4 
r4, r2 
loop 
{r4-r10, pc} 

; 
; 
; 
; 

, 
; 
, 

; 
; 
, 
, 

, 
; 
, 
, 

; 
; 
; 

; 

; 
; 

Initialize Loop counter 

Load 1st Q7, sign extend to a word 
Load 2nd Q7, sign extend to a word 
Load 3rd Q7, sign extend to a word 
Load 4th Q7, sign extend to a word 

Logic shift Left 1st Q7 by r3 bits 
Saturate as 8-bit value 
Keep only Lowest 8 bits 

Logic shift Left 2nd Q7 by r3 bits 
Saturated as 8-bit value 
Shift result to position {15:8] 
Combine the result of 1st and 2nd Q7 

Logic shift Left 3rd Q7 by r3 bits 
Saturate as 8-bit value 
Shift result to position {23:16} 
Combine the result of 3rd Q7 

Logic shift Left 4th Q7 by r3 bits 
Saturate as 8-bit value 
Combine the result of 4th Q7 

Store result to destination array 

Increase Loop counter 
Compare with array size 

Example 24-21. Shifting left all values of a Q15 array 



24.9 - Basic DSP Functions 

The following program shifts left QlS numbers with saturation. 

vector_shift_left_Q15 PROC 
EXPORT vector_shift_left_QlS 

, re = pSrc, pointer to source Q15 array 
; r1 = pDst, pointer to destination Q15 array 
, r2 = # of Q15 values in source array 
, r3 = # of bits to be shifted 

PUSH {rS-r6, lr} 
MOV r4, #0 ; Initialize Loop counter 
B check 

loop LDRSH r6, [r0], #2 , Load 1st Q15, sign extend to a word 
LSLS r6, r6, r3 , Logic shift Left 1st Q15 by r3 bits 
SSAT r6, #16, r6 ; Saturated as 16-bit value 

LDRSH rs, [r0], #2 , Load 2nd Q15, sign extend to a word 
LSLS rs, rs, r3 ; Logic shift Left 2nd Q15 by r3 bits 
SSAT rs, #16, rs , Saturated as 16-bit value 
PKHBT rs, r6, rs, LSL #16 , rs = r6[15:0]:r5[15:0) 
STR rs, [rl], #4 , Store result to destination array 

ADDS r4, r4, #2 , Increase Loop counter 
check CMP r4, r2 , Compare with array size 

BLT loop 
POP {rS-r6, pc} 

ENDP 

Example 24-22. Shifting left all values of a QlS array 

24.9.5 Vector Mean 
The following program calculates the arithmetic mean of an array of Q7 values, defined 
by the formula below: 

The program extracts individual bytes and adds them up. SXTAB extracts the least 
significant byte of a register, and extends the byte to 32-bit signed number, and adds the 
32-bit integer with another register. 

vector_mean_Q7 PROC 
EXPORT vector_mean_Q7 
; re = pSrc, pointer to source Q7 array 
; rl = # of Q7 values in source array 



Digital Signal Processing (DSP) fiji 

PUSH {r4-r6, lr} 
MOV r3, #0 J sum = e 
MOV r4, #0 ; Initialize Loop counter 
B check 

loop LDR rs, [r0], #4 J Load four Q7 values, post-index 
SXTAB r3, r3, rs ; sum += in[7:B) 
SBFX r6, rs, #8, #8 ; r6 = in[15:8) 
ADD r3, r3, r6 sum += in[15:8) 
SBFX r6, rs, #16, #8 J r6 = in[23:16} 
ADD r3, r3, r6 ; sum += in[23:16) 
ADD r3, r3, rs, ASR #24 J sum += in[31:24) 
ADDS r4, r4, #4 ; Increase Loop counter 

check CMP r4, rl ; Compare with array size 
BLT loop 

SDIV r3, r3, rl 
MOV r0, r3 J sum returned in re 
POP {r4-r6, pc} 
ENDP 

Example 24-23. Calculating the arithmetic mean of a Q7 array 

The following program uses the MAC instruction SMLAD to speed up the calculation of 
the arithmetic mean. 

vector_mean_Q15 PROC 

loop 

check 

EXPORT vector_mean_QlS 
, re = pSrc, pointer to source Q15 array 
; rl = # of Q15 values in source array 

PUSH {r4-r6, lr} 
MOV r3, #0 
MOV r6, #0x00010001 
MOV r4, #0 

B check 

LDR rs, [r0], #4 
SM LAD r3, rs, r6, 
ADDS r4, r4, #2 
CMP r4, rl 
BLT loop 

SDIV r3, r3, rl 
MOV r0, r3 
POP {r4-r6, pc} 
ENDP 

r3 

; sum = e 
; r3[T) = 1, r3[B] = 1 
; Initialize Loop counter 

J Load four Q15 values, post-index 
; r3 = l*r5[T) + l*r5[B] 
; Increase Loop counter 
; Compare with array size 

, sum returned in re 

Example 24-24. Calculating the arithmetic mean of a QlS array 



24.9 - Basic DSP Functions 

24.9.6 Vector Pairwise Multiplication 
Given two arrays, ai and bi ( 0 ~ i ~ n - 1 ), the following programs calculate the 
pairwise product for Q7 and QlS inputs: 

As introduced in Chapter 12.1.6, the product of multiplying two Qm.n numbers can be 
obtained by multiplying two integers corresponding to these two fixed-point numbers, 
and then shift the product right by n bits. 

Therefore, when multiplying two Q7 numbers, the product of corresponding 8-bit signed 
integers should be arithmetically shifted right by 7 bits. 

vector_mult_Q7 PROC 

loop 

check 

EXPORT vector_mult_Q7 

; re = pSrcA, pointer to source Ql array A 
, r1 = pSrcB, pointer to source Ql array B 
, r2 = post, pointer to destination Ql array 
; r3 = # of Ql values in source array 

PUSH {r4-r8, lr} 
MOV r4, #0 ; Initialize Loop counter 

B check 

LDRSB rs, [r0], #1 ; 1st Ql of A 
LDRSB r6, [r1], #1 , 1st Ql of B 

SMULBB rs, rs, r6 ; r5 = r5[B)*r6[B] 

; Shift product right by 7 bits and saturate result to 8 bits 
SSAT rs, #8, rs, ASR #7 
STRB rs, [r2], #1 ; Store results to destination array 

ADDS r4, r4, #1 ; Increase Loop counter 
CMP r4, r3 ; Compare with array size 
BLT loop 

POP {r4-r8, PC} , Recover registers and return 

ENDP 

Example 24-25. Multiplying the corresponding values in two Q7 arrays 

Example 24-25 shows the assembly program of pairwise multiplication between two Q7 
arrays. In each loop, the program loads one byte from each array, multiply them, and 
store the product byte back to the data memory. 



Digital Signal Processing (DSP) fiW 

This example cannot leverage SIMD instructions to perform multiple pairs of Q7 values 
in parallel. The reason is that all SIMD parallel multiplication instructions supported in 
Cortex-M4 and M7 also perform accumulations simultaneously. Nevertheless, no 
accumulation is required in this example. 

Similarly, when two Q15 numbers are multiplied, the product of their corresponding 
sized 16-bit integers should be right shifted right by 15 bits. 

In the following sample program, we multiply two pairs of Q15 numbers in each loop. 

vector_mult_Q15 PROC 

loop 

check 

EXPORT vector_mult_QlS 

; re = pSrcA, pointer to source Ql5 array A 
; rl = pSrcB, pointer to source Ql5 array B 
; r2 = post, pointer to destination Ql5 array 
; r3 = # of Ql5 values in source array 

PUSH {r4-r9, LR} ; Preserve registers 
MOV r4, #0 ; Initialize Loop counter 

B check 

LDR rs, [r0], #4 ; Load two Q15 values from A 
LDR r6, [rl), #4 , Load two Ql5 values from B 

SMULTT r7, rs, r6 ; Multiply one pair 
SMULBB rs, rs, r6 ; Multiply the second pair 

SSAT r8, #16, r7, ASR #lS , Saturate result to 16 bits 
SSAT r7, #16, rs, ASR #lS , Saturate result to 16 bits 
PKHBT r9, r7, r8, LSL #16 ; Pack two Q15 result into a word 
STR r9, [r2], #4 , Store results 

ADDS r4, r4, #2 ; Increase Loop counter 

CMP r4, r3 ; Compare with array size 
BLT loop 

POP {r4-r9, PC} , Recover registers and return 

ENDP 

Example 24-26. Multiplying corresponding values in two QlS arrays 



24.9 - Basic DSP Functions 

24.9.7 Vector Dot Product 
The following defines the dot product of two vectors. 

n-1 

P =A· B = L Ai Bi = A0 B0 + A0 B0 + .. . + A_1 Bn-l 
i=O 

To increase the precision, the product is in Q31 format even though inputs are in Q7. The 
product is Q63 if inputs are QlS. 

The following program calculates the dot product of two Q7 arrays. 

vector_dot_prod_Q7 PROC 

loop 

check 

EXPORT vector_dot_prod_Q7 

; re = pSrcA, pointer to source Q7 array A 
; rl = pSrcB, pointer to source Q7 array B 
; r2 = # of Q7 values in source array 

PUSH {r4-r9, LR} ; Preserve registers 
MOV r9, #0 ; Initialize accumulator 
MOV r4, #0 ; Initialize Loop counter 

B check 

LDR rs, [r0], #4 ; re = pSrcA, Load four Q7 values from A 

SXTB16 r7, rs, ROR #8 ; Extract two Q7 values and make them Q15 
SXTB16 r8, rs ; Extract the remaining two values 

LDR r6, [rl], #4 ; rl = pSrcB, Load four Q7 values from 8 

SXTB16 rS, r6, ROR #8 , Extract two Q7 values and make them Q15 
SXTB16 r6, r6 ; Extract the remaining two values 

SM LAD r9, r7, rs, r9 , r9 = r9 + r7[T}*r5[T) + r7[B)*r5[8) 
SM LAD r9, r8, r6, r9 , r9 = r9 + r8[T}*r6[T} + r8[B)*r6[B) 

ADDS r4, r4, #4 ; Increase Loop counter 
CMP r4, r2 ; r2 is the array size 
BLT loop 

MOV r0, r9 ; Return result in re 
POP {r4-r9, PC} , Recover registers and return 

ENDP 

Example 24-27. Dot product of two Q7 arrays 



Digital Signal Processing (DSP) ld$M 

Computing the dot product of two Q15 arrays is given below. 

vector_dot_prod_Q15 PROC 

loop 

EXPORT vector_dot_prod_QlS 

; re = pSrcA, pointer to source Q15 array A 
; rl = pSrcB, pointer to source Q15 array B 
; r2 = # of Q15 values in source array 

PUSH {r4-r8, LR} ; Preserve registers 
MOV r7, #0 , Lower word of accumulator 
MOV r8, #0 ; Upper word of accumulator 
MOV r4, #0 ; Initialize Loop counter 

B check 

LDR rs, [r0], #4 ; re = pSrcA, Load two Q15 
LDR r6, [rl], #4 ; rl = pSrcB, Load two Q15 

values 
values 

SMLALD r7, r8, rs, r6 ; rB:r7 = r8:r7 + r5[T]*r6[T] + r5[B]*r6[B] 

ADDS r4, r4, #2 ; Increase Loop counter 
check CMP r4, r2 ; Compare with array size 

BLT loop 

MOV r0, r7 ; Return result in rl:re 
MOV rl, r8 
POP {r4-r8, PC} ; Recover registers and return 

ENDP 

Example 24-28. Dot product of two Q15 arrays 

24.9.8 Vector Min and Max 
The following program finds both the global min and max of a Q7 array. The result is 
returned in register r0, with the max stored at the upper halfword and the min at the 
lower halfword. 

vector_minmax_q15 PROC 
EXPORT vector_minmax_qlS 

; re = pSrc, pointer to source Q15 array 
; rl = # of Q15 values in source array 

PUSH {r4-r6,lr} 

LDR 
LDR 

r2, [r0] 
r3, [r0] 

; Initialize min 
; Initialize max 



24.10 - Exercises 

loop 

check 

MOV r4, #0 , Initialize Loop counter 
B check 

LDR rs, [r0], #4 ; Load two Q15 values, post-index 
SSUB16 r6, r3, rs ; Compare current values with max 
SEL r3, r3, rs ; Select new max values 
SSUB16 r6, r5, r2 ; Compare current values with min 
SEL r2, r2, r5 ; Select new min values 
ADDS r4, r4, #2 , Increase Loop counter 
CMP r4, rl , Compare with array size 
BLT loop 

; Find the max of two halfwords of r3 
LSR r6, r3, #16 
MOV rs, #0xFFFF 
AND r3, r3, r5 
SSUB16 r5, r3, r6 
SEL r3, r3, r6 

; Find the min of two halfwords of r2 
LSR r6, r2, #16 
MOV rs, #0xFFFF 
AND r2, r2, rs 
SSUB16 rs, r6, r2 
SEL r2, r2, r6 

; Pack max to upper halfword and min to Low halfword 
PKHBT r0, r2, r3, LSL #16 
POP {r4-r6,pc} 
ENDP 

Example 24-29. Find the min and max in a QlS array 

24.10 Exercises 
1. Find out the value of register rl. 

USAT16 rl, #1, r0 SSAT16 rl, 
r0 = 0x00000000 rl = rl = 
r0 = 0x000F000F rl = rl = 
r0 = 0x00010001 rl = rl = 
r0 = 0x00020002 rl = rl = 
r0 = 0x00100010 rl = rl = 
r0 = 0xFFFFFFFF rl = rl = 

#1, r0 



Digital Signal Processing (DSP) EN 

2. Assume the value in register rl and r0 is 0xF880FF7F. What is the value in 
register r2 after running each of the following instruction? What are the APSR.GE 

bit flags? 

(l)SADD8 r2, rl, r0 
(2)UADD8 r2, rl, r0 
(3) QADD8 r2, rl, r0 
(4)UQADD8 r2, rl, r0 
(5)SHADD8 r2, rl, r0 
(6)UHADD8 r2, rl, r0 

3. Assume rl = 0x7FFF1000 and r0 = 0xFFFF7FFF, what is the value in register 
r2 after running each of the following instructions? 

(l)SSUB16 r2, rl, r0 
(2)USUB16 r2, rl, r0 
( 3) QSUB16 r2, rl, r0 
(4) UQSUB16 r2, rl, r0 
( 5) UHSUB16 r2, rl, r0 
( 6) SHSUB16 r2, rl, r0 

4. Assume rl = 0x0001FFFF and r0 = 0xFFFF0001, what is the value in register 
r2 after running each of the following instructions? 

(1) SMULBB r2, rl, r0 
(2) SMULBT r2, rl, r0 
(3) SMULTB r2, rl, r0 
(4) SMUL TT r2, rl, r0 
(5) SMUAD r2, rl, r0 
(6)SMUADX r2, rl, r0 
(7)SMUSD r2, rl, r0 
(8)SMUSDX r2, rl, r0 

5. Assume rl = 0x22221111 and r0 = 0x44443333, what is the value in register 
r2 after running each of the following instructions? 

(1) PKHTB r2, rl, r0 
(2) PKHBT r2, rl, r0 
(3)PKHTB r2, rl, r0, ASR #16 
(4) PKHBT r2, rl, r0, LSL #16 

6. Write an assembly program that uses SEL and packing instructions to achieve 
the following: pack the max of the upper halfwords of registers rl and r0 and 
the min of the lower halfwords of registers rl and r0 into register r3. 

• 
• 

r3(31:16] 
r3(15:0] 

max(r1(31:16), r0(31:16]) 
= min(r1[15:0), r0[15:0]) 



- 24.10 - Exercises 

7. Convert a color image to a grayscale image. Suppose each pixel in the image has 
three 8-bit byte values: red (R), green (G), and blue (B). The image has 1024 pixels. 
All red values are stored in an array starting at the memory address 0x20000000, 
all green values starting at 0x20004000, and all blue values starting at 0x20008000. 
Write an assembly program that calculates the grayscale value of each pixel by 
using the following formula. 

Greyscale = (Rx 77 + G x 151 +Bx 28)/256 

8. Loop unrolling is a commonly used compiler technique to speed up the 

application performance. The basic idea is to duplicate the original loop body 

multiple times and reduce the number of loops. The following example illustrates 

the key idea of loop unrolling. The unrolled loop runs faster because fewer branch 

instructions are executed, and a larger loop body gives compilers more 

opportunity to optimize the performance. 

Normal loop Loop unrolling by four times 

int sum = 0; int sum = 0; 
for (i = 0; i < 100; i++) for (i = 0; i < 25; i++) { 

sum += a[i]; sum += a[4*i]; 
sum += a[4*i + 1]; 
sum += a[4*i + 2]; 
sum += a[4*i + 3); 

} 

Rewrite subroutine vector _dot_prod_Q15 given in Example 24-28 and unroll the 

loop twice. Assume the number of Q16 numbers in each array is a multiple of 

four. 

9. Unroll the loop of vector _mean_Q15 given in Example 24-24 four times. Assume 
the number of Q16 values in the input array is a multiple of eight. 

10. Implement the following assembly subroutine that multiplies each element of a 
QlS array with a QlS constant. The results should be in the QlS format. 

vector_QlS_scale PROC 

; re = memory address of Q15 array 
; rl = array size 
; r2 = Q15 constant 

ENDP 



Appendix A: GNU Compiler EfdOW 

Appendix A: GNU Compiler 

A-1. Introduction 
The GNU Compiler Collection (GCC) consists of a suite of free, open-source, and widely 
used programming and debugging tools for many types of processors, such as x86/x64, 
ARM, MIPS, and A VR. The following lists a few important tools. 

• The GNU C compiler (gee) translates a C source file to an assembly file or to an 
object file (machine code). 

• The assembler (as) converts an assembly program to an object file. 
• The linker (ld) links object files and pre-compiled libraries into an executable file 

in a format such as ELF (Executable and Linkable Format). 
• To program microprocessors, flash programmers often require us to convert the 

ELF format to a specific binary format that can be directly written to flash or ROM. 
We can use objeopy to achieve the conversion. 

• The debugger (gdb) allows us to debug a program step by step. 

Compile (gee) 

Compile (gee) 

C Files (".c) 

Assembly Files (•.s) 
Object Flies (0 .0) 

Static Libraries 

Linker Script 

Link (Id) 
Convert 1 

(objcopy) 1 

Typically not required if 
the target platform is PC. 

,,,,... ·- ·-·- ·- ·- ·- ·, 
I 

Executable File Executable File 
(Executable & Linkable Format) I (Flashable Format) 

'-·- ·- ·- ·- ·- ·"' 

Figure A-1. A simple project that includes C files and assembly files. 



llB Appendix A: G U Compiler 

To generate the executable a. elf and its corresponding flashable image a. bin from the 
project given in Figure A-1, we can use commands shown in Example A-1 below. The fl -

e" option flag instructs gee to compile the source file without linking. The" -g" option 
generates debug tables for debugging. In the link command, the fl - T" flag identifies the 
file fl L4. ldfl as the linker script, and the fl -1" flag specifies that the static library "foo. a" 
should also be linked during the linking process. 

gee -e -g -o P.o P.e 
gee -e -g -o Q.o Q.e 
as -g -o X.o X.s 
as -g -o Z.o Z.s 
ld -TL4.ld -lfoo -o a.elf P.o Q.o X.o Q.o 
objeopy -0 binary a.elf a.bin 

Example A-1. Commands to build the project given in Figure A-1. 

CCC tools are cross-platform. For example, we use a Linux PC to compile an application 
for a different target platform. To build the project for ARM Cortex-M microprocessors, 
we need to pass more option flags to the commands above. These options are shown in 
Table A-1 below. The "-mthumbfl option forces the target code to use the Thumb and 
Thumb-2 instruction sets. The fl -mepu" option specifies the processor core. 

If a FPU is available, the "-mfloat-abi" option can be either softfp or hard. Both 
generate hardware floating-point instructions. However, they differ in two aspects: (1) 
how they pass floating-point arguments to a subroutine, and (2) how they return a 
floating-point value at the end of a subroutine. softfp uses integer registers and/or the 
stack, and hard uses floating-point registers. The "fpv4-sp-dl6" option means that the 
floating-point hardware is Vector Floating-point Architecture version 4, single-precision, 
and has 16 double-precision registers. 

Architecture Core FPU GNU Flags 
Cortex-M0 N/A -mthumb -mcpu=cortex-m0 

ARMV6-M Cortex-M0+ N/A -mthumb -mcpu=cortex-m0plus 
Cortex-Ml N/A -mthumb -mcpu=cortex-ml 

ARMV7-M Cortex-M3 N/A -mthumb -mcpu==cortex-m3 
No -mthumb -mcpu=cortex-m4 -mfloat-abi=soft 

Cortex-M4 
Yes 

-mthumb -mcpu=cortex-m4 -mfloat-abi==hard 
(or softfp) -mfpu=fpv4-sp-d16 

ARMV7E-M 
No -mthumb -mcpu=cortex-m7 -mfloat-abi=soft 

Cortex-Ml 
Yes 

-mthumb -mcpu=cortex-m7 -mfloat-abi=hard 
(or softfp) -mfpu==fpv5-sp-d16 

Table A-1. GNU command options for ARM Cortex-M processors 



Appendix A: GNU Compiler NM 

For ARM microp rocessors, the names of GNU com m ands have a p refix of the form: 

[architecture][-os]-eabi. The eabi stands fo r Embedded Application Binary 

Interface. For ARM, the GNU assembler is arm-none-eabi-as, in w hich none m eans that 

the target has no operating system . Example A-2 shows a simple Makefile that compiles 

hello. s and builds hello. bin . 

all: hello.bin 

hello . o: hello.s 
arm-none-eabi-as -mthumb -mcpu=cortex -m4 -g -o hello.o hello.s 

hello.elf: hello.o 
arm-none -eabi - ld -TSTM32L4.ld -o hello.elf hello.a 

hello.bin: hello.elf 
arm- none-eabi-objcopy -0 binary hello.elf hello.bin 

Example A-2. Makefile to build a flashable file. The linker script is STM32L4. ld. The linker 
script varies depending on specific processor chips and applications. 

A-2. GNU and ARM Assembly Syntax Comparison 
The syntax for assembly language in GNU assembler and ARM's own assembler are 

slightly different from each other. While their m ain d ifferences are described later in this 

appendix, this section gives simple ARM and GNU assembly p rograms that find the 

length of a string. Their syntax differences are h ighlighted. 

ARM Assembly Program GNU Assembly Program 

AREA myCode, DATA, ALIGN=4 .syntax unified @for Thumb-2 

EXPORT slen .thumb @same as .code 16 
.text @ code section 
.global slen @ visible outside 
. balign 4 @aligned to words 
.thumb_func 
.type slen, %function 

slen PROC slen: MOV rl,#0 @ Len 
MOV rl,#0 ; Len loop: LDRB r2,[r0],#1 @ post-index 

loop LDRB r2, [r0],#1 ; post-index CMP r2,#0 @ check NULL 
CMP r2,#0 ; check NULL IT NE 
ADDNE rl,rl, #1 ; Len++ ADDNE rl, r l,#1 @ Len++ 
BNE loop , Loop again BNE loop @ Loop again 
MOV r0, rl MOV r0, rl 
BX lr BX lr 
ENDP 

AREA myCode, DATA .data @ data section 
str DCB "Hello World" , 0 str: .asciz "Hello World" 

END .end 
Example A-3. Simple assembly program that calculates the length of a string. 



11!;1 Appendix A: GNU Compiler 

1. Labels 
In GNU assembly, each label ends with a colon (:). A label represents the memory 
address of an instruction or a data item. Labels allow us to conveniently refer to an 
assembly instruction or a data item from another part of the assembly program. 

A label can contain alphanumeric characters and two special characters: underscore (_) 
and dollar ($). All labels are case-sensitive. The first character of a label cannot be a 
number. When a label is defined, the label must appear at the beginning of a line, without 
any leading whitespace. 

2. Comments 
There are three different methods for commenting in an assembly program. 

1. A comment can be enclosed between two sets of forward slash/asterisk 
combinations:/* and*/, in the same way as C comments. 

2. If the source code is in a file whose name ends with a suffix .S or .s, a single-line 
comment can be placed after a double-slash(//). 

3. A comment can be placed after an "at" character(@). 

3. Directives 
All directives in GNU assembly are prefixed by a 11

." (dot). 

As introduced in Chapter 3, ARM microprocessors have two major instruction sets: (1) 
the 32-bit ARM instruction set, and (2) the Thumb-2 instruction set consisting of 16- and 
32-bit instructions. We need to use . arm and . thumb to inform the GNU assembler which 
instruction set should be used to interpret following assembly code. 

Also, the Unified Assembly Language (UAL) allows ARM and Thumb instruction set to 
share the same assembly syntax. If UAL is used, the same assembly program can be 
assembled to run on a variety of ARM processors. For the GNU assembler, support for 
UAL is provided by the statement 11

• syntax unified" . 

The following shows how to define a function in ARM and GNU assembly. While GNU 
syntax provides 11

• func" and 11
• endfunc", the GNU assembler for ARM does not 

support these two directives. 

ARM Assembler GNU Assembler 
myFunc PROC .thumb func 

; function body .type myFunc, %function 
ENDP myFunc: 

!* function body */ 

Table A-2. Defining a function in GNU and ARM 



Appendix A: GNU Compiler NM 

The following table shows frequently used directives in both the GNU and ARM 
assembler. Not every GNU directive has an equivalent ARM directive. 

GNU Assembly Syntax ARM Assembly Syntax Comments 

Sections .data AREA myData, DATA 

and .text AREA myCode, CODE 

Functions .end END 

.type myFunc, %function myFunc PROC 

.func myFunc 

.endfunc ENDP 

.include "hardware.s" INCLUDE "hardware.s" 

.global or .globl myFunc EXPORT myFunc 

.global myFunc IMPORT myFunc 

.weak EXTI0_IRQHandler EXPORT 
EXTI0_IRQHandler 
[WEAK] 

Allocating .byte 1, 0x1B DCB 1, 0x1B 8 bits each 

Space and .hword or .short 1, 2 DCW 1, 0x1B 16 bits each 
Alignment .word, .long or .int 98 DCD 98 32-bits each 

. quad 1, 0x1B DCQ 1, 0x1B 64 bits each 

. ascii "string", 0 DCB "string", 0 null terminated 

.asciz "string" DCB "string", 0 null terminated 

.float or .single 3.14 DCFS 3.14 32 bits each 

.double 3.14 DCFD 3.14 64 bits each 

.fill 20, 1, 0xFF FILL 20, 0xFF, 1 20 bytes 

.space or .skip 255 SPACE 255 255 bytes 

.balgin n ALIGN n n=2m 

Setting .equ (or .set) size, 4 size EQU 4 #define in C 
Symbols .equiv x, y+l area SETA 2 Numeric 

flag SETL {FALSE} Logic 
name SETS "hello" String 

weight .req r8 weight RN r8 Register alias 

Table A-3. Frequently used assembly directives 

The directive . equiv works in the same way as . equ and . set except that the assembler 
reports an error if the target symbol is already defined. The directive . equ and . set can 
define the same symbol multiple times. 



lllZI Appendix A: GNU Compiler 

4. Conditional Instructions 
The ARM assembler provides better support for conditional instructions. It automatically 

translates "ADDNE r3,r2,rl" to two instructions "IT NE; ADDNE r3,r2,rl". ARM 

assembler automatically adds an " IT" instruction. "IT" stands for If-Then. However, in 

GNU assembly, we must add the "IT" instruction manually. The usage of the IT 

instruction is as follows: 

IT{x{y{z}}} {cond} 

where x, y, and z are optional and can be either T (for Then) or E (for Else). We can put 

up to four conditionally executed instructions after an IT instruction. 

ARM Syntax GNU Syntax 
ADDNE r3,r2,rl IT NE 

ADDNE r3,r2,rl , Then 

ADDNE r3,r2,rl ITE NE 
SUBEQ r3,r4,r5 ADDNE r3,r2,rl ; Then 

SUBEQ r3,r4,r5 , ELse 

ADDGT r3,r2,rl ITE GT 
SUB LE r3,r4,r5 ADDGT r3,r2,rl ; Then 

SUBLE r3,r4,r5 ; ELse 

SUB LE r3,r4,r5 ITE LE 
ADDGT r3,r2,rl SUBLE r3,r4,r5 ; Then 

ADDGT r3,r2,rl , ELse 

ADDNE r3,r2,rl ITT NE 
SUBNE r2,r4,r5 ADDNE r3,r2,rl ; Then 

SUBNE r2,r4,r5 , Then 

ADDNE r0,r0,rl ITTEE NE 
SUBNE r2,r3,#l ADDNE r0,r0,rl ; Then 

MOVEQ r3,r0 SUBNE r2,r3,#l , Then 

MOVEQ r4,rl MOVEQ r3,r0 , ELse 

MOVEQ r4,rl , ELse 

Table A-4. Usage of IT instructions 

The IT instruction has 16 bits and Figure A-2 shows its encoding format. It consists of a 

4-bit test condition code and a 4-bit if-then bit mask. 

• The test condition code is defined for each conditional to be tested, as shown in 

Table A-5. 

• The if-then mask indicates whether the condition or the inverse condition should 

be tested for the conditional instructions after the IT instruction, depending on 

the values of <x>, <y>, <Z> (see ARM v7-M Architecture Reference Manual for a 
detailed explanation). 



Appendix A: GNU Compiler iHM 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 I 0 I 1 I 1 I 1 I 1 I 1 I 1 I Test Condition I If-Then Mask 

Figure A-2. Encoding of an IT instruction 

Code Condition Meaning 
0000 EQ EQual 
0001 NE Not Equal 
0010 HS/CS unsigned Higher or Same (Carry Set) 
0011 LO/CC unsigned Lower (Carry Clear) 
0100 MI Minus (Negative) 
0101 PL Plus (Positive or Zero) 
0110 vs overflow Set 
0111 vc oVerflow Clear 
1000 HI unsigned Higher 
1001 LS unsigned Lower or Same 
1010 GE signed Greater or Equal 
1011 LT signed Less Than 
1100 GT signed Greater Than 
1101 LE signed Less than or Equal 
1110 AL Always 

Table A-5. Encoding of condition code 

A-3. Mixing C and Assembly 
The basic format of inline assembly is 

asm volatile ( assembly code 
output operands 

: input operands 
: list of clobbered registers 
) ; 

/* optional *I 
/* optional *I 
/* optional */ 

Example A-4 shows inline assembly code with only one assembly instruction. This 
example does not include the list of clobbered registers. The list of clobbered registers is 
explained later. In the C program, srcl, src2, and dst are three local integer variables. 
The volatile keyword helps compilers avoid optimizing away or reordering the 
assembly code. The % [rd] refers to the register rd. The symbolic name rd is defined in 
the output operand statement as [rd] " :::: r" (dst). This statement names the register 
that holds the value of the C variable dst as rd. 



Appendix A: GNU Compiler 

int srcl = 1, src2 = 2, dst; 
11 The inL ine assembLy instructions below perform the following C statement: 
II dst = srcl + src2; 

asm volatile ("add %[rd], %[rs], %[rt]" 
[rd] "=r" (dst) 

: [rs] "r" (srcl), [rt] "r" (src2) ); 

Example A-4. Simple inline assembly code performs "dst = srcl + src2". 

The inline assembly code is explained below. "=r" refers to the register to write to, and 
"r" refers to the register to read from, where "r" stands for a register. 

Prevent compiler from 
optimizing the assembly 
code away or moving it 
~ 

r{ =: write-only operand 
+: read-write operand 
&: output operand only 

asm volatile ("add %[rd), %[rs], %[rt]" [rd] "=r" (dst) [rs] "r" (srcl), [rt] "r" (src2)); 

Assembly 
Instructions 

Output 
Operands 

Use a register 
for the operand 

Input 
Operands 

The list of clobbered registers is used to inform the compiler that additional registers 
(excluding the output operands) or the memory are to be modified but are not 
guaranteed to be preserved by the inline assembly. There is no need to add the output 
operands to the clobbered list. While it is not mandatory to specify the clobbered register 
list, it is highly recommended to add the list so that the compiler better or correctly 
performs optimization. In Example A-5, the clobbered list indicates that register rs, 
memory, and the program status register (psr) are overwritten. The "cc" stands for 
condition code registers, which let the compiler know that the assembly code will change 
the processor status flags. In this example, the instruction adds modifies the processor 
status flags. 

int array[10]; 
11 The inL ine assembly instructions be Low perform the fol Lowing C statement: 
II array[@) += 1; 

asm volatile ( 
II lw rs, #0(%[ rs]) 
II adds rs, rs, #1 
II SW rs, #0(%[ rs]) 

[rs] "r" (array) 

\n\t" 
\n\t" 

"memory", "rS", "cc"); 

I* r5 is modified *I 
I* processor flags are modified *I 
I* memory is modified *I 
I* No output operands *I 
I* Input operand *I 
I* Memory, r5, and psr are modified 

Example A-5. Demo of the list of clobbered registers 

*I 



Appendix A: GNU Compiler iffl 

Software can instruct the compiler to use a specific register to store a C variable by using 
the register keyword, as shown below. 

register int t asm("r0"); 

Example A-6 shows the difference between ARM and GNU syntax when inline assembly 
accesses local variables. 

ARM In-line Assembly GNU In-line Assembly 

int sum3(int a, int b, int c){ int sum3(int a, int b, int c){ 
int t; register int t asm("r0"); 
_asm { asm volatile( 

ADD t, a, b; II virtual registers " ADD r0, r0, rl \n\t" !* a + b 
ADD t, t, c. " ADD r0, r0, r2 " /* add c , 

} ) ; 
return t; return t; 

} } 

int main(void){ int main(void){ 
int s = sum3(1, 2, 3); int s = sum3(1, 2, 3); 
while(l); while(l); 

} } 

Example A-6. Accessing local variables 

*/ 
*I 

A C function can be implemented by using only assembly instructions, as shown in 
Example A-7. We can declare a function using "_asm" for the ARM assembler and 
"_attribute_ ((naked))" for the GNU assembler. Be careful that, in both cases, the 
compiler does not insert any prolog (initial code in a function that preserves registers) 
and any epilog (final code in a function that recovers registers before the function returns). 
Therefore, if necessary, the assembly function body must push registers onto the stack at 
the beginning, retrieve input arguments from the stack, and pop register values off the 
stack at the end. 

ARM In-line Assembly GNU In-line Assembly 

_asm int sum3(int a, int b, int c){ - attribute _ ((naked)) int sum3(int 
ADD r0, r0, rl ; a + b a, int b, int c){ 
ADD r0, r0, r2 ; add c asm volatile( 
BX lr ; return " ADD r0, r0, rl \n\t" /* a + b */ 

} " ADD r0, r0, r2 \n\t" /* add c *I 
" BX lr" /* return */ 

) ; 

int main(void){ 
} 

int s = sum3(1, 2, 3); int main (void){ 
while(l); int s = sum3(1, 2, 3); 

} while(l); 
} 

Example A-7. Implementing a C function body by using assembly instructions only 



Appendix A: G U Compiler 

A-4. Linker Script 
When the linker combines object files and library files into a single executable file, a linker 
script provides the linker two critical types of instructions regarding (1) how data and 
code sections are merged, and (2) where each section should be placed in memory. 

A linker script is a text file that contains two major components: MEMORY{} and 
SECTIONS{} (see Example A-8). The MEMORY{} describes the type, the starting address, 
and the size of various memory devices on a chip. The SECTIONS{} specifies the location 
of different sections of memory. All sections are placed in sequential order in their target 
memory device. Table A-6 summarizes the content of each section. 

ENTRY(Reset_Handler) /* Specify the entry point of the program *I 

estack = 0x20017FFF /* Place the stack at the top end of RAM *I 

/* Define memory areas */ 
MEMORY 
{ 

} 

FLASH (rx): ORIGIN 
RAM (xrw) : ORIGIN 

0x08000000, LENGTH 
0x20000000, LENGTH 

1024K /* read, execute *I 
96K /* execute, read, write *I 

/* Define output sections */ 
SECTIONS 
{ 

} 

/* ISR vector table should be at beginning of FLASH *I 
.isr_vector : { ... }>FLASH 

/* Program code and some constant data go into FLASH *I 
.text : { ... } > FLASH 

/* Read-only data section goes into FLASH */ 
.rodata : { ... } > FLASH 

/*Read-write initialized data section goes into RAM and FLASH */ 
.data:{ ... }> RAM AT> FLASH !*AT means both*/ 

/*Read-write uninitialized data section goes into RAM *I 
/* bss = Block Started by Symbol */ 
.bss : { ... }>RAM 

/* Allocate a heap section in RAM */ 
._user_heap_stack: { ... } >RAM 

Example A-8. The linker script for STM32L4 that stores a program in flash memory. 



Appendix A: GNU Compiler EJ9W 

Section Content Memory Region 
.isr_vector Stack address, interrupt address vector Flash 
.text Program code, some constants Flash 
.rodata Constant data, strings Flash 

.data 
Global initialized variables, 
local initialized static variables 

RAM and Flash 

Global un-initialized/zero-initialized 
.bss variables, local un-initialized/zero- RAM 

initialized static variables 
heap Dynamically allocated variables RAM 
stack Local non-static variables RAM 

Table A-6. Memory layout of a C or assembly program 

The ENTRY keyword specifies the first instruction to be executed when the program starts 
is Reset_Handler. The linker script also defines a constant named _estack, which is the 
largest memory address in RAM. Note that the stack pointer descends to lower memory 
addresses when data are pushed onto the stack. The Reset_Handler initializes the stack 
pointer as follows: 

LOR sp, =_estack /*Initialize the stack pointer */ 

The section. isr _vector is for ARM processors only. As defined in the startup file (such 
as startup_stm3214xxxx. s), it includes the memory address of the main stack, the 
memory address of the Reset_Handler function, and the memory address of interrupt 
service routines (also known as the interrupt vector table) . The . is r _vector section, 
defined in Example A-9, is placed at the beginning of the flash memory. The special linker 
variable dot 11

• 

11 represents the current location counter, which is automatically 
incremented by section size when a section is added. The statement ". =" forces the 
linker to change the location counter to the expression assigned . 

. isr_vector : 
{ 

• = ALIGN ( 4); /* AL ign to words *I 
KEEP(*(.isr_vector)) /*Instruct Linker to keep it in executable*/ 
• = ALIGN(4); /*Align to words *I 

} >FLASH /* Store this section in f Lash memory *I 

Example A-9. Definition of the . isr _vector section in the linker script 

Another important section is the heap, which is placed immediately after all data sections 
in RAM, as shown in Example A-8. The heap grows upwards as space is allocated 
dynamically during run time. 



11111 Appendix A: GNU Compiler 

A-5. Programming and Debugging the board 
The debug interface of most development boards, such as STM32L4 Discovery Kit, often 
provides a USB mass storage interface. When a board is connected to a computer, it is 
automatically mounted as a USB drive. To program the board, we only need to copy the 
generated . bin file to the mounted USB drive. 

If the USB mass storage interface is not available, we can use the open-source st-flash 
tool to program an STM board: 

st-flash write myProgram.bin 0x8000000 

To debug a program running on the board, we can use a user-friendly IDE such as Eclipse 
and TrueSTUDIO. In the following, we focus on how to debug via GNU gdb on the 
command line. 

Telnet 
'----' 

GOB 

TCP/IP 

port: 4444 

TCP/IP 

port: 3333 

OpenOCD 
Server 

Development Platform 

USB 
Driver 

USS JTAG 
Cable /SW 

_.....______........, ST-Link - - -
ST ARM 
Cortex-M 

STM32 Development Kit 

Figure A-3. Using OpenOCD to debug 

As shown in Figure A-3, many development boards, such as STM32 discovery kits, 
integrate a hardware debugger. The hardware debugger, such as ST-Link, uses a serial 
communication interface to interact with the JTAG (Joint Test Action Group) or SW 
(Serial Wire) debug port of ARM Cortex-M processors. 

OpenOCD (Open On-Chip Debugger) is an open-source software that is widely used for 
debugging and downloading executables to microprocessors. OpenOCD runs as a server 
(also known as a daemon) on a host computer and serves two purposes: 

1. It receives commands from either Telnet or gdb via a TCP/IP connection. 
2. It translates commands received to JT AG/SW commands, and sends them to the 

target ARM Cortex-M processor via the hardware debugger. 

OpenOCD and ST-Link communicate via USB. By default, Linux only allows privileged 
users to access an USB device using libusb. To enable unprivileged users to run 
OpenOCD, we need to create a rule file named "stlink. rules" and copy it to the 
directory I etc/udev /rules. d/ as root. 



Appendix A: GNU Compiler IN 

# libusb device nodes 
KERNEL=="tty[A-Z]*[0-9]", MODE="0666" 
SUBSYSTEM=="usb", ATTRS{idVendor}=="0483", MODE="0666" 

Example A-10. stlink.rules 

In the following, we focus only on debugging via gdb and OpenOCD. 

On one terminal window, we run the following command: 

openocd -f board/stm3214discovery.cfg -f interface/stlink-v2.cfg 

On another terminal window, we start gdb. The OpenOCD server listens for gdb 
connections on TCP port 3333 by default. 

arm-none-eabi-gdb myProgram.elf 
(gdb) target remote localhost:3333 
(gdb) monitor reset halt 
(gdb) load 
(gdb) continue 

"monitor [commands]" means that these commands are issued to the OpenOCD server; 
they are not commands executed by gdb. These commands are called remote commands. 
OpenOCD translates remote commands to JT AG commands. 

While OpenOCD works for a verity of ARM Cortex chips from different companies, one 
alternative to OpenOCD for STM32 ARM Cortex chips is the open-source tool st- util. 

On one terminal, run the following command: 

st-util 

On another terminal, you can start to debug the code: 

arm-none-eabi-gdb myProgram.elf 
(gdb) target extended localhost:4242 
(gdb) load 
(gdb) continue 

You can stop the execution by pressing ctrl + c in the gdb command window. You can 
also set up breakpoints and watchpoints, execute the code step by step, examine code 
and data, and print variables. Refer to GNU gdb documentation for details. 



Appendix B: Cortex-M3/M4 Instructions 

Appendix B: Cortex-M3/M4 Instructions 
Instruction Ooerands Description and Action 
ADC, ADCS {Rd,} Rn, Op2 Add with Carry, Rd ~ Rn + Op2 + Carry, ADCS updates N,Z,C,V 
ADD, ADDS {Rd,} Rn, Op2 Add, Rd ~ Rn + Op2, ADDS updates N,Z,C,V 
ADD, ADDS {Rd,} Rn, #imm12 Add Immediate, Rd ~ Rn + imm12, ADDS updates N,Z,C,V 
ADR Rd, label Load PC-relative Address, Rd ~ <label> 
AND, ANDS {Rd,} Rn, Oo2 Logical AND, Rd ~ Rn AND Op2, ANDS updates N,Z,C 
ASR, ASRS Rd, Rm, <Rs l#n> Arithmetic Shift Right, Rd~ Rm>>(Rsln), ASRS updates N,Z,C 
B label Branch, PC ~ label 
BFC Rd, #lsb, #width Bit Field Clear, Rdf(width+lsb-l):lsb] ~ 0 
BFI Rd, Rn, #lsb, #width Bit Field Insert, Rd[(width+lsb-l):lsb] ~ Rn[(width -1) :0] 
BIC, BICS {Rd,} Rn, Op2 Bit Clear, Rd ~ Rn AND NOT Op2, BICS updates N,Z,C 
BKPT #imm Breakpoint, prefetch abort or enter debug state 
BL label Branch with Link, LR ~ next instruction, PC ~ label 
BLX Rm Branch register with link, LR~next instr addr, PC~Rm[31:1] 

BX Rm Branch register, PC ~ Rm 
CBNZ Rn, label Compare and Branch if Non-zero; PC ~ label if Rn I= 0 
CBZ Rn, label Compare and Branch if Zero; PC ~ label if Rn == 0 
CLREX - Clear local processor exclusive tag 
CLZ Rd, Rm Count Leading Zeros, Rd ~ number of leading zeros in Rm 
CMN Rn, Op2 Compare Negative, Update N,Z,C,V flags on Rn + Op2 
CMP Rn, Op2 Compare, Update N,Z,C,V flags on Rn - Op2 
CPS ID i Disable specified (i) interrupts, optional change mode 
CPS IE i Enable specified (i) interrupts, optional change mode 
DMB - Data Memory Barrier, ensure memory access order 
DSB - Data Synchronization Barrier, ensure completion of access 
EOR, EORS {Rd,} Rn, Op2 Exclusive OR, Rd ~ Rn XOR Op2, EORS updates N,Z,C 
ISB - Instruction Synchronization Barrier 
IT - If-Then Condition Block 

LDM Rn{ I}, reglist Load Multiple Registers increment after, <reglist> = 
mem[Rn], Rn increments after each memory access 

LDMDB, LDMEA Rn{ I}, reglist Load Multiple Registers Decrement Before, < reglist> = 
mem[Rn], Rn decrements before each memory access 

LDMFD, LDMIA Rn{ I}, reelist <reglist > = mem[Rn], Rn increments after each memory access 
LOR Rt, [Rn, #offset] Load Register with Word, Rt ~ mem[Rn + offset] 
LDRB, LDRBT Rt, [Rn, #offset] Load Register with Byte, Rt ~ mem[Rn + offset] 

LORD Rt, Rt2, [Rn,#offset] Load Register with two words, 
Rt ~ mem[Rn + offset], Rt2 ~ mem[Rn + offset + 4] 

LDREX Rt, [Rn, #offset] Load Register Exclusive, Rt ~ mem[Rn + offset] 
LDREXB Rt, [Rn] Load Register Exclusive with Byte, Rt ~ mem[Rn] 
LDREXH Rt, [Rnl Load Register Exclusive with Half-word, Rt ~ mem[Rn] 
LDRH, LDRHT Rt, [Rn, #offset] Load Register with Half-word, Rt ~ mem[Rn + offset] 
LDRSB, LDRSBT Rt, [Rn, #offset] Load Register with Signed Byte, Rt ~ mem[Rn + offset] 
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with Signed Half-word, Rt ~ mem[Rn + offset] 
LDRT Rt, [Rn, #offset] Load Register with Word, Rt ~ mem[Rn + offset] 
LSL, LSLS Rd, Rm, <Rsl#n> Logic Shift Left, Rd~ Rm « Rs in, LSLS update N,Z,C 
LSR, LSRS Rd, Rm, <Rsl#n> Logic Shift Right, Rd~ Rm » Rsln, LSRS update N,Z , C 
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, Rd ~ (Ra + (Rn*Rm))[31:0] 
MLS Rd, Rn, Rm, Ra Multiply with Subtract, Rd ~ (Ra - (Rn*Rm))[31:0] 
MOV, MOVS Rd, Op2 Move, Rd ~ Op2, MOVS updates N,Z,C 
MOVT Rd, #imm16 Move Top, Rd[31 :16] ~ imm16, Rd[15:0] unaffected 
MOVW, MOVWS Rd, #imm16 Move 16-bit Constant, Rd ~ imm16, MOVWS updates N,Z,C 
MRS Rd, spec reg Move from Special Register, Rd ~ spec reg 
MSR spec reg, Rm Move to Special Register, spec reg ~ Rm, Updates N,Z,C,V 
MUL, MULS {Rd,} Rn, Rm Multiply, Rd ~ (Rn*Rm)[31:0], MULS updates N,Z 
MVN, MVNS Rd, Op2 Move NOT, Rd ~ 0xFFFFFFFF EOR Op2, MVNS updates N,Z,C 



Appendix B: Cortex-M3/M4 Instructions NM 

NOP - No Operation 
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT, Rd +- Rn OR NOT Op2, ORNS updates N,Z,C 
ORR, ORRS {Rd,} Rn, Op2 Logical OR, Rd +- Rn OR Op2, ORRS updates N,Z,C 
POP reglist Canonical form of LDM SP!, <reglist> 
PUSH reglist Canonical form of STMDB SP!, <reglist> 
RBIT Rd, Rn Reverse Bits, for (i = 0; i < 32 ; i++) : Rd[i] = RN[31-i] 

REV Rd, Rn Reverse Byte Order in a Word, Rd[31:24] +-Rn[7 :0], 
Rd [ 23: 16] +-Rn [ 15: 8], Rd[15:8]+-Rn [23:16], Rd[7:0]+-Rn[31 :24] 

REV16 Rd, Rn 
Reverse Byte Order in a Half-word, Rd[15:8]+-Rn[7:0], 
Rd[7:0] +-Rn[15 :8] , Rd[31:24]+-Rn[23:16], Rd[23:16]+-Rn[31 :24] 

REVSH Rd , Rn 
Reverse Byte order in Low Half-word and sign extend, 
Rd[15:8]+-Rn[7:0], Rd[7:0 ]+-Rn [15:8 ] , Rd[31 :16]+-Rn[7] *&0xFFFF 

ROR, RORS Rd , Rm, <Rs l#n > Rotate Right, Rd +- ROR(Rm, Rs In), RORS updates N,Z,C 
RRX, RRXS Rd, Rm Rotate Right with Extend, Rd +- RRX(Rm), RRXS updates N,Z,C 
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract, Rd+- Op2 - Rn, RSBS updates N,Z,C,V 
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry, Rd +- Rn-Op2- NOT(Carry), updates NZCV 

SBFX Rd, Rn, #lsb , #width Signed Bit Field Extract, Rd[(width-1) :0] = Rn[(width+lsb-
1) :lsbl, Rd [31: width] = Replicate(Rn[width+lsb- 1]) 

SDIV {Rd,} Rn, Rm Signed Divide, Rd +- Rn/Rm 
SEV - Send Event 

SM LAL Rd Lo, RdHi, Rn, Rm Signed Multiply with Accumulate, 
RdHi,RdLo +- signed(RdHi,RdLo + Rn *Rm) 

SMULL Rd Lo, RdHi , Rn, Rm Signed Multiply, RdHi,RdLo +- signed(Rn*Rm) 
SSAT Rd, #n, Rm{,shift#s} Signed Saturate, Rd +- SignedSat((Rm shift s), n). Update Q 
STM Rn{ I}, reglist Store Multiple Registers 
STMDB, ST ME A Rn{ I}, reglist Store Multiple Registers Decrement Before 
STMFD, STMIA Rn{ I}, reglist Store Multiple Registers Increment After 
STR Rt, [Rn, #offset] Store Register with Word, mem[Rn+offset ] = Rt 
STRB, STRBT Rt, fRn, #offset] Store Register with Byte, mem[Rn+offset ] = Rt 

STRD Rt , Rt2, [Rn,#offset] Store Register with two Words, 
memfRn+offsetl = Rt, memfRn+offset+4] = Rt2 

STREX Rd, Rt, [Rn,#offset ] Store Register Exclusive if allowed, mem [ Rn + offset] +- Rt, 
clear exclusive tag, Rd +- 0. Else Rd +- 1. 

STREXB Rd, Rt, [Rn] Store Register Exclusive Byte, mem[Rn] +- Rt[15 :0] or 
mem[Rn] +- Rt[7:0], clear exclusive tag, Rd +- 0. Else Rd +- 1 

STREXH Rd, Rt, [Rn] Store Register Exclusive Half -word, mem[Rn] +- Rt[15 :0] or 
mem[Rn] +- Rt [7 :0], clear exclusive tag, Rd +- 0. Else Rd +- 1 

STRH, STRHT Rt, [Rn, #offset] Store Half -word, mem[Rn + offset] +- Rt[15 :0] 
STRT Rt, [Rn, #offset] Store Register with Translation, mem[Rn + offset] = Rt 
SUB, SUBS {Rd,} Rn, Op2 Subtraction, Rd +- Rn - Op2, SUBS updates N,Z,C,V 
SUB, SUBS {Rd, } Rn, #imm12 Subtraction, Rd +- Rn - imm12, SUBS updates N,Z,C,V 
SVC #imm Supervisor Call 
SXTB {Rd,} Rm {,ROR #n} Sign Extend Byte, Rd+- SignExtend((Rm ROR (8*n))[7 :0]) 
SXTH {Rd,} Rm {, ROR #n} Sign Extend Half-word, Rd+-SignExtend((Rm ROR (8*n))I15:0]) 
TBB [Rn, Rm] Table Branch Byte, PC +- PC+ZeroExtend( Memory(Rn+Rm , 1) << 1) 

TBH [Rn, Rm , LSL #1] Table Branch Halfword, 
PC+-PC+Zer oE xtend(Memory(Rn+Rm<< l,2) << 1) 

TEQ Rn, Op2 Test Equivalence, Update N,Z,C,V on Rn EOR Operand2 
TST Rn, Op2 Test, Update N,Z,C,V on Rn AND Op2 

UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract , Rd [ (width-1):0] = 
Rn [ (width+lsb-l) : lsb ] , Rd[31: width] = Replicate(0) 

UDIV {Rd,} Rn, Rm Unsigned Divide, Rd +- Rn / Rm 

UM LAL Rd Lo, RdHi, Rn, Rm Unsigned Multiply with Accumulate , 
RdHi,RdLo +- unsigned(RdHi,RdLo + Rn *Rm) 

UMULL Rd Lo, RdHi , Rn, Rm Unsigned Multiply, RdHi,RdLo +- unsigned (Rn *Rm) 
USAT Rd , #n , Rm{, shift #s} Unsigned Saturate, Rd+-UnsignedSat ( (Rm sh i ft s ) ,n ) , Update Q 
UXTB {Rd, } Rm {, ROR #n } Unsigned Extend Byte, Rd +- ZeroExtend((Rm ROR (8*n) ) [7:0]) 
UXTH {Rd, } Rm {,ROR #n} Unsigned Extend Halfword, Rd +- Zer oExtend(( Rm ROR {8 * n))[15:0]) 
WFE - Wait For Event and Enter Sleep Mode 
WFI - Wait for Interrupt and Enter Sleep Mode 



Appendix C: Floating-point Instructions (Optional on Cortex-M4 and Cortex-M7) 

Appendix C: Floating-point Instructions 
(Optional on Cortex-M4 and Cortex-M7) 
Instruction Operands Description and Action 
VABS.F32 Sd, Sm Absolute value of floats, Sd ._ I Sm I 
VADD.F32 {Sd,} Sn, Sm Add floating points, Sd <--- Sn + Sm 

VCMP.F32 Sd, <Sm I #0 . 0> Compare two floating-point registers, or one floating - point 
register and zero 

VCMPE.F32 Sd, <Sm I #0 . 0> Compare two floating-point registers, or one floating-point 
register and zero, and raise exception for a signaling NaN 

VCVT{R}.S32.F32 Sd, Sm Convert from single -precision to signed 32-bit (S32) or 
unsigned 32-bit (U32) integer. If R is specified, it uses 
the rounding mode specified by FPSCR. If R is omitted, it 

VCVT{R} . U32 . F32 Sd, Sm uses round towards zero. 

VCVT{R}.F32 .S32 Sd, Sm Convert to single-precision from signed 32-bit (S32) or 
VCVT{R} . F32.U32 Sd, Sm unsigned 32-bit (U32) integer. See above for R. 
VCVT{R} . Td. F32 Sd, Sm, #fbits Convert between single -precision and fixed - point. Td can be 
VCVT{R'}. Td. F32 Sd, Sd, #fbits S16 (signed 16-bit), U16 (unsigned 16-bit), S32 (signed 32 -
VCVT{R}.F32.Td Sd, Sm, #fbits bit), U32 (unsigned 32 - bit) . fbits is the number of fraction 
VCVT{R}.F32 .Td Sd, Sd, #fbits bits in the fixed-point number. See above for R. 

VCVT<BIT>.F32.F16 Sd, Sm Converts half-precision float to single-precision 
(B = bottom half of Sm, T = top half of Sm) 

VCVT <BIT> . Fl6.F32 Sd, Sm Converts single- precision float to half-precision 
(B = bottom half of Sd, T = top half of Sd) 

VDIV . F32 {Sd,} Sn, Sm Divide single-precision floats, Sd = Sn/Sm 
VFMA . F32 {Sd,} Sn, Sm Multiply (fused) then accumulate float, Sd = Sd + Sn *Sm 
VFMS.F32 {Sd,} Sn, Sm Multiply (fused) then subtract float, Sd = Sd - Sn*Sm 

VFNMA.F32 {Sd,} Sn, Sm Multiply (fused) then accumulate then negate float, 
Sd = -1 * Sd + Sn * Sm 

VFNMS.F32 {Sd,} Sn, Sm Multiply (fused) then subtract then negate float, 
Sd = -1 * Sd - Sn * Sm 

VLDM .64 Rn{!}, list Load multiple double - precision floats 
VLDM.32 Rn{!}, list Load multiple single- precision floats 
VLDR . F64 <Dd I Sd>, rRn l Load one double -precision float 
VLDR . F32 <DdlSd >, (Rn] Load one single-precision float 
VLMA. F32 {Sd,} Sn, Sm Multiply float then accumulate float, Sd = Sd + Sn*Sm 
VLMS .F32 {Sd,} Sn, Sm Multiply float then subtract float, Sd = Sd - Sn*Sm 
VMOV. F32 Sd, #imm Move immediate to float-register 
VMOV Sd, Sm Copy from float register to float register 
VMOV Sn, Rt Copy ARM core register to float register 
VMOV Sm, Sml, Rt, Rt2 Copy 2 ARM core registers to 2 float registers 

Dd(x], 
Copy ARM core register to a half of a double-precision 

VMOV Rt floating-point register, where x is 0 or 1. 

VMOV Rt, Dn[x] 
Copy a half of a double-precision floating-point register to 
ARM core register, where x is 0 or 1. 

VMRS Rt, FPS CR Move FPSCR to ARM core register or APSR 
VMSR FPSCR, Rt Move to FPSCR from ARM Core register 
VMUL.F32 {Sd,} Sn, Sm Multiply float, Sd = Sn * Sm 
VNEG.F32 Sd, Sm Negate float, Sd = -1 * Sm 

VNMLA.F32 Sd, Sn, Sm 
Multiply float then accumulate then negate float 
Sd = -1 * (Sd + Sn * Sm) 

VNMLS . F32 Sd , Sn, Sm 
Multiply float then subtract then negate float 
Sd = -1 * (Sd - Sn * Sm) 

VNMUL . F32 {Sd,} Sn, Sm Negate and multiply float, Sd = -1 * Sn * Sm 
VPOP.64 list Pop double registers from stack 



Appendix C: Floating-point Instructions (Optional on Cortex-M4 and Cortex-M7) i!:il 

VPOP.32 list Pop float registers from stack 
VPUSH.64 list Push double registers to stack 
VPUSH.32 list Push float registers to stack 
VSQRT. F32 Sd, Sm Square-root of float 
VSTM.64 Rn{ I}, list Store multiple double registers 
VSTM.32 Rn{ ! }, list Store multiple float registers 
VSTR.64 Sd, [Rn] Store one double register 
VSTR.32 Sd, [Rn] Store one float registers 
VSUB.F32 {Sd,} Sn, Sm Subtract float, Sd = Sn - Sm 



Appendix D: DSP Instructions on Cortex-M4 and Cortex-M7 

Appendix D: DSP Instructions on Cortex
M4 and Cortex-M7 

T = Top/high halfword, B Bottom/low halfword 
SQ = Signe d d saturation, UQ = Unsigne saturation 

Instruction Operand s Description and Action 
PKHBT {Rd,} Rn, Rm, Op2 Pack halfword. Rd= Rn[B]:(Rm, Op2)[T] 
PKHTB {Rd,} Rn, Rm, Op2 Pack halfword . Rd = Rn[T]: (Rm, Op2)[B) 

QADD {Rd,} Rn, Rm Saturating add signed 32-bit integers 
Rd = SQ32(Rn + Rm) 
Saturating add 2 pairs of 16-bit signed integers 

QADD16 {Rd,} Rn, Rm Rd[T] = SQ16(Rn[T] + Rm[T]) 
Rd[B] = SQ16(Rn[B] + Rm[B]) 
Saturating add 4 pairs of 8-bit signed integers 
Rd[31:24] = Rn[31:24] + Rm[31:24] 

QADD8 {Rd,} Rn, Rm Rd[2S:16] = Rn[2S:16] + Rm[2S:16] 
Rd[15:8] = Rn[15:8] + Rm[15:8] 
Rd[7:0] = Rn[7:0] + Rm[7:0] 
Saturating add and subtract with exchange 

QASX {Rd,} Rn, Rm Rd[T] = SQ16(Rn[T] + Rm[B]) 
Rd[B) = SQ16(Rn[B) - Rm[T)) 

QDADD {Rd,} Rn, Rm Saturating double and add 
Rd = SQ32(Rn + SQ32(Rm *2)) 

QDSUB {Rd,} Rn, Rm Saturating double and subtract 
Rd = SQ32(Rn - SQ32(2*Rm)) 

QSAX {Rd,} Rn, Rm Saturating subtract and add with exchange 
Rd[T]=SQ16(Rn[T]-Rm[B]), Rd[B]=SQ16(Rn[B]+Rm[T]) 

QSUB {Rd,} Rn, Rm Signed saturating subtract two 32-bit signed integers 
Rd = SQ32(Rn - Rm) 
Signed saturating subtract 2 pairs of 16-bit signed 

QSUB16 {Rd,} Rn, Rm integers, 
Rd fl 1 =SQ16( Rn [T] -Rm[ T]), Rd [ B) =SQ16( Rn [ B] -Rm[ B]) 

{Rd,} Signed saturating subtrac t 4 pairs of 8-bit signed 
QSUB8 Rn, Rm integers 

Signed add 2 pairs of 16-bit integers 
SADD16 {Rd,} Rn, Rm Rd[T] = truncate16(Rn[T] + Rm[T]) 

Rd[Bl = truncate16(Rn[Bl + Rm[B]) 
SADD8 {Rd,} Rn, Rm Signed add 4 pairs of 8-bit signed integers 

Signed add and subtract with exchange 
SASX {Rd,} Rn, Rm Rd[T] = truncate16(Rn[T] + Rm[B]) 

Rd[B] = truncate16(Rn[Bl - Rm[T]) 
SEL {Rd,} Rn, Rm Select bytes based on GE bits of CPSR 

SHADD16 {Rd,} Rn, Rm Signed halving add 2 pairs of 16-bit integers 
Rd[T] = (Rn[T] + Rm[T])/2, Rd[B] = (Rn[B] + Rm[B])/2 

SHADD8 {Rd,'} Rn, Rm Signed halving add 4 pairs of 8-bit integers 

SHASX {Rd,} Rn, Rm Signed halving add and subtract with exchange 
Rd[T] = (Rn[T] + Rm[B])/2, Rd[B] = (Rn[B] - Rm[T])/2 

SHSAX {Rd,} Rn, Rm Signed halving subtract and add with exchange 
Rd[T] = (Rn[T] - Rm[B])/2, Rd[B] = (Rn[B] + Rm[T])/2 

SHSUB16 {Rd,} Rn, Rm 
Signed halving subtract 2 pairs of 16-bit integers 
Rd[T) = (Rn[T) - Rm[T])/2, Rd[B] = (Rn[B] - Rm[B])/2 

SHSUB8 {Rd,} Rn, Rm Signed halving subtract 4 pairs of 8-bit integers 

SMLABB, SMLABT, 
Signed multiply accumulate long (halfwords) 

Rd, Rn, Rm, Ra Rd = Ra + Rn[B/T] *Rm[B/T] 
SMLATB, SMLATT e.g. BT, Rd = Ra + Rn[B)*Rm[T] 

SMLALBB, SMLALBT, 
Signed multiply accumulate long (halfwords) 

Rdlo, RdHi, Rn, Rm RdHi:RdLo = RdHi:Rdlo + Rn[B/T]*Rm[B/T] 
SMLATLB, SMLALTT e.g . BT, RdHi:RdLo = RdHi: RdLo + Rn[B]*Rm[T] 



Appendix D: DSP Instructions on Cortex-M4 and Cortex-M7 -

SM LAD Rd, Rn, Rm, Ra 
Signed multiply accumulate dual 
Rd = Ra + RnrTl *RmrTl + RnrBl *Rmrs1 

SMLADX Rd, Rn, Rm, Ra 
Signed multiply accumulate dual with exchange 
Rd = Ra + RnrTl *RmrBl + RnrBl*Rm[Tl 

SMLALD Rd Lo, RdHi, Rn, Rm 
Signed multiply accumulate long dual 
RdHi:Rdlo = RdHi:RdLo + RnrTl *RmrTl + RnrB] *Rm[B] 

SMLALDX Rd Lo, RdHi, Rn, Rm 
Signed multiply accumulate long dual with exchange 
RdHi:RdLo = RdHi:RdLo + Rn[T]*Rm[Bl + RnrB]*Rm[Tl 

SMLAWB Rd, Rn, Rm, Ra 
Signed multiply accumulate (word by bottom halfword), Rd 
= Ra + (Rn*RmrBl)>>16 

SMLAWT Rd, Rn, Rm, Ra 
Signed multiply accumulate (word by top halfword), 
Rd = Ra + (Rn*RmrT1)>>16 

SM LSD Rd, Rn, Rm, Ra 
Signed multiply subtract dual 
Rd = Ra + RnrBl *Rmrsl - RnrTl * Rmrrl 

SM LS DX Rd, Rn, Rm, Ra 
Signed multiply subtract dual with exchange 
Rd = Ra + Rn[Bl *Rm[Tl - Rn[Tl * RmrBJ 

SMLSLD Rd Lo, RdHi, Rn, Rm 
Signed multiply subtract long dual 
RdHi:RdLo - RdHi:RdLo + Rn[T] * RmrT] - RnrB]*Rmrs1 

SMLSLDX Rd Lo, RdHi, Rn, Rm 
Signed multiply subtract long dual with exchange 
RdHi:RdLo = RdHi:RdLo + Rn[B] * Rmrr1 - RnrTl *RmrBl 
Signed most significant word multiply accumulate, Rd = 

SMMLA, SMMLAR Rd, Rn, Rm, Ra Ra + (Rn*Rm)»32. If R exists, round to nearest; 
otherwise, truncate. 

SMMLS, SMMLSR Rd, Rn, Rm, Ra Signed most significant word multiply subtract, 
Rd = Ra - (Rn*Rm)>>32. See above for R. 

SMMUL, SMMULR {Rd,} Rn, Rm 
Signed most significant word multiply 
Rd = (Rn *Rm)>>32. See above for R. 

SMULBB, SMULBT 
{Rd,} Rn, Rm Signed multiply (halfwords), Rd = Rn[B/T) *Rm[B/T] 

SMULTB, SMULTT e.e:. BT, Rd - RnrBl *Rmrn 

SMUAD {Rd,} Rn, Rm Signed dual multiply then add 
Rd - Rn[Bl *RmrBl + RnrTl *RmrTl 

SMUADX {Rd,} Rn, Rm Signed dual multiply add with exchange 
Rd = RnrTl *Rmrs1 + RnrBl*Rmrn 

SMULWB {Rd,} Rn, Rm Signed multiply word by bottom halfword 
Rd - (Rn*Rm[B])»16 

SMULWT {Rd,} Rn, Rm Signed multiply word by top halfword 
Rd = (Rn*Rm[Tl)>>16 

SMUSD {Rd,} Rn, Rm Signed dual multiply then subtract 
Rd - Rn[B]*Rm[Bl - RnrTJ *Rm[Tl 

SMUSDX {Rd,} Rn, Rm Signed dual multiply (with exchange) subtract 
Rd - Rn[Bl *Rmrn RnrTJ*Rm[Bl 

SSAT16 Rd, #imm4, Rm Signed saturate two 16-bit values 
#imm4 - saturation bit position, - 21- . 1 < x < 21-. 1 -1 
Signed subtract and add with exchange 

SSAX {Rd,} Rn, Rm Rd[T) = truncate16(Rn[T] - Rm[B]) 
Rd[B] - truncate16(Rn[B] + Rm[Tl) 
Signed subtract 2 pairs of 16-bit integers 

SSUB16 {Rd,} Rn, Rm Rd[T] = truncate16(Rn[T) - Rm[T]) 
RdrBJ = truncate16(RnrBJ - Rm[B]) 

SSUB8 {Rd,} Rn, Rm Sie:ned subtract 4 oairs of 8-bit intee:ers 

SXTAB {Rd,} Rn, Rm{,ROR #} Extend 8 bits to 32 bits and add 
Rd - Rn + sie:n extend ((Rm, ROR #)r7:0l) 
Dual extend 8 bits to 16 bits and add 

SXTAB16 {Rd,} Rn, Rm{, ROR #} Rd[T] = Rn[T) + sign_extend ((Rm, ROR #)[23 :16)) 
Rd[B] - RnrBl + sie:n extend ((Rm, ROR #)r7:0l) 

SXTAH {Rd,} Rn, Rm{, ROR #} Extend 16 bits to 32 and add 
Rd - Rn + sie:n extend <(Rm, ROR #H15:0l) 
Signed extend byte to 16-bit value 

SXTB16 {Rd,} Rm {, ROR #n} Rd[T) = sign_extend ((Rm, ROR #)[23:16]) 
Rd[B] = sign extend ((Rm, ROR #)[7:0]) 



Appendix D: DSP Instructions on Cortex-M4 and Cortex-M7 

UADD16 {Rd,} Rn, 
Unsigned add 2 pairs of 16-bit integers 

Rm Rd[T] = truncate16(Rn[T] + Rm[T]) 
Rd[B] = truncate16(RnrBJ + Rm[B]) 

UADD8 {Rd,} Rn, Rm Unsigned add 4 pairs of 8-bit integers 
Unsigned add and subtract with exchange 

UASX {Rd,} Rn, Rm Rd[T] = truncate16(Rn[T] + Rm[B]) 
Rd[B] = truncate16(RnrBl - Rm[T]) 
Unsigned halving add 2 pairs of 16-bit integers 

UHADD16 {Rd,} Rn, Rm Rd[T] = (Rn[T] + Rm[T])/2, 
Rd[B] = (Rn[B] + Rm[B])/2 

UHADD8 {Rd,} Rn, Rm Unsigned halving add 4 pairs of 8-bit integers 
Unsigned halving add and subtract with exchange 

UHASX {Rd,} Rn, Rm Rd[T] = (Rn[T] + Rm[B])/2, 
Rd[Bl = (Rnrs1 - Rmrn )/2 
Unsigned halving subtract and add with exchange 

UHSAX {Rd,} Rn, Rm Rd[T] = (Rn[T] - Rm[BJ)/2, 
Rd[B] = (Rn[B] + Rm[T])/2 
Unsigned halving subtract 2 pairs of 16-bit integers 

UHSUB16 {Rd,} Rn, Rm Rd[T] = (Rn[T] - Rm[T])/2, 
Rd[B] = (Rn[B] - Rm[B])/2 

UHSUB8 {Rd,} Rn, Rm Unsigned halving subtract 4 pairs of 8-bit integers 

UMAAL Rd Lo, RdHi, Rn, Rm Unsigned multiply accumulate long 
RdHi:RdLo = Rn *Rm + RdHi + Rdlo 

UQADD16 {Rd,} Rn, Rm Unsigned saturating add 2 pairs of 16-bit integers 
RdrTJ = UQ(RnrTl + RmrT]), Rd[B] = UQ(RnrBl + RmrB]) 

UQADD8 {Rd,} Rn, Rm Unsigned saturating add 4 pairs of 8-bit integers 
Unsigned saturating add and subtract with exchange 

UQASX {Rd,} Rn, Rm Rd[T] = saturate16(Rn[T] + Rm[B]) 
RdrBl = saturate16(RnrBl - RmrTl) 
Unsigned saturating subtract and add with exchange 

UQSAX {Rd,} Rn, Rm Rd[T] = saturate16(Rn[T] - Rm[B]) 
Rd[B] = saturate16(Rn[B] + RmrT]) 

UQSUB16 {Rd,} Rn, Rm Unsigned saturating subtract 2 pairs of 16-bit integers 
Rd[T] = UQ(Rn[T] - Rm[T]), Rd[B] = UQ(RnrBJ - RmrBJ) 

UQSUB8 {Rd,} Rn, Rm Unsigned saturating subtract 4 pairs of 8-bit integers 
USAD8 {Rd,} Rn, Rm Unsigned sum of absolute differences 
USADA8 {Rd,} Rn, Rm, Ra Unsigned sum of absolute differences and accumulate 

USAT16 Rd, #imm4, Rm Unsigned saturate two 16-bit integers 
#imm4 = saturation bit position, 0 s x s 21

- - 1 
Unsigned subtract and add with exchange 

USAX {Rd,} Rn, Rm Rd[T] = truncate16(Rn[T] - Rm[B]) 
RdrBl = truncatel6(Rnrs1 + RmrTl) 
Unsigned subtract 2 pairs of 16-bit integers 

USUB16 {Rd,} Rn, Rm Rd[T] = truncate16(Rn[T] - Rm[T]) 
RdrBJ = truncate16(Rn[Bl - Rm[B]) 

USUB8 {Rd,} Rn, Rm Unsigned subtract 4 pairs of 8-bit integers 

UXTAB {Rd,} Rn, Rm{, ROR #} Rotate, extend 8 bits to 32 bits and Add 
Rd = Rn + zero extend ((Rm, ROR #)r7 :0]) 
Rotate, dual extend 8 bits to 16 bits and add 

UXTAB16 {Rd,} Rn, Rm{, ROR #} Rd[T] = Rn[T] + zero_extend ((Rn, ROR #)[23:16]) 
Rd[B] = RnrBl + zero extend ((Rn, ROR #)r7:0l) 

UXTAH {Rd,} Rn, Rm{, ROR #} Rotate, unsigned extend and add halfword 
Rd = Rn + zero extend ((Rm, ROR #)r1s:0]) 
Unsigned extend byte to 16-bit value 

UXTB16 {Rd,} Rm{, ROR #n} Rd[T] = zero_extend ((Rm, ROR #)[23:16]) 
Rd[B] = zero extend ((Rm, ROR #)[7:0]) 



Appendix E: Cortex-MO/MO+/Ml Instructions Id:~· 

Appendix E: Cortex-MO/MO+/M1 
Instructions 

Instruction Operands Description and Action 
ADCS {Rd,} Rn, Rm Add with Carry, Rd +- Rn + Rm + Carry, update N,Z,C,V 
ADD, ADDS {Rd,} Rn, <Rml#imm> Add, Rd ... Rn + <Rml#imm>, ADDS updates N,Z,C,V 
ADR Rd, label Load PC-relative Address, Rd +- <label> 
AND, ANDS {Rd,} Rn, Rm Logical AND, Rd ... Rn AND Rm, ANDS updates N,Z,C 
ASR, ASRS Rd, Rm, <Rsl#n> Arithmetic Shift Right, Rd ... Rm>>(Rsln), ASRS updates N,Z,C 
B{cc} label Branch {conditionally}, PC ... label 
SICS {Rd,} Rn, Rm Bit Clear, Rd +- Rn AND NOT Rm, SICS updates N,Z,C 
BKPT #imm Breakpoint, prefetch abort or enter debug state 
BL label Branch with Link, LR ... next instruction, PC ... label 
BLX Rm Branch register with link, LR+-next instr addr, PC+-Rm[31:1] 
BX Rm Branch register, PC +- Rm 
CMN Rn, Rm Compare Negative, Update N,Z,C,V flags on Rn + Rm 
CMP Rn, <Rml#imm> Compare, Update N,Z,C,V flags on Rn - <Rml#imm> 
CPS ID i Disable specified (i) interrupts, optional change mode 
CPS IE i Enable specified (i) interrupts, optional change mode 
DMB - Data Memory Barrier, ensure memory access order 
DSB - Data Synchronization Barrier, ensure completion of access 
EORS {Rd,} Rn, Rm Exclusive OR, Rd +- Rn XOR Rm, EORS updates N,Z,C 
ISB - Instruction Synchronization Barrier 

LDM Rn{!}, reglist Load Multiple Registers increment after, <reglist> = 
mem[Rn], Rn increments after each memory access 

LOR Rt, [Rn, <Rml#imm>] Load Register with Word, Rt ... mem[Rn + <Rml#imm>] 
LDRB Rt, [Rn, <Rml#imm>l Load Register with Byte, Rt ... mem[Rn + <Rml#imm>] 
LDRH Rt, rRn, <Rml#imm>l Load Register with Halfword, Rt ... mem[Rn + <Rml#imm>] 
LDRSB Rt, [Rn, <Rml#imm>] Load Register with Signed Byte, Rt ... mem[Rn + <Rml#imm>] 
LDRSH Rt, [Rn, <Rml#imm>] Load Register with Signed Halfword, Rt ... mem[Rn+<Rml#imm>] 
LSLS Rd, Rm, <Rsl#imm> Logic Shift Left, Rd+- Rm << Rsl#imm, LSLS update N,Z,C 
LSRS Rd, Rm, <Rsl#imm> Logic Shift Right, Rd ... Rm >> Rsl#imm, LSRS update N,Z,C 
MDV, MOVS Rd, <Rsl#imm> Move, Rd+- <Rsl#imm>, MOVS updates N,Z,C 
MRS Rd, spec reg Move from Special Register, Rd ... spec_reg 
MSR spec reg, Rm Move to Special Register, spec reg ... Rm, Updates N,Z,C,V 
MULS {Rd,} Rn, Rm Multiply, Rd+- (Rn*Rm)[31:0], MULS updates N,Z 
MVNS Rd, Rm Move NOT, Rd ... 0xFFFFFFFF EOR Rm, MVNS updates N,Z,C 
NOP - No Operation 
ORRS {Rd,} Rn, Rm Logical OR, Rd +- Rn OR Rm, ORRS updates N,Z,C 
POP reglist Canonical form of LDM SP!, <reglist> 
PUSH reglist Canonical form of STMDB SP!, <reglist> 

REV Rd, Rn Reverse Byte Order in a Word, Rd[31:24]+-Rn[7 :0], 
Rdr23:16l+-Rnr1s:s1, Rdr1s:Sl+-Rn[23:16], Rd[7:0]+-Rn[31:24] 

REV16 Rd, Rn Reverse Byte Order in a Half-word, Rd[15:8]+-Rn[7:0], 
Rd[7:0l+-Rnr1s :s], Rd[31:24]+-Rn[23:16], Rd[23:16]+-Rn[31:24] 

REVSH Rd, Rn Reverse Byte order in Low Half-word and sign extend, 
Rd[15:8l+-Rn[7 :0], Rd[7:0]+-Rn[15:8], Rd[31:16]+-Rn[7]*&0xFFFF 

RORS {Rd,} Rm, Rs Rotate Right, Rd +- ROR(Rm, Rs), RORS updates N,Z,C 
RSBS {Rd,} Rn, #0 Reverse Subtract, Rd +- 0 - Rn, RSBS updates N,Z,C,V 
SBCS {Rd,} Rn, Rm Subtract with Carry, Rd+- Rn - Rm - NOT(Carry), updates NZCV 
SEV - Send Event 
STM Rn{!}, reglist Store Multiple Registers 
STR Rt, rRn, <Rml#imm>l Store Register with Word, mem[Rn + <Rml#imm>l = Rt 
STRB Rt, [Rn, <Rml#imm>] Store Register with Byte, memrRn + <Rml#imm>l = Rt 
STRH Rt, [Rn, <Rml#imm>] Store Half-word, memrRn + <Rml#imm>l ... Rt [15: 0] 
SUB, SUBS {Rd,} Rn, <Rml#imm> Subtraction, Rd +- Rn - <Rml#imm >, SUBS updates N,Z,C,V 



~ Appendix E: Cortex-MO/MO+/Ml Instructions 

SVC #imm Supervisor Call 
SXTB {Rd,} Rm Sign Extend Byte, Rd +- SignExtend(Rm[7:0]) 
SXTH {Rd,} Rm Sign Extend Half-word, Rd+- SignExtend(Rm[15:0]) 
TST Rn, Rm Test, Update N,Z,C,V on Rn AND Rm 
UXTB {Rd,} Rm Unsigned Extend Byte, Rd +- ZeroExtend(Rm[7:0]) 
UXTH {Rd,} Rm Unsigned Extend Halfword, Rd+- ZeroExtend(Rm[15:0) ) 
WFE - Wait For Event and Enter Sleep Mode 
WFI - Wait for Interrupt and Enter Sleep Mode 



Appendix F: Cortex-M3 16-bit Thumb-2 Instruction Encoding i!:W 

Appendix F: Cortex-M3 16-bit Thumb-2 
Instruction Encoding 

Instruction 15 14 13 12 11 10 9 8 7 6 s I 4 I 3 2 I 1 I e 
LSL Rd, Rm, #immS 0 0 0 0 0 immS Rm Rd 

LSR Rd, Rm, #immS 0 0 0 0 1 immS Rm Rd 
ASR Rd, Rm, #immS 0 0 0 1 0 imms Rm Rd 
ADD Rd, Rn, Rm 0 0 0 1 1 0 0 Rm Rn Rd 

SUB Rd, Rn, Rm 0 0 0 1 1 0 1 Rm Rn Rd 
ADD Rd, Rn, #imm3 0 0 0 1 1 1 0 imm3 Rn Rd 
SUB Rd, Rn, #imm3 0 0 0 1 1 1 1 imm3 Rn Rd 
MOV Rd, #immB 0 0 1 0 0 Rd immB 
CMP Rn, #immB 0 0 1 0 1 Rn immB 
ADD Rdn, #immB 0 0 1 1 0 Rdn immB 
SUB Rdn, #immB 0 0 1 1 1 Rdn immB 
AND Rdn, Rm 0 1 0 0 0 0 0 0 0 0 Rm Rdn 
EOR Rdn , Rm 0 1 0 0 0 0 0 0 0 1 Rm Rdn 
LSL Rdn, Rm 0 1 0 0 0 0 0 0 1 0 Rm Rdn 
LSR Rdn, Rm 0 1 0 0 0 0 0 0 1 1 Rm Rdn 
ASR Rdn, Rm 0 1 0 0 0 0 0 1 0 0 Rm Rdn 
ADC Rdn, Rm 0 1 0 0 0 0 0 1 0 1 Rm Rdn 
SBC Rdn, Rm 0 1 0 0 0 0 0 1 1 0 Rm Rdn 
ROR Rdn, Rm 0 1 0 0 0 0 0 1 1 1 Rm Rdn 
TST Rm, Rn 0 1 0 0 0 0 1 0 0 0 Rm Rn 
RSB Rd, Rn, #0 0 1 0 0 0 0 1 0 0 1 Rn Rd 
CMP Rm, Rn 0 1 0 0 0 0 1 0 1 0 Rm Rn 
CMN Rm, Rn 0 1 0 0 0 0 1 0 1 1 Rm Rn 
ORR Rdn, Rm 0 1 0 0 0 0 1 1 0 0 Rm Rdn 
MUL Rdm, Rn 0 1 0 0 0 0 1 1 0 1 Rn Rdm 
BIC Rdn, Rm 0 1 0 0 0 0 1 1 1 0 Rm Rdn 
MVN Rd, Rm 0 1 0 0 0 0 1 1 1 1 Rm Rd 
ADD Rdn, Rm 0 1 0 0 0 1 0 0 DN Rm Rdn 
Unpredictable 0 1 0 0 0 1 0 1 0 I I I I 
CMP Rm, Rn 0 1 0 0 0 1 0 1 N Rm Rn 
MOV Rd, Rm 0 1 0 0 0 1 1 0 D Rm Rdn 
BX Rm 0 1 0 0 0 1 1 1 0 Rm (000) 
BLX Rm 0 1 0 0 0 1 1 1 1 Rm (000) 
LDR Rt, [pc, #imm8«2] 0 1 0 0 1 Rt immB 
STR Rt, [Rn, Rm] 0 1 0 1 0 0 0 Rm Rn Rt 
STRH Rt, [Rn, Rm] 0 1 0 1 0 0 1 Rm Rn Rt 
STRB Rt, [Rn, Rm] 0 1 0 1 0 1 0 Rm Rn Rt 
LDRSB Rt, [Rn, Rm] 0 1 0 1 0 1 1 Rm Rn Rt 
LDR Rt, [Rn, Rm] 0 1 0 1 1 0 0 Rm Rn Rt 
LDRH Rt, [Rn, Rm] 0 1 0 1 1 0 1 Rm Rn Rt 
LDRB Rt, [Rn, Rm] 0 1 0 1 1 1 0 Rm Rn Rt 
LDRSH Rt, [Rn, Rm] 0 1 0 1 1 1 1 Rm Rn Rt 
STR Rt, [SP, #imm8«2] 1 0 0 1 0 Rt immB 
LDR Rt, [SP, #imm8«2] 1 0 0 1 1 Rt immB 
STR Rt, [Rn, #imm5«2] 0 1 1 0 0 immS Rn Rt 
LDR Rt, [Rn, #imm5«2] 0 1 1 0 1 immS Rn Rt 
LDRH Rt, [Rn, #immS«l] 0 1 1 1 0 imms Rn Rt 



-~ Appendix F: Cortex-M3 16-bit Thumb-2 Instruction Encoding 

LDRB Rt, [Rn, #imm5«1) 0 1 1 1 1 imms Rn Rt 
STRH Rt, [Rn, #imm5«1) 1 0 0 0 0 imms Rn Rt 
LDRH Rt, [Rn, #imm5«1) 1 0 0 0 1 imms Rn Rt 
CPS iflags 1 0 1 1 0 1 1 0 0 1 1 im 0 0 I 
ADD SP, SP, #imm7<<2 1 0 1 1 0 0 0 0 0 imm7 
SUB SP , SP, #imm7<<2 1 0 1 1 0 0 0 0 1 imm7 
CB{N}Z Rn, label 1 0 1 1 0 0 0 1 immS Rn 
CBZ i:#imm5:0 1 0 1 1 0 0 i 1 immS Rn 
SXTH Rd, Rm 1 0 1 1 0 0 1 0 0 0 Rm Rd 
SXTB Rd, Rm 1 0 1 1 0 0 1 0 0 1 Rm Rd 
UXTH Rd, Rm 1 0 1 1 0 0 1 0 1 0 Rm Rd 
UXTB Rd, Rm 1 0 1 1 0 0 1 0 1 1 Rm Rd 
REV Rd, Rm 1 0 1 1 1 0 1 0 0 0 Rm Rd 
REV16 Rd, Rm 1 0 1 1 1 0 1 0 0 1 Rm Rd 
REVSH Rd, Rm 1 0 1 1 1 0 1 0 1 1 Rm Rd 
CBNZ i:#imm5 :0 1 0 1 1 1 0 i 1 immS Rn 
POP registers 1 0 1 1 1 1 0 p register list 
PUSH registers 1 0 1 1 0 1 0 M register list 
BKPT #imm8 1 0 1 1 1 1 1 0 imm8 
IT{x{y{z}}} firstcond 1 0 1 1 1 1 1 1 firstcond mask 
NOP 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 
YIELD 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 
WFE 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 
SEV 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 
B(cond) #imm8«1 1 1 0 1 cond imm8 
SVC #imm8 1 1 0 1 1 1 1 1 imm8 
B #immll«l 1 1 1 0 0 immll 

The condition codes for the branch instruction B are listed as follows: 

Condition Suffix Description 
0000 EQ EQual 
0001 NE Not Equal 
0010 CS/HS unsigned Higher or Same 
0011 CC/LO unsigned LOwer 
0100 MI Minus (Negative) 
0101 PL Plus (Positive or Zero) 
0110 VS overflow Set 
0111 vc overflow Clear 
1000 HI unsigned Higher 
1001 LS unsigned Lower or Same 
1010 GE signed Greater or Equal 
1011 LT signed Less Than 
1100 GT signed Greater Than 
1101 LE signed Less than or Equal 
1110 AL Always 

F 

0 
0 
0 
0 



Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding i'i:N 

Appendix G: Cortex-M3 32-bit Thumb-2 
Instruction Encoding 
Data processing (register) 

31- 24 23 22 21 20 19-16 15 -12 11- 8 7 6 5 4 3- 0 Instruction 

11111010 0 0 0 s Rn 1111 Rd 0 0 0 0 Rm LSL(S} Rd, Rn, Rm 

11111010 0 0 1 s Rn 1111 Rd 0 0 0 0 Rm LSR{S} Rd, Rn, Rm 

11111010 0 1 0 s Rn 1111 Rd 0 0 0 0 Rm ASR(S} Rd, Rn, Rm 

11111010 0 1 1 s Rn 1111 Rd 0 0 0 0 Rm ROR{S} Rd, Rn, Rm 

11111010 0 0 0 0 Rn 1111 Rd 1 0 rotate Rm SXT AH Rd, Rn, Rm, rotation 

11111010 0 0 0 0 1111 1111 Rd 1 0 rotate Rm SXTH Rd, Rm, rotation 

11111010 0 0 0 1 Rn 1111 Rd 1 0 rotate Rm UXTAH Rd, Rn, Rm, rotation 

11111010 0 0 0 1 1111 1111 Rd 1 0 rotate Rm UXTHRd, Rm 

11111010 0 0 1 0 Rn 1111 Rd 1 0 rotate Rm SXTAB16 Rd, Rn, Rm, rotation 

11111010 0 0 1 1 Rn 1111 Rd 1 0 rotate Rm UXTAB16 Rd, Rn, Rm, rotation 

11111010 0 0 1 1 1111 1111 Rd 1 0 rotate Rm UXTB16 Rd, Rm, rotation 

11111010 0 1 0 0 Rn 1111 Rd 1 0 rotate Rm SXT AB Rd, Rn, Rm, rotation 

11111010 0 1 0 0 1111 1111 Rd 1 0 rotate Rm SXTB Rd, Rm 

11111010 0 1 0 1 Rn 1111 Rd 1 0 rotate Rm UXT AB Rd, Rn, Rm, rota tion 

11111010 0 1 0 1 1111 1111 Rd 1 0 rotate Rm UXTB Rd, Rm, rotation 

• rotate: 00 =no rotation; 01 = ROR #8; 10 = ROR #16; 11 = ROR #24; 

D t 'th h'ft d a a processing w1 s l e . t reg1s er 
31- 25 24 23 22 21 20 19-16 15 14 -12 11- 8 ' I 6 5 4 3-0 Instruction 

1110101 0 0 0 0 s Rn 0 imm3 Rd imm2 type Rm AND(S} Rd, Rn, Rm, shift 

1110101 0 0 0 0 1 Rn 0 imm3 1111 imrn2 type Rm TST Rn, Rm, shift 

1110101 0 0 0 1 s Rn 0 imm3 Rd imm2 type Rm BIC(S} Rd, Rn, Rm, shift 

1110101 0 0 1 0 s Rn 0 imm3 Rd imm2 type Rm ORR(S} Rd, Rn, Rm, shift 

1110101 0 0 1 1 s Rn 0 imm3 Rd imm2 typ e Rm ORN{S} Rd, Rn, Rm, shift 

1110101 0 0 1 1 s 1111 0 imm3 Rd imm2 type Rm MVN (S} Rd, Rm, shift 

1110101 0 1 0 0 s Rn 0 imm3 Rd imm2 ty pe Rm EOR(S} Rd, Rn, Rm, shift 

1110101 0 1 1 0 s Rn 0 imm3 Rd imm2 0 T Rm PKHBT Rd,Rn,Rm,LSL #imm 

1110101 0 1 1 0 s Rn 0 imm3 Rd imm2 1 T Rm PKHTB Rd,Rn,Rm,ASR #imm 

1110101 1 0 0 0 s Rn 0 imm3 Rd imm2 type Rm ADD{S} Rd, Rn, Rm, shift 

1110101 1 0 0 0 1 Rn 0 imm3 1111 imm2 type Rm CMN Rn, Rm, shift 

1110101 1 0 1 0 s Rn 0 imm3 Rd imm2 type Rm ADC(S} Rd, Rn, Rm, shift 

1110101 1 0 1 1 s Rn 0 imm3 Rd imm2 type Rm SBC(S} Rd, Rn, Rm, shift 

• shift amount (5 bits) = imm3: imm2 

• shift type: 00 = LSL, 01 = LSR, 10 = ASR, 11 = ROR (if shift amount is non-zero ), 11 = RRX (if shift amount is 0) 
• PKHBT, PKHTB: A Pack Half-word instruction combines one hal fwo rd of its first o perand with the othe r 

hal fword of its shifted second operand . B stands for the bo ttom half. T stands fo r the to p ha lf. 



mmm Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding 

Data processing (modified immediate) 
31- 25 24 23 22 21 20 19-16 15 14 -12 

llllOiO 0 0 0 0 s Rn 0 imm3 

llllOiO 0 0 0 0 1 Rn 0 imm3 

llllOiO 0 0 0 1 s Rn 0 imm3 

llllOiO 0 0 1 0 s Rn 0 imm3 

llllOiO 0 0 1 0 s 1111 0 imm3 

llllOiO 0 0 1 1 s Rn 0 imm3 

llllOiO 0 0 1 1 s 1111 0 imm3 

llllOiO 0 1 0 0 s Rn 0 imm3 

llllOiO 0 1 0 0 1 Rn 0 imm3 

llllOiO 1 0 0 0 s Rn 0 imm3 

llllOiO 1 0 0 0 1 Rn 0 imm3 

llllOiO 1 0 1 0 s Rn 0 imm3 

llllOiO 1 0 1 1 s Rn 0 imm3 

llllOiO 1 1 0 1 s Rn 0 imm3 

llllOiO 1 1 0 1 1 Rn 0 imm3 

llllOiO 1 1 1 0 s Rn 0 imm3 

• imm12 = i:imm3:imm8 
#const = ThumbExpandlmm(imm12, carry _in) 

ThumbExpandimm(imml2, carry_in){ 
if imm12<11:10> == '00' { 

switch(imml2<9:8>){ 
case '00': 

11- 8 7-0 

Rd imm8 

1111 imm8 

Rd imm8 

Rd imm8 

Rd imm8 

Rd imm8 

Rd imm8 

Rd imm8 

1111 imm8 

Rd imm8 

1111 imm8 

Rd imm8 

Rd imm8 

Rd imm8 

1111 imm8 

Rd imm8 

imm32 = ZeroExtend(imm12<7 :0>, 32); 
case '01': 

imm32 = '00000000' imml2c7:0> '00000000' 

} 

case '10': 
imm32 = imm12<7:0> 

case '11' : 
imm32 = imml2<7:0> 

carry_out = carry_in; 
else { 

'00000000' imml2<7:0> 

imm12c7:0> imml2<7:0> 

unrotated_value = ZeroExtend('l' :imml2c6:0>, 32); 

Instruction 

AND(S} Rd, Rn, #const 

TST Rn, #const 

BIC{S) Rd, Rn, #const 

ORR(S} Rd, Rn, #const 

MOV(S} Rd, #const 

ORN (SJ Rd, Rn, #const 

MVN(S} Rd, #const 

EOR(S} Rd, Rn, #const 

TEQ Rn, #const 

ADD{S} Rd, Rn, #const 

CMN Rd, Rn, #const 

ADC(S} Rd, Rn, #const 

SBC(S} Rd, Rn, #const 

SUB(S} Rd, Rn, #const 

CMP Rn, #const 

RSB{S} Rd, Rn, #const 

imm12c7:0>; 

'00000000'; 

imm12<7:0> ; 

(imm32, carry_out) = ROR_C(unrotated_value, Uint(imml2<11:7>)); 
} 
return (imm32, carry_out); 

} 



Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding tiJM 

M I . I u hp y, mu If I I t 1p y accumu a e, an d b I t d.ff a sou e 1 erence 
31- 23 22 21 20 19-16 15 -12 11- 8 7 6 5 4 3-0 Instruction 

111110110 0 0 0 Rn Ra Rd 0 0 0 0 Rm MLA Rd, Rn, Rm, Ra 

111110110 0 0 0 Rn 1111 Rd 0 0 0 0 Rm MUL Rd, Rn, Rm 

111110110 0 0 0 Rn Ra Rd 0 0 0 1 Rm MLS Rd, Rn, Rm, Ra 

111110110 0 0 1 Rn Ra Rd 0 0 0 0 Rm SMLABB Rd, Rn, Rm, Ra 

111110110 0 0 1 Rn Ra Rd 0 0 0 1 Rm SMLABT Rd, Rn, Rm, Ra 

111110110 0 0 1 Rn Ra Rd 0 0 1 0 Rm SMLA TB Rd, Rn, Rm, Ra 

111110110 0 0 1 Rn Ra Rd 0 0 1 1 Rm SMLA TT Rd, Rn, Rm, Ra 

111110110 0 0 1 Rn 1111 Rd 0 0 0 0 Rm SMULBB Rd, Rn, Rm 

111110110 0 0 1 Rn 1111 Rd 0 0 0 1 Rm SMULBT Rd, Rn, Rm 

111110110 0 0 1 Rn 1111 Rd 0 0 1 0 Rm SMUL TB Rd, Rn, Rm 

111110110 0 0 1 Rn 1111 Rd 0 0 1 1 Rm SMUL TT Rd, Rn, Rm 

111110110 0 1 0 Rn Ra Rd 0 0 0 0 Rm SMLAD Rd, Rn, Rm, Ea 

111110110 0 1 0 Rn Ra Rd 0 0 0 1 Rm SMLADX Rd, Rn, Rm, Ra 

111110110 0 1 0 Rn 1111 Rd 0 0 0 0 Rm SMUAD Rd, Rn, Rm 

111110110 0 1 0 Rn 1111 Rd 0 0 0 1 Rm SMUADX Rd, Rn, Rm 

111110110 0 1 1 Rn Ra Rd 0 0 0 0 Rm SMLA WB Rd, Rn, Rm, Ra 

111110110 0 1 1 Rn Ra Rd 0 0 0 1 Rm SMLA WT Rd, Rn, Rm, Ra 

111110110 0 1 1 Rn 1111 Rd 0 0 0 0 Rm SMULWB Rd, Rn, Rm 

111110110 0 1 1 Rn 1111 Rd 0 0 0 1 Rm SMULWT Rd, Rn, Rm 

111110110 1 0 0 Rn Ra Rd 0 0 0 0 Rm SMLSD Rd, Rn, Rm, Ra 

111110110 1 0 0 Rn Ra Rd 0 0 0 1 Rm SMLSDX Rd, Rn, Rm, Ra 

111110110 1 0 0 Rn 1111 Rd 0 0 0 0 Rm SMUSD Rd, Rn, Rm 

111110110 1 0 0 Rn 1111 Rd 0 0 0 1 Rm SMUSDX Rd, Rn, Rm 

111110110 1 0 1 Rn Ra Rd 0 0 0 0 Rm SMMLA Rd, Rn, Rm, Ra 

111110110 1 0 1 Rn Ra Rd 0 0 0 1 Rm SMMLAR Rd, Rn, Rm, Ra 

111110110 1 0 1 Rn 1111 Rd 0 0 0 0 Rm SMMUL Rd, Rn, Rm 

111110110 1 0 1 Rn 1111 Rd 0 0 0 1 Rm SMMULR Rd, Rn, Rm 

• SMLA<X><)'> Rd, Rn, Rm, Ra ; Signed Multiply Accumulate (halfwords) 
• SMUL<X><y> Rd, Rn, Rm ; Signed Multiply Accumulate (word by halfword) 
• SMLAW<y> Rd, Rn, Rm, Ra ; Signed Multiply Accumulate (word by halfword) 
• SMULW<y> Rd, Rn, Rm ; Signed Multiply (word by halfword) 

o If <x> is B, then the bottom half (Rn[15:0]) is used as the first multiply operand. 

If <x> is T, then the top half (Rn[31:16]) is used as the first multiply operand. 
o If <y> is B, then the bottom half (Rm[15:0]) is used as the second multiply operand. 

If <y> is T, then the top half (Rm[31:16]) is used as the second multiply operand. 
• SMLAD{X} Rd, Rn, Rm, Ra ; Signed Multiply Accumulate Dual 

• SMLSD{X} Rd, Rn, Rm, Ra ; Signed Multiply Subtract Dual 
SMUAD{X} Rd, Rn, Rm ; Signed Dual Multiply Add 
SMUSD{X} Rd, Rn, Rm ; Signed Multiply Subtract Dual 

o If Xis present, then the multiplication results are Rn[15:0]) x Rm[31:16] and Rn[31:16] x Rm[15:0]. 
o If Xis omitted, then the multiplication results are Rn[15:0] x Rm[15:0] and Rn[31:16] x Rm[31:16]. 

• SMMLA{R] Rd, Rn, Rm, Ra ; Signed Most Significant Word Multiply Subtract 
SMMUL{R} Rd, Rn, Rm ; Signed Most Significant Word Multiply 

o If R is present, then the multiplication result is rounded. 

o If the R is omitted, then the multiplication result is truncated . 



- Appendix G: Cortex-M3 32-bit Thurnb-2 Instruction Encoding 

L ongmu If I I Ip y, on ~mu If I It d' 'd Ip y accumu a e, IVI e 
31- 23 22 21 20 19 -16 15 -12 11- 8 7 6 5 4 3-0 Instruction 

111110111 0 0 0 Rn Rd Lo Rd Hi 0 0 0 0 Rm SMULL Rd Lo, RdHi, Rn, Rm 

111110111 0 0 1 Rn 1111 Rd 1 1 1 1 Rm SDIV Rd, Rn, Rm 

111110111 0 1 0 Rn Rd Lo Rd Hi 0 0 0 0 Rm UMULL RdLo, RdHi, Rn, Rm 

111110111 0 1 1 Rn 1111 Rd 1 1 1 1 Rm UDIV Rd, Rn, Rm 

111110111 1 0 0 Rn Rd Lo Rd Hi 0 0 0 0 Rm SMLAL RdLo, RdHi, Rn, Rm 

111110111 1 0 0 Rn Rd Lo Rd Hi 1 0 0 0 Rm SMLALBB RdLo, RdHi, Rn, Rm 

111110111 1 0 0 Rn Rd Lo Rd Hi 1 0 0 1 Rm SMLALBT Rd Lo, RdHi, Rn, Rm 

111110111 1 0 0 Rn Rd Lo Rd Hi 1 0 1 0 Rm SMLALTB RdLo, RdHi, Rn, Rm 

111110111 1 0 0 Rn Rd Lo Rd Hi 1 0 1 1 Rm SMLALTTRdLo, RdHi, Rn, Rm 

111110111 1 0 0 Rn Rd Lo Rd Hi 1 1 0 0 Rm SMLALD RdLo, RdHi, Rn, Rm 

111110111 1 0 0 Rn Rd Lo Rd Hi 1 1 0 1 Rm SMLALDX RdLo, RdHi, Rn, Rm 

111110111 1 0 1 Rn Rd Lo Rd Hi 1 1 0 0 Rm SMLSLD RdLo, RdHi, Rn, Rm 

111110111 1 0 1 Rn Rd Lo Rd Hi 1 1 0 1 Rm SMLSLDX RdLo, RdHi, Rn, Rm 

111110111 1 1 0 Rn Rd Lo Rd Hi 0 0 0 0 Rm UMLAL RdLo, RdHi, Rn, Rm 

111110111 1 1 0 Rn Rd Lo Rd Hi 0 1 1 0 Rm UMAAL RdLo, RdHi, Rn, Rm 

• SMLAL<x><y> RdLo, RdHi, Rn, Rm ; Signed Multiply Accumulate Long (halfwords) 
o <x> = B -> Rn(lS:O] is used. <x> = T-> Rn[31:16] is used. 
o <y> = B-> Rm[lS:O] is used. <y> = T-> Rm[31:16] is used. 

• SMLALD (X} RdLo, RdHi, Rn, Rm ; Signed Multiply Accumulate Long Dual 
• SMLSLD{X} Rd Lo, RdHi, Rn, Rm ; Signed Multiply Subtract Long Dual 

o If X is present, then the multiplication results are Rn[15:0]) x Rm[31 :16] and Rn(31:16] x Rm[lS:O]. 
o If X is omitted, then the multiplication results are Rn[lS:O] x Rm[lS:O] and Rn[31:16] x Rm[31:16]. 

Branches and miscellaneous control 
31- 27 26 25- 22 21 20 -16 15 -12 11- 8 7-0 Instruction 

11110 0 1110 0 Rn 1000 mask o I 0 SY Sm MSR 

11110 0 1110 1 0 1111 1000 0000 00000000 OP 

11110 0 1110 1 0 1111 1000 0000 00000001 YIELD 

11110 0 1110 1 0 1111 1000 0000 00000010 WFE 

11110 0 1110 1 0 1111 1000 0000 00000011 WFI 

11110 0 1110 1 0 1111 1000 0000 00000100 SEY 

11110 0 1110 1 0 1111 1000 0000 1111 option DBG 

11110 0 1110 1 1 1111 1000 1111 00101101 CLREX 

11110 0 1110 1 1 1111 1000 1111 0100 option DSB 

11110 0 1110 1 1 1111 1000 1111 0101 option DMB 

11110 0 1110 1 1 1111 1000 1111 0110 option ISB 

11110 0 1110 1 0 1111 1000 Rd SYSm MRS 

11110 s cond imm6 1 0 Jl 0 J2 immll B 

11110 s immlO 1 0 Jl 0 J2 immll B 

11110 s immlO 1 1 Jl 1 J2 immll BL 

• Unconditional Branch: 
o I1 = NOTOl EOR S); I2 = NOT02 EOR S); PC= PC+ SignExtend32(S:I1:12:immlO:imm11:'0' ); 

Conditional Branch and Branch and Link (BL) 
o 11 = NOTOl EOR S); I2 = NOT02 EOR S); PC= PC+ SignExtend32(S:I1:12:immlO:immll:'O' ); 



Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding 1#1 

L di oa 1 . 1 store mu hp e 
31- 25 24 23 22 21 20 19-16 15 14 13 12- 0 Instruction 

1110100 0 1 0 w 0 Rn 0 M 0 register_list STM Rn{!},<registers> 

1110100 0 1 0 w 1 Rn p M 0 register_list LDM Rn{!},<registers> 

1110100 0 1 0 1 1 1101 p M 0 register_list POP <registers> 

1110100 1 0 0 w 0 Rn 0 M 0 register_list STMDB Rn{!},<registers> 

1110100 1 0 0 w 0 Rn 0 M 0 register_list STMFD Rn{!},<registers> 

1110100 1 0 0 1 0 1101 0 M 0 register_list PUSH <registers> 

1110100 1 0 0 w 1 Rn p M 0 register_Jist LDMDB Rn{!},<registers> 

1110100 1 0 0 w 1 Rn p M 0 register_list LDMEA Rn{!},<registers> 

• registers= 'O' :M:'O' :register_list or registers= P:M:'O':register_list. 
• If W (writeback) = 1, R[n] = R[n] + 4*BitCount(registers). 

• LDMIA and LDMFD are pseudo-instructions for LDM. 
• STMEA and STMIA are pseudo-instructions for STM. 

Load/store dual or exclusive, table branch 
31- 25 24 23 22 21 20 19 -16 15 -12 11- 8 7 6 5 4 3-0 Instruction 

1110100 0 0 1 0 0 Rn Rt Rd imm8 STREX Rd, Rt, [Rn, #imm8 « 2] 

1110100 0 0 1 0 1 Rn Rt 1111 immS LDREX Rt, [Rn, #immS « 2] 

1110100 1 u 0 0 0 Rn Rt Rt2 immS STRD Rt, Rt2, [Rn, #+/-imm8« 2] 

1110100 0 u 1 0 0 Rn Rt Rt2 immS STRD Rt, Rt2, Rn, #+/-imm8« 2 

1110100 1 u 1 1 0 Rn Rt Rt2 immS STRD Rt, Rt2, [Rn, #+/-imm8<<2]! 

1110100 1 u 0 0 0 1111 Rt Rt2 immS LORD Rt, Rt2, [Rn, #+/-imm8« 2] 

1110100 0 u 1 0 0 1111 Rt Rt2 immS LORD Rt, Rt2, Rn, #+/-imm8<<2 

1110100 1 u 1 1 0 1111 Rt Rt2 immS LORD Rt, Rt2, [Rn, #+/-imm8<<2]! 

1110100 0 1 1 0 0 Rn Rt 1111 0 1 0 0 Rd STREXB Rd, Rt, [Rn] 

1110100 0 1 1 0 0 Rn Rt 1111 0 1 0 1 Rd STREXH Rd, Rt, [Rn] 

1110100 0 1 1 0 1 Rn 1111 0000 0 0 0 0 Rm TBB [Rn, Rm] 

1110100 0 1 1 0 1 Rn 1111 0000 0 0 0 1 Rm TBH [Rn, Rm, LSL #1] 

1110100 0 1 1 0 1 Rn Rt 1111 0 1 0 0 1111 LDREXB Rt, [Rn] 

1110100 0 1 1 0 1 Rn Rt 1111 0 1 0 1 1111 LDREXH Rt, [Rn] 

• If U = 1, then the m emory address is [Rn, #immS « 2]. Otherwise, it is [Rn, #-immS « 2]. 

Store single data item 
31- 24 23 22 21 20 19-16 15 -12 11-6 I 5 I 4 I 3-o Instruction 

11111000 1 0 0 0 Rn Rt imm12 STRB Rt, [Rn, #imm12] 

11111000 0 0 0 0 Rn Rt 000000 I imm2 I Rm STRB Rt, [Rn, Rm, LSL #imm2] 

11111000 1 0 1 0 Rn Rt imm12 STRH Rt, [Rn, #imm12] 

11111000 0 0 1 0 Rn Rt 000000 I imm2 I Rm STRH Rt, [Rn, Rm, LSL #imm2] 

11111000 1 1 0 0 Rn Rt imm12 STR Rt, [Rn, #imm12] 

11111000 0 1 0 0 Rn Rt 000000 I imm2 I Rm STR Rt, [Rn, Rm, LSL #imm2] 



m!!'.I Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding 

Load byte, memory hints 
31- 25 24 23 22- 20 19-16 15 -12 11 10 9 8 716151413-o Instruction 

1111100 0 u 011 1111 Rt imm12 LDRBRt, #+/-imm12 

1111100 0 1 011 Rn Rt imm12 LDRB Rt, [Rn, #imm12] 

1111100 0 0 011 Rn Rt 1 1 1 0 immS LDRBT Rt, [Rn, #immS] 

1111100 0 0 011 Rn Rt 0 0 0 0 0 I 0 I imm2 I Rm LDRB Rt, [Rn, #imm12] 

1111100 1 u 011 1111 Rt imm12 LDRSB Rt, #+/-imm12 

1111100 1 1 011 Rn Rt imm12 LDRSB Rt, [Rn, #imm12] 

1111100 1 0 011 Rn Rt 1 1 1 0 immS LDRSBT Rt, [Rn, #immS] 

1111100 1 0 011 Rn Rt 0 0 0 0 o!o /imm2 / Rm LDRSB Rt, [Rn, #imm12] 

1111100 0 0 001 Rn 1111 0 0 0 0 o I o I imm2 I Rm PLD [Rn, Rm, LSL #imm2] 

1111100 0 0 001 Rn 1111 1 1 0 0 immS PLD [Rn, #-imm8] 

1111100 0 u 001 1111 1111 imm12 PLD #+/-imm12 

1111100 0 1 001 Rn 1111 imm12 PLD [Rn, #imm12] 

1111100 1 0 001 Rn 1111 1 1 0 0 imm8 PL! [Rn, #-imm8] 

1111100 1 0 001 Rn 1111 0 0 0 0 o!olimm2 1 Rm PL! [Rn, Rm, LSL #imm2] 

1111100 1 u 001 1111 1111 imm12 PL! #+/-imm12 

1111100 1 1 001 Rn 1111 imm12 PL! [Rn, #imm12] 

• If U = 1, use #imml2. Otherwise, use #-imm12. 

• PLD (Preload Data) and PL! (Preload Instruction) are the only memory hint instructions 

Load halfword 
31- 25 24 23 22 - 20 19-16 15-12 11 - 8 7 6 I 5 I 4 I 3 -o Instruction 

1111100 0 u 011 1111 Rt imm12 LDRH Rt, #+/-imm12 

1111100 0 1 011 Rn Rt imm12 LDRH Rt, [Rn, #imm12] 

1111100 0 0 011 Rn Rt 0 0 0 0 ololimm2! Rm LDRH Rt, [Rn, Rm,LSL #imm2] 

1111100 0 0 011 Rn Rt 1 0 1 0 imm8 LDRHT Rt, [Rn] 

1111100 0 0 011 Rn Rt 1 1 u 0 imm8 LDRHT Rt, [Rn,#imm8] 

1111100 0 0 011 Rn Rt 1 0 u 1 imm8 LDRHT Rt, Rn,#imm8 

1111100 0 0 011 Rn Rt 1 1 u 1 imm8 LDRHT Rt, [Rn,#imm8]! 

1111100 1 1 011 Rn Rt imm12 LDRSH Rt, [Rn, #imm12] 

1111100 1 u 011 1111 Rt imm12 LDRSH Rt, #+/-imm12 

1111100 1 0 011 Rn Rt 0 0 0 0 o/o/imm2/ Rm LDRH Rt, [Rn, Rm,LSL #imm2] 

1111100 1 0 011 Rn Rt 1 1 1 0 imm8 LDRSHT Rt, [Rn,#imm8] 

• If U = 1, use #imm; oherwise, use #-imm. 

Load word 
31- 25 24 23 22-20 19 -16 15-12 11- 8 /7/ 6 /5/4/3 -0 Instruction 

1111100 0 1 101 Rn Rt imm12 LDR Rt, [Rn, #imm12] 

1111100 0 0 101 Rn Rt 1 I 1 I 1 I o I imm8 LDRT Rt, [Rn, #imm8] 

1111100 0 0 101 Rn Rt o/olololololimm2/ Rm LDR [Rn, Rm, LSL #imm2] 

1111100 0 u 101 1111 Rt imm12 LDR Rt, #imml2 

• Load Register Unprivileged (LDRT) 



Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding NW 

c t f oprocessor ins rue 10ns 
31- 26 

111011 

111111 

111011 

111111 

111011 

111111 

111011 

111111 

111011 

111111 

111011 

111111 

111011 

111111 

111011 

111111 

• 
• 
• 
• 
• 
• 
• 

25 24 23 22 21 

0 p u N w 
0 p u N w 
0 p u D w 

0 p u D w 

0 p u D w 
0 p u D w 
0 0 0 1 0 

0 0 0 1 0 

0 0 0 1 0 

0 0 0 1 0 

1 1 0 opcl 

1 1 0 opcl 

1 0 opcl 

1 0 opcl 

1 0 op cl 

1 0 opcl 

Store Coprocessor (STC) 
Load Coprocessor (LDC) 

20 19-16 

0 Rn 

0 Rn 

1 Rn 

1 Rn 

1 1111 

1 1111 

0 Rt2 

0 Rt2 

1 Rt2 

1 Rt2 

CRn 

CRn 

0 CRn 

0 CRn 

1 CRn 

1 CRn 

15-12 11- 8 7-5 4 3-0 Instruction 

CRd coproc imm8 STC 

CRd coproc imm8 STC2 

CRd coproc imm8 LDC (immediate) 

CRd imm8 
LDC2 

coproc 
(immediate) 

CRd coproc imm8 LDC (literal) 

CRd coproc imm8 LDC2(literal) 

Rt coproc op cl CRm MCRR 

Rt coproc opcl CRm MCRR2 

Rt coproc op cl CRm MRRC 

Rt coproc opcl CRm MRRC2 

CRd coproc op2 0 CRm CDP 

CRd coproc op2 0 CRm CDP2 

Rt coproc op2 1 CRm MRC 

Rt coproc op2 1 CRm MRC2 

Rt coproc op2 1 CRm MRC 

Rt coproc op2 1 CRm MRC2 

Move to Coprocessor from two ARM Registers (MCRR) 
Move to two ARM Registers from Coprocessor (MRRC) 
Move to Coprocessor from ARM Register (MCR) 
Move to ARM Register from Coprocessor (MRC) 
Example Instruction formats: 

o MRC coproc, opcl, Rt, CRn, CRm,opc2 
o LDC{L) coproc, CRd, [Rn,#+/-imm)] 
o LDC{L) coproc, CRd, [Rn,#+/-imm>)! 
o LDC{L) coproc, CRd, [Rn),#+/-imm 
o LDC{L) coproc, CRd, [Rn], 
o LDC{L) coproc, CRd, label 
o LDC{L} coproc, CRd, [PC,#-0) 

; Offset. P = 1, W = 0. 
; Pre-index. P = 1, W = 1. 
; Post-index. P = 0, W = 1. 
; Unindexed . P = 0, W = 0, U = 1. 
; Normal form with P = 1, W = 0 
; Alternative form with P = 1, W = 0 



- Appendix H: HID Codes of a Keyboard 

Appendix H: HID Codes of a Keyboard 
Code Usage Code Usage Code Usage Code Usage Code Usage 
0x00 Reserved 0x23 6 and" 0x46 Print Screen 0x69 F14 0x8C International 6 

0x01 
Error 

0x24 7and& 0x47 
Scroll 

0x6A FlS 0x8D International 7 
Roll Over Lock 

0x02 POST Fail 0x25 8 and* 0x48 Pause 0x6B F16 0x8E International 8 

0x03 
Error 

0x26 9 and ( 0x49 Insert 0x6C F17 0x8F International 9 
Undefined 

0x04 a and A 0x27 0 and) 0x4A Home 0x6D F18 0x90 LANGI 
0x05 band B 0x28 Return 0x4B Page Up 0x6E F19 0x91 LANG2 

0x06 cand C 0x29 ESCAPE 0x4C 
Delete 

0x6F F20 0x92 LANG3 
Forward 

0x07 dand D 0x2A Backspace 0x4D End 0x70 F21 0x93 LANG4 
0x08 e and E 0x2B Tab 0x4E Page Down 0x71 F22 0x94 LAN GS 
0x09 f and F 0x2C Space bar 0x4F Right Arrow 0x72 F23 0x95 LANG6 
0x0A gandG 0x2D - and - 0x50 Left Arrow 0x73 F24 0x96 LANG? 

0x0B handH 0x2E =and+ 0x51 Down Arrow 0x74 Execute 0x97 LANG8 

0x0C i and I 0x2F [and l 0x52 Up 0x75 
Arrow 

Help 0x98 LANG9 

Keypad 
0x0D j and J 0x30 ] and } 0x53 um Lock 0x76 Menu 0x99 Alternate Erase 

and Clear 
0x0E k and K 0x31 \ and I 0x54 Keypad I 0x77 Select 0x9A SysReq Attention 

0x0F I and L 0x32 
on-US # 
and -

0x55 Keypad* 0x78 Stop 0x9B Cancel 

0x10 mandM 0x33 ; and: 0x56 Keypad- 0x79 Again 0x9C Clear 

0xll nand N 0x34 'and" 0x57 Keypad + 0x7A Undo 0x9D Prior 

0x12 oand 0 0x35 and - 0x58 
Keypad 

Enter 
0x7B Cut 0x9E Return 

0xl3 p and P 0x36 
Keyboard, 

0x59 
Keypad 1 

0x7C Copy 0x9F Separator 
and< and End 

Keypad 2 
0x14 q and Q 0x37 . and> 0x5A and Down 0x7D Paste 0xA0 Out 

Arrow 

0x15 rand R 0x38 I and? 0x5B 
Keypad 3 & 
Page Down 

0x7E Find 0xA1 Oper 

0x16 sand S 0x39 Caps Lock 0x5C 
Keypad 4 & 

0x7F 
Left Arrow 

Mute 0xA2 Clear/Again 

0x17 tand T 0x3A Fl 0x5D Keypad 5 0x80 Volume Up 0xA3 CrSel/Props 

0x18 uand U 0x3B F2 0x5E 
Keypad 6 & 
Right Arrow 

0x81 Volume Down 0xA4 ExSel 

0x19 vand V 0x3C F3 0x5F 
Keypad 7 
and Home 

0x82 
Locking Caps 

Lock 
0xE0 Left Control 

0x1A wandW 0x3D F4 0x60 
Keypad 8 & 

0x83 
Locking Num 

0xE1 Left Shift 
Up Arrow Lock 



Appendix H: HID Codes of a Keyboard NA 

0x1B xand X 0x3E FS 0x61 
Keypad 9 & 

0x84 
Locking Scroll 

0xE2 Left Alt 
Page Up Lock 

0x1C yand Y 0x3F F6 0x62 
Keypad 0 

0x85 Keypad Comma 0xE3 Left GUI 
and Insert 

0x1D zandZ 0x40 F7 0x63 
Keypad . and 

0x86 
Keypad Equal 

0xE4 Right Control 
Delete Sign 

0x1E 1 and! 0x41 FB 0x64 \and I 0x87 International 1 0xES Right Shift 
0x1F 2and @ 0x42 F9 0x65 Application 0x88 International 2 0xE6 Right Alt 
0x20 3 and # 0x43 FlO 0x66 Power 0x89 International 3 0xE7 Right GUI 
0x21 4and$ 0x44 Fll 0x67 Keypad= 0x8A International 4 
0x22 Sand% 0x45 F12 0x68 F13 0x8B International 5 



~ 
~ Appendix I: GPIO Alternate Functions (STM32L4) 

Appendix I: GPIO Alternate Functions 
(STM32L4) 
Software can program a GPIO pin to map this pin internally to the input or output of 
some on-chip peripheral. Thus, a GPIO pin usually can support more than one hardware 
functions, which are called alternate functions. The alternate function is selected by 
programming the AFS EL [3: 0) bits defined in the Alternate Function Low or High 
Register. Alternate functions allow embedded system designers to better tailor the 
processor chip to the application's need. 

Alternate Function Low Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

AFSEL7[3:0] AFSEL6[3:0] AFSEL5[3:0] AFSEL4[3:0] AFSEL3[3:0] AFSEL2[3:0] AFSEL 1[3:0] AFSEL0[3:0] 

AF of Pin 7 AF of Pin 6 AF of Pin 5 AF of Pin 4 AF of Pin 3 AF of Pin 2 AF of Pin 1 AF of Pin 0 

Alternate Function High Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

AFSEL 15[3:0] AFSEL 14(3:0] AFSEL13[3:0] AFSEL 12[3:0] AFSEL 11 [3:0] AFSEL10[3:0] AFSEL9[3:0] AFSEL8[3:0] 

AF of Pin 16 AF of Pin 15 AF of Pin 14 AF of Pin 13 AF of Pin 12 AF of Pin 11 AF of Pin 9 AF of Pin 8 

The following tables list all alternate functions supported by each GPIO pin on STM32L4. 
All alternate functions are divided into the following 16 categories. For example, the 
alternate function 11 (AFll) is to set a GPIO pin to drive an LCD. 

SYS_AF 
AFB .... 

TIM1/TIM2fflM5/TIM8/LPTIM1 
AFl 

9081 

TIM1/TIM2/TIM3fflM4/TIM5 
AF2 

0010 

TIMS 
AF3 

0011 

12CM 2C2112C3 
AF4 

0100 

SPl1/SPl2 
AFS 

9191 

SPl3/DFSDM 
AF6 

9119 

USART1/USART2/USART3 
AF7 

9111 Selected 
AFB Alternate 

UART4/UART5/LPUART1 1000 Function 
AF9 

CAN1/TSC 1001 

AF10 
OTG_FS/QUADSPI 1919 

Afll 
LCD 1911 

AF12 
SDMMC1/COMP1/COMP2/FMC/SWPMl1 1190 

AF13 
SAl11SAJ2 1191 

AF14 
TIM2ff1M1/TIM18/TIM 1 7/LPTIM2 1110 

AF15 
EVENTOUT 1111 

AFSEL[3:0] 

In the following tables, processor pins that have been extended to board pins on the 
STM32L4 discovery kit are shaded. To interface on-board peripherals, the alternative 
functions that should be selected are also shaded. 



Appendix I: GPIO Alternate Functions (STM32L4) rm 
Port A: Alternate Functions (STM32L4) 

AFO AF1 AF2 AF3 AF4 AFS AF6 AF7 AFS AF9 AF10 AF11 AF12 AF13 AF14 

TIM1/ TIM1/ SDMMC1/ TIM2/ 

Pin SYS 
TIM2/ TIM2/ 12C1/ 

SPl1/ SPl3/ 
USART1/ UART4/ 

CAN1/ OTG_FS/ 
COMP1/ 

SAl1/ 
TIM1/ 

_AF 
TIMS/ TIM3/ TIMS 12C2/ 

SPl2 DFSDM 
USART2/ UARTS/ 

TSC QUADSPI 
LCD COMP2/ SAl2 

TIM16/ 
TIMS/ TIM4/ 12C3 USART3 LPUART1 FMC/ TIM17/ 

LPTIM1 TIMS SWPMl1 LPTIM2 

PAO TIM2 TIMS TIMS USART2 UART4 SAl1 
TIM2_ETR 

CH1 CH1 ETR 
- - -

CTS TX - - - -
EXTCLK 

PA1 
TIM2 TIMS USART2 UART4 LCD TIM1S_CH1N - CH2 CH2 

- - - - RTS DE RX 
- - SEGO 

- -

PA2 
TIM2 TIMS USART2 LCD SAl2 

TIM1S_CH1 -
CH3 CH3 - - - - TX 

- - - SEG1 
-

EXTCLK 

PA3 
TIM2 TIMS USART2 LCD 

TIM1S_CH2 -
CH4 CH4 

- - - -
RX 

- - -
SEG2 - -

PA4 SPl1 SPl3 USART2 SAl1 LPTIM2 - - - - - NSS NSS CK 
- - - - -

FS S OUT 

PAS 
TIM2 TIM2 TIMS SPl1 LPTIM2 

-
CH1 ETR CH1N 

-
SCK - - - - - - - -

ETR 

TIM1 TIM3 TIMS SPl1 USART3 QUADS Pl LCD 
TIM1 TIMS 

PA6 - SKIN _CH1 SKIN 
-

_MISO - CTS 
- -

SK1_103 SEG3 
SKIN SKIN TIM16_CH1 

- - - - - COMP2 COMP2 

PA7 
TIM1 TIM3 TIMS SPl1 QUADS Pl LCD TIM17_CH1 -
CH1N CH2 CH1N 

-
MOSI 

- - - -
SK1 102 SEG4 - -

PAS MCO 
TIM1 USART1 OTG_FS LCD LPTIM2_0UT 
CH1 

- - - - - CK - - SOF COMO 
- -

PAS 
TIM1 USART1 LCD TIM1S_SKIN -
CH2 

- - - - -
TX 

- - - COM1 
- -

PA10 
TIM1 USART1 OTG_FS LCD TIM17_SKIN -
CH3 - - - - -

RX 
- -

ID COM2 
- -

TIM1 TIM1 USART1 CAN1 OTG_FS 
TIM1 

PA11 -
CH4 SKIN2 - - - -

_CTS 
-

RX OM 
- SKIN2 - -

- - - - COMP1 

PA12 TIM1 USART1 CAN1 OTG_FS - ETR 
- - - - -

RTS DE 
-

TX DP 
- - - -

PA13 
JTMS/ IR OTG_FS 
SWDIO OUT 

- - - - - - - -
NOE - - - -

PA14 
JTCK/ 

SWCLK 
- - - - - - - - - - - - - -

PA1S JTDI 
TIM2 TIM2 SPl1 SPl3 UART4 TSC_G3 LCD SAl2 
CH1 ETR 

- -
NSS NSS - RTS DE 101 

-
SEG17 - FS S 

-



Em• Appendix I: GPIO Alternate Functions (STM32L4) 

Port B: Alternate Functions (STM32L4) 

AFO AF1 AF2 AF3 AF4 AFS AF6 AF7 AFB AF9 AF10 AF11 AF12 AF13 AF14 

TIM1/ TIM1/ SDMMC1/ 
TIM2/TIM1/ Pin TIM2/ TIM2/ 12C1/ USART1/ UART4/ COMP1/ 

SYS_AF TIMS/ TIM3/ TIMS 12C2/ 
SPl1/ SPl3/ 

USART2/ UARTS/ 
CAN1/ OTG_FS/ 

LCD COMP2/ 
SAl1/ TIM16/ 

SPl2 DFSDM TSC QUADS Pl SAl2 TIM17/ 
TIMS/ TIM4/ 12C3 USART3 LPUART1 FMC/ 

LPTIM2 
LPTIM1 TIMS SWPMl1 

PBO 
TIM1 TIM3 TIMS USART3 QUADS Pl LCD COMP1 

-
CH2N CH3 CH2N 

- - -
CK 

- -
SK1 101 SEGS OUT 

- -

PB1 
TIM1 TIM3 TIMS DFSDM USART3 QUADS Pl LCD LPTIM2 - CH3N CH4 CH3N 

- -
DA TINO RTS DE 

- -
SK1 100 SEG6 

- -
IN1 

PB2 
RTC LPTIM1 12C3 DFSDM 
OUT OUT 

- -
SMSA 

-
CKINO - - - - - - - -

JTDO/ 
TIM2 SPl1 SPl3 USART1 LCD SAl1 

PB3 TRACES 
_CH2 

- - -
SCK SCK RTS_DE 

- - - SEG7 
-

SCK_S -
WO - - - - -

PB4 NJTRST 
TIM3 SPl1 SPl3 USART1 UARTS TSC_G2 LCD SAl1 TIM17 

-
CH1 - -

MISO MISO CTS RTS DE 101 
-

SEGS - MCLK S SKIN 

PBS 
LPTIM1 TIM3 12C1 SPl1 SPl3 USART1 UARTS TSC_G2 LCD COMP2 SAl1 TIM16 

-
IN1 CH2 

-
SMSA MOSI MOSI CK CTS 102 

-
SEG9 OUT SD S SKIN 

PB6 
LPTIM1 TIM4 TIMS 12C1 DFSDM USART1 TSC_G2 TIMS_SKIN2 SAi TIM16 

-
ETR CH1 SKIN2 SCL 

-
DATINS TX - 103 - -

COMP2 1 FS S CH1N 

PB7 
LPTIM1 TIM4 TIMS 12C1 DFSDM USART1 UART4 TSC_G2 LCD 

FMC_NL 
TIMS_SKIN TIM17 

-
IN2 CH2 SKIN SDA - CKINS RX CTS 104 - SEG21 COMP1 CH1N 

PBS 
TIM4 12C1 DFSDM CAN1 LCD SDMMC1 SAl1 TIM16 

- -
CH3 

-
SCL 

-
DATIN6 

- -
RX 

-
SEG16 D4 MCLK A CH1 

PB9 
IR TIM4 12C1 SPl2 DFSDM CAN1 LCD SDMMC1 SAl1 TIM17 - OUT CH4 - SDA NSS CKIN6 

- -
TX 

-
COM3 DS FS A CH1 

PB10 
TIM2 12C2 SPl2 DFSDM USART3 LPUART1 QUADS Pl LCD COMP1 SAl1 

-
CH3 

- -
SCL SCK DATIN7 TX RX - CLK SEG10 OUT SCK A 

-

PB11 
TIM2 12C2 DFSDM USART3 LPUART1 QUADS Pl LCD COMP2 

-
CH4 

- -
SDA 

-
CKIN7 RX TX - NCS SEG11 OUT 

- -

TIM1 
TIM1 

12C2 SP12 DFSDM USART3 LPUART1 TSC_G1 LCD SWPMl1 SAl2 TIM15 
PB12 -

SKIN 
- SKIN 

SMSA NSS DATIN1 CK RTS_DE 101 
-

SEG12 10 FS_A SKIN - COMP2 - - - - - - - - - -
PB13 

TIM1 12C2 SPl2 DFSDM USART3 LPUART1 TSC_G1 LCD SWPM11 SAl2 TIM15 
-

CH1N - - SCL SCK CKIN1 CTS CTS 102 
-

SEG13 TX SCK A CH1N 

PB14 
TIM1 TIMS 12C2 SPl2 DFSDM USART3 TSC_G1 LCD SWPMl1 SA12 TIM15 - CH2N 

-
CH2N SDA MISO DATIN2 RTS DE 

-
103 

-
SEG14 RX MCLK A CH1 

PB1S 
RTC TIM1 TIMS SPl2 DFSDM TSC_G1 LCD SWPMl1 SAl2 TIM15 
REFIN CH3N 

-
CH3N 

-
MOSI CKIN2 

- -
104 

-
SEG15 SUSPEND SD A CH2 



Appendix I: GPIO Alternate Functions (STM32L4) EDI 

Port C: Alternate Functions (STM32L4) 
AFO AF1 AF2 AF3 AF4 AFS AF6 AF7 AFS AF9 AF10 AF11 AF12 AF13 AF14 

TIM1/ TIM1/ SDMMC1/ TIM2/ 
Pin TIM2/ TIM2/ 12C1/ USART1/ UART4/ COMP1/ TIM1/ 

SYS 
TIMS/ TIM3/ TIMS 12C2/ 

SPl1/ SPl3/ 
USART2/ UARTS/ 

CAN1/ OTG_FS/ 
LCD COMP2/ 

SAl1/ 
TIM16/ 

_AF 
TIMS/ TIM4/ 12C3 

SPl2 DFSDM 
USART3 LPUART1 

TSC QUADS Pl 
FMC/ 

SAl2 
TIM17/ 

LPTIM1 TIMS SWPMl1 LPTIM2 

PCO 
LPTIM1 12C3 DFSDM LPUART1 - LCD LPTIM2 

-
IN1 - - SCL 

-
DATIN4 

-
RX - - SEG18 

- - IN1 

PC1 
LPTIM1 12C3 DFSDM LPUART1_ LCD -

OUT 
- -

SDA 
-

CKIN4 - TX 
- -

SEG19 
- - -

PC2 
LPTIM1 SPl2 DFSDM LCD -

IN2 - - -
MISO CK OUT 

- - - - SEG20 
- - -

PC3 
LPTIM1 SPl2 LCD SAl1 LPTIM2 

-
ETR - - -

MOSI 
- - - - -

VLCD 
-

SD A ETR 

PC4 USART3 LCD - - - - - - -
TX 

- - -
SEG22 - - -

PCS 
USART3 LCD - - - - - - - RX 

- - -
SEG23 - - -

PCS 
TIM3 TIM8 DFSDM TSC_G4 LCD SDMMC1 SAl2 

- - CH1 CH1 
- -

CKIN3 - -
101 

-
SEG24 D6 MCLK A 

-

PC7 
TIM3 TIM8 DFSDM TSC_G4 LCD SDMMC1 SAl2 - -
CH2 CH2 

- - DATIN3 
- -

102 
-

SEG25 D7 MCLK B 
-

PCS 
TIM3 TIM8 TSC_G4 LCD SDMMC1 - - CH3 CH3 

- - - - -
103 

-
SEG26 DO 

- -

PC9 
TIM8 TIM3 TIM8 TSC_G4 OTG_FS LCD SDMMC1 SA12 TIM8_BKIN 

-
BKIN2 CH4 CH4 

- - - - -
104 NOE SEG27 D1 EXTCLK 2 COMP1 

SPl3 USART3 UART4 
TSC LCD_COM4/ 

SDMMC1 SAl2 
PC10 - - - - - -

SCK _TX _TX 
G3 - LCD_SEG28/ 

D2 SCK_B -
- 102 LCD_SEG40 - --

SPl3 USART3 UART4 
TSC LCD_COM5/ 

SDMMC1 SAl2 
PC11 - - - - - -

MISO RX RX 
G3 - LCD_SEG29/ 

D3 MCLK_B -
- - - 103 LCD_SEG41 - --

SPl3 USART3 UART5 
TSC LCD_COM6/ 

SDMMC1 SAl2 
PC12 - - - - - -

MOS! CK _TX 
_G3 - LCD_SEG30/ 

CK SD_B 
-

- - 104 LCD SEG42 - -
PC13 - - - - - - - - - - - - - - -

PC14 - - - - - - - - - - - - - - -

PC15 - - - - - - - - - - - - - - -



911/:W Appendix I: GPIO Alternate Functions (STM32L4) 

Port D: Alternate Functions (STM32L4) 

AFO AF1 AF2 AF3 AF4 AFS AF6 AF7 AFB AF9 AF10 AF11 AF12 AF13 AF14 

Pin TIM1/ TIM1/ SDMMC1/ TIM2/ 

SYS 
TIM2/ TIM2/ 12C1/ 

SPl1/ SPl3/ 
USART1/ UART4/ 

CAN1/ OTG_FS/ COMP1/ 
SAl1/ 

TIM1/ 
TIMS/ TIM3/ TIMS 12C2/ USART2/ UARTS/ LCD COMP2/ TIM16/ _AF 
TIMS/ TIM4/ 12C3 

SPl2 DFSDM 
USART3 LPUART1 

TSC QUADS Pl 
FMC/ 

SAl2 
TIM17/ 

LPTIM1 TIMS SWPMl1 LPTIM2 

PDO 
SPl2 DFSDM CAN1 

FMC_D2 - - - - -
NSS DATIN7 - - RX 

- - - -

PD1 
SP12 DFSDM CAN1 

FMC_D3 - - - - - SCK CKIN7 
- -

TX - - - -

USART3 UARTS TSC 
LCD_COM7/ 

SDMMC1 
PD2 - - TIM3_ETR - - - -

RTS_DE RX SYNC 
- LCD_SEG31 / 

CMD - -
- - - LCD_SEG43 -

PD3 
SPl2 DFSDM USART2 

FMC_CLK - - - - - MISO DATINO CTS 
- - - - - -

PD4 
SPl2 DFSDM USART2 

FMC_NOE - - - - - MOSI CKINO RTS DE 
- - - - - -

PDS 
USART2 

FMC_NWE - - - - - - - TX - - - - - -

PD6 
DFSDM USART2 

FMC_NWAIT SAl1 - - - - - -
DATIN1 RX 

- - - -
SD A -

PD7 
DFSDM - USART2 

FMC_NE1 - - - - - - CKIN1 CK - - - - - -

PDS 
USART3 

LCD_SEG28 FMC_D13 - - - - - - - TX 
- - - - -

PD9 
USART3 

LCD_SEG29 FMC_D14 SAl2 - - - - - - -
RX 

- - - MCLK A -

PD10 
USART3 TSC_G6 

LCD_SEG30 FMC_D15 
SAl2 - - - - - - -

CK - 101 -
SCK A -

PD11 
USART3 TSC_G6 

LCD_SEG31 FMC_A16 SAl2 LPTIM2 - - - - - - -
CTS 

-
102 

-
SD A ETR 

PD12 TIM4_CH1 
USART3_ TSC_G6 

LCD_SEG32 FMC_A17 SAl2 LPTIM2 - - - - - -
RTS DE 

-
103 - FS A IN1 

PD13 TIM4_CH2 -
TSC_G6 

LCD_SEG33 FMC_A18 LPTIM2 - - - - - - - 104 - -
OUT 

PD14 - - TIM4_CH3 - - - - - - - - LCD_SEG34 FMC_DO - -

PD1S - - TIM4_CH4 - - - - - - - - LCD_SEG35 FMC_D1 - -



Appendix I: GPIO Alternate Functions (STM32L4) ED 

Port E: Alternate Functions (STM32L4) 

AFO AF1 AF2 AF3 AF4 AFS AF6 AF7 AFS AF9 AF10 AF11 AF12 AF13 AF14 

TIM1/ TIM1/ SDMMC1/ TIM2/ 

Pin TIM2/ TIM2/ 12C1/ 
SPl1/ SPl3/ 

USART1/ UART4/ 
CAN1/ OTG_FS/ 

COMP1/ SAl1/ 
TIM1/ 

SYS_AF TIMS/ TIM3/ TIMS 12C2/ USART2/ UARTS/ LCD COMP2/ TIM16/ 
TIMS/ TIM4/ 12C3 

SPl2 DFSDM 
USART3 LPUART1 

TSC QUADSPI 
FMC/ 

SAl2 
TIM17/ 

LPTIM1 TIMS SWPMl1 LPTIM2 

PEO rnM4_ETR LCD FMC_NSLO 
TIM16 - - - - - - - - - -

SEG36 
-

CH1 

PE1 LCD 
FMC_NSL1 

TIM17 - - - - - - - - - - - SEG37 - CH1 

PE2 TRACE CK ITIM3_ETR 
TSC_G7 LCD 

FMC_A23 
SAl1 - - - - - - -

101 
-

SEG3S MCLK A 
-

PE3 TRACE DO TIM3_CH1 
TSC_G7 LCD FMC_A19 

SAl1 
- - - - - - -

102 
-

SEG39 SD S -

PE4 TRACED1 TIM3 CH2 DFSDM TSC_G7 FMC_A20 
SAl1 - - - - DATIN3 

- -
103 

- -
FS A 

-

PES TRACED2 TIM3_CH3 DFSDM TSC_G7 
FMC_A21 

SAl1 - - - -
CKIN3 - - 104 - -

SCK A 
-

PE6 TRACED3 TIM3_CH4 FMC_A22 
SAl1 - - - - - - - - - - SD A 

-

PE7 
TIM1 DFSDM 

FMC_D4 
SA11 - ETR 

- - - -
DATIN2 

- - - - - SD S -

PES 
TIM1 DFSDM 

FMC_D5 
SAl1 

-
CH1 N - - - -

CKIN2 - - - - -
SCK S 

-

PE9 
TIM1 DFSDM 

FMC_D6 
SAl1 

-
CH1 - - - -

CK OUT 
- - - - - FS S -

PE10 
TIM1 DFSDM TSC_G5 QUADS Pl FMC_D7 

SAl1 
-

CH2N 
- - - - DATIN4 

- -
101 CLK 

- MCLK S 
-

PE11 
TIM1 DFSDM TSC_G5 QUADS Pl 

FMC_DS -
CH2 - - - -

CKIN4 - - 102 NCS 
- - -

PE12 TIM1 SPl1 DFSDM TSC_G5 QUADS Pl 
FMC_D9 -

CH3N 
- - -

NSS DATIN5 - -
103 SK1 100 

- - -

PE13 
TIM1 SPl1 DFSDM TSC_G5 QUADS Pl FMC_D10 - _CH3 

- - - SCK CKIN5 
- -

104 SK1 101 
- - -

TIM1 TIM1 
TIM1 

SPl1 QUADS Pl PE14 -
_CH4 _SKIN2 

_SKIN2_ -
MISO - - - - SK1_102 

- FMC_D11 - -
COMP2 - -

TIM1 TIM1 
SPl1 QUADS Pl PE1S -

SKIN - SKIN -
MOS! 

- - - -
SK1_103 

- FMC_D12 - -
- COMP1 - -



11111!!1 Appendix I: GPIO Alternate Functions (STM32L4) 

[This page intentionally left blank] 



Bibliography Iii~· 

Bibliography 
1. ARM Limited. http://www.arm.com/ 
2. STMicroelectronics. http://www.st.com/ 
3. Texas Instruments. http://www.ti.com/ 
4. Freescale. http://www.freescale.com/ 
5. Cypress Semiconductor. http://www.cypress.com/ 
6. NXP Semiconductors. http://www.nxp.com/ 
7. Nordic Semiconductors. http://www.nordicsemi.com/ 
8. Nuvoton Technology Corporation. http://www.nuvoton.com/ 
9. STMicroelectronics. Reference manual, STM32L151xx, STM32L152xx and 

STM32L162xx Advanced ARM-based 32-bit MCUs, July 2012 
10. STMicroelectronics. Reference Manual STM32F405xx/07xx, STM32F415xx/17xx, 

STM32F42xxx and STM32F43xxx advanced ARM-based 32-bit MCUs. May 2014 
11. STMicroelectronics. UM1079 User Manual, STM32L-DISCOVERY, Doc ID 018789 

Rev 2, June 2011 
12. STMicroelectronics. UM1472 User Manual, Discovery kit for STM32F407/417 lines, 

DocID022256 Rev 4, January 2014 
13. STMicroelectronics. STM32L151xx STM32L152xx Data Sheets. January 2012 
14. STMicroelectronics. STM32F405xx STM32F407xx Data Sheets. DocID022152 Rev 

4. June 2013 
15. STMicroelectronics. STM32F3 and STM32F4 Series Cortex-M4 programming 

manual, DocID022708 Rev 4, May 2014 
16. ARM Limited. ARMv6-M Architecture Reference Manual, rev C, 2008 
17. ARM Limited. ARMv7-M Architecture Reference Manual, Fourth release, 2010 
18. ARM Limited. Cortex-MO Technical Reference Manual, Revision: rOpO, 2010 
19. ARM Limited. Cortex-MO+ Technical Reference Manual, Revision: rOpO, 2012 
20. ARM Limited. Cortex-M3 Technical Reference Manual, Revision: rlpl, 2006 
21. ARM Limited. Cortex-M4 Technical Reference Manual, Revision: rOpl, 2013 
22. ARM Limited. Cortex-M7 Technical Reference Manual, Revision: rlpO, 2015 
23. ARM Limited. Cortex-MO Devices Generic User Guide, 2009 
24. ARM Limited. Cortex-MO+ Devices Generic User Guide, 2012 
25. ARM Limited. Cortex-M3 Devices Generic User Guide, 2010 
26. ARM Limited. Cortex-M4 Devices Generic User Guide, 2010 
27. ARM Limited. Cortex-M7 Devices Generic User Guide, 2015 
28. ARM Limited. CMSIS - Cortex Microcontroller Software Interface Standard, 

http://www.arm.com/prod ucts/processors/ cortex-ml cortex-microcontro ller
softw are-interface-standard. ph p, retrieved 2013, 2014 and 2015 



lllfB Bibliography 

29. ARM Limited. ELF for the ARM Architecture, ARM IHI 0044D, 10/28/2009 
30. ARM Limited. Application Binary Interface for the ARM Architecture, The Base 

Standard, ARM IHI 0036B, 11/30/2010 
31. ARM Limited. Procedure Call Standard for the ARM Architecture, ARM IHI 0042D, 

8/16/2009 
32. ARM Limited. ARM Compiler Toolchain, Version 5.02, Assembler Reference, ARM 

DUI 0489H (ID070912), 2010-2012 
33. ARM Limited. ARM Compiler Toolchain, Version 5.02, Compiler Reference, ARM 

DUI 0491H (ID070912), 2010-2012 
34. ARM Limited. ARM Developer Suite, Version 1.2, Developer Guide, ARM DUI 

0056D, 1999-2001 
35. ARM Limited. Cortex-M4(F) Lazy Stacking and Context Switching, Application 

Note 298, March 2012 
36. ARM Limited. Application Note 33 Fixed Point Arithmetic on the ARM, 1996 
37. ARM Limited. Keil Embedded Development Kit, http://www.keil.com/ 
38. Shyam Sadasivan, ARM Limited. White paper, Developing optimized signal 

processing software on the Cortex-M4 processor. November 2010 
39. Peter Wegner. A Technique for Counting Ones in a Binary Computer, 

Communications of the ACM, Page 322, 1960 
40. IEEE Std 754- 2008, IEEE Standard for Floating-Point Arithmetic, IEEE Computer 

Society, 2008 
41. USB Device Class Definition for Human Interface Devices (HID), Firmware 

Specification, 6/27/2001, Version 1.11, www.USB.org 
42. USB HID Usage Tables, 10/28/2004, Version 1.12, www.USB.org 
43. Universal Serial Bus Specification, Revision 2.0, 5/27/2000, www.USB.org 
44. USB in a Nutshell . Making Sense of the USB Standard. www.beyondlogic.org, 

3/10/2014 
45. Jan Axelson, USB Complete, The Developer's Guide, Fourth Edition, ISBN 978-

1931448086, June 2009 
46. ATMEL Application Note, AVR065: LCD Driver for the STK502, Rev. 2530E-AVR-

07/08 
47. Newhaven Display International, Inc., NHD-0216K1Z-NSW-BBW-L, Character 

Liquid Crystal Display Module, 2011 
48. Sumsung. 16COM/40SEG Driver & Controller for Dot Matrix LCD. KS0066U, 

retrieved March 2015 
49. STMicroelectronics. AN4032 Application note, Interfacing an HD44780 2-line LCD 

display with the STMBSVLDISCOVERY, Doc ID 022651Rev1, February 2012 
50. Hitachi. HD44780U (LCD-II), Dot Matrix Liquid Crystal Display Controller/Driver, 

ADE-207-272(2), '99.9, Rev. 0.0 



Bibliography ••• 

51. Microchip. AN907 Stepping Motors Fundamentals, DS00907 A, 2004 
52. Texas Instruments. Data Sheet of ULN2803N Darlington Transistor Array, July 

2007 
53. STMicroelectronics. AN2604 Application note, STM32F101xx and STM32F103xx 

RTC calibration, August 2007 
54. STMicroelectronics. AN3371 Application note, Using the hardware real-time clock 

(RTC) in STM32 FO, F2, F3, F4 and Ll series of MCUs, Doc ID 018624 Rev 5, 
September 2012 

55. STMicroelectronics. AN4044 Application note, Using floating-point unit (FPU) with 
STM32F405/07xx and STM32F415/417xx microcontrollers, Doc ID 022737 Rev 1, 
March 2012 

56. Robert H. Walden, Analog-to-Digital Converter Survey and Analysis, IEEE Journal 
on Selected Areas in Communications, VOL. 17, NO. 4, APRIL 1999 

57. Walt Kester, ADC Architectures II: Successive Approximation ADCs, Analog 
Devices, MT-021 Tutorial, Rev.A, 10/08, WK 

58. ATMEL, Atmel A VR127: Understanding ADC parameters, Application Note Rev. 
8456A-AVR-ll/11, 2011 

59. Walt Kester, Which ADC Architecture Is Right for Your Application? Analog 
Dialogue 39-06, June 2005 

60. STMicroelectronics. AN3126 Application note, Audio and waveform generation using 
the DAC in STM32 microcontroller families, Doc ID 16895 Rev 1, May 2010 

61. Walt Kester, Basic DAC Architectures II: Binary DA Cs, Analog Devices MT-015 
Tutorial, Rev.A, 10/08, WK, 2008 

62. Phillip L. De Leon, Computer Music in Undergraduate Digital Signal Processing, 
Annual Conference on Interactive Learning in Engineering Education, Session 
76A3, 2000 

63. Miller Puckette. The Theory and Technique of Electronic Music. World Scientific 
Publishing Co., Inc., River Edge, NJ, USA. 2007 

64. Leens, F., An introduction to J2C and SPI protocols, Instrumentation & Measurement 
Magazine, IEEE, vol.12, no.1, pp.8,13, February 2009 

65. STMicroelectronics. AN2824 Application note, STM32F10xxx I2C optimized 
examples, Doc ID 15021 Rev 4, June 2010 

66. Microchip, TC74 Datasheet, Tiny Serial Digital Thermal Sensor, DS21462C, 2002 
67. John R. Hauser. 1996. Handling floating-point exceptions in numeric programs. ACM 

Trans. Program. Lang. Syst. 18, 2 (March 1996), 139-174. 
68. NXP Semiconductors, UM10204 I2C-bus specification and user manual, Rev. 6, 4 

April 2014 User manual 
69. UBICOM, Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using 

the SX Communications Controller, Application Note 20, November 2000 



llllFlmll Bibliography 

70. Motorola, Inc. SPI Block Guide V03.06, Original Release Date: 21 JAN 2000, 
Revised: 04 FEB 2003 

71. STMicroelectronics. AN2159 Application note, SPI protocol for STPM01/STPM10 
metering devices, Doc ID 11400 Rev 3, July 2010 

72. FTDI Chip. FT232R USB UART IC Datasheet Version 2.09, Document No.: 
FT_000053, 2010 

73. Microchip, Section 18. USART, DS31018A, 1997 
74. STMicroelectronics. AN3155 Application note, USART protocol used in the 

STM32 bootloader, Doc ID 17066 Rev 2, April 2010 
75. Joseph Yiu and Andrew Frame, ARM Cortex-M3 Processor Software Development 

for ARM7TDMI Processor Programmers, White Paper, July 2009 
76. Tyler Gilbert, Make the most out of Cortex-M3 's preemptive context switches, EE 

Times-India, 2011 
77. Micriµm. µCIOS-II and ARM Cortex-M3 Processors, Application Note AN-1018, 

2006 
78. Albert Huang and Larry Rudolph, Bluetooth for Programmers, 

http://people.csail.mit.edu/rudolph/Teaching/ Articles/BTBook. pdf, Retrieve in 
Jan.2014 

79. connectBlue, AT Command Specification - Bluetooth EPA, 
http://www.connectblue.com, 2009 

80. HC, HC-03/05 Embedded Bluetooth Serial Communication Module AT command set, 
http://www.wavesen.com/, April 2011 

81. STMicroelectronics. xxxx-TOUCH-LIB, STMTouch libran;, DocID023933 Rev 4, 
February 2014 

82. Cytron Technology, Product User's Manual -HCSR04 Ultrasonic Sensor, Vl.0, 

May 2013 
83. Gutierrez-Osuna, R.; Janet, J.A; Luo, R.C., Modeling of ultrasonic range sensors for 

localization of autonomous mobile robots, Industrial Electronics, IEEE Transactions 
on, vol. 45, no. 4, pp.654-662, Aug 1998 

84. Microsoft, Keyboard Scan Code Specification, Revision 1.3a - March 16, 2000 
85. Silicon Laboratories, AN249 Human Interface Device, Rev. 0.5 3/11 
86. Robert Murphy, AN57294 USB 101: An Introduction to Universal Serial Bus 2.0, 

Document No. 001-57294 Rev. *D, www.cypress.com 
87. STMicroelectronics. STM32L Discovery Firmware Pack Vl.e.2, www.stm.com 
88. MacKenzie, S., A structured approach to assembly language programming," Education, 

IEEE Transactions on, vol.31, no.2, pp.123,128, May 1988 
89. Barry Donahue. 1988. Using assembly language to teach concepts in the introductory 

course. In Proceedings of the nineteenth SI GCSE technical symposium on 



Bibliography ll1ijM 

Computer science education (SIGCSE '88), Herbert L. Dershem (Ed.). ACM, 
New York, NY, USA, 158-162. 

90. Actel. Application Note AC161. Using Schmitt Triggers for Low Slew-Rate Input. 
November 2002 

91. E. Dijkstra. 1979. Go to statement considered harmful. In Classics in software 
engineering, Edward Nash Yourdon (Ed.). Yourdon Press, Upper Saddle River, 
NJ, USA 27-33. 

92. C. K. Koc;, T. Acar, Kaliski, and Jr. B.S., Analyzing and Comparing Montgomery 

Multiplication Algorithms, Micro, IEEE, Vol. 16, Issue 3, 1996, pp. 26-33 

93. S. R. Dusse and B. S. Kaliski Jr. A cryptographic library for the Motorola DSP56000. 

In I. B. Damgard, editor, Advances in Cryptology - EUROCRYPT 90, Lecture 

Notes in Computer Science, No. 473, pages 230-244, New York, NY, 1990. 

Springer-Ver lag. 

94. J. Goodacre and A.N. Sloss, Parallelism and the ARM instruction set 

architecture, Computer, vol. 38, no. 7, pp.42-50, July 2005 

95. Gene Frantz and Ray Simar, Texas Instruments . Comparing Fixed- and Floating

Point DSPs. http://www.ti.com/lit/wp/spry061/spry061.pdf, retrieved Jan. 2015 

96. Alexandru Barleanu, Vadim Baitoiu, Andrei Stan, FIR Filtering on ARM Cortex

M3, Page 490, Advances in Computer Science, Proceedings of the 6th WSEAS 

European Computing Conference, 2012, ISBN: 978-1-61804-126-5 

97. S. Vassiliadis, E.A. Hakkennes, J.S.S.M. Wong, and G.G. Pechanek, G.G., The 

sum-absolute-difference motion estimation accelerator, Euromicro Conference, 1998. 

Proceedings. 24th, vol.2, no., pp.559-566 vol.2, 25-27 Aug 1998 

98. J. Goodacre, and A.N. Sloss, Parallelism and the ARM instruction set architecture, 

Computer, vol. 38, no. 7, pp. 42-50, July 2005 

99. ARM Limited. Application Note 209 Using Cortex-M3 and Cortex-M4 Fault 

Exceptions, June 2014 

100. ARM Limited. CMSIS DSP Software Library, 

http://www.keil.com/pack/ doc/CMSIS/DSP /html/index.html 

101. STMicroelectronics. AN4736 Application note: How to calibrate STM32L4 
Series microcontrollers internal RC oscillator, Doc ID 028052 Rev 2, August 2016 

102. STMicroelectronics. AN4566 Application note, Extending the DAC 
performance of STM32 microcontrollers, Doc ID 026799 Rev 2, August 2015 

103. STMicroelectronics. AN4235 Application note: I2C timing configuration tool 
for STM32F3xxxx and STM32FOxxxx microcontrollers, Doc ID 024161 Rev 2, 
August 2013 



mJml Bibliography 

104. STMicroelectronics. AN4261 Application note: STM32L4 ultra-low-power 
features overview, Doc ID 027173 Rev 1, July 2015 

105. STMicroelectronics. AN2606 Application note: STM32 microcontroller 
system memory boot mode, Doc ID 13801 Rev 29, December 2016 

106. STMicroelectronics. AN4777 Application note: Implications of memory 
interface configurations on low-power STM32 microcontrollers, Doc ID 28482 Rev 2, 
October 2016 

107. STMicroelectronics. AN4013 Application note: STM32 cross-series timer 
overview, Doc ID 22500 Rev 6, July 2016 

108. Joseph Yiu, Optimizing a processor design for low power control applications, 
ARM White Paper, 2013 

109. ARM Limited. Application Note 321: ARM Cortex-M Programming guide 
to memonJ barrier instructions, 17 September 2012 

110. Joe Bungo. 2008. The use of compiler optimizations for embedded systems 
software. Crossroads 15, 1 (September 2008), 8-15 

111. Jack G. Ganssle, A Guide to Debouncing, Rev 3, June 2008, 

https://www .researchga te .net/publica tion/22895 7558 _A_ Guide_ to _Debouncing 



Index 

6 

64-bit addition, 203 
64-bit logic shift left, 206 
64-bit multiplication, 208 
64-bit operations, 203 
64-bit shifted right, 207 
64-bit sign extension, 205 
64-bit signed division, 211 
64-bit subtraction, 204 

A 

ABI, 167 
access C variables, 231 
accumulator-based instruction set, 61, 62 
ACK, 50, 547, 550, 552 
active high, 377 
active low, 377 
ADC, 481 

calibration, 505 
continuous mode, 488 
data alignment, 490 
digital quantization, 482 
OMA, 501 
external trigger, 493 
freeze mode, 493 
injected group, 488 
input channel, 488 
intput channels, 491 
JEOC, 497 
ping-pong buffering, 503 
quantization error, 486 
regular group, 488 
sample-and-hold amplifier, 484 
sampling error, 485 
sampling time, 484 
scan mode, 489 
single mode, 488 
trigger, 493 

add, 80 
add with carry, 67, 80 
ADSR, 521 

advanced high-performance bus, 58 
advanced peripheral bus, 58 
AJ-IB,58,255,470,471 
AHB/APB bridge, 471 
ALIGN, 72, 218 
aligned memory accesses, 221 
alignment, 217 

double-word alignment, 217 
halfword alignment, 217 
word alignment, 217 

alternate function, 341, 698 
ALU, 20, 24, 25, 59, 61, 62, 75, 78 
always, 112 
AMBA, 470 
analog watchdog, 488 
APB, 59, 470, 471 

Index -

application binary interface, 173, 191, 215 
application program status register, 75, 111 
APSR, 75, 92, 93, 111 
AREA, 70 
arithmetic 

add, 80 
add with carry, 80 
multiply and subtract, 80 
reverse subtract, 80 
subtract, 80 
subtract with carry, 80 

arithmetic logic unit, 59 
ARM EABI, 169 
ARM state, 57 
ARM32,55,56,57, 73 
ARM64, 55, 56, 73 
Armstrong numbers, 151 
ASB, 470 
ASCII, 49 
assembly function in C programs, 228 
assembly instruction, 66 
assembly program, 2 
asynchronous transmission, 527 
AT commands, 544 
atoi, 154 
audio, 592 
AVRCP, 544 





compare and branch on zero, 116 
compare negative, 68, 77, 91 
compound Boolean expression, 119 
compound logical expression, 120 
compwithnd Boolean expression, 119 
condition flags, 111, 117 
conditional branch instruction, 114 
conditional execution, 117 
context switch, 608, 611, 612, 614 
continue statement, 125 
control register, 510, 602 
control structures, 133 
Cortex-A, 56 
Cortex-M, 56 
Cortex-MO, 57, 323 
Cortex-Ml, 57 
Cortex-M4, 57, 73, 323 
Cortex-M7, II, XIV, 16, 26, 57, 60, 299, 666, 680, 682, 

705 
Cortex-R, 56 
count digits, 146 
counter overflow, 412 
counter underflow, 412 
CP ACR, 299, 301 
CPS, 253 
CPSID, 253 
CPSIE, 68, 253, 605, 606, 614 
CRC, 583 

DAC, 507 
buffered output, 511 
control register, 511 

D 

data output register, 510 
glitch, 508 
resolution, 508 
sampling rate, 508 
settling time, 508 
software trigger, 515 
timer trigger, 517 
trigger, 510 

Darlington array, 426 
data alignment, 217 
data comparison, 91 
data memory, 5, 6, 7, 8, 9, 18, 19, 20, 21, 22, 23, 24, 

25, 58, 74, 138, 139, 171, 202,223,435 
data memory barrier, 68 

data minus, 579 
data plus, 579 
data structure padding, 219 
data symbols, 2 
data synchronization barrier, 68 
DCB, 71 
DCD, 71 
DCQ 71 
DCW, 71 
De Morgan's laws, 120 
debouncing, 360 
decimal, 29, 269 
decode, 330 
default a , 303 
deformalized, 286 
delay, 260 
differential signaling, 531 
differential signals, 579 
digital quantization, 482 
direct memory access, 469 
directive, 3, 65, 66, 69, 70, 73, 668 
dividing by zero, 266 
DMA, 469, 501, 540 

ADC, 501 
CCR, 476 
channel, 474 
circular mode, 478 
CMAR, 476 
C DTR, 476 
CPAR, 476 
data memory, 379 
flow-through, 471 
fly-by, 471 
hardware priority, 476 
PC, 566 
increment mode, 476 
interrupt, 479 
normal mode, 478 
ping-pong buffering, 503 
priority, 475 
software priority, 476 
software trigger, 474 
UART, 540 

DMA and interrupt enable register, 399 
double buffering, 436, 503 
double precision, 281 
double-word, 27 
do-while loop, 124 

Index iJIM 



mJll Index 

DSP, 617 
16x32 multiply and accumulate, 643 
16-bit multiply, 635 
add and subtract halfwords with exchange, 

633 
byte selection, 649 
digital filtering, 637 
dual 16-bit signed multiply with 32-bit 

accumulate, 641 
extension and add, 631 
finite impulse response, 638 
fixed-point DSP, 617, 618 
floating-point DSP, 617 
multiply and accumulate, 643, 644 
multiply and accumulate, 642 
multiply and accumulate, 638 
overflow, 619 
pack two halfwords, 646 
parallel 16-bit add and subtract, 627 
parallel 8-bit add and subtract, 623 
Q flag, 621 
Qn format, 618 
saturation, 619 
signed extension, 647 
SIMD, 618, 621, 623 
sum of absolute difference, 630 
sum of squares, 639 
underflow, 619 
unsigned extension, 647 
vector absolute value, 652 
vector dot product, 660 
vector mean, 656 
vector min and max, 661 
vector negate, 650 
vector offset with saturation, 653 
vector pairwise multiplication, 658 
vector shift with saturation, 655 
wrap-around, 619 

duty cycle, 385 
duty ratio, 429 

E 

EABI, 178, 230, 232, 667 
electromagnetic interference, 350 
ELF, 3, 4, 25, 665 
embedded assembly in C programs, 229 
EMI, 350 

E D, 70 
end of packet, 583 
endian,89, 129, 247 
ENDP, 70 
endpoint, 578, 581, 583, 584, 585, 587, 590, 593 
ENTRY, 70 
enumeration, 588 
EOP, 582,583,584 
EPSR, 75, 92, 93 
EQU, 71, 358 
equal, 112 
even parity, 529 
event generation register, 382 
EXC_RETURN, 601 
exception, 238, 243 
exception handling, 266 
exception return value, 601 
executable and linkable format, 3 
executable file, 1 
executable interface, 3 
execution program status register, 75 
execution view, 4 
export, 73, 175, 230 
extern, 231, 233 
external voltage reference, 487 

F 

factoria l numbers, 141, 194 
FAULTMASK, 14, 92, 253 
FHSS, 543 
FILL, 71 
find maximum, 144 
fixed-point numbers, 270 

accuracy, 274 
addition, 276 
division, 278 
multiplication, 277 
Qm.n format, 272 
Qn format, 618 
range, 274 
resolution, 274 
rounding, 273 
subtraction, 276 
UQm.n format, 271 
UQn format, 271 
virtual decimal place, 270 

flash memory, 7 



floating-point numbers, 279 
addition, 293 
biased exponent, 281 
double precision, 281 
fraction field, 281 
half precision, 281 
IEEE 754 standard, 279 
normalized notation, 279 
overflow, 285 
range, 287 
rounding rules, 289 
rounding to even, 290 
sign bit, 281 
single precision, 281 
special values, 284 
subnormal numbers, 286 
underflow, 285 

floating-point register, 299 
floating-point unit, 270 
flowcharts, 136 
for loop, 122 
FPCAR, 299, 304, 305, 316, 321 
FPCCR, 299, 306, 307, 316 
FPSCR, 299, 302, 303, 304, 309, 311, 312, 314, 315, 

316 
FPU, 299, 512 

alternative half-precision, 303 
arithmetic instructions, 310 
comparison, 311 
copy, 309 
CPACR, 301 
default a mode, 303 
divide-by-zero exception, 304 
exception handling, 314 
exceptions, 304, 314 
flushing-to-zero, 303 
FPCA, 305 
FPCAR, 304 
FPCCR, 306 
FPSCR, 302 
inexact exception, 304 
input denormal cumulative exception, 304 
invalid operation exception, 304 
lazy stacking, 307 
load and store, 308 
N, Z, C, V flags, 302 
overflow exception, 304 
precision conversion, 312 

registers, 299 
rounding mode, 303 
stack frame, 305 
underflow exception, 304 

fraction field, 281 
freeze mode, 493 
frequency hopping, 543 
FT232R, 532 
full stepping, 417, 418, 419, 420, 421, 423 
full-duplex, 528 
function, 161 

GAVDP,544 
GCC, 665 
GCD, 177 
gdb, 665 
GE flags, 648 

G 

general-purpose integer registers, 13 
get, 73 
global, 230 
global static variable, 222 
goto statement, 133, 135 
GPIO, 341 

data input register, 357 
data ouput register, 357 
input data register, 342 
open drain, 348 
output data register, 342 
pull down, 342 
pull up, 342 
push pull, 346 
slew rate, 350 
strong pull down, 343 
strong pull up, 343 
weak pull down, 343 
weak pull up, 343 
wired-AND, 349 
wired-OR, 349 

greatest common divisor, 177 
gyro, 572 

half precision, 281 
half stepping, 421 
half-duplex, 528 

H 

Index MiW 



- Index 

halfword, 27 
Hamming distance, 142 
harmonics, 350, 520 
Harvard architecture, 4, 7, 10, 18, 24 
HD44780, 444 
heap, 8, 158, 171, 223 
hexadecimal, 29 
HID, 592, 593 
HID descriptor, 594, 596 

PC, 546 
ACK, 547, 552 
bus arbitration, 549 
clock stretching, 548 

I 

clock synchronization, 549 
data hold time, 555 
data setup time, 556 
DMA, 566 
fall time, 553 
frame, 549 
NACK, 547, 552 
open drain, 546 
polling, 559, 560 
rise time, 553 
SCL, 546 
SDA, 546 
start, 547 
stop, 547 
TC74, 551, 561 
temperature sensor, 551 
timing, 553 

ICPSC, 398 
if-then statement, 118 
if-then-else statement, 121 
immediate number, 61, 64, 81, 93, 97, 98, 99, 325, 

330, 331, 332, 333,604 
import, 73, 175, 231 
include, 73 
initialized data segment, 8 
injected channel, 492 
inline assembly, 228, 672 
input capture, 395 

prescaler, 398 
Instruction Encoding, 687, 689 
instruction memory, 5, 6, 7, 8, 14, 15, 19, 20, 25, 56, 

58, 59, 324 

instruction synchronization barrier, 68 
interface class, 585 
internal reference voltage, 487 
interrupt, 237 

active bit register, 246 
clear pending register, 246 
controller type register, 246 
enable and disable, 246 
external interrupt, 243, 262 
interrupt levels, 250 
interrupt number, 246 
pending bit, 246 
preemption priority, 249 
priority, 243 
set enable register, 246 
set pending register, 246 
software interrupts, 266 
software trigger, 246 
stacking, 243 
unstacking, 243 

interrupt clear enable register, 246 
interrupt number, 238 
interrupt priority, 249 
interrupt priority register, 249 
interrupt program status register, 75 
interrupt service routine, 237 
interrupt stacking, 244 
interrupt transfers, 581 
interrupt unstacking, 244 
interrupt vector table, 241, 243, 675 
intra-procedure-call register, 167, 168 
Inverting Schmitt trigger, 344 
IP, 249 
IPSR, 75, 92, 93 
ISER, 246, 247, 248, 249, 464 
isochronous transfers, 581, 587, 592 
IT, 670 
itoa, 182 

J state, 580 
Java virtual machine, 1 
JT AG, 676, 677 

K state, 580 

J 

K 



keypad reverse scanning, 370 
keypad scanning algorithm, 365 

L 

L3GD20, 572 
label, 2, 64, 65, 127, 136, 668 
last-in-first-out, 164 
lazy stacking, 307 
LCD 

4-bit bus mode, 445 
8-bit bus mode, 445 
bias, 429, 430 
commands, 448 
data bus, 445 
data memory, 439 
display memory, 436 
double buffering, 436 
duty ratio, 429 
encoding, 440, 447 
function set, 449 
initialization, 449 
nibble, 445 
programming fonts, 451 
register select, 445 
size, 447 

LDM 
LDMDA, 106, 165 
LDMDB, 68, 106, 165 
LDMIA, 106, 108, 165, 166 
LDMIB, 106, 165 

LOR, 98 
LDRB, 68, 103, 109, 126, 152, 153, 154, 176, 179, 180, 

183, 186, 196, 216, 217, 229, 230, 236, 667, 687, 
688 

LDRSB, 68, 103, 104, 109, 216, 217, 687 
leap second, 454 
LIFO, 164 
linkable interface, 3 
linker script, 674 
little endian, 100, 247 
load 

load byte, 103 
load halfword, 103 

load multiple words, 103 
load signed byte, 103 
load signed halfword, 103 
load word, 103 

load constant into registers, 97 
load register exclusive, 68 
load register with byte, 109, 216, 217 
load register with double-word, 217 
load register with signed byte, 109, 216 

Index IJfM 

load register with signed halfword, 109, 217 
load view, 4 
loading effects, 511 
load-store instruction set, 61, 62 
local static variable, 222, 224 
logic shift left, 67, 327 
logic shift right, 67, 207 
lookup table, 512 
loop structure, 134 

M 

machine program, l, 2, 3, 4, 18 
main stack, 14, 241, 245, 267, 321, 600, 612, 615 
major opcode, 327 
malloc, 8 
mask, 86 
matrix transpose, 184 
memory 

data memory, 5 
instruction memory, 5 
main memory, 4 

memory address modes, 101 
memory addressing modes 

pre-index, 102 
memory mapped 1/0 , 10 
Memory-mapped l/O, 351 
micro-stepping, 423 
minor opcode, 326, 327 
MISO, 568 
mnemonic, 2, 63, 64, 77 
MOSI, 568 
move 16-bit immediate value to bottom halfword, 

97 
move 16-bit immediate value to top, 97 
move from coprocessor, 68 
move from general register to special register, 93 
move from special register to general register, 93 
move halfword, 68 
move not, 92 
move the bitwise inverse of 8-bit immediate value, 

97 
move to coprocessor, 68 



- Index 

move top, 68 
MSC, 592 
MSP, 241 
multiply and accumulate, 643, 644 
multiply and accumulate, 638, 642 
multiply and subtract, 80 
multiply-accumulate, 67 
multiply-subtract, 67 
musical 

ADSR, 521 
amplitude, 520 
duration, 521 
pitch, 520 
timbre, 520 
tone, 520 

ACK, 547, 552 
Na , 284 
negative, 112 
negative flag, 75 
nibble, 445 
NMI, 14, 253 

N 

non-preemptive, 237 
non-return-to-zero inverted, 580 
non-static variable, 223 
non-system interrupts, 246 
non-volatile, 4, 7, 227 
normalized presentation, 286 
NOT, 93 
not any number, 284 
note equal, 112 
NRZI, 580 

ULL, 49, 50, 51, 54, 153, 159, 180, 183, 235, 543, 
667 

NULL terminator, 50 
f\IVIC, 59, 242,244,245, 247,248, 249, 251, 253, 255, 

612 
Nyquist frequency, 617 

object code, 3 
OCM, 377 
OCREF, 377 
octal, 29 
odd parity, 529 

0 

one's complement, 34 
opcode, 63, 325, 326, 327, 331, 332, 333 
open collector, 546 
opendrain, 346,347,348, 349, 357,370, 546 
OpenOCD, 676 
operands, 2, 11, 24, 33, 39, 45, 46, 47, 49, 55, 59, 61, 

62, 63, 64, 65, 81, 83, 92, 99, 203, 324, 325, 326, 
331 

over-capture flag, 398 
overflow, 39, 42 

overflow on subtraction, 40 
overflow clear, 112, 114, 671 
overflow flag, 36, 75 
overflow set, 112 
oversampling, 529 

p 

pack two halfwords, 646 
packed, 221 
packed data structure, 219 
padding, 219 
palindrome string, 152 
parasitic capacitors, 553 
parity, 147 

even parity, 147 
odd parity, 147 

parity bit, 529 
part per million, 579 
parts per million, 456 
pass arguments, 169 
pass by reference, 171 
pass by value, 171, 176 
PC-relative addressing, 99, 104, 105, 338 
perfect number, 149 
peripheral interrupt, 246, 247, 248, 249, 251, 252 
permutation, 197 
PHDC, 592 
piconet, 543 
ping-pong buffering, 503 
pipeline, 16 
pitch, 572 
plus, 112, 114, 671 
polling, 238, 243, 363, 371 
Port-mapped I/O, 351 
positive or zero, 112 
post-index format, 101 
pot, 496 



potentiometer, 496 
power dissipation, 481 
PPM, 456, 579 
preempt priority, 249, 250 
preemptive, 237 
prescaler, 376 
PRIMASK, 14, 92, 253 
privileged state, 599, 603, 604 
PROC, 70 
procedure, 161 
process stack, 14, 245, 600, 612, 615 
processor exception, 246 
program counter, 15 
program status register, 75 
pseudo instruction, 19, 66, 98, 99, 153 
PSR, 75, 92, 93, 244, 267, 321, 610, 615 
pull down, 342, 343 
pull up, 342 
push button, 360 
push pull, 346, 347, 349, 355, 370 
PWM, 384 

alignment, 389 
center-aligned, 389 
control register, 382 
duty cycle, 385 
edge-aligned, 389 
mode,386 

Q15, 618 
Q31, 618 
Q7, 618 
Q a , 284 
quantization error, 486 
Quiet NaN, 284 

Q 

R 

radio frequency interference, 350 
radix, 269 
read-only section, 4 
read-write section, 4 
real number, 27, 269, 274, 282, 319 
real-time clock, 453 
recursive function, 192 
register allocation, 13 
registers, 11 

general purpose registers, 11 
live range, 138 
register reuse, 138 
scratch registers, 167, 173 
special purpose registers, 11 
virtual registers, 229 

regular channel, 492 
Reset_Handler, 675 
resolution, 481 
reverse bits, 89 
reverse byte order, 89 
reverse subtract, 67, 80 
RFCOMM,544 
RFI, 350 
roll, 572 
ROR, 215 
rotate 

rotate right, 67, 79 
rotate right with extend, 79 

rotate right with extend, 67 
round to even, 290 
round to the nearest, 289 
round toward negative infinity, 289 
round toward zero, 289 
round-robin scheduler, 607, 615 
routine, 161 
RRX, 215 
RS-232, 531 
RS-422, 531 

Index EDll 

RTC, 438, 453, 455, 456, 459, 460, 461, 462, 463, 464, 
468 

RTC alarm, 462 

s 
S suffix, 77, 88, 330, 333 
sample-and-hold amplifier, 482, 484 
sampling rate, 481 
sampling time, 484 
saturation, 83 
saturation flag, 75 
scaru1ing algorithm, 366 
SCB, 250, 252, 266 
Schmitt trigger, 343, 346 
SEO, 580 
SEl, 580 
selection structure, 134 
separated operand scanning, 644 



.al Index 

sequence structure, 134 
Serial Wire, 676 
servo motor, 415 
set a bit, 87 
shift 

arithmetic shift right, 67, 79 
logical shift left, 78 
logical shift right, 79 

shift and rotate, 78 
SHP, 250 
sign and magnitude, 33 
sign and zero extension, 90 
sign extension, 216, 490 
Signaling NaN, 284 
signed division, 48, 79 
signed greater or equal, 112 
signed greater than, 112 
signed integer, 31 
signed less than, 112 
signed less than or equal, 112 
signed long multiply-accumulate, 67 
signed saturate, 80, 83 
SIMD, 618, 621, 622, 623, 625, 659 

add, 624 
byte selection, 649 
GE flags, 648 
parallel 16-bit add, 627 
parallel 16-bit subtract, 627 
parallel 8-bit add, 623 
parallel 8-bit subtract, 623 
saturating add, 626 
saturating subtract, 626 
signed extension, 647 
subtract, 623 
unsigned extension, 647 

sine table, 512 
single precision, 281 
single-ended signal, 580 
single-ended signaling, 531 
sinusoidal, 520 
slave select line, 568 
Sleep-on-Exit, 467 
slew rate, 350 
S a , 284 
SOF, 583 
softfp, 666 
software trigger, 493 
software trigger interrupt register, 246 

SPACE, 71 
SPI, 568 

clock configuration, 571 
clock mode, 571 
clock phase, 571 
clock polarity, 571 
FIFO, 577 
gyro, 572 
MISO, 568 
MOSI, 568 
SCLK, 568 

SSA T, 68, 75, 80, 83 
stack, 7, 8, 9, 13, 61, 68, 162, 163, 164, 166, 167, 168, 

169, 173, 178, 190, 191, 194, 215, 228, 229, 244, 
254, 267, 268, 322, 600, 602, 604, 605, 606, 608, 
610, 611, 612, 613, 614, 615 
ascending stack, 164 
descending stack, 164 
empty stack, 164 
full stack, 164 

stack frame pointer, 610 
stack-based instruction set, 61, 62 
start-of-frame, 583 
static variable, 222 
statically-allocated, 4 
step angle, 417 
stepper motor, 415 

full stepping, 419 
half stepping, 421 
micro-stepping, 423 
wave stepping, 419 

stepwise refinement, 135 
STIR, 246 
STM 

STMDA, 106, 165 
STMDB, 68, 106, 108, 165, 166, 614 
STMIA, 106, 108, 165 
STMIB, 106, 165 

store 
store lower byte, 104 
store lower halfword, 104 
store multiple words, 104 
store register byte, 217 
store register halfword, 217 
store word, 104 

strcat, 179, 197, 198, 234 
strcmp, 180 
string 







CPSlA information can be obtained 

• 

at www JCGtesting.com 
Printed in the USA 
B VHW062 I 29290120 
570846BV00006B/ I 05 

11 1111 11111 11111 1111 1111 11 
9 780982 692660 






	Ch1: See a Program Running
	Ch2: Data Representation
	Ch3: ARM Instruction Set Architecture
	Ch4: Arithmetic and Logic
	Ch5: Load and Store
	Ch6: Branch and Conditional Execution
	Ch7: Structured Programming
	Ch8: Subroutines
	Ch9: 64-bit Data Processing
	Ch10: Mixing C and Assembly
	Ch11: Interrupts
	Ch12: Fixed-point and Floating-point Arithmetic
	Ch13: Instruction Encoding and Decoding
	Ch14: General Purpose I/O (GPIO)
	Ch15: General-purpose Timers
	Ch16: Stepper Motor Control
	Ch17: Liquid-crystal Display (LCD)
	Ch18: Real-time Clock (RTC)
	Ch19: Direct Memory Access (DMA)
	Ch20: Analog-to-Digital Converter (ADC)
	Ch21: Digital-to-Analog Converter (DAC)
	Ch22: Serial Communication Protocols
	Ch23: Multitasking
	Ch24: Digital Signal Processing (DSP)
	Appendix A: GNU Compiler
	Appendix B: Cortex-M3/M4 Instructions
	Appendix C: Floating-point Instructions (Optional on Cortex-M4 and Cortex-M7
	Appendix D: DSP Instructions on Cortex-M4 and Cortex-M7
	Appendix E: Cortex-M0/M0+/M1 Instructions
	Appendix F: Cortex-M3 16-bit Thumb-2 Instruction Encoding
	Appendix G: Cortex-M3 32-bit Thumb-2 Instruction Encoding
	Appendix H: HID Codes of a Keyboard
	Appendix I: GPIO Alternate Functions (STM32L4)
	Bibliography
	Index

