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PREFACE TO THE SIXTH EDITION

The sixth edition contains six new chapters on important topics related to improv-
ing missile guidance system performance and understanding key design concepts
and tradeoffs. In addition, at the request of many readers, all of the FORTRAN
source code that appeared in the first five editions of Tactical and Strategic
Missile Guidance has been converted to MATLAB. Interested readers can
obtain all MATLAB source code—and the equivalent FORTRAN versions—in
electronic form on the AIAA Web site as mentioned at the back of this book
on the Supporting Materials page.

The first new chapter, Chapter 29, presents two new applications of the
method of adjoints for mixed continuous-discrete systems. The first application
involves multiple samplers with each of the samplers operating at a different
sampling rate. The second application involves taking the adjoint of a three-
state discrete Kalman filter in the homing loop.

The second new chapter, Chapter 30, introduces a new guidance law that can
be used to shape the interceptor trajectory against a stationary target. The unique
advantage of this new guidance approach over existing guidance laws is that time-
to-go information is not required. The second part of this chapter considers both
the problem of finding the minimum achievable miss distance of a radar homing
missile and exploring practical techniques that can be used to achieve the
minimum possible miss.

The third new chapter, Chapter 31, introduces the differential game guidance
law with bounded controls and demonstrates its performance improvements over
conventional guidance laws under challenging conditions in which the missile-to-
target acceleration advantage is very low.

The fourth new chapter, Chapter 32, introduces techniques for graphically
presenting strategic information on successful intercepts of an impulsive ballistic
target being pursued by an impulsive interceptor. The three graphical techniques
discussed are the operational area method, the launch area denied method, and
the defended area method. Examples are presented illustrating the utility of
each method.

The fifth new chapter, Chapter 33, examines two filtering options for the boost
phase intercept of a strategic target. The two filters compared are a template-based
Kalman filter that has perfect a priori information and a linear three-state poly-
nomial Kalman filter that does not require such information. The filters are com-
pared under both ideal and realistic conditions. The results of this chapter may
surprise some readers.

Finally, the sixth new chapter, Chapter 34, addresses some of the guidance and
control issues involved in enabling an air-launched interceptor carrying a highly
maneuverable kinetic kill vehicle to perform an exoatmospheric intercept of a
boosting threat target that is capable of traveling many thousands of kilometers.
This chapter takes the reader through the first iteration of the multi-iteration
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design process in order to show how much divert and acceleration may be
required by the kinetic kill vehicle so that it can hit the target. Simplified examples
are presented to indicate how conventional guidance and filtering techniques can
be used as a starting point in the iterative design process for this important
problem in missile defense.

These six new chapters are based on material from the AIAA continuing edu-
cation short course “Fundamentals of Tactical and Strategic Missile Guidance”
that I have been teaching since 1990. The new topics are treated from both an
analytical and a simulation point of view so that readers with different back-
grounds and learning styles can benefit from the new material.

Readers of previous editions of Tactical and Strategic Missile Guidance will
notice that even though the sixth edition has six new chapters, the book is
approximately the same size as the fifth edition. This was achieved by deleting
fifth edition Chapters 10 and 27; half of Chapters 16, and 29, and Appendix A;
and all of Appendices B–E. In addition, Chapter 20 has been rewritten in response
to questions by readers. Although the material has been deleted from the sixth
edition, interested readers can find the fifth edition chapters and appendices in
PDF format on AIAA’s Web site.

On a personal note, it continues to be very gratifying for me to learn that many
people working with or needing to learn about missile guidance have found Tac-
tical and Strategic Missile Guidance useful. Over the years, many readers have con-
tacted me and have asked questions when the book’s material was not clear to
them. Material in the existing chapters has been clarified so that all will benefit
from my interaction with the readers. It is still my hope that this sixth edition
will be of value not only to new readers, but will also be worthwhile to those
who have read previous editions.

Paul Zarchan
MIT Lincoln Laboratory
February 2012
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CHAPTER 1

Numerical Techniques

INTRODUCTION

The numerical techniques introduced in this chapter involve the use of Laplace
transforms for manipulating and displaying differential equations and numerical
integration for solving the differential equations. These techniques form the basis
of all of the numerical methods used throughout the text. A numerical example
will be presented that will illustrate a practical application of the use of Laplace
transforms and numerical integration. Another example will be presented
showing how z transforms can be used to both represent difference equations
and get their solution.

LAPLACE TRANSFORMS AND DIFFERENTIAL EQUATIONS

Transform methods are often useful because certain operations in one domain are
different and often simpler than operations in the other domain. For example,
ordinary differential equations in the time domain become algebraic expressions
in the s domain after being Laplace transformed. In control system engineering,
Laplace transforms are used both as a shorthand notation and as a method for
solving linear differential equations. In this text we will frequently use Laplace
transform notation to represent subsystem dynamics in tactical missile guidance
systems.

If we define F(s) as the Laplace transform of f (t), then the Laplace transform
has the following definition:

FðsÞ ¼
ð1
0

fðtÞe�st dt

With this definition it is easy to show that a summation in the time domain is also
a summation in the Laplace transform or frequency domain. For example, if f1(t)
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and f2(t) have Laplace transforms F1(s) and F2(s), respectively, then

L½ f1ðtÞ+ f2ðtÞ� ¼ F1ðsÞ+ F2ðsÞ
Again, using the definition of the Laplace transform, it is easy to show that differ-
entiation in the time domain is equivalent to frequency multiplication in the
Laplace transform domain, or

L dfðtÞ
dt

� �
¼ sFðsÞ � fð0Þ

where f(0) is the initial condition on f (t). The Laplace transform of the nth deriva-
tive of a function is given by

L dnfðtÞ
dtn

� �
¼ snFðsÞ � sn�1fð0Þ � sn�2 dfð0Þ

dt
� � � �

From the preceding equation we can see that, for zero initial conditions, the nth
derivative in the time domain is equivalent to a multiplication by sn in the Laplace
transform domain.

Laplace transforms can also be used to convert the input-output relationship
of a differential equation to a shorthand notation called a transfer function rep-
resentation. For example, given the second-order equation

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ 4yðtÞ ¼ xðtÞ

with zero initial conditions, or

dyð0Þ
dt

¼ 0; yð0Þ ¼ 0

we can find the same differential equation in the Laplace transform domain to be

s2YðsÞ þ 2sYðsÞ þ 4YðsÞ ¼ XðsÞ
Combining like terms in the preceding equation to get a fractional relationship
between the output and input, known as a transfer function, yields

YðsÞ
XðsÞ ¼

1
s2 þ 2sþ 4

Similarly, given a transfer function, we can go back to the differential equation
form. Consider the second-order transfer function

YðsÞ
XðsÞ ¼

1þ 2s
1þ 2sþ s2
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Weknow that, according to the chain rule, the transfer function can be expressed as

YðsÞ
XðsÞ ¼

EðsÞ
XðsÞ

YðsÞ
EðsÞ

Therefore, we can break the relationship into the following two equivalent transfer
functions:

EðsÞ
XðsÞ ¼

1
1þ 2sþ s2

;
YðsÞ
EðsÞ ¼ 1þ 2s

Cross multiplication results in

s2EðsÞ þ 2sEðsÞ þ EðsÞ ¼ XðsÞ
and

2sEðsÞ þ EðsÞ ¼ YðsÞ
Converting the first equation to the time domain yields the second-order differen-
tial equation

d2eðtÞ
dt2

þ 2
deðtÞ
dt

þ eðtÞ ¼ xðtÞ

and converting the second equation yields the output relationship

yðtÞ ¼ 2
deðtÞ
dt

þ eðtÞ

The implication from the transfer function notation is that the initial conditions on
the second-order differential equation are zero, or

deð0Þ
dt

¼ 0; eð0Þ ¼ 0

Often we will use Laplace transform notation and, for shorthand, drop the
functional dependence on s in the notation [that is, F is equivalent to F(s)]. Simi-
larly, when we are in the time domain, the functional dependence on t will often
be dropped [that is, f is equivalent to f (t)]. In addition, block diagrams and
program listings will frequently use the overdot notation to represent time deriva-
tives. With this notation, each overdot represents a derivative. For example,

_y ¼ dy
dt

; €y ¼ d2y
dt2

; €_y ¼ d3y
dt3

; etc:

Therefore, converting

d2eðtÞ
dt2

þ 2
deðtÞ
dt

þ eðtÞ ¼ xðtÞ

NUMERICAL TECHNIQUES 3



to the overdot notation yields

€eþ 2_eþ e ¼ x

Occasionally, we shall either convert time functions to Laplace transforms or
vice versa, by inspection. Some common transfer functions [1], along with their
time domain equivalents, appear in Table 1.1. A more extensive listing of
inverse Laplace transforms can be found in [1].

NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS

Throughout this text we will be simulating both linear and nonlinear ordinary
differential equations. Because, in general, these equations have no closed-form
solutions, it will be necessary to resort to numerical integration techniques to
solve or simulate these equations. Many numerical integration techniques [2]
exist for solving differential equations. However, we shall use the second-order
Runge–Kutta technique throughout the text because it is simple to understand,
easy to program, and, most importantly, yields accurate answers for all of the
examples presented in this text.

The second-order Runge–Kutta numerical integration procedure is easy to
state. Given a first-order differential equation of the form

_x ¼ fðx; tÞ

TABLE 1.1 COMMON INVERSE LAPLACE TRANSFORMS

F(s) f (t)

K
s

K

K
sn
(n ¼ 1, 2, . . . )

Ktn�1

(n� 1)!

K
(s� a)n

(n ¼ 1, 2, . . . )
Ktn�1eat

(n� 1)!

K
s2 þ a2

K sin (at)
a

Ks
s2 þ a2

K cos (at)

K

(s� a)2 þ b2
Keat sin (bt)

b

K(s� a)

(s� a)2 þ b2
Keat cos (bt)
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where t is time, we seek to find a recursive relationship for x as a function of time.
With the second-order Runge–Kutta numerical technique, the value of x at the
next integration interval h is given by

xKþ1 ¼ xK þ hfðx; tÞ
2

þ hfðx; t þ hÞ
2

where the subscript K represents the last interval and K + 1 represents the new
interval. From the preceding expression we can see that the new value of x is
simply the old value of x plus a term proportional to the derivative evaluated at
time t and another term with the derivative evaluated at time t + h.

The integration step size hmust be small enough to yield answers of sufficient
accuracy. A simple test, commonly practiced among engineers, is to find the
appropriate integration step size by experiment. As a rule of thumb, the initial
step size is chosen to be several times smaller than the smallest time constant
in the system under consideration. The step size is then halved to see if the
answers change significantly. If the new answers are approximately the same,
the larger integration step size is used to avoid excessive computer running
time. If the answers change substantially, then the integration interval is again
halved and the process is repeated.

To see how the Runge–Kutta technique can be applied to a practical example,
let us consider the problem of finding the step response of one of the second-order
networks from Table 1.1. Consider the sinusoidal transfer function

Y
X
¼ v

s2 þ v2

where x is the input, Y the output, v the natural frequency of the second-order
network, and s the Laplace transformation notation for a derivative. Cross multi-
plying the numerator and denominator of the transfer function and solving for the
highest derivative, as was shown in the previous section, yields the following
second-order differential equation:

€y ¼ vx � v2y

where the double overdot represents two differentiations. This second-order
differential equation can be represented in block diagram form as shown in
Fig. 1.1. In this diagram each 1/s represents an integration. The outputs of each
integrator are sometimes called states and are y and y dot respectively.

If x is a step input in Fig. 1.1, we can find the response y exactly using Laplace
transform techniques. Recall from Table 1.1 that 1/s represents a step function in
the Laplace transform domain. Therefore we can express the output y in the
Laplace transform domain as

YðsÞ ¼ v

sðs2 þ v2Þ
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Expanding the preceding expression using partial fraction expansion yields

YðsÞ ¼ 1
v

1
s
� s
s2 þ v2

� �
The inverse Laplace transform of Y(s) produces y in the time domain or y(t). The
output can be found by using Table 1.1 obtaining

y ¼ 1
v
ð1� cosvtÞ

To check the preceding theoretical closed-form solution for y, a simulation
involving numerical integration was written based on the system of Fig. 1.1. A
simulation of the second-order system, using the second-order Runge–Kutta
integration techniques, appears in Listing 1.1. We can see from the listing that
the second-order differential equation, or derivative information, appears just
before the FLAG=1 statement. We come to this code twice during the integration
interval: once to evaluate the derivative at time t and once to evaluate the deriva-
tive at time t + h. We can also see from Listing 1.1 that every 0.01 s we print out
the output along with the closed-form solution. In this particular example the
natural frequency v of the second-order system is 20 rad/s.

We can see from Listing 1.1 that the integration step size h is 0.001 s. Because
the simulation time is 1 s, the ratio of the simulation time to the step size is
1000. This means that 2000 passes are made to the differential equations. The
resultant system transient response, due to a step input (x ¼ 1), is shown in
Fig. 1.2. We can see that the simulation output agrees exactly with the closed-form
solution.

LISTING 1.1 SIMULATION OF SECOND-ORDER SYSTEM

T=0.;
S=0.;
Y=0.;
YD=0.;
X=1.;

Fig. 1.1 Block diagram representation of second-order system.
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H=.001;
n=0.;
while T ,=(1.-1e-5)
YOLD=Y;
YDOLD=YD;
STEP=1;
FLAG=0;
while STEP ,=1
if FLAG==1
STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
T=T+H;

end
YDD=W*X-W*W*Y;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
S=S+H;
if S .=.000999
S=0.;
n=n+1;
ArrayT(n)=T;

Fig. 1.2 Numerically integrating differential equations yields same results as
closed-form solution.
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ArrayY(n)=Y;
end

end
figure
plot(ArrayT,ArrayY),grid
xlabel(’Time (Sec)’)
ylabel(’y’)
clc
output=[ArrayT’,ArrayY’];
save datfil output -ascii
disp ’simulation finished’

Z TRANSFORMS AND DIFFERENCE EQUATIONS

We have already shown that Laplace transforms are a useful way of representing
differential equations. In this text we shall also want to simulate difference
equations. Z transforms can also be used as an engineering shorthand for repre-
senting the difference equations. Later in this section we will also show how Z
transforms can be used to solve difference equations and sometimes check simu-
lation results [3].

If we define F(z) as the Z transform of f (n), then the Z transform has the fol-
lowing definition:

FðzÞ ¼
X1
n¼0

fðnÞz�n

With this definition it is easy to show that a summation in the time or n domain is
also a summation in the Z transform domain. For example, if f1(n) and f2(n) have
Z transforms F1(z) and F2(z), respectively, then

Z½ f1ðnÞ+ f2ðnÞ� ¼ F1ðzÞ+ F2ðzÞ
One can show that the Z transform of a signal at time n + 1 is a multiplication of
the function in the Z transform domain by z. The Z transform of the signal at time
n according to

Zð fnþ1Þ ¼ zFðzÞ � zfð0Þ
where f(0) is an initial condition. Often we will be working with systems having
zero initial conditions.

A list of some common Z transforms can be found in Table 1.2. From the table
we can see that there is a relationship between the sampling time Ts and time t
given by

t ¼ nTs
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To illustrate how Z transforms can be used to solve difference equations, let us
consider a numerical example involving the fading memory filters we will be
working with in Chapter 7. The simplest fading memory filter can be expressed
as the difference equation

ynþ1 ¼ yn þ Gðxnþ1 � ynÞ
where y is the filter estimate or output, x the filter input or measurement, and G
the filter gain. For the first-order fading memory filter, the filter gain is a designer
chosen number between zero and unity. We can find the filter response to a step
input (that is, xnþ1 ¼ 1) by observing from Table 1.2 that the Z transform of a unit
step function or constant is given by

Zð1Þ ¼ z=ðz � 1Þ
Therefore taking the Z transform of both sides of the difference equation yields

zY ¼ Y þ G
z

z � 1
� Y

� �
If we bring all the terms in Y to the left-hand side of the equation, we get

Yðz � 1þ GÞ ¼ Gz=ðz � 1Þ
Solving for Y produces

y ¼ Gz
ðz � 1Þðz � aÞ

where

a ¼ 1� G

Using a partial fraction expansion on the solution for Y yields

G
ðz � 1Þðz � aÞ ¼

G
1� a

1
z � 1

� 1
z � a

� �

TABLE 1.2 Z TRANSFORMS OF COMMON FUNCTIONS

Function Z transform

d(n) 1

1 z/(z – 1)

an z/(z – a)

n z/(z – 1)2

sin vnTs z sin vTs/(z
2 – 2z cos vTs þ 1)
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Therefore by multiplying both sides of the preceding equation by z, we obtain

G
ðz � 1Þðz � aÞ ¼

G
1� a

z
z � 1

� z
z � a

h i
Using Table 1.2 to find the inverse Z transform of the preceding expression yields

yn ¼ G
1� a

ð1� anÞ

Substitution of the value of a in the preceding expression yields the closed-form
solution for y as

yn ¼ 1� ð1� GÞn

LISTING 1.2 DIFFERENCE EQUATION SIMULATION

G=.5;
X=1.;
TS=.1;
Y=0.;
T=0.;
N=0;
count=0;
YTHEORY=1.-(1.-G)^N;
for N=1:20
Y=Y+G*(X-Y);
T=N*TS;
YTHEORY=1.-(1.-G)^N;
count=count+1;
ArrayT(count)=T;
ArrayY(count)=Y;
ArrayYTHEORY(count)=YTHEORY;

end;
figure
plot(ArrayT,ArrayY,ArrayT,ArrayYTHEORY),grid
title(’Output’)
xlabel(’T (S)’)
ylabel(’Y’)
clc
output=[ArrayT’,ArrayY’,ArrayYTHEORY’];
save datfil output -ascii
disp ’simulation finished’

We now have an exact expression for the filter output as a function of the
number of measurements n. To test the accuracy of the preceding closed-form
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solution for y, a simulation of the original difference equation was written and
appears in Listing 1.2. We can see from the listing that unlike the previous simu-
lation, numerical integration is not required. In this simulation we are simply
solving the difference equation at each iteration of the “for loop” to get a new
value for y. As we can see from the listing, the simulation solves the difference
equation 20 times. The closed-form solution for y is also calculated at each iter-
ation in order to check the validity of the simulation.

We can see from Fig. 1.3 that the filter output eventually matches the filter
input. The amount of time it takes the filter output to reach 63% of its steady-state
value is the filter time constant. Varying the filter gain G will change the time con-
stant of the fading memory filter. We can also see from Fig. 1.3 that the simulation
results agree with the closed-form solution.
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Fig. 1.3 Difference equation simulations results agree with closed-form solution.
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CHAPTER 2

Fundamentals of Tactical Missile
Guidance

INTRODUCTION

TACTICAL guided missiles apparently had their origin in Germany. For example,
the Hs. 298 was one of a series of German air-to-air guided missiles developed by
the Henschel Company during World War II [1]. A high-thrust first stage accel-
erated the missile from the carrier aircraft, whereas a low-thrust, long-burning
sustainer maintained the vehicle’s velocity. The Hs. 298, which was radio-
controlled from the parent aircraft, was to be released either slightly above or
below the target. Apparently the height differential made it easier to aim and
guide the missile. This first air-to-air missile weighed 265 lb and had a range of
nearly 3 miles. On December 22, 1944, three missiles were test flown from a JU
88G aircraft. All three tests resulted in failure. Although 100 of these air-to-air
missiles were manufactured, none was used in combat.

The Rheintochter (R-1) was a surface-to-air missile also developed in
Germany during World War II [1]. This unusual looking two-stage radio-
controlled missile weighed nearly 4000 lb and had three sets of plywood fins:
one for the booster and two for the sustainer. Eighty-two of these missiles flew
before production was halted in December 1944. The missile was ineffective
because Allied bombers, which were the R-1’s intended target, flew above the
range (about 20,000 ft) of this surface-to-air missile.

Although proportional navigation was apparently known by the Germans
during World War II at Peenemünde, no applications on the Hs. 298 or R-1 mis-
siles using proportional navigation were reported [2]. The Lark missile, which
had its first successful test in December 1950, was the first missile to use pro-
portional navigation. Since that time proportional navigation guidance has been
used in virtually all of the world’s tactical radar, infrared (IR), and television
(TV) guided missiles [3]. The popularity of this interceptor guidance law is
based upon its simplicity, effectiveness, and ease of implementation. Apparently,
proportional navigation was first studied by C. Yuan and others at the RCA
Laboratories during World War II under the auspices of the U.S. Navy [4].
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The guidance law was conceived from physical reasoning and equipment available
at that time. Proportional navigation was extensively studied at Hughes Aircraft
Company [5] and implemented in a tactical missile using a pulsed radar
system. Finally, proportional navigation was more fully developed at Raytheon
and implemented in a tactical continuous wave radar homing missile [6]. After
World War II, the U.S. work on proportional navigation was declassified and
first appeared in the Journal of Applied Physics [7]. Mathematical derivations of
the "optimality" of proportional navigation came more than 20 years later [8].

Keeping with the spirit of the origins of proportional navigation, we shall
avoid mathematical proofs in this chapter on deriving the guidance law, but
shall, instead, concentrate first on proving to the reader that the guidance tech-
nique works. Next we shall investigate some properties of the guidance law that
we shall both observe and derive. Finally, we shall show how this classical gui-
dance law provides the foundation for more advanced techniques of interceptor
guidance.

WHAT IS PROPORTIONAL NAVIGATION?

Theoretically, the proportional navigation guidance law issues acceleration com-
mands, perpendicular to the instantaneous missile-target line-of-sight, which are
proportional to the line-of-sight rate and closing velocity. Mathematically, the
guidance law can be stated as

nc ¼ N 0Vc _l

where nc is the acceleration command (in ft/s2), N0 a unitless designer-chosen
gain (usually in the range of 3–5) known as the effective navigation ratio, Vc

the missile-target closing velocity (in ft/s), and l the line-of-sight angle (in
rad). The overdot indicates the time derivative of the line-of-sight angle or the
line-of-sight rate.

In tactical radar homing missiles using proportional navigation guidance, the
seeker provides an effective measurement of the line-of-sight rate, and a Doppler
radar provides closing velocity information. In tactical IR missile applications of
proportional navigation guidance, the line-of-sight rate is measured, whereas the
closing velocity, required by the guidance law, is “guesstimated.”

In tactical endoatmospheric missiles, proportional navigation guidance com-
mands are usually implemented by moving fins or other control surfaces to obtain
the required lift. Exoatmospheric strategic interceptors use thrust vector control,
lateral divert engines, or squibs to achieve the desired acceleration levels.

SIMULATION OF PROPORTIONAL NAVIGATION IN TWO DIMENSIONS

To better understand how proportional navigation works, let us consider the two-
dimensional, point mass missile-target engagement geometry of Fig. 2.1. Here we
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have an inertial coordinate system fixed to the surface of a flat-Earth model (that
is, the 1 axis is downrange and the 2 axis can either be altitude or crossrange).
Using the inertial coordinate system of Fig. 2.1 means that we can integrate com-
ponents of the accelerations and velocities along the 1 and 2 directions without
having to worry about additional terms due to the Coriolis effect. In this model
it is assumed that both the missile and target travel at constant velocity. In
addition, gravitational and drag effects have been neglected for simplicity.

We can see from the figure that the missile, with velocity magnitude VM, is
heading at an angle of L + HE with respect to the line of sight. The angle L is
known as the missile lead angle. The lead angle is the theoretically correct angle
for the missile to be on a collision triangle with the target. In other words, if
the missile is on a collision triangle, no further acceleration commands are
required for the missile to hit the target. The angle HE is known as the heading
error. This angle represents the initial deviation of the missile from the collision
triangle.

In Fig. 2.1 the imaginary line connecting the missile and target is known as the
line of sight. The line of sight makes an angle of l with respect to the fixed refer-
ence, and the length of the line of sight (instantaneous separation between missile
and target) is a range denoted RTM. From a guidance point of view, we desire to
make the range between missile and target at the expected intercept time as small
as possible (hopefully zero). The point of closest approach of the missile and target
is known as the miss distance.

The closing velocity Vc is defined as the negative rate of change of the distance
from the missile to the target, or

Vc ¼ � _RTM

Therefore, at the end of the engagement, when the missile and target are in closest
proximity, the sign of Vc will change. In other words, from calculus we know that

Fig. 2.1 Two-dimensional missile-target engagement geometry.

FUNDAMENTALS OF TACTICAL MISSILE GUIDANCE 15



the closing velocity will be zero when RTM is a minimum (that is, the function is
either minimum or maximum when its derivative is zero). The desired accelera-
tion command nc, which is derived from the proportional navigation guidance
law, is perpendicular to the instantaneous line of sight.

In our engagement model of Fig. 2.1, the target can maneuver evasively with
acceleration magnitude nT . Since target acceleration nT in the preceding model is
perpendicular to the target velocity vector, the angular velocity of the target can be
expressed as

_b ¼ nT
VT

where VT is the magnitude of the target velocity. The components of the target
velocity vector in the Earth or inertial coordinate system can be found by integrat-
ing the differential equation given earlier for the flight-path angle of the target b
and substituting in

VT1 ¼ �VT cosb

VT2 ¼ VT sinb

Target position components in the Earth fixed coordinate system can be found
by directly integrating the target velocity components. Therefore, the differential
equations for the components of the target position are given by

_RT1 ¼ VT1

_RT2 ¼ VT2

Similarly, the missile velocity and position differential equations are given by

_VM1 ¼ aM1

_VM2 ¼ aM2

_RM1 ¼ VM1

_RM2 ¼ VM2

where aM1 and aM2 are the missile acceleration components in the Earth coordi-
nate system. To find the missile acceleration components, we must first find the
components of the relative missile-target separation. This is accomplished by
first defining the components of the relative missile-target separations by

RTM1 ¼ RT1 � RM1

RTM2 ¼ RT2 � RM2
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We can see from Fig. 2.1 that the line-of-sight angle can be found, using
trigonometry, in terms of the relative separation components as

l ¼ tan�1 RTM2

RTM1

If we define the relative velocity components in Earth coordinates to be

VTM1 ¼ VT1 � VM1

VTM2 ¼ VT2 � VM2

we can calculate the line-of-sight rate by direct differentiation of the expression
for line-of-sight angle. After some algebra we obtain the expression for the
line-of-sight rate to be

_l ¼ RTM1VTM2 � RTM2VTM1

R2
TM

The relative separation between missile and target RTM can be expressed in
terms of its inertial components by application of the distance formula, as

RTM ¼ R2
TM1 þ R2

TM2

� �1
2

Because the closing velocity is defined as the negative rate of change of the
missile target separation, it can be obtained by differentiating the preceding
equation, yielding

Vc ¼ � _RTM ¼ �ðRTM1VTM1 þ RTM2VTM2Þ
RTM

The magnitude of the missile guidance command nc can then be found from
the definition of proportional navigation, or

nc ¼ N 0Vc _l

Because the acceleration command is perpendicular to the instantaneous line
of sight, the missile acceleration components in Earth coordinates can be found by
trigonometry using the angular definitions from Fig. 2.1. The missile acceleration
components are

aM1 ¼ �nc sin l

aM2 ¼ nc cos l

We have now listed all of the differential equations required to model a com-
plete missile-target engagement in two dimensions. However, some additional
equations are required for the initial conditions on the differential equations in
order to complete the engagement model.
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Amissile employing proportional navigation guidance is not fired at the target
but is fired in a direction to lead the target. The initial angle of the missile velocity
vector with respect to the line of sight is known as the missile lead angle L. In
essence we are firing the missile at the expected intercept point. We can see
from Fig. 2.1 that, for the missile to be on a collision triangle (missile will hit
the target if both continue to fly along a straight-line path at constant velocities),
the theoretical missile lead angle can be found by application of the law of sines,
yielding

L ¼ sin�1 VT sinðbþ lÞ
VM

In practice, the missile is usually not launched exactly on a collision triangle, as
the expected intercept point is not known precisely. The location of the intercept
point can only be approximated because we do not know in advance what the
target will do in the future. In fact, that is why a guidance system is required!
Any initial angular deviation of the missile from the collision triangle is known
as a heading error HE. The initial missile velocity components can therefore be
expressed in terms of the theoretical lead angle L and actual heading error HE as

VM1ð0Þ ¼ VM cosðLþ HE þ lÞ
VM2ð0Þ ¼ VM sinðLþ HE þ lÞ

TWO-DIMENSIONAL ENGAGEMENT SIMULATION

To witness and understand the effectiveness of proportional navigation, it is best
to simulate the guidance law and test its properties under a variety of circum-
stances. A two-dimensional missile-target engagement simulation was set up
using the differential equations derived in the previous section. The simulation
inputs are the initial location of the missile and target, speeds, flight time, and
effective navigation ratio. The user can vary the level of the two error sources con-
sidered: target maneuver and heading error.

LISTING 2.1 TWO-DIMENSIONAL TACTICAL MISSILE-TARGET ENGAGEMENT SIMULATION

n=0;
VM = 3000.;
VT = 1000.;
XNT = 0.;
HEDEG = -20.;
XNP = 4.;
RM1 = 0.;
RM2 = 10000.;
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RT1 = 40000.;
RT2 = 10000.;
BETA=0.;
VT1=-VT*cos(BETA);
VT2=VT*sin(BETA);
HE=HEDEG/57.3;
T=0.;
S=0.;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1*RTM1+RTM2*RTM2);
XLAM=atan2(RTM2,RTM1);
XLEAD=asin(VT*sin(BETA+XLAM)/VM);
THET=XLAM+XLEAD;
VM1=VM*cos(THET+HE);
VM2=VM*sin(THET+HE);
VTM1 = VT1 - VM1;
VTM2 = VT2 - VM2;
VC=-(RTM1*VTM1 + RTM2*VTM2)/RTM;
while VC .= 0

if RTM , 1000
H=.0002;

else
H=.01;

end
BETAOLD=BETA;
RT1OLD=RT1;
RT2OLD=RT2;
RM1OLD=RM1;
RM2OLD=RM2;
VM1OLD=VM1;
VM2OLD=VM2;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;

BETA=BETA+H*BETAD;
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
T=T+H;

end
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RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1*RTM1+RTM2*RTM2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
XLAM=atan2(RTM2,RTM1);
XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
XNC=XNP*VC*XLAMD;
AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
VT1=-VT*cos(BETA);
VT2=VT*sin(BETA);
BETAD=XNT/VT;

FLAG=1;
end
FLAG=0;
BETA=.5*(BETAOLD+BETA+H*BETAD);
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
S=S+H;
if S . =.09999

S=0.;
n=n+1;
ArrayT(n)=T;
ArrayRT1(n)=RT1;
ArrayRT2(n)=RT2;
ArrayRM1(n)=RM1;
ArrayRM2(n)=RM2;
ArrayXNCG(n)=XNC/32.2;
ArrayRTM(n)=RTM;

end
end
RTM
figure
plot(ArrayRT1,ArrayRT2,ArrayRM1,ArrayRM2),grid
title(’Two-dimensional tactical missile-target engagement simulation’)
xlabel(’Downrange (Ft) ’)
ylabel(’Altitude (Ft)’)
figure
plot(ArrayT,ArrayXNCG),grid
title(’Two-dimensional tactical missile-target engagement simulation’)
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xlabel(’Time (sec)’)
ylabel(’Acceleration of missle (G)’)
clc
output=[ArrayT’,ArrayRT1’,ArrayRT2’,ArrayRM1’,ArrayRM2’,ArrayXNCG’,ArrayRTM’ ];
save datfil.txt output /ascii
disp ’*** Simulation Complete’

A tactical missile-target engagement simulation appears in Listing 2.1. We can
see from the listing that the missile and target differential equations are solved
using the second-order Runge–Kutta numerical integration technique. As was
the case in the second-order system simulation of Chapter 1, the differential
equations appear before the FLAG=1 statement. The integration step size is fixed
for most of the flight (H ¼ 0.01 s) but is made smaller near the end of the
flight (H ¼ 0.0002 s when RTM ,1000 ft) to accurately capture the magnitude
of the miss distance. The program is terminated when the closing velocity
changes sign, because this means that the separation between the missile and
target is a minimum. At this time the missile-target separation is the miss distance:
We can see from the preceding equations that the miss distance will always be
positive because it is calculated from the distance formula. We can see from the
listing that errors can be introduced by changing values in the data statements.
Status of the missile and target location, along with acceleration and separation
information, is displayed every 0.1s. Note that the missile acceleration is
written to a file datfil.txt in units of gravity.

A sample case was run in which the only disturbance was a 20-deg heading
error (HEDEG = –20.). Sample trajectories for effective navigation ratios of 4 and
5 are depicted in Fig. 2.2. We can see from the figure that initially the missile is
flying in the wrong direction because of the heading error. Gradually the guidance

Fig. 2.2 Increasing effective navigation ratio causes heading error to be removed
more rapidly.
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law forces the missile to home on the target. The larger effective navigation ratio
enables the missile to remove the initial heading error more rapidly, thus causing a
much tighter trajectory. In both cases, proportional navigation appears to be an
effective guidance law because the missile hits the target (near zero miss distance
with the simulation).

The resultant missile acceleration histories, displayed in Fig. 2.3, for both cases
are somewhat different. The quicker removal of heading error in the higher effec-
tive navigation ratio case (N 0 ¼ 5) results in larger missile accelerations at the
beginning of the flight and lower accelerations near the end of the flight. In
both cases the acceleration profiles for the required missile acceleration to take
out the heading error and to hit the target is monotonically decreasing and zero
at the end of the flight. Thus, a property of a proportional navigation guidance
system is to start taking out heading error as soon as possible but also gradually
throughout the entire flight. In Chapter 15 we shall study a guidance system
that tries to remove the entire heading error immediately. By increasing the effec-
tive navigation ratio, we are allowing the missile to take out heading error
more rapidly.

Another sample case was run in which the only disturbance was a 3-g target
maneuver (XNT = 96.6, HEDEG = 0). In this scenario the missile and target are
initially on a collision triangle and flying along the downrange component of
the Earth fixed coordinate system (cross-range velocity components of both inter-
ceptor and target are zero). Therefore, the target velocity vector is initially along
the line of sight, and at first all 3 g of the target acceleration are perpendicular to
the line of sight. As the target maneuvers, the magnitude of the target acceleration
perpendicular to the line of sight diminishes due to the turning of the target.
Sample missile-target trajectories for this case with effective navigation ratios

Fig. 2.3 Increasing effective navigation ratio causes more acceleration initially.
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of 4 and 5 are depicted in Fig. 2.4. We can see that the higher effective naviga-
tion ratio causes the missile to lead the target slightly more than the lower naviga-
tion ratio case. Otherwise the trajectories are virtually identical. In both cases,
the proportional navigation guidance law enabled the missile to hit the maneuver-
ing target.

However, Fig. 2.5 shows that there are significant differences between the
acceleration profiles for the maneuvering target case. Although both acceleration
profiles are virtually monotonically increasing for the entire flight, the higher
effective navigation ratio requires less acceleration capability of the missile.

Fig. 2.4 Proportional navigation works against maneuvering target.

Fig. 2.5 Higher navigation ratio yields less acceleration to hit maneuvering target.
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In addition, we can see that the peak acceleration required by the missile to hit the
target is significantly higher than the maneuver level of the target (3 g).

In both simulation examples we have seen the effectiveness of proportional
navigation guidance. First we saw that proportional navigation is able to hit a
target, even if it is initially launched in the wrong direction by 20 deg. Then we
observed that the guidance law was also effective in hitting a maneuvering
target. In both cases certain acceleration levels were required of the missile in
order for it to hit the target. The levels were dependent on the type of error
source and the effective navigation ratio. If the missile does not have the accelera-
tion required by the guidance law, a miss will result.

LINEARIZATION

Thus far our understanding of the effectiveness of proportional navigation has
come from the numerical simulation results of the two-dimensional engagement
simulation. It is critical for the analysis, understanding, and development of
design relationships to temporarily depart from the nonlinear missile-target
simulation and develop a simpler model. Therefore, we will linearize the two-
dimensional engagement model in the hope of gaining more understanding.
This does not mean that we will abandon the nonlinear engagement model. In
fact, we will always use the nonlinear engagement model to verify the insights
generated by powerful analytical techniques to be used on the linearized
engagement model.

The linearization of the missile-target geometry can easily be accomplished if
we define some new relative quantities as shown in Fig. 2.6. Here y is the relative
separation between the missile and target perpendicular to the fixed reference.

The relative acceleration (difference between missile and target acceleration)
can be written by inspection of Fig. 2.6 as

€y ¼ nT cosb� nc cos l

If the flight-path angles are small (near head-on or tail chase case), the cosine
terms are approximately unity, and the preceding equation becomes

€y ¼ nT � nc

Similarly, the expression for the line-of-sight angle can also be linearized using
the small-angle approximation, yielding

l ¼ y=RTM

For a head-on case, we can approximate the closing velocity as

Vc ¼ VM þ VT

whereas in a tail chase case, the closing velocity can be approximated as

Vc ¼ VM � VT
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Therefore, in a linearized analysis we will treat the closing velocity as a positive
constant. Because closing velocity has also been previously defined as the negative
derivative of the range from the missile to target, and since the range must go to
zero at the end of the flight, we can also linearize the range equation with the time-
varying relationship

RTM ¼ VcðtF � tÞ
where t is current time and tF the total flight time of the engagement. Note that tF
is also now a constant. The quantity tF – t is the time to go until the end of the
flight. Therefore, the range from the missile to the target is also the closing velocity
multiplied by the time to go until intercept. Because range goes to zero at the end
of the flight by definition, we must reexamine the definition of miss distance. The
linearized miss distance is taken to be the relative separation between missile and
target y at the end of the flight, or

Miss ¼ yðtFÞ
Because the linearized miss is not obtained from the distance formula, it is only an
approximation to the actual miss. However, we shall soon see that the miss dis-
tance approximation is very accurate.

LINEARIZED ENGAGEMENT SIMULATION

In the previous section we developed linearized equations for the missile-target
engagement. In this section we will see if the resultant linearized equations give
performance projections that have trends similar to those of the nonlinear engage-
ment equations. If they do not, then there is no point in developing design
relationships based on a meaningless model. If they do, then there may be a
point for the interested reader to continue reading this text!

Fig. 2.6 Engagement model for linearization.
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The linearized proportional navigation engagement simulation appears in
Listing 2.2. In this simulation the flight time tF is an input rather than output.
We can see from the listing that the simulation only consists of two differential
equations: one for relative velocity and the other for relative acceleration. These
differential equations are also solved using the second-order Runge–Kutta
numerical integration technique. The linearized differential equations appear in
the listing before the FLAG=1 statement. Unlike the nonlinear engagement simu-
lation, the integration step size in the linear simulation can be kept fixed for the
entire flight (H = 0.01 s). The program is stopped when the current time equals
the flight time. Nominally the program is set up without errors. Errors can be
introduced by changing values in the data statements. The status of the relative
position and velocity, along with missile acceleration information, is displayed
every 0.1 s.

LISTING 2.2 LINEARIZED ENGAGEMENT SIMULATION

XNT=0.;
Y=0.;
VM=3000.;
HEDEG=-20.;
TF=10.;
XNP=4.;
YD=-VM*HEDEG/57.3;
T=0.;
H=.01;
S=0.;
n=0.;
while T,=(TF-1e-5)

YOLD=Y;
YDOLD=YD;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
T=T+H;

end
TGO=TF-T+.00001;
XLAMD=(Y+YD*TGO)/(VC*TGO*TGO);
XNC=XNP*VC*XLAMD;
YDD=XNT-XNC;
FLAG=1;

end

26 TACTICAL AND STRATEGIC MISSILE GUIDANCE



FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
S=S+H;
if S.=.0999
S=0.;
n=n+1;
ArrayT(n)=T;
ArrayY(n)=Y;
ArrayYD(n)=YD;
ArrayXNCG(n)=XNC/32.2;

end
end
figure
plot(ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Missile Acceleration (G)’)
clc
output=[ArrayT’,ArrayY’,ArrayYD’,ArrayXNCG’];
save datfil.txt output -ascii
disp ’simulation finished’

To verify that the linearized engagement model is a reasonable approximation
to the nonlinear engagement model, cases that were run for the nonlinear engage-
ment model were repeated using the simulation of Listing 2.2. A sample run was
made with the linearized engagement model in which the only disturbance was a
220-deg heading error (HEDEG = –20.). In this case the effective navigation ratio
was 4. Acceleration profile comparisons for both the linear and nonlinear engage-
ment models are presented in Fig. 2.7. The figure clearly shows that, even for a
relatively large heading error disturbance, the resultant acceleration profiles are
virtually indistinguishable. Thus, the linearized model is an excellent approxi-
mation to the nonlinear engagement model in the case of a heading error
disturbance.

Another sample run was made with the linear engagement model; this time
with a 3-g target maneuver disturbance. Figure 2.8 shows that this time the line-
arized model overestimates the missile acceleration requirements. The reason for
the discrepancy is that the linear model assumes that the target acceleration mag-
nitude, perpendicular to the line of sight, is always the same and equal to the mag-
nitude of the maneuver. In reality, as the target maneuvers, the component of
acceleration perpendicular to the line of sight decreases because the target is
turning. Therefore, the nonlinear acceleration requirements due to a maneuvering
target are somewhat less than those predicted by the linearized engagement
model. However, it is important to note that the linear engagement model accu-
rately predicts the monotonically increasing trend (for most of the flight) for the
missile acceleration profile due to a target maneuver.

FUNDAMENTALS OF TACTICAL MISSILE GUIDANCE 27



At this point we can conclude that the linearized engagement model yields
performance projections of sufficient accuracy to make it worthwhile to
proceed with the development of design relationships. We will test the validity
of those relationships throughout the text in a variety of environments.

Fig. 2.8 Linear model overestimates missile acceleration due to target maneuver.

Fig. 2.7 Linearized engagement model yields accurate performance projections for heading
error disturbance.
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IMPORTANT CLOSED-FORM SOLUTIONS

The linearization of the engagement model is important for two reasons. First,
with a linear model, powerful computerized techniques such as the method of
adjoints (described in Chapters 3 and 4) can be used to analyze the missile gui-
dance system both statistically and deterministically in one computer run. With
this technique, error budgets are automatically generated so that key system
drivers can be identified and a balanced guidance system design can be achieved.
The linear model is also important because, under special circumstances, closed-
form solutions can be obtained. These solutions can be used as system sizing aids.
In addition, the form of the solutions will suggest how key parameters influence
system performance.

Let us consider obtaining closed-form solutions for the two important cases
we have already considered in both the linear and nonlinear engagement simu-
lations. The first case is the missile acceleration required to remove a heading
error, and the second case is the missile acceleration required to hit a maneuvering
target. In the absence of target maneuver the relative acceleration (target accelera-
tion minus missile acceleration) can be expressed as

€y ¼ �N 0Vc _l

Integrating the preceding differential equation once yields

_y ¼ �N 0Vclþ C1

where C1 is the constant of integration. Substitution of the linear approximation to
the line-of-sight angle in the preceding expression yields the following time-
varying first-order differential equation:

dy
dt

þ N 0y
tF � t

¼ C1

As a first-order differential equation of the form

dy
dt

þ aðtÞy ¼ hðtÞ

has the solution [9–12]

y ¼ exp �
ðt
0
aðTÞdT

� � ðt
0
hðnÞ exp

ðn
0
aðTÞdT

� �
dnþ C2

	 


we can solve the linearized trajectory differential equation exactly. Note that the
first constant of integration C1 is contained in h(t) while the second constant of
integration C2 appears in the preceding equation. Both constants of integration
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can be found by evaluating initial conditions on y and its derivative. Let us assume
that the initial condition on the first state is zero, or

yð0Þ ¼ 0

and that the initial condition on the second state is related to the heading error by

_yð0Þ ¼ �VMHE

where VM is the missile velocity and HE the heading error in radians. Under these
circumstances, after much algebra, we find that the closed-form solution for the
missile acceleration due to heading error is given by

nc ¼ �VMHEN 0

tF
1� t

tF

� �N 0�2

where tF is the flight time and N0 the effective navigation ratio. We can see that the
magnitude of the initial acceleration is proportional to the heading error and
missile velocity and inversely proportional to the flight time. Doubling the velocity
or heading error will double the initial missile acceleration, whereas doubling the
flight time or time available for guidance will halve the initial missile acceleration.
In addition, the closed-form solution for the miss distance y(tF) is zero. In other
words, as long as the missile has sufficient acceleration capability, there is no miss
due to heading error!

The closed-form solution for the missile acceleration response due to heading
error is displayed in normalized form in Fig. 2.9. We can see that higher effective
navigation ratios require more acceleration at the beginning of flight than at the
end of the flight and less acceleration as the flight progresses. From a system sizing
point of view, the designer usually wants to ensure that the acceleration capability
of the missile is adequate at the beginning of flight so that saturation can be
avoided. For a fixed missile acceleration capability, Fig. 2.9 shows how require-
ments are placed on minimum guidance or flight time and maximum allowable
heading error and missile velocity.

Similarly, if the only disturbance is a target maneuver, the appropriate
second-order differential equation becomes

€y ¼ �N 0Vc _lþ nT

with initial conditions

yð0Þ ¼ 0

_yð0Þ ¼ 0
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After conversion to a first-order differential equation and much algebra, the
solution can be found to be

nc ¼ N 0

N 0 � 2
1� 1� t

tF

� �N 0�2
" #

nT

It appears that something “magical” happens to the acceleration when the
effective navigation ratio is two. Application of L0Hopital0s rule eliminates the
division by zero in the preceding formula and indicates that

lim
N 0!2

nc ¼ �2 ln
tF � t
tF

� �
This is approximately the same solution as if we simply let N0 = 2.01 or N0 =

1.99 in the original closed-form solution for the acceleration as a function of the
effective navigation ratio. As with the heading error case, the closed-form solution
indicates that the miss distance due to target maneuver is exactly zero!

Unlike the heading error case, missile acceleration due to maneuver is inde-
pendent of flight time and missile velocity and only depends on the magnitude
of the maneuver and the effective navigation ratio. Doubling the maneuver
level of the target doubles the missile acceleration requirements.

The closed-form solution for the missile acceleration response due to target
maneuver is displayed in normalized form in Fig. 2.10. We can see that higher
effective navigation ratios relax the acceleration requirements at the end of the
flight. Unlike the heading error response, the missile acceleration required to

Fig. 2.9 Normalized missile acceleration due to heading error for proportional
navigation guidance.
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hit a maneuvering target increases as the flight progresses. From a system sizing
point of view, the designer must ensure that the acceleration capability of the
missile is adequate at the end of flight so that saturation can be avoided so that
the missile can hit the target.

PROPORTIONAL NAVIGATION AND ZERO EFFORT MISS

Thus far we have seen from simulation results and closed-form solutions that pro-
portional navigation appears to be effective, but we do not know why. Although it
is possible to construct geometric arguments showing that it is very logical to issue
acceleration commands proportional to the line-of-sight rate (that is, zero
line-of-sight rate means we are on a collision triangle and therefore no further
commands are necessary), it is not obvious what is happening. The concept of
zero effort miss is not only useful in explaining proportional navigation but is
also useful in deriving and understanding more advanced guidance laws.

We can define the zero effort miss to be the distance the missile would miss the
target if the target continued along its present course and the missile made no
further corrective maneuvers. Therefore, if the target does not maneuver, the
two components, in the Earth fixed coordinate system, of the zero effort miss
can be expressed in terms of the previously defined relative quantities as

ZEM1 ¼ RTM1 þ VTM1tgo
ZEM2 ¼ RTM2 þ VTM2tgo

Fig. 2.10 Normalized missile acceleration due to target maneuver for proportional
navigation guidance.
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where tgo is the time to go until intercept. Thus, we can see that in this case the
zero effort miss is just a simple prediction (assuming constant velocities and
zero acceleration) of the future relative separation between missile and target.
From Fig. 2.1 we can see that the component of the zero effort miss that is per-
pendicular to the line of sight ZEMPLOS can be found by trigonometry and is
given by

ZEMPLOS ¼ �ZEM1 sin lþ ZEM2 cosl

Expansion and simplification of the preceding equation yields

ZEMPLOS ¼ tgoðRTM1VTM2 � RTM2VTM1Þ
RTM

Comparing the preceding expression to the expression for line-of-sight rate, we
can see that the line-of-sight rate can be expressed in terms of the component
of the zero effort miss perpendicular to the line of sight or

_l ¼ ZEMPLOS

RTMtgo

If we assume that the relative separation between missile and target and
closing velocity are approximately related to the time to go by

RTM ¼ Vctgo

then the proportional navigation guidance command can be expressed in terms of
the zero effort miss perpendicular to the line sight as

nc ¼ N 0ZEMPLOS

t2go

Thus, we can see that the proportional navigation acceleration command that
is perpendicular to the line of sight is not only proportional to the line-of-sight
rate and closing velocity but is also proportional to the zero effort miss and inver-
sely proportional to the square of time to go. We shall see later (in Chapters 8, 15,
and 20) that this is a very powerful concept, as the zero effort miss can be com-
puted by a variety of methods, including the on-line numerical integration of the
assumed nonlinear differential equations of the missile and target.

SUMMARY

In this chapter we have developed and shown the results of a simple two-
dimensional proportional navigation missile-target engagement simulation.
Results have shown that the proportional navigation law is effective in a variety
of cases. Linearization of the nonlinear missile-target geometry was shown to
be an accurate approximation to the actual geometry. Closed-form solutions
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were derived, based on the linearized geometry, for the missile acceleration
requirements due to heading error and target maneuver. From these solutions
it was shown how the effective navigation ratio influences system performance.
Finally, the concept of zero effort miss was introduced, and it was shown how
the proportional navi-gation guidance law could be expressed in terms of this
concept. Later (Chapters 8, 15, and 20), we shall develop more advanced guidance
laws based upon the zero effort miss concept.
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CHAPTER 3

Method of Adjoints and the
Homing Loop

INTRODUCTION

Although direct simulation is always used in evaluating missile system designs, the
adjoint technique has historically been the main computerized analysis and design
tool used in tactical missile guidance system design. The adjoint technique goes
back at least to Vito Volterra [1], circa 1870, and was used particularly by ballis-
ticians in connection with their theoretical studies of artillery hit dispersions [2].
The adjoint was popularized by Laning and Battin in the 1950s [3].

The adjoint technique is based on the system impulse response and can be
used to analyze linear time-varying systems such as the missile homing loop.
With the adjoint method, exact performance projections of any quantity at a par-
ticular time and information showing how all disturbance terms contribute to the
performance are available [4, 5]. In other words, error budgets are automatically
generated with the adjoint technique. Although this technique has been used
mainly in missile guidance system design and analysis, its application potential
is much broader.

In this chapter we shall show how to construct an adjoint model from a missile
guidance system homing loop. Numerical examples will be presented that demon-
strate the power and utility of the adjoint approach. Performance projection
comparisons will be made from nonlinear engagement simulation results and
adjoint solutions.

HOMING LOOP

It is convenient to take the linearized engagement equations of Chapter 2 and
draw them in block diagram form as is shown in Fig. 3.1. This type of block
diagram is known as a homing loop because it is drawn as a feedback control
system. In this diagram missile acceleration is subtracted from target acceleration
to form a relative acceleration. After two integrations we have relative position,
which at the end of the flight is the miss distance. A division by range (or the
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closing velocity multiplied by the time to go until intercept) yields the geometric
line-of-sight angle where the time to go is defined as

tgo ¼ tF � t

The missile seeker, which is represented in Fig. 3.1 as a perfect differentiator,
attempts to track the target. Effectively the seeker takes the derivative of the geo-
metric line-of-sight angle, thus providing a measurement of the line-of-sight rate.
The noise filter must process the noisy line-of-sight rate measurement of the
seeker and provide an estimate of the line-of-sight rate. A guidance command
is generated, based on the proportional navigation guidance law, from the noise
filter output. In tactical aerodynamic missiles the flight-control system (which
is represented by unity gain in Fig. 3.1) must, by moving control surfaces, cause
the missile to maneuver in such a way that the achieved acceleration matches
the desired acceleration.

Figure 3.1 presents the simplest possible proportional navigation homing
loop. In this perfect homing loop, models of the seeker, noise filter, guidance, and
flight-control systems have been considered to be perfect and without dynamics.
Such a block diagram is known as a zero-lag guidance system. The miss distance
will always be zero in a zero-lag proportional navigation homing loop.

Guidance system lags or subsystem dynamics will cause miss distance. As long
as the lags can be represented by either linear differential or difference equations,
the homing loop will still remain linear and more powerful methods of analysis,
such as the method of adjoints, can be used to determine system performance
and behavior.

Fig. 3.1 Simplest possible proportional navigation guidance homing loop.
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SINGLE TIME CONSTANT GUIDANCE SYSTEM

Thus far, in our homing loop analysis, the missile has always hit the target.
The strength of proportional navigation is that, in the absence of acceleration
saturation effects, zero miss distance can be achieved if there are no lags within
the homing loop. If the flight-control system dynamics were modeled as a
single lag, or

nL
nc

¼ 1
1þ sT

where nL is the achieved missile acceleration, nc the commanded missile accelera-
tion, and T the flight-control system time constant. Note that the relative accelera-
tion equation in Fig. 3.1 would also have to be modified to

€y ¼ nT � nL

To determine how flight-control system time constant influences miss dis-
tance, a massive simulation experiment was conducted. Both the linear and non-
linear engagement simulations, developed in Chapter 2, were run for many
different flight times. Each simulation trial had a 1-s flight-control system time
constant (T = 1 s), an effective navigation ratio of 4, a 220-deg heading error,
and a different flight time. The flight times ranged from 0.1 s to 10 s in steps
of 0.1 s.

In the linearized model the miss distance y(tF) can be either positive or nega-
tive. Recall that we have already included a few lines of extra code in the nonlinear
engagement simulation to also determine if the miss is positive or negative. A
positive miss means that the target is above the missile, whereas a negative miss
means the opposite.

The miss distance results for each run representing a different flight time, for
both the linear and nonlinear engagement models, were recorded. Figure 3.2 dis-
plays miss distance as a function of flight time for both the linear and nonlinear
engagement simulation results. First, the figure shows that a 1-s flight-control
system time constant can have a profound influence on the miss distance. In
order for the miss distance to be negligible, the flight time must be large when
compared to the flight-control system time constant. In addition, we can see
from Fig. 3.2 that the linearized engagement model and nonlinear engagement
model results are in close proximity, which demonstrates that the linearized
model accurately captures the interaction between guidance system dynamics
(flight-control system time constant) and miss distance for the heading error
disturbance.

Another important disturbance is target maneuver. We saw in Chapter 2 that
the linearization of the engagement model in the case of target maneuver was
not as accurate as it was for heading error. It is important to determine if
the inaccuracy in linearization leads to false conclusions concerning system
performance. Both the linear and nonlinear engagement simulations were run
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for many different flight times, each run having a 1-s flight-control system time
constant, an effective navigation ratio of 4, and a 3-g target maneuver.
Figure 3.3 displays miss distance as a function of the flight time. Again we can
see that the miss due to a constant target maneuver is only negligible if the
flight time is much larger than the flight-control system time constant. In
addition, Fig. 3.3 shows that the linearized guidance system model accurately

Fig. 3.2 Both models show that heading error miss approaches zero as flight
time increases.

Fig. 3.3 Linear model accurately captures relationship between miss and flight time.
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captures the effect of flight control-system time constant on miss distance. The
jaggedness in the nonlinear results is due to the approximate way in which the
miss distance is computed. At the end of the flight, the integration step size is
reduced to 0.0002 s. This means that, for the case considered, where the closing
velocity is 4000 ft/s, the nonlinear miss distance computation is only good to
0.8 ft (4000 � 0.0002).

In this section we have shown the very important result that, when the homing
loop has guidance system dynamics, the linearized guidance system model yields
very accurate miss distance performance projections for both heading error and
target maneuver disturbances. Therefore, techniques that depend on the linear-
ized engagement model for miss distance projections should also be accurate.

HOW TO CONSTRUCT AN ADJOINT

In this section we will see how the miss distance results of Figs. 3.2 and 3.3, which
were generated from many simulation trials, can be obtained in one computer run
using the method of adjoints. However, we must first learn how to construct an
adjoint model from the original system.

For every linear deterministic system, there exists an adjoint system that can
be constructed from the original system, given in block diagram form, by appli-
cation of three Rules [3–6].

RULE 1 : CONVERT ALL SYSTEM INPUTS TO IMPULSES

To construct an adjoint we must have impulsive inputs in the original system.
Because impulsive inputs may not exist in the original system, block diagram
manipulation of the actual inputs of the original system may be necessary. For
example, deterministic inputs can be converted to impulsive inputs by judicious
use of integrators. Figure 3.4 shows that a step input and an integrator-driven
impulse are equivalent at the integrator output. The figure also shows that an
initial condition is equivalent at the integrator output to an integrator with an
impulsive input.

RULE 2: REPLACE t BY tF 2 t IN THE ARGUMENTS OF ALL TIME-VARYING COEFFICIENTS

Often a linear system has a gain that can be expressed as a function of time, either
in analytical or tabular form. Care must be taken with time-varying gains when
applying the method of adjoints. Figure 3.5 shows, by example, how both a time-
varying gain and a gain expressed as a tabular function of time can be converted to
the adjoint domain. Notice that the adjoint of a table, which is a function of time,
is the same table with the gains reversed. Otherwise, gains that are a function of
time simply have t replaced by tF2 t when the adjoint is taken, where tF is the final
time or time of flight.
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RULE 3: REVERSE ALL SIGNAL FLOW, REDEFINING NODES AS SUMMING
JUNCTIONS AND VICE VERSA

Figure 3.6 shows how summing junctions and nodes are converted in going from
the original to the adjoint system. Note that all original system inputs become
adjoint outputs and vice versa. This simple relationship between the two
systems enables one to take an adjoint by first drawing the original block
diagram and then using tracing paper to construct the adjoint model.

Fig. 3.4 Steps and initial conditions can be replaced by impulses.

Fig. 3.5 Taking the adjoint of a time-varying gain.
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Figure 3.7 presents an example of a single-lag, proportional navigation
homing loop in which a step target maneuver disturbance has been converted
to an impulsive input by the use of an extra integrator. In addition, a heading
error initial condition has also been converted to an impulsive input. The
output of interest is the miss distance or y(tF). A simulation of this block
diagram will yield y as a function of time y(t), and the last value of y will be
the miss distance y(tF). To find the miss due to a target maneuver disturbance,

Fig. 3.6 Adjoints redefine branch points and nodes.

Fig. 3.7 Single-lag proportional navigation homing loop.

METHOD OF ADJOINTS AND THE HOMING LOOP 41



we would have to set the heading error disturbance to zero, and to find the miss
due to an initial heading error, the target maneuver disturbance would have to be
set to zero.

The adjoint of this homing loop, obtained by following the rules for construct-
ing an adjoint, is shown in Fig. 3.8. Here the original output of interest [miss dis-
tance or y(tF)] becomes an impulsive input to the adjoint system, and the two
original system inputs (target maneuver and heading error) become two adjoint
outputs. A simulation of the adjoint block diagram will yield y as a function of
flight time y(tF). This means that in an adjoint simulation we obtain the miss dis-
tances due to both a step target maneuver and initial heading error for various
flight times—all obtained in one computer run!

ADJOINT MATHEMATICS

The impulse response of the adjoint system h* and the impulse response of the
original system h are related by

h�ðtF � tI ; tF � tOÞ ¼ hðtO; tIÞ
where tI and tO are the impulse application and observation times, respectively, of
the original system. This equation means that applying an impulse at time tI and
observing the output at time tO of the original system is equivalent to applying an
impulse to the adjoint system at time tF2 tO and observing the adjoint output at
time tF2 tI. The importance of this fundamental relationship becomes more
apparent when it is desired to observe the impulse response of the original

Fig. 3.8 Adjoint of homing loop.
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system at time tF due to various impulse application times. This means that in
order to generate h(tF, tI) it becomes necessary to simulate the system response
for each impulse application time as shown in Fig. 3.9.

However, since the observation time is the final time (tO ¼ tF), only one
adjoint response needs be generated since the fundamental adjoint relationship
simplifies to

h�ðtF � tI ; 0Þ ¼ hðtF ; tIÞ
Therefore, an impulse applied at any time tI and observed only at the final time tF
in the original system is equivalent to applying an impulse at time zero in the
adjoint system and monitoring the output at time tF2 tI. Figure 3.10 shows
that the adjoint impulse response is identical to the impulse response of the orig-
inal system, except that it is generated backwards!

Fig. 3.9 Impulse response
of original system for
different application times.

Fig. 3.10 Impulse response of adjoint system is related to impulse response of
original system.
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ADJOINTS FOR DETERMINISTIC SYSTEMS

To fully understand the utility of adjoints, let us consider the convolution
integral, or

yðtÞ ¼
ðt
�1

xðtÞhðt; tÞ dt

where x is the system input and h the system impulse response. For physically
realizable (noncausal) systems, this integral becomes

yðtÞ ¼
ðt
0
xðtÞhðt; tÞ dt

A step input of magnitude a changes the preceding equation to

yðtÞ ¼ a
ðt
0
hðt; tÞ dt

Therefore, this equation states that the step response of a system can be found by
integrating the impulse response. A closer examination reveals that this revelation
is of no practical utility because the variable of integration is with respect to t. This
means that many impulse responses, each with a different application time, would
have to be generated. Then the results would have to be saved and then
integrated—just to get a system step response! Of course, it would be much
easier to avoid the convolution integral and instead just simulate the system
with the step input and then observe the output in order to get the system
step response.

Let us now see if the method of adjoints can be useful in the case where the
system has a step input. We can substitute the fundamental relationship
between the original and adjoint system impulse responses into the convolution
integral, yielding

yðtÞ ¼ a
ðt
0
h�ðtF � t; tF � tÞ dt

Variables can be changed according to

x ¼ tF � t

dx ¼ �dt

Hence, we obtain

yðtÞ ¼ a
ðtF
tF�t

h�ðx; tF � tÞ dx
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If the observation time of interest is the final time (t ¼ tF), the preceding relation-
ship simplifies to

yðtFÞ ¼ a
ðtF
0
h�ðx; 0Þ dx

Note that the integration in the adjoint system is with respect to the obser-
vation time rather than the impulse application time. This means that the original
system step response output at time tF can be obtained by using an impulsive
input in the adjoint system at time zero and then integrating the output. The
resultant one computer run adjoint solution obtains the step response value at
the final time for all final time values! For time-invariant systems the original
system step response, for all final times, could also have been obtained in one com-
puter run. However, for time-varying systems, many original system computer
runs would have been required to obtain the same information as that provided
by the adjoint response.

To see further benefits from the method of adjoints, let us consider many step
input disturbances to the original system as shown in Fig. 3.11. Here, not only
would many computer runs be required to find the system step response for
different flight times, but also information showing how each disturbance contrib-
uted to the total output would require many more computer runs. To generate this
type of error budget in the original system for N disturbances, N computer runs

Fig. 3.11 Equivalence between adjoint and original systems for deterministic
step disturbances.
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would be required (each run only having that disturbance), and then superposi-
tion could be invoked (add up all responses) to get the total step response.
However, original system inputs become adjoint outputs; thus, only one adjoint
run would be required to get the total step response value at the final time and
to also automatically generate an error budget. Only the adjoint outputs (original
system inputs) have to be monitored, as shown in Fig. 3.11, and superposition
allows the total output to be expressed as

yðtFÞ ¼ yðtFÞffiffiffiffiffi
x1

p þ yðtFÞffiffiffiffiffi
x2

p þ � � � þ yðtFÞffiffiffiffiffiffi
xN

p

Thus, when there are many deterministic disturbances to the original system,
one adjoint computer run yields the system response for all final times, along with
a detailed error budget showing how each disturbance influenced total system
performance.

DETERMINISTIC ADJOINT EXAMPLE

To demonstrate the practical utility of adjoint theory for a system with determi-
nistic inputs, let us reconsider the proportional navigation homing loop example
of Fig. 3.7. After following the rules for constructing an adjoint, we obtain the
detailed adjoint model shown in Fig. 3.12.

All of the integrator inputs and outputs are marked in Fig. 3.12 for the purpose
of understanding the adjoint simulation. With the exception of the two adjoint
outputs, none of the quantities shown in the adjoint model has any physical

Fig. 3.12 Adjoint simulation model of single-lag guidance system.
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meaning. The impulse required for adjoint initialization can also be represented as
an initial condition on the x3 integrator. The output x1 is the miss distance sen-
sitivity (multiply by nT to get miss) due to a step target maneuver, whereas the
output x2 is related to the miss sensitivity (multiply by 2VM HE to get miss)
due to an initial heading error.

Listing 3.1 presents the adjoint simulation of Fig. 3.12. Here the four differen-
tial equations of Fig. 3.12 (which appear before the FLAG=1 statement in the
listing) are integrated using the second-order Runge–Kutta method with an inte-
gration step size of 0.01 s. The integration step size is small enough in this sample
program to get fairly accurate answers. Note that in this example the effective
navigation ratio is four, the guidance time constant is 1s, there is 220 deg of
heading error, and the maneuver level is 96.6 ft/s2 or 3 g.

The adjoint output due to a 3-g step target maneuver appears in Fig. 3.13 along
with results from the linearized engagement simulation (run for many different
flight times). The figure shows that the adjoint simulation yields accurate
miss distance projections for many different flight times in one computer
run. Because the adjoint is linear, we can apply superposition to the results. Dou-
bling the target maneuver acceleration level doubles the miss. The abscissa of
Fig. 3.13 can either be interpreted as flight time or the time to go until intercept
at which the target initiates its maneuver. Therefore, in this example, a 3-g man-
euver causes nearly 12 ft of miss if the flight time is only 1s or if the maneuver
occurs at 1s to go before intercept. The figure also shows that long flights
(flight time large compared to guidance system time constant), or flights with
maneuver initiation occurring at the beginning of flight (large time to go),
result in virtually zero miss.

Fig. 3.13 Adjoint yields accurate miss distance information for all flight times in one run.
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LISTING 3.1 SINGLE-LAG ADJOINT WITH SECOND–ORDER RUNGE–KUTTA INTEGRATION

n=0;
XNT=96.6;
XNP=4.;
TAU=1.;
TF=10;
VM=3000.;
HEDEG=-20.;
T=0.;
S=0.;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0;
H=.01;
HE=HEDEG/57.3;
while TP ,=(TF-1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
TP=TP+H;

end
X1D=X2;
X2D=X3;
Y1=(X4-X2)/TAU;
TGO=TP+.00001;
X3D=XNP*Y1/TGO;
X4D=-Y1;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
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X4=(X4OLD+X4)/2+.5*H*X4D;
S=S+H;
if S.=.0999

S=0.;
n=n+1;
ArrayTP(n)=TP;
ArrayXMNT(n)=XNT*X1;
ArrayXMHE(n)=-VM*HE*X2;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
figure
plot(ArrayTP,ArrayXMHE),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Heading Error Miss (Ft)’)
clc
output=[ArrayTP’,ArrayXMNT’,ArrayXMHE’];
save datfil.txt output -ascii
disp ’simulation finished’

Another adjoint output, from the same simulation trial, also yields miss dis-
tance information for a heading error disturbance. These results, along with lin-
earized engagement simulation results (run for many different flight times) appear
in Fig. 3.14. We can see that the adjoint also yields accurate performance projec-
tions in the case of the heading error disturbance.

Therefore, we can see that a great deal of information is available from
one adjoint run representing a system with many deterministic disturbances.
Miss distance sensitivity data for a variety of disturbances and for all flight
times can be obtained in a single adjoint run. We can also tell from the adjoint
output when the guidance system is most sensitive to an error source. In addition,
the shape of the adjoint output also provides information concerning system
behavior. For example, if the adjoint output for a deterministic input does not
approach zero as the flight time increases, then we know that the missile
cannot guide effectively.

ADJOINT CLOSED-FORM SOLUTIONS [7, 8]

If there are no dynamics in a proportional navigation homing loop, then the resul-
tant miss distance should always be zero. Guidance system dynamics cause miss
distance. Under special circumstances it is possible to obtain closed-form
solutions for the miss distance when there are dynamics in the homing loop.
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These closed-form solutions can be used to gain insight into the effectiveness of
homing and also be used to check the accuracy of computerized adjoints. In
addition, we shall see in Chapter 6 that the normalization factors developed
from simpler systems are also valid for more complex systems.

Consider the single time constant proportional navigation guidance system
shown in Fig. 3.15a. In this guidance system there are two disturbances (the
target maneuver and the heading error) that are represented as impulsive
inputs so that we can easily take the adjoint later. For convenience, we can use
block diagram manipulation to remove the two integrations from the main
loop and place them before the two inputs. After some work we obtain Fig. 3.15b.

For conceptual purposes we may be interested in guidance system dynamics
other than first order. Therefore we will use shorthand notation and express the
guidance system dynamics as W. For a single-lag guidance system, W can be
expressed as

WSingle
Lag

¼ N 0

sð1þ sTÞ

and in a perfect or zero-lag guidance system W is given by

WZero
Lag

¼ N 0

s

In general W can represent guidance system dynamics of any order.

Fig. 3.14 Adjoint also yields accurate heading-error-induced miss information for all flight
times in one run.
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UsingW to represent the guidance system dynamics, a more generalized pro-
portional navigation guidance system is displayed in Fig. 3.15c. The miss distance
adjoint of the generalized guidance system can be obtained by inspection (that is,
by following the rules of adjoints outlined in this chapter) and applying an
impulse at time zero where y was in the original system. The resultant generalized
adjoint block diagram appears in Fig. 3.15d. Using block diagram manipulation
and reorienting the figure yields the final generalized adjoint shown in
Fig. 3.15e. We can see that the miss due to a step target maneuver MNT is after
three integrations while the miss due to heading error MHE (that is, step in
target velocity) is after two integrations. Therefore MYT, which is after one

Fig. 3.15 Methodology in getting generalized homing loop adjoint: a) single time constant
proportional navigation guidance system; b) block diagram manipulation; c) replace
guidance transfer function with W; d) take adjoint for miss distance; e) reorient
block diagram.
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integration, must represent a step in target displacement. This important error
source will be investigated in detail in Chapter 19.

For convenience, H(t) is also indicated as an adjoint signal of interest. From
the convolution integral we can relate the adjoint output to the input by

HðtÞ ¼ 1
t

ð
WðxÞ½dðt� xÞ � Hðt� xÞ� dx

Converting from the time to the frequency domain (Laplace transform notation),
we can express the preceding relationship as

�dHðsÞ
ds

¼ WðsÞ½1� HðsÞ�

because of a Laplace transform identity. Recall also that

d
ds

½1� HðsÞ� ¼ �dHðsÞ
ds

For convenience let us allow H(s) to be replaced by H and W(s) to be replaced by
W. Therefore, substitution yieldsð

dð1� HÞ
1� H

¼
ð
W ds

Finally, integrating both sides of the preceding equations yields the important
conclusion

1� H ¼ c exp
ð
W ds

� �

where c is a constant of integration. We can evaluate c by first recognizing from
Fig. 3.15e that a miss due to a unit step in target displacement MYT can be
expressed in Laplace transform notation as

MYTðsÞ ¼ 1� HðsÞ
s

We know that in the time domain the miss due to a unit step target displacement
at flight time zero is unity. Therefore, using the initial value theorem, which relates
the time domain with the Laplace transform domain, we can say that

MYTð0Þ ¼ 1 ¼ lim
s!1 s

1� H
s

� �
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Therefore c is chosen to make

lim
s!1 c exp

ð
W ds

� �� �
¼ 1

Because the simplest possible guidance system has at least one integration, the
constant of integration becomes unity (c = 1).

To demonstrate that we have enough analytical tools to find closed-form sol-
utions under special circumstances, let us find the miss due to a step target man-
euver for a single-lag guidance system. As mentioned before, the guidance system
transfer function in this case is

WðsÞ ¼ N 0

sð1þ sTÞ
where N0 is the effective navigation ratio and T the guidance system time constant.
Because

1� H ¼ exp
ð
W ds

� �
we get after integration

1� HðsÞ ¼ s

�
sþ 1

T

� �� �N 0

Therefore, the miss due to a step maneuver of magnitude nT is given by

MNT
nT

ðsÞ ¼ 1� HðsÞ
s3

¼ 1
s3

s

�
sþ 1

T

� �� �N 0

For an effective navigation ratio of 4, the miss, in Laplace transform notation,
is given by

MNT
nT


N 0¼4

ðsÞ ¼ s

ðsþ 1=TÞ4

Taking the inverse Laplace transform of the preceding expression yields the miss
due to a step target maneuver in the adjoint time domain as

MNT
nT


N 0¼4

ðtÞ ¼ t 2e�t=T 0:5� t

6T

� �
where t is adjoint time and can be interpreted as either time of flight (tF) or time
to go at which the maneuver occurs.

The single-lag adjoint simulation of Listing 3.1 was run for a case in which the
target maneuver level was 3 g, the guidance system time constant was 1 s, and the
effective navigation ratio was 4. Figure 3.16 displays the adjoint simulation results
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along with the closed-form solution. We can see from the figure that both the
adjoint results and closed-form solution results are virtually identical, which
proves that it is possible for theory and simulation to agree.

The nonlinear engagement simulation of Chapter 2 was rerun for the same
case (3-g target maneuver, N0 = 4, and T = 1 s) for many different flight times.
The nonlinear results and the closed-form solution results are compared in
Fig. 3.17. We can see that the miss distance projections from the closed-form sol-
ution are in excellent agreement with the nonlinear results.

Fig. 3.16 Closed-form solution agrees with computerized adjoint for step target maneuver.

Fig. 3.17 Miss distance formula and nonlinear simulation results are in close agreement.
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Similarly, a closed-form expression can be found for the miss due to an initial
heading error. The generalized formula for the heading error miss is given by

MHE
HE

ðsÞ ¼ �VM½1� HðsÞ�
s2

Following a similar procedure to that of the target maneuver case and assuming an
effective navigation ratio of 4 for a single-lag guidance system, we obtain a closed-
form solution for the heading error miss:

MHE
HE


N 0¼4

ðtÞ ¼ �VMte
�t=T 1� t

T
þ t 2

6T2

� �

The adjoint simulation results for a 220-deg heading error and the closed-
form solution results are displayed in Fig. 3.18. Again we can see that the
adjoint simulation results are in complete agreement with the closed-form
solution.

NORMALIZATION

In the previous section we showed how closed-form solutions for the heading
error and target maneuver could be derived for a single time constant guidance
system. Specific solutions were derived for the case in which the effective naviga-
tion ratio was 4. Following the same procedure outlined in the previous section,
closed-form solutions were derived for the miss due to a target maneuver when

Fig. 3.18 Closed-form solution agrees with computerized adjoint for heading error.
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the effective navigation ratio varied between 3 and 5. The solutions are

Miss
nT


N 0¼3

¼ 0:5t2Fe
�tF=T

Miss
nT


N 0¼4

¼ t2Fe
�tF=T 0:5� tF

6T

� �
Miss
nT


N 0¼5

¼ t2Fe
�tF=T 0:5� tF

3T
þ t2F
24T2

� �

where nT is the maneuver level of the target (in ft/s2), tF is the flight time (in s), T
is the guidance system time constant (in s), and Miss is the miss distance (in ft).

In a similar way, miss distance formulas can be derived for heading error in a
single time constant guidance system. The formulas are

Miss
�VMHE


N 0¼3

¼ tFe
�tF=T 1� tF

2T

� �
Miss

�VMHE


N 0¼4

¼ tFe
�tF=T 1� tF

T
þ t2F
6T2

� �
Miss

�VMHE


N 0¼5

¼ tFe
�tF=T 1� 1:5

tF
T
þ t2F
2T2

þ t3F
24T3

� �

where VM is the missile velocity (in ft/s) and HE the heading error (in rad).

Fig. 3.19 Normalized miss due to target maneuver for single time constant
guidance system.
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The closed-form solutions for both the target maneuver and heading error
miss can be normalized for conciseness. For example, Fig. 3.19 displays the
target maneuver miss sensitivity, in normalized form, for various effective
navigation ratios. From the normalization factor it becomes obvious that, as the
ratio of the flight time to the guidance system time constant (tF/T) becomes
large, the miss eventually goes to zero. From the normalization on the ordinate
it becomes obvious that, for a given ratio of flight time to guidance time constant,
doubling the guidance system time constant quadruples the miss!

Figure 3.20 displays the heading error miss sensitivity, in normalized form, for
various effective navigation ratios. In this case too, it is obvious from the figure
that, as the ratio of the flight time to the guidance system time constant (tF/T)
becomes large, the miss eventually goes to zero. From the normalization on the
ordinate, we can see that, for a given ratio of flight time to guidance time constant,
doubling the guidance system time constant only doubles the heading error miss.

SUMMARY

In this chapter we have seen the power and accuracy of linearization. First we
showed that the method of adjoints could be applied to the linearized homing
loop. The adjoint technique permitted us to obtain miss distance performance
projections as a function of flight time, in error budget form, for many inputs
in a single adjoint computer run. The method was shown to be accurate when
compared to linear performance projections obtained by massive simulation. It
was also shown how the adjoint method could be used to derive miss distance
formulas. These closed-form solutions agreed closely with results obtained by
massive simulation trials of the nonlinear engagement simulation.

Fig. 3.20 Normalized miss due to heading error for single time constant guidance system.
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CHAPTER 4

Noise Analysis

INTRODUCTION

The concept of noise is important to the guidance system engineer. For example,
in a radar homing tactical missile the seeker measurement of the line-of-sight rate
signal, required for the implementation of proportional navigation guidance, is
not perfect but is corrupted by noise. To extract the signal from the measurement,
an understanding of the concept of noise and its various properties are manda-
tory. In addition, in order to evaluate system performance in the presence of
noise, we must first know how to simulate noise and then how to conduct and
interpret experiments with repeated simulation trials. The concepts developed
and illustrated in this chapter will be used throughout the text for filtering and
evaluating system performance in the presence of noise or other random
phenomenon.

BASIC DEFINITIONS

In this section [1] we will depart from our usual guidance discussions and start
by defining some important quantities related to random variables. Random
variables have unknown specific values, so they are usually quantified according
to their statistical properties. One of the most important statistical properties
of any random function x is its probability density function p(x). This function is
a measure of the likelihood of occurrence of each value of x and is defined such that

pðxÞ � 0

and ð1
�1

pðxÞ dx ¼ 1

This means that there is a probability that xwill occur, and it is certain that the value
of x is somewhere between plus and minus infinity. The probability that x is
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between a and b can be expressed in terms of the probability density function as

Probða � x � bÞ ¼
ðb
a
pðxÞ dx

Another important quantity related to random variables is the distribution function.
A distribution function P(x) is the probability that a random variable is less than or
equal to x. Therefore, if the probability density function is known, the distribution
function can be found by integration as

PðxÞ ¼
ðx
�1

pðuÞ du

The mean or expected value of x is defined by

m ¼ EðxÞ ¼
ð1
�1

xpðxÞ dx

Therefore, the mean can also be thought of as the first moment of x. We can also
think of the mean value of x as the sum (integral) of all values of x, each being
weighted by its probability of occurrence. It can be shown that, if random vari-
ables x1, . . . , xn are independent, then the expectation of the sum is the sum of
the expectations, or

Eðx1 þ x2 þ � � � þ xnÞ ¼ Eðx1Þ þ Eðx2Þ þ � � � EðxnÞ
The second moment or mean squared value of x is defined as

Eðx2Þ ¼
ð1
�1

x2pðxÞ dx

Therefore, the rms of x can be obtained by taking the square root of the preceding
equation, or

rms ¼ ½Eðx2Þ�1=2

The variance of x, s2 is defined as the expected squared deviation of x from its
mean value. Mathematically, the variance can be expressed as

s 2 ¼ Ef½x � EðxÞ�2g ¼ Eðx2Þ � E2ðxÞ
We can see that the variance is the difference between the mean squared value of x
and the square of the mean of x. If we have independent random variables x1, . . . ,
xn then the variance of the sum can be shown to be the sum of the variances, or

s 2 ¼ s 2
1 þ s 2

2 þ � � � þ s 2
n

The square root of the variance s is also known as the standard deviation. In
general, the rms value and standard deviation are not the same unless the
random process under consideration has a zero mean.
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An example of a
probability density function
is the uniform distribution,
which is depicted in
Fig. 4.1. With this probability
density function all values of
x between a and b are
equally likely to occur. An

important practical example of the uniform distribution, which should be familiar
to any engineer who has programmed on a personal computer, is the BASIC
language random number generator (RND). The BASIC RND [or the
MATLAB rand(1)] statement supplies a uniformly distributed random number,
on each call, between 0 and 1. Soon we will see how random numbers with differ-
ent probability density functions can be constructed from random numbers fol-
lowing the uniform distribution. From our previous definitions we can see that
the mean value of a uniform distribution is

m ¼
ð1
�1

xpðxÞ dx ¼ 1
b� a

ðb
a
x dx ¼ bþ a

2

This makes sense, as the expected or mean value is halfway between a and b. The
variance of a uniform distribution can also be found from our previous definitions
and can be shown to be

s 2 ¼ Eðx2Þ �m2 ¼ b3 � a3

3ðb� aÞ �
bþ a
2

� �2
¼ ðb� aÞ2

12

This means that, if the random numbers from a uniform distribution vary from 0
to 1, the mean of the resultant set of numbers should be 1/2 and the variance
should be 1/12. We will use this property of a uniform distribution later in this
chapter for constructing random numbers with different probability density
functions.

Another important probability density function is the Gaussian or normal dis-
tribution. In the missile homing loop we shall often treat the sensor noise disturb-
ances as having a Gaussian distribution. The probability density function for this
distribution is shown in Fig. 4.2 and is given by the formula

pðxÞ ¼ exp �ðx �mÞ2
2s 2

� ��
½sð2pÞ0:5�

Fig. 4.1 Uniform
probability distribution.
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where m and s are parameters. By using our basic definitions it is easy to show
that the expected or mean value of a Gaussian distribution is given by

EðxÞ ¼ m

and its variance is

Eðx2Þ �m2 ¼ s 2

Therefore, m and s in the expression for the Gaussian probability density
function correspond to the mean and standard deviation, respectively.

We can see from Fig. 4.2 that this bell-shaped distribution is virtually zero
after three standard deviations (+3s). Integration of the probability density func-
tion, to find the distribution function, shows that there is a 68% probability that
the Gaussian random variable is within one standard deviation (+s) of the mean,
95% probability it is within two standard deviations of the mean, and 99% prob-
ability that it is within three standard deviations of the mean.

It can be shown that the resultant probability density function of a sum of
Gaussian distributed random variables is also Gaussian. In addition, under
certain circumstances, it can also be shown that the sum of independent
random variables, regardless of individual density function, tends toward Gaus-
sian as the number of random variables gets larger (an illustration of this phenom-
enon will be illustrated in the next section). That is in fact why so many random
variables are Gaussian distributed.

GAUSSIAN NOISE EXAMPLE

To simulate noise or random events we have to know how to generate, via the com-
puter, pseudorandom numbers with the appropriate probability density function.
The FORTRAN language, for example, does not come with a random number gen-
erator. However, many microcomputer implementations of FORTRAN provide

Fig. 4.2 Gaussian or normal probability density function.
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extensions from which noise, with the desired probability density function, can be
constructed. For example, in Macintosh Absoft FORTRAN, the irand(0) statement
produces a uniformly distributed integer between 0 and 231. It can be shown from
the central limit theorem that the addition of many uniformly distributed variables
produces a Gaussian distributed variable.

The first step in constructing random numbers with the desired probability
density function is to normalize the uniform noise generator so that random
numbers between 0 and 1 are produced. The second step is to add 12 uniformly
distributed random variables and subtract 6 in order to obtain a zero-mean Gaus-
sian variable with unity standard deviation (as the variance of one uniformly dis-
tributed random variable is 1/12, the variance of 12 must be 1). The MATLAB
listing for the generation of 100 Gaussian-distributed random numbers with
zero mean and unity variance is shown in Listing 4.1. It is important to note
that we are not making use of the MATLAB statement randn, which automatically
generates a Gaussian random number.

LISTING 4.1 MATLAB GAUSSIAN RANDOM NUMBER GENERATOR (THE HARD WAY)

count=0;
N=100;
for I=1:N

SUM=0;
for J=1:12

RAND=rand(1);
SUM=SUM+RAND;

end;
X=SUM-6;
count=count+1;
ArrayI(count)=I;
ArrayX(count)=X;

end;
figure
plot(ArrayI,ArrayX),grid
title(’One hundred random numbers with Gaussian distribution’)
xlabel(’Number’)
ylabel(’Value’)
clc
output=[ArrayI’,ArrayX’];
save datfil output -ascii
disp ’simulation finished’

Figure 4.3 displays the values of each of the 100 random numbers, generated
via the program of Listing 4.1, in graphic form. A quick glance at the plot indicates
that the data appear to have approximately zero mean. The standard deviation of
the data can be “eyeballed” by looking at the maximum excursions (99% chance
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that data is within the 3s values) and using the simplified relationship

sapprox ¼ ð peak to peak)=6 ¼ 4=6 ¼ 0:67

Thus, the eyeballed value of s does not quite meet the theoretical expectations of
unity standard deviation.

To get an idea of the resultant probability density function of the computer-
generated 100 random numbers, another MATLAB program was written and
appears in Listing 4.2. Essentially each random number is placed in a bin in
order to calculate the frequency of occurrence and hence the probability density
function [2]. Also included in the listing, for comparative purposes, is the theor-
etical formula for the probability density function of a zero-mean, unity variance,
Gaussian distribution.

LISTING 4.2 MATLAB PROGRAM USED TO GENERATE PROBABILITY DENSITY FUNCTION

% Preallocation
H=zeros(1,10000);
X=zeros(1,10000);
count=0;
XMAX=6;
XMIN=-6;
RANGE=XMAX-XMIN;
TMP=1./sqrt(6.28);
N=100;
BIN=50;
for I=1:N

Fig. 4.3 One hundred random numbers with Gaussian distribution.
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SUM=0;
for J=1:12
RAND=rand(1);
SUM=SUM+RAND;

end;
X(I)=SUM-6;

end;
for I=1:BIN

H(I)=0;
end;
% FIX Round towards zero.
% FIX(X) rounds the elements of X to the nearest integers
% towards zero.
for I=1:N

K=fix(((X(I)-XMIN)/RANGE)*BIN)+.99;
if K , 1, K=1; end;
if K . BIN, K=BIN; end;

%CORRECTION HERE ...
K=round(K);

H(K)=H(K)+1;
end;
for K=1:BIN

PDF=(H(K)/N)*BIN/RANGE;
AB=XMIN+K*RANGE/BIN;
TH=TMP*exp(-AB*AB/2.);
count=count+1;
ArrayAB(count)=AB;
ArrayPDF(count)=PDF;
ArrayTH(count)=TH;

end;
figure
plot(ArrayAB,ArrayPDF,ArrayAB,ArrayTH),grid
title(’Sample Gaussian distribution’)
xlabel(’X’)
ylabel(’Probability Density Function’)
clc
output=[ArrayAB’,ArrayPDF’,ArrayTH’];
save datfil output -ascii
disp ’simulation finished’

Figure 4.4 presents the calculated probability density function in graphic form.
Superimposed on the figure is a plot of the theoretical Gaussian distribution. The
figure indicates that, with a sample size of only 100 random numbers, it is not
immediately obvious that the computer-generated probability density function
follows a Gaussian distribution.
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Increasing the sample size from100 randomnumbers to 1000 randomnumbers
will clarify the “goodness” of the computer-generated random numbers. Figure 4.5
displays each of the 1000 random numbers generated. The figure demonstrates
that, although the mean of the random numbers is still about zero, we now
have larger excursions (numbers vary between +3s) and the approximate value
of the standard deviation is

sapprox ¼ ð peak to peak)=6 ¼ 6=6 ¼ 1

which is the theoretically correct value.
Finally, Fig. 4.6 shows that when the sample size is increased to 1000 numbers,

the resultant probability density function closely follows the theoretical

Fig. 4.4 Sampled Gaussian distribution does not closely follow theory for 100
random numbers.

Fig. 4.5 One thousand random numbers with Gaussian distribution.
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bell-shaped curve. Thus, we have seen how a Gaussian distribution can be con-
structed from the summation of 12 uniformly distributed random variables.
This is a practical application of the central limit theorem. In practice, to save com-
puter running time, we can add fewer than 12 uniformly distributed numbers
to get a Gaussian-distributed random number. Throughout the rest of this
book we will add only six uniformly distributed numbers to get the desired
Gaussian distribution.

COMPUTATIONAL ISSUES

Often, from simulation outputs, we wish to compute some of the basic random
variable properties (such as mean, variance, and so on). Stated more mathemat-
ically, we wish to compute these basic random variable properties from a finite
set of data xi when only n samples are available. The discrete equivalent of the pre-
viously presented formulas for basic random variable properties are presented in
the following equations:

mean ¼
Xn
i¼1

xi=n

mean square ¼
Xn
i¼1

x2i =ðn� 1Þ

standard deviation ¼
Xn
i¼1

ðxi �meanÞ2
" #,

ðn� 1Þ
( )1=2

Fig. 4.6 Sampled Gaussian distribution more closely follows theory for 1000
random numbers.
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We can see from these equations that integrals from the theoretical or con-
tinuous formulas have been replaced with summations in their discrete equiva-
lents. In order for the theoretical and calculated random variable properties to
be equal, the number of samples in the discrete computations must be infinite.
Because the sample size is finite, the discrete or calculated formulas are approxi-
mations. In fact, the answers generated from these formulas have statistics of
their own.

Recognizing that simulation outputs based upon random inputs can vary, the
Monte Carlo approach [3] will often be used in this text to obtain system perform-
ance. The Monte Carlo method is approximate and is simply repeated simulation
trials plus postprocessing of the resultant data in order to do ensemble averaging
(using the preceding formulas) to get the mean and standard deviation. Usually a
large number of simulation trials are required in order to provide confidence in
the accuracy of the results. Because of its simplicity and generality, however,
the Monte Carlo approach is probably the most popular computerized method
of statistical analysis.

To demonstrate that our computed statistics are not precise and in fact are
random variables with statistics, a MATLAB simulation of the Gaussian noise
was generated, and Listing 4.3 shows the computation of the sampled standard
deviation. The number of i samples used in the program computation was
made a parameter in the study and varied from 1 to 100.

LISTING 4.3 MATLAB PROGRAM FOR COMPUTING SAMPLED STANDARD DEVIATION
(THE HARD WAY)

% Preallocation
Z=zeros(1,100);
count=0;
Z1=0;
for I=1:100

SUM=0;
for J=1:12

RAND=rand(1);
SUM=SUM+RAND;

end;
X=SUM-6;
Z(I)=X;
Z1=Z(I)+Z1;
XMEAN=Z1/I;

end;
SIGMA=0;
Z1=0;
for I=1:100

Z1=(Z(I) -XMEAN) ^2+Z1;
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if I == 1
SIGMA=0;

else
SIGMA=sqrt(Z1/(I-1));

end;
count=count+1;
ArrayI(count)=I;
ArraySIGMA(count)=SIGMA;

end;
figure
plot(ArrayI,ArraySIGMA),grid
title(’Sampled Standard Deviation’)
xlabel(’Number of Samples’)
ylabel(’Calculated Standard Deviation’)
clc
disp ’*** Simulation Complete’
output=[ArrayI’,ArraySIGMA’];
save datfil.txt output -ascii
disp ’simulation finished’

Figure 4.7 shows that the computed standard deviation (actual standard devi-
ation is unity) obtained from the MATLAB program is a function of the sample
size used. Large errors in the standard deviation estimate occur when there are less
than 20 samples. The accuracy of the computation improves significantly when
many samples are used in computing the standard deviation. In this example,
we need more than 100 samples for the computed standard deviation to be
within 5% of the theoretical value of unity. When we begin to evaluate system per-
formance, when the inputs are random, we will take this information into account

Fig. 4.7 Large errors occur when only a few samples are taken.
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in determining how many simulation trials (Monte Carlo runs) will be required to
get reasonably accurate results. Usually we will consider 50 runs to be sufficient in
the tradeoff between computer running time and numerical accuracy.

MORE BASIC DEFINITIONS

A few more definitions [1] are required before we can build up the tools required
for the analysis of noise-driven systems. Thus far we have discussed the
second-order statistics of random processes. However, in practice, we are
limited to even less information than that given by the probability density func-
tion. Often, only the first moment of these random processes is measured. One
such moment is the autocorrelation function, which is defined by

fxxðt1; t2Þ ¼ E½xðt1Þxðt2Þ�
The Fourier transform of the autocorrelation function is called the power spec-

tral density and is defined as

Fxx ¼
ð1
�1

fxxðtÞe�jvt dt

where the power spectral density, using these definitions, has dimensions of unit
squared per Hertz. In all of the statistical work presented throughout this text, the
power spectral density will have those units.

One simple and useful form for the power spectral density is that of white
noise, in which the power spectral density is constant, or

Fxx ¼ F0 ðwhite noiseÞ
The autocorrelation function for white noise is a delta function given by

fxx ¼ F0dðtÞ ðwhite noiseÞ
Although white noise is not physically realizable, it can be used to serve as an

invaluable approximation to situations in which a disturbing noise is wideband
compared to the system bandwidth. In addition, white noise is useful for analytical
operations because of the impulsive nature of the autocorrelation function (it
makes integrals disappear).

RESPONSE OF LINEAR SYSTEM TO WHITE NOISE

Often we are interested in finding the response of a linear system to noise. If the
system is linear, with impulse response h(t, t), the output y(t), can be expressed in
terms of the input x(t) via the convolution integral, or

yðtÞ ¼
ðt
�1

xðtÞhðt; tÞ dt
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Squaring both sides of the preceding equation yields

y2ðtÞ ¼
ðt
�1

xðt1Þhðt; t1Þ dt1
ðt
�1

xðt2Þhðt; t2Þ dt2

If x(t) is random, we can take expectations of both sides, or

E½ y2ðtÞ� ¼
ðt
�1

ðt
�1

hðt; t1Þhðt; t2ÞE½xðt1Þxðt2Þ� dt1 dt2

In addition, if the input x(t) is white noise with power spectral density F, the
double integral of the preceding equation can be simplified because of the impul-
sive nature of the autocorrelation function, or

E½xðt1Þxðt2Þ� ¼ Fdðt1 � t2Þ
Substitution yields

E½ y2ðtÞ� ¼ F

ðt
�1

h2ðt; tÞ dt

Therefore, the mean square response of a linear system driven by white noise with
power spectral density F (where F has the dimensions of unit2/Hz) is pro-
portional to the integral of the square of the impulse response. The preceding
equation is a general relationship and is valid for both time-varying and time-
invariant linear systems driven by white noise.

LOW-PASS-FILTER EXAMPLE

To illustrate the utility of the mean square response equation, let us find the resp-
onse of a low-pass filter to white noise as shown in Fig. 4.8. Here the input x is
white noise with power spectral density F. As this system is time-invariant and
physically realizable (noncausal), the fundamental noise relationship simplifies to

E½ y2ðtÞ� ¼ F

ðt
0
h2ðtÞ dt

We can find the system impulse response in the preceding integral by first recog-
nizing that the transfer function of the low-pass filter, shown in Fig. 4.8, is given by

HðsÞ ¼ 1
1þ sT

Fig. 4.8 Low-pass filter with white
noise input.
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Therefore, its inverse Laplace transform is

hðtÞ ¼ L�1½HðsÞ� ¼ e�t=T

T

Substitution yields

E½ y2ðtÞ� ¼ F

T2

ðt
0
e�2t=T dt

Evaluation of the upper and lower limits results in the final answer:

E½ y2ðtÞ� ¼ Fð1� e�2t=TÞ
2T

In the steady state, the exponential term drops out, yielding

E½ y2ð1Þ� ¼ F

2T

We can write a MATLAB program to simulate the problem and to see how the
theoretical results and simulation results agree. To do this we must be able to
simulate Gaussian white noise. In MATLAB Gaussian random numbers can
also be generated by using randn. Because the MATLAB Gaussian distributed
random numbers are independent, the resultant Gaussian random numbers will
look white to the low-pass filter if its bandwidth is much greater than the filter
bandwidth. In a simulation of the continuous system of Fig. 4.8, the MATLAB
Gaussian noise generator is called every integration interval h. Because
integration interval is always chosen to be at least several times smaller than
the smallest system time constant T/h � T in order to get correct answers with
numerical integration techniques), the noise will look white to the system.

The standard deviation of the pseudowhite noise (actual white noise has infi-
nite standard deviation) is related to the desired white noise spectral density F
and integration interval h according to [3]

s ¼
ffiffiffiffi
F

h

r
where F has dimensions of units squared per Hertz. The MATLAB simulation
listing of this white-noise-driven low-pass filter is shown in Listing 4.4. We can
see from the listing that the Gaussian noise with unity standard deviation is modi-
fied to get the desired pseudowhite noise spectral density (F = 1). The approxi-
mate white noise enters the system at every integration interval. A sample
output for a correlation time of 0.2 s is shown in Fig. 4.9. Also shown in the
listing and figure are the theoretical results obtained from the previously
derived formula for the output standard deviation of a white-noise-driven
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low-pass filter, which is

stheory ¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F½1� e�2t=T �

2T

r
We can see from this figure that the simulation results, based upon the MATLAB
listing, agree with theory in the sense that the simulation results lay within the+s
bounds approximately 68% of the time. Therefore, we can say that the experimen-
tal and theoretical results are in agreement.

Increasing the correlation time constant increases the smoothing action of the
low-pass filter. Figure 4.10 shows the filter output when the correlation time con-
stant is increased from 0.2 s to 1 s. Here we can see that the larger filter time

Fig. 4.10 Increasing filter time constant reduces the noise transmission.

Fig. 4.9 Low-pass filter output agrees with theory.

NOISE ANALYSIS 73



constant not only provides more filtering action but also tends to correlate the
noise. In other words, the randomness of the noise is starting to disappear as
the filter time constant increases. Again, this figure shows that the simulated
results appear to be within the +s bounds about 68% of the time.

It is important to note that both the simulated time domain results and the
theoretical second-order statistical results provide invaluable visual information.
The use of both theory and simulation can be used to not only verify results
but also to provide a deeper understanding of the processes involved.

LISTING 4.4 MATLAB SIMULATION OF LOW-PASS FILTER DRIVEN BY WHITE NOISE

TAU=0.2;
PHI=1.0;
count=0;
T=0;
H=.01;
SIG=sqrt(PHI/H);
Y=0;
while T ,= 5.0

X=SIG*randn;
YOLD=Y;
STEP=1;
FLAG=0;
while STEP ,=1
if FLAG ==1

STEP=2;
Y=Y+H*YD;

T=T+H;
end
YD=(X-Y)/TAU;
FLAG=1;

end
FLAG=0;
Y=(YOLD+Y)/2.+.5*H*YD;
SIGPLUS=sqrt(PHI*(1.-exp(-2.*T/TAU))/(2.*TAU));
SIGMINUS=-SIGPLUS;
count=count+1;
ArrayT(count)=T;
ArrayY(count)=Y;
ArraySIGPLUS(count)=SIGPLUS;
ArraySIGMINUS(count)=SIGMINUS;

end
figure
plot(ArrayT,ArrayY,ArrayT,ArraySIGPLUS,ArrayT,ArraySIGMINUS),grid
title(’Simulation of low-pass filter driven by white noise’)
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xlabel(’Time (S)’)
ylabel(’Y’)
clc
output=[ArrayT’,ArrayY’,ArraySIGPLUS’,ArraySIGMINUS’];
save datfil.txt output -ascii
disp ’simulation finished’

ADJOINTS FOR NOISE-DRIVEN SYSTEMS

In the previous chapter we saw that the method of adjoints could be very useful in
analyzing linear time-varying deterministic systems. We shall now demonstrate
that adjoints can also be of great utility in analyzing linear time-varying
systems driven by white noise [4, 5]. It was shown earlier that the mean square
response of a linear time-varying system driven by white noise is given by

E½ y2ðtÞ� ¼ F

ðt
0
h2ðt; tÞ dt

whereF is the white noise power spectral density and h(t, t) the impulse response
of the linear time-varying system. In this case t is the impulse application time and
t the observation time. The previous section presented a simple example demon-
strating the practical utility of this equation. For time-varying systems, however,
this equation is not as useful because the integration is with respect to the impulse
application time t. As with the deterministic case, this means that many computer
runs would have to be made, each having a different impulse application time, in
order to evaluate the preceding equation.

If we go back to the fundamental relationship between the original and adjoint
systems, we can say that

E½ y2ðtÞ� ¼ F

ðt
0
h�½ðtF � t; tF � tÞ�2 dt

After making the substitution

x ¼ tF � t

dx ¼ �dt

we obtain

E½ y2ðtÞ� ¼ F

ðtF
tF�t

½h�ðx; tF � tÞ�2 dx

If the final time is of interest (t = tF), the preceding equation can be rewritten as

E½ y2ðtFÞ� ¼ F

ðtF
0
½h�ðx; 0Þ�2 dx
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Since the integration is now with respect to the observation time, this new
equation is quite useful. Therefore, we can find the mean square response of a
linear, time-varying system driven by white noise by squaring and integrating
the output of the impulsively driven adjoint system in one computer run!

The benefits of the adjoint approach become even more dramatic when we
consider many white noise inputs to the original system as shown in Fig. 4.11.

As with the deterministic inputs, white noise inputs to the original system
become outputs in the adjoint system. Therefore, by superposition, one adjoint
run yields an exact statistical analysis of the noise-driven system plus a statistical
error budget showing how each white noise error source contributed to the
total performance projection. In Fig. 4.11 the total mean square response is
computed from

E½ y2ðtÞ� ¼ E½ y21ðtÞ� þ E½ y22ðtÞ� þ � � � þ E½ y2NðtÞ�

SHAPING FILTERS AND RANDOM PROCESSES

Thus far we have seen the importance of target maneuver on system performance.
In this section we will show how shaping filters can be used to accurately represent
aircraft evasive maneuvers [6, 7]. The purpose of the shaping filter approach is to
allow us to use efficient and effective means of performance analysis such as the
method of adjoints.

Fig. 4.11 Equivalence between adjoint and original systems for stochastic inputs.
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The concept of shaping filter has been used for many years in the analysis of
physical systems because it allows a system with a random input to be replaced by
an augmented system (the original system plus the shaping filter) excited only by
white noise. An example of this is the replacement of the random telegraph signal
by white noise through a simple lag network. This approach is generally applied to
problems where mean square values of outputs are of prime importance. In such
cases only second-order statistics are important, and rather complex input pro-
cesses can sometimes be represented by very simple shaping filters. This is due
to the fact that random processes that have the same mean and autocorrelation
are mathematically equivalent. This is true even though the associated probability
density functions of the random processes may be quite different. In other words,
a random phenomenon and its shaping filter equivalent are indistinguishable as
far as their second-order statistics are concerned. The concept of shaping filter
can also be applied to the statistical representation of signals with known form
but random starting time. Consider a signal of known form h(t) with random
starting time so that the resultant signal x(t) is given by

xðtÞ ¼ hðt � TÞuðt � TÞ
where the probability density function of T is given by pT(t), and u(t) is the unit
step function. Note that, although h(t) is deterministic, x(t) is random because of
the random starting time. It can be shown that the white-noise-driven shaping
network of Fig. 4.12 has the same mean and autocorrelation functions as those
of the preceding equation. Here we can see that the white noise has a power spec-
tral density equal to the probability density function of the random starting time
and that the inverse Laplace transform of the shaping filter is equal to the
deterministic signal.

The output of the shaping network and the actual random process are equiv-
alent in terms of second-order statistics. If either process is passed through a linear
physical system, the outputs would be indistinguishable if second-order statistics
are being observed (that is, mean square values).

Consider a step target maneuver that has a starting time that is uniformly
distributed over the flight time. Mathematically speaking, the maneuver can be
modeled as a constant signal of magnitude nT, which starts at time T, or

xðtÞ ¼ nTuðt � TÞ

Fig. 4.12 Shaping network
representation of deterministic signal
with random starting time.
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where u(t 2 T ) is a unit step function defined by

uðt � TÞ ¼ 0 for t , T
¼ 1 otherwise

Let us assume that the initiation of the maneuver is equally likely to occur any-
where during the flight. More precisely, we can say that the starting time T is uni-
formly distributed over the flight time tF , with probability density function

pTðtÞ ¼ 1=tF for 0 � t � tF
¼ 0 otherwise

Therefore, the autocorrelation function of this signal with random starting time is
given by

fxxðt1; t2Þ ¼
ð1
�1

xðt1Þxðt2ÞpTðTÞ dT

or

fxxðt1; t2Þ ¼
ðtF
0
nTuðt1 � TÞnTuðt2 � TÞ dT

tF

Assuming that

0 < t1 < t2 < tF

the autocorrelation function simplifies to

fxxðt1; t2Þ ¼
n2T
tF

ðt1
0
dT

It is important to note that the output autocorrelation function of a linear
time-invariant system with impulse response h(t) driven by white noise can be
expressed as

fyyðt1; t2Þ ¼
ðt1
�1

hðt1 � t1Þ
ðt2
�1

hðt2 � t2Þfuuðt1; t2Þ dt1 dt2

The autocorrelation function of the white noise input is

fuuðt1; t2Þ ¼ Fuðt1Þdðt1 � t2Þ
where the spectral density of the white noiseFu is a function of time. Substitution
of the white noise autocorrelation function into the preceding integral equation
eliminates one of the integrals. After some manipulations and assuming t1 , t2,
we obtain

fyyðt1; t2Þ ¼
ðt1
�1

Fuðt1Þhðt1 � t1Þhðt2 � t1Þ dt1
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If the spectral density takes on values of

fuðtÞ ¼ fu 0 � t � tF
¼ 0 otherwise

and we assume that

0 < t1 < t2 < tF

then we can say that

fyyðt1; t2Þ ¼ fu

ðt1
0
hðt1 � t1Þhðt2 � t2Þ dt1

Therefore, we can say that the two different expressions for the autocorrelation
function are equivalent if

Fu ¼ n2T=tF

and

hðtÞ ¼ 1

In summary, a step maneuver of amplitude nT, where starting time is uni-
formly distributed over the flight time tF has the same autocorrelation function
as a linear network with transfer function

HðsÞ ¼ 1
s

driven by white noise with power spectral density

Fu ¼ n2T=tF 0 , t , tF
¼ 0 otherwise

The uniformly dis-
tributed step maneuver
is shown in Fig. 4.13
and its shaping filter
equivalent is shown in
Fig. 4.14.

Fig. 4.13 Step maneuver
with uniformly distributed
starting time.
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EXAMPLE OF A STOCHASTIC
ADJOINT

To show how the adjoint can also be
used to analyze linear systems
driven by stochastic or random dis-
turbances, let us revisit the single-
lag proportional navigation homing loop. However, this time we will consider a
target maneuver with a random starting time (starting time that is uniformly dis-
tributed over the flight time) as the error source. A single-lag proportional navi-
gation homing loop with the stochastic input is shown in Fig. 4.15.

In Fig. 4.15 the target maneuver is a constant from flight to flight (either plus
or minus nT). However, on a given flight its initiation time is equally likely to
occur anywhere during the flight (uniformly distributed over the flight time). A
Monte Carlo simulation of Fig. 4.15 with the random target maneuver appears
in Listing 4.5. We can see from the listing that there are two main loops. The
outer loop varies the flight time from 1 to 10 s in increments of 1 s. The inner
loop performs 50 sets of runs on a particular case. In each of these cases the start-
ing time of the maneuver is chosen from a uniform distribution. After each Monte
Carlo set, the standard deviation and mean of the 50 miss distances are computed
according to the formulas developed in this chapter.

A case was run for the single-time-constant guidance system in which the time
constant was set to 1 s and the effective navigation ratio was set to 3. Fifty-run
Monte Carlo sets for 10 different flight times were run for this single case,
which actually encompassed a total of 500 runs (50� 10). The standard deviation
of the miss for each flight time was calculated and is displayed as a function of
flight time in Fig. 4.16. We can see that the miss distance is small for both
small and large flight times. The miss is small for short flight times because the
miss distance does not have enough time to develop. At the larger flight times

Fig. 4.14 Shaping filter equivalent of
random starting time step maneuver.

Fig. 4.15 Single-lag homing loop with stochastic inputs.
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there is a good chance that the target maneuver initiation time will be at a long
time to go, relative to the guidance system time constant, and will therefore
induce a smaller miss distance.

We have seen in the previous section that the shaping filter equivalent for a
uniformly distributed target maneuver is white noise, with spectral density Fs,
through an integrator. The spectral density of the white noise is related to the
maneuver level and the flight time according to

Fs ¼ n2T
tF

LISTING 4.5 MONTE CARLO SIMULATION OF HOMING LOOP WITH RANDOM
TARGET MANEUVER

% Preallocation
Z=zeros(1,1000);
TF=zeros(1,10);
I=zeros(1,100);
ArrayTF=zeros(1,10);
ArraySIGMA=zeros(1,10);
ArrayXMEAN=zeros(1,10);
count=0;
VC=4000;
XNT=96.6;
VM=3000;
XNP=3;
TAU=1;

Fig. 4.16 Monte Carlo results for uniformly distributed target maneuver.
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RUN=50
for TF=1:10

Z1=0;
for I=1:RUN

SUM=uniform;
TSTART=TF*SUM;
PZ=uniform;
PZ=PZ-.5;
if PZ . 0

COEF=1;
else

COEF=-1;
end;

Y=0;
YD=0;
T=0;
H=.01;
S=0;
XNC=0;
XNL=0;
while T , =(TF - 1e-5)
if T , TSTART

XNT=0;
else

XNT=COEF*96.6;
end;
YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP , =1
if FLAG==1

Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;
STEP=2;

end
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
XNC=XNP*VC*XLAMD;
XNLD=(XNC-XNL)/TAU;
YDD=XNT-XNL;
FLAG=1;
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end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;

end;
Z(I)=Y;
Z1=Z(I)+Z1;
XMEAN=Z1/I;

end;
SIGMA=0;
Z1=0;
for I=1:RUN
Z1=(Z(I)-XMEAN)^2+Z1;
if I==1
SIGMA=0;
else
SIGMA=sqrt(Z1/(I-1));
end
end;
count=count+1;
ArrayTF(count)=TF;
ArraySIGMA(count)=SIGMA;
ArrayXMEAN(count)=XMEAN;

end;
figure
plot(ArrayTF,ArraySIGMA,’c+’)
title(’Shaping filter Monte Carlo results’)
xlabel(’Time’)
ylabel(’Standard Deviation / Mean’)
axis([00,10,00,30])
clc
output=[ArrayTF’,ArraySIGMA’,ArrayXMEAN’];
save datfil.txt output -ascii
disp ’simulation finished’

An adjoint model can be constructed from the original system by following the
rules for constructing stochastic adjoints [4, 5]. The only additional rule for sto-
chastic systems is that all stochastic inputs to the original system must be modeled
as white noise inputs, which then become outputs in the adjoint system. Since the
input to the original system can be modeled as white noise through an integrator,
the adjoint model will reverse the signal flow and square and integrate the output.
The resultant adjoint model is shown in Fig. 4.17. The impulsive input can be
replaced by an initial condition of unity on integrator x3.
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An adjoint simulation of the model in Fig. 4.17 appears in Listing 4.6. The
adjoint program only has to run once to find the standard deviation of the miss
as a function of the flight time.

The adjoint simulation was run using the input parameters shown in
Listing 4.6. The adjoint results for this example are shown in Fig. 4.18. Super-
imposed on the plot are the Monte Carlo results previously generated. We can
see that the adjoint and Monte Carlo results are in close proximity, thus exper-
imentally confirming the shaping filter approach and demonstrating the utility

Fig. 4.17 Adjoint model for stochastic example.

Fig. 4.18 Shaping filter adjoint and Monte Carlo results are in close agreement.
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of stochastic adjoints. One single adjoint run gave results that were the equivalent
of ten 50-run Monte Carlo sets.

LISTING 4.6 ADJOINT MODEL USING SHAPING FILTER APPROACH

count=0;
XNT = 96.6;
XNP = 3;
TAU = 1;
TF = 10;
T=0;
S=0;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0;
X5=0.;
H=.01;
while TP , = (TF - 1e-5)

STEP=1;
FLAG=0;
S=S+H;
X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
while STEP , =1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
TP=TP+H;

end;
X1D=X2;
X2D=X3;
Y1=(X4-X2)/TAU;
TGO=TP+.00001;
X3D=XNP*Y1/TGO;
X4D=-Y1;
X5D=X1*X1;
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FLAG=1;
end;
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
S=S+H;
if S . =.000999

S=0.;
XMUDNT=XNT*sqrt(X5/TGO);
count=count+1;
ArrayTP(count)=TP;
ArrayXMUDNT(count)=XMUDNT;

end;
end
figure
plot(ArrayTP, ArrayXMUDNT),grid
title(’Adjoint model using shaping filter approach’)
xlabel(’Flight Time (S)’)
ylabel(’Miss Dist Standard Deviation (Ft)’)
axis([00,10,00,30])
clc
output=[ArrayTP’,ArrayXMUDNT’];
save datfil.txt output /ascii
disp(’Simulation Complete’)

CLOSED-FORM SOLUTION FOR RANDOM TARGET MANEUVER

If we closely investigate Fig. 4.17 we can see that the miss due to a target maneuver
with uniformly distributed starting time can be found by squaring the sensitivity
due to a step target maneuver and then integrating and taking the square root of
the resultant adjoint signal. If we define the miss due to a step target maneuver as
MNT, the miss due to a uniformly distributed target maneuver can be expressed
mathematically as

MUDNT ¼ nT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
tF

ðtF
0
MNT2 dt

s

where nT is the target maneuver level and tF the flight time. For a single-lag gui-
dance system with an effective navigation ratio of 3, we have already shown in
Chapter 3 that the miss due to a step target maneuver is given by

MNTjN 0¼3 ¼ 0:5t2Fe
�tF=T
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where T is the guidance system time constant. Substitution of the step target man-
euver solution into the expression for the uniformly distributed target maneuver
yields

MUDNT jN 0¼3¼ nT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
tF

ðtF
0
0:25t 4e�2t=T dt

s

After integration by parts and much algebra we obtain the closed-form
expression, valid for an effective navigation ratio of 3, for the uniformly distribu-
ted target maneuver:

MUDNT jN 0¼3¼
nT
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T5

tF
½3� e�2xð2x4 þ 4x3 þ 6x2 þ 6x þ 3Þ�

s

where x is defined as normalized time, or

x ¼ tF
T

Figure 4.19 displays the closed-form solution for the case in which the guidance
system time constant is 1 s. Superimposed on the plot are the previously presented
adjoint results for a uniformly distributed target maneuver. We can see from the
close proximity of the two curves that both solutions are in close agreement.

SUMMARY

Starting from basic definitions of random variables, we have shown how to
simulate random phenomena and properly interpret the simulation results.

Fig. 4.19 Closed-form solution and adjoint simulation results agree.
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Throughout this chapter we have shown two ways of doing problems: the theor-
etical way, which only works under certain circumstances, and simulation, which
is always valid. Numerical examples have been presented that not only demon-
strate that theory and simulation agree but also show how each method offers
new insights. Finally, it was shown how the method of adjoints can be extended
to evaluate system performance in the presence of random disturbances.
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CHAPTER 5

Covariance Analysis and the
Homing Loop

BACKGROUND

Covariance analysis is another useful computerized tool that can be used to
analyze time-varying linear systems driven by random inputs. Covariance analy-
sis, like the adjoint technique, is an exact method of analysis that is restricted to
linear systems. With this method, the covariance matrix of the system state
vector is propagated as a function of time by the direct integration of a nonlinear
matrix differential equation. Exact statistical performance projections of any state
or combination of states as a function of time can be obtained with this technique.
Covariance analysis is quite popular in problems associated with inertial naviga-
tion and optimal estimation. We shall show that the covariance analysis technique
can also be used to get exact statistical performance projections in a missile
guidance system.

THEORY

So far we are accustomed to writing computer programs directly from inspection
of the system block diagram. To apply covariance analysis, we must first change
our method of operation and convert the system block diagram to state space
notation or an equivalent set of first-order differential equations expressed in
matrix form.

The dynamics of any linear system driven by white noise inputs can be con-
verted to the following first-order vector differential equation:

ẋðtÞ ¼ FðtÞxðtÞ þ uðtÞ
where x(t) is the system state vector, F(t) is the system dynamics matrix, and
u(t) is a white noise vector with spectral density matrix Q(t), or

QðtÞ ¼ E½uðtÞuTðtÞ�
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The matrix differential equation for the propagation of the covariance of this
general system is [1, 2]

ẊðtÞ ¼ FðtÞXðtÞ þ ½FðtÞXðtÞ�T þ QðtÞ
where the covariance matrix X(t) is related to the state x(t) according to

XðtÞ ¼ E½xðtÞxTðtÞ�
The diagonal elements of the covariance matrix represent the variances of the state
variables if the disturbance processes are zero mean. The off-diagonal elements of
the covariance matrix represent the degree of correlation between the various
state variables.

LOW-PASS FILTER EXAMPLE

To demonstrate the application of covariance analysis, let us revisit the example
of Chapter 4 in which a low-pass filter with a white noise input has been
redrawn in block diagram form as shown in Fig. 5.1. In this example the input
us is white noise with power spectral density FS, T is the time constant of the
low-pass filter, and x is the filter output. We want to find the variance of x as a
function of time.

By inspection of Fig. 5.1, we can write the first-order differential equation of
the low-pass filter in state space form as

_x ¼ � x
T
þ uS

T

Therefore, for this example, the system dynamic matrix and spectral density
matrix are time-invariant scalars and can be written by inspection of the preceding
differential equation as

F ¼ �1
T

Q ¼ FS

T2

The differential equation for the propagation of the covariance simplifies to the
linear equation

Ẋ ¼ �2
T

X þFS

T2

Fig. 5.1 Low-pass filter with
white noise input.
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The solution to the preceding linear covariance analysis differential equation can
be found, using standard differential equation solution techniques, to be

X ¼ FS

2T
½1� e�2t=T �

Because X represents the mean square value of x, we recognize that the preceding
answer is identical to the answer obtained in Chapter 4 using the impulse
response technique.

NUMERICAL CONSIDERATIONS

In all of the systems simulated in the text, the second-order Runge–Kutta numeri-
cal integration method is used to solve the necessary differential equations.
Although more accurate numerical integration techniques exist, the second-order
Runge–Kutta technique is adequate for getting the correct answers. When the
equations associated with covariance analysis are solved numerically, higher
order integration methods are required to get the desired accuracy.

Let us again consider the second-order network simulation of Chapter 1 (that
is, Fig. 1.1 and Listing 1.1) in which the second-order Runge–Kutta numerical
integration technique was used. In that simulation the integration step size was
made very small (h = 0.001 s). If we arbitrarily increase the integration step
size, we can see from Fig. 5.2 that the accuracy of the answers begin to degrade.

It is apparent from Fig. 5.2 that h = 0.01 s is about the largest the integration
step size can be made without degrading accuracy. This is not surprising because
the natural frequency of the second-order system in this example is 20 rad/s. This
means that the approximate time constant of the system under consideration
is 0.05 s (1/20 = 0.05). With second-order Runge–Kutta numerical integration

Fig. 5.2 Increasing integration step size eventually degrades accuracy.
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we must make the integration interval at least five times smaller than the natural
frequency of the network in order to get accurate answers. Making the integration
step size equal to or larger than 0.02 s means that we will be missing the effect of
the system’s high bandwidth.

Better accuracy can be achieved with the fourth-order Runge–Kutta numer-
ical integration technique [3]. Given a first-order differential equation of the
form

_x ¼ fðx; tÞ
where t is time, we want to find a numerical integration recursive relationship for
x as a function of time. With the fourth-order Runge–Kutta numerical integration
technique the value of x at the next integration interval h is given by

xkþ1 ¼ xk þ h
6
½K0 þ 2K1 þ 2K2 þ K3�

where

K0 ¼ fðxk; tkÞ
K1 ¼ fðxk þ 0:5K0; t þ 0:5hÞ
K2 ¼ fðxk þ 0:5K1; t þ 0:5hÞ
K3 ¼ fðxk þ K2; t þ hÞ

From the preceding expressions we can see that the new value of x is simply the
old value of x plus terms proportional to the derivative evaluated at various times
between t and tþ h. Using the relationships for the fourth-order Runge–Kutta
integration technique, we can write a program to simulate the second-order

Fig. 5.3 Fourth-order Runge–Kutta integration yields adequate accuracy with larger
integration step sizes.
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network as shown in Listing 5.1. We can see that the structure of this program is
identical to the one of Listing 1.1 (that is, differential equations appear just before
the FLAG ¼ 1 statement) except extra steps have been added to the integration
procedure.

Figure 5.3 shows that when we simulate the second-order network with
Listing 5.1 using fourth-order rather than second-order Runge–Kutta numerical
integration we can use a larger integration step size to get the same accuracy. In
this example, a step size of 0.02 s was adequate for getting the correct solution.

HOMING LOOP EXAMPLE

To demonstrate the utility of covariance analysis for a more relevant example, let
us revisit the single-lag homing loop example of Chapter 4 in which the random
error source is a uniformly distributed target maneuver. The homing loop model
of Fig. 4.15 is redrawn in Fig. 5.4 for convenience. In Fig. 5.4 the uniformly
distributed target maneuver has been replaced by its shaping filter equivalent,
which is white noise through an integrator. The spectral density of the white
noise input us is given by FS, which was shown in Chapter 4 to be

FS ¼ n2T
tF

LISTING 5.1 SIMULATION OF SECOND-ORDER SYSTEM WITH FOURTH-ORDER
RUNGE–KUTTA INTEGRATION TECHNIQUE

% Preallocation
clear
K0=zeros([1,6]);
K1=zeros([1,6]);
K2=zeros([1,6]);

Fig. 5.4 Single-lag homing loop with random target maneuver.
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K3=zeros([1,6]);
count=0;
XIN=1.;
W=20.;
Y=0.;
YD=0.;
T=0.;
H=.01;
S=0.;
while ~(T .= 1.)

S=S+H;
YOLD=Y;
YDOLD=YD;
STEP=1;
while ( (STEP == 1) | (STEP == 2) | (STEP == 3))
YDD=W*XIN-W*W*Y;
if (STEP == 1)

STEP=2;
K0(1,1)=YD;
K0(1,2)=YDD;
TNEW=T+.5*H;
Y=YOLD+.5.*H.*K0(1,1);
YD=YDOLD+.5.*H.*K0(1,2);

elseif (STEP ==2)
STEP=3;
K1(1,1)=YD;
K1(1,2)=YDD;
TNEW=T+.5*H;
Y=YOLD+.5.*H.*K1(1,1);
YD=YDOLD+.5.*H.*K1(1,2);

else
STEP=4;
K2(1,1)=YD;
K2(1,2)=YDD;
TNEW=T+H;
Y=YOLD+H.*K2(1,1);
YD=YDOLD+H.*K2(1,2);

end
end
YDD=W*XIN-W*W*Y;
K3(1,1)=YD;
K3(1,2)=YDD;
T=TNEW;
Y=YOLD+H.*(K0(1,1)+2.*(K1(1,1)+K2(1,1))+K3(1,1))./6;
YD=YDOLD+H.*(K0(1,2)+2.*(K1(1,2)+K2(1,2))+K3(1,2))./6;
count=count+1;
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ArrayT(count)=T;
ArrayY(count)=Y;

end
figure
plot(ArrayT,ArrayY)
xlabel(’Time (s) ’)
ylabel(’Y’)
title(’Forth-order Runge-Kutta: Second Order Network’)
output=[ArrayT’, ArrayY’];
save datfil.txt output /ascii
disp ’simulation finished’

where nT is the magnitude of the target maneuver and tF is the flight time over which the
maneuver is equally likely to occur.

To apply covariance analysis to the homing loop of Fig. 5.4, we must convert
this block diagram to state space form. To perform the conversion, the homing
loop equations must first be expressed as a set of first-order linear differential
equations or

€y ¼ €yT � N 0Vc _D ¼ €yT � N 0Vc

T
y

VcðtF � tÞ � D

� �
€y_T ¼ us

_D ¼ 1
T

y
VcðtF � tÞ � D

� �

Since the preceding set of first-order differential equations are functions of the
states, they can be written in state space form by inspection as

_y

€y

€y_T
_D

2
666664

3
777775 ¼

0 1 0 0
�N 0

TðtF � tÞ 0 1
N 0Vc

T
0 0 0 0
1

TVcðtF � tÞ 0 0
�1
T

2
666664

3
777775

y

_y

€yT

D

2
666664

3
777775þ

0

0

uS

0

2
666664

3
777775

By comparing the preceding matrix differential equation with the generalized state
space equation we can see that the state vector for this example is

x ¼

y

_y

€yT
D

2
66664

3
77775
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and the system dynamic matrix is given by

F ¼

0 1 0 0
�N 0

TðtF � tÞ 0 1
N 0Vc

T
0 0 0 0
1

TVcðtF � tÞ 0 0
�1
T

2
666664

3
777775

From the homing loop state space equation we can also see that u(t) is

u ¼
0
0
uS
0

2
664

3
775

and therefore the spectral density matrix Q(t) becomes

Q ¼
0 0 0 0
0 0 0 0
0 0 FS 0
0 0 0 0

2
664

3
775

where FS has been previously defined.
Integration of the covariance analysis nonlinear matrix differential equation

yields statistical information for all of the states. For this homing loop example,
the standard deviation of the relative trajectory y can be found by taking the
square root of the first diagonal element of the covariance matrix X or

syðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1; 1Þ

p
The source code listing of the homing loop covariance analysis program appears
in Listing 5.2. We can see from the listing that the fourth-order Runge–Kutta
integration is used to get the necessary accuracy. From Listing 5.2 we can see
that the only error source in the guidance system is a 3-g uniformly distributed
target maneuver.

LISTING 5.2 HOMING LOOP COVARIANCE ANALYSIS PROGRAM

clear
F=zeros([4,4]);
X=zeros([4,4]);
XOLD=zeros([4,4]);
Q=zeros([4,4]);
K0=zeros([4,4]);
K1=zeros([4,4]);
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K2=zeros([4,4]);
K3=zeros([4,4]);
XD=zeros([4,4]);
A=zeros([1,4]);
AXAT=zeros([1,1]);
count=0;
T=0.;
TNEW=T;
S=0.;
H=.01;
XNP=3.;
TAU=1.;
XNT=96.6;
VC=4000.;
TF=10.;
TGO=TF-T+.00001;
PHIS=XNT*XNT/TF;
F(1,2)=1.;
F(2,1)=-XNP/(TAU*TGO);
F(2,3)=1.;
F(2,4)=XNP*VC/TAU;
F(4,1)=1./(TAU*VC*TGO);
F(4,4)=-1./TAU;
Q(3,3)=PHIS;
while ~(T .= (TF-.0001))

S=S+H;
XOLD=X;
STEP=1;
while ( (STEP == 1) | (STEP == 2) | (STEP == 3))

TGO=TF-TNEW+.00001;
F(2,1)=-XNP/(TAU*TGO);
F(4,1)=1./(TAU*VC*TGO);
XD=(F*X)+(F*X)’+Q;
if (STEP == 1)

STEP=2;
K0=XD;
TNEW=T+.5*H;
X=XOLD+.5.*H.*K0;

elseif (STEP ==2)
STEP=3;
K1=XD;
TNEW=T+.5*H;
X=XOLD+.5.*H.*K1;

else
STEP=4;
K2=XD;
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TNEW=T+H;
X=XOLD+H.*K2;

end
end
TGO=TF-TNEW+.00001;
F(2,1)=-XNP/(TAU*TGO);
F(4,1)=1./(TAU*VC*TGO);
XD=(F*X)+(F*X)’+Q;
K3=XD;
T=TNEW;
X=XOLD+H.*(K0+2.*(K1+K2)+K3)./6;
if S . =.09999

S=0.;
A(1,1)=XNP/(TAU*TGO);
A(1,2)=0.;
A(1,3)=0.;
A(1,4)=-XNP*VC/TAU;
AXAT=A*X*A’;
SIGY=sqrt(X(1,1));
SIGNL=sqrt(AXAT(1,1));
count=count+1;
ArrayT(count)=T;
ArraySIGY(count)=SIGY;
ArraySIGNLG(count)=SIGNL/32.2;

end
end
figure
plot(ArrayT,ArraySIGY)
xlabel(’Time (s) ’)
ylabel(’Standard Deviation of Relative Position (Ft)’)
figure
plot(ArrayT,ArraySIGNLG)
xlabel(’Time (s) ’)
ylabel(’Standard Deviation of Acceleration (G)’)
axis([0 10 0 20])
clc
output=[ArrayT’, ArraySIGY’,ArraySIGNLG’];
save datfil.txt output /ascii
disp ’simulation finished’
SIGY

The homing loop covariance analysis program of Listing 5.2 was run, and
Fig. 5.5 presents the resultant standard deviation of the relative separation
between the missile and target [that is, square root of first diagonal element of
covariance matrix represents sy(t)] for the entire 10-s flight. At the end of the
flight, the relative separation between the missile and target is the miss distance

98 TACTICAL AND STRATEGIC MISSILE GUIDANCE



[that is, sMiss = sy(tF)]. In this example the covariance analysis program indicates
that the standard deviation of the miss distance is 13.3 ft, which is identical to
the adjoint results of Chapter 4 (see Fig. 4.18). Unlike the adjoint technique,
covariance analysis does not provide miss distance error budget information
for all different flight times in a single computer run. However, as can be seen
from Fig. 5.5, covariance analysis does provide relative trajectory information at
all times for a given flight time. If many random error sources are present,
one covariance analysis computer run yields a total statistical performance projec-
tion. If learning how each error source contributed to the total performance is
desired, additional computer runs must be made—each one run with one error
source at a time!

Covariance analysis also has the capability of providing information concern-
ing other quantities in the same computer run. For example, covariance analysis
could also show us how the standard deviation of the missile acceleration varies
with time in the same computer run. However, we must first express the
missile acceleration as a function of the states. From Fig. 5.4 we can see that
the missile acceleration is related to the states according to

nL ¼ N 0Vc

T
y

VcðtF � tÞ � D

� �
or more concisely, in matrix form we can say that

nL ¼ Ax

where x is the system state vector, and for this example A is given by

A ¼ N 0

TðtF � tÞ 0 0
�N 0Vc

T

� �

Fig. 5.5 Covariance analysis miss distance results agree with adjoint.
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Therefore the variance of the missile acceleration is given by

E½nLnTL � ¼ s 2
nL ¼ AXAT

where X is the covariance matrix and the standard deviation of the acceleration is
simply the square root of the preceding expression. Figure 5.6 displays the resul-
tant missile acceleration profile, using the preceding expression in the covariance
analysis program, for the entire flight. We can see that the standard deviation of
the missile acceleration is monotonically increasing for the 10-s flight. If we make
the Gaussian assumption, we can infer that 68% of the time 15 g (that is, 483 ft/s2)
or 5 times the acceleration of the target is required to avoid acceleration satur-
ation. In more pessimistic terms we can also say that if the missile only has a
15-g capability there is a 32% probability that the missile will acceleration saturate
for this example. This example demonstrates that although covariance analysis
does not provide all of the information of the adjoint, it does provide extra
useful information that can be used to access system performance. In addition,
the covariance analysis technique can be used to provide an independent check
of the accuracy of an adjoint simulation.

ACCELERATION ADJOINT

We state in Chapter 3 that the impulse response of the original system and adjoint
system are related according to

h�ðtF � tI ; tF � toÞ ¼ hðto; tIÞ
where h denotes the impulse responses of the original system and h� is the impulse
response of the adjoint system. This important relationship means that putting an

Fig. 5.6 Covariance analysis also provides acceleration profile information.
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impulse into the original system at time tI and observing the output at time to is
identical to putting an impulse into the adjoint system at time tF2 to and observ-
ing the output at time tF2 tI, where tF is the final time or flight time. In all of the
adjoint applications discussed so far, the observation time was always the final
time tF since we were only interested in the miss distance. If all disturbances
occur at time zero in the original system but the observation time is not the
final time, the fundamental adjoint relationship simplifies to

h�ðtF ; tF � toÞ ¼ hðto; 0Þ

The preceding relationship means that applying an impulse to the original system
at time zero and observing the output at time t0 is equivalent to initiating the
impulse at time tF2 to in the adjoint system and observing the output at
time tF. In other words, if we would like to develop other types of adjoints it is
only necessary to change the impulse application time and the location of the
impulse application. The adjoint block diagram remains unchanged!

Figure 5.7 is the adjoint block diagram of the single-lag homing loop of
Fig. 5.4. This adjoint diagram is identical to Fig. 4.17 (adjoint model in Chapter 4)
except that it is noted that certain initial conditions are used if a miss distance
adjoint is desired and other initial conditions are used for an acceleration
adjoint. If a miss distance adjoint is being run, an initial condition of unity is

Fig. 5.7 Adjoint model for miss distance and acceleration.
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applied at time zero on the x3 integrator. If an acceleration adjoint is required,
initial conditions are applied at time tF2 to to the x3 and x4 integrators. In this
case time tF2 to corresponds to the time to go until intercept in which we
desire to observe the acceleration in the original system. In other words, if we
desire to observe acceleration in the original system at time 8 s for a 10-s flight,
that is the same as observing the acceleration at 2 s to go (that is, 10 2 8 = 2).
Therefore the impulse (or initial conditions on appropriate integrators) is
applied at time 2 s in the adjoint system and the output is observed at 10 s in
the adjoint system. Changing the observation time in the adjoint system corre-
sponds to observing acceleration at 2 s to go for different flight times in the
original system.

The source code listing for the adjoint program, which can be used for both
miss distance and acceleration computation, appears in Listing 5.3. In this
program TINT represents the time to go in the original system in which we wish
to observe the quantity of interest. If we want to compute miss distance, MISS
should be set to 1 and TINT set to zero. For an acceleration adjoint, MISS should
be set to 0 and TINT set to a number representing the time to go at which we
want to observe the acceleration. The adjoint program of Listing 5.3 is set to
run as an acceleration adjoint in which acceleration levels correspond to 0.5 s
to go in the original system (TINT = 0.5).

The preceding acceleration adjoint program was run for values of observation
time in the original system corresponding to 0.5, 1, and 2 s to go (TINT = 0.5, 1, 2),
and the results for the three adjoint runs are displayed in Fig. 5.8. We can interpret
the abscissa of the plot as either adjoint time or flight time. The curve representing
acceleration at 0.5 s to go, TINT = 0.5 (labeled tgo = 0.5), indicates that the standard
deviation of the missile acceleration is 12 g at 0.5 s to go for a 10-s flight, approxi-
mately 12 g at 0.5 s to go for a 6-s flight, and approximately 4 g for a 2-s flight. The
missile acceleration values for a 10-s flight at observation times to go of 0.5, 1, and

Fig. 5.8 Adjoint and covariance analysis acceleration results agree.
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2 s (12 g, 9 g, and 6.1 g) respectively agree exactly with the single run covariance
analysis results of Fig. 5.6.

LISTING 5.3 ACCELERATION AND MISS DISTANCE ADJOINT PROGRAM

count=0;
XNT=96.6;
XNP=3.;
TAU=1.;
TF=10.;
T=0.;
S=0.;
TINT=.5;
MISS=0;
TP=T+.00001+TINT;
X1=0;
X2=0;
X5=0.;
if MISS==1

X3=1.;
X4=0.;

else
X3=XNP/(TAU*TINT);
X4=-1./TAU;

end
H=.01;
while TP,=(TF - 1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
TP=TP+H;
STEP=2;

end
X1D=X2;
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X2D=X3;
Y1=(X4-X2)/TAU;
TGO=TP+.00001;
X3D=XNP*Y1/TGO;
X4D=-Y1;
X5D=X1*X1;
FLAG=1;

end;
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
S=S+H;
if S . =.099999
S=0.;
XMUDNT=XNT*sqrt(X5/TGO);
if MISS==0

XMUDNT=XMUDNT/32.2;
end
count=count+1;
ArrayTP(count)=TP;
ArrayXMUDNT(count)=XMUDNT;

end
end
%figure
plot(ArrayTP,ArrayXMUDNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Acceleration (G) ’)
clc
output=[ArrayTP’,ArrayXMUDNT’];
save datfil.txt output /ascii
disp ’simulation finished’

SUMMARY

In this chapter we have shown how the covariance analysis technique can be
applied to a missile guidance system. The fourth-order Runge–Kutta numerical
integration technique was required in order to obtain performance projections
of the desired accuracy. Although covariance analysis techniques do not yield
error budget information as does the adjoint technique, exact performance pro-
jects can be obtained for all quantities of interest in a single run. It was also
shown how the adjoint technique could be extended to yield acceleration as
well as miss distance information.
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CHAPTER 6

Proportional Navigation and
Miss Distance

INTRODUCTION

The relationship between proportional navigation and miss distance will be
investigated more extensively in this chapter. First we will demonstrate, via
numerical examples, that it is important to have an accurate guidance system
model in order to get performance projections that are meaningful and not
overly optimistic. Normalized design curves will be presented that allow an
analyst to rapidly predict system behavior given a minimum of information.
Curves of this type are invaluable in preliminary system design. The influence
of optimal target maneuvers on system performance will be evaluated to highlight
potential guidance system weaknesses. Finally, the influence of saturation and
parasitic effects will be demonstrated to help the designer place realistic bounds
on achievable system performance.

SYSTEM ORDER [1]

Thus far, the work presented has concerned itself with either a zero- or single-lag
guidance system. We have seen that, if the flight time is not significantly larger
than the guidance system time constant, then the difference between the perform-
ance of a zero- and single-lag guidance system can be significant. Both the single-
and zero-lag guidance systems are convenient analytical models but do not quite
match reality. It is important to determine if a higher-order guidance system rep-
resentation would influence system performance. To separate time constant and
system order effects, it is convenient to use a binomial representation of the gui-
dance system:

nL
l̇

¼ ðN 0VcÞ
�

1þ sT
n

� �n� �
In the preceding representation, T is the effective guidance system time constant
and n the system order. If n ¼ 1, then the binomial expansion reduces to the

107



single-lag guidance system, which we have already previously studied. This
particular form of the binomial representation is useful, although not
especially realistic, because an expansion of the guidance system denominator
always yields

1þ sT
n

� �n

¼ 1þ sT þ � � �

which means that T is always the approximate time constant of the guidance
system, regardless of system order.

Figure 6.1 shows how the miss distance due to a 3-g target maneuver varies
with flight time and system order for a binomial guidance system in which the
effective navigation ratio is 4 and the effective guidance system time constant is
1s. We can see that the performance projections resulting from a single-lag gui-
dance system model are a serious underestimate of the influence of target maneu-
ver on miss when the flight time is not an order of magnitude greater than the
guidance system time constant. The importance of system order and its influence
on system performance becomes less important as system order increases. The
experiment conveys the importance of accurately modeling the guidance system
(which is generally not a binomial) under consideration if accurate performance
projections are required.

An experiment was also conducted to determine if, in the presence of guidance
system dynamics, the linearized model of the homing loop still gives accurate per-
formance projections. Fifth-order binomial guidance system models were
included in both the linearized and nonlinear engagement simulations. Cases
were run for both simulations in the case of a 3-g target maneuver disturbance
for various flight times, and the resultant miss distances were monitored.

Fig. 6.1 System order has a profound influence on system performance.
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Figure 6.2 shows that the lin-
earized model of the homing
loop gives very accurate
performance projections.
Thus, we can feel confident
in using our linearized gui-

dance system model for studies involving a binomial representation of the gui-
dance system.

Normally a missile guidance system is represented by n different time con-
stants for an n-state system. If the time constants are widely separated, then the
slowest time constant will usually dictate system performance. If the time con-
stants are closely spaced, one must evaluate the guidance system to get accurate
performance projections.

DESIGN RELATIONSHIPS

We have just seen that target maneuver can play a major role in determining
missile system performance. Target maneuver can induce very large miss
distances if the effective guidance time constant is too large or if the flight time
is very short. In addition, we have seen in Chapter 2 that target maneuver
induces large missile acceleration levels. This may lead to acceleration saturation,
which will significantly further increase the induced miss distance. The purpose of
this section is to quantify the influence of target maneuver on system performance
in a form that will be of value to an analyst in preliminary system design.

In the previous sec-
tion we established that
the linearized model of
the guidance system gave
accurate performance pro-
jections in terms of miss
distance induced by target
maneuver. Performance

Fig. 6.2 Linearized guidance
system model gives very
accurate performance
projections.

Fig. 6.3 One adjoint run
gives the same result as
many runs with nonlinear
engagement simulation.
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projections were obtained by running both the linear and nonlinear engagement
simulation for many times of flight, and the resultant data were plotted. The same
results could have been obtained by making one adjoint run as shown in Fig. 6.3.

In Chapter 3 a closed-form solution was developed for the miss distance
induced by target maneuver in a single time constant representation of the gui-
dance system. Although the miss distance formula will change for varying effec-
tive navigation ratios and canonic system form and order, the normalization for
miss due to target maneuver will be the same. In this section we will use the
method of adjoints to develop design curves that may be of use in preliminary
system sizing. We will choose a guidance system form that has only one par-
ameter: the guidance system time constant.

The model to be used for the development of normalized design curves is the
fifth-order binomial proportional navigation system. This guidance system, which
is depicted in Fig. 6.4, has guidance system transfer function

nL
l

¼ ðN 0VcsÞ
�

1þ sT
5

� �5� �

where T is the guidance system time constant. In this canonic model, one time
constant represents the seeker, another represents the noise filter, and the three
time constants represents the flight-control system. Hopefully, the simplicity of
this model will shed some light on fundamental issues and be of value for other
guidance system forms.

Figure 6.5 presents the adjoint model of the fifth-order binomial guidance
system. The adjoint model consists of three outputs that are related to three
input disturbances in the original system. The miss due to a step target maneuver
is represented by MNT, the miss due to a ramp target maneuver is represented
by MNTD, and the miss due to a parabolic maneuver is denoted MNTDD. In the
figure each integrator output is denoted by variables x1 to x10. The impulse

Fig. 6.4 Fifth-order binomial guidance system.
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needed to start a miss distance adjoint is represented by a unity initial condition
on integrator x3.

An adjoint simulation can be derived from the model of Fig. 6.5. Listing 6.1
presents a MATLAB adjoint program of this fifth-order binomial guidance
system. We can see from the listing that the nominal value of the target maneuver
is 1g, the value of target jerk XNTD is 1 g/s, and the value of target yank XNTDD is
1g/s2. As in our other simulations, the differential equations describing the
adjoint system can be found before the FLAG=1 statement. All integrator initial
conditions are zero, except for integrator x3. We can see from the listing that
this integrator has a unity initial condition in order to make a miss distance
adjoint. We can also see from the listing that a small number is added to
adjoint time so that we can avoid a division by zero. This is a practical way of
applying L’Hopital’s rule.

The adjoint program is set up to generate normalized results by choosing the
guidance system time constant TAU to be unity and the step target maneuver dis-
turbance XNT to be 1 g or 32.2 ft/s2. The value of closing velocity is not important,
as there is a cancellation of this term in the guidance loop. Normalized adjoint
results can be generated by running the program once for a value of unity gui-
dance system time constant. The normalization factors, derived in Chapter 3
for a single-lag guidance system, are also valid for the fifth-order binomial gui-
dance system. Therefore, the adjoint program only has to be rerun for each effec-
tive navigation ratio XNP. For example, Fig. 6.6 presents the normalized system
response to a step in target acceleration. The abscissa can be interpreted as

Fig. 6.5 Adjoint of fifth-order binomial guidance system.
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either normalized time of flight for a step maneuver occurring at the beginning of
flight or the normalized time to go at which the disturbance occurs. We can see
from Fig. 6.6 that for long normalized flight times the miss approaches zero
and for small normalized flight times the miss can be quite large. Increasing the
effective navigation ratio tends to reduce the miss for small normalized flight
times and increases the miss at the larger normalized flight times.

LISTING 6.1 ADJOINT OF FIFTH-ORDER BINOMIAL GUIDANCE SYSTEM

XNT=32.2;
XNP=3.;
TAU=1.;
TF=10.;
VC=4000.;
XNTD=32.2;
XNTDD=32.2;
T=0.;
S=0.;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0;
X5=0.;
X6=0.;
X7=0.;
X8=0.;
X9=0.;
X10=0.;

Fig. 6.6 Normalized miss due to step target maneuver.
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H=.01;
n=0.;
while TP,=(TF-1e-5)
X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
X7OLD=X7;
X8OLD=X8;
X9OLD=X9;
X10OLD=X10;
STEP=1;
FLAG=0;
while STEP,=1
if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
X7=X7+H*X7D;
X8=X8+H*X8D;
X9=X9+H*X9D;
X10=X10+H*X10D;
TP=TP+H;

end
X1D=X2;
X2D=X3;
Y1=5.*(5.*X5/TAU+X4)/TAU;
TGO=TP+.00001;
X3D=Y1/(VC*TGO);
X4D=-Y1;
X5D=-5.*X5/TAU+5.*X6*XNP*VC/TAU;
X6D=-5.*X6/TAU+5.*X7/TAU;
X7D=-5.*X7/TAU+5.*X8/TAU;
X8D=-5.*X8/TAU-X2;
X9D=X1;
X10D=X9;
FLAG=1;

end
FLAG=0;
X1=.5*(X1OLD+X1+H*X1D);
X2=.5*(X2OLD+X2+H*X2D);
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X3=.5*(X3OLD+X3+H*X3D);
X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);
X6=.5*(X6OLD+X6+H*X6D);
X7=.5*(X7OLD+X7+H*X7D);
X8=.5*(X8OLD+X8+H*X8D);
X9=.5*(X9OLD+X9+H*X9D);
X10=.5*(X10OLD+X10+H*X10D);
S=S+H;
if S.=.0999
S=0.;
n=n+1;
ArrayTP(n)=TP;
ArrayXMNT(n)=XNT*X1;
ArrayXMNTD(n)=XNTD*X9;
ArrayXMNTDD(n)=XNTDD*X10;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Normalized Flight Time (Sec)’)
ylabel(’Missile Miss Due To Step Maneuver(Ft/G-Sec^2)’)
figure
plot(ArrayTP,ArrayXMNTD),grid
xlabel(’Normalized Flight Time (Sec)’)
ylabel(’Missile Miss Due To Ramp Maneuver(Ft/G-Sec^3/S)’)
figure
plot(ArrayTP,ArrayXMNTDD),grid
xlabel(’Normalized Flight Time (Sec)’)
ylabel(’Missile Miss Due To Parabolic Maneuver(Ft/G-Sec^4/S^2)’)
clc
output=[ArrayTP’,ArrayXMNT’,ArrayXMNTD’,ArrayXMNTD’];
save datfil.txt output -ascii
disp ’simulation finished’

To illustrate the use of the normalized miss distance results of Fig. 6.6, let us
consider a numerical example. If the guidance time constant is 0.5 s, and the time
of flight is 2.5 s, then the normalized flight time is 5, or

tF=T ¼ 2:5=0:5 ¼ 5

For an effective navigation ratio of 3, the normalized miss can be read from
Fig. 6.6 as 12, or

Miss
T2nT

¼ 12

114 TACTICAL AND STRATEGIC MISSILE GUIDANCE



To compute the actual miss distance in this example, we must assume a target
maneuver level nT. With a 4-g maneuver level the actual miss distance becomes

Miss ¼ 12T2nT ¼ 12 � 0:52 � 4 ¼ 12 ft

Increasing the guidance system time constant can substantially influence the
miss distance. For example, if we increase the guidance system time constant
from 0.5 s to 1 s, the normalized flight time becomes

tF=T ¼ 2:5=1 ¼ 2:5

Keeping the effective navigation ratio to 3 yields a new normalized miss of
approximately 42, or

Miss

T2nT
¼ 42

which means that for a 4-g maneuver the actual miss is

Miss ¼ 42T2nT ¼ 42 � 12 � 4 ¼ 168 ft

In other words, for this case doubling the guidance system time constant increased
the miss distance by more than an order of magnitude!

By integrating the miss due to a step target maneuver in the adjoint program,
we can also find the normalized miss due to a ramp maneuver. Figure 6.7 presents
normalized miss distance results for a ramp maneuver disturbance. Again, the
abscissa has the same interpretation as before. Here we can see that the effective
navigation ratio must be greater than 3 for the miss to approach zero for long
flight times. This means that, if the actual maneuver is a ramp, we need an effec-
tive navigation ratio of more than 3 to hit the target. In addition, we can see from

Fig. 6.7 Normalized miss due to ramp target maneuver.
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Fig. 6.7 that the normalization on the ordinate is different from that in the case of
a step target maneuver.

If we had a ramp maneuver that reached the 4-g level in 2.5 s, then its accel-
eration rate would be

rT ¼ nT=tF ¼ 4=2:5 ¼ 1:6 g=s

With the same inputs as before (that is, T = 0.5 s), we can read the normalized
miss from Fig. 6.7 as

Miss
T3rT

¼ 120

Therefore, the actual miss distance is

Miss ¼ 120T3rT ¼ 120 � 0:53 � 1:6 ¼ 24 ft

We can see that, although the ramp maneuver only reaches the 4-g level by the end
of the flight, its influence on miss distance, for this example, is much greater than
that of the step maneuver. Increasing the effective navigation ratio to 4 reduces the
normalized miss to

Miss
T3rT

¼ 40

which reduces the actual miss to

Miss ¼ 40 � 0:53 � 1:6 ¼ 8 ft

This numerical example illustrates the need for larger effective navigation ratios in
a proportional navigation guidance system for nonconstant target maneuvers.

Integrating the adjoint ramp maneuver output yields the miss due to a para-
bolic maneuver. Figure 6.8 presents the normalized miss distance induced by a
parabolic target maneuver. Here we can see that an effective navigation ratio of
5 is required for the miss to go to zero for long flight times.

For consistency, let us consider a case in which all numerical values are related
to the previous cases considered. If the parabolic maneuver reaches the 4-g level in
2.5 s, the acceleration jerk will be

pT ¼ nT=t
2 ¼ 4=2:52 ¼ 0:64 g=s2

For the same inputs as before, the miss for a navigation ratio of 3 becomes

MissjN 00¼3¼ 300T4pT ¼ 300 � 0:54 � 0:64 ¼ 12 ft

Increasing the navigation ratio reduces the miss, as we can see from

MissjN 0¼4 ¼ 150 � 0:54 � 0:64 ¼ 6 ft

MissjN 0¼5 ¼ 75 � 0:54 � 0:64 ¼ 3 ft
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In summary, we can say that increasing the effective navigation ratio and
decreasing the guidance system time constant work in the direction of reducing
the miss due to target maneuver. We shall see in Chapter 18 that increasing the
navigation ratio also increases the miss due to noise and parasitic effects. Variable
maneuver levels such as ramps and parabolas may cause more miss than constant
maneuvers because the navigation ratio may not be set at a high enough level.

OPTIMAL TARGET EVASIVE MANEUVERS

We have seen that the effective navigation ratio has a strong influence on missile
guidance system performance against all types of target maneuvers. Let us
consider the influence of step target maneuver on a fifth-order binomial
guidance system in more detail [2–6]. From a target’s point of view an optimal
maneuver is one that induces the most miss distance. Figure 6.9 shows that,
when the effective navigation ratio is 3, the normalized miss distance curve has
a maxima at a normalized flight time of 2.5. Since flight time and time to go
are interchangeable for this system, we can interpret the abscissa of Fig. 6.9
as normalized time to go. Therefore, as shown in Fig. 6.9, the target can induce
the most miss distance by first executing +nT g (normalized time to go is large)
and then rolling 180 deg at a normalized time to go of 2.5 so that the target
will be executing 2nT g. As far as the missile is concerned, the target appears
to be executing a maneuver of magnitude 2nT! The optimality of this maneuver
is proven mathematically in [2] using a combination of optimal control theory
and adjoint theory.

Fig. 6.8 Normalized miss due to parabolic target maneuver.
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We can see from Fig. 6.9 that the induced miss distance caused by this optimal
maneuver will be

Missjopt;N 0¼3¼ 41:4 � ð2nTÞT2 ¼ 82:8T2nT

For a maneuver level of 4 g and a guidance system time constant of 0.5 s, the
largest miss distance the target maneuver can induce for an effective navigation
ratio of 3 is

Missjopt;N 0¼3¼ 82:8 � 0:52 � 4 ¼ 82:8 ft

This miss distance is considerably larger than 12 ft, which was previously obtained
with a step target maneuver occurring at a normalized time to go of 5 s.

If the effective navigation ratio is 4, the miss response has maxima indicated
in Fig. 6.10. Therefore, in this case, the optimal maneuver policy is for the target
to begin with a maneuver level of –nT g until tgo/T ¼ 5, then rolling 180 deg in
order to execute +nT g and then finally at tgo/T ¼ 2, rolling another 180 deg in
order to execute 2nT g. We can see from Fig. 6.10 that the induced miss in this
case will be

Missjopt;N 0¼4¼ ð19:1þ 29:8Þ � ð2nTÞT2 ¼ 97:8T2nT

If the navigation ratio is 5, the miss response has three maxima, as shown in
Fig. 6.11. The optimal maneuver strategy is superimposed on this figure, and the
optimal induced miss turns out to be

Missjopt;N 0¼5¼ ð8:4þ 29:9þ 24Þ � ð2nTÞT2 ¼ 124:6T2nT

Fig. 6.9 Optimal maneuver policy for effective navigation ratio of 3.
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It is interesting to note that, as we increase the effective navigation ratio, the
optimal miss due to a step target maneuver also increases because of the increased
number of maxima in the miss distance sensitivity curve.

The concept of an optimal maneuver is useful in that it identifies the largest
possible miss distance that the target can induce and possibly aid in the selection
of the missile guidance system time constant. Of course, this optimal maneuver
assumes unrealistically that the target has precise knowledge of the time to go

Fig. 6.10 Optimal maneuver policy for effective navigation ratio of 4.

Fig. 6.11 Optimal maneuver policy for effective navigation ratio of 5.
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until intercept and of the missile guidance system dynamics. It is readily apparent
from the preceding miss distance curves that the missile guidance time constant
must be minimized if the miss distance due to target maneuver is to be kept
small. However, we shall see in Chapter 18 that noise and parasitic effect place
a practical lower limit on the minimum achievable guidance system time constant.

PRACTICAL EVASIVE MANEUVERS

In the previous section we showed that optimal target evasive maneuvers could
induce very large miss distances if a priori information concerning the missile gui-
dance system was available. In this section we shall demonstrate that when a priori
information is lacking, practical periodic target evasive maneuvers can also gen-
erate very large miss distances. Two such practical evasive periodic maneuver pol-
icies are the barrel roll and the Vertical-S.

The barrel roll can be described in one dimension as a sinusoid with radian
frequency v or period T and amplitude nT as given by

€yT ¼ nT sinvt ¼ nT sin
2p
T

t

From the preceding relationship we can see that the barrel roll only yields
maximum acceleration levels some of the time. With the Vertical-S maneuver,
however, the aircraft is always at maximum acceleration and the sign of the accel-
eration is periodically reversed by rolling the aircraft through 180 deg. With a
theoretically infinite roll rate, this maneuver policy can be approximated by a per-
iodic square wave in one dimension. The barrel roll and Vertical-S maneuver
policies do not require information about the missile guidance system. The ampli-
tudes of both target maneuvers are chosen to reflect the maximum acceleration
capability of the aircraft, whereas the frequencies of both maneuvers are chosen
to be physiologically possible for a human pilot and robust enough to cause
any missile guidance system problems.

Both the barrel roll and Vertical-S maneuver policies are illustrated in Fig. 6.12
where, for illustrative purposes, it is assumed that the maneuver amplitude nT is
4 g and the maneuver frequency v is 1 rad/s. Figure 6.12 confirms that the effec-
tive maneuver period T is 6.28 s.

For comparative purposes, the preceding maneuver policies were evaluated on
the fifth-order proportional navigation binomial guidance system. The guidance
system time constant was 0.5 s, the target maneuver amplitude was 4 g, and the
effective navigation ratio considered was three so that comparisons could be
made with the optimal evasive maneuver induced miss distances. With these
numbers it was shown in the previous section that the optimal miss distance
was 82.8 ft. Figure 6.13 shows how the miss distances vary with flight time for
both the barrel roll and Vertical-S maneuver policies. It is apparent that the
Vertical-S maneuver generates the largest miss distances because the target is
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always at maximum acceleration. We can also see from Fig. 6.13 that, on the
average, the miss distances for both maneuver policies are quite high. For this
example the Vertical-S maneuver yields miss distances which approach that of
the optimal maneuver when the flight times are 0.5, 1.8, 4.4, or 7.5 s. It appears
that if the pilot is not lucky and the flight time is 1.0, 3.4, 6.5, or 9.5 s, the miss
distance will be quite small. The appendix shows that when we move to three
dimensions, the peak miss also represents the average miss.

Fig. 6.12 More realistic evasive maneuver policies.

Fig. 6.13 Realistic maneuvers can induce very large miss distances.
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More details on the influence of practical evasive maneuver strategies on miss
distance can be found in [5]. In addition, [5] derives the shaping filter equivalent
for many practical maneuvers, so that the method of adjoints can be used to assess
system performance in a single computer run.

SATURATION [2]

Thus far we have seen normalized miss distance curves for a fifth-order pro-
portional navigation binomial guidance system. The results presented have
implicitly assumed that the missile had adequate acceleration capability in
order to guide and hit the target. If adequate acceleration capability is not avail-
able, the missile acceleration saturates, which results in additional miss distance.
In endoatmospheric interceptors, angle-of-attack constraints limit maximum
achievable accelerations at high altitudes, whereas the missile structure limits
achievable acceleration levels at the lower altitudes. The lateral engine thrust-
to-weight ratio limits the acceleration level in exoatmospheric interceptors.

The basic homing loop can be modified and made nonlinear to account for
acceleration saturation as shown in Fig. 6.14. In this figure the guidance system
is also represented as a fifth-order binomial guidance system with guidance
time constant T. Two of the time constants are devoted to the seeker and noise
filter, and the other three time constants are devoted to the flight-control
system. The acceleration limit is on the acceleration command nc, and the resul-
tant acceleration command is denoted nCLIM.

Fig. 6.14 Homing loop with acceleration saturation.
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The first question that must be answered again is whether or not linearizing
the geometry in the presence of the nonlinear acceleration saturation model is
adequate for capturing important miss distance effects. For convenience, let us
define the acceleration ratio as the ratio between the missile acceleration limit
to the maneuver level of the target. Figure 6.14 will only be linear if the accelera-
tion ratio is infinity.

Figure 6.15 represents the results of running both the nonlinear engagement
simulation, with saturation effects modeled, and an engagement simulation of
the model shown in Fig. 6.14. In the case considered, the guidance time constant
was 1s, the effective navigation ratio was 4, and the level of the target maneuver
was 3 g. The acceleration ratio considered was 3. This means that since the target
maneuver level is 3 g, the effective acceleration limit of the missile is 9 g. We can
see from Fig. 6.15 that the miss distance results for both the linearized geometry
model and nonlinear geometry models are virtually identical. Therefore, we can
conclude that the linearized geometry model is adequate for investigating satur-
ation effects. By comparing Fig. 6.15 with the nonsaturation case of Fig. 6.6, we
can also conclude that even with a missile-to-target acceleration advantage of 3,
considerable miss distance is contributed by saturation, especially for the
shorter flight times.

Using the missile to target acceleration capability (nCLIM/nT) and the normal-
ization factors for miss due to a constant target maneuver, we can derive normal-
ized miss distance curves by the method of brute force (running engagement
model with nonlinear saturation effect for many different flight times and
noting the miss distance). In other words, we can generate normalized design
curves by simulating all of the possibilities. We can then infer performance by

Fig. 6.15 Linearized geometry model is adequate for investigating saturation effects.
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making extrapolations from the normalized design curves. Figure 6.16 presents
the normalized miss distance due to a step target maneuver when the effective
navigation ratio is 3. This figure shows that miss distance always increases with
increasing flight time if the acceleration ratio is only 2. For acceleration ratios
of 4 or more, the miss is virtually 0 for flight times approximately 10 times
greater than the guidance time constant. An acceleration ratio of about 5
closely follows the infinite ratio or linear case.

Let us do a numerical example in order to clarify the use of these curves. If the
guidance time constant is 0.5 s and the flight time is 2.5 s, we get a normalized
flight time of

tF=T ¼ 2:5=0:5 ¼ 5

Assuming a target maneuver level of 4 g, we can then calculate the miss dis-
tances for various acceleration limits as

Missj1g ¼ 12:0T2nT ¼ 12:0 � 0:52 � 4 ¼ 12:0 ft

Missj20g ¼ 18:9T2nT ¼ 18:9 � 0:52 � 4 ¼ 18:9 ft

Missj16g ¼ 31:1T2nT ¼ 31:1 � 0:52 � 4 ¼ 31:1 ft

Missj12g ¼ 58:1T2nT ¼ 58:1 � 0:52 � 4 ¼ 58:1 ft

Missj8g ¼ 112T2nT ¼ 112 � 0:52 � 4 ¼ 112 ft

Fig. 6.16 Normalized miss due to target maneuver with saturation effects (N’ = 3).
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Therefore, we can see that the miss goes up by nearly a factor of 5 from the linear
case if the missile-to-target acceleration advantage is only 3 and by a factor of 10 if
the acceleration advantage is only 2.

Increasing the effective navigation ratio tends to reduce the acceleration
requirements as shown in the normalized curves of Figs. 6.17 and 6.18.

Fig. 6.17 Normalized miss due to target maneuver with saturation effects (N’ = 4).

Fig. 6.18 Normalized miss due to target maneuver with saturation effects (N’ = 5).

PROPORTIONAL NAVIGATION AND MISS DISTANCE 125



PARASITIC EFFECTS [7–10]

Thus far, from all of the results presented it would appear that the guidance
system designer has an easy job, since all the graphs indicate that smaller time
constants and larger effective navigation ratios appear to improve system per-
formance. Actually, parasitic or unwanted feedback paths within the homing
loop will work in the direction of larger time constants and smaller effective navi-
gation ratios to get acceptable performance. One of the most serious unwanted
feedback paths is created in tactical radar homing missile applications by the
missile radome. The radome causes a refraction or bending of the incoming
radar wave, which in turn gives a false indication of the target location. A par-
ameter associated with missile maneuverability, which has a significant inter-
action with radome effects, is the turning rate time constant Ta. If we consider
the basic geometry of Fig. 6.19, the turning rate time constant can be defined as
the amount of time it takes to turn the missile flight-path angle g through an
equivalent angle of attack a, or

Ta ¼ a

_g

where the angle of attack and the flight-path angle are defined in Fig. 6.19. Gen-
erally the turning rate time constant increases with increasing missile altitude and
decreasing missile velocity.

To see how the turning rate time constant enters into the homing loop, we
must see how it is related to other important quantities. From Fig. 6.19 we can
see that the missile pitch angle u can be expressed as

u ¼ gþ a

Taking derivatives of both sides of the equation yields

_u ¼ _gþ _a ¼ _gþ sa _g

_g

Since the missile acceleration is perpendicular to the missile velocity, we can
say that

nL ¼ VM _g

Therefore, we can express the missile pitch rate in terms of the missile
acceleration as

_u ¼ nL
VM

þ sTa
nL
VM

Fig. 6.19 Geometry for
turning rate time constant.
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Dividing both sides by the missile acceleration yields themissile pitch rate transfer
function,

_u

nL
¼ 1

VM
ð1þ TaSÞ

This aerodynamic transfer function shows that there is a missile body rate when-
ever the missile is accelerating.

Now we need to see how the missile aerodynamic transfer function interacts
with the radome slope. Consider the basic geometry of Fig. 6.20 in which the
seeker is not pointed at the actual target because of seeker dynamics and
radome effects.

The radome refraction angle r varies with the missile gimbal angle uH. For
preliminary analysis it is usually assumed that the refraction angle is linearly
proportional to the gimbal angle, or

r ¼ RuH

where R is constant known as the radome slope. The radome slope is a function of
the radome material, radome diameter, and fineness ratio, and the wavelength of
the incoming signal. From Fig. 6.20 we can see that it is possible to express the
missile boresight error e as

e ¼ l� u� uH þ r ¼ l� u� uH þ RuH

A block diagram of the homing loop with the radome unwanted feedback path
is indicated in Fig. 6.21. We can see that without radome effects (R = 0) we would
have a fifth-order binomial guidance system transfer function. The missile aero-
dynamic transfer function [11] provides the unwanted feedback path in the
guidance system.

Fig. 6.20 Basic geometry for radome analysis.
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Listing 6.2 presents an engagement simulation with the fifth-order binomial
model, including radome effects, of Fig. 6.21. The simulation is set to run multiple

LISTING 6.2 ENGAGEMENT SIMULATION WITH RADOME EFFECTS

VC=4000.;
XNT=32.2;
YIC=0.;
VM=3000.;
HEDEG=0.;
TAU=.5;
XNP=3.;
TA=0.;
R=-.01;
n=0.;
for TF=.1:.1:10

Y=YIC;
YD=-VM*HEDEG/57.3;
YDIC=YD;
XNL=0.;
ELAMDH=0.;
X4=0.;
X5=0.;
TH=0.;

Fig. 6.21 Fifth-order binomial model of guidance system with radome effects.

128 TACTICAL AND STRATEGIC MISSILE GUIDANCE



THH=0.;
T=0.;
H=.01;
while T,=(TF-1e-5)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
ELAMDHOLD=ELAMDH;
X4OLD=X4;
X5OLD=X5;
THOLD=TH;
THHOLD=THH;
STEP=1;
FLAG=0;
while STEP,=1
if FLAG==1

STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
ELAMDH=ELAMDH+H*ELAMDHD;
X4=X4+H*X4D;
X5=X5+H*X5D;
TH=TH+H*THD;
THH=THH+H*THHD;
T=T+H;

end
TGO=TF-T+.00001;
XLAM=Y/(VC*TGO);
EPS=XLAM-TH-THH+R*THH;
DD=5.*EPS/TAU;
ELAMDHD=5.*(DD-ELAMDH)/TAU;
XNC=XNP*VC*ELAMDH;
X4D=5.*(XNC-X4)/TAU;
X5D=5.*(X4-X5)/TAU;
XNLD=5.*(X5-XNL)/TAU;
THD=XNL/VM+TA*XNLD/VM;
THHD=DD-THD;
YDD=XNT-XNL;
FLAG=1;
end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
ELAMDH=.5*(ELAMDHOLD+ELAMDH+H*ELAMDHD);
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X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);
TH=.5*(THOLD+TH+H*THD);
THH=.5*(THHOLD+THH+H*THHD);

end
n=n+1;
ArrayTF(n)=TF;
ArrayY(n)=Y;

end
figure
plot(ArrayTF,ArrayY),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Miss (Ft)’)
clc
output=[ArrayTF’,ArrayY’];
save datfil.txt output -ascii
disp ’simulation finished’

cases with the flight time as a parameter so that miss distance sensitivity curves
can be generated by brute force. Again, the differential equations representing
the guidance system of Fig. 6.21 appear before the FLAG=1 statement.

To see how the turning rate time constant influences system performance, a
case was run for a 1-g target maneuver disturbance in which the guidance
system time constant was 0.5 s, the radome slope was 20.01, and the effective
navigation ratio was 3. The turning rate time constant was varied from 0 to
10 s. Figure 6.22 shows that when the turning rate time constant is zero the

Fig. 6.22 Miss degrades with increasing turning rate time constant.
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miss distance response is virtually identical to the case in which there are no para-
sitic paths in the homing loop (compare with Fig. 6.6, for example). When the
turning rate time constant is increased to 5 s, the miss distance response begins
to become more oscillatory, but the miss distances are still small and tend to
zero as the flight time increases. Finally, when the turning rate time constant is
increased to 10 s, the miss distance response becomes unstable. Thus, we can
see that we have to be concerned about radome effects from both a miss distance
and stability point of view.

As was mentioned previously, the magnitude of the effective radome slope is
determined by the physical characteristics of the radome and the wavelength of
the incoming signal. For a given radome, the guidance designer has only two par-
ameters (that is, guidance system time constant and effective navigation ratio)
under control to get acceptable performance and meet stability requirements.
Figure 6.23 shows how miss distance due to a 1-g target maneuver varies with
flight time for two different values of effective navigation ratio in the presence
of a negative radome slope (R =20.01). We can see that the higher effective navi-
gation ratio has a destabilizing effect. This is not unreasonable because we are
essentially increasing the guidance system gain. Thus, the guidance system
designer desires to keep the effective navigation ratio as small as possible to
meet the stability requirements and yet large enough so that homing will
be effective.

Figure 6.24 shows that, in the presence of a large effective navigation ratio and
negative radome slope, increasing the guidance system time constant from 0.5 s to
0.75 s has a stabilizing effect.

Fig. 6.23 Increasing effective navigation ratio has destabilizing effect in presence of
negative radome slope.
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In tactical missile design the guidance system time constant is generally
made larger at the higher altitudes because the turning rate time constant is
largest at the higher altitudes. Of course, the penalty for such a decision is that
miss distances tend to increase with increasing guidance system time constant.
Therefore, the guidance system designer attempts to make the guidance system
time constant as small as possible subject to meeting guidance system stability
requirements.

THRUST VECTOR CONTROL

We saw in the previous section that, if the turning rate time constant of a tactical
aerodynamic missile was large, radome effects caused stability problems and miss
distance deterioration. This problem is not confined to only tactical aerodynamic
missiles. Consider a missile that operates outside the atmosphere and uses thrust
vector control to maneuver. Figure 6.25 presents a diagram of a thrust vector con-
trolled missile with all important angles indicated. The missile acceleration nL
needed to maneuver in accordance with guidance commands is obtained from
the component of the thrust T perpendicular to the missile body.

For simplicity we are neglecting the fact that, if the thrust does not go through
the center of gravity, the missile will tumble. The rate of change of the missile
flight-path angle g is related to the missile acceleration and velocity according to

_g ¼ nL
VM

Fig. 6.24 Increasing guidance system time constant has stabilizing effect in presence of
negative radome slope.
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where nL is the missile acceleration and VM the missile velocity. From Fig. 6.25 we
can see that the flight-path rate can also be expressed as

_g ¼ nL
VM

¼ Tg sina
WVM

where T is thrust (in lb), g is the gravitational acceleration (in ft/s2), a is the angle
of attack, and W is the missile weight. For small angles of attack we can approxi-
mate the flight-path rate to be

_g ¼ Tga
WVM

Recalling that the turning rate time constant is the ratio of the angle of attack to
the flight-path rate, we obtain

Ta ¼ a

_g
¼ WVM

Tg

This means that the effective turning rate time constant for a thrust vector con-
trolled missile is proportional to the missile weight and velocity and inversely pro-
portional to the thrust.

To illustrate the importance of turning rate time constant to a thrust vector
controlled missile, let us work a numerical example. Consider a missile traveling
at 20,000 ft/s and requiring a 5-deg angle of attack in order to generate 5 g of
acceleration. To generate 5 g of acceleration at 5-deg angle of attack, the missile
must have a thrust-to-weight ratio given by

T
W

¼ nL=g
a

¼ 5
5=57:3

¼ 57:3

This means that the effective turning rate time constant is

Ta ¼ VM

ðT=WÞg ¼ 20; 000
57:3 � 32:2 ¼ 10:8 s

The turning rate
time constant in this
example is quite large
compared to values
indicated in the pre-
vious section. However,
because the thrust

Fig. 6.25 Important
angles in thrust vector
control.
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vector controlled missile operates outside the atmosphere, the shape of the missile
nose can be made near-hemispherical. This means that the effective radome slope
will be close to zero. For a thrust vector controlled missile the guidance system
designer must pay close attention to the product of the radome slope and
turning rate time constant to ensure adequate stability margins in the resultant
design. If the design yields unacceptable stability margins, the guidance system
time constant must be increased to yield a workable design.

SUMMARY

In this chapter we have shown how system order, optimal target maneuvers, sat-
uration, and parasitic effects all influence miss distance. Miss distance design
curves were presented to aid the guidance system designer in predicting prelimi-
nary system performance. These curves could also be used to ensure that the inter-
ceptor had adequate acceleration capability. Examples were presented showing the
conflicting tradeoffs the guidance system designer must confront in choosing
acceptable guidance system parameters.
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CHAPTER 7

Digital Fading Memory Noise Filters
in the Homing Loop

INTRODUCTION

Thus far, we have assumed in our analysis that the geometric line-of-sight rate was
available for guidance purposes. Actually, the seeker measurement of the
line-of-sight angle is corrupted by noise. Therefore, in order to derive the
line-of-sight rate estimate required by proportional navigation guidance, it is
necessary to use a digital noise filter in an onboard guidance system. Although
we shall study optimal digital noise filters in Chapter 9, we shall first consider
simple constant gain filters, known as fading memory filters, to derive the
line-of-sight rate estimate. We will investigate, by example, some of the properties
of digital fading memory filters and their influence on system performance.
Fading memory filters will serve as the foundation for more advanced digital
filters, known as Kalman filters.

FADING MEMORY FILTERS [1]

A simple digital noise filter is known as a fading memory filter. This filter is recur-
sive and weights new measurements more heavily than older measurements.
First-, second-, and third-order fading memory filters and their gains are tabulated
in recursive form in Table 7.1. We can see from the table that the filter estimate is
essentially the old estimate plus a gain times a residual (difference between current
measurement and previous estimate). Table 7.1 also shows that the fading
memory filter gains are constant and are a function of only one parameter b.
This parameter is associated with the memory length of the filter and is a constant
between zero and unity. Increasing b tends to decrease the bandwidth of the filter
and enables the filter to “remember” more about previous measurements.

We can see from Table 7.1 that the fading memory filter assumes a polynomial
model for the actual process. If the polynomial process of the filter is an under-
estimate of the polynomial degree of the actual process, then there will be a
filter truncation error. The lowest order filter does the best job of removing the
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noise from the signal. However, it also has the potential for having the most trun-
cation error. The filter designer must select the appropriate filter order to trade off
filter variance reduction vs truncation error buildup. Fading memory filters are
quite popular in radar tracking applications [2, 3] but, as we shall see, can be
made to work in tactical missile homing applications as well.

FADING MEMORY FILTER IN HOMING LOOP

Figure 7.1 shows an example of how a second-order fading memory filter can be
included in the homing loop. In this loop the actual line-of-sight angle l is
sampled with noise added every Ts seconds, thus providing an idealized seeker
model. Estimates of the line-of-sight angle and rate are made with a digital
two-state fading memory filter’s measurement of the noisy line-of-sight angle
lk
�. As was mentioned in Chapter 1, the notation z21 is Z transform notation
for a pure delay of Ts seconds. A guidance command is generated, using the pro-
portional navigation guidance law from the estimated line-of-sight rate. The resul-
tant command is passed through a “hold” network that converts the digital signal
to a continuous signal for the flight-control system. The diagram shows a unity
gain for an idealized representation of the flight-control system.

Listing 7.1 is a MATLAB engagement simulation of the homing loop shown in
Fig. 7.1. Zero-mean Gaussian noise, independent from sample to sample, with stan-
dard deviation, SIGNOISE, is added to the measured line-of-sight angle every Ts
seconds. We can see from the listing that the program consists of two separate
parts. The first part, which represents the real world, consists of differential
equations and the second-order Runge–Kutta numerical integration technique,

TABLE 7.1 DIFFERENT ORDER DIGITAL FADING MEMORY FILTERS

Filter Gaints

x̂n ¼ x̂n�1 þ G[x�n � x̂n�1] G ¼ 1 – b

x̂n ¼ x̂n�1 þ _̂xn�1Ts þ G[x�n � (x̂n�1 þ _̂xn�1Ts)]

_̂xn ¼ _̂xn�1 þ H
Ts
[x�n � (x̂n�1 þ _̂xn�1Ts)]

G ¼ 1 – b2

H ¼ (1 – b)2

x̂n ¼ x̂n�1 þ _̂xn�1Ts þ 0:5€̂xn�1T
2
s

þ G[x�n � (x̂n�1 þ _̂xn�1Ts þ 0:5€̂xn�1T
2
s )]

_̂xn ¼ _̂xn�1 þ €̂xn�1Ts þ H
Ts
[x�n � (x̂n�1 þ _̂xn�1Ts

þ 0:5€̂xn�1T
2
s )]

G ¼ 1 – b3

H ¼ 1.5(1 – b)2(1 þ b)

€̂xn ¼ €̂xn�1 þ 2K
T2s

[x�n � (x̂n�1 þ _̂xn�1Ts þ 0:5€̂xn�1T
2
s )] K ¼ 0.5(1 – b)3
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and the second part, which represents an onboard guidance system, has the differ-
ence equations for the second-order digital fadingmemoryfilter.We solve thediffer-
ential equations every H seconds, and the difference equations are solved every Ts
seconds. It is important to note that the ratio Ts/H must be a large integer so that
effects in between sampling instants are treated properly and accurately.

Fig. 7.2 Filter is sluggish and lags signal when b 5 0.8.

Fig. 7.1 Second-order fading memory filter in homing loop.
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The engagement simulation was exercised and a nominal case was run in
which b of the fading memory filter was set to 0.8. Figure 7.2 compares the
actual line-of-sight rate to the filter estimate of the derivative of the measurement.
We can see that the filter estimate of the line-of-sight rate is smooth but lags the
actual line-of-sight rate, indicating that the filter is sluggish.

Figure 7.3 indicates that we can effectively increase the bandwidth of the
fading memory filter by decreasing b. Here we can see that the line-of-sight
rate estimate no longer lags the actual signal when b is reduced from 0.8 to 0.3.
However, we can see from the figure that the noisiness of the line-of-sight rate
estimate is the price paid for reducing b. In other words, decreasing b increases
the fading memory filter’s noise transmission.

The results presented thus far are for a single flight with a particular noise
stream. Answers will change for another flight with a different noise stream. To
get accurate performance projection in terms of miss distance, we must run the
program in the Monte Carlo mode. That is, repeated simulation trials must be
conducted for each flight time of interest. The resultant miss distance data
must be postprocessed, as was done in Chapter 4 when dealing with the
random target maneuver, to calculate the mean and standard deviation of the
resultant miss distances. Listing 7.2 presents a modification to the engagement
simulation of Listing 7.1. Here two loops are added to the program. One loop exe-
cutes 50 simulation trials (RUN = 50) for each flight time of interest, and the other
loop selects different flight times (TF ranges from 0.5 to 10 s in increments of
0.5 s). In other words, the simulation of Listing 7.2 runs Monte Carlo sets for
engagements in which the flight time is a parameter. Postprocessing of the resul-
tant data is conducted at the end of the first “for loop” in accordance with the for-
mulas and routines developed in Chapter 4.

Fig. 7.3 Decreasing b increases noise transmission of fading memory filter.
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LISTING 7.1 ENGAGEMENT SIMULATION WITH SECOND-ORDER FADING MEMORY FILTER

count=0;
VC=4000;
XNT=96.6;
YIC=0;
VM=3000;
HEDEG=0;
BETA=0.3;
XNP=3;
SIGNOISE=.001;
TF=10;
TS=.1;
NOISE=1;
Y=YIC;
YD=-VM*HEDEG/57.3;
YDIC=YD;
T=0;
H=.01;
S=0;
GFILTER=1.-BETA^2;
HFILTER=(1.-BETA)^2;
XLAMH=0;
XLAMDH=0;
XNC=0;
while T ,= (TF - 1e-5)

YOLD=Y;
YDOLD=YD;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
Y=Y+H*YD;

YD=YD+H*YDD;
T=T+H;
STEP=2;

end;
TGO=TF-T+1e-5;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
YDD=XNT-XNC;
FLAG=1;

end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
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S=S+H;
if S . =(TS - 1e-5)

S=0.;
if NOISE==1

XLAMNOISE=SIGNOISE*randn;
else

XLAMNOISE=0.;
end;
RES=XLAM-(XLAMH+TS*XLAMDH)+XLAMNOISE;
XLAMH=GFILTER*RES+XLAMH+TS*XLAMDH;
XLAMDH=HFILTER*RES/TS+XLAMDH;
XNC=XNP*VC*XLAMDH;
count=count+1;
ArrayT(count)=T;
ArrayY(count)=Y;
ArrayXNC(count)=XNC;
ArrayXLAMD(count)=XLAMD;
ArrayXLAMDH(count)=XLAMDH;

end;
end;
figure
plot(ArrayT,ArrayXLAMD,ArrayT,ArrayXLAMDH),grid
title(’Decreasing beta increase noise transmission of fading memory filter’)
xlabel(’Time (S)’)
ylabel(’Line of Sight Rate (Rad/S) ’)
axis([0 10 -.01 .06])
output=[ArrayT’,ArrayY’,ArrayXNC’,ArrayXLAMD’,ArrayXLAMDH’];
save datfil.txt output /ascii
disp(’Simulation Complete’)

Fig. 7.4 Standard deviation of miss for various flight times.
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A nominal case was considered in which there was a constant 3-g target man-
euver and 1 milliradian (mr) of measurement noise. A filter fading memory factor
of 0.8 and a sampling time of 0.1 s were selected for the nominal case. A 50-run
Monte Carlo set was run for 20 different values of flight time with the program of
Listing 7.2 for a total of 1000 runs! The standard deviation and mean miss were
computed for each of the 50-run Monte Carlo sets, and the results are displayed in
Figs. 7.4 and 7.5. In this experiment there are only two disturbances. The target
maneuver is deterministic (always 3 g), and the noise is a zero-mean random
process. Therefore, we can assume that the standard deviation of the miss must
be due to the noise, and the mean of the miss must be due to the target maneuver.
Figures 7.4 and 7.5 show that for the value of b selected the noise-induced miss
is small compared to the target-maneuver-induced miss for most flight times.
This is not surprising because we know that the fading memory filter with
b ¼ 0.8 is sluggish.

LISTING 7.2 MONTE CARLO VERSION OF FADING MEMORY FILTER IN HOMING LOOP

%Preallocation
Z=zeros(size(1:1000));
I=zeros(size(1:50));
TF=zeros(size(1:50));
count=0;
VC=4000;
XNT=96.6;
YIC=0;
VM=3000;

Fig. 7.5 Mean of miss for various flight times.
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HEDEG=0;
BETA=.8;
XNP=3;
SIGNOISE=.001;
TS=.1;
RUN=50;
NOISE=1;
for TF=.5:.5:10.0,

Z1=0;
for I=1:RUN

Y=YIC;
YD=-VM*HEDEG/57.3;
YDIC=YD;
T=0.;
H=.01;
S=0.;
GFILTER=1.-BETA^2;
HFILTER=(1.-BETA)^2;
XLAMH=0.;
XLAMDH=0.;
XNC=0.;
while T ,= (TF - 1e-5)

YOLD=Y;
YDOLD=YD;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
Y=Y+H*YD;

YD=YD+H*YDD;
T=T+H;
STEP=2;

end;
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
YDD=XNT-XNC;
FLAG=1;

end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
S=S+H;
if S . =(TS - 1e-5)
S=0.;

144 TACTICAL AND STRATEGIC MISSILE GUIDANCE



if NOISE==1,
XLAMNOISE=gaussc7(SIGNOISE);

else
XLAMNOISE=0;

end;
RES=XLAM-(XLAMH+TS*XLAMDH)+XLAMNOISE;
XLAMH=GFILTER*RES+XLAMH+TS*XLAMDH;
XLAMDH=HFILTER*RES/TS+XLAMDH;
XNC=XNP*VC*XLAMDH;
end;

end;
Z(I)=Y;
Z1=Z(I)+Z1;
XMEAN=Z1/I;

end;
SIGMA=0;
Z1=0;
for I=1:RUN,
Z1=(Z(I)-XMEAN)^2+Z1;
if I==1,

SIGMA=0;
else

SIGMA=sqrt(Z1/(I-1));
end;
end;
count=count+1;
ArrayTF(count)=TF;
ArraySIGMA(count)=SIGMA;
ArrayXMEAN(count)=XMEAN;

end;
figure
plot(ArrayTF’,ArraySIGMA’),grid
title(’Standard deviation of miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’Noise Miss Standard Deviation (Ft) ’)
axis([00,10,00,4])
figure
plot(ArrayTF’,ArrayXMEAN’),grid
title(’Mean of miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’Noise Miss Standard Deviation (Ft) ’)
axis([00,10,00,60])
clc
output=[ArrayTF’,ArraySIGMA’,ArrayXMEAN’];
save datfil.txt output /ascii
disp(’Simulation Complete’)
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To generate the data of Figs. 7.4 and 7.5, 1000 runs had to be made! One thou-
sand run sets will have to be made each time a parameter of interest is changed.
In addition, we were able to separate the contributions to the miss from the
measurement noise and the target maneuver in the 1000 run set only because
the noise was random and the target maneuver was deterministic. In a system
with many deterministic and stochastic inputs, one would have to run
1000-run sets for one disturbance at a time in order to generate a miss distance
error budget. Fortunately the adjoint technique allows us to get error budget infor-
mation of this type in only one run! Because the system under consideration is a
mixed continuous discrete system, we have to extend the rules for adjoints covered
in Chapters 3 and 4.

MIXED CONTINUOUS DISCRETE ADJOINT THEORY [4, 5]

The rules for constructing an adjoint of a mixed continuous discrete system are
simple and are similar to the adjoint rules for continuous systems. Given a
linear time-varying discrete system with impulse response HD in which the
ratio of the time of flight to the sampling time is an integer given by

N ¼ tF=Ts

there exists an adjoint system with impulse response HD
�. One can construct a

mixed continuous discrete adjoint from the original system using the rules of
Chapters 3 and 4 and the additional rule given in the next subsection.

REPLACE n BY N 2 n IN THE ARGUMENTS OF ALL VARIABLE COEFFICIENTS

Therefore, the rules for continuous and mixed continuous discrete adjoints are
identical in that the signal flow of the original system is reversed and the time-
varying gains in the original system are generated backwards for the adjoint
system. In mixed continuous discrete systems the adjoint rules get slightly more
complicated because additional elements are required for interfacing the continu-
ous and discrete parts of the system. For example, a sampler or analog-to-digital
converter is required as shown in Fig. 7.6, to make the connection from a continu-
ous system to a discrete system.

The input/output characteristics of a sampler can easily be illustrated. For
example, Fig. 7.7 shows that, if the input signal to the sampler is continuous,

Fig. 7.6 Connecting
continuous and

discrete systems.
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the output signal has the same shape but is defined only at each sampling instant
by a number. These numbers, or sample points, are spaced Ts seconds apart.

Applying adjoint theory to mixed continuous discrete systems requires
taking the adjoint of a sampler. The adjoint of a sampler is depicted in Fig. 7.8.
Here the s block represents a pure derivative and the “hold” block will soon be
defined. The z21 block is Z transform notation and represents a pure delay of
Ts seconds.

A hold network or digital-to-analog converter is required to connect signal
flow from a discrete network to a continuous network as shown in Fig. 7.9.

If the input to the hold is a set of numbers, Fig. 7.10 illustrates the proper
input/output characteristics of the hold network. Here we can see that, after a dis-
crete signal has been “held,” it becomes continuous.

The adjoint of a hold is shown in Fig. 7.11. Here the 1/s term is the Laplace
transform representation of an integrator. Again, the z21 term represents a pure
delay of Ts seconds.

We now have enough rules to enable us to take the adjoint of a mixed
continuous discrete system. Consider the model of Fig. 7.12. In this model
there are three continuous linear time-varying networks with impulse res-
ponses, HC1, HC2, and HC3, respectively. White noise uC with spectral density
FC enters the continuous portion of the system through the shaping network
HC3. In addition, a step disturbance of magnitude a also enters the system
through the shaping network HC1. The step input has been represented as
an impulse through an integrator so that adjoint theory can be applied to this
error source.

In this example we are interested in observing the continuous quantity y
at the final time tF. The output of the network HC2 is sampled and sent through
a discrete network with impulse response HD1. Zero-mean Gaussian noise with

variance sD
2 enters

the discrete portion of
the system through
shaping network HD2.

Fig. 7.7 Effect of sampling on continuous signal.

Fig. 7.8 Adjoint of
a sampler.
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After the resultant signal goes through the discrete network HD1, the output is
held and fed back to the continuous network HC1, thus completing the loop.
In this example we seek to find y(tF) due to each of the disturbances. Adjoint
theory can readily be applied to this example.

Following the rules of adjoints we can obtain the adjoint system of Fig. 7.13.
Although this adjoint model is driven by an impulse, we have seen in Chapters 3–
5 that it is not necessary to simulate an impulse. The impulse becomes initial con-
ditions on integrators in its forward path. The impulse is applied at time zero in
the adjoint system because the output of interest in the original system is at the
final time. The adjoint model shows a differentiator appearing before H�

C2.
Again, one need not simulate the differentiator but just use block diagram
manipulation to eliminate it (that is, feed it through H�

C2).
The outputs of the adjoint model represent output sensitivities of the

system. They are referred to as sensitivities because a change in their levels does
not necessitate a rerunning of the adjoint simulation. As can be seen from
Fig. 7.13, the new outputs can be calculated by inspection. Note that, in order
to find y(tF) due to a continuous random disturbance, we square and
integrate a continuous signal (that is, output of H�

C3). To find y(tF) due to a
discrete random disturbance, we square and sum a discrete signal (that is,
output of H�

D2).

USING ADJOINTS TO EVALUATE FILTER PERFORMANCE

Mixed continuous discrete adjoint theory can be applied to the engagement model
of Fig. 7.1, a sample data homing loop containing a two-state fading memory filter.

Fig. 7.9 Connecting
discrete and

continuous systems.

Fig. 7.10 Effects of holding a discrete signal.
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Recall that in this
example there are two
disturbances: a deter-
ministic target maneu-
ver and measurement
noise on the line-of-
sight angle. However,

before we take the complete adjoint, let us realize that when the adjoint of a
“sampler” is taken we will have a pure differentiator in the homing loop. It is desir-
able, for simulation reasons, to eliminate the differentiator by block diagram
manipulation. This can easily be done by modifying the original system to have
an extra integrator before the sampler. This can be accomplished by first generat-
ing the line-of-sight rate and then integrating it to get line-of-sight angle. First we
must realize that the line-of-sight angle can be expressed as

l ¼ y
RTM

¼ y
Vctgo

Taking the derivative of the preceding expression, using the quotient rule, and
expressing the result in block diagram form we obtain Fig. 7.14.

The resultant adjoint block diagram for the entire homing loop, following the
mixed continuous discrete adjoint rules discussed in the previous section, appears

Fig. 7.11 Adjoint of hold.

Fig. 7.12 Model of mixed continuous discrete system.
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Fig. 7.13 Adjoint of mixed continuous discrete system.

Fig. 7.14 Block diagram for line-of-sight rate.
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in Fig. 7.15. The two disturbances of the original system become adjoint outputs,
whereas the miss distance output of the original system becomes an impulsive
input (or initial condition on integrator x3) in the adjoint system. Note that,
because the noise is digital, the adjoint noise miss distance sensitivity is obtained
by squaring and summing the appropriate signal.

Listing 7.3 presents the MATLAB adjoint program for the engagement model
of Fig. 7.15 in which the homing loop contains a second-order fading memory
filter. As with the original engagement simulation presented in this chapter, the
adjoint program also consists of two sections: one for the differential equations
and the other for the difference equations. Care must also be taken in the
adjoint program to ensure that the ratio of the sampling interval to the integration
interval be a large integer.

A single adjoint run was made for the nominal case considered at the begin-
ning of the chapter (b ¼ 0.8). The target maneuver miss and noise miss outputs
are plotted separately vs adjoint or flight time in Figs. 7.16 and 7.17. Superimposed
on these single run adjoint results are the standard deviation and mean of the
Monte Carlo miss distance results, obtained with 1000 runs (50 run sets for 20

Fig. 7.15 Adjoint of second-order fading memory filter in homing loop.
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flight times). We can see that both methods yield approximately the same answers.
If there were more error sources, the miss distance performance projections could
still have been obtained from the same adjoint run by monitoring additional
outputs. Thus, we can see that the adjoint technique is a very powerful method
for efficiently generating miss distance error budgets.

Fig. 7.16 Adjoint noise miss projections are in agreement with Monte Carlo results.

Fig. 7.17 Adjoint target maneuver miss projections are in agreement with Monte
Carlo results.
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LISTING 7.3 ADJOINT ENGAGEMENT SIMULATION WITH TWO-STATE FADING MEMORY FILTER

count=1;
XNT=96.6;
XNP=3.;
TF=10.;
TS=.1;
BETA=.8;
SIGNOISE=.001;
VC=4000.;
T=0.;
S=0.;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X5=0.;
Y1OLD=0.;
Y2OLD=0.;
Y3OLD=0.;
Y4OLD=0.;
Y5OLD=0.;
H=.01;
GFILTER=1.-BETA^2;
HFILTER=(1.-BETA)^2;
while TP,=(TF-1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X5OLD=X5;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X5=X5+H*X5D;
TP=TP+H;
end
TGO=TP+.00001;
X1D=X2;
X2D=X3+Y4OLD/(VC*TGO);

DIGITAL FADING MEMORY NOISE FILTERS IN THE HOMING LOOP 153



X3D=(Y4OLD)/(VC*TGO*TGO);
X5D=-X2;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X5=(X5OLD+X5)/2+.5*H*X5D;
S=S+H;
if S.=(TS-.0001)

S=0.;
TEMP1=(X5-Y1OLD)*XNP*VC;
TEMP2=HFILTER*(Y2OLD+TEMP1)/TS+GFILTER*Y3OLD;
Y1NEW=X5;
Y2NEW=TEMP1+Y2OLD+TS*(Y3OLD-TEMP2);
Y3NEW=Y3OLD-TEMP2;
Y4NEW=Y4OLD+TEMP2;
Y5NEW=Y5OLD+TEMP2*TEMP2;
Y1OLD=Y1NEW;
Y2OLD=Y2NEW;
Y3OLD=Y3NEW;
Y4OLD=Y4NEW;
Y5OLD=Y5NEW;
XMNOISE=SIGNOISE*sqrt(Y5NEW);
XMNT=XNT*X1;
count=count+1;
ArrayTP(count)=TP;
ArrayXMNT(count)=XMNT;
ArrayXMNOISE(count)=XMNOISE;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
figure
plot(ArrayTP,ArrayXMNOISE),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Noise Miss (Ft)’)
clc
output=[ArrayTP’,ArrayXMNT’,ArrayXMNOISE’];
save datfil.txt output -ascii
disp ’simulation finished’
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SOME PROPERTIES OF FADING MEMORY FILTERS

The filter parameter b determines how much the filter will remember about past
measurements, which in turn will determine the filter bandwidth or speed of
response. Higher values of b yield a filter that remembers a great deal about the
past. This type of filter will have low bandwidth and slow speed of response.
Low values of b result in a high bandwidth fast filter. Figures 7.18 and 7.19
show, based on adjoint simulation results, how miss distance varies with the
fading memory filter parameter b. It is not surprising that Fig. 7.18 shows dra-
matically improved miss distance results for the wider bandwidth filter (faster gui-
dance systems yield smaller miss distances due to target maneuver). However, it is
surprising that Fig. 7.19 shows that there is slightly less miss distance due to
line-of-sight angle noise for the faster filter, even though we know that the filter
has more noise transmission. In general, reducing the guidance system time con-
stant will reduce the miss for most disturbances in a proportional navigation gui-
dance system in the absence of parasitic and saturation effects. Ultimately
excessive noise transmission will lead to saturation and increased miss distance.

Changing the sampling time also effects filter and system performance.
Increasing the sampling rate (lower values for Ts) means that the filter has
more information per unit time. Therefore, increasing the sampling rate should
be beneficial. Figure 7.20 shows, from single flight results, that increasing the
sampling rate (reduce Ts from 0.1 s to 0.05 s) removes the previously noted lag
in the line-of-sight rate estimate when b is 0.8 (see Fig. 7.2 for comparison).
The noise transmission appears to be about the same, or slightly reduced, from
the case when the sampling time was 0.1 s.

Fig. 7.18 Faster fading memory filter yields less miss due to target maneuver.
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From a system performance point of view, increasing the sampling rate should
also be beneficial. In essence, we are speeding up the guidance system, which
means for the inputs previously considered, miss should decrease. Adjoint
results, which are displayed in Fig. 7.21, confirm that doubling the sampling
rate (reducing Ts from 0.1 s to 0.05 s) dramatically reduces the miss sensitivity
due to target maneuver.

Fig. 7.19 Faster noise filter yields less miss due to line-of-sight angle noise.

Fig. 7.20 Increasing sampling rate makes fading memory filter faster.
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Figure 7.22 also confirms that the miss due to noise decreases with increasing
sampling rate. Usually, increased system costs are associated with higher sampling
rates. Therefore, financial considerations usually place an upper limit on practical
achievable sampling rates.

It is important to note that in the preceding experiment the noise standard
deviation remained constant as the data rate changed. In many systems the
noise spectral density remains constant and so the noise standard deviation

Fig. 7.21 Increasing sampling rate reduces miss due to target maneuver.

Fig. 7.22 Increasing sampling rate reduces miss due to noise.
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changes with changing data rate. The interested reader is referred to the appendix
for a more complete discussion of this topic.

ESTIMATING TARGET MANEUVER

In Chapter 8 we will investigate more advanced guidance laws. To implement
more advanced guidance laws, we must have knowledge of all of the target
states. In other words, we must know what the target is doing. Mathematically
stated, we would like to be able to estimate the current maneuver level of the
target based on a noisy measurement of the line-of-sight angle. Theoretically it
is impossible, without additional measured or a priori information, to estimate
the maneuver level of the target based on angle-only measurements from a
single sensor. However, many tactical radar homing missiles also measure
range and range rate in addition to the line-of-sight angle, which makes target
acceleration estimation possible.

Figure 7.23 presents a guidance system that uses a three-state fading memory
filter to estimate target acceleration from a measurement of the line-of-sight angle,

Fig. 7.23 Estimating target maneuver with three-state fading memory filter.
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range, and closing velocity. The noisy measurement of the line-of-sight angle is
multiplied by a range measurement to get a pseudomeasurement of relative pos-
ition yk�. The filter then estimates the derivatives of the measurement. Using
knowledge of the missile acceleration, which is assumed to be known precisely,
it is then possible to estimate target acceleration from a relative acceleration as
shown in Fig. 7.23. With this type of guidance system we also need time-to-go
information, which can be obtained from the range and range rate measurements,
to implement either the proportional or augmented proportional navigation
guidance law.

Listing 7.4 presents a MATLAB engagement simulation with the three-state
fading memory filter as shown in Fig. 7.23. Note that the three-state filter gains
are different from the two-state filter gains.

LISTING 7.4 ENGAGEMENT SIMULATION WITH THREE-STATE FADING MEMORY FILTER

count=0;
VC=4000.;
XNT=96.6;
YIC=0.;
VM=3000.;
HEDEG=0.;
BETA=.8;
XNP=3.;
SIGNOISE=.001;
TF=10.;
TS=.1;
NOISE=1;
Y=YIC;
YD=-VM*HEDEG/57.3;
YDIC=YD;
T=0.;
H=.01;
S=0.;
GFILTER=1.-BETA^3;
HFILTER=1.5*((1.-BETA)^2)*(1.+BETA);
KFILTER=.5*((1.-BETA)^3);
YH=0.;
YDH=0.;
XNTH=0.;
XNC=0.;
while T ,= (TF - 1e-5)

YOLD=Y;
YDOLD=YD;
STEP=1;
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FLAG=0;
while STEP ,=1

if FLAG==1
Y=Y+H*YD;
YD=YD+H*YDD;
T=T+H;
STEP=2;
end
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
YDD=XNT-XNC;
FLAG=1;
end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
S=S+H;
if S.=(TS - 1e-5)

S=0.;
if NOISE==1,

XLAMNOISE=SIGNOISE*randn;
else

XLAMNOISE=0.;
end;
YSTAR=RTM*(XLAM+XLAMNOISE);
RES=YSTAR-YH-TS*YDH-.5*TS*TS*(XNTH-XNC);
YH=GFILTER*RES+YH+TS*YDH+.5*TS*TS*(XNTH-XNC);
YDH=HFILTER*RES/TS+YDH+TS*(XNTH-XNC);
XNTH=2.*KFILTER*RES/(TS*TS)+XNTH;
XLAMDH=(YH+YDH*TGO)/(VC*TGO*TGO);
XNC=XNP*VC*XLAMDH;
count=count+1;
ArrayT(count)=T;
ArrayY(count)=Y;
ArrayXNCG(count)=XNC/32.2;
ArrayXLAMD(count)=XLAMD;
ArrayXLAMDH(count)=XLAMDH;
ArrayXNTG(count)=XNT/32.2;
ArrayXNTHG(count)=XNTH/32.2;

end
end
figure
plot(ArrayT,ArrayXLAMD,ArrayT,ArrayXLAMDH),grid
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xlabel(’Time (S)’)
ylabel(’Line of Sight Rate (Rad/S) ’)
axis([0 10 0 .05])
figure
plot(ArrayT,ArrayXNTG,ArrayT,ArrayXNTHG),grid
xlabel(’Time (S)’)
ylabel(’Acceleration (G) ’)
clc
output=[ArrayT’,ArrayY’,ArrayXNCG’,ArrayXLAMD’,ArrayXLAMDH’,ArrayXNTG’,
ArrayXNTHG’];
save datfil.txt output /ascii
disp ’simulation finished’

A nominal case was run with the simulation of Listing 7.4 in which the fading
memory factor of the filter was 0.8 and the sampling time was 0.1 s. Figure 7.24
compares the line-of-sight rate estimate of the filter with the actual line-of-sight
rate for the nominal case. We can see that the filter estimate follows the geometric
line-of-sight rate without excessive noise transmission.

Figure 7.25 shows, for the same case, the filter estimate of the target maneuver.
Superimposed on the figure is the actual maneuver. We can see that for this case it
takes the filter about 5 s to get a reasonable estimate of the maneuver level. A faster
filter would have a smaller transient period but much more noise transmission.
Estimates of the quality shown in Fig. 7.25 are sufficient for improving guidance
system performance.

Fig. 7.24 Three-state filter yields excellent estimate of line-of-sight rate.
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SUMMARY

In this chapter it was shown how a simple constant-gain, digital noise filter,
known as a fading memory filter, could be implemented in a missile guidance
system. It was shown that both filter bandwidth and sampling rate are important
parameters in determining overall system performance. The method of adjoints
was extended so that it could be used to yield performance projections of a
missile guidance system with a digital noise filter. Experiments confirmed that
Monte Carlo simulation results were in complete agreement with single-run
adjoint performance projections. Finally, it was shown how a fading memory
filter could be utilized to provide target acceleration estimates.
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Fig. 7.25 Three-state fading memory filter is able to estimate target maneuver.
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CHAPTER 8

Advanced Guidance Laws

INTRODUCTION

Thus far we have used proportional navigation as an interceptor guidance law
because it is easy to implement and is very effective. In fact, proportional naviga-
tion is used extensively in the tactical missile world. However, there are other
more advanced guidance laws. These advanced guidance laws relax the interceptor
acceleration requirements and also yield smaller miss distances. The price paid for
these more advanced guidance laws is that more information, such as time to go
and missile-target range, is required for their successful implementation. The
concept of zero effort miss, originally introduced in Chapter 2, will be used to
develop and understand new guidance laws. The zero effort miss concept will
also be important when we move to the strategic world and encounter predictive
guidance. The Schwartz inequality will be used to derive optimal guidance
laws analytically.

REVIEW OF PROPORTIONAL NAVIGATION

The basic homing loop for a zero-lag proportional navigation guidance system,
which first appeared in Chapter 2, is repeated for convenience in Fig. 8.1. In
this zero-lag loop, the seeker, noise filter, and flight-control system dynamics
have been neglected. As can be seen from the figure, the proportional navigation
guidance law can be expressed as

nc ¼ N 0Vcl̇

where N0 is a gain known as the effective navigation ratio, Vc the closing velocity,
and the l line-of-sight angle.

We have already shown in Chapter 2 that closed-form solutions for the
required missile acceleration exist for this zero-lag guidance system. The resultant
formula for the missile acceleration nc due to a step target maneuver was derived
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from the first-order time-varying proportional navigation homing loop differen-
tial equation originally presented in Chapter 2. The solution, which is repeated
here for convenience, is given by

nc ¼ N 0

N 0 � 2
1� 1� t

tF

� �N 0�2
" #

nT

where tF is the time of flight, t the time, and nT the target maneuver level. We can
see from the closed-form solution that the required missile acceleration is directly
proportional to the target maneuver acceleration level. Doubling the target accel-
eration level also doubles the missile acceleration requirements.

To convey the maximum amount of information concisely, the closed-form
solution for the missile acceleration induced by target maneuver is normalized
and displayed in Fig. 8.2 for different values of the effective navigation ratio.
We can see that, regardless of the effective navigation ratio, the required missile
acceleration induced by a target maneuver is largest at the end of the flight.
Increasing the effective navigation ratio tends to reduce the maximum missile
acceleration requirement. Of course we have already seen that, due to parasitic
effects and possibly noise considerations, there is a practical upper limit on
maximum allowable values for the effective navigation ratio.

The missile’s maximum required acceleration, which occurs at the end of the
flight (t = tF), can be obtained from the closed-form solution as

ncmaxjPN ¼ N 0nT
N 0 � 2

Therefore, for an effective navigation ratio of 3, the missile requires three
times the acceleration capability of the target for a successful intercept.
However, increasing the effective navigation ratio from 3 to 5 reduces the required
missile acceleration advantage from 3 to 1.67. Of course, other disturbances plus
system dynamics will work in the direction of increasing the required missile
acceleration advantage.

Fig. 8.1 Zero-lag proportional navigation homing loop.
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AUGMENTED PROPORTIONAL NAVIGATION

More advanced guidance laws can be developed from the zero-lag homing
loop model of Fig. 8.1. First we note that the line-of-sight angle can also be
expressed as

l ¼ y
RTM

¼ y
VcðtF � tÞ

where y is the relative missile-target separation and RTM the range from the missile
to the target. We can find the line-of-sight rate by taking the derivative of the pre-
ceding expression, using the quotient rule, obtaining

l̇ ¼ y þ _ytgo
Vct2go

where tgo is the time to go until intercept and can be defined as

tgo ¼ tF � t

Thus, we can also express the proportional navigation guidance law as the math-
ematically equivalent expression

nc ¼ N 0Vcl̇ ¼N 0ð y þ _ytgoÞ
t2go

The expression in the parentheses of the preceding equation represents
the future separation between missile and target. More simply, the expression

Fig. 8.2 Normalized missile acceleration due to target maneuver for proportional
navigation guidance.
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in parentheses is the miss distance that would result if the missile made no further
corrective acceleration and the target did not maneuver. This expression is
referred to as the zero effort miss, ZEM. Therefore, we can also think of pro-
portional navigation as a guidance law in which acceleration commands are
issued inversely proportional to the square of time to go and directly proportional
to the zero effort miss.

If the target maneuvers, the zero effort miss must be augmented by an
additional term. The new equation for the zero effort miss, in the presence of a
constant target maneuver, is simply

ZEMTGTMVR ¼ y þ _ytgo þ 0:5nTt
2
go

where nT is the target maneuver acceleration level. Therefore, a perfectly plausible
guidance law, in the presence of target maneuver, would be

ncjAPN¼
N 0ZEMTGTMVR

t2go
¼ N 0Vcl̇þ N 0nT

2

This new guidance law, known as augmented proportional navigation, is pro-
portional navigation with an extra term to account for the maneuvering target [1].

A zero-lag augmented proportional navigation homing loop is shown in block
diagram form in Fig. 8.3. The additional target maneuver term, required by the
guidance law, appears as a feedforward term in the homing loop block diagram.
As with the proportional navigation guidance law, we can also obtain closed-form
solutions for the required missile acceleration due to a constant target maneuver
for the zero-lag homing loop depicted in Fig. 8.3 The resultant solution for the
required missile acceleration is

ncjAPN¼ 0:5nTN
0 1� t

tF

� �N 0�2

Fig. 8.3 Augmented proportional navigation homing loop.
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The closed-form solution for the missile acceleration required to hit a maneu-
vering target with augmented proportional navigation is displayed in normalized
form in Fig. 8.4. Here we can see that the required missile acceleration decreases
monotonically with time, regardless of the effective navigation ratio, rather than
increasing monotonically with time as was the case with proportional navigation.
Increasing the effective navigation ratio increases the maximum acceleration at
the beginning of the flight but also reduces the time at which the acceleration
decays to negligible levels.

The maximum acceleration required by augmented proportional navigation to
hit a maneuvering target is

ncmaxjAPN¼ 0:5N 0nT

This means that, for a navigation ratio of 3, augmented proportional navigation
requires half the acceleration of the missile than with proportional navigation gui-
dance. However, for an effective navigation ratio of 5, augmented proportional
navigation requires a larger maximum acceleration compared with proportional
navigation guidance.

Comparative plots of proportional and augmented proportional navigation
missile acceleration profiles for different values of effective navigation ratio due
to a target maneuver appear in Figs. 8.5–8.7. Figure 8.5 shows that, with an effec-
tive navigation ratio of 3, augmented proportional navigation requires less accel-
eration capability of the missile than proportional navigation. This figure also
indicates that augmented proportional navigation requires much less total accel-
eration than proportional navigation. This is not surprising because augmented

Fig. 8.4 Normalized acceleration for augmented proportional navigation to hit a
maneuvering target.
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proportional navigation is making use of extra information, namely, knowledge of
the target maneuver. It is reasonable that this knowledge should enable the missile
to maneuver in a more efficient manner.

Figure 8.6 shows that for an effective navigation ratio of 4 the maximum accel-
eration required by both guidance laws is the same. The total acceleration begins

Fig. 8.5 Augmented proportional navigation requires less acceleration capability of missile
for {N’ = 3}.

Fig. 8.6 Augmented proportional navigation requires the same acceleration capability of
missile for N’ = 4.
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to be less with augmented proportional navigation at a normalized time of 0.3.
This means that 70% of the time-augmented proportional navigation requires
less acceleration than proportional navigation to hit a maneuvering target.

Figure 8.7 shows that, when the effective navigation ratio is 5, augmented
proportional navigation requires a larger maximum acceleration capability of
the missile than does proportional navigation. However, about 75% of the time-
augmented proportional navigation requires less missile acceleration than pro-
portional navigation.

It appears from Figs. 8.6 and 8.7 that augmented proportional navigation
does not relax the maximum missile acceleration requirements imposed by pro-
portional navigation guidance when the effective navigation ratio is greater
than or equal to 4. However, in these cases, augmented proportional navigation
appears to require less total acceleration than proportional navigation for most
of the flight.

To quantify this observation more precisely, we need a performance index
other than maximum acceleration. One possibility is to consider the total accelera-
tion required or to find the area under the acceleration curve. We shall see in
Chapter 14 that strategic missiles require fuel to maneuver since they operate
outside the atmosphere (that is, they cannot generate lift by moving control sur-
faces). In these cases the missile maneuverability is referred to as a lateral divert
capability. Lateral divert is directly related to the amount of fuel required by the
interceptor to implement the guidance law and effect an intercept outside the
atmosphere. The lateral divert is in fact the total area under the absolute value
of the acceleration curve. Because missile acceleration is always positive, we can
find the lateral divert requirements for proportional navigation by integrating

Fig. 8.7 Augmented proportional navigation requires more acceleration capability of
missile for N’ = 5.
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the closed-form solution for the required missile acceleration, or

DVPN ¼
ðtF
0
ncjPN dt ¼

ðtF
0

N 0

N 0 � 2
1� 1� t

tF

� �N 0�2
" #

nT dt

After some algebra we obtain

DVPN ¼ N 0nTtF
N 0 � 1

Thus, we can see that increasing the effective navigation ratio makes the lateral
divert requirements smaller. Following the same procedure we can express the
lateral divert required for augmented proportional navigation. First we must set
up the integral as

DVAPN ¼
ðtF
0
ncjAPN dt ¼

ðtF
0
0:5nTN

0 1� t
tF

� �N 0�2

dt

Integration and simplification yields

DVAPN ¼ 0:5N 0nTtF
N 0 � 1

Figure 8.8 presents a comparative plot of the total energy or lateral divert
required by the interceptor as a function of the effective navigation ratio for

Fig. 8.8 Augmented proportional navigation has reduced divert requirement.
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both guidance laws. The figure shows that the lateral divert requirements decrease
with increasing effective navigation ratio for both guidance laws. We can also see
from the formulas and figure that augmented proportional navigation always has
one-half the lateral divert requirements of proportional navigation, regardless of
the effective navigation ratio. Therefore, for strategic applications, augmented
proportional navigation is a more fuel-efficient guidance law than proportional
navigation.

DERIVATION OF AUGMENTED PROPORTIONAL NAVIGATION [4]

Thus far we have given a heuristic argument for the augmented proportional navi-
gation guidance law. This is a good approach if the desire is to understand a gui-
dance law concept, but it is not quite adequate for developing more advanced and
complex laws.

Our model of the guidance system, for guidance law development, is shown in
Fig. 8.9. In this zero-lag model we are saying that relative acceleration is the differ-
ence between target acceleration nT and missile acceleration nc.

We seek to find a guidance law that is a function of the system states. There are
an infinite number of possible guidance laws; thus, it is necessary to state in math-
ematical terms what the guidance law should do. Certainly we would like to hit the
target! Therefore, one feature of the guidance law should be a zero miss distance
requirement. In addition, we would like to hit the target in an efficient manner. In
other words, we desire to use minimal total acceleration. A popular and math-
ematically convenient way of stating the guidance problem to be solved is that
we desire to achieve zero miss subject to minimizing the integral of the square
of the acceleration command, or

yðtFÞ ¼ 0 subject to minimizing
ðtF
0
n2c ðtÞ dt

Unfortunately, if we minimized a more meaningful performance index such as
the integral of the absolute value of nc , the solution would be mathematically
intractable. Typically this type of problem with a quadratic performance index
is solved using techniques from optimal control theory [2, 3]. However, this
class of problem can be solved more easily using the Schwartz inequality [4].
Before we begin, let us review a few fundamentals. A system of linear differential
equations can always be represented in the following state space form:

ẋ ¼ Fx þ Gu

Fig. 8.9 Model for guidance law derivation.
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The system of Fig. 8.9 can be expressed in state space form as

_y
€y
_nT

2
4

3
5 ¼

0 1 0
0 0 1
0 0 0

2
4

3
5

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
F

y
_y
nT

2
4

3
5þ

0
�1
0

2
4

3
5

|fflfflffl{zfflfflffl}
G

nc

where F is the 3 � 3 system dynamics matrix and G is the 3 � 1 vector. The sol-
ution to the state space vector differential equation is given at the final time tF by
the vector relationship [5].

xðtFÞ ¼ FðtF � tÞxðtÞ þ
ðtF
t
FðtF � lÞGðlÞuðlÞ dl

where F is the fundamental matrix and is related to F according to

FðtÞ ¼ L�1½ðsI � FÞ�1�
where L21 is the inverse Laplace transform. This means that in order to find the
fundamental matrix we must first invert the matrix sI – F and then find the
inverse Laplace transform of the resultant matrix expression.

For the model of Fig. 8.9 the fundamental matrix is found to be

FðtÞ ¼
1 t 0:5t2

0 1 t
0 0 1

2
4

3
5

Using the preceding fundamental matrix in the solution for the state space vector
differential equation and only looking at the first state, we get

yðtFÞ ¼ yðtÞ þ _yðtÞðtF � tÞ þ 0:5nTðtF � tÞ2 �
ðtF
t
ðtF � lÞncðlÞ dl

For convenience let us define the terms

f1ðtF � tÞ ¼ yðtÞ þ _yðtÞðtF � tÞ þ 0:5nTðtF � tÞ2

and

h1ðtF � lÞ ¼ tF � l

Then we can say that

yðtFÞ ¼ f1ðtF � tÞ �
ðtF
t
h1ðtF � lÞncðlÞ dl
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For the condition in which we have zero miss distance [y(tF) ¼ 0], we can
rewrite the preceding equation as

f1ðtF � tÞ ¼
ðtF
t
h1ðtF � lÞncðlÞ dl

If we apply the Schwartz inequality to the preceding expression, we get the
relationship

f 21 ðtF � 1Þ �
ðtF
t
h21ðtF � lÞ dl

ðtF
t
n2c ðlÞ dl

Expressing the preceding inequality in terms of the desired acceleration
command, we get ðtF

t
n2c ðlÞ dl � f 21 ðtF � tÞÐ tF

t h21ðtF � lÞ dl
The integral of the square of the commanded acceleration will be minimized

when the equality sign holds in the preceding inequality. According to the
Schwartz inequality, the equality sign holds when

ncðlÞ ¼ kh1ðtF � lÞ
This means that the integral of the squared acceleration is minimized when

k ¼ f1ðtF � tÞÐ tF
t h21ðtF � lÞ dl

Therefore, the commanded acceleration is given by

nc ¼ f1ðtF � tÞÐ tF
t h21ðtF � lÞ dl

" #
h1ðtF � tÞ

Substitution yields the feedback control guidance law

nc ¼ 3ðy þ _ytgo þ 0:5nTt2goÞ
t2go

where

tgo ¼ tF � t

We can see that the “optimal” guidance law is simply augmented proportional
navigation with an effective navigation ratio of 3. The effective navigation ratio
turns out to be 3 because we are minimizing the integral of the square of the accel-
eration. If we were to minimize another function of acceleration, we would get a
different answer for the optimal effective navigation ratio. It is still important to
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note that the optimal guidance law is proportional to the zero effort miss and
inversely proportional to the square of time to go.

INFLUENCE OF TIME CONSTANTS

Thus far we have seen that augmented proportional navigation may offer con-
siderable advantages, in terms of required missile acceleration needed to affect
an intercept, over the proportional navigation guidance law. It has been demon-
strated that, under certain circumstances, augmented proportional navigation
may be considered to be an optimal guidance law for a zero-lag guidance
system. Let us see how augmented proportional navigation performs when
there is a guidance system lag.

Consider a case where the flight time is 10 s, the missile has an effective navi-
gation ratio of 4, and there is a 3-g target maneuver. Figure 8.10 displays the resul-
tant commanded acceleration profile for both proportional and augmented
proportional navigation. Because the effective navigation ratio is 4, we can
compare these results directly with the normalized zero-lag guidance system
results of Fig. 8.6. Figure 8.10 indicates that the lag does not change the value
of the maximum value of acceleration for both guidance laws. In addition, the
lag does not change the fact that augmented proportional navigation requires
less acceleration than proportional navigation about 70% of the time. The lag
does slightly alter the shape of both acceleration profiles in the sense that the
curves are not completely monotonically decreasing (APN) or monotonically
increasing (PN).

Fig. 8.10 Guidance law acceleration requirements in presence of single-lag
guidance system.
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Having seen that the lag does not change trends in acceleration, let us use the
method of adjoints to perform a miss distance sensitivity analysis for both gui-
dance laws in the presence of the lag. The adjoint block diagram of a single
time constant system appears in Fig. 8.11. In this diagram we have proportional
navigation if APN = 0 and augmented proportional navigation if APN = 1.

The MATLAB listing for the adjoint simulation appears in Listing 8.1. The
guidance system time constant is represented in MATLAB by TAU. The listing
shows that an initial condition of unity is applied to the x3 integrator to make

Fig. 8.11 Adjoint for investigating guidance laws in single-lag guidance system.

Fig. 8.12 Both guidance laws are comparable in terms of miss distance.
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a miss distance adjoint. The four adjoint differential equations can be found before
the FLAG=1 statement.

Two adjoint runs were made in which proportional navigation (APN = 0) and
augmented proportional navigation (APN = 1) were used. The error source was a
3-g target maneuver in the presence of a 1-s flight-control system time constant.
The value of the effective navigation ratio was 4. We can see from Fig. 8.12 that
neither guidance law is superior from a miss distance point of view (assuming
the system is linear and we do not have acceleration saturation). Augmented pro-
portional navigation yields smaller miss distances for shorter flight times, whereas
proportional navigation yields smaller miss distances for longer flight times.

LISTING 8.1 ADJOINT SIMULATION OF SINGLE-LAG GUIDANCE SYSTEM

XNT=96.6;
XNP=4.;
TAU=1.;
TF=10.;
VM=3000.;
HEDEG=-20.;
APN=1;
T=0.;
S=0.;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0;
H=.01;
HE=HEDEG/57.3;
n=0.;
while TP,=(TF-1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
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TP=TP+H;
end
X1D=X2+X4*XNP*APN/(2.*TAU);
X2D=X3+XNP*X4/(TAU*TP);
X3D=XNP*X4/(TAU*TP*TP);
X4D=-X4/TAU-X2;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
S=S+H;
if S.=.0999

S=0.;
n=n+1;
ArrayTP(n)=TP;
ArrayXMNT(n)=XNT*X1;
ArrayXMHE(n)=-VM*HE*X2;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
clc
output=[ArrayTP’,ArrayXMNT’,ArrayXMHE’];
save datfil.txt output -ascii
disp ’simulation finished’

Of course in a zero-lag system both guidance laws would always yield zero
miss distance. So we can see that, although the lag does not significantly alter
the acceleration signature, it does cause miss distance!

OPTIMAL GUIDANCE [1, 3, 4]

We have observed that by making use of target acceleration information we could
derive a guidance law to reduce the missile acceleration requirements. It has been
demonstrated in the previous example that guidance system lags cause miss dis-
tance. Generally, larger guidance system time constants yield larger miss distances
(except for parasitic effects and some types of noise disturbances). If we had
knowledge of the guidance system dynamics, could we derive a guidance law to
eliminate miss distance? Mathematically speaking, the answer is yes!
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A single-lag guidance system
model for guidance law develop-
ment is presented in Fig. 8.13.
This model is identical to the
one of Fig. 8.9, except that the
guidance system dynamics has
been represented by a single
lag, or

nL
nc

¼ 1
1þ sT

where nc is the commanded acceleration, nL the achieved acceleration, and T the
guidance system or flight-control system time constant.

Figure 8.13 can be expressed in state space form as

_y
€y
_nT
_nL

2
664

3
775 ¼

0 1 0 0
0 0 1 �1
0 0 0 0
0 0 0 �1

T

2
664

3
775

y
_y
nT
nL

2
664

3
775þ

0
0
0
1
T

2
664
3
775nc

Therefore, the fundamental matrix can be found to be

FðtÞ ¼
1 t 0:5t2 �tT þ T2ð1� e�t=TÞ
0 1 t �Tð1� e�t=TÞ
0 0 1 0
0 0 0 e�t=T

2
664

3
775

Recall that we still seek a guidance law that yields zero miss subject to mini-
mizing the integral of the square of the commanded acceleration, or

yðtFÞ ¼ 0 subject to minimizing
ðtF
0
n2c ðtÞ dt

Using a procedure similar to that used in the previous section, we can derive
the important quantities

f1ðtF � tÞ ¼ y þ _yðtF � tÞ þ 0:5nTðtF � tÞ2

� T2nL e�ðtF�tÞ=T þ ðtF � tÞ
T

� 1

� �
h1ðtF � lÞ ¼ tF � l� T½1� e�ðtF�lÞ=T �

Fig. 8.13 Single-lag model for
guidance law development.
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Calculating

ðtF
t
h21ðtF � lÞ dl ¼ T3 0:5� 0:5e�2tgo=T � 2tgoe�tgo=T

T
� t2go
T2

þ tgo
T

þ t3go
3T3

 !

and defining

x ¼ tgo
T

we obtain the optimal guidance law

nc ¼ N 0

t2go
½ y þ _ytgo þ 0:5nTt

2
go � nLT

2ðe�x þ x � 1Þ�

where the bracketed quantity is the zero effort miss, and the effective navigation
ratio is no longer a constant but is related to the guidance system time constant
and time to go by the relationship

N 0 ¼ 6x2ðe�x � 1þ xÞ
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

The effective navigation ratio for the optimal guidance law is displayed in nor-
malized form in Fig. 8.14. We can see that at the beginning of the flight (long time
to go) the effective navigation ratio is approximately constant and is approaching
3. As we get closer to intercept (small time to go), the effective navigation ratio
grows considerably.

Fig. 8.14 Normalized effective navigation ratio for optimal guidance law.
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In Fig. 8.15 a theoretically optimal guidance law is implemented in a single-lag
guidance system. It is assumed that precise knowledge of the target and missile
acceleration is available. The only error disturbance shown in this guidance
system is target maneuver nT.

The guidance law has been represented with control gains C1–C4. These gains
are functions of the time to go to intercept and the guidance system time constant.
They are defined as

C1 ¼ N 0

t2go

C2 ¼ N 0

tgo

C3 ¼ 0:5N 0

C4 ¼ �N 0ðe�x þ x � 1Þ
x2

where N0 is the optimal effective navigation ratio, which has been defined
previously.

A case was run for a 1-s guidance system time constant in which the flight
time was 10 s and the error disturbance was a 3-g target maneuver. Figure 8.16
shows the acceleration profile for proportional navigation (N0 ¼ 4), augmented
proportional navigation (N0 ¼ 4), and optimal guidance. If we compare this
figure with Fig. 8.5 we can see that the optimal guidance acceleration profile
appears to be identical to the augmented proportional navigation acceleration
profile for a zero-lag guidance system and an effective navigation ratio of 3! This
means that the guidance law is dynamically canceling out the guidance
system dynamics.

Fig. 8.15 Theoretical optimal single time constant guidance system.
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If the optimal guidance law were attempting to make the single-lag guidance
system appear to be a zero-lag augmented proportional navigation guidance
system, then the miss distance should be zero—just as it is in a zero-lag system.
To test this theory, an adjoint block diagram of a single-lag optimal guidance
system was constructed from Fig. 8.15 and appears in Fig. 8.17. The control

Fig. 8.16 Acceleration comparison for various guidance laws.

Fig. 8.17 Adjoint of theoretical optimal single time constant guidance system.
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gains become C* because they must be reversed in time according to adjoint
theory. The miss sensitivities due to target maneuver MNT and heading error
MHE are indicated in the figure.

The MATLAB listing of the adjoint simulation of the optimal single time con-
stant guidance system with various guidance law options appears in Listing 8.2.
We can see from the listing that the parameter APN determines the guidance
law used. APN = 0 denotes proportional navigation, APN = 1 represents augmented
proportional navigation, and APN = 2 defines optimal guidance.

LISTING 8.2 ADJOINT SIMULATION OF OPTIMAL GUIDANCE SYSTEM

XNT=96.6;
XNP=4.;
TAU=1.;
TF=10.;
VM=3000.;
HEDEG=-20.;
APN=0;
T=0.;
S=0.;
TP=T+.00001;
X1=0.;
X2=0.;
X3=1.;
X4=0.;
XNPP=0.;
H=.01;
HE=HEDEG/57.3;
n=0.;
while TP,=(TF-1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
TP=TP+H;
end
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TGO=TP+.00001;
if APN==0
C1=XNP/(TGO*TGO);
C2=XNP/TGO;
C3=0.;
C4=0.;
elseif APN==1
C1=XNP/(TGO*TGO);
C2=XNP/TGO;
C3=.5*XNP;
C4=0.;
else
X=TGO/TAU;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGO*TGO);
C2=XNPP/TGO;
C3=.5*XNPP;
C4=-XNPP*(exp(-X)+X-1.)/(X*X);
end
X1D=X2+C3*X4/TAU;
X2D=X3+C2*X4/TAU;
X3D=C1*X4/TAU;
X4D=-X4/TAU-X2+C4*X4/TAU;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
S=S+H;
if S.=.0999

S=0.;
n=n+1;
ArrayTP(n)=TP;
ArrayXMNT(n)=XNT*X1;
ArrayXMHE(n)=-VM*HE*X2;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
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clc
output=[ArrayTP’,ArrayXMNT’,ArrayXMHE’];
save datfil.txt output -ascii
disp ’simulation finished’

Figure 8.18 shows the miss sensitivity of all the guidance laws to a 3-g step
target maneuver in the presence of a single-lag guidance system with a time con-
stant of 1 s. We can see that the optimal guidance law always yields zero miss dis-
tance. Therefore, as predicted, the optimal guidance system is attempting to make
the single time constant guidance system appear to be a zero-lag augmented pro-
portional navigation guidance system with an effective navigation ratio of 3. The
interested reader is referred to the appendix to see how the optimal guidance
system performs when time to go information is degraded.

SUMMARY

In this chapter we have shown how some advanced guidance laws can be derived
both heuristically and mathematically. The method of adjoints was used to show
the performance advantages of the more advanced guidance laws. In practice, one
must also test the advanced guidance concepts in the presence of parasitic effects
to ensure that performance is still better than proportional navigation [1].
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CHAPTER 9

Kalman Filters and the Homing Loop

INTRODUCTION

Kalman filtering concepts can be used in the homing loop to produce an optimal
digital noise filter. The filter is considered optimal because the errors in the esti-
mates of the system states are minimized in the least-squares sense. We shall see
that, for the filter to be truly optimal, the statistics of the measurement and process
noise must be known. If this information is lacking or inaccurate, the filter per-
formance will degrade. However, we shall also see that in homing loop appli-
cations the Kalman filter cannot only perform very well with significant errors
in the knowledge of the statistics, but it may even be desirable to lie to the filter
to achieve a desired filter bandwidth. Finally, we shall demonstrate that when
Kalman filtering concepts are used it is possible to apply advanced guidance tech-
niques and substantially improve system performance.

THEORETICAL EQUATIONS [1]

For linear systems Kalman filters can provide optimal estimators in the
least-squares sense. To apply Kalman filtering theory, our model of the real
world must be described by a matrix differential equation of the form

ẋ ¼ Fx þ Guþ v

where x is a column vector describing the states of the system, F the system
dynamics matrix, u a known control vector, and v a white noise process. There
is a process noise matrix Q that is related to the process noise vector according to

Q ¼ E½wwT �
In other words, Q is the expectation of the white process noise times its transpose.
The filter will be optimal if the measurements available are linearly related to the
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states according to

z ¼ Hx þ v

where z is the measurement vector, H the measurement matrix, and v the white
noise measurement. The measurement noise matrix R is related to the measure-
ment noise vector v according to

R ¼ E½v vT �
The preceding relationships are valid for continuous systems. Since we are not

taking measurements continuously but plan to receive information every Ts

seconds, we need to discretize our system model. The fundamental matrix F is
related to the system dynamics matrix according to

FðtÞ ¼ L�1f½sI � F� 1g
where I is the identity matrix and L21 the inverse Laplace transform. For discrete
systems we can say that the discrete transition matrix is given by

FK ¼ FðTsÞ
where Ts is the sampling time. In other words, the discrete fundamental matrix is
simply the continuous fundamental matrix evaluated at the sampling time. The
discrete form of the measurement equation is now

zk ¼ Hxk þ vk

and

Rk ¼ s2
n

where s2
n is the variance of the measurement noise. The resultant form of the dis-

crete Kalman filter is given by the recursive relationship in matrix form

x̂k ¼ Fkx̂k�1 þ Gkuk�1 þ Kkðzk �HFkx̂k�1 �HGkuk�1Þ
where Gk is obtained from

Gk ¼
ðTs

0
FðtÞG dt

and Kk represents the Kalman gain matrix. The Kalman gains are computed, while
the filter is operating, from the matrix Ricatti equations. The Ricatti equations are
a set of recursive matrix equations given by

Mk ¼ FkPk�1F
T
k þ Qk

Kk ¼ MkH
T ½HMkH

T þ Rk��1

Pk ¼ ðI � KkHÞMk
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where Pk is a covariance matrix representing errors in the state estimates before an
update, and Mk is the covariance matrix representing errors in the state estimates
after an update. The discrete process noise matrix Qk can be found from the con-
tinuous process noise matrix Q and the fundamental matrix according to

Qk ¼
ðTs

0
FðtÞQFTðtÞ dt

To start the Ricatti equations, we need an initial covariance matrix P0. This matrix
represents the initial uncertainty in the error in the estimate. Choosing appropri-
ate values for this initial matrix is in itself an art [1].

APPLICATION TO HOMING LOOP

To demonstrate the utility of Kalman filtering, let us consider the zero-lag homing
loop model of Fig. 9.1. In this guidance system we measure noisy relative position
y� and are attempting to estimate relative position, relative velocity, and target
acceleration. In our model the missile acceleration nc is assumed to be known,
and the target acceleration is considered to be modeled as a white noise
through an integrator. We have shown in Chapter 4 mathematically that the
shaping filter equivalent of a target maneuver with constant amplitude but
random starting time (where the starting time is uniformly distributed over the
flight time) is white noise through an integrator. According to the results of
Chapter 4, the spectral density of this white noise process is given by

Fs ¼ n2T=tF

where nT is the maneuver level and tF the flight time. In Chapter 4 we also showed
via a numerical experiment that this model is statistically equivalent to a maneu-
ver of constant amplitude whose starting time is equally likely to occur anywhere
during the flight.

Fig. 9.1 Homing loop model for Kalman filter development.
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We can express the model of Fig. 9.1 in state space form as

_y
€y
_nT

2
4

3
5 ¼

0 1 0
0 0 1
0 0 0

2
4

3
5

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
F

y
_y
nT

2
4

3
5þ

0
�1
0

2
4

3
5

|fflfflffl{zfflfflffl}
G

nc þ
0
0
us

2
4

3
5

|fflffl{zfflffl}
w

In the previous section we showed that the fundamental matrix could be
found from the system dynamics matrix. After some computation the fundamen-
tal matrix for the model of Fig. 9.1 turns out to be

FðtÞ ¼
1 t 0:5t2

0 1 t
0 0 1

2
4

3
5

or in discrete form

Fk ¼
1 Ts 0:5T2

s
0 1 Ts

0 0 1

2
4

3
5

The measurement equation can also be expressed in discrete form as

y�k ¼ ½100�|ffl{zffl}
H

yk
_yk
nTk

2
4

3
5þ uk

where the variance of uk , known as Rk , is given by s 2
n . The discrete form of G can

be found from

Gk ¼
ðTs

0
FðtÞGðtÞ dt ¼

�0:5T2
s

�Ts

0

2
4

3
5

The Kalman filter for the model of Fig. 9.1 can now be expressed in matrix
form as

ŷk
_̂yk
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0 1 Ts
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2
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This Kalman filter is shown in block diagram form as part of the homing loop
in Fig. 9.2. In this diagram z21 represents a pure delay so that z21yk means yk21.
In our model the measurement of the line-of-sight angle l�k is corrupted by noise.
We create a pseudomeasurement of relative position y�k by a multiplication of the
line-of-sight angle measurement by our estimate or measurement of the range
from missile to target. The Kalman filter then provides optimal estimates of rela-
tive position, relative velocity, and target acceleration. In this model we are using
proportional navigation guidance where the guidance command is related to the
state estimates according to

nckjPN ¼ N 0

t2go
ŷk þ N 0

tgo
_̂yk

It is easy to show that this command is mathematically equivalent to the more
recognizable form of proportional navigation, or

nckjPN ¼ N 0Vc _̂l

Fig. 9.2 Kalman filter as part of homing loop.
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KALMAN GAINS

In order for the Kalman filter to operate, we need to first compute the filter gains
Kk. These gains are obtained from a set of recursive equations known as the matrix
Ricatti equations, which were stated in the first section. The first of the Ricatti
equations is

Mk ¼ FkPk�1F
T
k þ Qk

where Mk represents the covariance matrix of errors in the estimates after
up-dates. For the three-state system of Fig. 9.2, this matrix can be expanded in
scalar form by multiplying out the matrices and by recognizing that Mk is sym-
metric. Substitution of the necessary matrices yields

M ¼
1 Ts 0:5T2

s

0 1 Ts

0 0 1

2
64

3
75 P11 P12 P13

P12 P22 P23
P13 P23 P33

2
64

3
75 1 0 0

Ts 1 0

0:5T2
s Ts 1

2
64

3
75

þFs

T5
s

20
T4
s

8
T3
s

6
T4
s

8
T3
s

3
T2
s

2
T3
s

6
T2
s

2
Ts

2
6666664

3
7777775

The second Ricatti equation is used to obtain the Kalman gains. It appears from
the second Ricatti equation,

Kk ¼ MkH
T ½HMkH

T þ Rk��1

that it is necessary to take a matrix inverse. However, for the model of Fig. 9.1, the
Rk matrix is 1 � 1; hence, we can take the scalar inverse by inspection and obtain

K1 ¼ M11

M11 þ s 2
N

K2 ¼ M12

M11 þ s 2
N

K3 ¼ M13

M11 þ s 2
N

Finally, the third Ricatti equation is used to obtain the covariance matrix of the
errors in the estimates before an update. The third equation,

Pk ¼ ðI � KkHÞMk
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can easily be expanded to

P ¼
ð1� K1ÞM11 ð1� K1ÞM12 ð1� K1ÞM13

�K2M11 þM12 �K2M12 þM22 �K2M13 þM23

�K3M11 þM13 �K3M12 þM23 �K3M13 þM33

2
64

3
75

NUMERICAL EXAMPLES

To start the Ricatti equations, we need an initial covariance matrix P0. A particu-
larly useful form for the homing loop model considered is

P0 ¼
s 2
noise 0 0

0
VMHE
57:3

� �2
0

0 0 n2T

2
6664

3
7775

where only diagonal elements are used. The initial value of the error in the esti-
mate of position is simply the variance of the measurement noise. The initial
guess in the velocity error estimate is related to missile velocity and the expected
heading error. Finally, our initial value in the uncertainty in target acceleration is
represented by the magnitude of the maximum possible acceleration. This is by no
means the only way to initialize the covariance matrix, but it is not bad.

Listing 9.1 presents a MATLAB listing of a program used to solve the Ricatti
equations recursively for the Kalman gains. In this program it is assumed that the
angular measurement noise is 1 milliradian (mr). This noise must be converted to
a positional noise by the multiplication of range. The process noise model is
considered to be a target maneuver of amplitude 3 g, with starting time that is
uniformly distributed over the 10-s flight time. We can see from the listing that
the Ricatti equations have been expanded to scalar form and that the symmetry
property of the Ricatti equations has been exploited.

Figure 9.3 displays the three Kalman gain profiles resulting from solving the
Ricatti equations with initial conditions as shown in Listing 9.1. We can see
that, unlike the constant-gain digital fading memory filter, the Kalman filter has
time-varying gains. After an initial transient period, the gains appear to be mono-
tonically increasing. This means that, after awhile, the filter bandwidth is continu-
ally increasing.

To see how the filter is performing, we must not only look at the filter gains
but must also investigate the accuracy of the various state estimates. The covari-
ance matrix has information on the accuracy of the state estimates if the filter’s
model of the real world is accurate. If the filter model is not matched to the
real world, then the performance projections offered by the covariance matrix
are not particularly useful. One way of getting more meaningful performance pro-
jections is by placing the three-state Kalman filter in the homing loop.
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Listing 9.2 presents an engagement simulation, based upon the model of
Fig. 9.2, with the three-state Kalman filter included. In the nominal case we are
not using the estimate of the target acceleration for guidance purposes. A
careful examination of the listing shows that the simulation is divided into con-
tinuous and discrete parts. In the continuous section we are integrating the differ-
ential equations for the relative velocity and acceleration using the second-order
Runge–Kutta numerical integration technique. In the discrete section we are
solving the Ricatti equations for the Kalman gains and using the recursive
Kalman filter to generate state estimates. We go to the continuous section every
integration interval H, and we go to the discrete section every sampling interval
Ts. For the simulation to work properly, Ts/H must be an integer.

LISTING 9.1 LISTING OF MATLAB PROGRAM TO SOLVE RICATTI EQUATIONS

VC=4000.;
XNT=96.6;
VM=3000.;
HEDEG=20.;
SIGRIN=.001;
TS=.1;
TF=10.;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIN=XNT*XNT/TF;

Fig. 9.3 Kalman gain profiles for nominal case.
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RTM=VC*TF;
SIGNOISE=SIGRIN;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEG/57.3)^2;
P23=0.;
P33=XNT*XNT;
T=0.;
H=.01;
S=0.;
n=0;
while T , =(TF-1e-5)

TGO=TF-T+.000001;
RTM=VC*TGO;
SIGNOISE=SIGRIN;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)+TS5*PHIN/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+.5*TS2*P33)+TS4*PHIN/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIN*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIN*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIN;
M33=P33+PHIN*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;
n=n+1;
ArrayT(n)=T;
ArrayK1(n)=K1;
ArrayK2(n)=K2;
ArrayK3(n)=K3;
T=T+TS;

end

figure
plot(ArrayT,ArrayK1),grid
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xlabel(’Flight Time (Sec)’)
ylabel(’K1’)
clc
output=[ArrayT’,ArrayK1’,ArrayK2’,ArrayK3’];
save datfil.txt output -ascii
disp ’simulation finished’

Figure 9.4 shows that in the nominal case the Kalman filter accurately esti-
mates the 3-g target maneuver after about 3 s. This is consistent with Fig. 9.3,
which also shows that it takes about 3 s for the Kalman gains to go through
their initial transient period. Note that, after about 5 s, the error in the estimate
of target acceleration has been stabilized and is quite small, as shown in
Fig. 9.4. The filter’s internal prediction of how well it is estimating target accelera-
tion can be found by taking the square root of the third diagonal element in the
covariance matrix. Figure 9.5 shows that the single flight error in the estimate of
target acceleration agrees with the covariance matrix predictions in the sense that
it is within the theoretical bounds approximately 68% of the time.

Thus far the filter knows the truth about the real world in the sense that it
knows the measurement and process noise statistics exactly. In practice,
because these statistics are never known a priori, one adjusts the bandwidth of
the filter to a desirable level based on other considerations. For example, if we
tell the filter that there is 10 mr of angle noise rather than 1 mr, the first
Kalman gain value is approximately halved, as shown in Fig. 9.6. As the filter
gain is decreasing, thus the filter bandwidth must also be decreasing. This
means that, when the filter thinks there is more measurement noise, it does
more filtering or slows down (lower bandwidth).

Fig. 9.4 Kalman filter estimate of target maneuver for nominal case.
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LISTING 9.2 MATLAB LISTING OF KALMAN FILTER IN HOMING LOOP

count=0;
VC=4000.;
XNT=96.6;
YIC=0.;
VM=3000.;
HEDEG=0.;
HEDEGFIL=20.;
XNP=3.;
SIGRIN=.001;
TS=.1;
APN=0.;
TF=10.;
Y=YIC;
YD=-VM*HEDEG/57.3;
YDIC=YD;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIN=XNT*XNT/TF;
RTM=VC*TF;
SIGNOISE=SIGRIN;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEGFIL/57.3)^2;
P23=0.;
P33=XNT*XNT;
T=0.;
H=.01;
S=0.;
YH=0.;
YDH=0.;
XNTH=0.;
XNC=0.;
while T ,= (TF - 1e-5)

YOLD=Y;
YDOLD=YD;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
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Y=Y+H*YD;
YD=YD+H*YDD;
T=T+H;
STEP=2;
end
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
YDD=XNT-XNC;
FLAG=1;

end
FLAG=0;

Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
S=S+H;
if S.=(TS - 1e-5)
S=0.;
TGO=TF-T+.000001;
RTM=VC*TGO;
SIGNOISE=SIGRIN;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)+TS5*PHIN/20.;

M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+.5*TS2*P33)+TS4*PHIN/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIN*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIN*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIN;
M33=P33+PHIN*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;

XLAMNOISE=SIGNOISE*randn;
YSTAR=RTM*(XLAM+XLAMNOISE);
RES=YSTAR-YH-TS*YDH-.5*TS*TS*(XNTH-XNC);
YH=K1*RES+YH+TS*YDH+.5*TS*TS*(XNTH-XNC);
YDH=K2*RES+YDH+TS*(XNTH-XNC);
XNTH=K3*RES+XNTH;
XLAMDH=(YH+YDH*TGO)/(VC*TGO*TGO);
XNC=XNP*VC*XLAMDH+APN*.5*XNP*XNTH;
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ERRNT=XNT-XNTH;
SP33=sqrt(P33);
SP33P=-SP33;
count=count+1;

ArrayT(count)=T;
ArrayXNTG(count)=XNT/32.2;

ArrayXNTHG(count)=XNTH/32.2;
ArrayERRNTG(count)=ERRNT/32.2;
ArraySP33G(count)=SP33/32.2;
ArraySP33PG(count)=SP33P/32.2;
ArrayY(count)=Y;
ArrayXNCG(count)=XNC/32.2;
end

end
figure
plot(ArrayT,ArrayXNTG,ArrayT,ArrayXNTHG),grid
xlabel(’Time (S)’)
ylabel(’Acceleration (G) ’)
figure
plot(ArrayT,ArrayERRNTG,ArrayT,ArraySP33G,ArrayT,ArraySP33PG),grid
xlabel(’Time (S)’)
ylabel(’Error in Acceleration (G) ’)
clc
output=[ArrayT’,ArrayY’,ArrayXNCG’,ArrayXNTG’,ArrayXNTHG’,ArrayERRNTG’,
ArraySP33G’,ArraySP33PG’];
save datfil.txt output /ascii
disp ’simulation finished’

Fig. 9.5 Kalman filter prediction of performance is excellent.
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An experiment was conducted to illustrate the impact that filter bandwidth
has on the resultant estimate. In this experiment the actual noise level was kept
at 1 mr, whereas the filter estimate of the measurement noise statistics was
changed from 1 mr (matched case, filter assumption correct) to 10 mr (mis-
matched case, filter assumption wrong). Figure 9.7 shows that when the filter is
matched its estimate of target maneuver becomes very good at about 3 s. If the
filter thinks there is 10 mr of measurement noise, it takes about 6 s for the filter

Fig. 9.7 Filter becomes sluggish when it thinks there is more noise.

Fig. 9.6 Increasing measurement noise estimate decreases Kalman gain.
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estimates to become very good. Thus, telling the filter that there is more measure-
ment noise (even if there is not) is a practical way of making the filter more
sluggish or decreasing its bandwidth.

If we tell the filter that there is either 1 mr or 10 mr of measurement noise but
actually turn the real measurement noise off, we have a deterministic case. We can
then make flight time a parameter for the case in which there is a 3-g target man-
euver and evaluate system miss distance caused by the target maneuver. Figure 9.8
shows that the faster system (s ¼ 1 mr) has less miss distance induced by target
maneuver than the slower system (s ¼ 10 mr). However, in both cases we can see
that the guidance system time constant must be very small since the miss distance
sensitivity to target maneuver is small and rapidly approaches zero.

If we run our simulation withmeasurement noise only (s ¼ 1 mr and no target
maneuver), we must operate in the Monte Carlo mode. Fifty-run Monte Carlo sets
were made for 20 different values of flight time for a total of 1000 runs. Figure 9.9
shows how the standard deviation of the noise-induced miss varies with flight time
for a case in which the filter is optimal (s ¼ 1 mr) and one in which the filter band-
width has been intentionally decreased (s ¼ 10 mr). We can see from Fig. 9.9 that
decreasing the filter bandwidth (telling the filter that there is more measurement
noise) decreases the system miss distance due to the actual measurement noise
(1 mr). This behavior is opposite to that of the two-state digital fading memory
filter (see Fig 7.19) in which decreasing the filter bandwidth always appeared to
increase miss distance! Of course, the constant gain digital fading memory filter
bandwidth was fixed, whereas the Kalman filter bandwidth is time-varying. By
comparing Figs. 9.8 and 9.9 we can see that the guidance system designer has a jug-
gling act. Increasing the filter bandwidth reduces the miss due to target maneuver

Fig. 9.8 Kalman filter guidance system has small sensitivity to target maneuver.
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while increasing the miss due to noise. The optimal practical filter band width is
dependent on the levels of the input disturbances.

The sampling time can also have a profound effect on filtering properties and
system performance. Figure 9.10 shows that increasing the sampling time Ts from
0.1 to 0.5 s (or decreasing sampling rate from 10 to 2 Hz) increases the Kalman
gain. We saw from Chapter 7 on digital fading memory filters that decreasing

Fig. 9.9 Decreasing filter bandwidth decreases noise-induced miss.

Fig. 9.10 Kalman gain increases with decreasing sampling rate.
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the sampling rate tends to decrease the total system bandwidth. Thus, the Kalman
filter is attempting to increase its bandwidth to compensate for the decrease in
system bandwidth due to sampling at a lower rate.

Figure 9.11 shows that the filter estimate of target acceleration for both
sampling times is about the same. This means that the filter has successfully com-
pensated for the effective decrease in system bandwidth due to a decrease in the
sampling rate.

Although Kalman filter performance appears to be approximately indepen-
dent of sampling rate, system performance is not! If we remove the actual
measurement noise from the simulation and run with target maneuver only for
different flight times, we can generate miss distance curves. Figure 9.12 shows
how the target-maneuver-induced miss varies with the sampling rate. We can
see that the miss for Ts ¼ 0.5 s is much greater than the miss for Ts ¼ 0.1 s for
flight times less than 2 s.

The simulation was also run with measurement noise only in the Monte Carlo
mode. Figure 9.13 shows that decreasing the sampling rate also increases the
measurement-noise-induced miss. Generally, hardware costs increase with
higher sampling rates. Therefore, an important job of the guidance system
designer is to set a limit on the sampling rate to get both acceptable cost and
adequate performance.

It is important to note that in the preceding experiment the noise standard
deviation remained constant when the data rate changed. In many systems the
noise spectral density remains constant and so the noise standard deviation
must change as the data rate changes. The interested reader is referred to the
appendix for a more complete discussion of this topic.

Fig. 9.11 Kalman filter bandwidth appears to be independent of sampling rate.
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EXPERIMENTS WITH OPTIMAL GUIDANCE [2]

In Chapter 8 we derived an optimal guidance law that attempted to cancel out the
guidance system dynamics and, in addition, we relaxed the missile acceleration
requirements. In this section we will show how an optimal guidance system
might be implemented and provide a numerical example to illustrate how such
a system might perform in the presence of measurement noise.

Fig. 9.13 Measurement noise miss increases with decreasing sampling rate.

Fig. 9.12 Target maneuver miss increases with decreasing sampling rate.
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Listing 9.3 presents a MATLAB Monte Carlo simulation of an optimal
guidance system with a three-state digital Kalman filter and a single-lag represen-
tation of the flight-control system. The filter structure is identical to the one
shown if Fig. 9.2, except that the achieved missile acceleration nL rather than
the commanded acceleration nc is fed back into the filter. The filter estimates rela-
tive position and velocity, which can be converted into a line-of-sight rate estimate
as shown in the listing. In addition, the filter estimates the target maneuver level.
The achieved missile acceleration is assumed to be known perfectly. This quantity
is fed into the filter and, in addition, is used as part of an optimal guidance law as
was discussed in Chapter 8 and can be seen in Listing 9.3.

A 50-runMonte Carlo set was made with the engagement model of Listing 9.3.
In the nominal case the flight-control system time constant was set to 0.5 s, the
effective navigation ratio was 3, and the sampling time was 0.1 s. The nominal
error disturbances, as can be seen from Listing 9.3, consist of 1 mr of measure-
ment noise and a constant 3-g target maneuver occurring at the beginning of
flight. Figures 9.14 and 9.15 show 50-run Monte Carlo results for the standard
deviation and mean miss distances for this case as a function of the flight time.
Both figures show results for proportional navigation (APN = 0) and an optimal
guidance law (APN = 2). Because there is one random disturbance and one deter-
ministic disturbance, we can interpret the standard deviation of the miss to be the
noise-induced miss and the mean of the miss to be the target-maneuver-induced
miss. Both figures clearly show that, for the case in which the guidance time con-
stant is 0.5 s, optimal guidance yields smaller miss distances, even in the presence
of measurement noise errors. The differences between the guidance laws is great-
est for the smaller flight times. If the ratio of the flight time to the guidance system
time constant is large, proportional navigation is known to be an effective gui-
dance law. Thus, the optimal guidance law, discussed in a deterministic setting
in Chapter 8, can be implemented and made to work successfully in a more rea-
listic setting. Optimal guidance is yielding superior performance to proportional
navigation because it is attempting to cancel out dynamically the flight-control
system time constant. We can see from both figures that optimal guidance per-
formance, unlike that of proportional navigation, is approximately independent
of flight time.

LISTING 9.3 MONTE CARLO ENGAGEMENT SIMULATION TO TEST OPTIMAL GUIDANCE

%Preallocation
Z=zeros(size(1:1000));
I=zeros(size(1:50));
TF=zeros(size(1:50));
count=0;
VC=4000.;
XNT=96.6;
YIC=0.;
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VM=3000.;
HEDEG=20.;
XNP=3.;
SIGNOISE=.001;
TS=.1;
TAU=.5;
NOISE=1;
RUN=50;
APN=0;
XLIM=999999;
for TF=.5:.5:10.0,

Z1=0;
for I=1:RUN

Y=YIC;
YD=0;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIN=XNT*XNT/TF;
RTM=VC*TF;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEG/57.3)^2;
P23=0.;
P33=XNT*XNT;
T=0.;
H=.01;
S=0.;
YH=0.;
YDH=0.;
XNTH=0.;
XNC=0.;
XNL=0.;
while T,= (TF - 1e-5)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
Y=Y+H*YD;
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YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;
STEP=2;
end;
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
XNLD=(XNC-XNL)/TAU;
YDD=XNT-XNL;
FLAG=1;
end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
if S.=(TS - 1e-5)
S=0.;
TGO=TF-T+.000001;
RTM=VC*TGO;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+...

.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)...

+TS5*PHIN/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+...

.5*TS2*P33)+TS4*PHIN/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIN*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIN*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIN;
M33=P33+PHIN*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;

if NOISE==1,
XLAMNOISE=SIGNOISE*randn;

else
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XLAMNOISE=0;
end;

YSTAR=RTM*(XLAM+XLAMNOISE);
RES=YSTAR-YH-TS*YDH-.5*TS*TS*(XNTH-XNC);
YH=K1*RES+YH+TS*YDH+.5*TS*TS*(XNTH-XNC);
YDH=K2*RES+YDH+TS*(XNTH-XNC);
XNTH=K3*RES+XNTH;
XLAMDH=(YH+YDH*TGO)/(VC*TGO*TGO);
if APN==0
XNC=XNP*VC*XLAMDH;
elseif APN==1
XNC=XNP*VC*XLAMDH+APN*.5*XNP*XNTH;
else
X=TGO/TAU;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);
XNEW=XNPP*XNL*(EXP(-X)+X-1.)/(X*X);

XNC=XNPP*VC*XLAMDH+.5*XNPP*XNTH-XNEW;
end;
if XNC.XLIM

XNC=XLIM;
elseif XNC,-XLIM

XNC=-XLIM;
end;

end;
end;
Z(I)=Y;

Z1=Z(I)+Z1;
XMEAN=Z1/I;

end;
SIGMA=0;
Z1=0;
for I=1:RUN,

Z1=(Z(I)-XMEAN)^2+Z1;
if I==1,
SIGMA=0;

else
SIGMA=sqrt(Z1/(I-1));

end;
end;
count=count+1;
ArrayTF(count)=TF;
ArraySIGMA(count)=SIGMA;
ArrayXMEAN(count)=XMEAN;
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end;
figure
plot(ArrayTF’,ArraySIGMA’),grid
title(’Standard deviation of miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’Noise Miss Standard Deviation (Ft) ’)
axis([00,10,00,4])
figure
plot(ArrayTF’,ArrayXMEAN’),grid
title(’Mean of miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’Mean Miss (Ft) ’)
axis([00,10,00,60])
clc
output=[ArrayTF’,ArraySIGMA’,ArrayXMEAN’];
save datfil.txt output /ascii
disp(’Simulation Complete’)

Another performance advantage of optimal guidance is that it is supposed to
relax the missile acceleration requirements. The previous case was rerun for a 10-s
flight. This flight time was chosen because the performance of both proportional
navigation and optimal guidance is about the same, from a miss distance point of
view, as can be seen from Figs. 9.14 and 9.15. The reason for this is that the 10-s
flight time is large compared to the 0.5-s flight-control system time constant.
However, in the new case to be run the engagement simulation was made

Fig. 9.14 Optimal guidance yields smaller noise-induced miss in presence of large guidance
system time constant.
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nonlinear in the sense that missile acceleration saturation effects were included.
The missile commanded acceleration limit was made a parameter in the study.
Figure 9.16 displays the mean miss distance vs the acceleration limit for a case
in which there was a 3-g target maneuver and 1 mr of measurement noise. We
can see from the figure that the acceleration requirements for optimal guidance
are clearly relaxed.

Fig. 9.15 Optimal guidance yields smaller target-maneuver-induced miss in presence of
large guidance system time constant.

Fig. 9.16 Optimal guidance reduces missile acceleration requirements.
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SUMMARY

In this chapter we have shown how both Kalman filtering and optimal guidance
concepts could be applied to a missile guidance system. It was shown, via a
numerical example, that when these concepts were applied there were substantial
performance benefits and a relaxing of missile acceleration requirements.
However, range and time-to-go information must be available for Kalman filter-
ing and optimal guidance to work. If the required information is lacking or inac-
curate, the performance of this type of guidance system may degrade to the point
where its performance is worse than that of a conventional proportional naviga-
tion guidance system [2].
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CHAPTER 10

Tactical Zones

INTRODUCTION

In the material presented so far it has been assumed that the missile can reach the
target and generate sufficient lift to maneuver. For purposes of understanding fun-
damental guidance issues, we have neglected the fact that the ability of a tactical
aerodynamic missile to maneuver is dependent upon its speed, physical character-
istics (such as, wing size), and altitude. In addition, we have also assumed impul-
sive constant velocity missiles and have not taken into consideration that a missile
must burn propellant in order to get up to speed. The resultant missile total weight
is directly related to its payload weight and design speed (such as, propellant
weight). Actually, it will soon become obvious that in some tactical missiles
most of the weight is the propellant weight. Finally, we have also neglected the
fact that while an aerodynamic missile is coasting the missile speed diminishes
due to atmospheric drag. In this chapter we shall briefly address previously neg-
lected issues and show how to modify previous computations to account for these
important effects.

VELOCITY COMPUTATION

A tactical missile gets up to speed by burning propellant. If the missile is launched
from the air, it already has a large initial speed. However, if the missile is launched
from the ground, it needs more propellant to reach the same speed because it is
starting from rest. In addition, a ground-based missile needs additional propellant
because it must travel through more of the denser atmosphere. Figure 10.1 shows
a typical weight and thrust profile for a boost-coast missile. The initial or total
weight of the missile is denoted WT , and its final weight, after the propellant is
expended, is the glide weight WG. The glide weight consists of the missile struc-
ture, electronics, and warhead. While propellant is being consumed, the thrust
is assumed to be constant, with magnitude T.
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We can find the magni-
tude of the missile velocity
after all of the propellant
is consumed from basic
physics. Applying Newton’s
second law yields [1, 2]

F ¼ ma ¼ m
dV
dt

¼ T

The change in velocity
with respect to time can be
expressed in terms of thrust
and weight as

dV
dt

¼ T
m

¼ Tg
W

Recognizing that as long as the missile is burning propellant (0 , t , tB), we
can express the instantaneous missile weight as

W ¼ _Wt þWT

where the derivative of the weight is negative (weight is decreasing). Thus, we can
find an expression for the change in velocity due to the burning of propellant by
direct integration, or ðV1

V0

dV ¼ Tg
ðtB
0

dt
W

Substitution of the expression for the missile weight into the integral yields

V1 � V0 ¼ DV ¼ Tg
ðtB
0

dt
_Wt þWT

Evaluation of the integral yields

DV ¼ �Tg
_W

ln
WT

_WtB þWT

Thus, the change in velocity depends only on the missile total weight, glide
weight, thrust magnitude, and rate at which the propellant is burning. The

Fig. 10.1 Boost-coast
thrust-weight profile.
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preceding velocity formula, also known as the rocket equation, represents the
maximum change in velocity we can impart. Practical effects such as gravity
and atmospheric drag will usually work in the direction of decreasing DV. The
preceding expression can be made more concise and useful by specifying fuel
effectiveness in terms of a parameter known as the specific impulse, Isp. It is a posi-
tive number in units of seconds and is related to the thrust and change in missile
weight according to

Isp ¼ �T
_W

More fuel-efficient missiles have higher values of specific impulse. Typically,
for tactical missiles, the specific impulse has values ranging from 200 s to 300 s.
By substituting the specific impulse definition into the velocity change formula,
we get

DV ¼ Ispg ln
WT

WG

Now the change in missile velocity during a burn depends only on the total
weight, glide weight, and specific impulse. However, the total missile weight is
the sum of the glide weight and the propellant weight, or

WT ¼ WP þWG

The fuel mass fraction mf is defined as the ratio of the missile propellant
weight to the total missile weight, or

mf ¼ WP

WT

Because a ground-to-air missile requires more fuel than an air-to-air missile to
reach the same speed, it would have a larger fuel mass fraction value. We can now
express the change in missile velocity in terms of the specific impulse and fuel
mass fraction, or

DV ¼ Ispg ln
1

1�mf

Using the preceding equation, Fig. 10.2 shows how the change in missile
velocity varies with fuel mass fraction and specific impulse. We can see from
the figure that, if the fuel mass fraction is 0.3 and the specific impulse is 200 s,
the change in velocity is about 2300 ft/s. This means that, if the missile were
launched from the ground, its final speed, in the absence of drag and gravitational
effects, would be 2300 ft/s. If the missile with the same fuel mass fraction were
launched from an aircraft traveling at 1000 ft/s, its final speed would be
3300 ft/s.
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DRAG [3]

Tactical missiles work within the atmosphere. Aerodynamic drag causes the
missile to slow down and have less maneuver capability. The drag Fdrag can be
expressed as

Fdrag ¼ QSrefCD0

where Q is the dynamic pressure, Sref a reference area, and CD0 the zero-lift
drag. The dynamic pressure is a function of the air density r and velocity V
and is given by

Q ¼ rV2

2

In the English system of units used throughout the text, air density is
measured in slug per cubic foot (slug/ft3). The reference area is the cross-sectional
area of the missile body and is therefore related to the physical characteristics of
the missile. The zero-lift drag is a function of the missile speed and aerodynamic
shape. Since the air density decreases with altitude, the influence of drag is greatest
at the lower altitudes. For analytical reasons it is convenient to use an exponential
approximation to the atmosphere. One such approximation below 30,000 ft alti-
tude is given by

r ¼ 0:002378 e�h=30,000 ðh < 30,000 ftÞ

Fig. 10.2 Increasing fuel mass fraction or specific impulse increases missile speed.
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whereas above 30,000 ft the exponential approximation becomes

r ¼ 0:0034 e�h=22;000 ðh � 30,000 ftÞ
where h is measured in feet.

To check the validity of the exponential approximations, the 1962 U.S. stan-
dard atmosphere is displayed as a function of altitude in Fig. 10.3. Superimposed
on the figure are the exponential approximations. The solid curve represents the
actual data points for the standard U.S. atmosphere, whereas the dashed curve
represents the preceding exponential approximation. We can see that the expo-
nential approximation is quite accurate.

In the absence of induced drag effects, the drag Fdrag can be expressed in terms
of Newton’s second law as

F ¼ ma ¼ �Fdrag ¼ m
dV
dt

Therefore, the rate of change of velocity can be found from

dV
dt

¼ �Fdrag
m

¼ �QSrefCD0

m
¼ �0:5rV2SrefCD0

m

Setting up the integral in a useful form for integration, we getðV1

V0

dV
V2

¼
ðt1
t0

�0:5rSrefCD0

m
dt

If we assume that the air density does not change (constant altitude) and that the
zero-lift drag is constant, we can get a closed-form expression for the new velocity

Fig. 10.3 Exponential approximation for air density is very accurate.
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due to drag, or

1
V1

¼ rSrefCD0Dt
2m

þ 1
V0

where V0 is the initial velocity, V1 is the velocity Dt seconds later, and Dt is
defined as

Dt ¼ t1 � t0

If we define the initial drag deceleration D0 to be

D0 ¼ rSrefCD0V2
0

2m

and a characteristic time T0 as

T0 ¼ V0=D0

then we can express the velocity Dt seconds later in the simpler form

V1 ¼ V0T0

T0 þ Dt

Integrating again yields the total distance R covered in Dt seconds as

R ¼ V0T0ln 1þ Dt
T0

� �
We now have sufficient information to perform some preliminary calculation

concerning the effects of drag on velocity loss and range covered. However, it is
first important to see how the magnitude of the drag deceleration is influenced
by the zero-lift drag and altitude. Often it is convenient to combine the weight,
reference area, and zero-lift drag into an expression known as the ballistic coeffi-
cient b, which is defined as

b ¼ W
CD0Sref

where b is in units of pounds per square feet. Figure 10.4 shows how the drag
deceleration varies with altitude for different values of ballistic coefficient. We
can see that increasing the ballistic coefficient (reducing zero-lift drag) or increas-
ing the altitude reduces the drag deceleration. It is also apparent that, for a velocity
of 3000 ft/s, a ballistic coefficient of 500 lb/ft2 yields a drag deceleration of about
22 g at sea level, 10 g at 25 kft, and 3.5 g at 50 kft. In addition, Fig. 10.4 shows that,
as altitude increases, the drag deceleration becomes less dependent on the ballistic
coefficient. Eventually, at the higher altitudes, there is no deceleration due to drag.

If we still assume a missile at sea level with an initial velocity of 3000 ft/s,
missile speed decreases due to drag as a function of time for different ballistic
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coefficients, as shown in Fig. 10.5. The velocity drops to about half of its original
value in only 4.5 s for b ¼ 500 lb/ft2, in about 9 s for b ¼ 1000 lb/ft2, and in
about 17.5 s for b ¼ 2000 lb/ft2.

Figure 10.6 shows the ranges covered for the cases given earlier. At sea level
the range covered until the missile velocity drops to half of its value is about
9 kft for b ¼ 500 lb/ft2, about 20 kft for b ¼ 1000 lb/ft2, and about 35 kft for

Fig. 10.4 Drag deceleration decreases with increasing altitude and increasing
ballistic coefficient.

Fig. 10.5 Velocity drops faster with smaller ballistic coefficient.
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b ¼ 2000 lb/ft2. If the missile is not considered to be effective after it has dropped
more than half of its velocity, then we can consider these values to be kinematic
zones of effectiveness at sea level. The missile will have longer kinematic reach if
its ballistic coefficient is higher.

Figure 10.7 shows the velocity loss at 50 kft altitude. We can see that increas-
ing the altitude reduces the missile’s velocity loss due to drag and increases the
effective range of the missile. We can see from Fig. 10.7 that at 50 kft it takes

Fig. 10.6 Zone of effectiveness at sea level is not large.

Fig. 10.7 Velocity drops much slower at 50 kft altitude.
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much longer for the velocity to drop to half of its original value. At 50 kft the
velocity drops to about half of its original value in about 30 s (vs 4.5 s at sea
level) for b ¼ 500 lb/ft2, in about 60 s (vs 9 s at sea level) for b ¼ 1000 lb/ft2,
and in more than 100 s (vs 17.5 s at sea level) for b ¼ 2000 lb/ft2.

Figure 10.8 shows the range covered as a function of time for missiles with
varying ballistic coefficients at an altitude of 50 kft. We can see from the figure
that the range covered until the velocity drops to half of its value is about
70 kft (vs 9 kft at sea level) for b ¼ 500 lb/ft2, about 125 kft (vs 20 kft at sea
level) for b ¼ 1000 lb/ft2, and more than 200 kft (vs 35 kft at sea level) for
b ¼ 2000 lb/ft2.

In summary, increasing the ballistic coefficient (or reducing the zero-lift drag)
can have a big payoff in terms of increased zone of effectiveness for aerodynamic
missiles that must fly through the more dense atmosphere at low altitudes.
Tactical radar homing missiles tend to have a nose with a high fineness ratio
in order to make them more aerodynamically efficient. The high fineness-ratio
nose also tends to exacerbate parasitic radome effects [4].

ACCELERATION [1, 2]

Just as there was a drag coefficient to determine slowdown, there is a lift coefficient
CL to determine missile maneuverability. From Newton’s second law we can say
that

F ¼ ma ¼ mnL ¼ QSrefCL

Fig. 10.8 Zone of effectiveness is much greater at 50 kft altitude.
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where nL represents the missile’s acceleration capability. Therefore, the missile
acceleration capability, expressed in units of gravity, is given by

nL
g
¼ 0:5rV2SrefCL

W

where W is missile weight in units of pounds. The lift coefficient is a function of
the missile aerodynamic shape, speed, angle of attack, and wing size. Larger wings
and increasing angle of attack both work in the direction of increasing the
lift coefficient.

To demonstrate the sensitivity of the missile acceleration capability to the lift
coefficient and altitude, it is best to consider a numerical example. Consider a
missile weighing 500 lb with an 0.5-ft2 reference area and traveling at 3000 ft/s.
Figure 10.9 shows how the missile acceleration capability decreases with increas-
ing altitude and decreasing lift coefficient. It is important to note that a missile
may have an aerodynamic acceleration capability, at a given altitude, which is
far in excess of its structural capability. A loading analysis is required to set
practical limits on the maximum allowable commanded missile acceleration.
Figure 10.9 shows an example of a missile (CL = 4) which has a 40-g capability
at sea level that diminishes to about a 10-g capability at 50 kft altitude.
Reducing missile weight or increasing the missile reference area (but keeping
weight constant) works in the direction of increasing the missile aerodynamic
maneuverability.

Speed also plays an important role in determining missile aerodynamic man-
euverability. Figure 10.10 shows that decreasing the missile speed significantly
decreases the missile maneuverability. A missile that travels at 3000 ft/s at

Fig. 10.9 Missile maneuverability decreases dramatically with increasing altitude.
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20 kft altitude has a maneuverability in excess of 40 g. Halving the missile speed
more than halves its maneuverability. We have seen in previous chapters that a
missile requires a certain acceleration advantage to effectively engage maneuver-
ing targets. Therefore, for a given altitude and missile configuration, there is a
minimum speed at which the missile can effectively engage a responsive threat.

GRAVITY

Thus far in our analysis we have neglected gravity and assumed a constant-
altitude missile. Actually, gravity will eventually cause a coasting missile to
crash to the ground. If we neglect the atmosphere and launch an impulsive
3000-ft/s missile at various flight-path angles g, we will get different range capa-
bilities due to gravity alone, as shown in Fig. 10.11. As expected, the 45-deg launch
results in maximum range.

Atmospheric drag will of course prevent the missile from achieving the range
capabilities indicated in Fig. 10.11. Listing 10.1 presents a MATLAB simulation of
an impulsive missile launched at a flight-path angle GAMDEG missile in the pres-
ence of gravity and an atmosphere (zero-lift-drag). As in the previous section, the
ballistic coefficient is used rather than the zero-lift drag coefficient to account for
zero-lift-drag-induced slowdown effects. Lift-induced drag is neglected in this
simplified analysis.

Consider a 45-deg sea-level launch of a missile that attains a velocity of
3000 ft/s instantaneously. Cases were run in which the ballistic coefficient
varied from 500 lb/ft2 to infinity (no drag). Figure 10.12 shows that drag dramati-
cally changes the maximum range capability of the interceptor. The maximum

Fig. 10.10 Decreasing speed decreases maneuverability.
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range for a 45-deg launch angle decreases from about 300 kft (no-drag case) to
about 100 kft for a ballistic coefficient of 2000 lb/ft2, to about 55 kft for a ballistic
coefficient of 1000 lb/ft2, and to 30 kft for a ballistic coefficient of 500 lb/ft2.

Drag becomes less important at the higher altitudes. The previous case was
repeated, but the initial launch altitude was increased from sea level to 50 kft.
Figure 10.13 shows that the differences between the drag free trajectory and the
one in which the ballistic coefficient is 2000 lb/ft2 is much smaller than before.

Fig. 10.11 Trajectory profiles for various launch angles.

Fig. 10.12 Drag dramatically reduces range capability of missile.
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The maximum range without drag in this case is about 350 kft, whereas the
maximum range for a ballistic coefficient of 2000 lb/ft2 is about 275 kft. For a bal-
listic coefficient of 500 lb/ft2 the maximum range reduces to 175 kft.

LISTING 10.1 TRAJECTORY SIMULATION

count=0;
H=.01;
VM=3000.;
BETA=1000.;
T=0.;
S=0.;
GAMDEG=45.;
VM1=VM*cos(GAMDEG/57.3);
VM2=VM*sin(GAMDEG/57.3);
RM1=0.;
RM2=0.;
while ~(T.0. & RM2,=0.)

RM1OLD=RM1;
RM2OLD=RM2;
VM1OLD=VM1;
VM2OLD=VM2;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;

Fig. 10.13 Drag effects reduce considerably if launch altitude is high.
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RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
T=T+H;
end
if RM2,30000.
RHO=.002378*exp(-RM2/30000);
else
RHO=.0034*exp(-RM2/22000);
end
VM=sqrt(VM1^2+VM2^2);
Q=.5*RHO*VM*VM;
GAM=atan2(VM2,VM1);
DRAG=Q*32.2/BETA;
AM1=-DRAG*cos(GAM);
AM2=-32.2-DRAG*sin(GAM);
FLAG=1;
end
FLAG=0;
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
S=S+H;
if S.=.99999

S=0.;
RM1K=RM1/1000.;
RM2K=RM2/1000.;
count=count+1;
ArrayT(count)=T;
ArrayRM1K(count)=RM1K;
ArrayRM2K(count)=RM2K;

end
end
figure
plot(ArrayRM1K,ArrayRM2K),grid
xlabel(’Downrange (Kft)’)
ylabel(’Altitude (Kft) ’)
clc
output=[ArrayT’,ArrayRM1K’,ArrayRM2K’];
save datfil.txt output /ascii
disp ’simulation finished’

Thus, we can see that drag not only plays a role in reducing missile speed so
that it has less acceleration capability but it also plays a significant role in
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determining the kinematic reach of the missile. For long-range ground-launched
missiles, trajectory shaping is often used to get the missile to higher altitudes as
quickly as possible so that range and velocity losses due to drag can be minimized.

SUMMARY

In this chapter we have considered and shown how to model previously neglected
effects. A simple design formula, known as the rocket equation, was derived in
order to show the influence of propellant weight on missile speed capability. In
addition, we investigated how drag reduces the kinematic reach of the missile
and how the atmosphere helps in providing the missile with lift to maneuver.
Finally, a numerical example was presented showing how to generate flyout zones.
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CHAPTER 11

Strategic Considerations

INTRODUCTION

In all of the work presented so far we have based our models on a flat-Earth,
constant-gravity model. For tactical interceptor missions, where speeds are less
than 5000 ft/s, altitudes under 100 kft, and ranges covered under 100 n.mi.,
these assumptions are reasonable. In the strategic world where speeds are near-
orbital and the distances covered are intercontinental, the flat-Earth constant-
gravity assumption is not only inaccurate but can also give misleading results in
terms of the size of the zone of effectiveness. However, we shall also see in sub-
sequent chapters that the guidance lessons learned in the tactical world are still
valid and give valuable insight into the requirements and effectiveness of strategic
interceptors. Before proceeding with the development of models, it is worthwhile
to review some of the historical background of strategic ballistic missiles [1].

BACKGROUND

Germany’s V-2 was the world’s first long-range ballistic missile. When a loophole
in the Treaty of Versailles was found, the Wehrmacht’s Ordinance Department
authorized the development of this large long-range rocket and selected Artillery
Captain Walter Dornberger to supervise the project. After 14 years of testing, the
V-2 was ready for field use and was finally deployed in the fall of 1944. It was
launched from mobile field battery positions in France and Holland. Each single-
stage missile weighed nearly 30,000 lb, reached a burnout velocity of about
6000 ft/s, and had a range of approximately 230 miles. Between September
1944 and March 1945 German field units launched more than 3000 V-2 missiles.
Approximately 1900 missiles were launched against Allied targets on the
European continent, primarily Antwerp, Belgium. The rest fell on London and
southern England.

After the war, the U.S. Army brought German V-2 engineers and enough
pieces for about 80 missiles into this country. As part of Project Hermes, more
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than 70 V-2s were launched by the U.S. during the late 1940s and early 1950s.
These rockets formed the basis for U.S. strategic ballistic missile technology and
were also essential for subsequent advances in the exploration of space.

GRAVITATIONAL MODEL

In the tactical world, in the absence of thrust, drag, and lift, the flat-Earth
constant-gravity assumption is easy to understand. In this mathematical model
the gravitational acceleration is independent of altitude with value 32.2 ft/s2,
always in a downward direction. The tactical missile inertial coordinate system
is fixed to the surface of a flat Earth and is depicted in Fig. 11.1. Here the
missile has velocity V and is at a flight-path angle g with respect to the surface
of the Earth. In addition the missile is in a constant-gravity field with acceleration
level g. The missile is at an initial location that is distance dr downrange from the
origin of the coordinate system and at an altitude alt from the surface of the Earth.

The differential equations acting on the missile are

_V1 ¼ 0

_V2 ¼ �g

_R1 ¼ V1

_R2 ¼ V2

where V is velocity and R is range. The down-range component is denoted by 1,
and the altitude component is denoted by 2. The initial conditions for velocity and
position are given by

V1ð0Þ ¼ V cos g

V2ð0Þ ¼ V sin g

R1ð0Þ ¼ dr

R2ð0Þ ¼ alt

Because the coordinate
system is inertial, we can
integrate directly in the
down-range and altitude
directions to get velocity
from acceleration and
position from velocity. In

Fig. 11.1 Missile in gravity
field using flat-Earth model.
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this model, the gravitational
acceleration is always 32.2 ft/s2

in the negative altitude direction,
regardless of altitude. Therefore,
we know that this model can
only be valid at the lower alti-
tudes, since in actuality the grav-
itational acceleration decreases
with increasing altitudes.

In general, a body in a gravi-
tational field can be depicted in
an Earth-centered coordinate
system shown in Fig. 11.2. In

this system the Earth is nonrotating and the gravitational acceleration acting on
the missile is toward the center of the Earth. The missile has velocity V with
respect to a reference that is tangent to the Earth and perpendicular to r (line
from center of Earth to missile). The radius of the Earth is denoted by a in
this figure.

According to Newton’s law of universal gravitation, two bodies attract each
other with a force that acts along a line connecting the two bodies. The force is
proportional to the product of the masses of the two bodies and inversely pro-
portional to the square of the distance between the two bodies. If one of the
bodies is the Earth and the mass of the second body is negligible compared to
the Earth, Newton’s law of universal gravitation can be expressed in vector
form as [2, 3]

€r ¼ �gm r
r3

where r is a vector from the center of the Earth to the second body, and gm is
known as the gravitational parameter with the value

gm ¼ 1:4077 � 1016ft3=s2

For simulation purposes and to be consistent with the work we have already done
with tactical interceptors, it is natural to desire to express Newton’s law in Carte-
sian coordinates. We shall soon see that for analytical purposes it will be more
convenient to work in polar coordinates. By substituting

r ¼ xiþ yj

Fig. 11.2 Missile in gravity field.
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we can express Newton’s law of universal gravitation in Earth-centered inertial
coordinates (x, y) as

€x ¼ �gm x

ðx2 þ y2Þ1:5

€y ¼ �gm y

ðx2 þ y2Þ1:5

where x and y are component distances from the center of the Earth to the body or
missile. From Fig. 11.2 we can see that the initial conditions for the preceding
differential equations are

xð0Þ ¼ ðaþ alt0Þ cos u0
yð0Þ ¼ ðaþ alt0Þ sin u0
_xð0Þ ¼ Vcos

p

2
� gþ u0

� �
_yð0Þ ¼ Vsin

p

2
� gþ u0

� �
where V is the initial missile velocity, alt0 the initial missile altitude with respect to
the surface of the Earth, g the angle the velocity vector makes with respect to the
reference, and u0 the initial angular location of the missile with respect to the x
axis. Velocity and position components, with respect to the center of the Earth,
can be found from repeated integration of the preceding differential equations.
Once we have found the location of the missile with respect to the center of the
Earth, it is useful to express the missile location with respect to the surface of
the Earth. The instantaneous altitude of the missile can simply be found by
finding the distance from the center of the Earth to the missile and then subtract-
ing the Earth’s radius, or

alt ¼ ðx2 þ y2Þ0:5 � a

We can find the distance traveled along the surface of the Earth by referring
to Fig. 11.3.

In general, the initial location of the missile can be expressed in vector nota-
tion as

r0 ¼ x0iþ y0j

and the future location of the missile at any arbitrary time can be expressed as

r ¼ xiþ yj
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The angle between the two vectors r0 and r can be found from the definition of the
vector dot product, or

u ¼ cos�1 r0 � r
jr0jjrj

Therefore, the distance traveled, which is projected on the surface of a circular
Earth, is given by

dist ¼ au

For comparative purposes, the equations of motion for a missile in a gravity
field were programmed using the flat-Earth constant-gravity model and the Earth-
centered coordinate system using Newton’s law of universal gravitation. The
MATLAB gravity field simulation appears in Listing 11.1. We can see from the
listing that the position and velocity components in the flat-Earth model are
denoted RT1, RT2, VT1, and VT2, respectively. In the Earth-centered system, the
position and velocity components are denoted X, Y, X1, and Y1, respectively.
The differential equations describing the missile in a gravity field for both coordi-
nate systems can be found before the FLAG=1 statement. In the Earth-centered
system, the missile position (x, y) is converted to a downrange and altitude so
that a trajectory comparison can be made with answers obtained from the
flat-Earth model.

A case was run in which an impulsive missile was launched from the surface of
the Earth at a 45-deg angle. The initial missile velocity was 3000 ft/s. Figure 11.4
shows that the flat-Earth model (valid for a tactical missile) and the Earth-
centered coordinate system model (valid for a strategic missile) yield the same
missile trajectories. The total range traveled in both cases is about 47 n.mi., and
the maximum altitude is about 12 n.mi.

Figure 11.5 shows that, when the initial speed of the impulsive missile is
doubled to 6000 ft/s, we start to see some differences in the resultant missile

Fig. 11.3 Projecting distance missile travels on surface of Earth.

STRATEGIC CONSIDERATIONS 233



trajectories. In this case the missile travels about 180 n.mi. and the maximum alti-
tude reached is about 50 n.mi. Remember that the correct answers are the ones
given by the Earth-centered coordinate system differential equations. However,
even in this case, the flat-Earth approximation (constant-gravity model) is
fairly accurate.

Figure 11.6 shows, that when the impulsive missile speed is again doubled to
12,000 ft/s, the flat-Earth model yields large discrepancies in the resultant missile
trajectory. The missile actually travels much farther than the flat-Earth model
indicates, since the gravitational acceleration is reduced at the higher altitudes
according to Newton’s law of universal gravitation. In this case the distance tra-
veled is more than 800 n.mi., and the peak altitude is about 220 n.mi.

Fig. 11.5 Flat-Earth model is still fairly accurate when missile speed is doubled.

Fig. 11.4 Both models yield same answers when missile speed is small.
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LISTING 11.1 GRAVITY FIELD SIMULATION

count=0;
H=.01;
A=2.0926e7;
GM=1.4077e16;
GAM=45.;
ALTNM=0.;
V=3000.;
ALT=ALTNM/6076.;
ANG=0.;
VRX=V*cos(1.5708-GAM/57.3+ANG);
VRY=V*sin(1.5708-GAM/57.3+ANG);
G=32.2;
S=0.;
SCOUNT=0.;
RT1=ALT*cos(ANG);
RT2=ALT*sin(ANG);
VT1=VRX;
VT2=VRY;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
XFIRST=X;
YFIRST=Y;
X1=VRX;
Y1=VRY;
T=0.;
while ALTNM . -.0001

RT1OLD=RT1;

Fig. 11.6 Flat-Earth model is inaccurate when missile speed is again doubled.
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RT2OLD=RT2;
VT1OLD=VT1;
VT2OLD=VT2;
XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
RT1=RT1+H*RT1D;
RT2=RT2+H*RT2D;
VT1=VT1+H*VT1D;
VT2=VT2+H*VT2D;
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;

end
AT1=0.;
AT2=-G;
RT1D=VT1;
RT2D=VT2;
VT1D=AT1;
VT2D=AT2;
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT;
Y1D=-GM*Y/TEMBOT;
XD=X1;
YD=Y1;
FLAG=1;

end
FLAG=0;
RT1=(RT1OLD+RT1)/2.+.5*H*RT1D;
RT2=(RT2OLD+RT2)/2.+.5*H*RT2D;
VT1=(VT1OLD+VT1)/2.+.5*H*VT1D;
VT2=(VT2OLD+VT2)/2.+.5*H*VT2D;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
S=S+H;
if S.=1.99999
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S=0.;
RT1NM=RT1/6076.;
RT2NM=RT2/6076.;
ALTNM=(sqrt(X^2+Y^2)-A)/6076.;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
count=count+1;
ArrayT(count)=T;
ArrayRT1NM(count)=RT1NM;
ArrayRT2NM(count)=RT2NM;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;

end
end
figure
plot(ArrayRT1NM,ArrayRT2NM,ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
clc
output=[ArrayT’,ArrayRT1NM’,ArrayRT2NM’,ArrayDISTNM’,ArrayALTNM’];
save datfil.txt output /ascii
disp ’simulation finished’

POLAR COORDINATE SYSTEM [4, 5]

In the previous section we have shown how to accurately simulate a missile in a
gravity field. The differential equations representing Newton’s law of universal
gravitation were first presented in vector form and then converted for simulation
purposes to an Earth-centered Cartesian coordinate system. The Earth-centered

coordinate system is extremely
useful for simulation work because
all integration can be done directly
in the inertial frame. However, in
order to get insight into the nature
of trajectories in a gravity field and
to get closed-form solutions, it is
more convenient to work analytically
in a polar coordinate system whose

Fig. 11.7 Polar coordinate system with
missile in gravity field.
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origin is also at the center of the Earth. Figure 11.7 displays the polar coordinate
system from which we proceed with our analysis.

In Fig. 11.7 we have defined a moving coordinate system that has the missile at
the origin. The new coordinate system has an i0 component along the distance
vector and a j0component perpendicular to r. The relationship between the inertial
Earth-centered coordinate system and the moving coordinate system is depicted
in Fig. 11.8.

The relationship between the fixed and moving coordinate frames can be
expressed mathematically as

i0 ¼ cos uiþ sin uj

j0 ¼ � sin uiþ cos uj

Since the new coordinate system is moving, we can express its rate of change with
respect to the polar angle u. Differentiating the preceding set of expressions with
respect to the polar angle yields

di0

du
¼ � sin uiþ cos uj ¼ j0

dj0

du
¼ � cos ui� sin uj ¼ �i0

We can now find the rate of change of the new coordinate system as a function of
time according to the chain rule, or

di0

dt
¼ du

dt
di0

du
¼ _uj0

dj0

dt
¼ du

dt
dj0

du
¼ � _ui0

We now have sufficient information so that we can take derivatives of vectors. The
distance vector r can be expressed in the moving coordinate system as

r ¼ ri0

Taking the derivative of
the preceding expres-
sion yields

_r ¼ ri0 þ _ri0

Fig. 11.8 Relationship
between fixed and moving

coordinate frames.
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However, we have just shown that

_i
0 ¼ � _uj0

_j
0 ¼ _ui0

Therefore, substitution yields the radial velocity expression

_r ¼ r _uj0 þ _ri0

Taking the derivative once more yields

€r ¼ ð€r � r _u
2Þi0 þ ðr€uþ 2_r _uÞj0

We know that gravitational acceleration is along i0 and there is no acceleration
along j0. Therefore, the preceding vector differential equation can be expressed
as the following two scalar differential equations:

�gm
r2

¼ €r � r _u
2

0 ¼ r€uþ 2_r _u

Since

d
dt

ðr2 _uÞ ¼ 2r _r _uþ r2€u

we can say that

d
d
ðr2 _uÞ ¼ 0

Integration yields a constant of integration that must be a moment arm times a
tangential velocity, or

r2 _u ¼ ðaþ altÞVcos g
In summary, the differential equations describing a missile in a gravity field

can also be expressed in polar coordinates as

€r � r _u
2 þ gm

r2
¼ 0

r2 _u ¼ ðaþ altÞVcos g

where the initial conditions are

rð0Þ ¼ aþ alt

uð0Þ ¼ 0

_rð0Þ ¼ Vsin g
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A MATLAB simulation was set up to demonstrate that the polar and Cartesian
Earth-centered differential equations are equivalent. Listing 11.2 presents the
gravity field simulation for both coordinate systems. The position and velocity
components in the Cartesian system appear in the listing as X, Y, X1, and Y1,
respectively. The range, its derivative, and the polar angle in the polar coordinate
system are denoted by R0, R1, and PSI in the listing. The differential equations for
both the Cartesian and polar coordinate systems appear before the FLAG=1 state-
ment in the listing.

LISTING 11.2 GRAVITY FIELD SIMULATION WITH DIFFERENT COORDINATE SYSTEMS

count=0;
H=.01
A=2.0926e7;
GM=1.4077e16;
GAM=45.;
ALTNM=0.;
V=24000.;
ANGDEG=0.;
ANG=ANGDEG/57.3;
VRX=V*cos(1.5708-GAM/57.3+ANG);
VRY=V*sin(1.5708-GAM/57.3+ANG);
ALT=ALTNM/6076.;
S=0.;
SCOUNT=0.;
R0=A+ALT;
R1=V*sin(GAM/57.3);
PSI=0.;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
XFIRST=X;
YFIRST=Y;
X1=VRX;
Y1=VRY;
T=0.;
while ALTNM . -.0001

R0OLD=R0;
R1OLD=R1;
PSIOLD=PSI;
XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
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while STEP ,=1
if FLAG==1

STEP=2;
R0=R0+H*R0D;
R1=R1+H*R1D;
PSI=PSI+H*PSID;
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;

end
PSID=(A+ALT)*V*cos(GAM/57.3)/(R0*R0);
R1D=-GM/(R0*R0)+R0*PSID*PSID;
R0D=R1;
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT;
Y1D=-GM*Y/TEMBOT;
XD=X1;
YD=Y1;
FLAG=1;

end
FLAG=0;
R0=(R0OLD+R0)/2+.5*H*R0D;
R1=(R1OLD+R1)/2+.5*H*R1D;
PSI=(PSIOLD+PSI)/2+.5*H*PSID;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
S=S+H;
if S.=9.99999

S=0.;
SPOLARNM=A*PSI/6076.;
ALTPOLARNM=(R0-A)/6076.;
ALTNM=(sqrt(X^2+Y^2)-A)/6076.;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
count=count+1;
ArrayT(count)=T;
ArraySPOLARNM(count)=SPOLARNM;
ArrayALTPOLARNM(count)=ALTPOLARNM;
ArrayDISTNM(count)=DISTNM;
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ArrayALTNM(count)=ALTNM;
end

end
figure
plot(ArraySPOLARNM,ArrayALTPOLARNM,ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
clc
output=[ArrayT’,ArraySPOLARNM’,ArrayALTPOLARNM’,ArrayDISTNM’,ArrayALTNM’];
save datfil.txt output /ascii
disp ’simulation finished’

An experiment was run in which a missile with an initial velocity 24,000ft/s
was launched from the surface of the Earth at an angle of 45 deg with respect
to the reference. The resultant trajectories for both sets of differential equations
appear in Fig. 11.9. We can see that the resultant trajectories are identical for
all practical purposes. It is interesting to note that with an initial speed of
24,000 ft/s the impulsive missile traveled nearly 4500 n.mi. and reached an alti-
tude of 1700 n.mi.

CLOSED-FORM SOLUTIONS [4, 5]

For those readers familiar with the literature on astrodynamics, apologies are
offered in advance for the text’s unconventional notation. Many other authors
use re or Re rather than a for the radius of the Earth and use a rather than a1
for the semimajor axis of an ellipse. The choice of a for the radius of the Earth
is solely historical (it is used in [4]), whereas the use of a1 for the semimajor

Fig. 11.9 Polar and Earth-centered gravity field equations yield identical trajectories.
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axis of an ellipse was to avoid further confusion. In this section we will solve the
previously derived differential equations of Newton’s law of universal gravitation
expressed in polar coordinates. In other words, we seek to find closed-form sol-
utions of the polar differential equations

€r � r _u
2 þ gm

r2
¼ 0

r2 _u ¼ ðaþ altÞVcos g
For convenience let us define constants r0 and p such that

r0 ¼ aþ alt

p ¼ ðaþ altÞVcos g ¼ r0Vcos g

In addition, we will define an inverse range to be

u ¼ 1=r

The goal is to convert both polar differential equations to one second-order
differential equation in terms of u. First we know from the chain rule that u
varies with time according to

du
dt

¼ du
dt

du
du

¼ _u
du
du

¼ p
r2
du
du

An alternate way of seeing how u changes with respect to time is

du
dt

¼ du
dr

dr
dt

¼ �1
r2

dr
dt

Equating both expressions yields

dr
dt

¼ �p
du
du

Next we define z to be

z ¼ dr
dt

Using the chain rule to see how z changes with respect to time yields

dz
dt

¼ du
dt

dz
du

¼ p
r2

d
du

dr
dt

� �
¼ p

r2
d
du

�p
du
du

� �
Therefore, we can say that

dz
dt

¼ d2r
dt2

¼ �p2

r2
d2u

du2
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Substitution allows us to rewrite the second-order differential equation in
range as

€r � r _u
2 þ gm

r2
¼ 0 ¼ �p2

r2
d2u

du2
� r

p2

r4
þ gmu2

Simplification yields

d2u

du2
þ u ¼ gm

p2

For purposes that will be obvious later we can define a new constant to be

l ¼ r0V2

gm

We can now summarize the transformed range polar differential equation
to be

d2u

du2
þ u ¼ 1

lr0cos2g

The original initial conditions on the polar differential equations were

rð0Þ ¼ r0
_rð0Þ ¼ V sing

As we already know that

du
du

¼ � 1
p
dr
dt

¼ �1
r0Vcosg

dr
dt

we can say that

du
du

ð0Þ ¼ � tan g
r0

The other initial condition is simply

uð0Þ ¼ 1
rð0Þ ¼

1
r0

The solution to the preceding second-order differential equation is

u ¼ A sinuþ B cosuþ 1
lr0 cos2 g
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where A and B can be found from the initial conditions. After some algebra we
obtain the complete solution in terms of u as

u ¼ 1� cos u
lr0 cos2 g

þ 1
r0

cosðuþ gÞ
cos g

However, since

u ¼ 1=r

the solution in terms of r becomes

r0
r
¼ 1� cos u

l cos2 g
þ cosðuþ gÞ

cos g

or, more conveniently,

r ¼ r0l cos2 g
1� cos uþ l cos g cosðuþ gÞ

¼ r0l cos2 g
1� l sin u cos g sin g� cos uð1� l cos2 gÞ

Thus, given missile altitude r0, velocity l, and flight-path angle g, we find the
missile location r as a function of the central angle u. The preceding closed-form
solution is also the equation of an ellipse in a polar coordinate system. To prove
this interesting fact we must first recognize that the equation for an ellipse in polar
coordinates is

r ¼ a1ð1� e2Þ
1� e cosðu� vÞ ¼

a1ð1� e2Þ
1� e sin u sinv� e cos u cosv

where a1 is the semimajor axis, e the eccentricity, and v the argument of the
apogee. The trajectory equation and the equation for an ellipse are equivalent if

e sinv ¼ l cos g sin g

e cosv ¼ 1� l cos2 g

Squaring and adding the preceding equations yields an expression for the eccen-
tricity in terms of l, or

e ¼ ½1þ lðl� 2Þcos2g�0:5
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The trajectory equation yields a circle if e ¼ 0, an ellipse if 0 , e , 1, a parabola if
e ¼ 1, and a hyperbola for e . 1. If we set the flight-path angle g to zero, we can
see that we get circular motion if l ¼ 1, elliptical motion for 0 , l , 2, parabolic
motion for l ¼ 2, and hyperbolic motion for l . 2. Because we can express the
initial velocity in terms of l as

V ¼
ffiffiffiffiffiffiffiffiffi
lgm
r0

r

we can determine the trajectory shape from the magnitude of the velocity!
The Earth-centered trajectory generator was modified so that the initial flight-

path angle was zero and the initial velocity expressed in terms of l according to
the preceding velocity equation. In addition, the outputs, rather than being down-
range and altitude, were expressed in the natural x, y units (that is, distance from
the center of the Earth converted to nautical miles). Listing 11.3 presents the resul-
tant MATLAB orbit generator program. We can see from the listing that the
missile is initially at 1000 n.mi. altitude.

A case was run in which l was set to 1. Figure 11.10 shows that the simulation
indicates that the missile trajectory is indeed circular—as theory predicted!
Figure 11.11 shows that when l was set to 1.5 the simulation got an elliptical
orbit for the missile—again, as theory predicted! Values of l between 0 and 2
should yield elliptical orbital motion, with 1 being circular.

Fig. 11.10 Simulation yields circular orbit when l is unity.
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LISTING 11.3 MATLAB ORBIT GENERATOR

count=0;
H=.01;
A=2.0926e7;
GM=1.4077e16;
GAM=0.;
ALTNM=1000.;
ALT=ALTNM*6076.;
XLAM=1.;
V=sqrt(GM*XLAM/(A+ALT));
ANGDEG=90.;
ANG=ANGDEG/57.3;
VRX=V*cos(1.5708-GAM/57.3+ANG);
VRY=V*sin(1.5708-GAM/57.3+ANG);
S=0.;
SCOUNT=0.;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
XFIRST=X;
YFIRST=Y;
X1=VRX;
Y1=VRY;
T=0.;
TF=30000.;

Fig. 11.11 Setting l 5 1.5 yields elliptical orbit.
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while T , TF
XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;

end
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT;
Y1D=-GM*Y/TEMBOT;
XD=X1;
YD=Y1;
FLAG=1;

end
FLAG=0;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
S=S+H;
if S.=49.99999

S=0.;
XNM=X/6076.;
YNM=Y/6076.;
count=count+1;
ArrayT(count)=T;
ArrayXNM(count)=XNM;
ArrayYNM(count)=YNM;

end
end
figure
plot(ArrayXNM,ArrayYNM),grid
xlabel(’X (Nmi)’)
ylabel(’Y (Nmi) ’)
clc
output=[ArrayT’,ArrayXNM’,ArrayYNM’];
save datfil.txt output /ascii
disp ’simulation finished’
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Theory says that if we set l¼0.5 we should also get an elliptical orbit.
However, Fig. 11.12 shows that, although the simulation indicates an elliptical
orbit, it is one that intersects the earth! Therefore, values of l between 0 and 1
yield suborbital motion. Although this type of trajectory is not appropriate for
a satellite, it is appropriate for a ballistic missile! Finally Fig. 11.13 shows that
when l ¼ 2 we have achieved escape velocity and the missile motion is parabolic.
This type of orbit does not intersect the Earth.

HIT EQUATION [4, 5]

We have seen that the previously derived trajectory equation is useful in obtaining
closed-form solutions for satellite orbits and ballistic missile trajectories. If we
specialize in the ballistic missile case, we can also get closed-form solutions
from the trajectory equation, which, given an initial missile flight-path angle, alti-
tude, and distance to be traveled (missile hits the Earth at that distance), will
define the magnitude of the missile velocity required.

LISTING 11.4 SIMULATION TO DEMONSTRATE VALIDITY OF VELOCITY FORMULA

count=0;
H=.01;
A=2.0926e7;
GM=1.4077e16;
GAMDEG=23.;

Fig. 11.12 Setting l too small results in orbit that intersects Earth.
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GAM=GAMDEG/57.3;
DISTNM=6000.;
ANGDEG=0.;
ANG=ANGDEG/57.3;
PHI=DISTNM*6076./A;
ALTNM=0.;
ALT=ALTNM*6076.;
R0=A+ALT;
TOP=GM*(1.-cos(PHI));
TEMP=R0*cos(GAM)/A-cos(PHI+GAM);
BOT=R0*cos(GAM)*TEMP;
V=sqrt(TOP/BOT);
VRX=V*cos(1.5708-GAM+ANG);
VRY=V*sin(1.5708-GAM+ANG);
S=0.;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
XFIRST=X;
YFIRST=Y;
X1=VRX;
Y1=VRY;
T=0.;
while ALT .=0.

XOLD=X;

Fig. 11.13 Setting l 5 2 results in parabolic trajectory for missile.
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YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;

end
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT;
Y1D=-GM*Y/TEMBOT;
XD=X1;
YD=Y1;
FLAG=1;

end
FLAG=0;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
S=S+H;
if S.=9.99999

S=0.;
XNM=X/6076.;
YNM=Y/6076.;
ALT=sqrt(X^2+Y^2)-A;
ALTNM=ALT/6076.;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
count=count+1;
ArrayT(count)=T;
ArrayXNM(count)=XNM;
ArrayYNM(count)=YNM;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;

end
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end
figure
plot(ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
clc
output=[ArrayT’,ArrayXNM’,ArrayYNM’,ArrayDISTNM’,ArrayALTNM’];
save datfil.txt output /ascii
disp ’simulation finished’

If we desire the missile to travel a distance dist then the total central angle tra-
veled f is given by (see Fig. 11.3)

f ¼ dist=a

where a is the radius of the Earth. The missile hits the Earth when r = a. Therefore,
substituting r = a and u ¼ f into the trajectory equation solution yields

r0
a
¼ 1� cosf

l cos2 g
þ cosðfþ gÞ

cos g

Recognizing that

l ¼ r0V2

gm

Fig. 11.14 Required velocity depends on range to be traveled and desired
flight-path angle.
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we can solve for the velocity. After some algebra we obtain

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gmð1� cosfÞ
r0 cos g½ðr0 cos g=aÞ � cosðfþ gÞ�

s

This equation tells us the velocity required to hit a target a certain distance away
from our launch point, given we want to launch with a certain flight-path angle g.
Figure 11.14 displays the velocity formula in graphic form. We can see that, as
expected, longer distances require larger missile velocities. If the initial flight-path
angle is too large, the ballistic missile will never hit the Earth because the resultant
velocity will exceed the escape velocity (l ¼ 2) and the trajectory will not be
elliptical.

Listing 11.4 presents a modified ballistic missile simulation using the preced-
ing velocity formula to derive the desired initial velocity given the desired flight-
path angle, initial missile altitude, and distance to be covered. From the listing we
can see that the missile is launched from the surface of the Earth with an initial
flight-path angle of 23 deg. The target is 6000 n.mi. downrange on the surface
of the Earth. Although the velocity formula was derived from solutions in the
polar coordinate system, the simulation is based in the Cartesian coordinate
system.

Figure 11.15 presents simulation results, in the form of an altitude vs down-
range plot for the nominal case of Listing 11.4. We can see that the missile
indeed travels the desired distance of 6000 n.mi. before hitting the surface of
the Earth. The peak altitude for the missile is in excess of 800 n.mi.
Figure 11.16 presents the same trajectory information in a way in which the cur-
vature of the Earth is apparent.

Fig. 11.15 Closed-form solution for velocity is accurate.
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FLIGHT TIME [4, 5]

We have already seen that, given a
distance to be covered and initial
flight-path angle, it was possible to
derive a formula for the required
velocity. Also associated with this
velocity is the time to reach the
target or time of flight tF. It is also
possible, based on the trajectory
equation solution for r, to derive a closed-form solution for the time of flight.
From the original gravity field differential equation in polar coordinates, we
know that

r2
du
dt

¼ r0V cos g

We can cross multiply terms to set up the integralsðf
0
r2du ¼

ðtF
0
r0V cos g dt

Fig. 11.16 Six thousand nautical miles,
23-deg trajectory.

Fig. 11.17 Flight time increases with increasing flight-path angle and increasing distance
to be traveled.
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Integration of the right-hand side of the equation and substitution of the trajec-
tory solution into the left-hand side yields the integral

tF ¼ 1
r0V cos g

ðf
0

r20l
2 cos4 g

½1� cos uþ l cos g cosðuþ gÞ�2 du

After integration and much algebra, the closed-form solution assuming l , 2 for
the flight time simplifies to

tF ¼ r0
V cos g

tan gð1� cosfÞ þ ð1� lÞ sin u
ð2� lÞ 1� cosf

l cos2 g
þ cosðgþ fÞ

cosg

� �
8>><
>>:

þ 2 cos g

lð2l � 1Þ1:5 tan
�1

ffiffiffiffiffiffiffiffiffiffi
2
l � 1

q
cos g cot f2 � sin g

0
@

1
A
9=
;

Figure 11.17 displays the flight time formula in graphic form. We can see that, as
expected, it takes longer for a ballistic missile to travel greater distances. In
addition, increasing the flight-path angle tends to increase the time of flight.
For example, it takes about 1800 s for a ballistic missile to travel 5000 n.mi.
when the flight-path angle is 20 deg. Increasing the flight-path angle to 40 deg
increases the flight time to nearly 2800 s. We can also see that flight time increases
monotonically and smoothly with increasing values of flight-path angle. We shall
make use of this interesting observation in Chapter 13.

SUMMARY

This chapter was our first introduction into the strategic world. We saw that the
constant-gravity, flat-Earth model used for tactical interceptors was not correct
for strategic interceptors. Simulation models based on Newton’s law of universal
gravitation were derived from first principles. It was shown that an Earth-centered
Cartesian system was useful for simulation and a polar model was more useful for
analytical work. A closed-form solution was obtained for a ballistic missile’s vel-
ocity in terms of flight-path angle and distance to be covered, and another
expression was derived relating the flight time to the velocity. Simulation
results confirmed the closed-form solutions. We shall make much use of these
relationships in Chapter 13.

REFERENCES

[1] Kennedy, G. P., Rockets, Missiles and Spacecraft of the National Air and Space
Museum, Smithsonian Institution Press, Washington DC, 1983.

STRATEGIC CONSIDERATIONS 255



[2] Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover,
New York, 1971.

[3] Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics,
AIAA Education Series, New York, 1987.

[4] Wheelon, A. D., “Free Flight of a Ballistic Missile,” ARS Journal, Vol. 29, Dec. 1959,
pp. 915–926.

[5] Regan, F., Re-Entry Vehicle Dynamics, AIAA Education Series, New York, 1984.

256 TACTICAL AND STRATEGIC MISSILE GUIDANCE



CHAPTER 12

Boosters

INTRODUCTION

We have seen in Chapter 11 that, in order for a ballistic interceptor to travel long
distances or go into orbit, it must attain speeds in excess of 20 kft/s. From the
rocket equation we saw in Chapter 10 that, with fuel mass fractions of less than
0.5 (that is, tactical missiles), it was impossible to reach these speeds. In this
chapter we shall investigate preliminary booster designs so that speeds required
for strategic travel can be achieved.

REVIEW

In Chapter 10 we saw that the change in velocity is related to specific impulse Isp
and fuel mass fraction mf according to the rocket equation, or

DV ¼ Ispg ln
1

1�mf

Figure 12.1 displays the rocket equation in graphic form. From this figure we can
see that fuel mass fractions approaching 0.9 are required if we wish to attain
speeds in excess of 20 kft/s for fuel specific impulses of less than 300 s. The
figure clearly shows that fuel mass fractions of less than 0.5 (that is, tactical mis-
siles) lead to velocities that are not adequate for a strategic application.

We can think of a strategic interceptor as consisting of two sections: booster
and payload. A single-stage booster (we will consider staging later in this chapter)
consists of fuel and structure denoted by weights Wp and Ws, respectively, as
shown in Fig. 12.2. Initially we will consider that the sole purpose of the single-
stage booster is to get the payload up to speed. The payload, denoted by weight
Wpay, consists of structure, electronics, a divert engine, and fuel. The purpose of
the payload for strategic guided interceptors is to acquire the target and maneuver,
using divert fuel, to hit the target.
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If it is desired that the interceptor change its velocity by amount DV, then the
weight of the structure, fuel, and payload must also follow the rocket equation as

WS þWP þW PAY ¼ ðWS þW PAYÞexp DV
gIsp

� �
where Isp denotes the specific impulse of the booster fuel and is measured in
seconds. The fuel mass fraction has been defined as the ratio of the propellant
weight to the total weight. To simplify computations in this chapter, an approxi-
mate fuel mass fraction mf � is defined as the ratio of the propellant weight to the
sum of the propellant weight plus structure or

mf � ¼ WP

WP þWS

For small payloads the approximate and actual fuel mass fractions are equivalent.
We can express the weight of the booster structure to the propellant weight and
fuel approximate mass fraction according to

WS ¼ WPð1�mf �Þ
mf �

Substitution of the preceding
relationship into the rocket equation
yields, after some algebra, a formula
for the propellant weight in terms of

Fig. 12.1 Large fuel mass fractions are required for strategic applications.

Fig. 12.2 Single-stage strategic
interceptor model.
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the payload weight, velocity desired, approximate fuel mass fraction, and specific
impulse. This relationship can be expressed as

WP ¼ W PAY exp
DV
gIsp

� �
� 1

� ��
1

mf �
� 1�mf �

mf �
exp

DV
gIsp

� �� �

The total interceptor weightWtot consists of the booster fuel and structure plus the
payload, or

Wtot ¼ WS þWP þW PAY

Based upon the preceding relationships, Fig. 12.3 displays the total weight vs
the desired change in velocity for an approximate fuel mass fraction of 0.9 and
payload weight of 10 lb. We can see that, for a booster to reach a desired velocity
of 20 kft/s from rest (in the absence of atmospheric drag), with a specific impulse
of 300 s, more than 150 lb of total weight is required—just for a 10-lb payload!
Doubling the payload weight will double the total weight. Decreasing the specific
impulse or decreasing the fuel mass fraction both work in the direction of increas-
ing the total weight.

STAGING

We have seen in the previous section that it can take a great deal of total weight to
propel small payloads to near-orbital speeds. One way of reducing the total weight
for a given approximate fuel mass fraction and specific impulse is to use staging.
Figure 12.4 presents a two-stage booster. In this figure, the propellant and struc-
tural weights are indicated in each of the stages.

Fig. 12.3 A great deal of weight is required to bring small payloads to strategic speeds.
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Therefore, the second-stage propellant weight can be expressed as

WP2 ¼ W PAY exp
DV2

gIsp2

� �
� 1

� �,
1

mf 2�
� 1�mf 2�

mf 2�
exp

DV2

gIsp2

� �� �

where DV2 is the desired velocity change attributed to the second stage,mf2� is the
second-stage fuel mass fraction, and Isp2 is the second-stage specific impulse.

The structural weight of the second stage can then be expressed as

WS2 ¼ WP2ð1�mf 2�Þ
mf 2�

The weight of the second stage plus payload Wtot2 is simply

Wtot2 ¼ WP2 þWS2 þW PAY

We can now find the propellant weight of the first stage by treatingWtot2 as an
effective payload. The resultant weight is

WP1 ¼ Wtot2 exp
DV1

gIsp1

� �
� 1

� �,
1

mf 1�
� 1�mf 1�

mf 1�
exp

DV1

gIsp1

� �� �

where DV1 is the desired velocity change attributed to the first stage, mf1* is the
first-stage approximate fuel mass fraction, and Isp1 is the first-stage specific
impulse. The structural weight of the first stage can then be expressed as

WS1 ¼ WP1ð1�mf 1�Þ
mf 1�

Finally, the total interceptor weight (first stage plus rest) is given by

Wtot ¼ WP1 þWS1 þWtot2

Using the preceding relationships for a two-stage interceptor, the total weight
was calculated as a function of desired velocity change for various values of
specific impulse. It was assumed that each stage of the interceptor had equal
specific impulses and equal approximate fuel mass fractions. In addition, it was

Fig. 12.4 Two-stage booster.
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also assumed that half of
the desired velocity was
obtained with the first
stage and the second half
of the desired velocity was
obtained with the second
stage. Figure 12.5 shows
how the total weight varies.

For a desired velocity of 20 kft/s, Fig. 12.5 shows that, for a 300-s specific impulse,
approximately 100 lb of total weight are required for a 10-lb payload using a
two-stage interceptor. Figure 12.3 shows that for the same case a one-stage inter-
ceptor requires more than 150 lb of total weight. Thus, staging appears to
be beneficial.

If the approximate fuel mass fraction were unity, the structural weight would
be zero. In this case there would be no benefit to staging. In a sense, the unity fuel
mass fraction case represents the minimum total weight that can propel a payload
to a desired velocity for a given specific impulse. Figure 12.6 presents a compari-
son of weight requirements for different staging options. In the comparison an
approximate fuel mass fraction of 0.9 and specific impulse 250 s were assumed
for each of the stages. In addition, it was assumed that each stage contributed
an equal fraction to the total desired velocity change. Superimposed on the
figure is the infinite stage case (approximate fuel mass fraction equals unity) to
represent minimal attainable weight. We can see that three stages get near-optimal

Fig. 12.5 Adding a stage
reduces total weight
requirements.

Fig. 12.6 Three stages yield near-minimal weight.
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answers for the case in which the approximate fuel mass fraction is 0.9 and specific
impulse is 250s.

BOOSTER NUMERICAL EXAMPLE

We now have enough information so that we can begin, to first order, to model the
boost phase of a strategic interceptor. In the previous section we derived formulas
so that we could calculate weights based on desired velocity, approximate fuel
mass fraction, and specific impulse. The maximum axial acceleration will occur
right before staging, since that is where the interceptor weight is a minimum. If
the maximum axial acceleration for each stage is given, then we have enough
information to find the thrust levels for each of the stages. For example, in a two-
stage strategic interceptor, the thrust level during stage 1, T1, is given by

T1 ¼ amax 1ðWtot2 þWS1Þ

where amax1 is the maximum axial acceleration of the first stage, in units of gravity,
and Wtot2þWS1 is the weight of the first stage right before staging. The thrust
level of the second stage can be found in a similar way and is given by

T2 ¼ amax 2ðW pay þWS2Þ

where amax2 is the maximum axial acceleration of the second stage, in units of
gravity, and WpayþWS2 is the weight of the second stage right before staging.
We can find the thrust burn times from specific impulse and thrust information.
The first- and second-stage burn times are given by

tB1 ¼ 1sp1WP1

T1

tB2 ¼ 1sp2WP2

T2

We now have enough information so that, given sufficient high-level
information, we can compute a hypothetical booster’s thrust-weight profiles.
Listing 12.1 presents a MATLAB program in which thrust-weight information
is computed to yield a desired velocity change. The program assumes a two-stage
booster with a 100-lb payload. The specific impulse for both stages is the same and
is 250 s, and the approximate fuel mass fraction for both stages is also the same
and is 0.85. The desired change in velocity is 20,000 ft/s with the first stage con-
tributing one-third of the desired DV and the second stage contributing the rest.
The maximum axial acceleration in both stages is specified to be 10 g. The
program also integrates the computed acceleration to check if the desired velocity
is reached.
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The program was run with the nominal inputs, and the interceptor total
weight was computed to be 6169 lb. Table 12.1 summarizes the program’s com-
putation of key parameters.

Figure 12.7 presents the information of Table 12.1 in graphic form (but not to
scale) as a thrust-weight profile. The sharp weight drops at 32.2 s and 138.2 s rep-
resent staging events (structural weight dropped). After the interceptor is finished
burning propellant at 138.2 s, the total weight is the payload weight of 100 lb, as
can be seen from the figure.

The MATLAB pro-
gram of Listing 12.1
also had a capability
to integrate the one-
dimensional equation
of motion

_V ¼ gT
W

where g is the gravita-
tional acceleration, T is
the thrust level, and W
the interceptor weight.
Values for the instan-
taneous thrust and
weight are obtained

TABLE 12.1 SIMULATION OUTPUTS

Symbol Definition Value

Wtot Total interceptor weight 6169 lb

Wp1 First-stage propellant weight 3474 lb

Ws1 First-stage structural weight 613 lb

Wp2 Second-stage propellant weight 1685 lb

Ws2 Second-stage structural weight 297 lb

T1 Thrust level of first stage 26,950 lb

lB1 Thrust burn time of first stage 32.2 s

T2 Thrust level of second stage 3973 lb

tB2 Thrust burn time of second stage 106 s

Fig. 12.7 Thrust-weight
profiles for nominal case.
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from Fig. 12.7. Figure 12.8 displays the resultant velocity and acceleration profiles
for the nominal case. We can first see that the desired velocity goal of 20 kft/s has
been reached by the end of the second-stage burn and that one-third of the vel-
ocity was attained at the end of the first-stage burn. We can also see from the
acceleration profile that the desired maximum acceleration level of 10 g was
also met. However, the axial booster acceleration is not constant and varied
between 4 g and 10 g during the first-stage burn and varied between 2 g and
10 g during the second-stage burn.

LISTING 12.1 MATLAB THRUST-WEIGHT COMPUTATIONS

count=0;
XISP1=250.;
XISP2=250.;
XMF1=.85;
XMF2=.85;
WPAY=100.;
DELV=20000.;
DELV1=.3333*DELV;
DELV2=.6667*DELV;
AMAX1=10.;
AMAX2=10.;
TOP2=WPAY*(exp(DELV2/(XISP2*32.2))-1.);
BOT2=1/XMF2-((1.-XMF2)/XMF2)*exp(DELV2/(XISP2*32.2));
WP2=TOP2/BOT2;

Fig. 12.8 Velocity and acceleration goals met with nominal design.
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WS2=WP2*(1-XMF2)/XMF2;
WTOT2=WP2+WS2+WPAY;
TRST2=AMAX2*(WPAY+WS2);
TB2=XISP2*WP2/TRST2;
TOP1=WTOT2*(exp(DELV1/(XISP1*32.2))-1.);
BOT1=1/XMF1-((1.-XMF1)/XMF1)*exp(DELV1/(XISP1*32.2));
WP1=TOP1/BOT1;
WS1=WP1*(1-XMF1)/XMF1;
WTOT=WP1+WS1+WTOT2;
TRST1=AMAX1*(WTOT2+WS1);
TB1=XISP1*WP1/TRST1;
DELVK=DELV/1000.;
H=.01;
T=0.;
S=0.;
V=0.;
while T ,= (TB1+TB2)

VOLD=V;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
V=V+H*A;
T=T+H;

end
if T,TB1

WGT=-WP1*T/TB1+WTOT;
TRST=TRST1;

elseif(T,(TB1+TB2))
WGT=-WP2*T/TB2+WTOT2+WP2*TB1/TB2;
TRST=TRST2;

else
WGT=WPAY;
TRST=0.;

end
A=32.2*TRST/WGT;
FLAG=1;

end
FLAG=0;
V=(VOLD+V)/2+.5*H*A;
S=S+H;
if S . =.99999

S=0.;
AG=A/32.2;
VK=V/1000.;
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count=count+1;
ArrayT(count)=T;
ArrayVK(count)=VK;
ArrayAG(count)=AG;

end
end
figure
plot(ArrayT,ArrayVK),grid
xlabel(’Time (Sec)’)
ylabel(’Velocity (Ft/Sec) ’)
figure
plot(ArrayT,ArrayAG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration (G) ’)
clc
output=[ArrayT’,ArrayVK’,ArrayAG’];
save datfil.txt output /ascii
disp ’simulation finished’

GRAVITY TURN [1]

Now that we have a nominal two-stage booster design, we would like to simulate
its flight. Booster steering is beyond the scope of this chapter, so we will assume
that the booster is launched at an initial flight-path angle g with respect to the
surface of the Earth. For counterclockwise travel Fig. 12.9 indicates the appropri-
ate sign conventions and angle definitions, whereas for clockwise travel Fig. 12.10
is appropriate.

If we attempt to align the thrust vector with the booster velocity vector, we will
obtain a gravity turn. The acceleration due to the booster thrusting aT is given by

aT ¼ gT
W

where T is the thrust magnitude in
pounds, W the missile weight, and
g is 32.2 ft/s2. The booster velocity
V at any time could be found from
the velocity components as

V ¼ ð _x2 þ _y2Þ0:5

Fig. 12.9 Counterclockwise travel.
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Therefore, during a gravity turn
at any time the components of
acceleration acting on the
booster in our Earth-centered
coordinate system are given by

€x ¼ �gm x

ðx2 þ y2Þ1:5 þ
aT _x
V

€y ¼ �gm y

ðx2 þ y2Þ1:5 þ
aT _y
V

where the initial conditions on velocity are related to the initial flight-path angle
and location. For counterclockwise travel, the velocity initial conditions are

_xð0Þ ¼ Vð0Þ cosðp=2� g0 þ u0Þ
_yð0Þ ¼ Vð0Þ sinðp=2� g0 þ u0Þ

whereas for clockwise travel the appropriate velocity initial conditions are

_xð0Þ ¼ Vð0Þ cosð�p=2þ g0 þ u0Þ
_yð0Þ ¼ Vð0Þ sinð�p=2þ g0 þ u0Þ

The initial components of the booster location are given by

xð0Þ ¼ ðaþ altÞ cos u0
yð0Þ ¼ ðaþ altÞ sin u0

Listing 12.2 presents a MATLAB program that, given some booster design
parameters, finds the appropriate thrust-weight profiles and, in addition, flies
the booster through a gravity turn. We can see from the listing that the
nominal booster design is the default case and that the initial flight-path angle
of the booster during the gravity turn is 85 deg. During the trajectory the flight-
path angle will start from 85 deg and gradually reduce to smaller values.

Cases were run with the nominal design, and the initial flight-path angle was
made a parameter. The resultant trajectories, shown in Fig. 12.11, indicate that
large flight-path angles are required just to get a trajectory for a gravity turn! If
the flight-path angle is less than 80 deg, the booster will immediately crash into
the Earth. As the booster thrusts, the flight-path angle rapidly decreases due to
the small booster acceleration (about 4 g at the beginning). Eventually the flight-
path angle decreases to the point where the component of the booster acceleration
perpendicular to the surface of the Earth is not sufficient to overcome gravity.

Fig. 12.10 Clockwise travel.

BOOSTERS 267



LISTING 12.2 GRAVITY TURN SIMULATION

count=0;
LEFT=1;
XISP1=250.;
XISP2=250.;
XMF1=.85;
XMF2=.85;
WPAY=100.;
DELV=20000.;
DELV1=.3333*DELV;
DELV2=.6667*DELV;
AMAX1=10.;
AMAX2=10.;
GAMDEG=85.;
TOP2=WPAY*(exp(DELV2/(XISP2*32.2))-1.);
BOT2=1/XMF2-((1.-XMF2)/XMF2)*exp(DELV2/(XISP2*32.2));
WP2=TOP2/BOT2;
WS2=WP2*(1-XMF2)/XMF2;
WTOT2=WP2+WS2+WPAY;
TRST2=AMAX2*(WPAY+WS2);
TB2=XISP2*WP2/TRST2;
TOP1=WTOT2*(exp(DELV1/(XISP1*32.2))-1.);
BOT1=1/XMF1-((1.-XMF1)/XMF1)*exp(DELV1/(XISP1*32.2));
WP1=TOP1/BOT1;
WS1=WP1*(1-XMF1)/XMF1;
WTOT=WP1+WS1+WTOT2;
TRST1=AMAX1*(WTOT2+WS1);
TB1=XISP1*WP1/TRST1;

Fig. 12.11 Large flight-path angles are required for initial booster design.

268 TACTICAL AND STRATEGIC MISSILE GUIDANCE



DELVK=DELV/1000.;
H=.01;
T=0.;
S=0.;
A=2.0926e7;
GM=1.4077e16;
ALTNM=0.;
ALT=ALTNM*6076.;
ANGDEG=90.;
ANG=ANGDEG/57.3;
if LEFT==1

VRX=cos(1.5708-GAMDEG/57.3+ANG);
VRY=sin (1.5708-GAMDEG/57.3+ANG);

else
VRX=cos(-1.5708+GAMDEG/57.3+ANG);
VRY=sin(-1.5708+GAMDEG/57.3+ANG);

end
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
ALT=sqrt(X^2+Y^2)-A;
XFIRST=X;
YFIRST=Y;
X1=VRX;
Y1=VRY;
while ~(ALT ,0 & T . 10)

XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;

end
if T , TB1

WGT=-WP1*T/TB1+WTOT;
TRST=TRST1;

elseif T , (TB1+TB2)
WGT=-WP2*T/TB2+WTOT2+WP2*TB1/TB2;
TRST=TRST2;
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else
WGT=WPAY;
TRST=0.;

end
AT=32.2*TRST/WGT;
VEL=sqrt(X1^2+Y1^2);
AXT=AT*X1/VEL;
AYT=AT*Y1/VEL;
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT+AXT;
Y1D=-GM*Y/TEMBOT+AYT;
XD=X1;
YD=Y1;
FLAG=1;

end
FLAG=0;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
ALT=sqrt(X^2+Y^2)-A;
S=S+H;
if S . =9.99999

S=0.;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
ALTNM=(sqrt(X^2+Y^2)-A)/6076.;
XNM=X/6076.;
YNM=Y/6076.;
count=count+1;
ArrayT(count)=T;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;

end
end
figure
plot(ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
clc
output=[ArrayT’,ArrayDISTNM’,ArrayALTNM’];
save datfil output /ascii
disp ’simulation finished’
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To remedy the situation so that we could get smaller flight-path angles to yield
longer range trajectories, the maximum axial booster acceleration during each
stage was increased from 10 g to 20 g. The resultant velocity and acceleration pro-
files due to this change appear in Fig. 12.12. We can see that the booster still
reaches a velocity of 20 kft/s, but in half the time of the nominal design.

Gravity turns were performed, via the simulation, for the new booster design,
and the results for different flight-path angles appear in Fig. 12.13. We can see that
the larger axial booster acceleration allowed the booster to experience lower flight-
path angles (without crashing into the ground), which increased the booster
range. With the nominal design, the maximum range achieved with a flight-path
angle of 85 deg was about 2300 n.mi. The new design, which permitted a lower
flight-path angle of 65 deg, increased the maximum range about 2600 n.mi.

Fig. 12.12 Doubling booster axial acceleration halves burn time.

Fig. 12.13 New booster design yields longer flyout ranges.
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SUMMARY

In this chapter we have attempted to show that it takes a great deal of booster
weight to bring a small payload to near-orbital speeds. High-level formulas
were developed and presented so that booster parameters could be specified
from fundamental rocket equation relationships. The impact of a key booster
parameter on a simple gravity turn trajectory was demonstrated via a simple
numerical example.
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CHAPTER 13

Lambert Guidance

INTRODUCTION

A particular problem, known as the problem of Lambert, has intrigued mathema-
ticians for centuries. The solution to this problem is important for navigating
spacecraft and for putting strategic missiles on a collision triangle. Elegant
numerical solutions exist for the Lambert problem that are based on the known
properties of a body in a gravity field [1]. The best of these solutions are numeri-
cally very efficient and accurate and, in fact, currently serve as fundamental algor-
ithms in steering both spacecraft and ballistic missiles. Unfortunately, these
elegant solutions are extremely difficult to understand because they involve
subtle points in conic sections and a detailed understanding of hypergeometric
series. In this chapter we shall use an easy to understand but numerically ineffi-
cient algorithm for solving Lambert’s problem. It will then be shown how to
speed up the algorithm by two orders of magnitude using a simple numerical tech-
nique. We shall then show how this solution can be used to steer a strategic boost-
ing missile on a collision triangle with a threat.

STATEMENT OF LAMBERT’S PROBLEM

A body in a gravity field satisfies Newton’s law of universal gravitation, or

€x ¼ �gm x

ðx2 þ y2Þ1:5

€y ¼ �gm y

ðx2 þ y2Þ1:5

Assume that the initial location of a body in the gravity field is given by

xð0Þ ¼ x0
yð0Þ ¼ y0
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and it is desired that tF seconds later the body be at location

xðtFÞ ¼ xF
yðtFÞ ¼ yF

Lambert’s problem is to find the initial velocity orientation of the body in the
gravity field so that the preceding initial conditions and boundary values are
satisfied, or

_xð0Þ ¼ ?

_yð0Þ ¼ ?

SOLUTION TO LAMBERT’S PROBLEM

We showed in Chapter 11 that, given an initial flight-path angle and distance to be
traveled, the initial missile velocity required to hit an object on the surface of the
Earth is given by

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gmð1� cosfÞ
r0 cos g½ðr0 cos g=aÞ � cosðfþ gÞ�

s

where f is the central angle separating the initial location of the missile and its
intended target, g the initial flight-path angle of the missile, a the radius of the
Earth, and r0 the initial distance from the center of the Earth to the missile,
which can be expressed as

r0 ¼ aþ alt

where alt is the initial altitude of the missile with respect to the surface of the
Earth. Although the velocity equation was derived for hitting an object on the
surface of the Earth, it can be made more general. If we desire to hit a target at
any location rF the preceding velocity equation can be modified to

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gmð1� cosfÞ
r0 cos g½ðr0 cos g=rFÞ � cosðfþ gÞ�

s

In this new formula rF is defined as

rF ¼ aþ altF

where altF is the altitude of the intended target.
If the velocity vector is oriented for counterclockwise travel as shown in

Fig. 13.1, then, given the preceding solution for the total required velocity, we
can find the initial conditions on the velocity components in the Earth-centered
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system by trigonometry as

_xð0Þ ¼ V cosðp=2� gþ u0Þ
_yð0Þ ¼ V sinðp=2� gþ u0Þ

where g is the orientation of the missile
velocity with respect to a reference that
is tangent to the Earth and perpendicu-
lar to the vector from the center of the

Earth to the initial location of the missile. We can see from Fig. 13.1 that u0 is
the initial angular location of the missile with respect to the x axis of the Earth-
centered Cartesian coordinate system.

On the other hand, if the velocity vector is intended to travel clockwise as
shown in Fig. 13.2, then the initial conditions on the velocity components in
the Earth-centered system can easily be shown to be

_xð0Þ ¼ V cosðg� p=2þ u0Þ
_yð0Þ ¼ V sinðg� p=2þ u0Þ

In Chapter 11 we also derived a formula for the time required for the missile to
reach its intended target (tF). The formula, which is valid for elliptical travel (l, 2),
does not require the target to be on the surface of the Earth and is given by

tF ¼ r0
V cos g

tan gð1� cosfÞ þ ð1� lÞ sinf
ð2� lÞ 1� cosf

l cos2 g
þ cosðgþ fÞ

cos g

� �
8>><
>>:

þ 2 cos g

l½ð2=lÞ � 1�1:5 tan
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=lÞ � 1
p

cos g cotðf=2Þ � sin g

 !9>>=
>>;

where V is the required velocity to hit
the object, and g was defined in
Chapter 11 as

l ¼ r0V2

gm

and f is the angular distance to
be traveled.

Fig. 13.2 Clockwise travel.

Fig. 13.1 Counterclockwise travel.
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To find the angular
distance to be traveled,
consider the geometry
of Fig. 13.3, in which
the initial and final pos-
ition of an object in a
gravity field are shown.
In this figure r0 denotes
a vector from the center of the Earth to the initial location of the object, and rF
denotes a vector from the center of the Earth to the final location of the object.
The angle between the vectors is the central angle f.

The central angle can be found from the definition of the vector dot product, or

f ¼ cos�1 r0 � rF
jr0jjrF j

Believe it or not, we now have sufficient information to numerically solve Lambert’s
problem!

If we know the initial and final destination of the target, we have just shown
that we can find the central angle f. With a central angle, r0 , rF , and a flight-path
angle g, sufficient information is available to find the required velocity from our
closed-form solution. The resultant velocity can then be used to solve for the flight
time from our other closed-form solution. It is important to note that the flight
time and velocity obtained are exact solutions for the flight-path angle used.
Stated mathematically, we can say that given g, r0, and rF we can use the following
relationships, which are based on exact closed-form solutions:

f ¼ f ðr0; rFÞ
V ¼ f ðr0; rF ;f; gÞ
tF ¼ f ðV ;f; gÞ

Recall that in Lambert’s problem we are given r0 , rF , and tF and seek to find V and
g. If we use the preceding relationships, we do not know how to choose g, nor are
we guaranteed that a particular value of g will yield the desired flight time tF.

We can solve the problem by the method of brute force. That is, we work out
all solutions until we find the one that satisfies the constraints of the problem. For
example, we start with g ¼ 290 deg, solve for the velocity, and then solve for the
time of flight. If the flight time is less than the desired flight time, we repeat the
procedure with a slightly larger value of g. We stop the loop when the computed
flight time is greater than the desired flight time. If the flight-path angle that

Fig. 13.3 Central angle
between initial and

final position.
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satisfies the preceding procedure is negative, we know that the solution must be
rejected since it requires the missile to travel through the Earth. This numerical
method converges because we saw in Fig. 11.17 that flight time is smooth and
monotonically increasing with increasing flight-path angle.

NUMERICAL EXAMPLE

Listing 13.1 presents sample MATLAB code for finding the Lambert solution, based
on the procedure developed in the previous section. In the notation of Listing 13.1
we can say that, given an initial angle and altitude for the missile (XLONGMDEG,
ALTNMM), an initial angle and altitude for the target (XLONGTDEG, ALTNMT), and a
desired flight time (TF), the program iterates on the flight-path angle (GAMDEG)
until a solution is found. From the listing we can see that the program consists of
two loops. The first loop iterates on the flight-path angle in units of 0.1 deg.
When a flight time is found that exceeds the desired flight time, we exit the loop
for another loop that increments the flight-path angle (after decreasing the last
flight path angle by 0.15 deg) in very fine units of 0.0001 deg. This loop is required
to get extremely precise answers.When the desired flight time is achieved, we exit the
loop and the routine. The routine, as written, is about 100 times slower than more
elegant Lambert routines [1]. We shall show in the next section that by performing
a more intelligent search it is possible to find the correct solution to Lambert’s
problem in a few iterations, thus making this approach very competitive with
more elegant Lambert routines. However, the goal in this section is to develop a
routine that simply works and is easy to understand.

To demonstrate how the routine works, the nominal case, shown in the listing,
was run. In this case the missile is on the surface of the Earth 45 deg away from the
target. It is desired to find the velocity orientation of the missile (VRX, VRY) so that
the missile will hit the target in exactly 1000 s. Figure 13.4 shows that the solution

Fig. 13.4 It takes 1084 iterations to get exact solution.
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converges to the exact value in 1084 iterations. However, the solution appears to
be approximately correct after 335 iterations.

LISTING 13.1 LAMBERT ROUTINE USING BRUTE FORCE APPROACH

clear
global a gm count
global ArrayICOUNT ArrayBGAM ArrayVRX ArrayVRY ArrayTF
format long e
XLONGMDEG=45.;
XLONGTDEG=90.;
ALTNMT=0.;
ALTNMM=0.;
TF=1000;
DEGRAD=360./(2.*pi);
a=2.0926e7;
gm=1.4077e16;
ALTT=ALTNMT*6076.;
ALTM=ALTNMM*6076.;
XLONGM=XLONGMDEG/DEGRAD;
XLONGT=XLONGTDEG/DEGRAD;
XM=(a+ALTM)*cos(XLONGM);
YM=(a+ALTM)*sin(XLONGM);
XT=(a+ALTT)*cos(XLONGT);
YT=(a+ALTT)*sin(XLONGT);
[VRXM,VRYM]=olambert(XM,YM,TF,XT,YT,XLONGM,XLONGT)
output=[ArrayVRX’, ArrayVRY’, ArrayTF’];
disp(’The final iteration’)
count
VRXM
VRYM
% data to file
save datfil.txt output /ascii;
% olambert.m
function [vrx,vry]=olambert(xic,yic,tfdes,xf,yf,xlongm,xlongt)
global a gm % In version 3 comment this out!
global count ArrayICOUNT ArrayBGAM ArrayVRX ArrayVRY ArrayTF % for output array (if
reqd)
% Initialise outputs (if reqd)
count=0;
vrx=0;
vry=0;
tf=0;
%A
ric=sqrt(xic^2+yic^2);
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rf=sqrt(xf^2+yf^2);
cphi=(xic*xf+yic*yf)/(ric*rf);
phi=acos(cphi);
r0=ric;
degrad=360./(2.*pi);
% Initialise while loop
SecondTimeThrough=0;
% Program executes this loop twice
while SecondTimeThrough ,= 1

% Initialise for loop
if SecondTimeThrough == 0

start=-90;
step=.1;
stop=+90;

else
start=gamdegnew;
step=.0001;
stop=gamdegfin;

end;
% Main body of program
for gamdeg=start:step:stop

%B
gam=gamdeg/degrad;
top=gm*(1-cos(phi));
temp=r0*cos(gam)/rf-cos(phi+gam);
bot=r0*cos(gam)*temp;
if ~(top,0. | bot,0.)

%C
v=sqrt(top/bot);
if xlongt.xlongm

vrx=v*cos(pi/2 -gam+xlongm);
vry=v*sin(pi/2 -gam+xlongm);

else
vrx=v*cos(-pi/2 +gam+xlongm);
vry=v*sin(-pi/2 +gam+xlongm);

end
xlam=r0*v*v/gm;
top1=tan(gam)*(1-cos(phi))+(1-xlam)*sin(phi);
bot1p=(1-cos(phi))/(xlam*cos(gam)*cos(gam));
bot1=(2-xlam)*(bot1p+cos(gam+phi)/cos(gam));
top2=2*cos(gam);
if ~((2/xlam-1) , 0.)

%D
bot2=xlam*((2/xlam-1)^1.5);
top3=sqrt(2/xlam-1);
bot3=cos(gam)/tan(phi/2)-sin(gam);
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temp=(top2/bot2)*atan2(top3,bot3);
tf=r0*(top1/bot1+temp)/(v*cos(gam));

if (tf .tfdes)
break % out of the for loop

end; % condition #3
% output arrays (if reqd)
count=count+1;
ArrayICOUNT(count)=count;
ArrayBGAM(count)=57.3*gam;
ArrayVRX(count)=vrx;
ArrayVRY(count)=vry;
ArrayTF(count)=tf;

end; % condition #2
end; % condition #1

end; % for loop
%E
gamdegnew=gamdeg-.15;
gamdegfin=gamdeg+1.;
SecondTimeThrough=SecondTimeThrough+1;
end % while loop
plot(count,ArrayTF)

To investigate the tradeoff between accuracy vs number of iterations required,
a simple experiment was conducted. First the second loop of Listing 13.1 was
removed from the Lambert subroutine so that the flight-path angle was only incre-
mented in steps of 0.1 deg. Table 13.1 shows that the number of iterations
required were reduced from 1084 to 335 and the resultant velocity accuracy
(VRX, VRY) appears to be reduced slightly. Actually, the velocities are exact for a
1001-s flight but approximate for a Lambert solution requiring a 1000-s flight.
Next, the first loop was modified so that the flight-path angle was incremented
in steps of 1 deg (increased from 0.1 deg steps). Table 13.1 shows that the
number of iterations was reduced to only 34, but the accuracy loss was more sig-
nificant if the desired flight time is truly 1000 s. These answers are exact in the
sense a hit will result in 1014 s but inaccurate for the Lambert solution requiring
exactly 1000 s.

TABLE 13.1 ACCURACY EXPERIMENTS

Condition VRX VRY tF Iterations

Nominal 27696 18,329 1000 1084

Remove second loop 27668 18,332 1001 335

One-degree increments 27418 18,360 1014 34
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SPEEDING UP LAMBERT ROUTINE

The routine for numerically solving Lambert’s problem, presented in the previous
section, can be speeded up by more than two orders of magnitude! We have
already demonstrated that the brute force search on all possible flight-path
angles results in many iterations. We can considerably restrict the brute force
search and eliminate many iterations by recalling that the velocity formula was
shown in Chapter 11 to be

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gmð1� cosfÞ
r0 cos g½ðr0 cos g=rFÞ � cosðfþ gÞ�

s

In this text we are only interested trajectories for ballistic missiles, so we can
immediately rule out cases that lead to escape velocity (l ¼ 2) or

l ¼ 2 ¼ V2r0
gm

Substitution of the escape velocity condition into the velocity formula yields

2 ¼ ð1� cosfÞ
cosg½ðr0 cos g=rFÞ � cosðfþ gÞ�

We can solve the preceding equation for the flight-path angle g. After much
algebra we get two solutions corresponding to the minimum and maximum flight-
path angles as

gmin ¼ tan�1 sinf�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0
rF

ð1� cosfÞ
r� ��

ð1� cosfÞ
	 


gmax ¼ tan�1 sinfþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0
rF

ð1� cosfÞ
r� ��

ð1� cosfÞ
	 


It should not be surprising that there are two solutions for the flight-path angle
as we have already observed this phenomenon in Fig. 11.14. We also noticed in
Figs. 11.14 and 11.17 that the solution for the velocity and time of flight were
smooth, well-behaved functions of the flight-path angle. Based on the nonpatho-
logical nature of these solutions and the fact that the flight-path angle is well
bounded, we do not have to evaluate each flight-path angle but can instead
perform a more efficient search in finding the flight-path angle that corresponds
to the desired flight time. For example, we can use an algorithm known as the
secant method [3] to perform the search or

gnþ1 ¼ gn þ
ðgn � gn�1ÞðtFDES � tFnÞ

tFn � tFn�1
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We can see from the preceding equation that the new flight-path angle gnþ1 is
related to previous values gn , gn21. At each iteration the new computed value
of flight-path angle is limited to the minimum and maximum possible values of
the flight-path angle derived from the escape velocity condition. The search is ter-
minated when the computed flight time tFn is sufficiently close to the desired flight
time tTDES.

Listing 13.2 is identical to the test program of Listing 13.1, except this time the
Lambert routine is more efficient. We can see from the new Lambert routine that
our initial guess of the flight-path angle is simply the average of the minimum and
maximum flight-path angles derived from the escape velocity condition.

LISTING 13.2 MORE EFFICIENT LAMBERT ROUTINE

XLONGMDEG=45.;
XLONGTDEG=90.;
ALTNMT=0.;
ALTNMM=0.;
TF=1000.;
PI=3.14159;
DEGRAD=360./(2.*PI);
A=2.0926e7;
GM=1.4077e16;
ALTT=ALTNMT*6076.;
ALTM=ALTNMM*6076.;
XLONGM=XLONGMDEG/DEGRAD;
XLONGT=XLONGTDEG/DEGRAD;
XM=(A+ALTM)*cos(XLONGM);
YM=(A+ALTM)*sin(XLONGM);
XT=(A+ALTT)*cos(XLONGT);
YT=(A+ALTT)*sin(XLONGT);
[VRXM,VRYM]=lambertpz(XM,YM,TF,XT,YT,XLONGM,XLONGT)

% lambertpz.m file
function [vrx,vry]=lambert(xic,yic,tfdes,xf,yf,xlongm,xlongt)
a=2.0926e7;
gm=1.4077e16;
ric=sqrt(xic^2+yic^2);
rf=sqrt(xf^2+yf^2);
cphi=(xic*xf+yic*yf)/(ric*rf);
phi=acos(cphi);
sphi=sin(phi);
r0=ric;
degrad=360./(2.*pi);
icount=0;

282 TACTICAL AND STRATEGIC MISSILE GUIDANCE



gmin=atan2((sphi-sqrt(2.*r0*(1.-cphi)/rf)),(1-cphi));
gmax=atan2((sphi+sqrt(2.*r0*(1.-cphi)/rf)),(1-cphi));
gam=(gmin+gmax)/2.;
tf=0;
while ~(abs(tfdes-tf),=(.00000001*tfdes))

top=gm*(1.-cos(phi));
temp=r0*cos(gam)/rf-cos(phi+gam);
bot=r0*cos(gam)*temp;
v=sqrt(top/bot);
if xlongt.xlongm
vrx=v*cos(pi/2.-gam+xlongm);
vry=v*sin(pi/2.-gam+xlongm);

else
vrx=v*cos(-pi/2.+gam+xlongm);
vry=v*sin(-pi/2.+gam+xlongm);

end
xlam=r0*v*v/gm;
top1=tan(gam)*(1-cos(phi))+(1-xlam)*sin(phi);
bot1p=(1-cos(phi))/(xlam*cos(gam)*cos(gam));
bot1=(2-xlam)*(bot1p+cos(gam+phi)/cos(gam));
top2=2*cos(gam);
bot2=xlam*((2/xlam-1)^1.5);
top3=sqrt(2/xlam-1);
bot3=cos(gam)/tan(phi/2)-sin(gam);
temp=(top2/bot2)*atan2(top3,bot3);
tf=r0*(top1/bot1+temp)/(v*cos(gam));
icount=icount+1;
if tf.tfdes

gmax=gam;
else

gmin=gam;
end
if icount==1

xnext=(gmax+gmin)/2.;
else

xnext=gam+(gam-gold)*(tfdes-tf)/(tf-told);
if (xnext.gmax|xnext,gmin)

xnext=(gmax+gmin)/2.;
end

end
gold=gam;
told=tf;
gam=xnext;

end
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The nominal case of the previous section was rerun and detailed results for the
number of iterations required appear in Table 13.2. We can see that very accurate
Lambert solutions are obtained after only four iterations and that after seven iter-
ations we are obtaining a degree of accuracy that is better than obtained with 1084
iterations in the previous section using the brute force approach. The new Lambert
routine is not only more accurate than the one in the previous section but it is also
more than two orders of magnitude faster!

Reference 4 makes extensive tests on this efficient numerical solution to
Lambert’s problem and shows that it is competitive with the best numerical
approaches. In addition, [4] also shows how this efficient solution of Lambert’s
problem can be extended to parabolic and hyperbolic trajectories.

BOOSTER STEERING

Thus far we have seen that, given that we know where we are and where we want
to go and given an arrival time, the Lambert subroutine will tell us the orientation
of the velocity vector for an impulsive missile to satisfy the problem. Since we do
not have impulsive missiles (missiles that get up to speed immediately), it is desir-
able to find out if the Lambert subroutine could be of use in enabling a nonimpul-
sive missile or booster to reach its target. If we neglect the atmosphere, the
solution to the problem is quite simple and is known as Lambert guidance [1].

Consider the vector diagram shown in Fig. 13.5. All that has to be done at
small time increments, while the missile is boosting, is to find the desired velocity
from the Lambert subroutine VLambert and subtract the current missile velocity
VM. The difference in velocities is known as the velocity to be gained DV. If the
boosting missile thrust vector is aligned with the velocity to be gained vector,
then the desired velocity will be obtained in a feedback fashion. When the
desired velocity is achieved, the engine is cut off and the missile flies ballistically
to the intended target.

TABLE 13.2 NUMBER OF ITERATIONS ARE DRAMATICALLY REDUCED

Iteration Flight-path angle, deg VRX, ft/s VRY, ft/s Flight time, s

1 33.7524947 23764.57976 18926.02426 1239.37545

2 11.2508376 212075.71473 18072.66484 813.53185

3 21.1038504 28103.20444 18287.99279 979.68031

4 22.3088581 27665.88409 18332.46792 1001.50708

5 22.2256555 27695.84063 18329.28399 999.98566

6 22.2264396 27695.55815 18329.31392 999.99999

7 22.2264402 27695.55795 18329.31394 1000.00000
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Mathematically, we are saying that the com-
ponents of the velocity to be gained are

DVx ¼ VLambertx � VMx

DVy ¼ VLamberty � VMy

Therefore, the total velocity to be gained is simply

DV ¼ ðDV2
x þ DV2

y Þ0:5

If the magnitude of the current thrust acceleration is given by aT, then the direc-
tion of the thrust acceleration at each instant of time should be aligned with the
velocity to be gained vector, or

aTx ¼ aTDVx=DV

aTy ¼ aTDVy=DV

Listing 13.3 presents a MATLAB simulation of a two-stage booster using Lambert
guidance during the boost phase. Actually, the scenario is unrealistic because g
loading and range safety considerations have been ignored [2], but it is useful
for demonstrating how Lambert guidance works. The booster considered in this
example has a capability of reaching a velocity of 20,000 ft/s. The booster is
assumed to have two stages, each of which has a fuel mass fraction of 0.9 and
specific impulse of 300 s. The maximum acceleration in each stage is 20 g.
One-third of the speed will be attained in the first stage, and the rest of the
speed will be attained in the second stage. Burnout of the second stage will
be completed at about 60 s. It is desired that the booster, which is initially
at angular location u0 ¼ 30 deg (ANGDEG ¼ 30), reach a target at 45 deg
(XLONGTDEG ¼ 45) in 500 s (TF ¼ 500).

LISTING 13.3 BOOSTER SIMULATION WITH LAMBERT GUIDANCE

count=0;
LEFT=1;
QBOOST=1;
XISP1=300.;
XISP2=300.;
XMF1=.90;
XMF2=.90;
WPAY=100.;
DELV=20000.;

Fig. 13.5 Basis of Lambert guidance.
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DELV1=.3333*DELV;
DELV2=.6667*DELV;
AMAX1=20.;
AMAX2=20.;
TOP2=WPAY*(exp(DELV2/(XISP2*32.2))-1.);
BOT2=1/XMF2-((1.-XMF2)/XMF2)*exp(DELV2/(XISP2*32.2));
WP2=TOP2/BOT2;
WS2=WP2*(1-XMF2)/XMF2;
WTOT2=WP2+WS2+WPAY;
TRST2=AMAX2*(WPAY+WS2);
TB2=XISP2*WP2/TRST2;
TOP1=WTOT2*(exp(DELV1/(XISP1*32.2))-1.);
BOT1=1/XMF1-((1.-XMF1)/XMF1)*exp(DELV1/(XISP1*32.2));
WP1=TOP1/BOT1;
WS1=WP1*(1-XMF1)/XMF1;
WTOT=WP1+WS1+WTOT2;
TRST1=AMAX1*(WTOT2+WS1);
TB1=XISP1*WP1/TRST1;
DELVK=DELV/1000.;
H=.01;
T=0.;
S=0.;
A=2.0926e7;
GM=1.4077e16;
ALTNM=0.;
ALT=ALTNM*6076.;
ANGDEG=30.;
ANG=ANGDEG/57.3;
XLONGM=ANG;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
ALT=sqrt(X^2+Y^2)-A;
XFIRST=X;
YFIRST=Y;
X1=0.;
Y1=0.;
AXT=0.;
AYT=0.;
XLONGTDEG=45.;
XLONGT=XLONGTDEG/57.3;
XF=A*cos(XLONGT);
YF=A*sin(XLONGT);
TF=500.;
while ~(ALT,0.&T.10.)

XOLD=X;
YOLD=Y;
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X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;
STEP=2;

end
if T,TB1

WGT=-WP1*T/TB1+WTOT;
TRST=TRST1;

elseif T , (TB1+TB2)
WGT=-WP2*T/TB2+WTOT2+WP2*TB1/TB2;
TRST=TRST2;

else
WGT=WPAY;
TRST=0.;

end
AT=32.2*TRST/WGT;
XD=X1;
YD=Y1;
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT+AXT;
Y1D=-GM*Y/TEMBOT+AYT;
FLAG=1;

end;
FLAG=0;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
ALT=sqrt(X^2+Y^2)-A;
if QBOOST==1

TGOLAM=TF-T;
XLONGM=atan2(Y,X);
[VRXM,VRYM]=lambertpz(X,Y,TGOLAM,XF,YF,XLONGM,XLONGT);
VRX=VRXM;
VRY=VRYM;
DELX=VRX-X1;
DELY=VRY-Y1;
DEL=sqrt(DELX^2+DELY^2);
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if (TRST.0. & DEL.500.)
AXT=AT*DELX/DEL;
AYT=AT*DELY/DEL;

elseif DEL , 500.
TRST=0.;
QBOOST=0;
AXT=0.;
AYT=0.;
X1=VRX;
Y1=VRY;
X1OLD=X1;
Y1OLD=Y1;

else
QBOOST=0;
AXT=0.;
AYT=0.;

end
end
S=S+H;
if S.=9.99999

S=0.;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
ALTNM=(sqrt(X^2+Y^2)-A)/6076.;
count=count+1;
ArrayT(count)=T;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;

end
end
figure
plot(ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
clc
output=[ArrayT’,ArrayDISTNM’,ArrayALTNM’];
save datfil.txt output /ascii
disp ’simulation finished’
%lambertpz.m shown in Listing 13.2

The Lambert feedback loop is at the end of the integration routine and is called
every integration interval. When the difference between the desired velocity and
the attained velocity is less than 500ft/s, the simulation automatically sets the
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actual velocity to the desired velocity to avoid making the integration interval very
small in the simulation. At this time the booster cuts off and coasts. The logic in
the simulation is self-explanatory.

The nominal case was run where the inputs were previously explained.
Figure 13.6 displays the x component of the achieved velocity along with the
desired or Lambert velocity. We can see that the two velocities converge at
about 45 s. Figure 13.7 presents the y components of the achieved and desired vel-
ocities. We can see that this component is much larger than the x component. The
discontinuity in the y component at about 15 s is due to staging, and the slight
discontinuity near the end of the display is due to setting the achieved velocity
to the desired velocity when the velocity to be gained was less than 500 ft/s.

Fig. 13.6 X component of achieved velocity reaches Lambert solution.

Fig. 13.7 Y component of achieved velocity reaches Lambert solution.
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Finally, Fig. 13.8 shows the resultant trajectory. The missile reaches the target
at exactly 500 s. We can see from the figure that the trajectory is smooth during
the boost phase of flight when Lambert guidance is used.

It is interesting to note that the Lambert solution was reached in about 45 s
even though the missile was capable of burning fuel for nearly 60 s. Thus, we
can see that Lambert guidance can be used to steer a strategic missile with a
thrust termination system in the absence of atmospheric effects. The Lambert
guidance principal can be used for interceptors that fly ballistically to hit
stationary targets. Lambert guidance can also be used for guided interceptors
that must hit moving and accelerating targets. In this case, the purpose of
Lambert guidance is to place the interceptor on a collision triangle at the
end of the boost phase.

GENERAL ENERGY MANAGEMENT (GEM) STEERING [2, 6]

We have seen in the previous section how it was possible to steer a boosting strategic
interceptor to a desired intercept point using Lambert guidance. In the example pre-
sented in the last section, the thrust had to be terminated before the end of burn in
order to achieve the desired Lambert solution. Often there is a restriction, in the
absence of a thrust termination system, that all the booster fuel must be consumed.
In this case a method other than Lambert guidance must be employed to waste
some of the booster’s excess energy. A popular energy wasting technique is
known as general energy management (GEM) steering.

To explain the concept of energy wasting, consider the simplified geometry of
Fig. 13.9. In this figure we have the arc of a circle whose length is denoted Vcap.
This arc represents the velocity capability of the booster. The radius of the
circle forming the arc is denoted r, and the central angle is denoted 2u. A

Fig. 13.8 Booster reaches target with Lambert guidance.
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chord is drawn connecting both ends of the arc.
The chord length represents the velocity to be
gained (subtraction of achieved velocity from
Lambert solution velocity) and is denoted DV.
If the thrust vector is drawn tangent to the
chord at the beginning of the arc, it is easy to
show from geometry that the thrust vector is
at an angle of u with respect to the chord.

Finally, a perpendicular is dropped from the chord to the center of the circle. It
is also easy to show that the perpendicular bisects the chord and the central angle.

From Fig. 13.9 we can see that the arc length is related to the central angle
according to

Vcap ¼ 2ur

Because the perpendicular bisects the central angle, we can also say that

DV ¼ 2r sin u

Therefore, we can ratio the two velocity expressions, yielding

DV
Vcap

¼ 2r sin u
2ru

¼ sin u
u

Expanding the sine term into a two-term Taylor series leads to

DV
Vcap

¼ u� u 3

6

� ��
u ¼ 1� u 2

6

Solving for the angle yields

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� DV

Vcap

� �s

The formula suggests that if, at each instant of time, we ensure that the
thrust vector is at an angle of u with respect to the velocity to be gained
vector, then we can still achieve the Lambert solution at the end of burn and
hit the target.

Figure 13.10 shows the proper relationship between the thrust and velocity
to be gained vectors relative to the inertial Earth-centered coordinate system.
We can see that for counterclockwise travel the components of the thrust

Fig. 13.9 Basic angles in GEM.
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acceleration are given by

aXT ¼ aT cosðf� uÞ
aYT ¼ aT sinðf� uÞ

where u is the angle between the thrust vector and the velocity-to-be-gained
vector, and f is the angle between the velocity-to-be-gained vector and the x
axis. For clockwise travel the thrust acceleration components become

aXT ¼ aT cosðfþ uÞ
aYT ¼ aT sinðfþ uÞ

Listing 13.4 presents a simulation of a booster intercepting a ground target
using GEM guidance. This simulation and the nominal operating conditions
are identical to that of Listing 13.3 except for the GEM logic after the integration
routine. We can see from the listing that the axial acceleration capability of the
booster is continually being computed according to

Vcap ¼ Vcap � HaT

where H is the integration step size and aT the instantaneous axial acceleration of
the booster. To avoid numerical problems, the GEM logic is terminated when the
velocity to be gained drops below 50 ft/s. We can see from the listing that it is
still necessary to use the Lambert subroutine in order to implement the GEM
guidance technique.

A nominal case was run to see how the GEM guidance logic performed. We
can see from Fig. 13.11 that, although the booster burn lasts for nearly 60 s, the
angle the thrust vector makes with respect to the velocity to be gained vector

Fig. 13.10 Sign conventions for GEM.
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approaches steady state in slightly over 50 s. Also shown in Fig. 13.11 is a plot of
how the velocity capability of the booster diminishes during the burn. The discon-
tinuity in that curve is due to staging.

Figure 13.12 displays the GEM trajectory during the boost phase. It appears
from the figure that the booster will never hit the target because it initially
appears to be heading in the wrong direction. However, after wasting energy,
the GEM-guided booster heads in the right direction. Superimposed on the
figure is the Lambert guidance trajectory during boost for the same case. We
can see that both trajectories are vastly different during the boost phase.

Fig. 13.11 GEM angle reaches steady state quickly.

Fig. 13.12 Lambert and GEM trajectories during boost phase are vastly different.
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LISTING 13.4 GEM SIMULATION

count=0;
LEFT=1;
QBOOST=1;
QZERO=0;
XISP1=300.;
XISP2=300.;
XMF1=.90;
XMF2=.90;
WPAY=100.;
DELV=20000.;
DELV1=.3333*DELV;
DELV2=.6667*DELV;
AMAX1=20.;
AMAX2=20.;
TOP2=WPAY*(exp(DELV2/(XISP2*32.2))-1.);
BOT2=1/XMF2-((1.-XMF2)/XMF2)*exp(DELV2/(XISP2*32.2));
WP2=TOP2/BOT2;
WS2=WP2*(1-XMF2)/XMF2;
WTOT2=WP2+WS2+WPAY;
TRST2=AMAX2*(WPAY+WS2);
TB2=XISP2*WP2/TRST2;
TOP1=WTOT2*(exp(DELV1/(XISP1*32.2))-1.);
BOT1=1/XMF1-((1.-XMF1)/XMF1)*exp(DELV1/(XISP1*32.2));
WP1=TOP1/BOT1;
WS1=WP1*(1-XMF1)/XMF1;
WTOT=WP1+WS1+WTOT2;
TRST1=AMAX1*(WTOT2+WS1);
TB1=XISP1*WP1/TRST1;
DELVK=DELV/1000.;
H=.01;
T=0.;
S=0.;
A=2.0926e7;
GM=1.4077e16;
ALTNM=0.;
ALT=ALTNM*6076.;
ANGDEG=30.;
ANG=ANGDEG/57.3;
XLONGM=ANG;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
ALT=sqrt(X^2+Y^2)-A;
X1=0.;
Y1=0.;
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AXT=0.;
AYT=0.;
XLONGTDEG=45.;
XLONGT=XLONGTDEG/57.3;
XF=A*cos(XLONGT);
YF=A*sin(XLONGT);
XFIRST=XF;;
YFIRST=YF;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
DISTINITNM=DISTNM;
TF=500.;
DVCAP=DELV;
while ~(ALT,0.&T.10.)

XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;
STEP=2;

end
if T,TB1

WGT=-WP1*T/TB1+WTOT;
TRST=TRST1;

elseif T,(TB1+TB2)
WGT=-WP2*T/TB2+WTOT2+WP2*TB1/TB2;
TRST=TRST2;

else
WGT=WPAY;
TRST=0.;

end
AT=32.2*TRST/WGT;
XD=X1;
YD=Y1;
TEMBOT=(X^2+Y^2)^1.5;
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X1D=-GM*X/TEMBOT+AXT;
Y1D=-GM*Y/TEMBOT+AYT;
FLAG=1;

end;
FLAG=0;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
ALT=sqrt(X^2+Y^2)-A;
TGOLAM=TF-T;
DVCAP=DVCAP-H*AT;
if (QBOOST==1 & DVCAP.50.)

XLONGM=atan2(Y,X);
[VRXM,VRYM]=lambertpz(X,Y,TGOLAM,XF,YF,XLONGM,XLONGT);
VRX=VRXM;
VRY=VRYM;
DELX=VRX-X1;
DELY=VRY-Y1;
DEL=sqrt(DELX^2+DELY^2);
if (QZERO==0 & DVCAP.DEL)

THET=sqrt(6.*(1.-DEL/DVCAP));
DEGTHET=57.3*THET;

else
QZERO=1;

end
PHI=atan2(DELY,DELX);
DEGPHI=57.3*PHI;
if XLONGT.XLONGM

AXT=AT*cos(PHI-THET);
AYT=AT*sin(PHI-THET);

else
AXT=AT*cos(PHI+THET);
AYT=AT*sin(PHI+THET);

end
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
DISTNM=DISTINITNM-DISTNM;
ALTNM=(sqrt(X^2+Y^2)-A)/6076.;

elseif QBOOST==1
[VRXM,VRYM]=lambertpz(X,Y,TGOLAM,XF,YF,XLONGM,XLONGT);
VRX=VRXM;
VRY=VRYM;
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TRST=0.;
QBOOST=0;
AXT=0.;
AYT=0.;
X1=VRX;
Y1=VRY;
X1OLD=X1;
Y1OLD=Y1;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
DISTNM=DISTINITNM-DISTNM;
ALTNM=(sqrt(X^2+Y^2)-A)/6076.;

else
QBOOST=0;
AXT=0.;
AYT=0.;

end
S=S+H;
if S.=9.99999

S=0.;
R=sqrt(X^2+Y^2);
RF=sqrt(XFIRST^2+YFIRST^2);
CBETA=(X*XFIRST+Y*YFIRST)/(R*RF);
BETA=acos(CBETA);
DISTNM=A*BETA/6076.;
DISTNM=DISTINITNM-DISTNM;
ALTNM=(sqrt(X^2+Y^2)-A)/6076.;
count=count+1;
ArrayT(count)=T;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;

end
end
figure
plot(ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
clc
output=[ArrayT’,ArrayDISTNM’,ArrayALTNM’];
save datfil.txt output /ascii
disp ’simulation finished’

%lambertpz.m shown in Listing 13.2

LAMBERT GUIDANCE 297



Figure 13.13 displays the GEM and Lambert trajectories for the entire flight
(boost and coast phases). We can see from the figure that, although both trajec-
tories are vastly different during the boost phase, they eventually converge, and
both hit the target at the same time.

SUMMARY

In this chapter the Lambert problem was explained, and a novel numerical tech-
nique for solving the problem, based on the closed-form solutions of Chapter 11
was introduced. Two techniques were presented showing how the solution to
Lambert’s problem was fundamental to steering boosters. Numerical examples
were presented illustrating the implementation and effectiveness of the booster
steering techniques.
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Fig. 13.13 Both Lambert and GEM trajectories hit target at the same time.
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CHAPTER 14

Strategic Intercepts

INTRODUCTION

Guidance concepts for tactical homing missiles were introduced, explained, and
demonstrated in Chapters 2, 6, and 8. Strategic missiles travel much faster and
farther than tactical missiles. We have shown that the coordinate system and
gravity models in our tactical simulations had to be modified to handle the new
speed and range regimes of strategic missiles. More specifically, we had to shift
our coordinate system from the surface of a flat Earth to the center of a round
Earth and use a more general formulation for gravitational acceleration (that is,
Newton’s law of universal gravitation).

Because tactical missiles operate within the atmosphere, they can generate lift by
moving control surfaces in order to execute guidance commands. Speed, altitude, and
structural considerations limit maximum achievable acceleration levels with tactical
missiles. Missile slowdown due to drag limits the tactical missile’s range andmaneu-
ver capability. Strategic missiles, on the other hand, operate outside the atmosphere
and must burn fuel (that is, lateral thrusters) to respond to guidance commands.
Achievable engine thrust-to-weight ratios limit maximum strategic lateral accelera-
tion levels. In addition, when the maneuver or divert fuel is exhausted, the strategic
missile cannot maneuver at all. Care must be taken to ensure that a strategic missile
has sufficient divert fuel so that it can meet system objectives.

Although there are major differences between strategic and tactical missiles,
there are also similarities. This chapter will show that tactical guidance laws
may be suitable for strategic missiles. Useful design relationships, developed pre-
viously in the text for tactical missiles, will be modified and shown to be applicable
for strategic missiles as well.

GUIDANCE REVIEW

In Chapter 2 we saw the effectiveness of the proportional navigation guidance law
for tactical missiles. A closed-form solution for the required missile acceleration to
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hit a target, in the presence of heading error, was derived for a zero-lag guidance
system. The required missile acceleration was shown to be

nc ¼ �VMHEN 0

tF
1� t

tF

� �N 0�2

where VM is the missile velocity,HE is the angular heading error, N0 is the effective
navigation ratio, tF is the flight time, and t is instantaneous time.

With strategic missiles it is often more convenient to talk in terms of predic-
tion error rather than heading error. A prelaunch calculation or prediction must
be made of where the target will be at intercept. This location is known as the pre-
dicted intercept point. If the calculation is imperfect, a prediction error results, and
the missile will not be fired on a perfect collision triangle. The prediction error and
heading error are related by

Pred Err ¼ �VMHEtF

where Pred Err is the prediction error in units of feet. Therefore, substitution of
the preceding relationship into the closed-form solution indicates that the
missile acceleration required by the proportional navigation guidance law to
take out an initial prediction error is given by

nc ¼ Pred Err N 0

t2F
1� t

tF

� �N 0�2

As was mentioned previously, strategic missiles burn fuel to maneuver. The
amount of lateral divert or DV required is related to the missile acceleration
according to

DV ¼
ðtF
0
jncj dt

The strategic interceptor DV requirements are related to the total interceptor
weight by the rocket equation. Increasing a missile’s divert requirements can
increase the total weight requirements dramatically. We can find a closed-form
solution for the required divert to take out a prediction error by substituting
the closed-form solution for the missile acceleration into the preceding integral.
After some algebra we obtain

DV ¼ Pred Err N 0

ðN 0 � 1ÞtF
Thus, increasing the effective navigation ratio or increasing the flight time (or

guidance time) will tend to reduce the lateral divert requirements of the intercep-
tor. The preceding formula for the required lateral divert is plotted in Fig. 14.1 for
the case in which the prediction error is 100 kft. We can see that, for an effective
navigation ratio of 3, it takes more than 10,000 ft/s of divert to remove the error in
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10 s, about 1050 ft/s of divert to remove the error in 100 s, and only about 300 ft/s
of divert to remove the error in 500 s. Therefore, larger missile acquisition ranges
result in larger guided flight times, which in turn can reduce the lateral divert
requirements for a given prediction error. Increasing the effective navigation
ratio to 5 only slightly reduces the lateral divert requirements. Doubling the pre-
diction error will double the divert requirements.

BALLISTIC ENGAGEMENT SIMULATION [1]

We can develop a strategic ballistic missile-target engagement simulation by using
an Earth-centered coordinate system as shown in Fig. 14.2. In this figure both the
missile and target are in a gravity field as described by Newton’s law of universal
gravitation. The acceleration differential equations acting on a ballistic target were
shown in Chapter 11 to be

€xT ¼ �gm xT
ðx2T þ y2TÞ1:5

€yT ¼ �gm yT
ðx2T þ y2TÞ1:5

where gm is the gravitational parameter. These differential equations are in an
inertial coordinate system whose origin is at the center of the Earth. Therefore,
they can be integrated directly to yield the velocity and position of the target
with respect to the center of the Earth. The components of the relative position

Fig. 14.1 Lateral divert requirements decrease with increasing flight time.
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between the missile and target can be expressed as

RTM1 ¼ xT � xM
RTM2 ¼ yT � yM

and the components of the relative velocity are given by

VTM1 ¼ _xT � _xM
VTM2 ¼ _yT � _yM

Application of the distance formula shows that the relative separation between
the missile and target can be found from

RTM ¼ ðR2
TM1 þ R2

TM2Þ0:5

The closing velocity, which is defined as the negative rate of change of sepa-
ration between missile and target, can be obtained by taking the negative deriva-
tive of the preceding expression, yielding

Vc ¼ �ðRTM1VTM1 þ RTM2VTM2Þ
RTM

Fig. 14.2 Earth-centered coordinate system and relative engagement geometry.
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The line-of-sight angle can be found by trigonometry from Fig. 14.2 as

l ¼ tan�1 RTM2

RTM1

Therefore, the instantaneous value of the line-of-sight rate can be found by taking
the derivative of the preceding expression, using the quotient rule, yielding

_l ¼ RTM1VTM2 � RTM2VTM1

R2
TM

We now have sufficient information to guide a strategic interceptor. The pro-
portional navigation guidance command is proportional to the line-of-sight rate
according to

nc ¼ N 0Vc _l

where N0 is the effective navigation ratio and Vc the closing velocity. This guidance
command is perpendicular to the line of sight. From Fig. 14.2 we can see that the
components of the guidance command in the Earth-centered coordinate system
can be found by trigonometry and are given by

aXM ¼ �nc sin l

aYM ¼ nc cos l

Therefore, the acceleration differential equations describing the missile consist
of two parts: the gravitational term and the guidance command term. The com-
ponents of the missile differential equations in Earth-centered coordinates are

€xM ¼ �gm xM
x2M þ y2Mð Þ1:5 þ aXM

€yM ¼ �gm yM
x2M þ y2Mð Þ1:5 þ aYM

where aXM and aYM have already been defined.
Listing 14.1 presents a MATLAB simulation of an engagement between an

impulsive missile and a ballistic target. The simulation, which is based on the
differential equations derived in this section, is similar to the tactical engagement
simulations presented in the text, except that the coordinate system is
Earth-centered.

The program includes a prediction routine to determine where the target will
be at the intercept time tF. Before the main simulation begins, this routine inte-
grates the ballistic target equations forward in time to determine the location of
the target at time tF (that is, predicted intercept point). The Lambert routine deter-
mines the velocity components of an impulsive strategic interceptor (VRXM and
VRYM) so that it will be on a collision triangle with the ballistic target. In other
words, given an initial location, a final location, and an arrival time, the
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Lambert routine determines the correct missile velocity components so that it will
collide with the target at time tF. If the predicted intercept point is correct, then no
guidance system is required for the strategic interceptor to collide with the target.

We can see from the listing that the guidance equations are virtually identical
to those of the two-dimensional tactical simulation of Chapter 2. This is not
surprising as the proportional navigation guidance law operates on relative
quantities that should be independent of coordinate system. The differential
equations for the missile and target and the guidance equations appear before
the FLAG=1 statement.

A nominal case was run in which the guidance system was turned off
(XNC ¼ 0). The resultant trajectory for the 500-s flight is shown in Fig. 14.3. In
this case the missile hit the target. This means that our knowledge of the intercept
point was perfect (from the prediction routine) and that the missile was placed on
the correct collision triangle (from the Lambert routine). The slight curvature in
both missile and target trajectories is due to the fact that both objects are in a
gravity field for 500 s.

The same nominal case was rerun, except this time the proportional naviga-
tion guidance system was turned on. The resultant commanded acceleration
profile, which resulted in a successful intercept, along with the missile lateral
divert requirements appear in Fig. 14.4. We can see from the figure that, even
though the missile was initially on a collision triangle, the proportional navigation
guidance system issued acceleration commands. In this case it appears that pro-
portional navigation is behaving in a counterintuitive way because we could
have hit the target without any acceleration commands at all!

Fig. 14.3 Collision triangle geometry for nominal case.
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LISTING 14.1 ENGAGEMENT SIMULATION WITH BALLISTIC TARGET

count=0;
XLONGMDEG=45.;
XLONGTDEG=90.;
ALTNMTIC=0.;
ALTNMMIC=0.;
TF=500.;
GAMDEGT=23.;
H=.01;
A=2.0926e7;
GM=1.4077e16;
DEGRAD=360./(2.*pi);
XNP=3.;
PREDERR=0.;
GAMT=GAMDEGT/57.3;
DISTNMT=6000.;
PHIT=DISTNMT*6076./A;
ALTT=ALTNMTIC*6076.;
ALTM=ALTNMMIC*6076.;
R0T=A+ALTT;
TOP=GM*(1.-cos(PHIT));
TEMP=R0T*cos(GAMT)/A-cos(PHIT+GAMT);
BOT=R0T*cos(GAMT)*TEMP;
VT=sqrt(TOP/BOT);
XLONGM=XLONGMDEG/DEGRAD;

Fig. 14.4 Some divert required with proportional navigation guidance even though missile
is on collision triangle.
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XLONGT=XLONGTDEG/DEGRAD;
if XLONGM.XLONGT

X1T=VT*cos(pi/2.-GAMT+XLONGT);
Y1T=VT*sin(pi/2.-GAMT+XLONGT);

else
X1T=VT*cos(-pi/2.+GAMT+XLONGT);
Y1T=VT*sin(-pi/2.+GAMT+XLONGT);

end
S=0.;
XLONGM=XLONGMDEG/DEGRAD;
XLONGT=XLONGTDEG/DEGRAD;
XM=(A+ALTM)*cos(XLONGM);
YM=(A+ALTM)*sin(XLONGM);
XT=(A+ALTT)*cos(XLONGT);
YT=(A+ALTT)*sin(XLONGT);
XFIRSTT=XT;
YFIRSTT=YT;
T=0.;
[XTF,YTF]=predictpz(TF,XT,YT,X1T,Y1T);
YTF=YTF+PREDERR;
[VRXM,VRYM]=lambertpz(XM,YM,TF,XTF,YTF,XLONGM,XLONGT);
X1M=VRXM;
Y1M=VRYM;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
DELV=0.;
while VC.=0.

TGO=RTM/VC;
if TGO..1

H=.01;
else

H=.0001;
end
XOLDT=XT;
YOLDT=YT;
X1OLDT=X1T;
Y1OLDT=Y1T;
XOLDM=XM;
YOLDM=YM;
X1OLDM=X1M;
Y1OLDM=Y1M;
DELVOLD=DELV;

306 TACTICAL AND STRATEGIC MISSILE GUIDANCE



STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
XT=XT+H*XDT;
YT=YT+H*YDT;
X1T=X1T+H*X1DT;
Y1T=Y1T+H*Y1DT;
XM=XM+H*XDM;
YM=YM+H*YDM;
X1M=X1M+H*X1DM;
Y1M=Y1M+H*Y1DM;
DELV=DELV+H*DELVD;
T=T+H;
STEP=2;

end
TEMBOTT=(XT^2+YT^2)^1.5;
X1DT=-GM*XT/TEMBOTT;
Y1DT=-GM*YT/TEMBOTT;
XDT=X1T;
YDT=Y1T;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
XLAM=atan2(RTM2,RTM1);
XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
XNC=XNP*VC*XLAMD;
DELVD=abs(XNC);
AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
TEMBOTM=(XM^2+YM^2)^1.5;
X1DM=-GM*XM/TEMBOTM+AM1;
Y1DM=-GM*YM/TEMBOTM+AM2;
XDM=X1M;
YDM=Y1M;
FLAG=1;

end;
FLAG=0;
XT=(XOLDT+XT)/2+.5*H*XDT;
YT=(YOLDT+YT)/2+.5*H*YDT;
X1T=(X1OLDT+X1T)/2+.5*H*X1DT;
Y1T=(Y1OLDT+Y1T)/2+.5*H*Y1DT;
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XM=(XOLDM+XM)/2+.5*H*XDM;
YM=(YOLDM+YM)/2+.5*H*YDM;
X1M=(X1OLDM+X1M)/2+.5*H*X1DM;
Y1M=(Y1OLDM+Y1M)/2+.5*H*Y1DM;
DELV=(DELVOLD+DELV)/2.+.5*H*DELVD;
ALTT=sqrt(XT^2+YT^2)-A;
ALTM=sqrt(XM^2+YM^2)-A;
S=S+H;
if S.=.99999

S=0.;
ALTNMT=ALTT/6076.;
R=sqrt(XT^2+YT^2);
RF=sqrt(XFIRSTT^2+YFIRSTT^2);
CBETA=(XT*XFIRSTT+YT*YFIRSTT)/(R*RF);
BETA=acos(CBETA);
DISTNMT=A*BETA/6076.;
ALTNMM=ALTM/6076.;
XNCG=XNC/32.2;
R=sqrt(XM^2+YM^2);
RF=sqrt(XFIRSTT^2+YFIRSTT^2);
CBETA=(XM*XFIRSTT+YM*YFIRSTT)/(R*RF);
BETA=acos(CBETA);
DISTNMM=A*BETA/6076.;
count=count+1;
ArrayT(count)=T;
ArrayDISTNMT(count)=DISTNMT;
ArrayALTNMT(count)=ALTNMT;
ArrayDISTNMM(count)=DISTNMM;
ArrayALTNMM(count)=ALTNMM;
ArrayXNCG(count)=XNCG;
ArrayDELV(count)=DELV;

end
end
RTM
DELV
figure
plot(ArrayDISTNMT,ArrayALTNMT,ArrayDISTNMM,ArrayALTNMM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
figure
plot(ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration (G) ’)
figure
plot(ArrayT,ArrayDELV),grid
xlabel(’Time (Sec)’)
ylabel(’Lateral Divert (Ft/Sec) ’)
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clc
output=[ArrayT’,ArrayDISTNMT’,ArrayALTNMT’,ArrayDISTNMM’,...

ArrayALTNMM’];
save datfil.txt output /ascii
disp ’simulation finished’

function [xtf,ytf]=predictpz(tf,xdum,ydum,x1dum,y1dum)
h=.01;
a=2.0926e7;
gm=1.4077e16;
t=0.;
x=xdum;
y=ydum;
x1=x1dum;
y1=y1dum;
while t,=(tf-.00001)

xold=x;
yold=y;
x1old=x1;
y1old=y1;
step=1;
flag=0;
while step ,=1

if flag==1
x=x+h*xd;
y=y+h*yd;
x1=x1+h*x1d;
y1=y1+h*y1d;
t=t+h;
step=2;

end
tembot=(x^2+y^2)^1.5;
x1d=-gm*x/tembot;
y1d=-gm*y/tembot;
xd=x1;
yd=y1;
flag=1;

end;
flag=0;
x=(xold+x)/2+.5*h*xd;
y=(yold+y)/2+.5*h*yd;
x1=(x1old+x1)/2+.5*h*x1d;
y1=(y1old+y1)/2+.5*h*y1d;

end
xtf=x;
ytf=y;
%lambertpz.m shown in Listing 13.2
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To understand why guidance commands were required of a missile on a col-
lision triangle, let us review some basics. Consider the case of a constant-velocity
missile and constant-velocity target on a collision triangle as shown in Fig. 14.5. If
we connect lines between the missile and target at different times during the flight,
we have a measure of how the line-of-sight rate changes with time. We can see
from Fig. 14.5 that, when both the missile and target are traveling at constant
velocities, the line-of-sight lines are parallel. In other words, the line-of-sight
rate is zero! Since acceleration commands are proportional to the line-of-sight
rate in a proportional navigation system, there will be no commands for a con-
stant velocity missile and target on a collision triangle.

Figure 14.6 also shows a missile and target on a collision triangle. However,
this time the missile is traveling at a constant velocity while the target velocity
is nonconstant. In this case we can see that the line-of-sight lines are not parallel.
Thus, we have a line-of-sight rate generated even though the missile and target are
on a collision triangle. In this case a proportional navigation guidance system will
generate acceleration commands, even though none are required!

In a gravity field, both the missile and target velocities vary with time. Thus, as
shown in Fig. 14.6, the line-of-sight rate will not be zero, even though both the
missile and target are on a collision triangle. Proportional navigation will waste
some fuel in responding to the small line-of-sight rates. In our nominal case
about 350 ft/s of lateral divert was required by the missile to intercept the
ballistic target.

A guidance system is required as we cannot always be on a collision triangle.
There will always be errors in predicting the location of the intercept point.
Consider a case for a proportional navigation guidance system with an effective
navigation ratio of 3 in which there is a 100-kft prediction error. This means
that if we turned off the guidance system we would miss the target by 100 kft.
Based on the formula derived
at the beginning of this
chapter, theory predicts that
the required missile lateral
divert should be

DV ¼ Pred Err N 0

ðN 0 � 1ÞtF
¼ 100; 000 � 3

2 � 500 ¼ 300 ft=s

Figure 14.7 shows the resul-
tant commanded acceleration

Fig. 14.5 Constant-velocity missile
and target on collision triangle.
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and lateral divert profiles due to
the 100-kft prediction error for
a proportional navigation gui-
dance system with an effective
navigation ratio of 3. We can
see that the missile acceleration
requirements are small (less
than 0.05 g) for the flight.
However, even at small accelera-
tion levels, about 480 ft/s of
lateral divert was required for a
successful intercept. This value
is somewhat larger than the
theoretically predicted value of
300 ft/s because, as we pre-

viously saw, the gravity field also adds to the divert requirements.
Theory tells us that, for a fixed prediction error, the divert requirements will

increase if the flight time is decreased. Figure 14.8 presents the engagement geo-
metry for a 100-s flight. Note that in the simulation the flight time was reduced
and the initial missile location was moved closer to the target (TF ¼ 100,

Fig. 14.6 Constant-velocity missile
and variable-velocity target on
collision triangle.

Fig. 14.7 Divert due to prediction error is close to theoretical prediction.
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XLONGMDEG ¼ 80). In this case both the missile and target are initially on a col-
lision triangle.

If we introduce a 100-kft prediction error into the short-range example, theory
tells us that the lateral divert requirements should increase substantially. Accord-
ing to the previously presented lateral divert formula, the divert requirements for a
100-s flight should be

DV ¼ Pred Err N 0

ðN 0 � 1ÞtF ¼ 100; 000 � 3
2 � 100 ¼ 1500 ft=s

Figure 14.9 displays the commanded acceleration and actual divert require-
ments obtained by running the engagement simulation. We can see from the
figure that the required lateral divert required is indeed nearly 1500 ft/s. Thus,
we have demonstrated with nonlinear engagement simulation results that the
theoretical formula is a useful and accurate indicator of divert requirements for
prediction error.

BOOSTING TARGET CONSIDERATIONS [1]

Although a booster does not execute evasive maneuvers, any longitudinal booster
acceleration that is perpendicular to the line of sight will appear as a target man-
euver to the missile. In Chapter 2 we saw that the closed-form solution for the
acceleration required by a missile utilizing proportional navigation guidance
was given by

ncjPN ¼ N 0

N 0 � 2
1� 1� t

tF

� �N 0�2
" #

nT

Fig. 14.8 Collision triangle geometry for shorter-range flight.
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where N0 is the effective navigation ratio, t is time, tF the flight time, and nT the
magnitude of the apparent target maneuver. From the definition of lateral divert,

DV ¼
ðtF
0
jncj dt

we can derive an expression for the lateral divert required to hit a maneuvering
target as

DV jPN ¼ N 0

N 0 � 1
nTtF

Thus, the lateral divert due to a maneuvering target increases with increasing
flight time and decreases with increasing effective navigation ratio.

We can develop an engagement simulation in which the target is a booster. In
Chapter 12 we saw how to model a booster performing a gravity turn. We can
express the longitudinal acceleration of the booster as

aT ¼ 32:2T
W

where T is the booster thrust andW the booster weight. In a gravity turn the thrust
and velocity vectors are aligned so that the acceleration differential equations for
the booster in a gravity field become

€xT ¼ �gm xT
ðx2T þ y2TÞ1:5

þ aT _xT
VT

€yT ¼ �gm yT
ðx2T þ y2TÞ1:5

þ aT _yT
VT

Fig. 14.9 Divert due to prediction error matches theoretical prediction for shorter flight.
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where the target velocity VT is given by

VT ¼ ð _x2T þ _y2TÞ0:5

Any component of the booster acceleration perpendicular to the line of sight will
appear as an apparent target maneuver to the missile. The component of the
booster acceleration perpendicular to the line of sight aPLOS is given by

aPLOS ¼ €yT cos l� €xT sin l

Listing 14.2 presents a MATLAB listing of an engagement simulation between
an impulsive missile and a boosting target. The nominal numbers used to derive
the booster characteristics are those of Chapter 12 in which the maximum axial
booster acceleration of a two-stage booster is 20 g. The total burn time is 69.1 s
and the resultant velocity and acceleration profiles can be found in Fig. 12.12.
The simulation is identical to that of Listing 14.1 except that the flight time is
50 s (TF ¼ 50), the initial missile location has been moved closer to the target
(XLONGMDEG ¼ 85), the target is a booster executing a gravity turn, and a 20-g
limit has been placed on the commanded acceleration (XNCLIM ¼ 20). Pro-
portional navigation is used against the boosting target but guidance does not
begin until 25 s into the flight.

A nominal case was run with the guidance system turned off to ensure that the
missile and booster were on a collision triangle. Figure 14.10 shows the missile
hitting the target in the nominal 50-s flight in which the booster is accelerating
the entire time. The booster acceleration perpendicular to the line of sight

Fig. 14.10 Missile on collision triangle for boosting target.
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appears in Fig. 14.11. We can see from the figure that the magnitude of the booster
acceleration perpendicular to the line of sight is approximately 4 g (129 ft/s2) on
the average for the last 25 s (that is, the time for which proportional navigation is
used). This means that the booster appears to the missile to be a target executing a
4-g maneuver.

The same nominal case was rerun with the proportional navigation guidance
system turned on for the last 25 s. Figure 14.12 displays the missile acceleration

Fig. 14.11 Average target acceleration for last 25 s is approximately 4 g.

Fig. 14.12 Divert due to apparent maneuver agrees with theory.
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along with the resultant lateral divert requirements. We can see that the missile
lateral divert requirements for this case are approximately 5300 ft/s.

LISTING 14.2 ENGAGEMENT SIMULATION FOR BOOSTING TARGET

count=0;
LEFT=0;
XNCLIM=644.;
A=2.0926e7;
GM=1.4077e16;
DEGRAD=360./(2.*pi);
XNP=3.;
PREDERR=0.;
XISP1=250.;
XISP2=250.;
XMF1=.85;
XMF2=.85;
WPAY=100.;
DELV=20000.;
DELV1=.3333*DELV;
DELV2=.6667*DELV;
AMAX1=20.;
AMAX2=20.;
XKICKDEG=80.;
TOP2=WPAY*(exp(DELV2/(XISP2*32.2))-1.);
BOT2=1/XMF2-((1.-XMF2)/XMF2)*exp(DELV2/(XISP2*32.2));
WP2=TOP2/BOT2;
WS2=WP2*(1-XMF2)/XMF2;
WTOT2=WP2+WS2+WPAY;
TRST2=AMAX2*(WPAY+WS2);
TB2=XISP2*WP2/TRST2;
TOP1=WTOT2*(exp(DELV1/(XISP1*32.2))-1.);
BOT1=1/XMF1-((1.-XMF1)/XMF1)*exp(DELV1/(XISP1*32.2));
WP1=TOP1/BOT1;
WS1=WP1*(1-XMF1)/XMF1;
WTOT=WP1+WS1+WTOT2;
TRST1=AMAX1*(WTOT2+WS1);
TB1=XISP1*WP1/TRST1;
XLONGMDEG=85.;
XLONGTDEG=90.;
ALTNMTIC=0.;
ALTNMMIC=0.;
XKICKDEG=80.;
TF=50.;
ALTT=ALTNMTIC*6076.;
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ALTM=ALTNMMIC*6076.;
S=0.;
XLONGM=XLONGMDEG/DEGRAD;
XLONGT=XLONGTDEG/DEGRAD;
XM=(A+ALTM)*cos(XLONGM);
YM=(A+ALTM)*sin(XLONGM);
XT=(A+ALTT)*cos(XLONGT);
YT=(A+ALTT)*sin(XLONGT);
XFIRSTT=XT;
YFIRSTT=YT;
if LEFT==1

X1T=cos(pi/2.-XKICKDEG/DEGRAD+XLONGT);
Y1T=sin(pi/2.-XKICKDEG/DEGRAD+XLONGT);

else
X1T=cos(-pi/2.+XKICKDEG/DEGRAD+XLONGT);
Y1T=sin(-pi/2.+XKICKDEG/DEGRAD+XLONGT);

end
XFIRSTT=XT;
YFIRSTT=YT;
T=0.;
[XTF,YTF]=predictb(TF,XT,YT,X1T,Y1T,WP1,WTOT,TB1,TRST1,...

TB2,WP2,WTOT2,TRST2,WPAY);
YTF=YTF+PREDERR;
[VRXM,VRYM]=lambertpz(XM,YM,TF,XTF,YTF,XLONGM,XLONGT);
X1M=VRXM;
Y1M=VRYM;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
DELV=0.;
while VC.=0.

TGO=RTM/VC;
if TGO..1

H=.01;
else

H=.0001;
end
XOLDT=XT;
YOLDT=YT;
X1OLDT=X1T;
Y1OLDT=Y1T;
XOLDM=XM;
YOLDM=YM;
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X1OLDM=X1M;
Y1OLDM=Y1M;
DELVOLD=DELV;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
XT=XT+H*XDT;
YT=YT+H*YDT;
X1T=X1T+H*X1DT;
Y1T=Y1T+H*Y1DT;
XM=XM+H*XDM;
YM=YM+H*YDM;
X1M=X1M+H*X1DM;
Y1M=Y1M+H*Y1DM;
DELV=DELV+H*DELVD;
T=T+H;
STEP=2;

end
if T,TB1

WGT=-WP1*T/TB1+WTOT;
TRST=TRST1;

elseif T,(TB1+TB2)
WGT=-WP2*T/TB2+WTOT2+WP2*TB1/TB2;
TRST=TRST2;

else
WGT=WPAY;
TRST=0.;

end
AT=32.2*TRST/WGT;
VEL=sqrt(X1T^2+Y1T^2);
AXT=AT*X1T/VEL;
AYT=AT*Y1T/VEL;
TEMBOTT=(XT^2+YT^2)^1.5;
X1DT=-GM*XT/TEMBOTT+AXT;
Y1DT=-GM*YT/TEMBOTT+AYT;
XDT=X1T;
YDT=Y1T;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
XLAM=atan2(RTM2,RTM1);
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XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
ATPLOS=Y1DT*cos(XLAM)-X1DT*sin(XLAM);
if T.25.

XNC=XNP*VC*XLAMD;
else

XNC=0.;
end
if XNC.XNCLIM

XNC=XNCLIM;
end
if XNC,-XNCLIM

XNC=-XNCLIM;
end
DELVD=abs(XNC);
AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
TEMBOTM=(XM^2+YM^2)^1.5;
X1DM=-GM*XM/TEMBOTM+AM1;
Y1DM=-GM*YM/TEMBOTM+AM2;
XDM=X1M;
YDM=Y1M;
FLAG=1;

end;
FLAG=0;
XT=(XOLDT+XT)/2+.5*H*XDT;
YT=(YOLDT+YT)/2+.5*H*YDT;
X1T=(X1OLDT+X1T)/2+.5*H*X1DT;
Y1T=(Y1OLDT+Y1T)/2+.5*H*Y1DT;
XM=(XOLDM+XM)/2+.5*H*XDM;
YM=(YOLDM+YM)/2+.5*H*YDM;
X1M=(X1OLDM+X1M)/2+.5*H*X1DM;
Y1M=(Y1OLDM+Y1M)/2+.5*H*Y1DM;
DELV=(DELVOLD+DELV)/2.+.5*H*DELVD;
ALTT=sqrt(XT^2+YT^2)-A;
ALTM=sqrt(XM^2+YM^2)-A;
S=S+H;
if S.=.99999

S=0.;
ALTNMT=ALTT/6076.;
R=sqrt(XT^2+YT^2);
RF=sqrt(XFIRSTT^2+YFIRSTT^2);
CBETA=(XT*XFIRSTT+YT*YFIRSTT)/(R*RF);
BETA=acos(CBETA);
DISTNMT=A*BETA/6076.;
ALTNMM=ALTM/6076.;
XNCG=XNC/32.2;
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R=sqrt(XM^2+YM^2);
RF=sqrt(XFIRSTT^2+YFIRSTT^2);
CBETA=(XM*XFIRSTT+YM*YFIRSTT)/(R*RF);
BETA=acos(CBETA);
DISTNMM=A*BETA/6076.;
ATPLOSG=ATPLOS/32.2;
count=count+1;
ArrayT(count)=T;
ArrayDISTNMT(count)=DISTNMT;
ArrayALTNMT(count)=ALTNMT;
ArrayDISTNMM(count)=DISTNMM;
ArrayALTNMM(count)=ALTNMM;
ArrayXNCG(count)=XNCG;
ArrayDELV(count)=DELV;
ArrayATPLOSG(count)=ATPLOSG;

end
end
RTM
DELV
figure
plot(ArrayDISTNMT,ArrayALTNMT,ArrayDISTNMM,ArrayALTNMM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
figure
plot(ArrayT,ArrayATPLOSG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration Perp. To LOS (G) ’)
figure
plot(ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration (G) ’)
figure
plot(ArrayT,ArrayDELV),grid
xlabel(’Time (Sec)’)
ylabel(’Lateral Divert (Ft/Sec) ’)
clc
output=[ArrayT’,ArrayDISTNMT’,ArrayALTNMT’,ArrayDISTNMM’,...

ArrayALTNMM’,ArrayXNCG’,ArrayDELV’,ArrayATPLOSG’];
save datfil.txt output /ascii
disp ’simulation finished’

function [xtf,ytf]=predictb(tf,xdum,ydum,x1dum,y1dum,...
wp1,wtot,tb1,trst1,tb2,wp2,wtot2,trst2,wpay)

h=.01
a=2.0926e7;
gm=1.4077e16;
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t=0.;
x=xdum;
y=ydum;
x1=x1dum;
y1=y1dum;
while t,=(tf-.00001)

xold=x;
yold=y;
x1old=x1;
y1old=y1;
step=1;
flag=0;
while step ,=1

if flag==1
x=x+h*xd;
y=y+h*yd;
x1=x1+h*x1d;
y1=y1+h*y1d;
t=t+h;
step=2;

end
if t,tb1

wgt=-wp1*t/tb1+wtot;
trst=trst1;

elseif t,(tb1+tb2)
wgt=-wp2*t/tb2+wtot2+wp2*tb1/tb2;
trst=trst2;

else
wgt=wpay;
trst=0.;

end
at=32.2*trst/wgt;
vel=sqrt(x1^2+y1^2);
axt=at*x1/vel;
ayt=at*y1/vel;
tembott=(x^2+y^2)^1.5;
x1d=-gm*x/tembott+axt;
y1d=-gm*y/tembott+ayt;
xd=x1;
yd=y1;
flag=1;

end;
flag=0;
x=(xold+x)/2+.5*h*xd;
y=(yold+y)/2+.5*h*yd;
x1=(x1old+x1)/2+.5*h*x1d;
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y1=(y1old+y1)/2+.5*h*y1d;
end

xtf=x;
ytf=y;

%lambertpz.m shown in Listing 13.2

For this case theory says that the divert requirements should be

DV jPN ¼ N 0

N 0 � 1
nTtF ¼ 3 � 129 � 25

2
¼ 4838 ft=s

In other words, theory and simulation are in close agreement.
We saw that with tactical missiles the augmented proportional navigation gui-

dance law reduced the interceptor acceleration requirements. The closed-form
solution for the acceleration required to hit a maneuvering target with the aug-
mented proportional navigation guidance law was shown to be given by

ncjAPN ¼ 0:5nTN
0 1� t

tF

� �N 0�2

Using the fact that the lateral divert is the integral of the absolute value of the
acceleration, it is easy to show that

DV jAPN ¼ :5
N 0

N 0 � 1
nTtF ¼ :5DV jPN

Fig. 14.13 Augmented proportional navigation reduces divert requirements due to
boosting target.
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In other words, theory says that the divert requirements for an augmented pro-
portional navigation guidance system are half the divert requirements of a pro-
portional navigation guidance system.

To implement augmented proportional navigation guidance in the engage-
ment simulation, it is necessary to modify the guidance command to

ncjAPN ¼ N 0Vc _lþ N 0

2
aPLOS

where aPLOS is the booster acceleration perpendicular to the line of sight. The
nominal simulation case was rerun, except this time the augmented proportional
navigation guidance law was used. Figure 14.13 shows that the missile lateral
divert requirements were dramatically reduced to about 1500 ft/s (down from
about 5200 ft/s in the proportional navigation case).

Theory says the divert requirements for the augmented proportional naviga-
tion guidance law should be

DV jAPN ¼ 0:5
N 0

N 0 � 1
nTtF ¼ 0:5 � 3 � 129 � 25

2
¼ 2419 ft=s

which is in approximate agreement with the simulation results.

SUMMARY

In this chapter we have shown that the guidance concepts developed for the tac-
tical world are applicable to the strategic world. In fact, closed-form solutions for
the required missile acceleration to hit targets can be converted to lateral divert
formulas. Nonlinear engagement simulation results indicate that the divert
requirement formulas for prediction error, apparent target acceleration, and gui-
dance law are not only useful but are in fact accurate indicators of strategic
interceptor requirements.
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CHAPTER 15

Miscellaneous Topics

INTRODUCTION

In this chapter we shall cover several important topics that have not yet been
discussed. First we shall show how lateral divert requirements can be reduced if
we add an extra term to the proportional navigation guidance law to account
for gravity. Next we will demonstrate that, if complete information on all the
target states is available, the ultimate guidance law, predictive guidance, can be
used to relax system divert requirements. Finally, a new guidance law, known
as pulsed guidance, is developed for those situations in which an interceptor
does not have throttleable divert engines.

GRAVITY COMPENSATION

We saw in Chapter 14 that, in the absence of prediction errors, lateral divert fuel
was still required to hit a ballistic target. Changes in the missile and target vel-
ocities due to gravity caused the line-of-sight to rotate. The proportional naviga-
tion guidance law responded to the apparent line-of-sight rate with acceleration
commands. If we have knowledge of gravitational acceleration, it seems reason-
able that it might be possible to compensate for unnecessary accelerations via
the guidance law.

Consider the ballistic missile-target model of Fig. 15.1. In this case the only
acceleration acting on the missile and target is gravity. However, since the
missile and target are in different locations and since gravitational acceleration
is always toward the center of the Earth, the gravitational vectors for the missile
and target will have different magnitudes and directions. The missile and target
gravitational vectors can be expressed as

gravM ¼ gravxMiþ gravyMj

gravT ¼ gravxT iþ gravyT j
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where the gravitational components for the missile and target can be found from

gravxM ¼ �gm xM
x2M þ y2Mð Þ1:5

gravyM ¼ �gm yM
x2M þ y2Mð Þ1:5

gravxT ¼ �gm xT

x2T þ y2T
� �1:5

gravyT ¼ �gm yT

x2T þ y2T
� �1:5

From Fig. 15.1 we can see that the component of gravity perpendicular to the
line of sight for both the missile and target can be found by trigonometry and is
given by

gravMPLOS ¼ �gravxM sin lþ gravyM cos l

gravTPLOS ¼ �gravxT sin lþ gravyT cos l

The gravitational acceleration difference between the target and missile can be
treated as an additional term in the zero effort miss. Therefore, we can modify
the proportional navigation guidance law to account for gravity. The resultant
law, which is similar to augmented proportional navigation, is

nc ¼ N 0Vc _lþ N 0

2
ðgravTPLOS � gravMPLOSÞ

Fig. 15.1 Model for understanding gravity compensation.
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The similarity of proportional navigation with gravity compensation and augmen-
ted proportional navigation is due to the fact that the gravitational components of
the missile and target are treated as an apparent residual target acceleration.

The nominal 500-s ballistic case of Chapter 14 was repeated in which the
missile and target are on a collision triangle (see Figs. 14.3 and 14.4). In this
case there are zero prediction errors. Figure 15.2 compares the acceleration pro-
files of proportional navigation, for this case, when gravity compensation is
both included and excluded. We can see that in both cases the acceleration
levels are low, but the gravity compensation results in even smaller acceleration
levels. We can also see from the figure that the lateral divert requirements have
been reduced from 356 ft/s to 114 ft/s with gravity compensation.

Although gravity compensation reduced the missile lateral divert require-
ments for the nominal case, the divert requirements were not very high without
the compensation. Gravity compensation should be even more important for
longer-range flights since there is more time for a strategic missile to waste fuel.
Another case was examined in which the flight time was increased from 500s
for the nominal case to 700 s for the new case. Figure 15.3 depicts the engagement
geometry for the longer-range case. We can see that the longer flight time results
in a more lofted missile trajectory.

Both methods of guidance (with and without gravity compensation) were
compared for the new longer flight time case. Figure 15.4, which compares the
commanded acceleration profiles, shows that the acceleration requirements are
substantially less when gravity compensation is used. The figure indicates that
the missile lateral divert requirements were reduced from 1673 ft/s to 508 ft/s

Fig. 15.2 Gravity compensation results in smaller acceleration levels for nominal case.
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when gravity compensation was used. In this case there would be a dramatic
advantage in terms of fuel and weight savings in using gravity compensation.

The gravity compensation guidance law assumes that the required
gravitational components of both the missile and target can be measured or esti-
mated precisely. Errors in estimating the gravitational components will of course

Fig. 15.3 Engagement geometry for longer-range case.

Fig. 15.4 Gravity compensation offers dramatic reduction in divert requirements for
long-range case.
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degrade the effectiveness of this type of compensation, perhaps to the point where
its performance is the same or worse than that of proportional navigation.

PREDICTIVE GUIDANCE

We have seen how interceptor lateral divert requirements can be reduced when
extra information, if it exists, is incorporated in the guidance law. If an exact
model of the target and missile dynamics were available, one could achieve the
best performance with predictive guidance. The principle behind predictive gui-
dance is quite simple. We take our dynamic models of the target and missile
and numerically integrate them forward until the desired intercept time. In
other words, we are predicting the future location of the missile and target. The
difference between the predicted missile and target position at the intercept
time is the zero effort miss. If the predicted coordinates of the missile at intercept
in the Earth-centered system is given by (xMF, yMF) and the coordinates of the
target at intercept are given by (xTF , yTF), then the Earth-centered components
of the zero effort miss are given by

ZEMx ¼ xTF � xMF

ZEMy ¼ yTF � yMF

We can find the component of the zero effort miss perpendicular to the line of
sight by trigonometry in Fig. 15.1. The zero effort miss perpendicular to the
line of sight is given by

ZEMPLOS ¼ �ZEMx sin lþ ZEMy cos l

We saw from our discussion of optimal guidance that the acceleration guidance
command should be proportional to the zero effort miss and inversely pro-
portional to the square of time to go until intercept, or

nc ¼ N 0ZEMPLOS

t2go

Proportional navigation, augmented proportional navigation, and our pre-
viously derived optimal guidance law can all be expressed in the preceding
form. In these guidance laws we have closed-form expressions for the zero
effort miss. In other words, an integration of simple dynamics (assumed to be a
polynomial in time) was conducted to get a closed-form expression. In predictive
guidance, we ignore closed-form solutions of approximate processes and obtain
the exact solution for the zero effort miss at each guidance update by numerical
integration. The resultant accuracy of the computed zero effort miss depends
on the size of the integration interval. Small integration intervals yield accurate
answers but may take too long to be obtained in flight. Of course, the accuracy
also depends on the equations used. Having inaccurate models of the target will
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lead to erroneous predictions of the zero effort miss, and in this case the perform-
ance of predictive guidance may be substantially worse than that of proportional
navigation.

Listing 15.1 presents an engagement simulation of a ballistic missile and a
boosting target. This simulation is identical to the one of Listing 14.2 except
that the guidance law has changed from proportional navigation to predictive
guidance. We can see from the listing that routine predictg.m is used not only
to establish the initial estimate of the intercept point but also is used now at
each guidance update to compute the zero effort miss. An examination of the pre-
diction routine shows that the equations of the target and missile have been per-
fectly modeled. Even the integration step size is an exact match. We can see from
the listing that guidance commands, based upon predictive guidance, are calcu-
lated at each guidance update throughout the flight.

The nominal 50-s boosting target case of the previous chapter (see Figs. 14.10
and 14.11) was repeated to see the effectiveness of the new guidance law.
Figure 15.5 displays the commanded missile acceleration requirements for
predictive guidance for the nominal case. We can see that, as expected, predictive
guidance requires much less acceleration than either proportional navigation or
augmented proportioned navigation. In fact, we can see that predictive guidance
virtually requires zero acceleration to intercept the boosting target. The reason for
this is that the missile is initially on a collision triangle with the target. Therefore,
no commands are really necessary for a successful intercept. However, if for com-
puter throughput reasons the integration step size h in routine predictg.m had to
be increased by two orders of magnitude (from .01 s to 1 s), we can see from
Fig. 15.5 that the missile acceleration response would be unstable.

Fig. 15.5 Acceleration requirements for predictive guidance can be very small.
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LISTING 15.1 PREDICTIVE GUIDANCE ENGAGEMENT SIMULATION OF BALLISTIC
MISSILE AND BOOSTER TARGET

count=0;
LEFT=0;
A=2.0926e7;
GM=1.4077e16;
XNP=3.;
AXMGUID=0.;
AYMGUID=0.;
PREDERR=0.;
XISP1=250.;
XISP2=250.;
XMF1=.85;
XMF2=.85;
WPAY=100.;
DELV=20000.;
DELV1=.3333*DELV;
DELV2=.6667*DELV;
AMAX1=20.;
AMAX2=20.;
XKICKDEG=80.;
TOP2=WPAY*(exp(DELV2/(XISP2*32.2))-1.);
BOT2=1/XMF2-((1.-XMF2)/XMF2)*exp(DELV2/(XISP2*32.2));
WP2=TOP2/BOT2;
WS2=WP2*(1-XMF2)/XMF2;
WTOT2=WP2+WS2+WPAY;
TRST2=AMAX2*(WPAY+WS2);
TB2=XISP2*WP2/TRST2;
TOP1=WTOT2*(exp(DELV1/(XISP1*32.2))-1.);
BOT1=1/XMF1-((1.-XMF1)/XMF1)*exp(DELV1/(XISP1*32.2));
WP1=TOP1/BOT1;
WS1=WP1*(1-XMF1)/XMF1;
WTOT=WP1+WS1+WTOT2;
TRST1=AMAX1*(WTOT2+WS1);
TB1=XISP1*WP1/TRST1;
ALTNMT=0.;
ALTNMM=0.;
ALTT=ALTNMT*6076.;
ALTM=ALTNMM*6076.;
DEGRAD=360./(2.*pi);
S=0.;
XLONGMDEG=85.;
XLONGTDEG=90.;
XLONGM=XLONGMDEG/DEGRAD;
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XLONGT=XLONGTDEG/DEGRAD;
XM=(A+ALTM)*cos(XLONGM);
YM=(A+ALTM)*sin(XLONGM);
XT=(A+ALTT)*cos(XLONGT);
YT=(A+ALTT)*sin(XLONGT);
XFIRSTT=XT;
YFIRSTT=YT;
if LEFT==1

X1T=cos(pi/2.-XKICKDEG/DEGRAD+XLONGT);
Y1T=sin(pi/2.-XKICKDEG/DEGRAD+XLONGT);

else
X1T=cos(-pi/2.+XKICKDEG/DEGRAD+XLONGT);
Y1T=sin(-pi/2.+XKICKDEG/DEGRAD+XLONGT);

end
T=0.;
TF=50.;
TGO=TF-T;
X1M=0.;
Y1M=0.;
[XTF,YTF,ZEM1,ZEM2]=predictg(T,TF,XT,YT,X1T,Y1T,WP1,WTOT,...

TB1,TRST1,TB2,WP2,WTOT2,TRST2,WPAY,XM,YM,X1M,Y1M,TGO);
YTF=YTF+PREDERR;
[VRXM,VRYM]=lambertpz(XM,YM,TF,XTF,YTF,XLONGM,XLONGT);
X1M=VRXM;
Y1M=VRYM;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
DELV=0.;
XNC=0.;
while VC.=0.

TGO=RTM/VC;
if TGO . .1

H=.01;
else

H=.0001;
end
XOLDT=XT;
YOLDT=YT;
X1OLDT=X1T;
Y1OLDT=Y1T;
XOLDM=XM;
YOLDM=YM;
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X1OLDM=X1M;
Y1OLDM=Y1M;
DELVOLD=DELV;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
XT=XT+H*XDT;
YT=YT+H*YDT;
X1T=X1T+H*X1DT;
Y1T=Y1T+H*Y1DT;
XM=XM+H*XDM;
YM=YM+H*YDM;
X1M=X1M+H*X1DM;
Y1M=Y1M+H*Y1DM;
DELV=DELV+H*DELVD;
T=T+H;
STEP=2;

end
if T,TB1

WGT=-WP1*T/TB1+WTOT;
TRST=TRST1;

elseif T,(TB1+TB2)
WGT=-WP2*T/TB2+WTOT2+WP2*TB1/TB2;
TRST=TRST2;

else
WGT=WPAY;
TRST=0.;

end
AT=32.2*TRST/WGT;
VEL=sqrt(X1T^2+Y1T^2);
AXT=AT*X1T/VEL;
AYT=AT*Y1T/VEL;
TEMBOTT=(XT^2+YT^2)^1.5;
X1DT=-GM*XT/TEMBOTT+AXT;
Y1DT=-GM*YT/TEMBOTT+AYT;
XDT=X1T;
YDT=Y1T;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
XLAM=atan2(RTM2,RTM1);
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XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
ATPLOS=AYT*cos(XLAM)-AXT*sin(XLAM);
AXMGUID=-XNC*sin(XLAM);
AYMGUID=XNC*cos(XLAM);
DELVD=abs(XNC);
TEMBOTM=(XM^2+YM^2)^1.5;
X1DM=-GM*XM/TEMBOTM+AXMGUID;
Y1DM=-GM*YM/TEMBOTM+AYMGUID;
XDM=X1M;
YDM=Y1M;
FLAG=1;

end;
FLAG=0;
XT=(XOLDT+XT)/2+.5*H*XDT;
YT=(YOLDT+YT)/2+.5*H*YDT;
X1T=(X1OLDT+X1T)/2+.5*H*X1DT;
Y1T=(Y1OLDT+Y1T)/2+.5*H*Y1DT;
XM=(XOLDM+XM)/2+.5*H*XDM;
YM=(YOLDM+YM)/2+.5*H*YDM;
X1M=(X1OLDM+X1M)/2+.5*H*X1DM;
Y1M=(Y1OLDM+Y1M)/2+.5*H*Y1DM;
DELV=(DELVOLD+DELV)/2.+.5*H*DELVD;
ALTT=sqrt(XT^2+YT^2)-A;
ALTM=sqrt(XM^2+YM^2)-A;
S=S+H;
if S.=.99999

S=0.;
[XTF,YTF,ZEM1,ZEM2]=predictg(T,TF,XT,YT,X1T,Y1T,WP1,WTOT,...

TB1,TRST1,TB2,WP2,WTOT2,TRST2,WPAY,XM,YM,X1M,Y1M,TGO);
ZEMPLOS=-ZEM1*sin(XLAM)+ZEM2*cos(XLAM);
XNC=XNP*ZEMPLOS/(TGO*TGO);
if XNC.966.

XNC=966.;
end
if XNC,-966.

XNC=-966.;
end
ALTNMT=ALTT/6076.;
R=sqrt(XT^2+YT^2);
RF=sqrt(XFIRSTT^2+YFIRSTT^2);
CBETA=(XT*XFIRSTT+YT*YFIRSTT)/(R*RF);
BETA=acos(CBETA);
DISTNMT=A*BETA/6076.;
ALTNMM=ALTM/6076.;
XNCG=XNC/32.2;
R=sqrt(XM^2+YM^2);
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RF=sqrt(XFIRSTT^2+YFIRSTT^2);
CBETA=(XM*XFIRSTT+YM*YFIRSTT)/(R*RF);
BETA=acos(CBETA);
DISTNMM=A*BETA/6076.;
ATPLOSG=ATPLOS/32.2;
count=count+1;
ArrayT(count)=T;
ArrayDISTNMT(count)=DISTNMT;
ArrayALTNMT(count)=ALTNMT;
ArrayDISTNMM(count)=DISTNMM;
ArrayALTNMM(count)=ALTNMM;
ArrayXNCG(count)=XNCG;
ArrayDELV(count)=DELV;
ArrayATPLOSG(count)=ATPLOSG;

end
end
RTM
DELV
figure
plot(ArrayDISTNMT,ArrayALTNMT,ArrayDISTNMM,ArrayALTNMM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
figure
plot(ArrayT,ArrayATPLOSG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration Perp. To LOS (G) ’)
figure
plot(ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration (G) ’)
figure
plot(ArrayT,ArrayDELV),grid
xlabel(’Time (Sec)’)
ylabel(’Lateral Divert (Ft/Sec) ’)
clc
output=[ArrayT’,ArrayDISTNMT’,ArrayALTNMT’,ArrayDISTNMM’,...

ArrayALTNMM’,ArrayXNCG’,ArrayDELV’,ArrayATPLOSG’];
save datfil.txt output /ascii
disp ’simulation finished’
function [xtf,ytf,zem1,zem2]=predictg(tdum,tf,xdum,ydum,x1dum,...

y1dum,wp1,wtot,tb1,trst1,tb2,wp2,wtot2,trst2,wpay,...
xmdum,ymdum,x1mdum,y1mdum,tgo)

if tgo.1
h=.01;

else
h=tgo;
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end
a=2.0926e7;
gm=1.4077e16;
t=tdum;
x=xdum;
y=ydum;
x1=x1dum;
y1=y1dum;
xm=xmdum;
ym=ymdum;
x1m=x1mdum;
y1m=y1mdum;
while t,=(tf-.00001)

xold=x;
yold=y;
x1old=x1;
y1old=y1;
xoldm=xm;
yoldm=ym;
x1oldm=x1m;
y1oldm=y1m;
step=1;
flag=0;
while step ,=1

if flag==1
x=x+h*xd;
y=y+h*yd;
x1=x1+h*x1d;
y1=y1+h*y1d;
xm=xm+h*xdm;
ym=ym+h*ydm;
x1m=x1m+h*x1dm;
y1m=y1m+h*y1dm;
t=t+h;
step=2;

end
if t,tb1

wgt=-wp1*t/tb1+wtot;
trst=trst1;

elseif t,(tb1+tb2)
wgt=-wp2*t/tb2+wtot2+wp2*tb1/tb2;
trst=trst2;

else
wgt=wpay;
trst=0.;

end

336 TACTICAL AND STRATEGIC MISSILE GUIDANCE



at=32.2*trst/wgt;
vel=sqrt(x1^2+y1^2);
axt=at*x1/vel;
ayt=at*y1/vel;
tembott=(x^2+y^2)^1.5;
x1d=-gm*x/tembott+axt;
y1d=-gm*y/tembott+ayt;
xd=x1;
yd=y1;
tembotm=(xm^2+ym^2)^1.5;
x1dm=-gm*xm/tembotm;
y1dm=-gm*ym/tembotm;
xdm=x1m;
ydm=y1m;
flag=1;

end;
flag=0;
x=(xold+x)/2+.5*h*xd;
y=(yold+y)/2+.5*h*yd;
x1=(x1old+x1)/2+.5*h*x1d;
y1=(y1old+y1)/2+.5*h*y1d;
xm=(xoldm+xm)/2+.5*h*xdm;
ym=(yoldm+ym)/2+.5*h*ydm;
x1m=(x1oldm+x1m)/2+.5*h*x1dm;
y1m=(y1oldm+y1m)/2+.5*h*y1dm;

end
xtf=x;
ytf=y;
zem1=x-xm;
zem2=y-ym;

% lambertpz.m can be found in Listing 13.2

The divert requirements for predictive guidance are quite small because the
prediction is perfect. In other words, we have a perfect model of the missile
and target and a perfect numerical integration technique. The integration is
perfect because the same method (second-order Runge–Kutta) and step size
are used in the simulation and prediction portion of the program. In a practical
application of predictive guidance, a larger integration step size h might have to
be used to satisfy flight computer constraints.

Figure 15.6 presents the missile lateral divert requirement profiles when the
integration step size h in the prediction routine is 0.01 s (nominal), 0.1 s, and
1 s. We can see that the miss distance and lateral divert increase as the integration
step size grows. In fact we can see by comparing Figs. 15.6 and 14.13 that when the
integration step size is 1 s the lateral divert requirements are greater with predic-
tive guidance than for augmented proportional navigation. By comparing Fig. 15.6
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with Fig. 14.12 we might conclude that the divert requirements for predictive
guidance are still smaller than those of proportional navigation, but Fig. 15.6
indicates that predictive guidance misses the target with the larger integration
step size.

PULSED GUIDANCE

A strategic interceptor maneuvers with divert engines. Sometimes the engines are
effectively throttleable. This means that, by issuing divert commands in opposite
directions, any effective acceleration level (within engine thrust-to-weight ratio
constraints) can be reached. This is ideal for the implementation of proportional
navigation type guidance laws. However, sometimes it is only possible to issue gui-
dance commands of fixed amplitude when the engine is on. In this case we can
only influence the duration of the guidance pulse by turning the engine off. In
this situation it is not obvious how a guidance law can be implemented or if pro-
portional navigation is appropriate.

Consider the acceleration diagram in Fig. 15.7. Here we have a guidance pulse of
magnitudea ft/s2 lasting forDt seconds. Implicit in the diagram is the approximation
that the acceleration level is constant for the duration of the pulse. Actually, the accel-
eration level would be increasing for a constant thrust level because of the expendi-
ture of fuel. We wish to derive a guidance law whose output for a given acceleration
magnitude a contains information concerning the duration of the guidance pulseDt.

We have previously seen how proportional navigation is related to the zero
effort miss (ZEM). In proportional navigation type guidance, we take the entire
guided portion of the flight to remove the zero effort miss. If we have a single

Fig. 15.6 Divert requirements for predictive increase as the integration step size increases.
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pulse, as shown in Fig. 15.7,
we must remove the zero
effort miss in Dt seconds. For
a pulse of amplitude a and
duration Dt, we can integrate

the acceleration twice yielding the velocity profile of Fig. 15.8 and the position
profile of Fig. 15.9. Using the information from Fig. 15.9 we can equate the dis-
tance traveled due to the acceleration pulse (derived by integrating the accelera-
tion pulse twice) to the zero effort miss or

ZEM ¼ :5aDt2 þ aDtðtgo � DtÞ
However, we also know that the proportional navigation guidance law can be

expressed as

nc ¼ N 0Vc _l ¼ N 0ZEM
t2go

Therefore, the zero effort miss can be expressed in terms of the line-of-sight rate as

ZEM ¼ Vct
2
go
_l

Equating the expressions for the proportional navigation zero effort miss with
the one for the pulse of fixed duration, we get

Vct
2
go
_l ¼ :5aDt2 þ aDtðtgo � DtÞ

This is a quadratic equation in terms of Dt. Using the quadratic formula and
eliminating the unrealistic root, we obtain a closed-form expression for the
pulse duration time as

Dt ¼ tgo 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Vc

a
_l

r" #

Fig. 15.7 Conceptual diagram
for pulsed guidance law.

Fig. 15.8 Integrating
acceleration pulse once
yields velocity.
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To implement a pulse guidance scheme, we must know in advance the
number of pulses to be used. For simplicity, let us assume that the pulses are
equally distributed throughout the flight. If it is time for a pulse to commence,
we calculate the pulse duration from the preceding formula. An engagement
simulation, based upon Listing 14.1, with a pulsed guidance system is presented
in Listing 15.2.

A nominal case was run with the pulsed guidance system in which there was
100 kft of prediction error. Figure 15.10 shows the line-of-sight rate profile for a
successful intercept in which the missile had 10 guidance pulses. We can see from
the plot that the pulsed guidance system is always trying to drive the line-of-sight
rate to zero after each pulse is issued. This is not surprising, as the pulsed guidance
law was derived with this concept in mind.

Fig. 15.10 Pulse guidance attempts to drive line-of-sight rate to zero with each pulse.

Fig. 15.9 Integrating acceleration pulse twice yields position.
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LISTING 15.2 PULSED GUIDANCE SIMULATION

count=0;
XLONGMDEG=45.;
XLONGTDEG=90.;
ALTNMTIC=0.;
ALTNMMIC=0.;
TF=500.;
GAMDEGT=23.;
AMAG=64.4;
PULSES=10.;
PREDERR=-100000.;
PULSE_ON=0;
ACQUIRE=1;
PULSE_NUM=PULSES-1.;
H=.01;
A=2.0926e7;
GM=1.4077e16;
DEGRAD=360./(2.*pi);
XNC=0.;
GAMT=GAMDEGT/57.3;
DISTNMT=6000.;
PHIT=DISTNMT*6076./A;
ALTT=ALTNMTIC*6076.;
ALTM=ALTNMMIC*6076.;
R0T=A+ALTT;
TOP=GM*(1.-cos(PHIT));
TEMP=R0T*cos(GAMT)/A-cos(PHIT+GAMT);
BOT=R0T*cos(GAMT)*TEMP;
VT=sqrt(TOP/BOT);
XLONGM=XLONGMDEG/DEGRAD;
XLONGT=XLONGTDEG/DEGRAD;
if XLONGM.XLONGT

X1T=VT*cos(pi/2.-GAMT+XLONGT);
Y1T=VT*sin(pi/2.-GAMT+XLONGT);

else
X1T=VT*cos(-pi/2.+GAMT+XLONGT);
Y1T=VT*sin(-pi/2.+GAMT+XLONGT);

end
S=0.;
XLONGM=XLONGMDEG/DEGRAD;
XLONGT=XLONGTDEG/DEGRAD;
XM=(A+ALTM)*cos(XLONGM);
YM=(A+ALTM)*sin(XLONGM);
XT=(A+ALTT)*cos(XLONGT);
YT=(A+ALTT)*sin(XLONGT);
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XFIRSTT=XT;
YFIRSTT=YT;
T=0.;
[XTF,YTF]=predictpz(TF,XT,YT,X1T,Y1T);
YTF=YTF+PREDERR;
[VRXM,VRYM]=lambertpz(XM,YM,TF,XTF,YTF,XLONGM,XLONGT);
X1M=VRXM;
Y1M=VRYM;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
DELV=0.;
while VC.=0.

TGO=RTM/VC;
if TGO..1

H=.01;
else

H=.0001;
end
XOLDT=XT;
YOLDT=YT;
X1OLDT=X1T;
Y1OLDT=Y1T;
XOLDM=XM;
YOLDM=YM;
X1OLDM=X1M;
Y1OLDM=Y1M;
DELVOLD=DELV;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
XT=XT+H*XDT;
YT=YT+H*YDT;
X1T=X1T+H*X1DT;
Y1T=Y1T+H*Y1DT;
XM=XM+H*XDM;
YM=YM+H*YDM;
X1M=X1M+H*X1DM;
Y1M=Y1M+H*Y1DM;
DELV=DELV+H*DELVD;
T=T+H;
STEP=2;
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end
TEMBOTT=(XT^2+YT^2)^1.5;
X1DT=-GM*XT/TEMBOTT;
Y1DT=-GM*YT/TEMBOTT;
XDT=X1T;
YDT=Y1T;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=X1T-X1M;
VTM2=Y1T-Y1M;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
XLAM=atan2(RTM2,RTM1);
XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
DELVD=abs(XNC);
AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
TEMBOTM=(XM^2+YM^2)^1.5;
X1DM=-GM*XM/TEMBOTM+AM1;
Y1DM=-GM*YM/TEMBOTM+AM2;
XDM=X1M;
YDM=Y1M;
FLAG=1;

end;
FLAG=0;
XT=(XOLDT+XT)/2+.5*H*XDT;
YT=(YOLDT+YT)/2+.5*H*YDT;
X1T=(X1OLDT+X1T)/2+.5*H*X1DT;
Y1T=(Y1OLDT+Y1T)/2+.5*H*Y1DT;
XM=(XOLDM+XM)/2+.5*H*XDM;
YM=(YOLDM+YM)/2+.5*H*YDM;
X1M=(X1OLDM+X1M)/2+.5*H*X1DM;
Y1M=(Y1OLDM+Y1M)/2+.5*H*Y1DM;
DELV=(DELVOLD+DELV)/2.+.5*H*DELVD;
ALTT=sqrt(XT^2+YT^2)-A;
ALTM=sqrt(XM^2+YM^2)-A;
if PULSE_ON==1

if T.TOFF
PULSE_ON=0;
XNC=0.;

end
end
if PULSE_NUM . 0.

if TGO,=(TF-0.)*PULSE_NUM/(PULSES-1.)
PULSE_NUM=PULSE_NUM-1.;
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PULSE_ON=1;
DISC=1.-2.*VC*abs(XLAMD)/AMAG;
if DISC.0.

TPULSE=TGO*(1.-sqrt(DISC));
if XLAMD.0.

XNC=AMAG;
else

XNC=-AMAG;
end

else
TPULSE=0.;

end
if TGO,TPULSE

TOFF=9999999.;
else

TOFF=T+TPULSE;
end

end
else

DISC=1.-2.*VC*abs(XLAMD)/AMAG;
if DISC.0.

TPULSE=TGO*(1.-sqrt(DISC));
else

TPULSE=999999.;
end
if TGO,=TPULSE

if XLAMD.0.
XNC=AMAG;

else
XNC=-AMAG;

end
PULSE_ON=1;
TOFF=999999.;

end
end
S=S+H;
if S.=.99999

S=0.;
count=count+1;
ArrayT(count)=T;
ArrayXNC(count)=XNC;
ArrayXLAMD(count)=XLAMD;
ArrayDELV(count)=DELV;

end
end
RTM
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DELV
figure
plot(ArrayT,ArrayXLAMD),grid
xlabel(’Time (Sec)’)
ylabel(’Line of Sight Rate (Rad/Sec) ’)
axis([0 500 0 .00002])
clc
output=[ArrayT’,ArrayXNC’,ArrayXLAMD’,ArrayDELV’];
save datfil.txt output /ascii
disp ’simulation finished’

function [xtf,ytf]=predictpz(tf,xdum,ydum,x1dum,y1dum)
h=.01;
a=2.0926e7;
gm=1.4077e16;
t=0.;
x=xdum;
y=ydum;
x1=x1dum;
y1=y1dum;
while t,=(tf-.00001)

xold=x;
yold=y;
x1old=x1;
y1old=y1;
step=1;
flag=0;
while step ,=1

if flag==1
x=x+h*xd;
y=y+h*yd;
x1=x1+h*x1d;
y1=y1+h*y1d;
t=t+h;
step=2;

end
tembot=(x^2+y^2)^1.5;
x1d=-gm*x/tembot;
y1d=-gm*y/tembot;
xd=x1;
yd=y1;
flag=1;

end;
flag=0;
x=(xold+x)/2+.5*h*xd;
y=(yold+y)/2+.5*h*yd;
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x1=(x1old+x1)/2+.5*h*x1d;
y1=(y1old+y1)/2+.5*h*y1d;

end
xtf=x;
ytf=y;
% lambertpz.m can be found in Listing 13.2

Fig. 15.11 Pulsed guidance works with fewer pulses.

Fig. 15.12 Comparison of proportional navigation and pulsed guidance.
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Figure 15.11 shows a similar case, except only five guidance pulses are used.
We can see that the pulsed guidance law is still attempting to drive the
line-of-sight rate to zero after each pulse is issued. However, since there are
fewer pulses, the line-of-sight rate builds up to larger values in between pulses.

The five pulse results are overlayed with the proportional navigation results
for the identical case and are shown in Figure 15.12. We can see that proportional
navigation drives the line-of-sight rate to zero at the end of the flight only.

Although each of the cases studied so far resulted in successful intercepts, the
divert requirements for each guidance concept are different. Figure 15.13 displays
the required lateral divert profiles for each of the cases. We can see that pro-
portional navigation has the smallest divert requirements. Increasing the
number of pulses in a pulsed guidance system does not appear to influence the
lateral divert requirements.

We use pulsed guidance when the divert engine characteristics make it infeas-
ible to use proportional navigation. The price paid is somewhat higher for lateral
divert requirements.

Fig. 15.13 Pulsed guidance does not reduce lateral divert requirements.
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CHAPTER 16

Ballistic Target Properties

INTRODUCTION [1, 2]

Although surface-to-surface missiles were used as terror weapons during World
War II and the Iran–Iraq War, most of the world became familiar with the bal-
listic missile threat during the 1991 Persian Gulf War. Hundreds of millions of TV
viewers will never forget the wail of sirens and images of Scud missiles glowing in
the night-time skies over Tel Aviv and Dhahran as they decelerated through the
atmosphere toward their civilian targets after having traveled hundreds of miles
from their launch sites in Iraq. Viewers, regardless of nationality, were riveted
by the drama of the almost nightly duels between the Patriot interceptor and its
intended prey—the Scud ballistic target.

In the chapters pertaining to tactical guidance the interceptor’s intended target
was considered to be an aircraft, whereas in the chapters pertaining to strategic
guidance the engagement threat was either considered to be a booster or an exoat-
mospheric ballistic target. In the next two chapters of the text we will consider the
special problems encountered in intercepting an endoatmospheric ballistic target.

BALLISTIC TARGET MODEL

When a ballistic target re-enters the atmosphere after having traveled a long dis-
tance, its speed is high and the remaining time to ground impact is relatively short.
The small distances traveled by ballistic targets after they re-enter the atmosphere
enable us to accurately model these threats using the flat-Earth, constant gravity
approximation as was done in modeling tactical interceptors. This simplification
is important because it will lead to useful closed-form solutions for ballistic
targets.

Figure 16.1 presents the flat-Earth, constant gravity model for the ballistic
endoatmospheric threat. In this model, only drag and gravity act on the ballistic
target [3]. We can see from Fig. 16.1 that the target has velocity VT and is initially
at re-entry angle gT. Note that drag Fdrag acts in a direction opposite to the velocity
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vector and gravity g
always acts downward
in the flat-Earth model.
Therefore, if the effect of
drag is greater than that
of gravity, the target will
slow up or decelerate.
We will eventually con-
sider the ballistic target
as an interceptor threat,
so the magnitude of the target deceleration will be of interest to us.

From Fig. 16.1 we can see that the target re-entry angle gT can be computed,
using trigonometry, from the two inertial components of the target velocity as

gT ¼ tan�1 �VT2

VT1

The acceleration components of the ballistic target in the inertial downrange and
altitude directions of Fig. 16.1 can either be expressed in terms of the target weight
W, reference area Sref, zero lift drag CD0, and gravity g or more simply in terms of
the ballistic coefficient b (defined in Chapter 10) according to

dVT1

dt
¼ �Fdrag

m
cos gT ¼ �QSrefCD0g

W
cos gT ¼ �Qg

b
cos gT

dVT2

dt
¼ �Fdrag

m
sin gT � g ¼ QSrefCD0g

W
sin gT � g ¼ Qg

b
sin gT � g

where Q is the dynamic pressure. Recall that the dynamic pressure has been pre-
viously defined as

Q ¼ 0:5rV2
T

where VT is the total target velocity, which can be expressed in terms of com-
ponent velocities as

VT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
T1 þ V2

T2

q
and r is the air density measured in slug/ft3 and was shown to be accurately
approximated exponentially in Chapter 10 as

r ¼ 0:0034e�RT2=22,000

Fig. 16.1 Ballistic
target geometry.
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above 30,000 ft and

r ¼ 0:002378e�RT2=30,000

below 30,000 ft. The target altitude RT2 is measured in feet. Since the acceleration
equations are in a fixed or inertial frame, they can be integrated directly to yield
velocity and position.

BALLISTIC TARGET EXPERIMENTS

A simulation of a ballistic target, based on the acceleration differential equations
of the previous section, appears in Listing 16.1. The ballistic target acceleration
differential equations appear before the FLAG=1 statement, and the initial con-
ditions, required for the integration of the differential equations, appear at the
beginning of the simulation. We can see that the program is initialized with a
target altitude of 100 kft, a target velocity of 6000 ft/s, and a re-entry angle of
45 deg. The nominal ballistic coefficient for the target is 500 lb/ft2.We can see
that the simulation stops when the ballistic threat hits the ground (RT2 , 0).
Every tenth of a second the target location is printed in kft, acceleration in g,
and velocity in ft/s. The simulation integration step size of 0.01 s (H ¼ 0.01) is
sufficiently small to get accurate answers with the second-order Runge–Kutta
numerical integration technique.

LISTING 16.1 BALLISTIC TARGET SIMULATION

count=0;
RT1=0.;
RT2=100000.;
VT=6000.;
GAMTDEG=45.;
BETA=500.;
VT1=VT*cos(GAMTDEG/57.3);
VT2=-VT*sin(GAMTDEG/57.3);
T=0.;
H=.01;
S=0.;
while RT2.=0.

RT1OLD=RT1;
RT2OLD=RT2;
VT1OLD=VT1;
VT2OLD=VT2;
STEP=1;
FLAG=0;
while STEP ,=1
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if FLAG==1
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
VT1=VT1+H*AT1;
VT2=VT2+H*AT2;
T=T+H;
STEP=2;

end
if RT2,=30000.

RHO=.002378*exp(-RT2/30000.);
else

RHO=.0034*exp(-RT2/22000.);
end
VT=sqrt(VT1^2+VT2^2);
Q=.5*RHO*VT^2;
GAMT=atan2(-VT2,VT1);
AT1=-32.2*Q*cos(GAMT)/BETA;
AT2=-32.2+32.2*Q*sin(GAMT)/BETA;
FLAG=1;

end;
FLAG=0;
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
VT1=.5*(VT1OLD+VT1+H*AT1);
VT2=.5*(VT2OLD+VT2+H*AT2);
S=S+H;
if S.=.09999

S=0.;
ATG=sqrt(AT1^2+AT2^2)/32.2;
RT1K=RT1/1000.;
RT2K=RT2/1000.;
VT=sqrt(VT1^2+VT2^2);
count=count+1;
ArrayT(count)=T;
ArrayRT1K(count)=RT1K;
ArrayRT2K(count)=RT2K;
ArrayATG(count)=ATG;
ArrayVT(count)=VT;

end
end
figure
plot(ArrayRT1K,ArrayRT2K),grid
xlabel(’Downrange (Kft)’)
ylabel(’Altitude (Kft) ’)
figure
plot(ArrayRT2K,ArrayATG),grid
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xlabel(’Altitude (Kft)’)
ylabel(’Acceleration (G) ’)
figure
plot(ArrayRT2K,ArrayVT),grid
xlabel(’Altitude (Kft)’)
ylabel(’Velocity (Ft/Sec) ’)
clc
output=[ArrayT’,ArrayRT1K’,ArrayRT2K’,ArrayATG’,ArrayVT’];
save datfil.txt output /ascii
disp ’simulation finished’

The nominal case of Listing 16.1 was run, and Fig. 16.2 presents the resultant
trajectory of the ballistic target. We can see from the figure that the target trajectory
is approximately a straight line (we shall exploit this observation later in this
chapter). At the lower altitudes there is slight curvature in the trajectory due to
both drag and gravity.

Figure 16.3 displays the deceleration and velocity of the nominal target as a
function of altitude. At 100-kft altitude the target has an initial velocity of
6000 ft/s and there is 1 g of acceleration due to gravity (there is too little atmos-
phere at 100 kft to cause substantial drag). The drag deceleration increases and
target velocity decreases as the target descends in altitude. At approximately
40 kft altitude the target deceleration peaks and is nearly 8 g. At this altitude of
maximum deceleration the target speed is approximately 63% of its original
value (3800 ¼ 0.63 * 6000).

The simulation of Listing 16.1 was rerun, and this time the initial target vel-
ocity at 100-kft altitude was made a parameter. We can see from the simulation
results, displayed in Fig. 16.4, that target deceleration increases as the target

Fig. 16.2 Nominal ballistic target trajectory is approximately a straight line.
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speed increases. This should not be surprising since the acceleration differential
equations tell us that deceleration is proportional to the dynamic pressure (that
is, the target velocity squared). Therefore very fast ballistic threats can cause enor-
mous decelerations. Surprisingly, the simulation results in Fig. 16.4 also indicate
that the altitude of maximum target deceleration appears to be approximately
independent of the target speed!

The simulation of Listing 16.1 was again rerun, and this time the target ballis-
tic coefficient was made a parameter. Simulation results, displayed in Fig. 16.5,

Fig. 16.3 Peak target deceleration occurs at 40 kft.

Fig. 16.4 Peak target deceleration increases with increasing target speed.
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appear to indicate that the peak target deceleration is approximately independent
of ballistic coefficient. This is surprising as there is more drag with lower ballistic
coefficients. However, these simulation results also indicate that the altitude at
which the peak target deceleration occurs decreases with increasing ballistic
coefficient.

Another experiment was conducted using Listing 16.1. This time the initial
target velocity and ballistic coefficient were fixed and the re-entry angle was
made a parameter. Simulation results, displayed in Fig. 16.6, indicate that the

Fig. 16.5 Peak target deceleration is approximately independent of ballistic coefficient.

Fig. 16.6 Peak target deceleration increases with increasing re-entry angle.
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peak target deceleration increases with increasing re-entry angle. This is reason-
able because as the re-entry angle increases the resultant target trajectory tends
to become more vertical and more drag is experienced. In addition, Fig. 16.6
shows that the altitude at which the peak target deceleration occurs decreases
with increasing re-entry angle.

CLOSED-FORM SOLUTIONS FOR BALLISTIC TARGETS

In this section we will derive some useful closed-form solutions for ballistic targets
and compare the theoretical solutions to the simulation results of the previous
section. If we neglect gravity, Newton’s second law says that we can express the
drag force acting on a ballistic target in terms of the dynamic pressure, reference
area, and zero lift drag according to

Fdrag ¼ m
dVT

dt
¼ �QSrefCD0

Using definitions of dynamic pressure and ballistic coefficient, we can rewrite the
preceding differential equation as

dVT

dt
¼ �rgV2

T

2b

If we assume that the target trajectory is always a straight line (as appeared to be
the case in Fig. 16.2), then the re-entry angle gT is a constant. Figure 16.1 indicates
that for the constant re-entry angle assumption, the altitude component of vel-
ocity can be expressed in terms of the total velocity as

VT2 ¼ dRT2

dt
¼ �VT sin gT

According to the chain rule we can express the rate of change of the total velocity as

dVT

dt
¼ dVT

dRT2

dRT2

dt
¼ � dVT

dRT2
VT singT

Substitution of the expression for the rate of change of the total velocity into the
preceding equation yields

�rgV2
T

2b
¼ � dVT

dRT2
VT sin gT

Assuming that the exponential approximation for air density

r ¼ 0:0034e�RT2=22,000

applies everywhere (actually another approximation is better below 30,000 ft and is
indicated in the previous section), we can rearrange the preceding differential
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equation so that velocity terms are on one side and altitude terms are on the other
side. Rewriting the resultant differential equation with integrals yields

ðVT

VTIC

dVT

VT
¼ 0:0034g

2b sin gT

ðRT2

RT2IC

e�RT2=22,000 dRT2

where gravity, the ballistic coefficient, and the re-entry angle have been brought
outside the integral because they are considered to be constants. Integrating the pre-
ceding expression yields the velocity formula where the target velocity is a function
of its initial velocity, re-entry angle, ballistic coefficient, and altitude (or air density)
according to

VT ¼ VTICe
�22,000gr=2b sin gT

The maximum deceleration experienced by the target will occur at an altitude
in which the dynamic pressure is a maximum. Substituting the velocity formula
into the definition of dynamic pressure yields

Q ¼ 0:5rV2
T ¼ 0:5rV2

TIC
e�22,000gr=b sin gT

We can find when the dynamic pressure is a maximum by taking its derivative
with respect to the air density and setting the resultant expression to zero or

dQ
dr

¼ 0 ¼ 0:5V2
TIC

e�22,000gr=b singT � 0:5rV2
TIC

22,000g
b sin gT

e�22,000gr=b sin gT

After some algebra we find that the maximum dynamic pressure condition is

b sin gT ¼ 22,000rg

The velocity of the target at the maximum dynamic pressure condition can be
found by substituting the preceding expression into the velocity formula yielding

VT jmaxQ ¼ VTICe
�22,000gr=2b sin gT ¼ VTICe

�0:5 ¼ 0:606VTIC

In other words, the velocity of the target is always 61% of its initial value when the
dynamic pressure is a maximum! This important result was also observed empiri-
cally in the simulation results of Fig. 16.3.

To find the altitude at which maximum target deceleration occurs, we must
first find the altitude or air density at which the dynamic pressure is greatest.
The air density at maximum dynamic pressure can be found from the
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maximum dynamic pressure condition to be

rmaxQ ¼ b sin gT
22,000g

Because the altitude at maximum dynamic pressure is related to the air density at
maximum dynamic pressure according to

rmaxQ ¼ 0:0034e�RT2maxQ=22,000

we can solve for the altitude at this important flight condition. After some algebra
we obtain

RT2maxQ ¼ 22,000 ln
0:0034 � 22,000g

b sin gT
¼ 22,000 ln

2409
b sin gT

where the altitude at which maximum target deceleration occurs is expressed in
units of feet. From the preceding relationship we can see that the altitude of
maximum target deceleration does not depend on target velocity but only on
the ballistic coefficient and re-entry angle! This observation is in agreement
with the simulation results of Fig. 16.4.

The closed-form solution for the altitude of maximum target deceleration is
displayed as a function of the re-entry angle in Fig. 16.7. Here we can see that
the altitude of maximum target deceleration increases with decreasing re-entry
angle and decreasing ballistic coefficient. The theoretical results of Fig. 16.7,
which neglects gravity and approximates the atmosphere below 30,000 ft, are in
excellent agreement with the simulation results of Figs. 16.4–16.6.

Fig. 16.7 Theory indicates that altitude at which maximum deceleration occurs is
independent of velocity.
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Since the maximum target deceleration, expressed in units of g, is proportional
to the maximum dynamic pressure and inversely proportional to the target ballis-
tic coefficient, we obtain

a
g


max

¼ �Qmax

b
¼ �0:5rmaxQV

2
T jmaxQ

b
¼ �0:5b sin gT

22,000gb
0:6062V2

TIC

where the negative sign indicates target deceleration rather than target accelera-
tion. Simplification of the preceding formula yields

a
g


max

¼ �2:6 � 10�7V2
TIC

sin gT

Thus we can see that maximum deceleration does not depend on the target
ballistic coefficient but only on the velocity and re-entry angle as was also observed
empirically in the simulation results displayed in Fig. 16.5! The maximum decel-
eration formula is displayed as a function of the re-entry angle in Fig. 16.8. We can
see that the maximum target deceleration increases with increasing target velocity
(actually as the square of target velocity) and increasing re-entry angle. The theor-
etical results of Fig. 16.8, which neglects gravity and approximates the atmosphere
below 30,000 ft, are also in excellent agreement with the simulation results of
Figs. 16.4–16.6.

MISSILE AERODYNAMICS

We have just observed the deceleration properties of a ballistic target as a function
of its ballistic coefficient, velocity, altitude, and re-entry angle. In this section we
want to get an idea of the generic acceleration capability of a pursuing interceptor

Fig. 16.8 Theory tells us that maximum deceleration is independent of ballistic coefficient.
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so that we can better understand ballistic target engagements. To get a first-order
estimate of the aerodynamic capability of a missile, we shall treat the interceptor as
a cylinder with length L and diameter D.

Basic aerodynamic theory tells us that the lift coefficient CL for a cylinder is [4]

CL ¼ 2aþ 1:5S plana
2

Sref

where a is the angle of attack or the angle between the missile body and its velocity
vector. The planform area Splan and reference area Sref are related to the geometry
of a cylinder according to

S plan 	 LD

Sref ¼ pD2

4

From Chapter 10 we know that the relationship between acceleration and the lift
coefficient is given by

F ¼ ma ¼ WnL
g

¼ QSrefCL

whereW is the missile weight, nL the lateral missile acceleration, g the acceleration
of gravity, and Q the dynamic pressure or

Q ¼ 0:5rV2
M

The air density r can be found from the exponential approximation discussed in
both this chapter and Chapter 10. Substitution of the lift coefficient and dynamic
pressure into Newton’s second law yields the formula for the acceleration capa-
bility in units of g of a flying telephone pole (or cylinder) as a function of
missile velocity, angle of attack, and altitude (or air density) for a given missile
length, diameter, and weight.

nL
g
¼ QSrefCL

W
¼ 0:5rV2

MSref
W

2aþ 1:5S plana
2

Sref

� �
To get a better understanding of the preceding acceleration equation, let us

consider a numerical example in which the missile weighs 1000 lb and is 20 ft
long and 1 ft in diameter. Figure 16.9 displays the resultant acceleration capability
of a cylindrical missile without wings and tails, using the preceding equation, with
velocity 3000 ft/s and three different angles of attack, as a function of altitude. We
can see that interceptor acceleration capability decreases as altitude increases and
as angle of attack decreases. This is why interceptors have a reduced acceleration
capability at the higher altitudes and is also why they must operate at higher angles
of attack at the higher altitudes in order to maintain the same acceleration capa-
bility they had at the lower altitudes. We can see that for this example, the missile
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has only a 7-g capability at 50-kft altitude if its maximum angle of attack is limited
to 20 deg. Increasing the maximum angle of attack capability to 30 deg will double
the acceleration capability of the interceptor at 50-kft altitude while reducing
the maximum angle of attack by 10 deg halves the acceleration capability at
that altitude.

Figure 16.10 shows that the interceptor acceleration capability increases as
missile velocity increases. Increasing the missile velocity by 1000 ft/s at 50-kft

Fig. 16.9 Missile acceleration capability decreases with increasing altitude and decreasing
angle of attack.

Fig. 16.10 Missile acceleration capability increases with increasing missile velocity.
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altitude nearly doubles the interceptor acceleration capability. Reducing the inter-
ceptor velocity by 1000 ft/s approximately halves the acceleration capability of the
interceptor at that altitude.

We can compare the lateral acceleration capability of our generic interceptor
(or flying telephone pole) to the deceleration levels of the ballistic target.
Figure 16.11 compares a 3000-ft/s cylindrical interceptor with a maximum
angle-of-attack capability of 20 deg to a 6000-ft/s ballistic target with a 500-lb/
ft2 ballistic coefficient and a 45-deg re-entry angle. We can see that the interceptor
acceleration capability increases with decreasing altitude whereas the target decel-
eration capability increases with decreasing altitude until it peaks at 40 kft. At
50-kft altitude the interceptor acceleration capability and target deceleration
characteristics are matched at approximately 7 g. From an interceptor acceleration
capability point of view, the ideal intercept should take place at very low altitude
where the interceptor has enormous capability and a considerable acceleration
advantage over the target. In fact, from a missile point of view, the ideal intercept
altitude is near sea level where the interceptor acceleration capability is largest and
target deceleration capability smallest. However, practical considerations may
require the interceptor to engage the ballistic target at much higher altitudes.

INTERCEPTING A BALLISTIC TARGET

In this chapter we have spent considerable time simulating and understanding
the properties of ballistic targets. We have seen that fast ballistic targets can go
through tremendous deceleration levels as they re-enter the atmosphere. The

Fig. 16.11 Cylindrical interceptor acceleration capability matches target deceleration
characteristics at 50-kft altitude.
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component of target deceleration perpendicular to the line of sight appears as a
target maneuver to a pursuing interceptor. In this section we will investigate
some of the difficulties and potential solutions associated with an interceptor
trying to engage a ballistic target within the atmosphere.

Listing 16.2 presents the MATLAB source code for an engagement simulation
involving a constant speed interceptor and decelerating ballistic target. At the
beginning of the simulation, the target is defined as having a 6000-ft/s initial vel-
ocity at 200-kft altitude with a re-entry angle of 45 deg and ballistic coefficient of
500 lb/ft2. It is desired to fire an interceptor immediately and have the intercept
take place at 50-kft altitude (RT2DES ¼ 50,000).

Routine initialpz.m is called to predict the location of the target at intercept
(RT1F, RT2F) and to compute the time TFDES it will take the target to reach the
intercept altitude. Essentially routine initialpz.m is a mini-simulation of the
target. Note that we must tell this routine the estimated ballistic coefficient
BETEST of the target. If the estimated ballistic coefficient is in error, interceptor
launch errors will result. From the outputs of routine initialpz.m the interceptor
launch angle GAMMDEG and total velocity VM are computed so that the interceptor
will be on a perfect collision course with the target (assuming missile is fired when
target is at 200-kft altitude). For simplicity, gravity and drag effects are not
included on the interceptor.

The missile and target differential equations appear before the FLAG=1 state-
ment. The ballistic target differential equations are identical to those that have
already been modeled in this chapter. The constant speed interceptor differential
equations are identical to those found in Chapter 2. Three interceptor guidance
options appear. The parameter APN determines which guidance law is used and
XNCLIMG determines the interceptor acceleration capability (nominally set to

Fig. 16.12 Geometry for near inverse trajectory.
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infinity). If APN is 0, we get the proportional navigation guidance law, and if APN is
1, we get augmented proportional navigation where the augmented term includes
the component of target acceleration (or deceleration) perpendicular to the
line-of-sight ATPLOS.

A nominal case was run in which a proportional navigation interceptor guides
on a ballistic target as shown in Fig. 16.12. The geometry is considered near
head-on and is also known as an inverse trajectory. The target trajectory is
much longer than the missile trajectory since the target is traveling at a much
higher velocity.

LISTING 16.2 BALLISTIC TARGET ENGAGEMENT SIMULATION

count=0;
APN=0;
XNP=3.;
RT1=0.;
RT2=200000.;
RM1=170000.;
RM2=0.;
VT=6000.;
RT2DES=50000.;
GAMTDEG=45.;
BETA=500.;
BETEST=500.;
XNCLIMG=7.;
XNCLIM=XNCLIMG*32.2;
VT1=VT*cos(GAMTDEG/57.3);
VT2=-VT*sin(GAMTDEG/57.3);
[RT1F,RT2F,TFDES]=initialpz(RT2DES,RT1,RT2,VT1,VT2,BETEST);
RTM1F=RT1F-RM1;
RTM2F=RT2F-RM2;
GAMMDEG=57.3*atan2(RTM2F,RTM1F);
RTMF=sqrt(RTM1F^2+RTM2F^2);
VM=RTMF/TFDES;
VM1=VM*cos(GAMMDEG/57.3);
VM2=VM*sin(GAMMDEG/57.3);
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
T=0.;
H=.01;
S=0.;
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XNC=0.;
ZEMPLOS=0.;
ZEM1=0.;
ZEM2=0.;
while VC.=0.

if RTM,1000.
H=.0002;

else
H=.01;

end
RT1OLD=RT1;
RT2OLD=RT2;
VT1OLD=VT1;
VT2OLD=VT2;
RM1OLD=RM1;
RM2OLD=RM2;
VM1OLD=VM1;
VM2OLD=VM2;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
VT1=VT1+H*AT1;
VT2=VT2+H*AT2;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
T=T+H;
STEP=2;

end
if RT2,=30000.

RHO=.002378*exp(-RT2/30000.);
else

RHO=.0034*exp(-RT2/22000.);
end
VT=sqrt(VT1^2+VT2^2);
Q=.5*RHO*VT^2;
GAMT=atan2(-VT2,VT1);
AT1=-32.2*Q*cos(GAMT)/BETA;
AT2=-32.2+32.2*Q*sin(GAMT)/BETA;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
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VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
XLAM=atan2(RTM2,RTM1);
XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
ATPLOS=-AT1*sin(XLAM)+AT2*cos(XLAM);
if APN==1

XNC=XNP*VC*XLAMD+.5*XNP*ATPLOS;
else

XNC=XNP*VC*XLAMD;
end
if XNC.XNCLIM

XNC=XNCLIM;
end
if XNC,-XNCLIM

XNC=-XNCLIM;
end
AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
FLAG=1;

end;
FLAG=0;
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
VT1=.5*(VT1OLD+VT1+H*AT1);
VT2=.5*(VT2OLD+VT2+H*AT2);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
S=S+H;
if S.=.09999

S=0.;
ATG=sqrt(AT1^2+AT2^2)/32.2;
RT1K=RT1/1000.;
RT2K=RT2/1000.;
RM1K=RM1/1000.;
RM2K=RM2/1000.;
XNCG=XNC/32.2;
ATPLOSG=ATPLOS/32.2;
count=count+1;
ArrayT(count)=T;
ArrayRT1K(count)=RT1K;
ArrayRT2K(count)=RT2K;
ArrayRM1K(count)=RM1K;
ArrayRM2K(count)=RM2K;
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ArrayATG(count)=ATG;
ArrayATPLOSG(count)=ATPLOSG;
ArrayXNCG(count)=XNCG;

end
end
RTM
figure
plot(ArrayRT1K,ArrayRT2K,ArrayRM1K,ArrayRM2K),grid
xlabel(’Downrange (Kft)’)
ylabel(’Altitude (Kft) ’)
figure
plot(ArrayT,ArrayATG,ArrayT,ArrayATPLOSG,ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration (G) ’)
clc
output=[ArrayT’,ArrayRT1K’,ArrayRT2K’,ArrayRM1K’,ArrayRM2K’,

ArrayATG’,ArrayATPLOSG’,ArrayXNCG’];
save datfil.txt output /ascii
disp ’simulation finished’

function [rt1f,rt2f,tfdes]=initialpz(rt2des,rt1ic,rt2ic,...
vt1ic,vt2ic,beta)

rt1=rt1ic;
rt2=rt2ic;
vt1=vt1ic;
vt2=vt2ic;
t=0.;
h=.01;
while rt2.rt2des

rt1old=rt1;
rt2old=rt2;
vt1old=vt1;
vt2old=vt2;
step=1;
flag=0;
while step ,=1

if flag==1
rt1=rt1+h*vt1;
rt2=rt2+h*vt2;
vt1=vt1+h*at1;
vt2=vt2+h*at2;
t=t+h;
step=2;

end
if rt2,=30000.

rho=.002378*exp(-rt2/30000.);
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else
rho=.0034*exp(-rt2/22000.);

end
vt=sqrt(vt1^2+vt2^2);
q=.5*rho*vt^2;
gamt=atan2(-vt2,vt1);
at1=-32.2*q*cos(gamt)/beta;
at2=-32.2+32.2*q*sin(gamt)/beta;
flag=1;

end;
flag=0;
rt1=.5*(rt1old+rt1+h*vt1);
rt2=.5*(rt2old+rt2+h*vt2);
vt1=.5*(vt1old+vt1+h*at1);
vt2=.5*(vt2old+vt2+h*at2);

end
rt1f=rt1;
rt2f=rt2;
tfdes=t;

Figure 16.13 displays the important accelerations for the nominal case. We can
see that the target deceleration is approximately 8 g at intercept (or 50 kft). This is
in accordance with the ballistic target simulation results of Fig. 16.4 and the theor-
etical results of Fig. 16.8. We can see that since the engagement geometry is near
inverse, there is no target deceleration perpendicular to the line of sight. From a
missile point of view, the target does not appear to be maneuvering. Because the

Fig. 16.13 Missile guidance commands are small because very little of target deceleration
is perpendicular to line of sight.
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missile is initially on a collision course and there is no apparent target maneuver,
very little acceleration is required by an interceptor using proportional navigation
to hit the target.

A more stressing geometry was considered in which the interceptor is initially
at 50 kft downrange (RM1 ¼ 50,000). The engagement geometry, shown in
Fig. 16.14, is no longer inverse. The intercept still takes place at 50-kft altitude
and the missile has a speed of 3000 ft/s in order to be on a collision course. It

Fig. 16.14 Example of more stressing trajectory.

Fig. 16.15 More missile acceleration is required in stressing trajectory because more target
deceleration is perpendicular to line of sight.
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is assumed that the interceptor has a maximum angle of attack limit of 20 deg,
yielding a maximum acceleration capability of 7 g (XNCLIMG ¼ 7) at the intercept
altitude based on the results of the previous section for our flying telephone pole
(W ¼ 1000 lb, L ¼ 20 ft, D ¼ 1 ft).

Figure 16.15 shows that the target deceleration is unchanged for this new
engagement geometry and approaches 8 g near intercept. However, the com-
ponent of target deceleration perpendicular to the line of sight is much larger
than it was for the inverse trajectory case, and the peak value is in excess of 3 g.
Therefore it is not surprising that the interceptor requires more than 7 g
(missile acceleration limit) to hit the apparent 3-g target maneuver. Acceleration
saturation follows causing a large miss distance.

Augmented proportional navigation can be used to relax the acceleration
requirements of the interceptor under this stressing engagement geometry.
Figure 16.16 shows that the previously unsuccessful intercept can be made suc-
cessful with this advanced guidance law. However, augmented proportional navi-
gation requires more information than does proportional navigation in order to
operate successfully.

SUMMARY

We have seen that ballistic targets can go through enormous decelerations as they
re-enter the atmosphere. The magnitude of the target deceleration increases with
increasing target speed and increasing target re-entry angle. Any target decelera-
tion that is perpendicular to the line of sight will appear as a target maneuver to
the interceptor. It is best for a pursuing interceptor to engage the target on an

Fig. 16.16 More advanced guidance laws offer significant benefits for stressing trajectory.
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inverse trajectory where little of the target deceleration is perpendicular to the line
of sight [5]. If for practical reasons the target must be engaged under stressing
conditions, the interceptor must be sized to have adequate acceleration capability
if proportional navigation guidance is used. Advanced guidance laws such as pre-
dictive guidance can significantly relax the interceptor acceleration requirements
if missile-target range information is available and if the target ballistic coefficient
is either known or can be estimated accurately.
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CHAPTER 17

Extended Kalman Filtering and
Ballistic Coefficient Estimation

INTRODUCTION

Knowledge of the target ballistic coefficient can be used in advanced guidance laws
such as predictive guidance to relax the interceptor acceleration requirements in
stressing engagement geometries. In addition, knowledge of the target ballistic
coefficient is required for fire control due to the importance of accurate intercept
point predictions in launching the interceptor on a collision course. Therefore the
accurate estimation of the ballistic coefficient of a target re-entering the atmos-
phere is very important for both guidance and fire control purposes. In this
chapter we shall show, in detail, how extended Kalman filtering concepts can
be applied to ballistic coefficient estimation.

THEORETICAL EQUATIONS [1]

To apply extended Kalman filtering techniques, it is first necessary to describe the
real world by a set of nonlinear differential equations. One standard dynamical
model of the system or real world is given by

ẋ ¼ f ðxÞ þ w

where x is a vector of the system states, f (x) is a nonlinear function of those states,
and w is a random zero mean process. The process noise matrix describing the
random process w for the preceding model is given by

Q ¼ EðwwTÞ
Finally, the measurement equation, required for the application of an extended
Kalman filter, is considered a nonlinear function of the states according to

z ¼ hðxÞ þ v

where v is a random zero mean process described by the measurement noise
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matrix R, which is defined as

R ¼ EðvvTÞ
For systems in which the measurements are discrete we can rewrite the measure-
ment equation as

zk ¼ hðxkÞ þ vk

The discrete measurement noise matrix Rk consists of measurement noise source
variances. Because the system and measurement equations are nonlinear, a first-
order approximation is used in the Ricatti equations for the systems dynamic
matrix F and measurement matrix H. The matrices are related to the system
and measurement equations according to

F ¼ @f ðxÞ
@x


x¼x̂

H ¼ @hðxÞ
@x


x¼x̂

The fundamental matrix, also required for the Ricatti equations, is usually
approximated by the first two terms of the Taylor series expansion exp(FTs)
and is given by

Fk 	 I þ FTs

where Ts is the sampling time and I is the identity matrix. Note that the approxi-
mations to the systems dynamics matrix, measurement matrix, and fundamental
matrix are time-varying and nonlinear because they depend on the system state
estimates. The Ricatti equations, needed for the computation of the Kalman
gains, are still given by the matrix difference equations of Chapter 9 and are
repeated for convenience as

Mk ¼ FkPk�1F
T
k þ Qk

Kk ¼ MkH
T ½HMkH

T þ Rk��1

Pk ¼ ðI � KkHÞMk

where Pk is a covariance matrix representing errors in the state estimates before an
update and Mk is the covariance matrix representing errors in the state estimates
after an update. As Fk and H are nonlinear functions of the state estimates, the
Kalman gains cannot be computed offline as is possible with a linear Kalman
filter. The discrete process noise matrix Qk can still be found from the continuous
process noise matrix Q and the fundamental matrix according to

Qk ¼
ðTs

0
FðtÞQFTðtÞ dt
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If the dynamical model of a linear Kalman filter is matched to the real world,
the covariance matrix Pk cannot only be used to calculate Kalman gains but can
also provide exact predictions of the errors in the state estimates. The extended
Kalman filter offers no such guarantees and in fact the Ricatti equation covariance
matrix may indicate excellent performance projections when the filter is perform-
ing poorly or is even broken.

The preceding approximations only have to be used in the computation of
Kalman gains. The actual extended Kalman filtering equations do not have to
use those approximations but instead can be written in terms of the nonlinear
measurement equation where the new estimate is the old estimate plus a gain
times a residual, or

x̂kþ1 ¼ x̂k þ Kk½zk � hðx̂kÞ�

In the preceding equation the residual is the difference between the actual
measurement and the nonlinear measurement equation. The new state estimates
do not have to be propagated forward from the old estimate with the fundamental
matrix but instead can be obtained directly by integrating the actual nonlinear
differential equations at each sampling interval. For example, Euler integration
can be applied to the nonlinear system differential equations yielding

_̂x ¼ f ðx̂k�1Þ
_̂xk ¼ x̂k�1 þ _̂xTs

where state estimates are used instead of the actual states and the sampling time
Ts is used as an integration step size.

DIFFERENTIAL EQUATION FOR ONE-DIMENSIONAL BALLISTIC TARGET

To illustrate how extended Kalman filtering concepts can be applied, let us con-
sider the one-dimensional tracking problem originally considered by Gelb [1]
and illustrated in Fig. 17.1. In this example a ballistic target is falling on a straight-
line path directly toward a surface-based tracking radar. Only drag and gravity act
on the ballistic target. This is equivalent to the case in the previous chapter in
which the target re-entry angle is 90 deg. In this problem the tracking radar
measures the distance from the radar to the target every Ts s. In addition, the
tracking radar has the incentive of working well in this application because it is
directly in the path of the ballistic target.

We can see from Fig. 17.1 that drag acts upward whereas gravity acts down-
ward. The total acceleration acting on the ballistic target can be expressed in terms
of a zero lift drag CD0 or a ballistic coefficient b as

dVT2

dt
¼ Fdrag

m
� g ¼ QSrefCD0g

W
� g ¼ Qg

b
� g
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where g is the accelera-
tion of gravity and Q is
the dynamic pressure.
The dynamic pressure
can be expressed in
terms of the air density
r and the ballistic
target velocity VT2 as

Q ¼ 0:5rV2
T2

For purposes of simplicity we can assume that the air density is measured in slug/
ft3 and is exponentially related to altitude RT2 measured in feet according to

r ¼ 0:0034e�RT2=22;000

and ignore the fact that the coefficients of the exponential approximation change
below 30,000 ft. If we assume that the ballistic coefficient of the target is a con-
stant, its derivative must be zero. Therefore the three differential equations that
govern the one-dimensional ballistic target can be summarized as

_RT2 ¼ VT2

_VT2 ¼ 0:0034e�RT2=22;000gV2
T2

2b
� g

_b ¼ 0

If we want to account for the fact that there may be a large uncertainty in the bal-
listic coefficient or that it might actually change with time, we could modify the
third state equation to be

_b ¼ us

where us is white process noise with spectral density Fs.

EXTENDED KALMAN FILTER FOR ONE-DIMENSIONAL BALLISTIC TARGET

In the previous section we showed that the differential equations governing the
one-dimensional ballistic target could be expressed in terms of position RT2, vel-
ocity VT2, and ballistic coefficient b. Therefore a plausible candidate for the system

Fig. 17.1 Forces acting on
a one-dimensional

ballistic target.
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state vector is

x ¼
RT2

VT2

b

2
4

3
5

In the Gelb example the tracking radar measures position directly. Therefore
the measurement equation in this example is a linear function of the states or

R�
T2 ¼ RT2 þ vk ¼ ½100�|ffl{zffl}

H

RT2

VT2

b

2
4

3
5þ vk

where the uncertainty in the position measurement is simply the scalar variance or

Rk ¼ EðvKvTKÞ ¼ s 2
k

The systems dynamics matrix can be obtained from the three differential
equations describing the target according to the definition of the theoretical
section as

F ¼ @f ðxÞ
@x


x¼x̂

¼

@ _RT2

@RT2

@ _RT2

@VT2

@ _RT2

@b

@ _VT2

@RT2

@ _VT2

@VT2

@ _VT2

@b

@ _b

@RT2

@ _b

@VT2

@ _b

@b

2
66666664

3
77777775
x¼x̂

After taking partial derivatives of the three system differential equations we obtain

F ¼
0 1 0

�r̂gV̂2
T2

44,000b̂

r̂gV̂T2

b̂

�r̂gV̂2
T2

2b̂ 2

0 0 0

2
664

3
775

where the estimated air density is given by

r̂ ¼ 0:0034e�R̂T2=22;000

The fundamental matrix can be obtained from the systems dynamics matrix as

FK 	 I þ FTs ¼
1 Ts 0

�r̂gV̂2
T2Ts

44,000b̂
1þ r̂gV̂T2Ts

b̂

�r̂gV̂2
T2Ts

2b̂ 2

0 0 1

2
664

3
775
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whereas the continuous process noise matrix can be found from

Q ¼
0 0 0
0 0 0
0 0 Fs

2
4

3
5

where Fs is the spectral density of the process noise. The discrete process noise
matrix can be obtained from the continuous process noise matrix according to
the relationship

Qk ¼
ðTs

0
FðtÞQFTðtÞ dt

If we substitute t for Ts in the previous fundamental matrix approximation, we get

FðtÞ ¼
0 t 0
f21t 1þ f22t f23t
0 0 1

2
4

3
5

where f21, f22, and f23 are defined in terms of the state estimates as

f21 ¼ �r̂gV̂2
T2

44,000b̂

f22 ¼ r̂gV̂T2

b̂

f23 ¼ �r̂gV̂2
T2

2b̂ 2

Assuming that f21, f22, and f23 are approximately constant over the sampling
interval, we can integrate with respect to t and obtain the discrete process noise
matrix as

Qk ¼ Fs

0 0 0
0 f 223

T3
s
3 f23

T2
s
2

0 f23
T2
s
2 Ts

2
64

3
75

If we want to neglect process noise in our model, then Fs is set to zero.
The measurement noise matrix Rk is a scalar in this three-state system, so

there will only be three Kalman gains at each update (that is, K1, K2, and K3).
The Kalman gains will also depend on the state estimates because the fundamental
matrix depends on the system state estimates. As was mentioned previously, the
new extended Kalman filter states will simply be the old states propagated forward
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by Euler integration, plus a gain times a residual, or

Residual ¼ R�
T2 � R̂T2k�1 � _RT2Ts

R̂T2k ¼ R̂T2k�1 þ _RT2Ts þ K1 � Residual
V̂T2k ¼ V̂T2k�1 þ _VT2Ts þ K2 � Residual
b̂k ¼ b̂k�1 þ K3 � Residual

The barred quantities in the preceding set of difference equations represent
the derivatives required by Euler integration and are obtained directly from the
nonlinear system equations as

_RT2 ¼ V̂T2k�1

_VT2 ¼
0:0034e�R̂T2k�1

=22,000gV̂2
T2k�1

2b̂k�1

� g

We now have all of the equations necessary to simulate an extended Kalman filter
for the one-dimensional tracking problem.

NUMERICAL EXAMPLE

The same numerical example considered by Gelb [1] is presented here in which a
target with ballistic coefficient 500 lb/ft2 is initially at 100-kft altitude and is tra-
veling downward at a speed of 6000 ft/s. A surface-based radar measures the
range from the radar to the target (altitude in this example) every 0.05 s with
measurement variance 500 ft2. The initial estimate of position is 100,025 ft
(25-ft error), of velocity is 6150 ft/s (150-ft/s error), and of the ballistic coefficient
is 800 lb/ft2 (300-lb/ft2 error). Uncertainties in the initial state estimates are also
reflected in the initial covariance matrix. The first diagonal element of the initial
covariance matrix represents the variance of the error in the initial estimate of
position and is taken to be the variance of the measurement noise or 500 ft2.
The second diagonal element of the initial covariance matrix represents the var-
iance of the error in the initial estimate of velocity and is taken to be 20,000 ft2/s2

(slightly less than 1502). The third diagonal element of the initial covariance
matrix represents the variance of the error in the initial estimate of ballistic
coefficient and is taken to the square of the initial error in estimating the ballistic
coefficient or 90,000 lb2/ft4 (or 3002). The off-diagonal elements of the initial
covariance matrix are set to zero and it is assumed that there is no process noise.

Listing 17.1 presents the resultant one-dimensional extended Kalman filter for
ballistic coefficient estimation derived in the previous section. The initial con-
ditions for the actual ballistic target, filter state estimates, and initial covariance
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matrix reflect the nominal case. Because Q33 (or Fs) is set to zero, there is no
process noise. The second-order Runge–Kutta numerical integration technique
is used for solving the actual nonlinear differential equations representing the bal-
listic target with an integration step size of 0.001 s. The exponential approxi-
mation for the air density, used in calculating the drag on the actual ballistic
target, matches the assumption made in the extended Kalman filter derivation.
The actual ballistic coefficient and its estimate are printed every sampling interval.
In addition, the actual errors in the estimate of the ballistic coefficient are com-
puted and compared to the square root of the third diagonal element of the covari-
ance matrix. This diagonal element represents the extended Kalman filter’s
internal prediction of the error in the estimate of the ballistic coefficient.

The nominal case of Listing 17.1 was run, and the estimated and actual ballis-
tic coefficients are displayed versus altitude in Fig. 17.2. At 100-kft altitude (that is,
beginning of the estimation process) the initial estimate of the ballistic coefficient
is on the high side by 300 lb/ft2. As the target descends in altitude, the filter’s esti-
mate of the ballistic coefficient appears to be continually improving. Below 60-kft
altitude, the extended Kalman filter has an excellent estimate of the target’s
ballistic coefficient.

Figure 17.3 compares single flight results for the actual error in the estimate of
the ballistic coefficient (labeled simulation) with the theoretical predictions of the
covariance matrix (labeled sTHEORY). Note that the covariance matrix thinks that,
as the ballistic target descends in altitude and more measurements are taken, the
estimates continually improve (or the error in the estimate of the ballistic coeffi-
cient goes to zero). Therefore it appears that the single flight results agree with the
covariance matrix predictions in this example.

Fig. 17.2 After a while extended Kalman filter is able to estimate ballistic coefficient.
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LISTING 17.1 ONE-DIMENSIONAL EXTENDED KALMAN FILTER FOR BALLISTIC
COEFFICIENT ESTIMATION

clear
count=0;
RT2=100000.;
VT2=-6000.;
BETA=500.;
RT2H=100025.;
VT2H=-6150.;
BETAH=800.;
ORDER=3;
TS=.05;
TF=30.;
Q33=0./TF;
T=0.;
S=0.;
H=.001;
SIGNOISE=sqrt(500.);
PHI=zeros(ORDER,ORDER);
P=zeros(ORDER,ORDER);
Q=zeros(ORDER,ORDER);
IDN=eye(ORDER);
P(1,1)=SIGNOISE*SIGNOISE;
P(2,2)=20000.;
P(3,3)=300.^2;

Fig. 17.3 Theory and single flight results appear to agree.
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HMAT=zeros(1,ORDER);
HMAT(1,1)=1.;
while RT2.=0.

RT2OLD=RT2;
VT2OLD=VT2;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
RT2=RT2+H*RT2D;
VT2=VT2+H*VT2D;
T=T+H;
STEP=2;

end
RT2D=VT2;
VT2D=.0034*32.2*VT2*VT2*exp(-RT2/22000.)/(2.*BETA)-32.2;
FLAG=1;

end;
FLAG=0;
RT2=.5*(RT2OLD+RT2+H*RT2D);
VT2=.5*(VT2OLD+VT2+H*VT2D);
S=S+H;
if S.=(TS-.00001)

S=0.;
RHOH=.0034*exp(-RT2H/22000.);
F21=-32.2*RHOH*VT2H*VT2H/(2.*22000.*BETAH);
F22=RHOH*32.2*VT2H/BETAH;
F23=-RHOH*32.2*VT2H*VT2H/(2.*BETAH*BETAH);
PHI(1,1)=1.;
PHI(1,2)=TS;
PHI(2,1)=F21*TS;
PHI(2,2)=1.+F22*TS;
PHI(2,3)=F23*TS;
PHI(3,3)=1.;
Q(2,2)=F23*F23*Q33*TS*TS*TS/3.;
Q(2,3)=F23*Q33*TS*TS/2.;
Q(3,2)=Q(2,3);
Q(3,3)=Q33*TS;
M=PHI*P*PHI’+Q;
HMHT=HMAT*M*HMAT’;
HMHTR=HMHT(1,1)+SIGNOISE*SIGNOISE;
HMHTRINV=1./HMHTR;
MHT=M*HMAT’;
for I=1:ORDER

GAIN(I,1)=MHT(I,1)*HMHTRINV;
end
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P=(IDN-GAIN*HMAT)*M;
XNOISE=gaussc7(SIGNOISE);
RT2DB=VT2H;
VT2DB=.0034*32.2*VT2H*VT2H*exp(-RT2H/22000.)/(2.*BETAH)-32.2;
RES=RT2+XNOISE-(RT2H+RT2DB*TS);
RT2H=RT2H+RT2DB*TS+GAIN(1,1)*RES;
VT2H=VT2H+VT2DB*TS+GAIN(2,1)*RES;
BETAH=BETAH+GAIN(3,1)*RES;
ERRY=RT2-RT2H;
SP11=sqrt(P(1,1));
ERRV=VT2-VT2H;
SP22=sqrt(P(2,2));
ERRBETA=BETA-BETAH;
SP33=sqrt(P(3,3));
RT2K=RT2/1000.;
count=count+1;
ArrayT(count)=T;
ArrayRT2(count)=RT2;
ArrayRT2H(count)=RT2H;
ArrayRT2K(count)=RT2K;
ArrayVT2(count)=VT2;
ArrayVT2H(count)=VT2H;
ArrayBETA(count)=BETA;
ArrayBETAH(count)=BETAH;
ArrayERRBETA(count)=ERRBETA;
ArraySP33(count)=SP33;

end
end
figure
plot(ArrayRT2K,ArrayBETA,ArrayRT2K,ArrayBETAH),grid
xlabel(’Altitude (Kft)’)
ylabel(’Ballistic Coefficient (Lb/Ft^2)’)
axis([0 100 0 1000])
figure
plot(ArrayRT2K,ArraySP33,ArrayRT2K,-ArraySP33,ArrayRT2K,...

ArrayERRBETA),grid
xlabel(’Altitude (Kft)’)
ylabel(’Error in Ballistic Coefficient (Lb/Ft^2)’)
clc
output=[ArrayT’,ArrayRT2K’,ArrayRT2’,ArrayRT2H’,ArrayVT2’,...

ArrayVT2H’,ArrayBETA’,ArrayBETAH’];
save datfil.txt output /ascii
disp ’simulation finished’

We can rerun the nominal case but start at 200-kft altitude rather than 100-kft
altitude. Figure 17.4 indicates that both the theoretical and actual errors in the
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estimate of the ballistic coefficient do not improve from the initial guess until the
ballistic target descends below 150-kft altitude. The lack of estimation capability is
due to the absence of drag in the high altitude regime. In other words, at the higher
altitudes the ballistic coefficient is not observable from just position measure-
ments. This result can be very important if we must predict the future location
of the ballistic target in the atmosphere based on estimates of the ballistic coeffi-
cient at very high altitudes.

Another case was run where the ballistic target started at the nominal altitude
of 100 kft. However, this time the initial estimate of the ballistic coefficient was
1500 lb/ft2 (1000-lb/ft2 error) rather than 800 lb/ft2 (300-lb/ft2 error). The
third diagonal element of the initial covariance matrix was increased to 10002

to reflect the larger initial uncertainty in the ballistic coefficient. Figure 17.5
shows that under these circumstances, the extended Kalman filter is unable to esti-
mate the ballistic coefficient before the ballistic target hits the tracking radar.
Unlike a linear Kalman filter, the extended Kalman filter’s performance is
highly dependent on initial conditions!

Figure 17.6 shows that even though the extended Kalman filter is not able to
estimate the ballistic coefficient when we initially severely overestimate the ballis-
tic coefficient by 1000 lb/ft2, the filter’s covariance matrix predictions indicate
that the errors in the estimate of the ballistic coefficient are near zero. Apparently
this filter does not even realize when it is broken! Therefore we can see that
although the covariance matrix is required for Kalman gain computation, its
theoretical predictions are not always useful!

In the preceding example the filter is not able to recover when we initially
overestimate the ballistic coefficient by a large amount. The filter’s lack of robust-
ness is due to a zero process noise matrix (Qk ¼ 0). When the process noise is

Fig. 17.4 Extended Kalman filter unable to estimate ballistic coefficient above 150 kft.
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zero, the filter thinks it is very smart (it must have a terrific dynamical model) and
eventually stops looking at the measurements. Under these circumstances the
filter changes from an extended Kalman filter to an arrogant Kalman filter!
Process noise was added to the filter with value Fs ¼ 10002/30 to indicate large
uncertainty in the ballistic coefficient model. Figure 17.7 shows that when the
process noise is added, the estimated and actual ballistic coefficients converge
fairly quickly.

Fig. 17.5 Extended Kalman filter breaks if we severely overestimate ballistic coefficient.

Fig. 17.6 Extended Kalman filter does not even realize it is broken.
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Figure 17.8 now shows that when realistic process noise is added to reflect
large uncertainties, the single flight results and covariance matrix predictions of
the error in the estimate of ballistic coefficient are in agreement.

We can now revisit the nominal results of Fig. 17.3 when, without a process
noise matrix, the arrogant Kalman filter thought its estimates were continually
improving as more measurements were taken. If we rerun the nominal case
with Fs ¼ 3002/30 to reflect the fact that we have a smaller uncertainty in our
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Fig. 17.7 Adding process noise enables extended Kalman filter to recover from
overestimating ballistic coefficient.
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Fig. 17.8 Adding process noise makes covariance matrix predictions more meaningful.
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knowledge of the ballistic coefficient, we get more sobering results as shown in
Fig. 17.9. We can see that after a while the filter’s estimate of the ballistic coeffi-
cient does not improve. However, our initial uncertainty in our estimate of the
ballistic coefficient has been reduced from the initial guess of 300 lb/ft2 to an esti-
mate with slightly under 100 lb/ft2 of error. In addition, we now have a filter that
is more robust to initialization errors.

SUMMARY

We have seen, using a simplified extended Kalman filter, the difficulties in esti-
mating a target’s ballistic coefficient—especially at high altitude where there is
very little drag. We have also observed that using zero process noise in the filter
gain computations leads to overly optimistic performance projections and
makes the filter fragile in the presence of large initialization errors. Adding
process noise to the filter’s gain computation appears to be the engineering fix
when there is large uncertainty. Although adding process noise degrades filter per-
formance under benign conditions, it also enables the filter to perform adequately
under more stressing conditions.
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Fig. 17.9 Nominal results are worse when there is process noise but filter is more robust.
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CHAPTER 18

Ballistic Target Challenges

INTRODUCTION

In this chapter we shall integrate many of the text’s concepts in order to illustrate,
from a miss distance point of view, additional reasons why ballistic targets are
challenging. First, new miss distance formulas will be derived in order to show
how the miss due to noise depends on the closing velocity and guidance system
time constant. Next, a new formula will be presented showing how the minimum
possible guidance system time constant depends on radome slope, closing veloc-
ity, and missile turning rate time constant. For head-on scenarios, numerical
examples will be presented showing how low-closing velocity aircraft engage-
ments and high-closing velocity ballistic target engagements yield different miss
distances even though the error sources may be the same.

MISS DISTANCE DUE TO NOISE

In Chapter 3 closed-form solutions for various deterministic error sources were
derived for a single time constant proportional navigation guidance system. We
demonstrated in Chapter 6 that although the miss distances generated with the
low-order model of the guidance system were serious underestimates of the
actual miss, the closed-form solutions were useful because the miss distance nor-
malization factors did not change for higher order guidance systems. We shall use
the same methodology in obtaining miss distance formulas due to noise error
sources. First we shall obtain noise miss distance closed-form solutions for the
single time constant guidance system and then use the brute force method to
extend those solutions for a fifth-order binomial guidance system.

As was done with deterministic error sources in Chapter 3, we shall also use
the method of adjoints for finding miss distance formulas due to various noise
error sources found in homing guidance systems [1]. The noise sources con-
sidered are those usually associated with radar homing missiles. Figure 18.1
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presents a generalized model of the homing loop similar to Fig. 3.16 except this
time the error sources are random rather than deterministic. The first error
source is glint or scintillation noise and is caused by random fluctuations of the
target radar return. The spectral density of this error source is related to the phys-
ical dimensions of the target. Strictly speaking, glint should not be modeled as
white noise since it may be highly correlated [2]. For semiactive systems, in
which the target is illuminated by a transmitter not on the interceptor, range
dependent noise is the thermal noise produced in the interceptor radar receiver
according to the radar range equation. In this simplified model the spectral
density of the noise is defined at a reference range RA. The noise is proportional
to the distance from the missile to the target and goes to zero at intercept [3]. For
active systems in which the target is illuminated by a transmitter on the intercep-
tor, range dependent noise is proportional to the square of the distance from the
missile to the target [4]. Other noise sources are usually lumped together and
termed range independent noise.

The spectral densities for the various white noise error sources are given by

FFN ¼ Spectral Density of uFN
FRN ¼ Spectral Density of uRN
FRNA ¼ Spectral Density of uRNA
FGL ¼ Spectral Density of uGL

Fig. 18.1 Generalized proportional navigation guidance system with noise sources.
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The generalized homing loop adjoint model, which appears in Fig. 18.2, can be
found from Fig. 18.1 by using the rules of adjoints developed in Chapters 3 and 4
and then applying some block diagram manipulation. Note that all white noise
inputs of the original system become outputs in the adjoint system by squaring,
integrating, and multiplying by the spectral density of each of the white noise
error sources. Critical points in the adjoint block diagram have been labeled
H(t), g(t), and f (t).

To illustrate how noise miss distance formulas can be derived, let us consider a
single time constant guidance system with a navigation ratio of 3. Recall from
Chapter 3 that for this case W can be represented in the frequency domain as

WðsÞ ¼ 3
sð1þ sTÞ

where T is the guidance system time constant. We showed in Chapter 3 that 12 H
could be found in the frequency domain from W according to the relationship

1� HðsÞ ¼ e
Ð
Wds ¼ s3

ðsþ 1=TÞ3

Fig. 18.2 Generalized adjoint homing loop model.
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Solving for H by algebraic manipulation of the preceding equation yields

HðsÞ ¼ 1þ 3sT þ 3s2T2

ð1þ sTÞ3

We can convert H from the frequency domain to the adjoint time domain by
taking the inverse Laplace transform of the preceding equation yielding

HðtÞ ¼ e�t=T

T
3� 3t

T
þ t 2

2T2

� �

where t can be interpreted as the homing time or time of flight. We can see from
Fig. 18.2 that the miss due to glint noise (MGL) can be found by squaring and inte-
grating H(t) and then multiplying the result by the square root of the glint noise
spectral density. We can simplify matters and integrate from zero to infinity yield-
ing the closed-form solution for the standard deviation of the steady-state miss
due to white glint noise as [5]

MGLN 0¼3 ¼ F0:5
GL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0
H2ðtÞ dt

s
¼ 1:44T�0:5F0:5

GL

From the preceding formula we can see that unlike most other error source
results we have studied, if the guidance system time constant is reduced, the
miss due to glint noise will increase! We can also see that, unlike deterministic
error source results, the miss due to glint noise does not go to zero as the
homing time approaches infinity. In other words, there will always be some
miss distance due to glint noise, no matter how much homing time we have.
Closed-form miss distance formulas for the single time constant guidance
system can also be derived, in a similar manner, for different effective navigation
ratios. The steady-state standard deviation of the miss due to glint noise for effec-
tive navigation ratios of 4 and 5 can be found to be

MGLN 0¼4 ¼ 1:71T�0:5F0:5
GL

MGLN 0¼5 ¼ 1:94T�0:5F0:5
GL

Note that the miss distance normalization factors do not change with different
effective navigation ratios. However the miss distance coefficients due to glint
noise increase slightly with increasing effective navigation ratio.

To find the steady-state standard deviation of the miss due to range inde-
pendent noise (MFN), it is first necessary to square and integrate the expression
(12H )VcW as can be seen from Fig. 18.2. For a single time constant guidance
system with an effective navigation ratio of 3, (12H )VcW in the frequency
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domain becomes

½1� HðsÞ�VcWðsÞ ¼ 3Vcs2

Tðsþ 1=TÞ4

We can convert (12H )VcW to the adjoint time domain by taking the inverse
Laplace transform of the preceding equation obtaining

f ðtÞ ¼ L�1f½1� HðsÞ�VcWðsÞg ¼ 3Vcte�t=T

T
1� t

T
þ t2

6T2

� �
Squaring and integrating the preceding expression from zero to infinity yields the
steady-state formula for the standard deviation of the miss distance due to range
independent noise as

MFNN 0¼3 ¼ F0:5
FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0

f 2ðtÞdt
s

¼ 0:532VcT
0:5F0:5

FN

where Vc is the closing velocity. In this case we can see that there is now a geome-
try dependence on the miss distance because the miss is proportional to closing
velocity. Higher closing velocity engagement scenarios will yield more miss dis-
tance due to range independent noise. On the other hand, we can see from the
preceding expression that, unlike the glint noise case, reducing the guidance
system time constant will decrease the miss due to range independent noise.
Closed-form miss distance formulas for range independent noise in a single
time constant guidance system can also be derived in a similar manner for dif-
ferent effective navigation ratios. The steady-state standard deviation of the
miss due to range independent noise for effective navigation ratios of 4 and 5
can be found to be

MFNN 0¼4 ¼ 0:561VcT
0:5F0:5

FN

MFNN 0¼5 ¼ 0:588VcT
0:5F0:5

FN

Here again we can see that there is a slight increase in the miss distance coef-
ficients as the effective navigation ratio increases.

We can find the standard deviation of the steady-state miss due to semiactive
range dependent noise (MRN) by squaring and integrating g(t) as shown in
Fig. 18.2. The expression for g(t) can be found from f(t) as

gðtÞ ¼ Vct fðtÞ
RA

¼ 3V2
c t

2e�t=T

RAT
1� t

T
þ t2

6T2

� �
Squaring and integrating g(t) from zero to infinity yields the standard deviation of
the steady-state miss due to semiactive range dependent noise for an effective
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navigation ratio of 3 as

MRNN 0¼3 ¼ F0:5
RN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0
g2ðtÞ dt

s
¼ 1:06V2

c T
1:5F0:5

RN

RA

where RA is taken to be a reference range. We can see that the closing velocity and
time constant dependence of the miss is much greater for semiactive range depen-
dent noise than it was for range independent noise. Steady-state miss distance for-
mulas for semiactive range dependent noise in a single time constant guidance
system can be found for higher effective navigation ratios in a similar way and are

MRNN 0¼4 ¼ 1:10V2
c T

1:5F0:5
RN

RA

MRNN 0¼5 ¼ 1:15V2
c T

1:5F0:5
RN

RA

Again we can see that the miss distance coefficients increase slightly with increas-
ing effective navigation ratio. For active systems miss distance formulas can also
be derived for a single time constant system. The steady-state standard deviation
of the miss due to active range dependent noise (MRNA) for effective navigation
ratios of 3, 4, and 5 are

MRNAN 0¼3 ¼ 4:66V3
c T

2:5F0:5
RNA

R2
A

MRNAN 0¼4 ¼ 4:68V3
c T

2:5F0:5
RNA

R2
A

MRNAN 0¼5 ¼ 4:82V3
c T

2:5F0:5
RNA

R2
A

We can see that the closing velocity and time constant dependence for active range
dependent noise is even stronger than it was for semiactive range dependent noise.

FIFTH-ORDER BINOMIAL GUIDANCE SYSTEM MISS DISTANCES

In Chapter 6 we saw that once we had closed-form solutions for a single time con-
stant guidance system, we could obtain solutions for higher order systems by the
method of brute force because the miss distance normalization factors remained
unchanged with system order (that is, only coefficients change). In this section we
shall use the same method to get noise miss distance formulas for higher order
systems. The adjoint model for a fifth-order binomial guidance system, first
shown in Fig. 6.5, has been modified to include the noise error sources discussed
in the previous section and is redrawn in Fig. 18.3. Deterministic error sources are
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not shown in this diagram. Note that the basic model is unchanged. We have only
added new outputs to correspond to the miss due to range independent noise,
glint noise, and both semi-active and active range dependent noise. This has
been accomplished by squaring and integrating signals proportional to the
adjoint variable y1 shown in Fig. 18.3.

Adjoint simulation Listing 6.1 has also been modified for noise miss distance
calculations and appears in Listing 18.1. The noise spectral densities, closing
velocity, guidance system time constant, and reference range have been set to
unity so that we can calculate the coefficients for the noise miss distance
normalization factors.

Using the method of brute force with the adjoint simulation of Listing 18.1,
Table 18.1 was generated for the standard deviation of the steady-state noise mis-
sdistances for the fifth-order binomial proportional navigation guidance system
under consideration. We can see from Table 18.1 that although the miss distance
normalization factors are the same as they were for a single time constant gui-
dance system, the miss distance coefficients are an order of magnitude larger!
This means that the miss distances for the higher order system will also be an
order of magnitude greater than that of the single time constant guidance
system. In addition, we can see that unlike the single time constant guidance

Fig. 18.3 Adjoint of fifth-order binomial guidance system for noise miss distance
calculations.
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system, the effective navigation ratio has a strong influence on the miss distance
for the higher order system. Increasing the effective navigation ratio significantly
increases the miss distance due to noise.

LISTING 18.1 ADJOINT OF FIFTH-ORDER BINOMIAL GUIDANCE SYSTEM FOR NOISE MISS
DISTANCE CALCULATIONS

XNP=3.;
TAU=1.;
TF=10.;
VC=1.;
PHIFN=1;
PHIRN=1;
PHIRNA=1;
PHIGL=1;
RA=1;
T=0.;
S=0.;
TP=T+.00001;
X2=0;
X3=1;
X4=0;
X5=0.;
X6=0.;
X7=0.;
X8=0.;
X9=0.;
X10=0.;
X11=0.;

TABLE 18.1 MISS DISTANCE FORMULAS FOR FIFTH-ORDER BINOMIAL GUIDANCE SYSTEM

Error source Normalization
factor

Miss coefficient

N0 ¼ 3 N0 ¼ 4 N0 ¼ 5

Range independent noise
sMiss

VcT0:5F
0:5
FN

3.04 5.08 8.19

Semiactive range dependent noise
sMissRA

V2
c T

1:5F0:5
FN

9.47 18.4 33.7

ACtive range dependent noise
sMissR2A

V3
c T

2:5F0:5
RNA

41.3 89.4 182

Glint noise
sMissT0:5

F0:5
GL

1.68 2.35 3.21
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X12=0.;
H=.01;
n=0.;
while TP,=(TF-1e-5)

X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
X7OLD=X7;
X8OLD=X8;
X9OLD=X9;
X10OLD=X10;
X11OLD=X11;
X12OLD=X12;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
X7=X7+H*X7D;
X8=X8+H*X8D;
X9=X9+H*X9D;
X10=X10+H*X10D;

X11=X11+H*X11D;
X12=X12+H*X12D;
TP=TP+H;
end
X2D=X3;
Y1=5.*(5.*X5/TAU+X4)/TAU;
TGO=TP+.00001;
X3D=Y1/(VC*TGO);
X4D=-Y1;
X5D=-5.*X5/TAU+5.*X6*XNP*VC/TAU;
X6D=-5.*X6/TAU+5.*X7/TAU;
X7D=-5.*X7/TAU+5.*X8/TAU;
X8D=-5.*X8/TAU-X2;
X9D=Y1^2;
X10D=(Y1*VC*TGO/RA)^2;

X11D=(Y1*((VC*TGO/RA)^2))^2;
X12D=(Y1/(VC*TGO))^2;
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FLAG=1;
end
FLAG=0;
X2=.5*(X2OLD+X2+H*X2D);
X3=.5*(X3OLD+X3+H*X3D);
X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);
X6=.5*(X6OLD+X6+H*X6D);
X7=.5*(X7OLD+X7+H*X7D);
X8=.5*(X8OLD+X8+H*X8D);
X9=.5*(X9OLD+X9+H*X9D);
X10=.5*(X10OLD+X10+H*X10D);
X11=.5*(X11OLD+X11+H*X11D);
X12=.5*(X12OLD+X12+H*X12D);
S=S+H;
if S.=.0999

S=0.;
n=n+1;
XMFN=sqrt(X9*PHIFN);
XMRN=sqrt(X10*PHIRN);
XMRNA=sqrt(X11*PHIRNA);
XMGL=sqrt(X12*PHIGL);
ArrayTP(n)=TP;
ArrayXMFN(n)=XMFN;
ArrayXMRN(n)=XMRN;
ArrayXMRNA(n)=XMRNA;

ArrayXMGL(n)=XMGL;
end

end
XMFN
XMRN
XMRNA
XMGL
figure
plot(ArrayTP,ArrayXMFN),grid
xlabel(’Normalized Flight Time (Sec)’)
ylabel(’Normalized Fading Noise Miss’)
figure
plot(ArrayTP,ArrayXMRN),grid
xlabel(’Normalized Flight Time (Sec)’)
ylabel(’Missile Semiactive Noise Miss’)
figure
plot(ArrayTP,ArrayXMRNA),grid
xlabel(’Normalized Flight Time (Sec)’)
ylabel(’Missile Active Noise Miss’)
figure
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plot(ArrayTP,ArrayXMGL),grid
xlabel(’Normalized Flight Time (Sec)’)
ylabel(’Missile Glint Noise Miss’)
clc
output=[ArrayTP’,ArrayXMFN’,ArrayXMRN’,ArrayXMRNA’,ArrayXMGL’];
save datfil.txt output -ascii
disp ’simulation finished’

MINIMUM GUIDANCE SYSTEM TIME CONSTANT

We saw in Chapter 6 that the radome aberration effects create an unwanted feed-
back path in the guidance system, which can cause stability problems. In the pres-
ence of radome slope the guidance system transfer function can be derived from
Fig. 6.21 and is given by

nL
_l
¼ N 0Vc

�
1þ sT

5

� �5
þN 0VcR

VM
ð1þ TasÞ

	 

where R is the radome slope, VM the missile velocity, Ta an aerodynamic par-
ameter known as the turning rate time constant, and T the guidance system
time constant. We can see from the preceding equation that if the radome
slope is zero, the guidance system transfer function reduces to a fifth-order bino-
mial. For different combinations of guidance system parameters, simulation
experiments conducted in Chapter 6 showed that the guidance system can be
unstable. One can show mathematically [6] that if the ratio of the turning rate
time constant to the guidance system time constant is greater than unity or

Ta

T
. 1

then the guidance system transfer will be stable only if the following inequality is
satisfied

� 0:79 ,
N 0VcRTa

VMT
, 2:07

If the radome slope is negative, we can find from the preceding inequality that
the minimum guidance system time constant to yield a stable guidance system is

Tmin ¼ N 0VcRTa

0:79VM

We can see from the preceding relationship that engagements with larger
closing velocities (that is, ballistic targets) or those taking place at high altitudes
(that is, larger turning rate time constant) will require a larger guidance system
time constant in order to keep the guidance system stable. However, larger gui-
dance system time constants will also tend to increase the miss distance.
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MISSILE TURNING RATE TIME CONSTANT [7, 8]

We saw in Chapter 6 that the missile turning rate time constant Ta had a signifi-
cant interaction with radome effects. The missile turning rate time constant can be
defined as the amount of time it takes to turn the missile flight path angle g
through an equivalent angle of attack a or

Ta ¼ a

_g
¼ aVM

nL

where VM is missile velocity and nL is missile acceleration. We showed in
Chapter 10 the relationship between the lift coefficient CL and missile acceleration.
Substitution of those relationships into the preceding expression yields

Ta ¼ aVMW
gQSrefCL

whereW is the missile weight, Sref is the missile reference area, g is the acceleration
of gravity, and Q is the dynamic pressure. If we assume our missile to be a cylinder
or flying telephone pole, we showed in Chapter 16 that the lift coefficient could be
expressed as

CL ¼ 2aþ 1:5Splana2

Sref

where Splan is the missile planform area. Substitution of the lift coefficient
expression into the turning rate time constant formula and expressing the

Fig. 18.4 Turning rate time constant increases with increasing altitude and decreasing
angle of attack.
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dynamic pressure in more detail yields

Ta ¼ 2W

�
grVMSref 2þ 1:5Splana

Sref

� �	 

We can see that the turning rate time constant depends on altitude (or air density
r), missile velocity, and angle of attack.

Consider the cylindrical missile of Chapter 16 which was 20 ft long, 1 ft in
diameter, and weighed 1000 lb. Figure 18.4 shows that for a missile velocity of
3000 ft/s, the turning rate time constant increases with increasing altitude and
decreasing angle of attack. At 50-kft altitude and 20-deg angle of attack the
turning rate time constant is approximately 5 s.

We can display the turning rate time constant as a function of altitude for
different missile velocities as is done in Fig. 18.5. We can see that the missile
turning rate time constant increases with decreasing missile velocity. We have
already seen in Chapter 6 that larger turning rate time constants exacerbate the
radome slope stability problem. In summary, we can say that the radome stability
problem will be greatest at the high-altitude, low-missile-velocity portion of the
flight envelope.

CHECKING MINIMUM GUIDANCE SYSTEM TIME CONSTANT CONSTRAINTS

To illustrate the increased stability problem caused by ballistic targets, let us
compare missile acceleration profiles for both aircraft and ballistic targets at
50-kft altitude. We demonstrated in Chapter 16 that a cylindrical missile
(with W ¼ 1000 lb, L ¼ 20 ft, and D ¼ 1 ft) has a 7-g capability for a speed of

Fig. 18.5 Turning rate time constant increases with decreasing missile velocity.
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3000 ft/s and an angle of attack of 20 deg. In addition, let us assume the radome
slope for the interceptor is -0.01. If we consider a head-on case in which an aircraft
target is traveling at 1000 ft/s, the resultant closing velocity will be 4000 ft/s. In
this chapter we showed that the minimum guidance system time constant per-
mitted for a fifth-order binomial proportional navigation guidance system is

Tmin ¼ N 0VcRTa

0:79VM

From Fig. 18.4 we can see that the turning rate time constant for the cylindrical
interceptor is 5 s at this flight condition. Therefore the minimum guidance
system time constant at this flight condition becomes

Tmin ¼ 3 � 4000 � 0:01 � 5
0:79 � 3000 ¼ 0:25 s

In other words, the interceptor guidance system time constant must be greater
than 0.25 s when engaging this particular aircraft threat.

To test the preceding theoretical limit on the minimum allowable intercep-
tor guidance system time constant against the aircraft threat, our multiple run
simulation of a fifth-order binomial guidance system with radome effects
(Listing 18.2) was modified to investigate single flights. Listing 18.2 shows
that the resultant single flight simulation is set up to monitor the relative sep-
aration between missile and target y and the acceleration command nc. The
nominal inputs for the aircraft threat we are considering include the 7-g
missile acceleration command limit, 4000-ft/s closing velocity, 5-s turning
rate time constant, 3000-ft/s interceptor speed, 20.01 radome slope, and effec-
tive navigation ratio of 3. A 1-g target maneuver is considered as the only
error source.

LISTING 18.2 SIMULATION OF HOMING LOOP WITH RADOME EFFECTS

VC=4000.;
XNT=32.2;
XNCLIMG=7.;
YIC=0.;
VM=3000.;
HEDEG=0.;
TAU=.3;
XNP=3.;
TA=5.;
R=-.01;
TF=10.;
Y=YIC;
YD=-VM*HEDEG/57.3;
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YDIC=YD;
XNL=0.;
ELAMDH=0.;
X4=0.;
X5=0.;
TH=0.;
THH=0.;
T=0.;
H=.01;
S=0.;
XNCLIM=XNCLIMG*32.2;
n=0.;
while T,=(TF-1e-5)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
ELAMDHOLD=ELAMDH;
X4OLD=X4;
X5OLD=X5;
THOLD=TH;
THHOLD=THH;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
ELAMDH=ELAMDH+H*ELAMDHD;
X4=X4+H*X4D;
X5=X5+H*X5D;
TH=TH+H*THD;
THH=THH+H*THHD;
T=T+H;
end
TGO=TF-T+.00001;
XLAM=Y/(VC*TGO);
EPS=XLAM-TH-THH+R*THH;
DD=5.*EPS/TAU;
ELAMDHD=5.*(DD-ELAMDH)/TAU;
XNC=XNP*VC*ELAMDH;
if XNC.XNCLIM
XNC=XNCLIM;
end
if XNC,-XNCLIM
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XNC=-XNCLIM;
end
X4D=5.*(XNC-X4)/TAU;
X5D=5.*(X4-X5)/TAU;
XNLD=5.*(X5-XNL)/TAU;
THD=XNL/VM+TA*XNLD/VM;
THHD=DD-THD;
YDD=XNT-XNL;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
ELAMDH=.5*(ELAMDHOLD+ELAMDH+H*ELAMDHD);
X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);
TH=.5*(THOLD+TH+H*THD);
THH=.5*(THHOLD+THH+H*THHD);
S=S+H;
if S.=.0999

S=0.;
n=n+1;
ArrayT(n)=T;
ArrayY(n)=Y;
ArrayXNCG(n)=XNC/32.2;

end
end
figure
plot(ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Missile Acceleration (G)’)
clc
output=[ArrayT’,ArrayY’,ArrayXNCG’];
save datfil.txt output -ascii
disp ’simulation finished’

The nominal case was run and the guidance system time constant was made a
parameter. Figure 18.6 shows that when the guidance system time constant is 0.2 s
(less than the minimum permissible time constant) the acceleration command
oscillates between +7 g, indicating that the guidance system is indeed unstable.
Increasing the guidance system time constant to 0.3 s (more than the minimum
permissible time constant) stabilizes the acceleration command. The resultant
acceleration profile is a monotonically increasing straight line, as would be
expected for the response due to a step target maneuver. Thus the theoretical
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formula for the minimum guidance system time constant and the simulation
results of Listing 18.2 appear to be in agreement.

If we fly an inverse trajectory with a 3000 ft/s interceptor against a 6000 ft/s
ballistic target, the resultant closing velocity becomes 9000 ft/s. The minimum
guidance system time constant at this flight condition reduces to

Tmin ¼ 3 � 9000 � 0:01 � 5
0:79 � 3000 ¼ 0:57 s

which indicates that the minimum permissible interceptor guidance system time
constant against this particular ballistic threat must be greater than 0.57 s. In other
words, for the case considered, the missile guidance system time constant must be
much greater against a ballistic threat than it has to be against an aircraft threat
because of the much higher closing velocities.

The simulation of Listing 18.2 was rerun for the case in which the closing vel-
ocity was 9000 ft/s and the guidance system time constant was again made a par-
ameter. Figure 18.7 shows that when the guidance system time constant is 0.5 s
(less than the minimum permissible time constant) the acceleration command
oscillates between +7 g, indicating that the guidance system is unstable. When
the guidance system time constant is increased to 0.7 s (more than the
minimum permissible time constant), the acceleration command is stable and
approximately monotonically increasing as would be expected for the response
due to a step target acceleration. We can also see by comparing Figs. 18.6
and 18.7 that the frequency of oscillation depends on the closing velocity.

Fig. 18.6 Simulation and theory agree for aircraft threat.
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MISS DUE TO NOISE FOR AIRCRAFT AND BALLISTIC TARGETS

In this chapter we have presented formulas for the miss distance due to various
noise sources and have also presented stability requirements for the minimum
guidance system time constant in a fifth-order binomial proportional navigation
guidance system. In this section we shall illustrate, via a numerical example, how
the miss distance due to noise increases when the threat changes from an aircraft
to a ballistic target.

All of the formulas for the noise miss distances depended on the spectral
density F of the noise. Often we talk about noise with a standard deviation s
entering a guidance system every Ts seconds. A useful approximation relating
the noise spectral density to the standard deviation is given by

F ¼ s 2Ts

where F is measured in units2/Hz, s is measured in units, and Ts is measured in
seconds. This relationship is identical to the one we used for simulating white
noise in Chapter 4 with the sampling time Ts being replaced by the integration
interval.

Let us consider an example in which range independent noise with standard
deviation 0.001 rad enters a proportional navigation guidance system (N0 ¼ 3)
every 0.01 s [4, 8]. The miss distance formula for an effective navigation ratio
of 3 expressed in terms of the noise standard deviation can be found from
Table 18.1 and is given by

sMiss
Range
Independent
Noise

 ¼ 3:04VcT
0:5sFNT

0:5
s

Fig. 18.7 Simulation and theory agree for ballistic threat.
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For the aircraft threat with a closing velocity of 4000 ft/s and a minimum
guidance time constant of 0.25 s, the minimum miss due to range independent
noise is

sMiss
Range
Independent
Noise

 ¼ 3:04 � 4000 � 0:250:5 � 0:001 � 0:010:5 ¼ 0:6 ft

whereas for the ballistic threat with closing velocity of 9000 ft/s and a minimum
guidance time constant of 0.57 s, the minimum miss is

sMiss
Range
Independent
Noise

 ¼ 3:04 � 9000 � 0:570:5 � 0:001 � 0:010:5 ¼ 2:1 ft

Although the noise miss is more than three times larger in the ballistic target
case than it was in the aircraft threat case, the miss due to range independent noise
is negligible.

Let us now consider the influence of semiactive range dependent noise on both
targets. The standard deviation of the miss due to semiactive range dependent
noise for an effective navigation ratio of 3 can be found from Table 18.1 as

sMiss
Semiactive
Range
Dependent
Noise


¼ 9:47V2

c T
1:5sRNT0:5

s

RA

We notice from the preceding formula that the dependence on closing velocity
and guidance system time constant is more significant than it was in the range
dependent noise case. Let us now consider a case in which there is 0.02 rad of
semiactive noise at 30,000 ft entering the guidance system every 0.01 s [4, 7].
For the aircraft threat with a closing velocity of 4000 ft/s and a minimum
guidance time constant of 0.25 s, the minimum miss due to semiactive range
dependent noise is

sMiss
Semiactive
Range
Dependent
Noise


¼ 9:47 � 40002 � 0:251:5 � 0:02 � 0:010:5

30,000
¼ 1:3 ft
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whereas for the ballistic threat with closing velocity of 9000 ft/s and a minimum
guidance time constant of 0.57 s, the minimum miss is

sMiss
Semiactive
Range
Dependent
Noise


¼ 9:47 � 90002 � 0:571:5 � 0:02 � 0:010:5

30,000
¼ 22 ft

We can see that the miss due to semiactive noise is very large against ballistic
targets because of the strong dependence on closing velocity and guidance
system time constant. For this example the ballistic threat miss was nearly 20
times greater than the aircraft threat miss!

Finally, let us now consider the influence of active range dependent noise on
both targets. The standard deviation of the miss due to active range dependent
noise for an effective navigation ratio of 3 can be found from Table 18.1 as

sMiss
Active
Range
Dependent
Noise


¼ 41:3V3

c T
2:5sRNAT0:5

s

R2
A

We notice from the preceding formula that the dependence on closing velocity
and guidance system time constant is even more significant than it was in the
semiactive noise case. Let us now consider a case in which there is 0.02 rad of
active noise at 30,000 ft entering the guidance system every 0.01 s [4, 7]. For
the aircraft threat with a closing velocity of 4000 ft/s and a minimum guidance
time constant of 0.25 s, the minimum miss due to active range dependent noise is

sMiss
Active
Range
Dependent
Noise


¼ 41:3 � 40003 � 0:252:5 � 0:02 � 0:010:5

30,0002
¼ 0:18 ft

whereas for the ballistic threat with closing velocity of 9000 ft/s and a minimum
guidance time constant of 0.57 s, the minimum miss is

sMiss
Active
Range
Dependent
Noise


¼ 41:3 � 90003 � 0:572:5 � 0:02 � 0:010:5

30,0002
¼ 16:4 ft

408 TACTICAL AND STRATEGIC MISSILE GUIDANCE



Although the active noise miss is less than the semiactive noise miss it is nearly
100 times larger for the ballistic threat than for the aircraft threat because the
miss depends on the cube of closing velocity and the 2.5 power of the guidance
system time constant.

SUMMARY

We have shown that from a noise induced miss distance point of view, ballistic
targets are more challenging than the aircraft threat. The high-closing velocity
of the ballistic target engagement significantly increases the minimum guidance
system time constant required for radome slope stability. The large guidance
system time constant and high-closing velocity can make ballistic target noise
induced miss distances more than an order of magnitude greater than the miss
distances experienced against an aircraft threat. To achieve small miss distances
against high-closing velocity ballistic targets, methods for reducing the noise
and effective radome slope must be found.
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CHAPTER 19

Multiple Targets

INTRODUCTION AND BACKGROUND

In both tactical and strategic engagements there may be an apparent shift in the
target location that can cause unacceptable miss distances. For example, for
tactical intercepts, the interceptor may be guiding on the power centroid of two
aircraft flying in close formation. When one of the aircraft falls outside the
missile seeker beam, the other aircraft will be resolved. In this case it appears to
the pursuing interceptor that the target has shifted from the location of the
power centroid to the location of the resolved aircraft. In other words, there
has been an apparent step change in target position [1]. Similarly, a strategic
exoatmospheric missile may be homing on one of two closely spaced objects.
After a while discrimination takes place and the interceptor’s software may con-
clude that one object is a decoy while the second object is the real target. In this
case too, as far as the missile is concerned, it appears as if the target has changed
position (from first object or decoy to second object).

In both preceding examples the target displacement disturbance occurs late in
the flight, which is the worst possible time from a missile guidance system point of
view. Large miss distances may result because of insufficient remaining homing
time. In this chapter we will develop normalized design curves for both a single
time constant and a fifth-order binomial proportional navigation guidance
system to both illustrate and quantify the multiple target problem. Rules of
thumb will be developed relating the necessary ratio of the time left for homing
after resolution has taken place to the guidance system time constant and the
miss due to the apparent shift in target location.

DEVELOPMENT OF A LINEAR MODEL

To develop an appropriate linear model for the multiple target phenomenon, let
us first think of two aircraft flying in close formation being pursued by an inter-
ceptor as shown in Fig. 19.1. The first aircraft is at 1200-ft altitude while the
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second aircraft is at 800-ft altitude. For simplicity we will assume that the power
centroid is located halfway between both aircraft at 1000-ft altitude. In this
example both aircraft and the power centroid are traveling at 1000 ft/s. The pur-
suing missile is at 1000-ft altitude and is moving at 3000 ft/s toward the power
centroid. At a certain time to go before intercept with the power centroid, the
missile realizes that the true target is aircraft 1 and not the power centroid. At
that time it will appear as if the target has changed position (from power centroid
to aircraft 1). From a simulation point of view, we only have to model the target
the missile sees. Therefore for most of the flight the missile will be guiding on the
power centroid and for the rest of the flight the missile will be guiding on aircraft
1. This can easily be modeled as if the target is taking a step displacement at a
certain time to go before intercept.

A two-dimensional nonlinear missile-target engagement simulation for a
zero-lag guidance system, based on Listing 2.1 and Fig. 19.1, was developed for
this problem and appears in Listing 19.1. For simplicity this simulation neglects
both gravity and drag. Because the missile is on a collision triangle with the
power centroid and there is no target maneuver or heading error, no acceleration
commands will be required for most of the engagement. At one second before
intercept (THOM = 1) the target jumps 200 ft from the power centroid to aircraft
1 and the missile responds with acceleration commands based on proportional
navigation guidance (in this example using a navigation ratio of 3). We can see
from Listing 19.1 that in this case there are no lags in the guidance system and
so the missile will respond instantaneously, and perhaps unrealistically, to the
apparent instantaneous shift in target position.

Figure 19.2 shows the alteration of the missile and target trajectories after the
missile makes the guidance switch from the power centroid to aircraft 1. Here we
can see that the apparent step change in target position at one second before inter-
cept causes the missile to respond immediately. At the end of the flight, the missile

Fig. 19.1 Missile engaging two aircraft flying in formation.
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hits aircraft 1. The successful intercept should not be surprising as we can see from
Listing 19.1 there was no limit on the amount of acceleration that could be used
nor were there any dynamics in the guidance system to cause miss distance.

LISTING 19.1 NONLINEAR ENGAGEMENT SIMULATION WITH STEP IN TARGET DISPLACEMENT

n=0;
XNP=3.;
DISPLACE=200.;
THOM=1.;
VM=3000.;
VT=1000.;
RM1=0.;
RM2=1000.;
RT1=20000.;
RT2=1000.;
QSWITCH=0;
VT1=-VT;
VT2=0.;
T=0.;
S=0.;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
XLAM=atan2(RTM2,RTM1);
VM1=VM;
VM2=0.;

Fig. 19.2 Missile first guides on power centroid and then guides on aircraft 1.
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VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
H=.005;
while VC.0.

TGO=RTM/VC;
if(TGO..3)

H=.00005;
end
if(TGO,=THOM & QSWITCH==0)

QSWITCH=1;
RT2=RT2+DISPLACE;

end
RT1OLD=RT1;
RT2OLD=RT2;
RM1OLD=RM1;
RM2OLD=RM2;
VM1OLD=VM1;
VM2OLD=VM2;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
T=T+H;
end
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
XLAM=atan2(RTM2,RTM1);
XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
XNC=XNP*VC*XLAMD;
AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
FLAG=1;

end
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FLAG=0;
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
S=S+H;
if S..049999

S=0.;
n=n+1;
ArrayT(n)=T;
ArrayRM1(n)=RM1;
ArrayRM2(n)=RM2;
ArrayRT1(n)=RT1;
ArrayRT2(n)=RT2;
ArrayXNCG(n)=XNC/32.2;

end
end
RTM
figure
plot(ArrayRM1,ArrayRM2,ArrayRT1,ArrayRT2),grid
xlabel(’Downrange (Ft)’)
ylabel(’Altitude (Ft)’)
figure
plot(ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration (G)’)
clc
output=[ArrayT’,ArrayRM1’,ArrayRM2’,ArrayRT1’,ArrayRT2’,ArrayXNCG’];
save datfil.txt output -ascii
disp ’simulation finished’

Figure 19.3 shows that the price paid for the rapid missile trajectory change is
that nearly 20 g of missile acceleration is required to make the intercept successful.
Apparent step target displacements occurring later in the flight (that is, time to go
before intercept is smaller) will cause even more acceleration while apparent step
displacements occurring earlier in the flight will place smaller acceleration
demands on the interceptor.

We now want to see if we can use our linear analysis tools to understand how
an apparent step in target displacement influences guidance system performance.
First we must determine if the linearization techniques we used in Chapter 2 are
valid for approximating a step in target displacement. Figure 19.4 redraws the sim-
plest possible linearized proportional navigation homing loop of Chapter 2. In this
perfect guidance system in which the geometry is linearized, models of the seeker,
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noise filter, guidance, and flight control systems have been considered to be
perfect and without dynamics. We are modeling the shift from the power centroid
to aircraft 1 as a step in target displacement yTIC. As can be seen from Fig. 19.4, the
step target displacement can be modeled as an initial condition on the integrator
with output y as y ¼ yT 2 yM and there is no initial yM.

Following a procedure similar to that of Chapter 2, we can solve the linear
time-varying differential equation associated with Fig. 19.4 [2]. From Fig. 19.4

Fig. 19.3 Nearly 20 g of acceleration is required to take out 200 ft of target displacement.

Fig. 19.4 Linear proportional navigation guidance homing loop with step in
target displacement.
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we can see that the relative acceleration (zero target acceleration minus missile
acceleration) can be expressed as

€y ¼ 0� nc ¼ �N 0Vc _l

Integrating the preceding differential equation once yields

_y ¼ �N 0Vclþ C1

where C1 is the constant of integration. Substitution of the line-of-sight angle defi-
nition from Fig. 19.4 into the preceding expression yields the following linear
time-varying first-order differential equation

dy
dt

þ N 0y
tF � t

¼ C1

We have seen in Chapter 2 that a linear first-order differential equation of the
form

dy
dt

þ aðtÞy ¼ hðtÞ

has the solution

y ¼ e�
Ð t

0
aðTÞdT

ðt
0
hðnÞe

Ð n

0
aðTÞdTdnþ C2e

�
Ð t

0
aðTÞdT

Therefore we now have enough information to solve the relative trajectory differ-
ential equation exactly. As was mentioned previously, an instantaneous step in
target displacement means that the initial condition on the first state y is the
value of the displacement or

yð0Þ ¼ yTIC

Under these circumstances, after much algebra, we can solve for the closed-form
solutions for the relative separation between missile and target y and the missile
acceleration nc due to a step in target displacement. These closed-form solutions
are given by

y ¼ ½N 0ð1� t=tFÞ � ð1� t=tFÞN
0 �yTIC

N 0 � 1

and

nc ¼ N 0ð1� t=tFÞN
0�2yTIC

t2F

where t is time and tF is the amount of homing time remaining after the apparent
step in target displacement has taken place. From the relative separation
expression we can see that the miss distance y(tF) is always zero! This should
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not be surprising because we have a zero-lag guidance system and the miss
distance for such a system should always be zero provided that the missile has suf-
ficient acceleration capability. In addition, from the acceleration formula we
observe that the magnitude of the initial missile acceleration is largest at the begin-
ning and is proportional to the size of the target displacement and inversely pro-
portional to the square of the homing or flight time. Doubling the apparent target
displacement will double the initial missile acceleration, whereas doubling the
flight time or time remaining after the apparent target displacement occurred
will quarter the initial missile acceleration. Of course if the acceleration required
by the preceding formula is not available there may be a significant miss distance.

If we overlay the preceding acceleration formula based on a linear model
(YTIC ¼ 200 ft, N0 ¼ 3, tF ¼ 1 s) with the nonlinear acceleration results of
Fig. 19.3, we obtain the overlays of Fig. 19.5. Here we can see that the closed-form
solution for the missile acceleration based on the linearized homing loop model
approximates the nonlinear results very well. This means that we can use the
linear guidance system model to make performance projections when the
system disturbance is an apparent step in target displacement.

The closed-form solutions for the missile acceleration response due to a step in
target displacement for various effective navigation ratios are displayed in normal-
ized form in Fig. 19.6. We can see that higher effective navigation ratios increase
the missile acceleration requirements at the beginning of flight (when apparent
step in target displacement occurs) and reduce the acceleration requirements
towards the end of the flight. Figure 19.6 indicates that the missile acceleration
is always monotonically decreasing as the flight progresses (that is, more accelera-
tion is needed at the beginning of the flight than at the end of the flight). From a

Fig. 19.5 Linear model yields accurate performance projections.
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system sizing point of view, the designer usually wants to ensure that the accelera-
tion capability of the missile is adequate at the beginning of flight so that satur-
ation can be avoided. For a fixed missile acceleration capability, Fig. 19.6 shows
how requirements are placed on the minimum guidance or flight time required
after final resolution (or the time remaining after the apparent step in target dis-
placement occurs) and maximum allowable target displacement.

We can illustrate the use of the normalized acceleration curves of Fig. 19.6 and
show why these curves are meaningful for the multiple target problem. Consider
Fig. 19.7 in which two aircraft flying in formation are being pursued by a missile.

Fig. 19.6 Normalized missile acceleration due to step in target displacement.

Fig. 19.7 Multiple target geometry.
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Initially both aircraft are close enough so that the missile with seeker beamwidth
BW homes on the power centroid of the two aircraft. At the point where one of the
aircraft falls outside the seeker beam, resolution takes place and it appears to the
missile that the aircraft has been instantaneously displaced a distance yTIC (that is,
from power centroid to aircraft 1). If the missile and aircraft are traveling at con-
stant speed with closing velocity Vc , the missile will be a distance of VctF from the
power centroid at the point of resolution. In this example tF is the time remaining
for guidance after seeker resolution.

From trigonometry we can see that the seeker beamwidth is related to the air-
craft displacement according to

tan
BW
2

¼ yTIC
VctF

Using the small angle approximation and solving for the effective time remaining
for guidance after seeker resolution, we get

tF ¼ 2yTIC
VcBW

If a seeker has a beamwidth of 0.1 rad (nearly 6 deg), and the two aircraft are
separated by 400 ft and the closing velocity is 4000 ft/s, the time remaining for
guidance after resolution will be 1 s or

tF ¼ 2yTIC
VcBW

¼ 400
4000 � 0:1 ¼ 1 s

Assuming that the missile effective navigation ratio is 3, we can see from either the
formula for missile acceleration or the normalized acceleration curves of Fig. 19.6
that the maximum acceleration occurs at the time of resolution and is given by

ncMAX ¼ 3yTIC
t2F

¼ 3 � 200
12

¼ 600 ft=s2 ¼ 18:6 g

which is in agreement with the maximum acceleration indicated by the nonlinear
simulation results of Fig. 19.3. In summary, this means that the missile will require
nearly 20 g of acceleration to hit the resolved target when the aircraft formation
spacing is 400 ft, the missile seeker beamwidth is approximately 6 deg, and the
closing velocity is 4000 ft/s.

SINGLE TIME CONSTANT GUIDANCE SYSTEM

If we add a single time constant representation of the guidance system, then
Listing 19.1 is modified according to Listing 19.2. However, since the seeker
cannot move instantaneously due to an apparent instantaneous change in target
displacement, an initial condition is required that says the seeker dish angle D
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equals the previous value of the line-of-sight angle l right before the target
appears to change location [3]. The amount of time it takes the seeker dish
angle to follow the true target will be determined by the seeker time constant
TAU. Statements that have changed from Listing 19.1 are highlighted in bold in
Listing 19.2.

LISTING 19.2 NONLINEAR ENGAGEMENT SIMULATION WITH SEEKER DYNAMICS
AND STEP IN TARGET DISPLACEMENT

n=0;
XNP=3.;
DISPLACE=200.;
THOM=1.;
TAU=1.;
VM=3000.;
VT=1000.;
for THOM = 0.1:0.1:5

RM1=0.;
RM2=1000.;
RT1=20000.;
RT2=1000.;
QSWITCH=0;
VT1=-VT;
VT2=0.;
T=0.;
S=0.;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
XLAM=atan2(RTM2,RTM1);
VM1=VM;
VM2=0.;
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
H=.001;
D=0.;
while VC.0.

TGO=RTM/VC;
if(TGO,.3)

H=.00001;
end
if(TGO,=THOM & QSWITCH==0)

QSWITCH=1;
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RT2=RT2+DISPLACE;
RTM2=RT2-RM2;
XLAM=atan2(RTM2,RTM1);
D=XLAM;

end
RT1OLD=RT1;
RT2OLD=RT2;
RM1OLD=RM1;
RM2OLD=RM2;
VM1OLD=VM1;
VM2OLD=VM2;
DOLD=D;
STEP=1;
FLAG=0;
while STEP,=1
if FLAG==1
STEP=2;
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;

D=D+H*DD;
T=T+H;
end
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
XLAM=atan2(RTM2,RTM1);

EPS=XLAM-D;
DD=(XLAM-D)/TAU;
XNC=XNP*VC*DD;

AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
FLAG=1;
end
FLAG=0;
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
VM1=.5*(VM1OLD+VM1+H*AM1);
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VM2=.5*(VM2OLD+VM2+H*AM2);
D=.5*(DOLD+D+H*DD);

end
if RTM2.0

RTMP=RTM;
else

RTMP=-RTM;
end
n=n+1;
ArrayTHOM(n)=THOM;
ArrayRTMP(n)=RTMP;

end
figure
plot(ArrayTHOM,ArrayRTMP),grid
xlabel(’Homing Time (s)’)
ylabel(’Miss (Ft)’)
clc
output=[ArrayTHOM’,ArrayRTMP’];
save datfil.txt output -ascii
disp ’simulation finished’

The nominal case of Listing 19.2 was run and the miss due to a step in target
displacement for different homing times appears in Fig. 19.8. Here we can see
that if the homing time after the target displacement is small the miss can be
quite large. For long homing times after the target displacement the miss is

Fig. 19.8 Miss due to 200 ft step in target displacement from nonlinear
engagement simulation.
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approximately zero. A linearized guidance system model, based on the nonlinear
single-lag engagement model of Listing 19.2, appears in Fig. 19.9. Here we can see
that there appear to be three error sources: the miss due to heading error, the miss
due to a pure step in target displacement and the miss due to a seeker dish angle

Fig. 19.10 Adjoint of single time constant guidance system with step in target
displacement disturbance.

Fig. 19.9 Single-lag guidance system.

424 TACTICAL AND STRATEGIC MISSILE GUIDANCE



initial condition. In this section we shall show how all three error sources
are related.

An adjoint diagram can be constructed from Fig. 19.9 and appears in
Fig. 19.10. An adjoint simulation of Fig. 19.10 appears in Listing 19.3. Again, it
is important to note that in Listing 19.3 the potential heading error magnitude
is related to the target displacement and the missile velocity. The total miss due
to the target displacement is made up of two parts—the step in target displace-
ment and the initial condition on the seeker dish angle. We can see from the
listing that the heading error miss divided by the homing time is calculated
because it is postulated that this term is also equal to the step in target
displacement miss.

LISTING 19.3 ADJOINT SIMULATION FOR STEP IN TARGET DISPLACEMENT
FOR SINGLE-LAG GUIDANCE SYSTEM

n=0;
XNP=3.;
TAU=1.;
TF=5.;
VC=4000.;
DISP=200.;
VM=3000.;
HE=-DISP/VM;
T=0.;
S=0.;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0;
H=.01;
while ~(TP.(TF-.00001))

S=S+H;
X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

X1=X1+H*X1D;
X2=X2+H*X2D;
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X3=X3+H*X3D;
X4=X4+H*X4D;
TP=TP+H;

end
X1D=X2;
X2D=X3;
Y1=(X4-XNP*VC*X2)/TAU;
TGO=TP+.00001;
X3D=Y1/(VC*TGO);
X4D=-Y1;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
if S,.09999

S=0.;
XMY=DISP*X3;
XIC=X4*DISP/(VC*TGO);
TOT=XMY+XIC;
XMHE=-VM*HE*X2;
XMHEPZ=XMHE/TP;
n=n+1;
ArrayTP(n)=TP;
ArrayTOT(n)=TOT;
ArrayXMHEPZ(n)=XMHEPZ;

end
end
figure
plot(ArrayTP,ArrayTOT,ArrayTP,ArrayXMHEPZ),grid
xlabel(’Homing Time (s)’)
ylabel(’Miss (Ft)’)
clc
output=[ArrayTP’,ArrayTOT’,ArrayXMHEPZ’];
save datfil.txt output -ascii
disp ’simulation finished’

The nominal case of Listing 19.3 was run and the results were overlaid with the
nonlinear engagement results of Fig. 19.8. We can see from Fig. 19.11 that the
adjoint results are in excellent agreement with the multiple-run nonlinear engage-
ment simulation results of Listing 19.2—indicating that the adjoint was taken cor-
rectly. Figure 19.12 shows that if we divide the miss due to heading error by the
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homing time we also get the same results as the miss due to a step in target dis-
placement [4]. We already have formulas for the miss due to heading error in
Chapter 3 for a single time constant system for different effective navigation
ratios, so we can easily derive formulas for the miss due to a step in target

200

150

100

50

0

M
is

s 
(f

t)

543210
Homing Time (s)

200 ft Target Displacement
N'=3, T=1 s

Multiple Runs With
Nonlinear Engagement Simulation

Adjoint

Fig. 19.11 Nonlinear engagement simulation and adjoint results agree.
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Fig. 19.12 Linear and nonlinear performance projections are identical in single time
constant guidance system.
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displacement. The resultant miss distance formulas become

Miss
yTIC

� �
N 0¼3

¼ e�xð1� 0:5xÞ

Miss
yTIC

� �
N 0¼4

¼ e�x 1� x þ x2

6

� �
Miss
yTIC

� �
N 0¼5

¼ e�x 1� 1:5x þ x2

2
� x3

24

� �
where

x ¼ tF
T

If we consider the same example of the previous section where there was no
miss distance, the importance of guidance system dynamics and the normalized
curves of Fig. 19.13 can be demonstrated. For a 200-ft target displacement (equiv-
alent to 400-ft aircraft separation) 1 s of effective flight time and an overall gui-
dance system time constant of 1 s (T ¼ 1), the number of guidance time
constants is 1 (tF/T ¼ 1/1 ¼ 1) and the corresponding miss distance for different
effective navigation ratios can be computed from Fig. 19.13 as

MissN 0¼3 ¼ 0:18 � 200 ¼ 36 ft

MissN 0¼4 ¼ 0:061 � 200 ¼ 12 ft

MissN 0¼5 ¼ �0:015 � 200 ¼ �3 ft
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Fig. 19.13 First-order normalized miss for a step in target displacement.
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Thus we can see that there can be significant miss distance due to an apparent step
in target displacement when system dynamics are considered. In this example a
positive miss distance means that the missile is between aircraft 1 and the
power centroid while a negative miss distance means the missile is below aircraft
1 in Fig. 19.13. We can see from Fig. 19.13 that if the missile time constant can be
halved or if the seeker beamwidth can be halved then the number of guidance time
constants is doubled and the miss will be reduced. The formulas and the curves
indicate that large ratios of flight time to guidance system time constant yield
small or near zero miss distances whereas small ratios of flight time to guidance
system time constant can yield large miss distances. It was pointed out in
Chapter 6 that a single-lag representation of the guidance system is not realistic
and performance projections based on this model can lead to serious underesti-
mates of the miss distance. We concentrated on the single time constant guidance
system in order to derive miss distance formulas. It is postulated that the normal-
ization factors for these formulas will be the same for higher order systems. In the
next section we shall consider a higher order model of the guidance system to get a
better understanding of the impact of a step in target displacement on system
performance.

Fig. 19.14 Fifth-order binomial guidance system.
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HIGHER-ORDER GUIDANCE SYSTEM DYNAMICS

It was shown in Chapter 6 that a much better and more convenient representation
of a missile guidance system transfer function is a canonic fifth-order binomial
given by

nL
l

¼ N 0Vcs

ð1þ sT=5Þ5

where T is the total guidance system time constant, nL is the achieved missile
acceleration, and l is the line-of-sight angle. As was pointed out in Chapter 6,
one time constant represents the seeker, another represents the noise filter, and
the other three time constants represent the flight-control system dynamics (aero-
dynamics plus autopilot). With this canonic guidance system model the overall
guidance system time constant is simply the sum of the five individual time con-
stants or T. For convenience the fifth-order binomial missile homing loop of
Chapter 6 is also repeated in Fig. 19.14.

An adjoint block diagram for finding the miss due to a step in target displace-
ment can be constructed from Fig. 19.14 directly or by modifying the adjoint block

Fig. 19.15 Adjoint of fifth-order binomial guidance system.
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diagram of Fig. 6.5. The resultant miss distance adjoint block diagram appears in
Fig. 19.15.

An adjoint simulation of the fifth-order binomial guidance system can be con-
structed directly from Fig. 19.15 and appears in Listing 19.4. This adjoint simu-
lation is nearly identical to that of Listing 6.1 except the states corresponding to
the miss due to the ramp and parabolic maneuvers have been removed and the
miss due to a step in target displacement TOT has been added.

LISTING 19.4 ADJOINT OF FIFTH-ORDER BINOMIAL GUIDANCE SYSTEM USED
TO FIND NORMALIZED MISS DUE TO STEP IN TARGET DISPLACEMENT

n=0;
XNP=3.;
TAU=1.;
TF=10.;
DISP=1.;
VC=4000.;
VM=3000.;
HE=-DISP/VM;
T=0.;
S=0.;
TP=T+.00001;
X2=0;
X3=1;
X4=0;
X5=0.;
X6=0.;
X7=0.;
X8=0.;
H=.01;
while ~(TP.(TF-.00001))

S=S+H;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
X7OLD=X7;
X8OLD=X8;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X2=X2+H*X2D;
X3=X3+H*X3D;
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X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
X7=X7+H*X7D;
X8=X8+H*X8D;
TP=TP+H;

end
X2D=X3;
Y1=5.*(5.*X5/TAU+X4)/TAU;
TGO=TP+.00001;
X3D=Y1/(VC*TGO);
X4D=-Y1;
X5D=-5.*X5/TAU+5.*X6*XNP*VC/TAU;
X6D=-5.*X6/TAU+5.*X7/TAU;
X7D=-5.*X7/TAU+5.*X8/TAU;
X8D=-5.*X8/TAU-X2;
FLAG=1;

end
FLAG=0;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
X6=(X6OLD+X6)/2+.5*H*X6D;
X7=(X7OLD+X7)/2+.5*H*X7D;
X8=(X8OLD+X8)/2+.5*H*X8D;
if S,.09999

S=0.;
XMY=DISP*X3;
XIC=X4*DISP/(VC*TGO);
TOT=XMY+XIC;
n=n+1;
ArrayTP(n)=TP;
ArrayTOT(n)=TOT;

end
end
plot(ArrayTP,ArrayTOT),grid
xlabel(’Homing Time (s)’)
ylabel(’Miss (Ft)’)
clc
output=[ArrayTP’,ArrayTOT’];
save datfil.txt output -ascii
disp ’simulation finished’

Normalized miss distance curves for different effective navigation ratios were
generated from Listing 19.4. Because the adjoint technique was used, it was also
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implicitly assumed that the missile had infinite acceleration capability. As was
done in Chapter 6, it was also assumed that the adjoint curves generated with
Listing 19.4 had the same normalization factors as those curves for the single
time constant guidance system. The hypothesis was checked by running numer-
ous cases with Listing 19.4 using various combinations of guidance system time
constant and homing time. The hypothesis was found to be true and the resultant
normalized curves are displayed in Fig. 19.16 [2]. Superimposed on Fig. 19.16 is an
indication of where the power centroid is in relation to the target we are supposed
to be guiding on (aircraft 1 in this case). In other words a normalized miss of unity
means we are hitting the power centroid and a normalized miss of zero means we
are hitting aircraft 1. By comparing Figs. 19.13 and 19.16 we can conclude that in
general the miss distances for the fifth-order guidance system are much larger
than the miss for a single time constant guidance system. In addition,
Fig. 19.16 also shows that the ratio of the flight time tF (or time remaining after
the apparent step in target displacement has occurred) to the guidance system
time constant Tmust now be greater than eight for there to be negligible miss dis-
tance. Recall that for the single time constant system the number of guidance time
constants had to be greater than three for the miss distance to be negligible. If the
number of guidance time constants is less than eight, it is really a matter of luck as
to how large or small the miss distance will be. Luck is involved because in reality
the point at which resolution occurs for a specific engagement is random.

If we consider the same example of the previous section, where the miss dis-
tances were smaller, the importance of higher order guidance system dynamics
can be seen to be even more important. For a 200-ft target displacement (equiv-
alent to 400-ft aircraft separation), 1 s of effective flight time (tF ¼ 1) and an
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Fig. 19.16 Fifth-order normalized miss for a step in target displacement.
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overall guidance system time constant of 1 s (T ¼ 1), the number of guidance time
constants is 1 (tF/ T ¼ 1/1 ¼ 1) and the corresponding miss distance for different
effective navigation ratios can be computed from Fig. 19.16 as

MissN 0¼3 ¼ 0:811 � 200 ¼ 162 ft

MissN 0¼4 ¼ 0:748 � 200 ¼ 150 ft

MissN 0¼5 ¼ 0:686 � 200 ¼ 137 ft

Note that these miss distances are more than an order of magnitude greater
than those of the single time constant guidance system! Thus we can see that the
miss distances can be enormous. If the missile time constant can be halved, or
if the seeker beamwidth can be halved, then the number of guidance time con-
stants is doubled to 2 (tF/T ¼ 1/0.5 ¼ 2) thus considerably reducing the miss or

MissN0¼3 ¼ 0:212 � 200 ¼ 42 ft

MissN0¼4 ¼ �0:0073 � 200 ¼ �1:5 ft

MissN0¼5 ¼ �0:206 � 200 ¼ �41 ft

Thus we can see that the ratio of the flight time remaining after resolution has
occurred to the guidance system time constant is critical in determining the
expected miss distance.

ACCELERATION SATURATION

We have observed in the previous two sections that both the guidance system
dynamics and effective navigation ratio play an important role in determining
the miss distance due to a step in target displacement. The finite acceleration capa-
bility of the interceptor is also important in determining the miss distance. A
forward model of the fifth-order binomial guidance with a limit on the accelera-
tion command was constructed from Fig. 19.14 and appears in Listing 19.5. We
can see from the code that nominally there is a 200-ft step in target displacement,
the guidance system has a 0.2-s time constant, the missile acceleration limit is infi-
nite, and the effective navigation ratio is 3.

LISTING 19.5 FORWARD MODEL FOR FINDING MISS DUE TO STEP IN TARGET DISPLACEMENT
FOR FIFTH-ORDER BINOMIAL GUIDANCE SYSTEM IN PRESENCE OF ACCELERATION LIMIT

n=0;
VC=4000.;
XNT=0.;
DISPLACE=200.;
VM=3000.;
TAU=.2;
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XNP=3.;
XNCLIM=99999999.;
TF=10.;
for THOM = 0.1:0.1:10

QSWITCH=0;
Y=0.;
YD=0.;
XNL=0.;
D=0.;
ELAMDH=0.;
X4=0.;
X5=0.;
T=0.;
H=.01;
S=0.;
while ~(T.(TF-.0001))

TGO=TF-T+.00001;
if TGO,=THOM & QSWITCH==0

QSWITCH=1;
Y=Y+DISPLACE;
XLAM=Y/(VC*TGO);
D=XLAM;

end
YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
DOLD=D;
ELAMDHOLD=ELAMDH;
X4OLD=X4;
X5OLD=X5;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
ELAMDH=ELAMDH+H*ELAMDHD;
D=D+H*DD;
X4=X4+H*X4D;
X5=X5+H*X5D;
T=T+H;

end
TGO=TF-T+.00001;
XLAM=Y/(VC*TGO);
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DD=5.*(XLAM-D)/TAU;
ELAMDHD=5.*(DD-ELAMDH)/TAU;
XNC=XNP*VC*ELAMDH;
if XNC.XNCLIM

XNC=XNCLIM;
end
if XNC,-XNCLIM

XNC=-XNCLIM;
end
X4D=5.*(XNC-X4)/TAU;
X5D=5.*(X4-X5)/TAU;
XNLD=5.*(X5-XNL)/TAU;
YDD=XNT-XNL;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
D=.5*(DOLD+D+H*DD);
ELAMDH=.5*(ELAMDHOLD+ELAMDH+H*ELAMDHD);
X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);

end
n=n+1;
ArrayTHOM(n)=THOM;
ArrayY(n)=Y;

end
figure
plot(ArrayTHOM,ArrayY),grid
xlabel(’Homing Time (s)’)
ylabel(’Miss (Ft)’)
clc
output=[ArrayTHOM’,ArrayY’];
save datfil.txt output -ascii
disp ’simulation finished’

The nominal case of Listing 19.5 was run and compared to adjoint results from
Listing 19.4 when the target displacement was 200 ft, the effective navigation ratio
was 3, and the guidance system time constant was 0.2 s. Figure 19.17 shows that
both the forward and adjoint models yield identical results. At the beginning of
this chapter we showed that for a system in which there was zero time constants
approximately 20 g of missile acceleration was required to take out the step in
target displacement. Figure 19.18 shows how system performance degrades in
the presence of an acceleration limit. We can see that for a small guidance
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system time constant of 0.2 s the miss degrades significantly when the missile
acceleration limit is 20 g. More miss distance degradation occurs when the
missile acceleration limit is further reduced. However, Fig. 19.19 shows that if
the missile guidance system time constant is increased from 0.2 s to 1 s there is
less sensitivity to the missile acceleration limit. That is not to say that performance
improves as the guidance system time constant is increased. Figure 19.19 simply
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says that when there is poor system performance due to a large guidance system
time constant there is less sensitivity to the value of the acceleration limit.

SUMMARY

Normalized miss distance curves were presented showing the designer how to
calculate the miss distance due to an apparent step in target displacement. The
importance of guidance system dynamics and missile acceleration saturation
effects were illustrated with additional design curves and examples.
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CHAPTER 20

Weaving Targets

INTRODUCTION AND BACKGROUND

We have seen in Chapter 6 that large miss distances could be induced by the target
if a maximum acceleration maneuver was initiated at the proper time to go before
intercept. It was also shown that the barrel roll or weave maneuver could also gen-
erate large miss distances. Because it is well known that tactical ballistic missiles
(TBMs) can spiral or weave into resonance (TBM roll rate equals vehicles’
natural pitch frequency) as they re-enter the atmosphere due to either mass or
configurational asymmetries, the weave maneuver is of particular interest to the
guidance system designer [1, 2].

In this chapter we will first study the influence of the target weave maneuver
on a single time constant proportional navigation guidance system. Closed-form
solutions for the peak steady-state miss distance as a function of the effective navi-
gation ratio, guidance system time constant, weave maneuver amplitude and fre-
quency will be derived [3, 4]. Because we have already shown that the single time
constant guidance system seriously underestimates the miss distance, a more rea-
listic, higher-order guidance system will be used to develop normalized miss dis-
tance design curves using the normalization factors from the single time constant
target maneuver miss distance solutions. The finite acceleration capability of the
interceptor also plays an important role in determining system performance. The
normalized design curves, which assumed infinite missile acceleration capability,
are updated to show how the missile acceleration advantage over the target plays a
key role in determining system performance. Finally, methods for improving
missile system performance against weaving targets will be explored.

WEAVE MANEUVER IN SINGLE TIME CONSTANT GUIDANCE SYSTEM

Periodic maneuver sequences such as a sinusoidal or weaving target present
a challenge for a missile guidance system designer. A planar representation of a
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weaving target is given by

Target Maneuver ¼ nT sinvTt

where nT is the maneuver amplitude, vT is the target weave frequency, and t is
time. The miss due to a weaving target as a function of flight time can be found
using the method of brute force. A nonlinear two-dimensional engagement simu-
lation, based on Listing 2.1, of a missile guiding on a weaving target appears in
Listing 20.1. We can see that the listing is based on a single time constant pro-
portional navigation guidance system and that for the nominal case the missile
time constant is 1 s, the effective navigation ratio is 3, the target weave frequency
is 3 rad/s while the target maneuver amplitude is 193.2 ft/s2 or 6 g. The
target always initiates its maneuver at the beginning of flight in this simulation.
The program is set up to run in the brute force mode so that the miss distance
results for many flight times can be evaluated. In this nonlinear engagement simu-
lation the initial target downrange position, which is equivalent to the initial
missile-target separation, is varied from 500 ft to 40,000 ft in steps of 500 ft,
which in the linear world is equivalent to varying the flight time from 0.05 s to
10 s in steps of 0.05 s because the closing velocity is approximately 4000 ft/s.
After each run the homing time and miss distance are tabulated. We can also
see from the simulation listing that if the target is above the missile at intercept,
the miss is considered to be positive whereas if the target is below the missile at
intercept the miss is considered to be negative.

LISTING 20.1 NONLINEAR ENGAGEMENT SIMULATION FOR A SINGLE TIME CONSTANT
GUIDANCE SYSTEM WITH WEAVING TARGET

XNP=3.;
TAU=1.;
XNT=193.2;
W=3.;
n=0;
for RT1IC=500:500:40000

VM=3000.;
VT=1000.;
RM1=0.;
RM2=0.;
RT1=RT1IC;
RT2=0.;
BETA=0.;
VT1=-VT*cos(BETA);
VT2=VT*sin(BETA);
T=0.;
S=0.;
RTM1=RT1-RM1;
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RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
XLAM=atan2(RTM2,RTM1);
VM1=VM;
VM2=0.;
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
XLAMH=0.;
H=.01;
while VC . 0.
if(RTM , 1000.)

H=.0005;
end

BETAOLD=BETA;
RT1OLD=RT1;
RT2OLD=RT2;
RM1OLD=RM1;
RM2OLD=RM2;
VM1OLD=VM1;
VM2OLD=VM2;
XLAMHOLD=XLAMH;
STEP=1;
FLAG=0;
while STEP , =1

if FLAG==1
STEP=2;
BETA=BETA+H*BETAD;
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
XLAMH=XLAMH+H*XLAMHD;
T=T+H;
end
VT1=-VT*cos(BETA);
VT2=VT*sin(BETA);
BETAD=XNT*sin(W*T)/VT;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
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VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
XLAM=atan2(RTM2,RTM1);
XLAMHD=(XLAM-XLAMH)/TAU;
XNC=XNP*VC*XLAMHD;
AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
FLAG=1;

end
FLAG=0;
BETA=.5*(BETAOLD+BETA+H*BETAD);
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
XLAMH=.5*(XLAMHOLD+XLAMH+H*XLAMHD);

end
if RTM2 . 0.

RTMP=RTM;
else

RTMP=-RTM;
end
n=n+1;
ArrayT(n)=T;
ArrayRTMP(n)=RTMP;

end
figure
plot(ArrayT,ArrayRTMP),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Miss (Ft)’)
clc
output=[ArrayT’,ArrayRTMP’];
save datfil.txt output -ascii
disp ’simulation finished’

The nominal case of Listing 20.1 was run, and the miss distance results as a
function of flight time appear in Fig. 20.1. We can see that unlike the step
target maneuver results of Chapters 3 and 6, the miss distance due to weaving
target does not approach zero as the homing time increases! Depending on the
flight time, the miss distance for this example can be as large as 28 ft or as
small as zero when the effective navigation ratio is 3. Also note that after an
initial transient period the miss is sinusoidal in nature with frequency 3 rad/s,
which is identical to the target weave frequency.
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Could these multiple run nonlinear results be generated with one adjoint run?
To find out, we first have to assume that the geometry of the engagement can be
linearized in a manner similar to that of Chapters 2, 3, and 19. In addition, because
adjoint theory requires that all inputs to the original system appear as impulses,
we also have to find some way of making the sinusoidal maneuver look like an
impulse through a linear shaping network. Fortunately, in Table 1.1 of Chapter
1 we showed that a sinusoidal maneuver could be represented as an impulse
through a second-order shaping network since

L[nT sinvTt] ¼ vTnT
s2 þ v2

T

Figure 20.2 shows a linearized representation of a single time constant linear pro-
portional navigation guidance system driven by a weave target maneuver (that is,
impulsive input through second-order shaping network).

Figure 20.2 is drawn in such a way that the adjoint can be taken by inspection.
The new adjoint diagram was constructed from Fig. 20.2 using the adjoint rules of
Chapter 3 and appears in Fig. 20.3. In this particular adjoint diagram we are eval-
uating one disturbance only, the miss due to a weaving target.

An adjoint simulation, based on Fig. 20.3, was constructed and appears in
Listing 20.2. Here we can see that the nominal case is set up to be identical to
that of the brute force nonlinear engagement simulation of Listing 20.1.
However, with the adjoint simulation only one run has to be made to find out
how the miss distance varies with flight time.

Fig. 20.1 Nonlinear results indicate that weaving target causes miss to oscillate at target
weave frequency.
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The nominal case of Listing 20.2 was run, and the adjoint miss distance results
were plotted alongside the nonlinear, multiple run results of Fig. 20.1. We can see
from Fig. 20.4 that the adjoint results are virtually identical to the nonlinear miss
distance results thus validating the simplified linear model. In the rest of this
chapter, we will use the linearized model of the guidance system to generate
performance evaluations and to suggest ways of improving performance.

Another case was run with the adjoint simulation in which the target weave
frequency was decreased from 3 rad/s to 1.5 rad/s. We can see from Fig. 20.5
that the miss distance increases significantly with the lower weave frequency

Fig. 20.2 Linearized single time constant guidance system with weave maneuver.

Fig. 20.3 Adjoint of single time constant guidance system with weaving target.
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and the oscillation of the miss with flight time changes to match the new target
weave frequency. We now would like to get a deeper understanding of how per-
formance is related to the target weave frequency, guidance system time constant,
and effective navigation ratio.

Fig. 20.4 Adjoint simulation results agree with the nonlinear results for the weaving
target disturbance.

Fig. 20.5 Decreasing weave frequency increases miss distance for this example.
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LISTING 20.2 ADJOINT SIMULATION OF SINGLE TIME CONSTANT GUIDANCE SYSTEM
AND WEAVING TARGET

n=0;
XNT=193.2;
XNP=3.;
TAU=1.;
TF=10.;
VC=4000.;
W=3.;
T=0.;
S=0.;
TP=T+.00001;
X2=0;
X3=1;
X4=0.;
X5=0.;
X6=0.;
H=.01;
while TP , =(TF-1e-5)

X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
STEP=1;
FLAG=0;
while STEP , =1

if FLAG==1
STEP=2;

X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
TP=TP+H;

end
X2D=X3;
Y1=(-X2+X4)/TAU;
TGO=TP+.00001;
X3D=Y1*XNP/TGO;
X4D=-Y1;
X5D=X2-W*W*X6;
X6D=X5;
FLAG=1;

end
FLAG=0;
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X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
X6=(X6OLD+X6)/2+.5*H*X6D;
S=S+H;
if S . =.09999

S=0.;
n=n+1;

XMWEAVE=XNT*W*X6;
ArrayTP(n)=TP;

ArrayXMWEAVE(n)=XMWEAVE;
end

end
figure
plot(ArrayTP,ArrayXMWEAVE),grid
xlabel(’Flight Time (S)’)
ylabel(’Miss (Ft) ’)
clc
output=[ArrayTP’,ArrayXMWEAVE’];
save datfil.txt output/ascii
disp ’simulation finished’

CLOSED-FORM SOLUTIONS FOR MISS DISTANCE

Because we have already shown that the miss due to a weaving target is a sinu-
soidal function of the flight time, it only makes sense to look at steady-state
miss distances in order to quantify system performance. Closed-form solutions
for the miss due to a weaving target can be obtained in the steady state (that is,
at large flight times when transients die out). Recall that all of the miss distance
formulas for a single time constant guidance system were derived in Chapter 3
from the generalized adjoint diagram of Fig. 3.16. Figure 3.16 is redrawn and
updated to include the miss due to a weaving target MWEAVE as shown in
Fig. 20.6.

In Chapter 3 we found that the miss due to a step target maneuver MNT,
expressed in the Laplace transform domain, was given by

MNTðsÞ ¼ 1� HðsÞ
s3

� nT

Therefore the miss due to a weaving target can be found by inspection from
Fig. 20.6 and can be expressed as

MWEAVEðsÞ ¼ 1� HðsÞ
s2

� nTvT

s2 þ v2
T
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where 12H(s) was shown in Chapter 3 for the single time constant guidance
system to be given by

1� HðsÞ ¼ s
sþ 1

T

� �N 0

Therefore the miss due to a weaving target can be expressed as

MWEAVEðsÞ ¼ 1
s2

� s
sþ 1

T

� �N 0

� nTvT

s2 þ v2
T

The miss distance in the Laplace transform domain can be evaluated directly
by first doing a partial fraction expansion of the terms on the right side of the pre-
ceding equation and then taking the inverse Laplace transform to find the miss in
the time domain. Some of the terms in the resultant complex expression would be
transient in nature while other terms would be sinusoidal. In the steady state the
transient terms would go to zero and only the sinusoidal terms would be left.

If we are only interested in the steady-state solution, much work can be saved
using a simple technique from electrical engineering. We can rewrite the preced-
ing expression as

Miss
weave nT

ðsÞ ¼ 32:2
s2

s
sþ 1

T

� �N 0

Fig. 20.6 Generalized adjoint diagram showing miss due to weaving target.
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where nT is now the maneuver magnitude in units of g and “weave nT” reminds us
that the target maneuver is sinusoidal. If a linear system has a sine wave input with
frequency vT in units of rad/s, the output in the steady state will also be a sinusoid
of the same frequency but of different magnitude and phase. From basic
steady-state electrical engineering circuit analysis techniques it can be shown
that the magnitude and phase of the sinusoidal output can be found by replacing
s with jvT in the preceding transfer function and then finding the magnitude and
phase of the resultant complex transfer function [5]. For example, if the effective
navigation ratio is 3, the preceding transfer function becomes

Miss
weave nT


N 0¼3

ðsÞ ¼ 32:2s

ðsþ 1=TÞ3

Therefore, the complex weave miss distance transfer function can be derived from
the preceding equation by substitution (that is, s = jvT) as

Miss
weave nT


N 0¼3

ð jvTÞ ¼ 32:2jvT

ð jvT þ 1=TÞ3

The magnitude and phase of this complex transfer function can be written by
inspection as

MagnitudejN 0¼3 ¼
32:2vT

ðv2
T þ 1=T2Þ1:5

PhasejN 0¼3 ¼
p

2
� 3 tan�1 vTT

Therefore the steady-state miss distance due to a weaving target can be written in
the time domain as

Miss
weave nT

N 0¼ 3
Steady-State

¼ Magnitude N 0¼3j sinðvTtF þ Phase N 0¼3j Þ

or

Miss
weave nT

N 0¼3
Steady-State

¼ 32:2vT

ðv2
T þ 1

T2Þ1:5
sin vTtF þ p

2
� 3 tan�1 vTT

� �

Figure 20.7 presents again the adjoint miss distance results as a function of
flight time for the case in which the target weave frequency is 3 rad/s while the
missile guidance system time constant is 1 s. Superimposed on the figure is the
preceding closed-form solution for the miss distance. We can see that after an
initial transient period, the closed-form steady-state miss distance solution and
computer generated adjoint results are in excellent agreement thus confirming
the validity of the steady-state analysis.
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We have shown mathematically and by simulation that the miss distance due
to a weaving target is a sinusoidal function of the flight time. Therefore it is really a
matter of luck on how large or small the miss distance will be. Of particular
concern to the missile guidance system designer is the maximum or peak value
of the sinusoidal miss distance function. The peak value of the miss due to a
weave maneuver is simply the magnitude of the steady-state miss distance sinu-
soid. Therefore the peak miss due to a weave maneuver in a single time constant
proportional navigation guidance system with an effective navigation ratio of 3 is
given by

Peak Miss
weave nT


N 0¼3

¼ 32:2vT

ðv2
T þ 1=T2Þ1:5 ¼

32:2vTT3

ð1þ v2
TT

2Þ1:5

Dividing both sides of the equation by T 2 yields

Peak Miss
weave nTT2


N 0¼3

¼ 32:2vTT

ð1þ v2
TT

2Þ1:5

If we let x be the normalized target weave frequency where

x ¼ vTT

the peak miss distance formula simplifies further to

Peak Miss
weave nTT2


N 0¼3

¼ 32:2 x

ð1þ x2Þ1:5

Fig. 20.7 Closed-form miss distance solution agrees with adjoint results.
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Similar expressions can be found for the peak miss distance due to a weave man-
euver when the effective navigation ratios are 4 and 5 and can be shown to be

Peak Miss
weave nTT2


N 0¼4

¼ 32:2 x2

ð1þ x2Þ2

Peak Miss
weave nTT2


N 0¼5

¼ 32:2 x3

ð1þ x2Þ2:5

Figure 20.8 graphically displays the preceding formulas and shows how the
steady-state normalized peak miss distance varies with the normalized target
maneuver frequency (that is, product of the target weave frequency and the
missile guidance system time constant). We can see from Fig. 20.8 that the
peak miss distance is close to a maximum when the normalized target maneuver
frequency is near unity. Large weave frequencies do not cause much miss distance
because very little target displacement is created. On the other hand, small weave
frequencies look like step target maneuvers and thus in the steady-state (large
flight times) cause very little miss distance. If we were on a collision triangle
with the target (with no heading error) and we coasted to the target by turning
off the guidance (where N 0 ¼ 0), the peak miss distance would simply be the
peak displacement nT/v

2
T caused by the weaving target. Superimposed on

Fig. 20.8 is the peak displacement or induced miss distance with no missile gui-
dance (where N 0 ¼ 0) caused by the weaving target. We can see that for the
single time constant guidance system, guiding with proportional navigation
always yields a smaller miss against a weaving target than coasting without

Fig. 20.8 Peak miss distance is maximum when normalized weave frequency is near unity.
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guidance. However, for large values of normalized weave frequency the miss dis-
tance with and without guidance is approximately the same!

To illustrate the use of the normalized miss distance curves of Fig. 20.8, let us
consider a numerical example in which there is a 6-g weaving target with a weave
frequency of 2 rad/s. Assuming that the missile guidance system time constant
is 1 s and effective navigation ratio is 3, we first compute the normalized weave
frequency as

vTT ¼ 2 � 1 ¼ 2

which results in a normalized miss of approximately 5.5. Therefore from the ordi-
nate of Fig. 20.8 we can compute the peak steady-state miss distance to be

Peak Miss 	 5:5nTT
2 ¼ 5:5 � 6 � 12 ¼ 33 ft

Reducing the guidance system time constant to 0.5 s changes both the normal-
ized weave frequency and the normalized miss. The new normalized weave
frequency is

vTT ¼ 2 � 0:5 ¼ 1

which results in an increased normalized miss of approximately 11.5. However,
the new peak steady-state miss distance is reduced because the guidance system
time constant has been halved or

Peak Miss 	 11:5nTT
2 ¼ 11:5 � 6 � 0:52 	 17 ft

Keeping the guidance system constant fixed to 0.5 s but increasing the target
weave frequency to 4 rad/s increases the normalized weave frequency back to 2 or

vTT ¼ 4 � 0:5 ¼ 2

which again results in a normalized miss of approximately 5.5. The new peak
steady-state miss distance becomes

Peak Miss 	 5:5nTT
2 ¼ 5:5 � 6 � 0:52 	 8 ft

Thus we can see that both the guidance system time constant and target weave
frequency are important factors in determining the peak steady-state miss
distance.

HIGHER-ORDER GUIDANCE SYSTEM DYNAMICS

The single time constant guidance system model, used in the previous section, was
useful because it could be used to derive closed-form solutions for the miss dis-
tance due to a weave maneuver. The single time constant guidance system miss
distance formulas also suggest normalization factors for the miss distance. We
have already shown in Chapters 6 and 19 that the disadvantage of the single
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time constant representation of a missile guidance system is that the miss distance
can be seriously underestimated. We have seen that a much better and equally
convenient representation of a proportional navigation missile guidance system
transfer function is a canonic fifth-order binomial given by

nL
l

¼ N 0Vcs

ð1þ sT=5Þ5

where T is the total guidance system time constant, nL is the achieved missile
acceleration, and l is the line-of-sight angle. As was mentioned in Chapters 6
and 19 for this generic interceptor guidance system model, one time constant rep-
resents the seeker, another represents the noise filter, and the three other time
constants represent the flight-control system dynamics (aerodynamics plus autop-
ilot). It is easy to show that with this canonic guidance system model, the overall
guidance system time constant is simply the sum of the five individual time con-
stants or T. The peak steady-state miss distance due to a weaving target for the
fifth-order binomial missile homing loop can either be evaluated using the
method of adjoints or the method of brute force. Because the adjoint simulation
would have to be extensively modified to figure out when steady-state was reached
and special logic would then have to be developed to capture the maximum miss
distance, it was considered easier to use the brute force approach. In addition, the
brute force approach can easily be extended to the case where there are significant
nonlinearities whereas the adjoint method would no longer be valid. Listing 20.3
presents the brute force simulation based on linearized geometry, which we have
already shown to be valid for the weaving target case. We can see from Listing 20.3
that acceleration saturation effects can be included by simply reducing the value of
the acceleration limit XNCLIM from its near infinite value. The listing shows how
the time constant is reduced when the flight times are short to ensure that we are
in steady-state. The simulation is set up to generate normalized miss distance
curves as a function of the normalized target weave frequency.

Figure 20.9 shows how the steady-state normalized peak miss distance due to a
weave maneuver varies with the normalized target weave frequency for the
fifth-order binomial guidance system. The curves in this figure are similar in
shape to the ones of Fig. 20.8, but as expected, the normalized miss distances
are much larger. It is interesting to note the steady-state peak miss distance is
still maximum when the normalized target weave frequency is approximately
unity. Superimposed on Fig. 20.9 is the zero guidance miss distance or peak dis-
placement nT/vT

2 caused by the weaving target. Surprisingly, we can see that for
the fifth-order guidance system, proportional navigation only yields a smaller miss
than coasting (where N 0 ¼ 0) when the normalized weave frequency is less than
0.7 (that is, vTT , 0.7). In other words, for normalized weave frequencies greater
than 0.7, the weaving target nullifies the effectiveness of a proportional navigation
guidance system!
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LISTING 20.3 BRUTE FORCE SIMULATION FOR GENERATING NORMALIZED DESIGN CURVES
AGAINST WEAVING TARGET

n=0;
VC=4000.;
XNT=32.2;
XNP=3.;
XNCLIM=99999.;
for X=.1:.1:4

if X , .5
W=1.;
TAU=X/W;

else
W=X;
TAU=1.;

end
XMWEAVEOLD=0.;
XMWEAVEMAX=0.;
for TF=.2:.2:20

PHASE=0.;
Y=0.;
YD=0.;
XNL=0.;
D=0.;
ELAMDH=0.;

Fig. 20.9 Steady-state peak miss due to weave maneuver is much larger with fifth-order
binomial guidance system.
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X4=0.;
X5=0.;
T=0.;
H=.01;
S=0.;
while T , =(TF-1e-5)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
DOLD=D;
ELAMDHOLD=ELAMDH;
X4OLD=X4;
X5OLD=X5;
STEP=1;
FLAG=0;

while STEP , =1
if FLAG==1

STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
ELAMDH=ELAMDH+H*ELAMDHD;
D=D+H*DD;
X4=X4+H*X4D;
X5=X5+H*X5D;
T=T+H;

end
YTDD=XNT*sin(W*T);
TGO=TF-T+.00001;
XLAM=Y/(VC*TGO);
DD=5.*(XLAM-D)/TAU;
ELAMDHD=5.*(DD-ELAMDH)/TAU;
XNC=XNP*VC*ELAMDH;
if XNC . XNCLIM

XNC=XNCLIM;
end
if XNC , -XNCLIM

XNC=-XNCLIM;
end
X4D=5.*(XNC-X4)/TAU;
X5D=5.*(X4-X5)/TAU;
XNLD=5.*(X5-XNL)/TAU;
YDD=YTDD-XNL;
FLAG=1;

end
FLAG=0;
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Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
D=.5*(DOLD+D+H*DD);
ELAMDH=.5*(ELAMDHOLD+ELAMDH+H*ELAMDHD);
X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);

end
XMWEAVE=Y;
if (XMWEAVE . XMWEAVEOLD & XMWEAVE . XMWEAVEMAX & TF . 10.)

XMWEAVEMAX=XMWEAVE;
end
XMWEAVEOLD=XMWEAVE;

end
if X , .5

XMWEAVEMAX=XMWEAVEMAX/TAU^2;
end
n=n+1;
ArrayX(n)=X;
ArrayXMWEAVEMAX(n)=XMWEAVEMAX;

end
figure
plot(ArrayX,ArrayXMWEAVEMAX),grid
xlabel(’X’)
ylabel(’Normalized Miss’)
clc
output=[ArrayX’,ArrayXMWEAVEMAX’];
save datfil.txt output -ascii
disp ’simulation finished’

To illustrate the use of the normalized miss distance curves of Fig. 20.9, let us
reconsider the numerical example of the previous section in which there is a 6-g
weaving target with a weave frequency of 2 rad/s. Assuming that the missile gui-
dance system time constant is 1 s and effective navigation ratio is 3, we first
compute the normalized weave frequency as

vTT ¼ 2 � 1 ¼ 2

which results in a normalized miss of approximately 20. Therefore we can
compute the peak steady-state miss distance to be

Peak Miss 	 20 nTT
2 ¼ 20 � 6 � 12 ¼ 120 ft

which is four times larger than the miss in a single time constant guidance system
(that is, 120 ft vs 33 ft). Reducing the guidance system time constant to 0.5 s
changes both the normalized weave frequency and the normalized miss. The
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new normalized weave frequency is

vTT ¼ 2 � 0:5 ¼ 1

which results in an increased normalized miss of approximately 60. The new peak
steady-state miss distance becomes

Peak Miss 	 60nTT
2 ¼ 60 � 6 � 0:52 	 90 ft

which is five times larger than the miss in a single time constant guidance system
(that is, 90 ft vs 17 ft). Keeping the guidance system constant fixed to 0.5 s but
increasing the weave frequency to 4 rad/s increases the normalized weave fre-
quency back to 2 or

vTT ¼ 4 � 0:5 ¼ 2

which again results in a normalized miss of approximately 20. The new peak
steady-state miss distance becomes

Peak Miss 	 20nTT
2 ¼ 20 � 6 � 0:52 	 30 ft

which is approximately four times larger than the miss induced with a single time
constant guidance system (that is, 30 ft vs 8 ft). Thus we can see that the higher-
order guidance system dynamics of the fifth-order binomial guidance system yield
much larger miss distances due to a weaving target than does the single time con-
stant representation of the guidance system.

ACCELERATION SATURATION

We have observed in the preceding two sections that both the guidance system
dynamics and effective navigation ratio play an important role in determining
the miss distance due to a weaving target. The finite acceleration capability of
the interceptor is also important in determining the miss distance. Normalized
miss distance curves can also be developed when missile acceleration saturation
effects are considered. In this case it is hypothesized that miss distance normaliza-
tion factors remain unchanged but new curves have to be developed for the non-
dimensional ratio of the missile to target acceleration advantage or

Ratio ¼ nLIM=nT

where nLIM is the interceptor acceleration limit.
Using the preceding ratio and the normalization factors for the steady-state

peak miss due to a weaving target, we can derive normalized miss distance
curves by the method of brute force with Listing 20.3. In other words, we can gen-
erate normalized miss distance curves by simulating all of the possibilities. We
can then infer performance by making extrapolations from the normalized miss
distance curves. Of course, detailed checks have to be made to ensure that the
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normalization factors are correct. Figures 20.10–20.12 present the normalized
steady-state peak miss distances due to a weaving target for effective navigation
ratios ranging from 3 to 5 respectively. As expected, we can see that less missile
acceleration capability (smaller ratio) means larger miss distances. We can see
that at the larger effective navigation ratios (where N0 ¼ 5), increasing the

Fig. 20.10 Normalized steady-state peak miss due to weaving target and saturation effects
for an effective navigation ratio of 3.

Fig. 20.11 Normalized steady-state peak miss due to weaving target and saturation effects
for an effective navigation ratio of 4.

458 TACTICAL AND STRATEGIC MISSILE GUIDANCE



missile acceleration capability may not always reduce the miss (vTT ¼ 2). Under
these circumstances the weaving target causes proportional navigation to be inef-
fective. This should not be surprising as we know that when the normalized weave
frequency is greater than 0.7, doing nothing or nLIM/nT ¼ 0 is optimal.

To demonstrate the use of the normalized curves of Figs. 20.10–20.12 let us
again consider the same example of the previous section in which there was a
6-g target weave maneuver with weave frequency of 2 rad/s and a proportional
navigation missile guidance system with overall time constant of 0.5 s and effec-
tive navigation ratio of 3 (nT ¼ 6, vT ¼ 2, T ¼ 0.5, N 0 ¼ 3). In this case the nor-
malized weave frequency is 1 (vTT ¼ 2�0.5 ¼ 1). If the missile acceleration limit
is infinite, then the ratio is infinite and we can read from Fig. 20.8 that the
steady-state peak miss is 90 ft or

Peak Missg ¼ 60 nTT
2 ¼ 60 � 6 � 0:52 ¼ 90 ft

Reducing the acceleration limit to 18 g reduces the ratio to 3 or

Ratio ¼ nLIM=nT ¼ 18=6 ¼ 3

For a normalized weave frequency of 1, the new steady-state peak miss increases
to 105 ft or

Peak Miss18 g ¼ 70nTT
2 ¼ 70 � 6 � 0:52 ¼ 105 ft

Reducing the acceleration limit further to 12 g reduces the ratio to 2 or

Ratio ¼ nLIM=nT ¼ 12=6 ¼ 2

Fig. 20.12 Normalized steady-state peak miss due to weaving target and saturation effects
for an effective navigation ratio of 5.
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For a normalized weave frequency of 1, the new steady-state peak miss increases
to 113 ft or

Peak Miss12 g ¼ 75nTT
2 ¼ 75 � 6 � 0:52 ¼ 113 ft

Finally reducing the acceleration limit even further to 6 g reduces the ratio to 12 or

Ratio ¼ nLIM=nT ¼ 6=6 ¼ 1

For a normalized weave frequency of 1, the new steady-state peak miss increases
to 128 ft or

Peak Miss6 g ¼ 85 nTT
2 ¼ 75 � 6 � 0:52 ¼ 128 ft

In this example, if the missile had no acceleration capability or if the guidance
system was turned off, the peak miss would be the maximum value of the
weave displacement nT/vT

2 or only 48.4 ft.
If the target weave frequency were increased to 4 rad/s and everything else

remained the same, the new normalized weave frequency would be doubled to
2(vTT ¼ 4�0.5 ¼ 2). In this case we can see from Fig. 20.10 that the miss is inde-
pendent of the missile-to-target acceleration advantage and that the miss would
reduce to 30 ft or

Peak Miss1s;18G;12G;6G ¼ 20nTT
2 ¼ 20 � 6 � 0:52 ¼ 30 ft

Again, turning the guidance system off would make the peak miss equivalent to
the maximum value of the weave displacement nT/v

2
T or only 12.1 ft.

REDUCING THE TIME CONSTANT TO IMPROVE PERFORMANCE

In general, the safest and most effective method for improving the performance of
a proportional navigation guidance system against the weaving target is to reduce
the overall guidance system time constant and to increase the missile-to-target
acceleration advantage. In aerodynamically controlled missiles, the major contri-
butor to the guidance system time constant is usually the flight-control system
time constant, and the limitation on missile acceleration capability is a function
of the maximum angle of attack in which a missile can operate without causing
flight catastrophe. The ability to speed up the missile flight-control system and
the challenge in increasing the missile’s maneuverability depends on advances
in flight-control system technology. Radome effects will set a lower limit on
how small the missile flight-control system time constant can be made without
causing stability problems [6] and flight-control system pitch-yaw-roll cross-
coupling will place an upper limit on maximum permissible angle of attack.
Although a thorough discussion of the challenges in speeding up a flight-control
system and safely achieving high angles of attack are beyond the scope of this text,
two numerical examples will be presented in this section showing the benefits to
system performance if these goals can be met.
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To illustrate the importance of reducing the guidance system time constant, a
nonnormalized, non-steady-state example was chosen in which there was a 6-g
weaving target with a weave frequency of 2 rad/s. Figure 20.13 shows that the
miss distance induced by a weaving target on a fifth-order binomial proportional
navigation guidance system dramatically decreases with decreasing guidance
system time constant. In fact, when the guidance system time constant is 0.1 s
there is virtually no miss due to the weaving target!

If we fix the guidance system time constant at 0.1 s, we can see from Fig. 20.14
that although increasing the target weave frequency increases the miss, the miss is
still small. We also could have calculated the maximum peak steady-state miss in
this example from the normalized curves of Fig. 20.9. For an effective navigation
ratio of 3, the curve of Fig. 20.9 is a maximum when the normalized weave fre-
quency is 0.7. That means for this example the actual target weave frequency is
7 rad/s (vT T ¼ 7�0.1 ¼ 0.7). From Fig. 20.9 we can see that the actual
maximum peak miss is approximately 4 ft or

Peak MissjN 0¼3 ¼ 63 nTT
2 ¼ 63 � 6 � 0:1 	 4 ft

Thus we can see that a very small miss distance can be achieved against this diffi-
cult maneuver if the guidance system time constant can be reduced to 0.1 s. Of
course we can also see from Fig. 20.9 that turning the guidance system off
would also yield the same miss.

Both previous examples assumed that the missile had infinite acceleration
capability. Figure 20.15 shows that when the missile to target acceleration

Fig. 20.13 Reducing guidance system time constant dramatically reduces miss.
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advantage decreases from infinity to only two the miss increases. However, since
the guidance system time constant is small the maximum miss distance is not
large. Of course, if the missile guidance system were turned off, the miss would
only be approximately 4 ft regardless of acceleration limit.

Fig. 20.14 Small guidance time constant yields good performance even when weave
frequency increases.

Fig. 20.15 Small miss distances can be achieved even when there is only 2 to 1
acceleration advantage.
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ADVANCED GUIDANCE TECHNIQUES TO IMPROVE PERFORMANCE

Traditional guidance laws are a form of proportional navigation (PN) in which the
acceleration command is proportional to the measured line-of-sight rate. As we
saw in Chapter 2, proportional navigation can also be thought of as a guidance
law in which the acceleration command is proportional to the zero effort miss
and inversely proportional to the square of the time to go until intercept or

nc ¼ N 0

t2go
½y þ _ytgo� ¼ N 0Vc _l

The zero effort miss can be thought of as a prediction of how much the missile
would miss the target by if the target continued to perform as it had done in the
past and the missile issued no further acceleration commands (zero effort). We
can see from the preceding equation that the zero effort miss term (bracketed
quantity) in proportional navigation assumes that the target is not maneuvering.
This does not mean that proportional navigation cannot hit a maneuvering target;
it just means that this guidance law is not optimal in the sense that it requires the
least acceleration when the target is maneuvering.

If it is known that the target is maneuvering in a step-wise fashion, we saw in
Chapter 8 that the zero effort miss could be calculated exactly and a new guidance
law result, known as augmented proportional navigation (APN). Mathematically
this means that the zero effort miss has an acceleration term based on a constant
maneuver or

nc ¼ N 0

t2go
½y þ _ytgo þ 0:5t2go€yT � ¼ N 0Vc _lþ 0:5N 0€yT

Although augmented proportional navigation can hit targets maneuvering in
different ways (that is, not step maneuvers), it is only optimal for the step
target maneuver in the sense that it requires the least acceleration. From an
implementation point of view augmented proportional navigation has one term
proportional to the line-of-sight rate and another term proportional to the
target acceleration. Therefore when augmented proportional navigation is
implemented, a special filter is required to provide an estimate of both the
line-of-sight rate and the instantaneous value of the target acceleration.

We can also derive a special guidance law if it is known in advance that the
target is weaving [7, 8]. In this case a simple model, similar to the ones of
Chapter 8 for guidance law development, is shown in Fig. 20.16. The second-order
shaping network shown in Fig. 20.16 represents the weaving or sinusoidal target
maneuver (see Chapter 1). As was the case for other guidance laws, we are still
trying to derive a guidance law that will yield zero miss distance and at the
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same time minimize the integral of the acceleration squared or

yðtFÞ ¼ 0 subject to minimizing
ðtF
0
n2c ðtÞdt

Figure 20.16 can be expressed in state-space form as
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€y€T

2
664

3
775 ¼

0 1 0 0
0 0 1 0
0 0 0 1
0 0 �v2 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

y
_y
€yT
€y_T

2
664

3
775þ

0
�1
0
0

2
664

3
775

|fflfflffl{zfflfflffl}
G

nc

As was the case in Chapter 8, if a system is expressed in state-space form we can
also express the final state of the system at any time according to

xðtFÞ ¼ FðtF � tÞxðtÞ þ
ðtF
t
FðtF � lÞGðlÞuðlÞdl

where x(t) is the system state vector and F(t) is the fundamental matrix. Because
the systems dynamics matrix F in this example is time-invariant, the fundamental
matrix can be found directly from F according to

FðtÞ ¼ L�1½ðsI � FÞ�1�

yielding

FðtÞ ¼

1 t
ð1� cosvtÞ

v2

ðvt � sinvtÞ
v3

0 1
sinvt
v

ð1� cosvtÞ
v2

0 0 cosvt
sinvt
v

0 0 �v sinvt cosvt

2
66666664

3
77777775

Fig. 20.16 Model for weave guidance law derivation.
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Substitution of the F and G matrices into the matrix expression for the final state
yields four scalar equations in this example. The first of these scalar equations is
given by

yðtFÞ ¼ yðtÞ þ ðtF � tÞ _yðtÞ þ ½1� cosvðtF � tÞ�
v2

€yTðtÞ

þ ½vðtF � tÞ � sinvðtF � tÞ�
v3

€y_TðtÞ �
ðtT
t
ðtF � lÞncðlÞdl

We can use the same shorthand notation of Chapter 8 and define f1 and h1 as

f1ðtF � tÞ ¼ yðtÞ þ ðtF � tÞyðtÞ þ ½1� cosvðtF � tÞ�
v2

€yTðtÞ

þ ½vðtF � tÞ � sinvðtF � tÞ�
v3

€y_TðtÞ

and

h1ðtF � lÞ ¼ tF � l

so that we can say that

yðtFÞ ¼ f1 �
ðtF
t
h1ðtF � lÞncðlÞdl

In Chapter 8 we showed via the Schwartz inequality that the general form of the
resultant optimal guidance law based on the preceding formulation is given by

ncðlÞ ¼ kh1ðtF � lÞ
where

k ¼ f1ðtF � tÞ
�ðtF

t
h21ðtF � lÞdl

After some algebra we find that the optimal weave guidance law is given by

nc ¼ 3
t2go

y þ _ytgo þ
1� cosvtgo

v2
€yT þ vtgo � sinvtgo

v3
€y_T

� �

¼ 3Vc _lþ 3
t2go

1� cosvtgo
v2

� �
€yT þ 3

t2go

vtgo � sinvtgo
v3

� �
€y_T

We can see that the weave guidance law is similar to other optimal laws we
have derived in Chapter 8 in that guidance commands are still proportional to
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the zero effort miss and inversely proportional to the square of time to go until
intercept. From an implementation point of view, assuming that the target
weave frequency can be estimated off line and the time to go until intercept is
measured, the weave guidance law consists of three terms: one term proportional
to the line-of-sight rate, another term proportional to the target acceleration, and
a third term proportional to target jerk.

To better understand the relationship between the new guidance law and its
predecessors, let us consider the case in which the target weave frequency
approaches zero. One can show using Taylor series approximations that the
weave guidance law at zero frequency simplifies to

lim
v!0

ncWeave ¼
3
t2go

y þ _ytgo þ
t2go
2
€yT þ t3go

6
€y_T

" #

which is simply augmented proportional navigation with an effective navigation
ratio of 3 plus an extra term to account for target jerk. The bracketed term can
be recognized as the Taylor series expansion for the zero effort miss for constant
target jerk.

It is important to note that the new guidance law requires additional
information—an estimate of the target weave frequency, target jerk, and the
time to go until intercept. A four-state Kalman filter similar to the three-state
filter of Chapter 9 can be used to provide estimates of the target acceleration
and jerk. The target weave frequency estimate can be derived from either the
homing sensors measurements using an extended Kalman filter or from an exter-
nal sensor (such as ground radar).

Because we have already demonstrated that dynamics within the guidance
system will cause miss distance, the preceding guidance law must be modified
to account for guidance system lags. With endoatmospheric interceptors, the
flight-control system dynamics constitute the bulk of the overall guidance
system time constant. If it is known that the target maneuver is sinusoidal in
nature, the weave guidance can be modified to compensate for the known
dynamics of the interceptor flight-control system. The compensated weave
guidance law [7, 8] is very similar to the optimal guidance law derived in
Chapter 8 for a single time constant guidance system, which can be expressed as

ncWeave
Lag

¼ N 0

t2go
y þ _ytgo þ 1� cosvtgo

v2
€yT

�

þvtgo � sinvtgo
v3

€y_T � nLT
2ðe�x þ x � 1Þ

�
where x is given by

x ¼ tgo
T
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with tgo being the time to go until intercept and T being defined as the approxi-
mate time constant of the flight control system. The effective navigation ratio in
the compensated weave guidance law is now time-varying and is given by

N 0 ¼ 6x2ðe�x � 1þ xÞ
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

The effective navigation ratio for the compensated weave guidance law is iden-
tical to the effective navigation ratio of the optimal guidance law of Chapter 8 and

Fig. 20.17 Normalized effective navigation ratio for compensated weave guidance law.

Fig. 20.18 Time lags cause miss—even for uncompensated weave guidance.
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is displayed in normalized form in Fig. 20.17. We can see that at the beginning of
the flight (long time to go before intercept) the effective navigation ratio is
approximately constant and is approaching 3. As we get closer to intercept
(small time to go), the effective navigation ratio grows considerably.

To test the effectiveness of the weave and compensated weave guidance laws,
the brute force simulation of Listing 20.2 was modified to include various gui-
dance law options (that is, before FLAG=1 statement). We can see from
Listing 20.4 that the guidance system under consideration is a fifth-order binomial
even though the compensated weave guidance law assumes a single time constant
guidance system. In other words, the compensated weave guidance is actually sub-
optimal in Listing 20.4.

Figure 20.18 shows that proportional navigation can have substantial miss dis-
tances against a 6-g, 2 rad/s weaving target in a fifth-order binomial guidance
system with a time constant of 0.25 s. We can also see that uncompensated
weave guidance (guidance lags are not accounted for) can substantially reduce
the miss.

LISTING 20.4 BRUTE FORCE SIMULATION FOR GUIDANCE LAW EVALUATION
AGAINST WEAVING TARGET

n=0;
VC=4000.;
XNT=193.2;
XNP=3.;
XNCLIM=99999999.;
TAU=.25;
W=2.;
WH=2.;
APN=1;
for TF=.1:.1:10

Y=0.;
YD=0.;
XNL=0.;
D=0.;
ELAMDH=0.;
X4=0.;
X5=0.;
T=0.;
H=.01;
while T , =(TF-.0001)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
DOLD=D;
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ELAMDHOLD=ELAMDH;
X4OLD=X4;
X5OLD=X5;
STEP=1;
FLAG=0;

while STEP , =1
if FLAG==1

STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
ELAMDH=ELAMDH+H*ELAMDHD;
D=D+H*DD;
X4=X4+H*X4D;
X5=X5+H*X5D;
T=T+H;

end
YTDD=XNT*sin(W*T);
YTDDD=W*XNT*cos(W*T);
TGO=TF-T+.00001;
XLAM=Y/(VC*TGO);
DD=5.*(XLAM-D)/TAU;
ELAMDHD=5.*(DD-ELAMDH)/TAU;
if APN==1

XNC=XNP*VC*ELAMDH;
elseif APN==2

XP=WH*TGO;
XNC=XNP*VC*ELAMDH+XNP*YTDD*(1.-cos(XP))/XP^2+...

XNP*YTDDD*(XP-sin(XP))/(XP*XP*WH);
else

X=TGO/TAU;
XP=WH*TGO;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);

XNC=XNPP*VC*ELAMDH+XNPP*YTDD*(1.cos(XP))/XP^2....
+XNPP*YTDDD*(XP-sin(XP))/(XP*XP*WH)-...
XNPP*XNL*TAU*TAU*(exp(-X)+X-1.)/TGO^2;

end
if XNC . XNCLIM

XNC=XNCLIM;
end
if XNC , -XNCLIM

XNC=-XNCLIM;
end
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X4D=5.*(XNC-X4)/TAU;
X5D=5.*(X4-X5)/TAU;
XNLD=5.*(X5-XNL)/TAU;
YDD=YTDD-XNL;
FLAG=1;

end
FLAG=0;

Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
D=.5*(DOLD+D+H*DD);
ELAMDH=.5*(ELAMDHOLD+ELAMDH+H*ELAMDHD);
X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);

end
n=n+1;
ArrayTF(n)=TF;
ArrayY(n)=Y;

end
figure
plot(ArrayTF,ArrayY),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Miss (Ft)’)
clc
output=[ArrayTF’,ArrayY’];
save datfil.txt output -ascii
disp ’simulation finished’

Fig. 20.19 Compensating for guidance system dynamics reduces the miss distance.
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Although weave guidance has small miss distances compared to proportional
navigation, there is still room for improvement when there are significant gui-
dance system lags. Figure 20.19 shows that when there is imperfect compensation
(guidance law optimal for single time constant and there are five time constants in
guidance system being tested) the new guidance law reduces the miss distance
even more.

SUMMARY

Normalized design curves have been presented showing how a weaving target
influences the miss distance of a generic proportional navigation guidance
system. This chapter demonstrated how the target weave frequency and ampli-
tude, the missile guidance system time constant, effective navigation ratio, and
acceleration capability all play an important role in determining system perform-
ance. It was demonstrated that, in general, speeding up a missile guidance system
and increasing the missile-to-target acceleration advantage will help reduce the
miss distance due to a weaving target. It was also shown how special guidance
laws that require more information than proportional navigation can be used
to improve system performance.
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CHAPTER 21

Representing Missile Airframe with
Transfer Functions

INTRODUCTION

So far we have seen that the missile guidance system time constant is extremely
important in determining system performance. In aerodynamic missiles the
major portion of the total guidance system time constant is governed by the
time constant of the flight-control system. In Chapters 6, 19, and 20 for simplicity,
we have treated the flight-control system in our fifth-order binomial guidance
system as three equal time constants. In this chapter we shall show how the
nonlinear force and moment equations determine how the missile airframe
responds to control surface deflections. In addition, we shall show one way of lin-
earizing the force and moment equations so that we can find airframe transfer
functions. The transfer function representation of the airframe is the necessary
first step in the design of the missile autopilot.

In practice both proprietary computer codes and wind tunnel-generated aero-
dynamic data are used to derive missile airframe transfer functions. However, it is
interesting to note that wind tunnel data was not available when the original mis-
siles were designed. Simplified aerodynamic shapes were chosen for the initial
designs so that linear theory could be used to derive the necessary airframe
transfer functions.

The nonlinear force and moment equations in this chapter are first expressed
in terms of physical missile parameters (weight, length, etc.) rather than in terms
of wind tunnel-generated functions. Although this is an approximation to reality,
it will enable the reader to get a clearer understanding of how the geometry of the
missile influences the force and moment equations. Next the force and moment
equations are linearized, and it is shown how the airframe can then be represented
by various transfer functions. Finally, using numerical examples, this chapter
shows that the transfer function representation of the airframe is an excellent
approximation to the nonlinear equations for angles of attack less than 20 to
30 deg.
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FORCE AND MOMENT EQUATIONS

A typical tail-controlled, aerodynamic winged missile is shown in Fig. 21.1. This
type of missile generates lift by moving control surfaces. In this endoatmospheric
missile the movable control surface or tail can be deflected about the hinge line
through a fin angle d in order to help the missile develop an angle of attack a.

The fixed surface or wing plus the missile body help the missile develop
additional acceleration. The normal force acts through the center of pressure
(CP). We can express the normal force equation as

FN ¼ QSrefCN

where CN is the normal force coefficient, Q is the dynamic pressure, and Sref is the
reference area. The dynamic pressure and reference area are given by

Q ¼ 0:5rV2
M

Sref ¼ pd2

4

where r is the air density in units of slug/ft3, VM is the missile velocity in units
of ft/s, and d is the missile diameter in units of ft.

The total force acting on the missile body consists of component forces on the
body, wing tail, and nose as shown in Fig. 21.2. In this simplified diagram all inter-
ference effects are neglected, and the total force is simply the sum of the individual
forces. Each of the component forces act through their own centers of pressure.
The centers of pressure for the body, wing, and nose are denoted XCPB, XCPW,
and XCPN, respectively. The force acting on the tail acts through the hinge

Fig. 21.1 Tail-controlled missile.
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line XHL. Neglecting interference effects, the normal force coefficient can be
approximated as [1, 2]

CN ¼ 2a|{z}
Nose

þ 1:5SPLANa2

Sref|{z}
Body

þ 8SWa

bSref|ffl{zffl}
Wing

þ 8STðaþ dÞ
bSref|ffl{zffl}
Tail

where a is the angle of attack, d is the control surface deflection, and SW, ST,
and SPLAN are per panel wing, tail, and planform areas, respectively. Because
the wing and tail are approximated by trapezoids in Fig. 21.2, their panel areas
are given by

SW ¼ 0:5hWðCTW þ CRWÞ
ST ¼ 0:5hTðCTT þ CRTÞ

Fig. 21.2 Forces on a tail-controlled missile.
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where the subscript T denotes a tip chord and the subscript R denotes a root
chord. For a cylindrical missile body with a parabolic nose (radome), the planform
area can be approximated as

SPLAN ¼ ðL� L0Þd þ 0:67L0d 	 Ld

where L is the missile length and L0 is the radome length. The parameter b in the
normal force coefficient equation is a normalized speed, for supersonic travel it is

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mach2 � 1

p
The missile Mach number is simply the missile speed divided by the speed of
sound. Although the speed of sound is altitude dependent, we shall assume for
simplicity that the speed of sound is always 1000 ft/s. Multiplying the force by
its moment arm yields the developed moment or

M ¼ FN �Moment Arm

Therefore the moment coefficient can be approximated as

CM ¼ 2a
ðXCG � XCPNÞ

d
þ 1:5SPLANa2

Sref

ðXCG � XCPBÞ
d

þ 8SWa

bSref

ðXCG � XCPWÞ
d

þ 8STðaþ dÞ
bSref

ðXCG � XHLÞ
d

where XCG is the distance from the nose to the missile center of gravity and XCPN,
XCPB, and XCPW are the distances from the nose to the centers of pressure for the
nose, body, and wing, respectively. The preceding expression assumes a tail-
controlled missile and XHL is the distance from the nose to the missile hinge
line. The nose, body, and wing centers of pressure (referenced with respect to
the nose) can be analytically approximated because of their geometrical shape
and can be shown to be [3]

XCPN ¼ 0:67L0

XCPW ¼ L0 þ XW þ 0:7CRW � 0:2CTW

XCPB ¼ 0:67ANL0 þ AB½L0 þ 0:5ðL� L0Þ�
AN þ AB

where XW is the distance from the wing to the radome tangency point as shown in
Fig. 21.2. The nose and body areas are given by

AN ¼ 0:67L0d
AB ¼ ðL� L0Þd
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Again for simplicity we will assume that the missile center of gravity is approxi-
mately in the center of the missile or

XCG ¼ 0:5L

The total momentM on the missile can be expressed in terms of the moment coef-
ficient according to

M ¼ QSrefdCM

We now have enough information to express the normal and angular accelera-
tions acting on the missile in terms of the geometry of the missile configuration.
The acceleration normal to the missile body can be expressed in terms of the
normal force according to

nB ¼ FNg
W

¼ gQSrefCM

W

where W is the missile weight. The angular acceleration acting on the missile can
be expressed in terms of the moment according to

€u ¼ M
Iyy

¼ QSrefdCM

Iyy

where Iyy is the missile moment of inertia. If the missile body is approximated as a
cylinder, the formula for the moment of inertia is given by [4]

Iyy ¼ W½3ð0:5dÞ2 þ L2�
12g

	 WL2

12g

Finally from Fig. 21.1 we can see that the angle of attack can be expressed in terms
of the missile body and flight path angles according to

a ¼ u� g

Taking derivatives of both sides of the equation and recognizing that the flight
path rate can also be expressed in terms of the missile acceleration yields

_a ¼ _u� _g ¼ _u� ðnL=VMÞ
If we assume that the angle of attack is small, the missile acceleration perpendicu-
lar to the velocity nL is approximately the same as the missile acceleration perpen-
dicular to the body nB. Therefore the derivative of the angle of attack can be
expressed as

_a ¼ _u� _g ¼ _u� ðnB=VMÞ
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In the next three chapters we shall assume that the acceleration perpendicular to
the body is approximately the same as the missile acceleration perpendicular to
the velocity vector.

AIRFRAME SIMULATION

We now have enough information to simulate the force and moment equations
and thus find out how the missile airframe responds when the tail is deflected.
Consider the hypothetical 1000-lb tail-controlled missile, shown in Fig. 21.3,
similar to the one first considered by Jerger [2]. In this example both the wing
and tail are triangular in shape. The locations of the wing, hinge line, and
center of gravity along with all the other airframe dimensions are indicated in
Fig. 21.3.

A simulation was written utilizing the preceding nonlinear force and moment
equations for the hypothetical missile of Fig. 21.3. The angle of attack rate and
missile angular acceleration differential equations, which involve the force and
moment equations, are integrated and the simulation appears in Listing 21.1.
We can see from the inputs at the beginning of the simulation that the air-
frame inputs and data of Fig. 21.3 are consistent. The simulation assumes that
the speed of sound is always equal to 1000 ft/s. As was mentioned previously,
this is an approximation since the speed of sound is altitude dependent and can
be as much as 10% different than the number used in the simulation. We can
also see that we are using the exponential approximation to the atmosphere
that was first introduced in Chapter 10. The airframe differential equations for
angle of attack rate and angular body acceleration appear before the FLAG=1
statement.

Fig. 21.3 Hypothetical missile.
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LISTING 21.1 AIRFRAME SIMULATION

n=0;
VM=3000.;
DEL=5./57.3;
ALT=0.;
A=1000.;
DIAM=1.;
FR=3.;
XL=20.;
CTW=0.;
CRW=6.;
HW=2.;
CTT=0.;
CRT=2.;
HT=2.;
XN=4.;
XCG=10.;
XHL=19.5;
WGT=1000.;
if ALT,=30000.

RHO=.002378*exp(-ALT/30000.);
else

RHO=.0034*exp(-ALT/22000.);
end
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
SREF=3.1416*DIAM*DIAM/4.;
XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2.;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
THD=0;
ALF=0;
T=0;
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H=.0025;
S=0.;
while T,1.99999

THDOLD=THD;
ALFOLD=ALF;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
THD=THD+H*THDD;
ALF=ALF+H*ALFD;
T=T+H;

end
CN=2*ALF+1.5*SPLAN*ALF*ALF/SREF+8*SWING*ALF/(B*SREF)+...
8*STAIL*(ALF+DEL)/(B*SREF);
CM=2*ALF*TMP4+1.5*SPLAN*ALF*ALF*TMP3/SREF+...

8*SWING*ALF*TMP1/(B*SREF)...
+8*STAIL*(ALF+DEL)*TMP2/(B*SREF);
THDD=Q*SREF*DIAM*CM/XIYY;
XNL=32.2*Q*SREF*CN/WGT;
ALFD=THD-XNL/VM;
FLAG=1;

end
FLAG=0;
THD=.5*(THDOLD+THD+H*THDD);
ALF=.5*(ALFOLD+ALF+H*ALFD);
S=S+H;
if S.=.0099999

S=0.;
n=n+1;
ArrayT(n)=T;
ArrayXNLG(n)=XNL/32.2;
ArrayALFDEG(n)=ALF*57.3;

end
end
figure
plot(ArrayT,ArrayXNLG),grid
xlabel(’Time (Sec)’)
ylabel(’Missile Acceleration (G)’)
figure
plot(ArrayT,ArrayALFDEG),grid
xlabel(’Time (Sec)’)
ylabel(’Angle of Attack (Deg)’)
clc
output=[ArrayT’,ArrayXNLG’,ArrayALFDEG’];
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save datfil.txt output -ascii
disp ’simulation finished’

A case was run for the hypothetical missile of Fig. 21.3 in which the missile fin
was deflected 5 deg when the missile was at sea level traveling at 3000 ft/s. We can
see from Fig. 21.4 that a 5-deg fin deflection in the positive direction causes the
missile to build up to a negative angle of attack. The angle of attack initially
approaches 28 deg, oscillates, and finally approaches a steady-state or trim
value of approximately 25 deg after several seconds. The decaying oscillations
indicate that the missile airframe has low damping. The transient values of the
angle of attack due to the fin deflection are important to the designer because
excessive values could cause flight catastrophe.

The buildup in angle of attack enables the missile to accelerate. We can see
from Fig. 21.5 that the steady-state acceleration due to a 5-deg fin deflection is
approximately 13 g at this flight condition. Again note the oscillatory nature of
the achieved acceleration due to a fixed fin deflection.

The simulation was also run when the altitude was increased to 50 kft (ALT=
50000). We can see from Figs. 21.6 and 21.7 that at higher altitudes the missile will
pull more angle of attack and have less acceleration available for a given fin deflec-
tion. In addition, the airframe natural frequency decreases with increasing alti-
tude. Because the amount of fin travel permitted is limited, the simulation
demonstrates that an aerodynamic missile will have less acceleration available
at the higher altitudes.

Fig. 21.4 A 5-deg fin deflection results in approximately 25-deg angle of attack at
sea level.
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LINEARIZATION OF THE AIRFRAME

An examination of the force and moment coefficients reveals that if we assume
that the missile speed and altitude are constant, the equations are mostly linear
except for the angle of attack squared term in each of the equations. For the con-
stant speed, constant altitude condition we can linearize by assuming that each

Fig. 21.5 A 5-deg fin deflection results in approximately 13 g of acceleration at sea level.

Fig. 21.6 More angle of attack is required at higher altitudes for fixed fin deflection.
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equation is linear in angle of attack and fin deflection. This means that the normal
force coefficient is approximated as

CN ¼ f ða; dÞ 	 CNaaþ CNdd

One method of finding CNa and CNd is to simply divide the angle of attack terms
in CN by a to get CNa and then divide the fin deflection term by d to get CNd

yielding

CNa ¼ 2þ 1:5SPLANa
Sref

þ 8SW
bSref

þ 8ST
bSref

CNd ¼ 8ST
bSref

Note that CNa depends on the angle of attack.
Because we are assuming that the acceleration normal to the body is nearly

equal to the missile acceleration perpendicular to the velocity vector (the angle
of attack is small), we can express the missile turning rate in terms of CNa and
CNd or

_g 	 nL
VM

¼ gQSref
WVM

½CNaaþ CNdd� ¼ �Zaa� Zdd

Fig. 21.7 Acceleration capability diminishes at higher altitudes for fixed fin deflection.
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where Za and Zd are defined as

Za ¼ �gQSrefCNa

WVM

Zd ¼ �gQSrefCNd

WVM

Therefore we have expressed the missile turning rate or acceleration as a linear
function of angle of attack or fin deflection. In a similar way the moment coeffi-
cient can be linearized as

CM ¼ f ða; dÞ 	 CMaaþ CMdd

As before, we can find CMa and CMd by simply dividing the angle of attack terms
of CM first by a and then dividing the fin deflection term by d yielding

CMa ¼ 2ðXCG � XCPNÞ
d

þ 1:5SPLANa
Sref

ðXCG � XCPBÞ
d

þ 8SW
bSref

ðXCG � XCPWÞ
d

þ 8ST
bSref

ðXCG � XHLÞ
d

CMd ¼ 8ST
bSref

ðXCG � XHLÞ
d

Note that CMa is not a constant for a given speed and altitude but depends on the
angle of attack.

We can now express the linearized missile angular acceleration as

€u ¼ M
Iyy

¼ QSrefd
Iyy

½CMaaþ CMdd� ¼ MaaþMdd

where Ma and Md are defined as

Ma ¼ QSrefdCMa

Iyy

Md ¼ QSrefdCMd

Iyy

Because the derivative of the angle of attack is given by

_a ¼ _u� _y

we can say that

_a ¼ _uþ Zaaþ Zdd
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As mentioned previously, Ma and Za are not constants in our linearized
model but vary with angle of attack. These aerodynamic parameters are usually
evaluated at a trim angle of attack. The vehicle is considered to be at trim when
the moment is zero (CM ¼ 0). At the trim condition one solves for the angle of
attack and uses that value to evaluate Ma and Za.

The linearized airframe equations can also be represented in block diagram
form as shown in Fig. 21.8. The two integrators shown in the block diagram indi-
cate that the airframe can be considered to be a second-order system. It is impor-
tant to note that this diagram assumes that the input fin deflection d is in units of
degrees and that the output acceleration nL is in units of gees. All internal angles
and rates are either in units of degrees or degrees per second.

Often it is convenient to have a transfer function representation of the air-
frame. Strictly speaking, the transfer function is only valid when the missile is
at a fixed speed, altitude, and trim angle of attack. After some algebra we can
find the transfer function relating the achieved missile acceleration to the fin
deflection from Fig. 21.8 as

nL
d

¼ �VM½MaZd � ZaMd�
1845Ma

1� Zds2

MaZd � ZaMd

� ��
1þ Za

Ma
s� s2

Ma

� �

The preceding transfer function can be simplified to

nL
d

¼ K1 1� s2

v2
z

� ��
1þ 2zAF

vAF
sþ s2

v2
AF

� �

Fig. 21.8 Linearized airframe.
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where

K1 ¼ �VM½MaZd � ZaMd�
1845Ma

and

vz ¼ MaZd � ZaMd

Zd

vAF ¼
ffiffiffiffiffiffiffiffiffiffiffi�Ma

p

zAF ¼
ZavAF

2Ma

Similarly, the transfer function from missile pitch rate to fin deflection can also be
written from Fig. 21.8 as

_u

d
¼ �½MaZd � ZaMd�

Ma
1þ Mds

MaZd � ZaMd

� ��
1þ Za

Ma
s� s2

Ma

� �

which simplifies to

_u

d
¼ K3ð1þ TasÞ

�
1þ 2zAF

vAF
sþ s2

v2
AF

� �

where

K3 ¼ �½MaZd � ZaMd�
Ma

¼ 1845K1

VM

Ta ¼ Md

MaZd � ZaMd

If an accelerometer is used in a flight-control system to measure the achieved
missile acceleration, it will probably not be located at the center of gravity. Its
measurement of the actual acceleration will be corrupted by the body angular
acceleration according to

nA ¼ nL þ ðXCG � XACCÞ€u
1845

where XACC is the accelerometer location with respect to the nose, XCG is the
center of gravity of the missile, and nA is acceleration measured by the acceler-
ometer. However we shall neglect this effect and assume that the measured and
achieved accelerations are identical in order to simplify the ensuing analysis.
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NUMERICAL EXAMPLE

To test the accuracy of the airframe linearization, the example presented at the
beginning of this chapter was repeated. However, before we begin, we must first
have a method of calculating the trim angle of attack for a given fin deflection
(fin deflection is 5 deg in this example). The moment coefficient can be written as

CM ¼ 2a
ðXCG � XCPNÞ

d
þ 1:5SPLANa2

Sref

ðXCG � XCPBÞ
d

þ 8SWa

bSref

ðXCG � XCPWÞ
d

þ 8STðaþ dÞ
bSref

ðXCG � XHLÞ
d

or in shorthand notation as

CM ¼ y1aþ y2a
2 þ y3d

where

y1 ¼ 2ðXCG � XCPNÞ
d

þ 8SW
bSref

ðXCG � XCPWÞ
d

þ 8ST
bSref

ðXCG � XHLÞ
d

y2 ¼ 1:5SPLANa
Sref

ðXCG � XCPBÞ
d

y3 ¼ 8ST
bSref

ðXCG � XHLÞ
d

At trim the moment coefficient is zero. Therefore, for a given fin deflection dNOM
we get the equation for the trim angle of attack aTR to be

0 ¼ y1aTR þ y2a
2
TR þ y3dNOM

We can use the quadratic formula to solve for the trim angle of attack. After
eliminating the unrealistic root we get

aTR ¼ �y1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 � 4y2y3dNOM

p
2y2

and can now evaluate CNa and CMa as

CNa ¼ 2þ 1:5PLANaTR

Sref
þ 8SW
bSref

þ 8ST
bSref

CMa ¼ 2ðXCG � XCPNÞ
d

þ 1:5SPLANaTR

Sref

ðXCG � XCPNÞ
d

þ 8SW
bSref

ðXCG � XCPWÞ
d

þ 8ST
bSref

ðXCG � XHLÞ
d
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To write a simulation involving the linearized airframe, we must convert the
transfer functions to differential equations as was done in Chapter 1. The transfer
function relating missile acceleration to fin deflection was already shown to be

nL
d

¼ K1 1� s2

v2
z

� ��
1þ 2zAF

vAF
sþ s2

v2
AF

� �
Using the chain rule from calculus we can say that

nL
d

¼ e
d
� nL

e

Therefore, as was done in Chapter 1, we can split the missile acceleration transfer
function and get two equivalent transfer functions or

e
d
¼ 1

�
1þ 2zAF

vAF
sþ s2

v2
AF

� �
and

nL
e
¼ K1 1� s2

v2
z

� �
Cross multiplying the first transfer function and converting Laplace transform
notation to the time domain yields

eþ 2zAF
vAF

_eþ €e
v2
AF

¼ d

If we solve the preceding equation for the highest derivative, we get

€e ¼ v2
AF d� e� 2zAF

vAF
_e

� �
Repeating the procedure and cross multiplying the second transfer function and
converting to the time domain yields the equation for the missile acceleration or

nL ¼ K1ðe� €e=v2
zÞ

Similarly recall that the body rate transfer function is given by

_u

d
¼ K3ð1þ TasÞ

�
1þ 2zAF

vAF
sþ s2

v2
AF

� �
Again we can use the chain rule to split the transfer function as

_u

d
¼ e

d
�
_u

e

The second term on the right-hand side of the preceding equation is simply the
numerator of the transfer function or

_u

e
¼ K3ð1þ TasÞ
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Cross multiplying and converting Laplace transforms to the time domain yields
the differential equation for the body rate as

_u ¼ K3ðeþ Ta _eÞ
We now have the two differential equations required to simulate the linearized

airframe. A linear simulation of the airframe, based on the definitions of the pre-
vious section and the differential equations derived from the airframe transfer
functions, appears in Listing 21.2. The linear airframe coefficients are evaluated
using the trim value of the angle of attack. The inputs of the linear simulation
are identical to those of the nonlinear airframe simulation of Listing 21.1. We
can see that the linear differential equations appear before the FLAG=1 statement.

The nominal case was run in which there was a 5-deg fin deflection when the
missile was at sea level and traveling at 3000 ft/s. Figure 21.9 shows that the linear
airframe acceleration response is a near perfect match to the nonlinear airframe
results derived from Listing 21.1. This means that our linearized model is a
good approximation to reality.

LISTING 21.2 LINEAR AIRFRAME SIMULATION

n=0.;
VM=3000.;
DEL=5./57.3;
ALT=0.;
A=1000.;
DIAM=1.;

Fig. 21.9 Linear model accurately approximates actual missile acceleration.
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FR=3.;
XL=20.;
CTW=0.;
CRW=6.;
HW=2.;
CTT=0.;
CRT=2.;
HT=2.;
XN=4.;
XCG=10.;
XHL=19.5;
WGT=1000.;
if ALT,=30000.

RHO=.002378*exp(-ALT/30000.);
else

RHO=.0034*exp(-ALT/22000.);
end
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
SREF=3.1416*DIAM*DIAM/4.;
XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2.;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
Y1=2*TMP4+8*SWING*TMP1/(B*SREF)+8*STAIL*TMP2/(B*SREF);
Y2=1.5*SPLAN*TMP3/SREF;
Y3=8*STAIL*TMP2*DEL/(B*SREF);
ALFTR=(-Y1-sqrt(Y1*Y1-4.*Y2*Y3))/(2*Y2);
CNA=2+1.5*SPLAN*ALFTR/SREF+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
CND=8*STAIL/(B*SREF);
CMAP=2*TMP4+1.5*SPLAN*ALFTR*TMP3/SREF+8*SWING*TMP1/(B*SREF);
CMA=CMAP+8*STAIL*TMP2/(B*SREF);
CMD=8*STAIL*TMP2/(B*SREF);
XMA=Q*SREF*DIAM*CMA/XIYY;
XMD=Q*SREF*DIAM*CMD/XIYY;
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ZA=-32.2*Q*SREF*CNA/(WGT*VM);
ZD=-32.2*Q*SREF*CND/(WGT*VM);
WZ=sqrt((XMA*ZD-ZA*XMD)/ZD);
WAF=sqrt(-XMA);
ZAF=.5*WAF*ZA/XMA;
XK1=-VM*(XMA*ZD-XMD*ZA)/(1845*XMA);
XK2=XK1;
TA=XMD/(XMA*ZD-XMD*ZA);
XK3=1845*XK1/VM;
E=0.;
ED=0.;
T=0;
H=.0025;
S=0;
while T,1.99999

EOLD=E;
EDOLD=ED;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

E=E+H*ED;
ED=ED+H*EDD;
T=T+H;

end
EDD=WAF*WAF*(DEL*57.3-E-2.*ZAF*ED/WAF);
XNL=XK1*(E-EDD/WZ^2);
THD=XK3*(E+TA*ED);

FLAG=1;
end
FLAG=0;
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
S=S+H;
if S.=.0099999

S=0.;
n=n+1;
ArrayT(n)=T;
ArrayXNL(n)=XNL;
ArrayTHD(n)=THD;

end
end
figure
plot(ArrayT,ArrayXNL),grid
xlabel(’Time (Sec)’)
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ylabel(’Missile Acceleration (G)’)
clc
output=[ArrayT’,ArrayXNL’,ArrayTHD’];
save datfil.txt output -ascii
disp ’simulation finished’

The angle of attack squared terms in the force andmoment equations prevent the
linear model from being perfect. The linear model is a less accurate representation
of reality when the angle of attack is large. To see if the linear model is less accurate
when the angle of attack is larger, another casewas run inwhich the findeflectionwas
increased from 5 deg to 10 deg. We can see from Fig. 21.10 that when the fin deflec-
tion is increased the linear approximation to the airframe starts to deteriorate.

Finally, another case was run in which the fin deflection was still 5 deg, but the
altitude increased from sea level to 50,000 ft. A 5-deg fin deflection at 50-kft alti-
tude will cause a larger angle of attack than a 5-deg fin deflection at sea level, and
so we would expect our linear model to be less accurate because of the angle of
attack squared term in the force and moment equations. We can see from
Fig. 21.11 that the linear model still approximates reality very well at this high alti-
tude flight condition.

EXPERIMENTS

Using the linear transfer function approach, we can study the effect of flight con-
dition on various important airframe parameters. We have seen that the airframe
natural frequency is given by

vAF ¼
ffiffiffiffiffiffiffiffiffiffiffi�Ma

p

Fig. 21.10 Linear model is less accurate at larger fin deflections.
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Figure 21.12 shows that for our hypothetical missile the airframe natural fre-
quency decreases with increasing altitude and decreasing speed. For this
example the airframe natural frequency varied between 10 rad/s and 30 rad/s.
If we think of the airframe time constant being the inverse of the natural
frequency, then the time constant variation is between 0.033 s and 0.1 s. In

Fig. 21.11 Linear model is reasonable at higher altitudes.

Fig. 21.12 Airframe natural frequency decreases with increasing altitude and
decreasing speed.
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general the airframe time constant is fast, and an autopilot is usually not required
to artificially speed up the airframe response.

We have already shown that the airframe damping is given by

zAF ¼
ZavAF

2Ma

Figure 21.13 shows that the airframe damping decreases with increasing altitude
and in creasing missile speed. The airframe damping is quite low and in this
example varies between 0.02 and 0.065. We shall soon see that this low
damping is not satisfactory for overall system performance in a radar homing
missile and that a flight-control system is required to artificially increase the
low damping of the airframe.

Ma and Md are both important airframe parameters and are displayed in
Figs. 21.14 and 21.15. A positive Ma indicates that the bare airframe is unstable.
There are limits on how negative or positive Ma can be before the design of the
flight-control system becomes impossible. During the normal design process it
is natural for the baseline airframe to change due to either overly optimistic
assumptions concerning weight and size or possibly due to new requirements.
In both cases it is important that the flight-control system designer work
closely with the aerodynamicist not only when an airframe is being selected but
also as it is being modified. For example, large values of Md make it difficult to
choose actuators that will work with the flight-control system. Therefore it is
also important to limit the size of this key aerodynamic parameter.

Finally Fig. 21.16 shows that the missile turning rate time constant Ta

increases with increasing altitude and increasing missile speed. At 50 kft altitude

Fig. 21.13 Airframe damping is low and decreases with increasing altitude.

494 TACTICAL AND STRATEGIC MISSILE GUIDANCE



we can see that the turning rate time constant is approximately 4 s when the
missile is traveling at 3000 ft/s. This is slightly smaller than the value used in
Chapter 18. In Chapter 18 the turning rate time constant was calculated based
on the nose and body only. We can see that the addition of the wing and tail
decreased the turning rate time constant from 5 s to 4 s. Although all missiles
have tails, some do not have wings. Wingless missiles will tend to have larger

Fig. 21.14 Ma gets smaller with increasing altitude and decreasing speed.

Fig. 21.15 Md gets smaller with increasing altitude and decreasing speed.
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turning rate time constants. We have shown before that the turning rate time con-
stant is related to the radome stability problem. Large values of turning rate time
constant require smaller values of radome slope for a given level of performance.

We have already shown that the airframe zero vz can be expressed in terms of
the aerodynamic parameters as

vz ¼ MaZd � ZaMd

Zd

Fig. 21.16 Turning rate time constant increases with increasing altitude and
increasing speed.

Fig. 21.17 Frequency of airframe zero decreases with increasing altitude.
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We can see from Fig. 21.17 that the airframe zero decreases with increasing alti-
tude and decreasing missile velocity. Smaller values of the airframe zero will cause
more wrong-way tail effect.

The acceleration aerodynamic gain K1 is in units of gees per degree and tells
how much steady-state acceleration there will be for a given fin deflection.
Figure 21.18 shows that the magnitude of the aerodynamic gain gets smaller as
the altitude increases and velocity decreases. For example, if the missile is traveling

0.0
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–1.0

K 3
 (1

/S
)

–1.5

–2.0
0 10 20 30

Altitude (Kft

40 50

Fig. 21.19 Magnitude of body rate aerodynamic gain is independent of velocity and gets
smaller as altitude increases.

Fig. 21.18 Magnitude of acceleration aerodynamic gain gets smaller as altitude increases.

REPRESENTING MISSILE AIRFRAME WITH TRANSFER FUNCTIONS 497



at 3000 ft/s the aerodynamic gain is approximately 22.7 at sea level and 20.4 at
50 kft altitude. Therefore a 5-deg fin deflection would result in213.5 g at sea level
(i.e., 22.7 � 5 ¼ 213.5) and only 2 g at 50 kft altitude (i.e., 2 0.4� 5 ¼ 22). The
nonlinear results of Fig. 21.7 confirm these calculations. More fin travel will be
required to achieve a given acceleration when the altitude is higher or when the
missile velocity is smaller.

The body rate aerodynamic gain K3 tells how much steady-state body rate
there will be for a given fin deflection. Figure 21.19 shows that the magnitude
of the aerodynamic gain gets smaller as the altitude increases and velocity
decreases. For example, if the missile is traveling at 3000 ft/s the body rate
aerodynamic gain is approximately 21.6 s21 at sea level and 20.24 s21 at 50 kft
altitude. Therefore a 5-deg fin deflection would result in 28 deg/s at sea level
(i.e.,21.6� 5 ¼ 28) and only21.2 deg/s at 50 kft altitude (i.e.,20.24� 5 ¼ 21.2).

SUMMARY

In this chapter we have seen how the nonlinear missile force and moment
equations are related to the geometry of the missile airframe. A simple method
for linearizing the force and moment equations was introduced so that transfer
functions could be derived for the missile airframe. It was shown that the transfer
function approximation to the airframe was a good approximation to the non-
linear force and moment equations at small angles of attack.
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CHAPTER 22

Introduction to Flight Control Design

INTRODUCTION

In Chapter 21 we saw how to derive aerodynamic transfer functions and relate
them to the missile airframe’s force and moment equations. The missile’s bare air-
frame response was shown to be highly oscillatory because of its low damping. The
purpose of the flight-control system, shown in Fig. 22.1, is to convert the missile’s
acceleration command nc generated by the guidance law to an achieved accelera-
tion nL. The flight-control system usually must improve the response character-
istics of the bare missile airframe to ensure that the achieved acceleration
closely follows the commanded acceleration.

As we can see from Fig. 22.1, the missile airframe is just one part of the flight-
control system. Mathematically we can think of the airframe as a transfer function
whose input is the tail fin deflection d and whose output is the achieved missile
acceleration nL. The autopilot is another part of the flight-control system and is
the mechanism for converting the acceleration command nc to a fin deflection
command dc. The actuator then takes the autopilot’s electrical output and
moves the missile control surfaces (that is, canards, wings, or tails) through the
appropriate angular deflection d in response to the fin deflection command.

In this chapter we shall first see how the flight-control system interacts with
the rest of the guidance system and how it influences system performance.
Then we shall investigate a simple way in which the principles of feedback can
be used in order to improve the flight-control system response so that homing
guidance objectives can be met.

OPEN-LOOP FLIGHT-CONTROL SYSTEM

The simplest possible flight-control system is the open-loop system shown in
Fig. 22.2. In this diagram, in which the airframe is treated as a transfer function
and the actuator dynamics are neglected, the autopilot is simply a gain that
attempts to cancel the aerodynamic gain of the airframe. In the steady state the
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missile-achieved acceleration will match the commanded acceleration provided
that the autopilot gain can be changed with flight condition. The open-loop auto-
pilot is the least expensive of all possible autopilots because it does not require a
rate gyro or accelerometer.

In Chapter 21 we assumed a certain fin deflection and solved for the trim angle
of attack along with the various aeroderivatives. In this chapter we shall specify the
desired acceleration and solve for the trim fin deflection and angle of attack.

Recall that the normal force coefficient is given by

CN ¼ 2aþ 1:5SPLANa2

Sref
þ 8SWa

bSref
þ 8STðaþ dÞ

bSref

Since

FN ¼ ma ¼ WnL
g

¼ QSrefCN

we can solve for the normal force coefficient at trim according to

CNTRIM ¼ WnLTRIM
gQSref

Using shorthand notation we can now say that at trim we get

CNTRIM ¼ y1aTRIM þ y2a
2
TRIM þ y3dTRIM

Fig. 22.1 Conceptual block diagram of a flight-control system.

Fig. 22.2 Open-loop flight-control system.
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where

y1 ¼ 2þ 8SW
bSref

þ 8ST
bSref

y2 ¼ 1:5SPLAN
Sref

y3 ¼ 8ST
bSref

Recall that the moment coefficient equation is given by

CM ¼ 2a
XCG � XCPNð Þ

d
þ 1:5SPLANa2

Sref

XCG � XCPBð Þ
d

þ 8SWa

bSref

XCG � XCPWð Þ
d

þ 8ST aþ dð Þ
bSref

XCG � XHLð Þ
d

At trim the moment coefficient is zero and we can rewrite the preceding
equation in shorthand notation as

0 ¼ y4aTRIM þ y5a
2
TRIM þ y6dTRIM

where

y4 ¼ 2ðXCG � XCPNÞ
d

þ 8SWðXCG � XCPWÞ
bSrefd

þ 8STðXCG � XHLÞ
bSrefd

y5 ¼ 1:5SPLANðXCG � XCPBÞ
Srefd

y6 ¼ 8STðXCG � XHLÞ
bSrefd

We now have two trim equations with two unknowns. The two equations can
be reduced to one quadratic equation allowing us to solve for the trim angle of
attack as

aTRIM ¼ � p3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p23 þ 4 p2CNTRIM

p
2 p2
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where

p2 ¼ y2 � y3y5
y6

p3 ¼ y1 � y3y4
y6

Substituting the trim angle of attack into the moment coefficient equation allows
us to solve for the trim fin deflection as

dTRIM ¼ �y4aTRIM � y5a2
TRIM

y6

We now have enough information to solve for the aerodynamic parameters at any
flight condition given a desired acceleration level. Using the notional missile of
Chapter 21, Table 22.1 numerically summarizes the values for the various
missile transfer function parameters for the case in which the missile is traveling
at 3000 ft/s at both sea level and 50-kft altitude and is trying to respond to a 10-g
acceleration command.

The open-loop flight-control system of Fig. 22.2 was simulated using the lin-
earized aerodynamics. We can see from Listing 22.1 the previously derived
equations for the calculation of the trim angle of attack. In addition, we can
also see that the open-loop autopilot is simply a gain.

As expected, Fig. 22.3 shows that the flight-control system response due to a
10-g step at sea level is oscillatory due to the low damping of the airframe. The
frequency of oscillation is also that of the bare airframe and is very high. In
other words the flight-control system response is simply the response of the
bare airframe. The sole purpose of the flight-control system is to ensure
that the achieved acceleration looks like the commanded acceleration in
the steady state.

TABLE 22.1 MISSILE TRANSFER FUNCTION PARAMETERS AT TWO FLIGHT CONDITIONS

Airframe
parameter

Definition Sea level 50 kft

vAF Airframe natural frequency 25.3 rad/s 10.0 rad/s

zAF Airframe damping 0.058 0.027

vz Airframe zero 43.2 rad/s 18.9 rad/s

K1 Aerodynamic acceleration gain 23.07 g/deg 20.559 g/deg
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Figure 22.4 shows that increasing the altitude decreases the damping and
natural frequency of the open-loop flight-control system response. We can see
that the flight-control system response is still that of the bare airframe.

Fig. 22.3 Open-loop flight-control system is lightly damped.

Fig. 22.4 Increasing the attitude decreases both the damping and natural frequency of the
open-loop flight-control system.
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LISTING 22.1 OPEN-LOOP FLIGHT-CONTROL SYSTEM

n=0;
VM=3000.;
XNCG=10.;
ALT=0.;
A=1000.;
DIAM=1.;
FR=3.;
XL=20.;
CTW=0.;
CRW=6.;
HW=2.;
CTT=0.;
CRT=2.;
HT=2.;
XN=4.;
XCG=10.;
XHL=19.5;
WGT=1000.;
if ALT,=30000.

RHO=.002378*exp(-ALT/30000.);
else

RHO=.0034*exp(-ALT/22000.);
end
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
SREF=3.1416*DIAM*DIAM/4.;
XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2.;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
P1=WGT*XNCG/(Q*SREF);
Y1=2.+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
Y2=1.5*SPLAN/SREF;
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Y3=8*STAIL/(B*SREF);
Y4=2*TMP4+8*SWING*TMP1/(B*SREF)+8*STAIL*TMP2/(B*SREF);
Y5=1.5*SPLAN*TMP3/SREF;
Y6=8*STAIL*TMP2/(B*SREF);
P2=Y2-Y3*Y5/Y6;
P3=Y1-Y3*Y4/Y6;
ALFTR=(-P3+sqrt(P3*P3+4.*P2*P1))/(2.*P2);
DELTR=-Y4*ALFTR/Y6-Y5*ALFTR*ALFTR/Y6;
CNA=2+1.5*SPLAN*ALFTR/SREF+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
CND=8*STAIL/(B*SREF);
CMAP=2*TMP4+1.5*SPLAN*ALFTR*TMP3/SREF+8*SWING*TMP1/(B*SREF);
CMA=CMAP+8*STAIL*TMP2/(B*SREF);
CMD=8*STAIL*TMP2/(B*SREF);
XMA=Q*SREF*DIAM*CMA/XIYY;
XMD=Q*SREF*DIAM*CMD/XIYY;
ZA=-32.2*Q*SREF*CNA/(WGT*VM);
ZD=-32.2*Q*SREF*CND/(WGT*VM);
WZ=sqrt((XMA*ZD-ZA*XMD)/ZD);
WAF=sqrt(-XMA);
ZAF=.5*WAF*ZA/XMA;
XK1=-VM*(XMA*ZD-XMD*ZA)/(1845*XMA);
XK2=XK1;
TA=XMD/(XMA*ZD-XMD*ZA);
XK3=1845*XK1/VM;
XKDC=1./XK1;
E=0.;
ED=0.;
T=0;
H=.0001;
S=0;
while T,1.99999

EOLD=E;
EDOLD=ED;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

E=E+H*ED;
ED=ED+H*EDD;
T=T+H;

end
DEL=XKDC*XNCG;
EDD=WAF*WAF*(DEL-E-2.*ZAF*ED/WAF);
XNL=XK1*(E-EDD/WZ^2);
FLAG=1;
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end
FLAG=0;
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
S=S+H;
if S.=.0099999
S=0.;
n=n+1;
ArrayT(n)=T;
ArrayXNL(n)=XNL;
ArrayXNCG(n)=XNCG;

end
end
figure
plot(ArrayT,ArrayXNL,ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Missile Acceleration (G)’)
clc
output=[ArrayT’,ArrayXNL’,ArrayXNCG’];
save datfil.txt output -ascii
disp ’simulation finished’

GUIDANCE SYSTEM INTERACTIONS

To get a clearer understanding of how the open-loop flight-control system (auto-
pilot plus airframe) interacts with the missile guidance system, let us consider the
homing loop block diagram of Fig. 22.5. In this diagram both the seeker and noise
filter are represented by single lags while the autopilot is represented simply by a
gain. Because actuator dynamics are neglected, the autopilot output is the
achieved fin deflection. Airframe transfer functions are present in the block
diagram to convert fin deflection to body rate and missile acceleration. The
values of the additional parameters for the body rate transfer function along
with the guidance system parameters appear in Table 22.2 for the two flight con-
ditions of interest. Because the two airframe transfer functions assume angles are
in units of degrees and acceleration is in units of gees, the constants 57.3 and 32.2
appear in the homing loop block diagram to convert quantities to the English
system of units. Notice that radome effects are also included in the block diagram.

To investigate how the open-loop flight-control system interacts with the gui-
dance system, an adjoint was constructed based on the model of Fig. 22.5. The rms
miss distance for a 10-s flight due to a 1-g uniformly distributed target maneuver
(see Chapter 4 for more details) was evaluated for different radome slopes when
the missile was traveling at 3000 ft/s and the target was traveling at 1000 ft/s at
50-kft altitude. The rms miss distance results are shown in Fig. 22.6. Here we can
see that nominally the airframe damping is 0.027 (see Table 22.1) and that the rms
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miss distance can be enormous if the radome slope is more negative than 20.005
or more positive than 0.04. However, if somehow the airframe damping could be
increased to 0.7 we can also see from Fig. 22.6 that the system would be less sen-
sitive to radome slope because the rms miss distance would only start to increase if
the radome slope became more negative than20.03 or more positive than 0.06. In
many radar homing applications the low damping of the airframe must be
increased artificially so that a wider range of radome slopes can be tolerated.
Therefore in these applications the low cost open-loop flight-control system
would not be suitable.

Fig. 22.5 Homing loop with open-loop flight-control system.

TABLE 22.2 ADDITIONAL LINEARIZED AERODYNAMICS AT TWO FLIGHT CONDITIONS

Parameter Definition Sea level 50 kft

Ta Turning rate time constant 0.457 s 2.40 s

K3 Aerodynamic body rate gain 21.89 1/s 20.344 1/s

Ts Seeker time constant 0.1 s 0.1 s

TN Noise filter time constant 0.1 s 0.1 s

Vc Closing velocity 4000 ft/s 4000 ft/s

N0 Effective navigation ratio 3 3

TF Flight time 10 s 10 s
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RATE GYRO FLIGHT-CONTROL SYSTEM

The rate gyro flight-control system artificially increases the low damping of the
open-loop flight-control system by the use of a rate gyro sensor and the principles
of feedback. In this flight-control system the rate gyro measures the missile body
rate and feeds back this information to develop an error signal. The rate gyro
flight-control system shown in Fig. 22.7 has two autopilot gains. The gain KR

Fig. 22.7 Rate gyro flight-control system.

Fig. 22.6 Law airframe damping increases sensitivity to radome.

508 TACTICAL AND STRATEGIC MISSILE GUIDANCE



will determine the response of the flight-control system while the gain KDC

controls the steady-state value of the response.
The transfer function from the achieved to the commanded acceleration can

be obtained from Fig. 22.7. After some algebraic manipulations we obtain

nL
nc

¼ KDCK1KR

1� KRK3
1� s2

v2
z

� �,
1þ ð2zAF=vAFÞ � KRK3Ta

1� KRK3
sþ s2

v2
AF 1� KRK3ð Þ

� �( )

To get the achieved acceleration to match the commanded acceleration in the
steady state, we can see from the preceding equation that the gain KDC must be
set to

KDC ¼ 1� KRK3

K1KR

Because the denominator of the flight-control system is a quadratic, we can find
the equivalent natural frequency v and damping z of the rate gyro flight-control
system by equating

1þ 2z
v
sþ s2

v2
¼ 1þ 2zAF=vAFð Þ � KRK3Ta

1� KRK3
sþ s2

v2
AFð1� KRK3Þ

Solving for the frequency and damping of the rate gyro flight-control system
yields

v ¼ vAF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� KRK3

p

z ¼ v

2
2zAF=vAFð Þ � KRK3Ta

1� KRK3

� �
Therefore we can see that the rate gyro autopilot gain KR influences both the
flight-control system frequency and damping.

Figures 22.8 and 22.9 show that increasing the autopilot gain KR increases the
damping of the flight-control system above that of the bare airframe both at low
and high altitudes. At sea level an autopilot gain of approximately 0.1 is required
to increase the damping of the rate gyro flight-control system to unity whereas at
50-kft altitude a gain of approximately 0.25 is required to get the same damping.
In other words the autopilot gain must be changed with flight condition to ensure
adequate damping in order to desensitize the guidance system to radome slope
effects. Changing the autopilot gain or gains with flight condition is known as
gain scheduling. It is important to note that for the rate gyro autopilot the auto-
pilot gain does not cause the natural frequency of the flight-control system to
be significantly different from the airframe’s natural frequency.

Listing 22.2 presents the simulation of the rate gyro flight-control system.
In this simulation parameters are first expressed in terms of the geometry of
the airframe and then the linearized aerodynamic parameters are derived. Note
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that the simulation integration interval is very small (h ¼ 0.0001 s). If the inte-
gration interval were 10 times larger, the system would appear to go unstable
when the autopilot gain is large (KR ¼ 5). However this instability is due
simply to numerical integration and can be corrected by choosing a smaller inte-
gration interval. In this simplified model of the world, the autopilot gain can be
made arbitrarily large without causing an instability in the guidance system.
The specific equations for the rate gyro flight-control system appear before the
FLAG ¼ 1 statement.

Fig. 22.9 Autopilot gain also determines damping of flight-control system at
50-kft altitude.

Fig. 22.8 Autopilot gain determines damping of flight-control system at sea level.
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LISTING 22.2 RATE GYRO FLIGHT-CONTROL SYSTEM IN PRESENCE OF LINEAR AIRFRAME

n=0;
VM=3000.;
XNCG=10.;
ALT=0.;
A=1000.;
DIAM=1.;
FR=3.;
XL=20.;
CTW=0.;
CRW=6.;
HW=2.;
CTT=0.;
CRT=2.;
HT=2.;
XN=4.;
XCG=10.;
XHL=19.5;
WGT=1000.;
XKR=.1;
if ALT,=30000.

RHO=.002378*exp(-ALT/30000.);
else

RHO=.0034*exp(-ALT/22000.);
end
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
SREF=3.1416*DIAM*DIAM/4.;
XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2.;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
P1=WGT*XNCG/(Q*SREF);
Y1=2.+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
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Y2=1.5*SPLAN/SREF;
Y3=8*STAIL/(B*SREF);
Y4=2*TMP4+8*SWING*TMP1/(B*SREF)+8*STAIL*TMP2/(B*SREF);
Y5=1.5*SPLAN*TMP3/SREF;
Y6=8*STAIL*TMP2/(B*SREF);
P2=Y2-Y3*Y5/Y6;
P3=Y1-Y3*Y4/Y6;
ALFTR=(-P3+sqrt(P3*P3+4.*P2*P1))/(2.*P2);
DELTR=-Y4*ALFTR/Y6-Y5*ALFTR*ALFTR/Y6;
CNA=2+1.5*SPLAN*ALFTR/SREF+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
CND=8*STAIL/(B*SREF);
CMAP=2*TMP4+1.5*SPLAN*ALFTR*TMP3/SREF+8*SWING*TMP1/(B*SREF);
CMA=CMAP+8*STAIL*TMP2/(B*SREF);
CMD=8*STAIL*TMP2/(B*SREF);
XMA=Q*SREF*DIAM*CMA/XIYY;
XMD=Q*SREF*DIAM*CMD/XIYY;
ZA=-32.2*Q*SREF*CNA/(WGT*VM);
ZD=-32.2*Q*SREF*CND/(WGT*VM);
WZ=sqrt((XMA*ZD-ZA*XMD)/ZD);
WAF=sqrt(-XMA);
ZAF=.5*WAF*ZA/XMA;
XK1=-VM*(XMA*ZD-XMD*ZA)/(1845*XMA);
XK2=XK1;
TA=XMD/(XMA*ZD-XMD*ZA);
XK3=1845*XK1/VM;
XKDC=(1.-XKR*XK3)/(XK1*XKR);
E=0.;
ED=0.;
T=0;
H=.0001;
S=0;
while T,1.99999

EOLD=E;
EDOLD=ED;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

E=E+H*ED;
ED=ED+H*EDD;
T=T+H;

end
THD=XK3*(E+TA*ED);
DEL=XKR*(XKDC*XNCG+THD);
EDD=WAF*WAF*(DEL-E-2.*ZAF*ED/WAF);
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XNL=XK1*(E-EDD/WZ^2);
FLAG=1;

end
FLAG=0;
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
S=S+H;
if S.=.0099999

S=0.;
n=n+1;
ArrayT(n)=T;
ArrayXNL(n)=XNL;
ArrayXNCG(n)=XNCG;

end
end
figure
plot(ArrayT,ArrayXNL,ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Missile Acceleration (G)’)
clc
output=[ArrayT’,ArrayXNL’,ArrayXNCG’];
save datfil.txt output -ascii
disp ’simulation finished’

The simulation of the linear rate gyro flight-control system of Listing 22.2 was
run for the cases in which the missile was traveling at 3000 ft/s at both sea level
and 50-kft altitude. An autopilot gain of 0.1 (XKR ¼ 0.1) was chosen at sea level
and a gain of 0.25 (XKR ¼ 0.25) was chosen at 50 kft in order to ensure that
the flight-control system damping was approximately unity. We can see from
Fig. 22.10 that although the desired damping is achieved at both flight conditions
the response is more sluggish at the higher altitude. We shall see in Chapter 23
that a more advanced flight-control system will be required to control both the
damping and the time constant at the same time.

To make the simulation of the flight-control systemmore realistic, a simplified
model of the actuator was used. Nominally the second-order actuator, shown in
Fig. 22.11, has a natural frequency of 150 rad/s and a damping of 0.7 (vACT ¼
150 rad/s, zACT ¼ 0.7).

Figure 22.12 shows then when the dynamics of the actuator are included in the
simulation of the rate gyro flight-control system the step response only changes
slightly. It appears that the inclusion of the actuator dynamics has very little
effect on the flight-control system response.

Experiments were conducted to see how large the autopilot gain could be
made when actuator dynamics were included. If we increase the autopilot gain
to 0.4, we can see from Fig. 22.13 that the flight-control system response goes
unstable. Because there are 24 peaks in 1 s, the frequency of oscillation is 24 Hz
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or 150 rad/s. Therefore we can see empirically that actuator dynamics place an
upper limit on the achievable autopilot gain with the rate gyro flight-control
system. When the actuator dynamics were neglected, we could have made the
autopilot gain arbitrarily large.

Fig. 22.11 Rate gyro flight-control system with actuator dynamics.

Fig. 22.10 Linear rate gyro flight-control system response is well damped when autopilot
gain is a function of flight condition.
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OPEN-LOOP TRANSFER FUNCTION

We have seen through out this text that valuable information is available from the
time domain simulation of the system differential equations. However, additional
information is also available from the system’s open-loop transfer function, which
is in the frequency domain. The concept of the open-loop transfer function is the
basis of classical feedback control systems analysis [1]. Both relative stability and
robustness can be determined from an analysis of the magnitude and phase of the

Fig. 22.12 Inclusion of actuator dynamics appears to have very little effect on flight-control
system response.

Fig. 22.13 Actuator dynamics have a destabilizing effect when autopilot gain is large.
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open-loop frequency response, and, even more importantly, the designer can
determine from it what changes to make in order to achieve design goals. The
open-loop transfer function is the transfer function around the loop when the
loop is broken at a point. Although the loop can be broken anywhere, it is
usually broken in series with some parameter whose value the designer can
control to achieve a desired characteristic. For example, we can break the loop
of a single-loop feedback control system at the error signal as shown in
Fig. 22.14. In this case the open-loop transfer is defined as

HGðsÞ ¼ � e2ðsÞ
e1ðsÞ ¼ AðsÞBðsÞ

To fully understand open-loop concepts, it is first required to understand the
mechanics of finding the magnitude and phase of an open-loop transfer function.
This can be done by replacing the complex frequency s in the transfer function
with

s ¼ jv

where

j ¼
ffiffiffiffiffiffiffi
�1

p

Usually the magnitude of the open-loop transfer function is expressed in dB where

dB ¼ 20 log10ðMagnitudeÞ
and the phase is expressed in degrees.

With the open-loop transfer function other quantities are also important. For
example, the gain margin (gm) is the value of additional gain required at the loop
break (assuming the phase remains constant) to cause instability while the phase
margin wpm is the amount of phase loss required at the loop break (assuming that
the gain remains constant) to cause instability. In addition to these margins, cross-
over frequencies are also of interest. The gain crossover frequency vCR is the fre-
quency at which the open-loop magnitude is unity or zero dB, while the phase
crossover frequency v180 is the frequency at which the open-loop phase is
2180 deg. Both these crossover frequencies indicate the frequency of the

Fig. 22.14 Sample open-loop system.
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ensuing oscillation in the time domain should the system go unstable due to either
an increase in gain or decrease in phase.

To demonstrate the utility of the open-loop transfer function, let us revisit the
rate gyro flight-control system of Fig. 22.11. Figure 22.15 shows the same system,
except this time the loop is broken at the input to the actuator. The loop is broken
here because the designer can control the autopilot gain KR. From the definition of
open-loop transfer function, we can express HG(s) as

HGðsÞ ¼ �K3KRð1þ TasÞ
,

1þ 2zACT
vACT

sþ s2

v2
ACT

� �
1þ 2zAF

vAF
sþ s2

v2
AF

� �	 


By going to the complex frequency domain, we can rewrite the open-loop
transfer function as

HGð jvÞ ¼ �K3KRð1þ jvTaÞ
,

1þ v2

v2
ACT

þ j2zACTv
vACT

� �
1þ v2

v2
AF

þ j2zAFv
vAF

� �	 


where care has been taken in the preceding equation to separate the real and ima-
ginary parts. The magnitude and phase of the open-loop transfer function can
now be expressed as

HGð jvÞj j ¼ �KRK3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2T2

a

,
1� v2

v2
ACT

� �2
þ 2zACTv

vACT

� �2" #
1� v2

v2
AF

� �2
þ 2zAFv

vAF

� �2" #( )vuut

Fig. 22.15 Open-loop model of rate gyro flight-control system.
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/HGð jvÞ ¼ tan�1vTa � tan�1 2zACTv
vACT

�
1þ v2

v2
ACT

� �� �

� tan�1 2zAFv
vAF

�
1� v2

v2
AF

� �� �

LISTING 22.3 OPEN-LOOP BODE RESPONSE FOR RATE GYRO FLIGHT-CONTROL SYSTEM

count=0;
ZACT=.7;
WACT=150.;
K3=-1.89;
TA=.457;
ZAF=.058;
WAF=25.3;
KR=.1;
for I=2:160

W=10^(.025*I-1);
XMAG1=sqrt(1+(W*TA)^2);
XMAG2=sqrt((1-(W/WAF)^2)^2+(2*ZAF*W/WAF)^2);
XMAG3=sqrt((1-(W/WACT)^2)^2+(2*ZACT*W/WACT)^2);
GAIN=20*log10(-K3*KR*XMAG1/(XMAG2*XMAG3));
PHASE1=57.3*atan2(W*TA,1.);
PHASE2=57.3*atan2(2*ZAF*W/WAF,1-(W/WAF)^2);
PHASE3=57.3*atan2(2*ZACT*W/WACT,1-(W/WACT)^2);
PHASE=PHASE1-PHASE2-PHASE3;
count=count+1;
ArrayW(count)=W;
ArrayGAIN(count)=GAIN;
ArrayPHASE(count)=PHASE;

end
figure
semilogx(ArrayW,ArrayGAIN),grid
xlabel(’Frequency (Rad/Sec)’)
ylabel(’Gain (Db)’)
axis([.1 1000 -60 40])
figure
semilogx(ArrayW,ArrayPHASE),grid
xlabel(’Frequency (Rad/Sec)’)
ylabel(’Phase (Deg)’)
axis([.1 1000 -400 100])
clc
output=[ArrayW’,ArrayGAIN’,ArrayPHASE’];
save datfil.txt output /ascii
disp ’simulation finished’
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Therefore the open-loop gain (magnitude) and phase can be expressed in con-
ventional units as

Gain ¼ 20 log10 HGð jvÞj j ðdBÞ
Phase ¼ 57:3/HGð jvÞ ðdegÞ

Designers have found several useful ways of displaying open-loop data. One of
these ways is a Bode plot in which the magnitude, expressed in dB, and phase,
expressed in degrees, are displayed versus frequency on a logarithmic scale [2].
The preceding equations for the magnitude and phase of the rate gyro
flight-control system were programmed in order to generate a Bode plot and
the resultant program appears in Listing 22.3. Note that in this program we are
incrementally updating the frequency logarithmically and then solving for the
magnitude and phase. Unlike most other programs in this text, this program
runs extremely rapidly because numerical integration is not involved.

Figure 22.16 presents the resultant Bode plot, using the data generated by
the MATLAB program. Here we can see that the gain (or magnitude) peaks
due to the low airframe damping (zAF ¼ 0.058) and then is quickly attenuated
due to the dynamics of the actuator. At the gain crossover frequency (that is,
the frequency at which gain is zero dB) the phase is 2125 deg. Because
the phase margin represents the phase departure from 2180 deg, the phase
margin is 55 deg (1802 125 ¼ 55). At the phase crossover frequency (i.e., fre-
quency at which phase is 2180 deg) the gain is 211.5 dB. Because the gain
margin represents the gain departure from 0 dB, the gain margin is 11.5 dB.
The various margins and crossover frequencies have important practical
interpretations. For example, if the system phase is decreased by the phase
margin the system will go unstable and oscillate at the gain crossover frequency.
If the system gain is increased by the gain margin, the system will go unstable and

Fig. 22.16 Bode plot for rate gyro flight-control system.
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oscillate at the phase crossover frequency. We can see from Fig. 22.16 that the gain
and phase crossover frequencies are 64 rad/s and 150 rad/s respectively.

TIME DOMAIN VERIFICATION OF OPEN-LOOP RESULTS [3]

The open-loop analysis of the previous section indicated that the system gain
margin was 11.5 dB and the phase crossover frequency was 150 rad/s. This
means that if the gain KR was increased by 11.5 dB the system would go unstable
and oscillate at 150 rad/s. A gain increase of 11.5 dB means that KR must increase
from 0.1 to 0.376 to destabilize the system. In other words,

20 log10
KUNSTABLE

0:1
¼ 11:5

log10
KUNSTABLE

0:1
¼ 0:575

KUNSTABLE

0:1
¼ 100:575 ¼ 3:76

KUNSTABLE ¼ 0:376

We have already seen from Fig. 22.13 that when the autopilot gain was
increased to 0.4 the rate gyro flight-control system indeed oscillated at 150 rad/s.
This means that the time domain and frequency domain results are in
total agreement.

We can also illustrate the concept of phase margin by first observing that an
ideal delay can be represented by the transfer function

DELAY ¼ e�sT

Converting this representation to the complex frequency domain yields

DELAYð jvÞ ¼ e�jvT ¼ cosvT � j sinvT

The magnitude and phase of the ideal delay is therefore

DELAYð jvÞj j ¼ ðcos2vT þ sin2vTÞ12 ¼ 1

/DELAYð jvÞ ¼ tan�1 sinvT
cosvT

� �
¼ �vT

In summary, an ideal delay can be represented in the frequency domain as a
transfer function with unity magnitude and pure phase loss. The phase loss at
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64 rad/s (open-loop gain crossover frequency vCR) in units of rad can be obtained
from the preceding equation as

DELAY PHASE LOSS ¼ �64T

Therefore a delay of 0.015 s in the time domain corresponds to a phase loss of
55 deg (64 � 0.015 ¼ 0.96 rad ¼ 55 deg ¼ phase margin). Because the phase
margin of the open-loop system (with the loop broken at KR) is 55 deg, this
means that if a pure delay of 0.015 s were inserted in series with KR, the system
would go unstable and oscillate at a frequency of 64 rad/s (that is, at the open-loop
gain crossover frequency). The rate gyro flight-control time domain simulation of
Listing 22.2 was modified to include a pure time delay of 0.015 s, and the new
simulation appears in Listing 22.4. Again note that a very small integration step
size is used to avoid numerical difficulties.

The system step response is shown in Fig. 22.17. Here we can see that the
system does go unstable when a delay of 0.015 s is inserted before the actuator.
Because there are 10 peaks in the response, the frequency of oscillation is 10 Hz
or 62.8 rad/s, which is approximately the gain crossover frequency. Thus again
we can see that the time and frequency domain results are in total agreement.

LISTING 22.4 RATE GYRO FLIGHT-CONTROL SYSTEM WITH PURE DELAY

count=0;
Z=zeros(size(1:20002));
DELAY=.015;
VM=3000;

Fig. 22.17 Rate gyro flight-control system goes unstable when delay of 0.015 s is inserted.
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XNCG=10;
ALT=0;
A=1000;
DIAM=1;
FR=3;
XL=20;
CTW=0;
CRW=6;
HW=2;
CTT=0;
CRT=2;
HT=2;
XN=4;
XCG=10;
XHL=19.5;
WGT=1000;
XKR=.1;
WACT=150;
ZACT=.7;
if (ALT , 30000.)

RHO=.002378*exp(-ALT/30000.);
else

RHO=.0034*exp(-ALT/22000.);
end
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
SREF=3.1416*DIAM*DIAM/4;
XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
P1=WGT*XNCG/(Q*SREF);
Y1=2.+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
Y2=1.5*SPLAN/SREF;
Y3=8*STAIL/(B*SREF);
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Y4=2*TMP4+8*SWING*TMP1/(B*SREF)+8*STAIL*TMP2/(B*SREF);
Y5=1.5*SPLAN*TMP3/SREF;
Y6=8*STAIL*TMP2/(B*SREF);
P2=Y2-Y3*Y5/Y6;
P3=Y1-Y3*Y4/Y6;
ALFTR=(-P3+sqrt(P3*P3+4.*P2*P1))/(2.*P2);
DELTR=-Y4*ALFTR/Y6-Y5*ALFTR*ALFTR/Y6;
CNA=2+1.5*SPLAN*ALFTR/SREF+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
CND=8*STAIL/(B*SREF);
CMAP=2*TMP4+1.5*SPLAN*ALFTR*TMP3/SREF+8*SWING*TMP1/(B*SREF);
CMA=CMAP+8*STAIL*TMP2/(B*SREF);
CMD=8*STAIL*TMP2/(B*SREF);
XMA=Q*SREF*DIAM*CMA/XIYY;
XMD=Q*SREF*DIAM*CMD/XIYY;
ZA=-32.2*Q*SREF*CNA/(WGT*VM);
ZD=-32.2*Q*SREF*CND/(WGT*VM);
WZ=sqrt((XMA*ZD-ZA*XMD)/ZD);
WAF=sqrt(-XMA);
ZAF=.5*WAF*ZA/XMA;
XK1=-VM*(XMA*ZD-XMD*ZA)/(1845*XMA);
XK2=XK1;
TA=XMD/(XMA*ZD-XMD*ZA);
XK3=1845*XK1/VM;
XKDC=(1.-XKR*XK3)/(XK1*XKR);
E=0;
ED=0;
DELD=0;
DEL=0;
THD=0;
DELC=0;
DELCP=0;
T=0;
H=.0001;
Z(1)=0;
I=1;
DINT=floor(DELAY/H); %ROUND(X) rounds the elements of X to the nearest integers.
S=0;
while ~(T . .99999)

S=S+H;
EOLD=E;
EDOLD=ED;
DELOLD=DEL;
DELDOLD=DELD;
STEP=1;
FLAG=0;
while STEP ,=1
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if FLAG==1
E=E+H*ED;
ED=ED+H*EDD;
DEL=DEL+H*DELD;
DELD=DELD+H*DELDD;
T=T+H;
STEP=2;

end
DELCP=XKR*(XKDC*XNCG+THD);
DELDD=WACT*WACT*(DELC-DEL-2.*ZACT*DELD/WACT);
EDD=WAF*WAF*(DEL-E-2.*ZAF*ED/WAF);
XNL=XK1*(E-EDD/WZ^2);
THD=XK3*(E+TA*ED);
FLAG=1;

end
FLAG=0;
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
DEL=.5*(DELOLD+DEL+H*DELD);
DELD=.5*(DELDOLD+DELD+H*DELDD);
Z(I+1)=DELCP;
if ((I+1) , DINT)
DELC=Z(1);

else
DELC=Z(I+2-DINT); % I Have changed the code here from FORTRAN!

end
I=I+1;
if S . .00099999
S=0;
count=count+1;
ArrayT(count)=T;
ArrayXNL(count)=XNL;
ArrayXNCG(count)=XNCG;

end
end
figure
plot(ArrayT,ArrayXNL,ArrayT,ArrayXNCG),grid
xlabel(’Time (S)’)
ylabel(’Acceleration (G)’)
title(’Fig 22.17: Rate gyro flight control system ’)
clc
output=[ArrayT’, ArrayXNL’, ArrayXNCG’];
save datfil.txt output /ascii
disp ’simulation finished’
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We have just seen that there is a relationship between the time and frequency
domains. The gain margin of the open-loop response tells us how much the gain
of the flight-control system can be increased by in order for the system to go
unstable. When the system oscillates in the time domain due to the increased
gain, the frequency of oscillation will be the phase crossover frequency of the
open-loop response. The phase margin of the open-loop response tells us the
amount of phase loss (or pure time delay) that the system can tolerate before it
goes unstable. When the system oscillates in the time domain due to the phase
loss (that is, time delay), the frequency of oscillation will be the open-loop gain
crossover frequency.

SIMPLIFIED EXPRESSION FOR OPEN-LOOP CROSSOVER FREQUENCY

We have seen that if the autopilot gain KR is made too large the rate gyro flight-
control system can go unstable. To place realistic bounds on the autopilot gain, it
is necessary to go back to the frequency domain. If we neglect actuator dynamics,
the open-loop transfer function of the rate gyro flight-control system can be
written by inspection of Fig. 22.7 as

HG ¼ �KRK3ð1þ TasÞ
�

1þ 2zAF
vAF

sþ s2

v2
AF

� �
The magnitude of the open-loop transfer function can be found from the preced-
ing expression. Recall that the open loop gain crossover frequency occurs when
the magnitude of the open-loop transfer function is unity. Therefore if we
assume that the open-loop crossover frequency is beyond the airframe dynamics
we can say that

1 	 �KRK3TavCRv
2
AF

v2
CR

Solving for the crossover frequency yields

vCR 	 �KRK3Tav
2
AF ¼ KRK3TaMa

Therefore we can see that open-loop crossover frequency is proportional to the
autopilot gain. Increasing the autopilot gain will increase the crossover frequency.
However it is important to note that since we have assumed that the crossover fre-
quency is far beyond the airframe dynamics the preceding expression is approxi-
mate. For our 3000 ft/s missile at sea level, the preceding formula indicates that
the approximate crossover frequency is 55.2 rad/s or

vCR ¼ 0:1 � 1:89 � 0:457 � 25:32 ¼ 55:2 rad=s

From our open-loop Bode response we already know that the actual crossover fre-
quency is 60 rad/s. Therefore in this case the approximate expression for the
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open-loop crossover frequency is in error by slightly less than 10%. The technique
for deriving crossover frequency will prove to be very useful when we deal with the
three-loop autopilot in the next chapter.

We can simplify the expression for the open-loop crossover frequency even
further by recalling that

K1 ¼ VM MaZd � ZaMdð Þ
1845Ma

	 VMZd

1845

K3 ¼ 1845K1

VM
	 Zd

Ta ¼ Md

ðMaZd � ZaMdÞ 	
Md

MaZd

Therefore substitution yields an even simpler expression for the crossover fre-
quency

vCR 	 KRK3TaMa ¼ �KRMd

Therefore at a given flight condition the autopilot gain and linearized aerody-
namic parameter Md determine the open-loop crossover frequency. According to
the preceding equation, doubling the autopilot gain from 0.1 to 0.2 should double
the crossover frequency from 52.6 rad/s to 105 rad/s. If the open-loop frequency
response program of Listing 22.3 is run with actuator dynamics (neglected in
approximate analysis), we can see from Fig. 22.18 that the actual crossover fre-
quency increases from 60 rad/s to 103 rad/s when the autopilot gain increases
from 0.1 to 0.2. Thus we can see that at the higher crossover frequency, simulation
results are more in agreement with the approximate analysis. The agreement is

Fig. 22.18 Doubling autopilot gain approximately doubles crossover frequency.

526 TACTICAL AND STRATEGIC MISSILE GUIDANCE



better because the crossover frequency is now far beyond the airframe dynamics.
Later on we shall see that the crossover frequency is chosen to be no more than
one third of the bandwidth of the actuator to ensure a well-behaved flight-control
system response.

SUMMARY

In this chapter we have seen how the flight-control system interacts with the gui-
dance system. The open-loop flight-control system has the dynamics of the bare
airframe. This type of flight-control system is usually not acceptable in radar
homing applications because of low damping. The rate gyro flight-control
system improves the system damping by using a sensor and feedback. We have
also seen that the autopilot gain in a rate gyro flight-control system also can be
used to control the open-loop crossover frequency.
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CHAPTER 23

Three-Loop Autopilot

INTRODUCTION

In this chapter we shall see that by adding an accelerometer to the flight-control
system we can independently select the system damping, time constant, and open-
loop crossover frequency. Controlling the system damping will ensure that the
guidance system is not overly sensitive to radome slope effects at the high alti-
tudes. Selecting the system time constant means that we can have adequate
performance against maneuvering targets. Finally, controlling the open-loop
crossover frequency means that we will have a robust design that is not overly sen-
sitive to unmodeled high frequency dynamics.

THREE-LOOP AUTOPILOT CONFIGURATION

The flight-control system with the three-loop autopilot appears in Fig. 23.1. In
this system the rate gyro feeds body rate information into the autopilot while
the accelerometer feeds back achieved acceleration information. For simplicity,
it has been assumed that the accelerometer location is at the missile center of
gravity so that the acceleration sensed is the true acceleration. The three autopilot
gains KA, vI, and KR must be chosen to satisfy some designer-chosen criteria and
the gain KDC is computed from the other gains so that the achieved acceleration
will match the commanded acceleration. An interesting discussion of the initial
design considerations of the three-loop autopilot can be found in [1].

An example of a particularly useful methodology [2–6] in gain selection is
to choose the open-loop crossover frequency so that many stability problems
can be avoided. In addition, the dominant flight-control system time constant
can be selected so that rapid speed of response can be achieved in order to hit
maneuvering targets. Finally, adequate damping can also be chosen by the
designer to alleviate potential radome coupling problems.

529



OPEN-LOOP ANALYSIS

Because the open-loop crossover frequency has no meaning in the time domain,
we must first shift to the frequency domain to see how the autopilot gains
influence the crossover frequency. Figure 23.2 shows the three-loop autopilot
with the loop broken right before the actuator as was done in Chapter 22. By
inspection of Fig. 23.2, we can write an expression for the open- loop transfer
function HG(s) as

HGðsÞ ¼ � y
x
¼ �KR G3 þ G3vI

s
þ G1KAvI

s

� �

where G1 and G3 are shorthand notation for the airframe transfer functions that
were derived in Chapter 21 and are given by

G1 ¼ nL
d

¼ K1 1� s2

v2
z

� �,
1þ 2zAF

vAF
sþ s2

v2
AF

� �

G3 ¼
_u

d
¼ K3ð1þ TasÞ

,
1þ 2zAF

vAF
sþ s2

v2
AF

� �

Fig. 23.1 Flight-control system with three-loop autopilot.
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After much algebra the open-loop transfer function can be rewritten as

HG ¼ �KRv1KA
K3

KA
þ K1

� �,
s 1þ 2zAF

vAF
sþ s2

v2
AF

� �� �

� 1þ sðK3 þ vIK3TaÞ
vIK3 þ KAvIK1

þ s2 K3Ta � KAvIK1=v
2
z

� �� �
vIK3 þ KAvIK1

� �
which simplifies to

HG ¼ �K0 1þ 2z0
v0

sþ s2

v2
0

� �,
s 1þ 2zAF

vAF
sþ s2

v2
AF

� �� �

where the gain K0 is given by

K0 ¼ KRvIKA
K3

KA
þ K1

� �
and the numerator coefficients can be expressed in terms of the autopilot gains
and aerodynamic parameters according to

2z0
v0

¼ K3 þ vIK3Tað Þ
vIK3 þ KAvIK1

1
v2
0
¼ K3Ta � KAvIK1=v

2
z

� �� �
vIK3 þ KAvIK1

Fig. 23.2 Open-loop representation of three-loop autopilot.
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If we define

Kc ¼ K3

KAK1

then

2z0
v0

¼ ðKc=vIÞ þ KcTa

1þ Kc

1
v2
0
¼ �ð1=v2

zÞ þ ðKcTa=vIÞ
1þ Kc

If we define the intermediate gain K by

K ¼ KRvIKA

We can say that

K0 ¼ KRvIKA½ðK3=KAÞ þ K1� ¼ KðK1Kc þ K1Þ ¼ KK1ð1þ KcÞ

If we assume that the crossover frequency is beyond the airframe dynamics, we
can set the magnitude of the open-loop crossover frequency to unity as we did in
the previous chapter in order to obtain

1 	 � K0v
2
CR=v

2
0

� �
vCRv2

CR=v
2
AF

� � ¼ �K0v
2
AF

vCRv2
0

Solving for the open-loop crossover frequency yields

vCR ¼ �K0v
2
AF

v2
0

From the preceding equation we can see that the open-loop crossover frequency is
a function of both the aerodynamics and the autopilot gains.

CLOSED-LOOP ANALYSIS

Now we can go back to the time domain to complete the autopilot design. By
inspection of Fig. 23.1, we can write an expression for the relationship between
the output control surface deflection and the input acceleration command as

d

n0c
¼ �KAKRvI=s

1� KRG3 � ðKRvIG3=sÞ � ðKRvIKAG1=sÞ
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Rewriting the preceding expression in terms of the open-loop transfer function
yields

d

n0c
¼ �KAKRvI=s

1þ HG

The relationship between the flight-control system output acceleration and the
input command can then be obtained from the chain rule as

nL
n0c

¼ d

n0c
� nL
d

¼ �KAKRvI=s
1þ HG

� �

� K1 1� s2

v2
z

� �,
1þ 2zAF

vAF
sþ s2

v2
AF

� �" #

After much algebra one can show that the flight-control system transfer function
becomes

nL
n0c

¼
KAKRvIK1 1� s2

v2
z

� �.
K0

1þ s
2z0
v0

� 1
K0

� �
þ s2

1
v2
0
� 2zAF
vAFK0

� �
� s3

v2
AFK0

We are not interested in controlling the airframe zeros (that is, the numerator
in flight-control system transfer function) but would like to have the preceding
closed-loop transfer function to have the form

nL
n0c

¼
KAKRvIK1 1� s2

v2
z

� �.
K0

ð1þ tsÞ 1þ 2zs
v

þ s2

v2

� �

where we have made the denominator of the flight-control system transfer func-
tion a real pole times a quadratic. The two preceding flight-control system transfer
functions are equivalent if the denominators are the same or

2z
v

þ t ¼ 2z0
v0

� 1
K0

1
v2

þ 2zt
v

¼ 1
v2
0
� 2zAF
vAFK0

t

v2
¼ � 1

v2
AFK0
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In addition, we have already derived an expression for the open-loop crossover
frequency to be

vCR ¼ �K0v
2
AF

v2
0

The preceding four equations have four unknowns. At a given flight condition
we know the aerodynamics or vAF and zAF. If we specify the desired time constant
t, damping z, and open-loop crossover frequency vCR of the flight-control system,
the remaining four unknowns are v, z0, v0, and K0. Because we have four
equations, there is sufficient information to solve for these four unknowns.

If we solve the fourth equation for K0 and substitute it into the second
equation, we get

1
v2

þ 2zt
v

¼ 1
v2
0
� 2zAF
vAFK0

¼ 1
v2
0
þ 2zAFv

2
AF

vAFvCRv2
0
¼ 1

v2
0

1þ 2zAFvAF

vCR

� �
We can also substitute K0 into the third equation yielding

t

v2
¼ � 1

v2
AFK0

¼ v2
AF

v2
AFvCRv2

0
¼ 1

vCRv2
0

Substituting this result into the preceding equation yields

1
v2

þ 2zt
v

¼ vCRt

v2
1þ 2zAFvAF

vCR

� �
Note that all of the terms in the preceding equation are known except for v. We
can solve the preceding equation for v yielding

v ¼ tvCR 1þ 2zAFvAF

vCR

� �
� 1

� �,
ð2ztÞ

Because we already know that

t

v2
¼ 1

vCRv2
0

we can solve for v0 in terms of known quantities as

v0 ¼ vffiffiffiffiffiffiffiffiffiffi
tvCR

p

Substituting the solutions for v, v0, and K0 into the first of the four equations with
four unknowns allows us to solve for z0 as

z0 ¼ :5v0
2z
v

þ tþ 1
K0

� �
¼ :5v0

2z
v

þ t� v2
AF

vCRv2
0

� �
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Recalling that

2z0
v0

¼ Kc

vI
þ KcTa

� �,
ð1þ KcÞ

" #
¼ a1

1
v2
0
¼ � 1

v2
z
þ KcTa

vI

� �,
ð1� KcÞ

" #
¼ a2

we would like to solve for Kc and eliminate vI. Therefore

a1ð1þ KcÞ ¼ Kc

vI
þ KcTa

a2ð1þ KcÞ ¼ TaKc

vI
þ 1
v2
z

Multiplying the first of the preceding two equations by Ta on both sides and then
subtracting it from the second equation yields

a2ð1þ KcÞ � a1Tað1þ KcÞ ¼ �ð1=v2
zÞ � T2

aKc

Therefore

Kcða2 � a1Ta þ T2
aÞ ¼ �ð1=v2

zÞ � a2 þ a1Ta

Solving for Kc yields

Kc ¼ �ð1=v2
zÞ � a2 þ a1Ta

a2 � a1Ta þ T2
a

Substitution of the expressions for a1 and a2 into the preceding equation yields
after some algebra

Kc ¼ �ðv2
0=v

2
zÞ � 1þ 2z0v0Ta

1� 2z0v0Ta þ v2
0T2

a

Because we already know that

Kc ¼ K3

KAK1

we can solve for the autopilot gain KA yielding

KA ¼ K3

KcK1
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Because we already know that

1
v2
0
¼ �1

v2
z
þ KcTa

vI

� �,
ð1þ KcÞ

" #

we can invert the preceding equation and solve for the autopilot gain vI or

vI ¼ TaKcv
2
0

1þ Kc þ v2
0=v

2
z

Recall that

t

v2
¼ � 1

v2
AFK0

We can now solve for K0 yielding

K0 ¼ � v2

tv2
AF

Recall that

K0 ¼ KK1ð1þ KcÞ
We can now invert the preceding expression in order to solve for K or

K ¼ K0

K1ð1þ KcÞ
Because

K ¼ KRvIKA

we can solve for the final autopilot gain KR yielding

KR ¼ K
KAvI

Finally, in order to get unity flight-control system gain we set the gain of the
closed-loop transfer function to unity or

KDCKAKRvIK1

K0
¼ 1

and get

KDC ¼ K0

KAKRvIK1
¼ K0

KK1
¼ KK1ð1þ KcÞ

KK1
¼ 1þ Kc
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which simplifies to

KDC ¼ 1þ 1
KAVM

We now have enough information to simulate the three-loop flight-control
system with the autopilot gain algorithm we just derived. Listing 23.1 presents a
time domain step response simulation of the three-loop autopilot in the presence
of the linear airframe dynamics. We can see from the listing that the required
aerodynamic parameters are derived from the geometry of the airframe. For a
given flight condition these airframe parameters are used to both describe the air-
frame and to determine the autopilot gains using the gain algorithm we just
derived. Although the original gain algorithm derivation neglected the dynamics
of the actuator, these dynamics are included in the step response simulation to test
the robustness of the autopilot gains. The actuator is modeled as a second-order
transfer function or

d

dc
¼ 1

,
1þ 2zACT

vACT
sþ s2

v2
ACT

� �

with a natural frequency vACT of 150 rad/s and damping zACT of 0.7.
Using Listing 23.1 for the flight condition in which the missile was at sea level

and traveling at 3000 ft/s, a 10-g command was issued to the autopilot. We can see
from Listing 23.1 that the nominal design goals given the autopilot gain algorithm
were to achieve a time constant of 0.3 s, an open-loop crossover frequency of
50 rad/s, and a damping of 0.7. The three autopilot gains for these requirements
at this flight condition turn out to be KA ¼ 1.15 deg/g-s, vI ¼ 12.9 rad/s, and
KR ¼ 0.0928 s. We can see from Fig. 23.3 that the overall time constant of the

Fig. 23.3 Autopilot gain algorithm allows us to select time constant.
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flight-control system is slightly in excess of 0.3 s. This is not in disagreement with
theory since the overall time constant of the third-order flight-control system can
be approximated as

tTOT ¼ tþ 2z
v

Because the damping is 0.7 and the natural frequency is approximately 35 rad/s,
the overall or total time constant is 0.34 s, which is consistent with Fig. 23.3. In
other words the response reaches 63% of the steady-state value in 0.34 s.

LISTING 23.1 THREE-LOOP AUTOPILOT STEP RESPONSE SIMULATION

count=0;
FR=3.;
DIAM=1.;
XL=20.;
CTW=0.;
CRW=6.;
HW=2.;
CTT=0.;
CRT=2.;
HT=2.;
XN=4.;
XCG=10.;
XHL=19.5;
WACT=150.;
ZACT=.7;
TF=1.;
VM=3000.;
XNCG=10.;
WCR=50.;
ZETA=.7;
TAU=.3;
ALT=0.;
A=1000.;
if ALT,=30000.

RHO=.002378*exp(-ALT/30000.);
else

RHO=.0034*exp(-ALT/22000.);
end
WGT=1000.;
XNLLIN=0.;
XACC=XCG;
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
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SREF=3.1416*DIAM*DIAM/4.;
XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2.;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
P1=WGT*XNCG/(Q*SREF);
Y1=2+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
Y2=1.5*SPLAN/SREF;
Y3=8*STAIL/(B*SREF);
Y4=2*TMP4+8*SWING*TMP1/(B*SREF)+8*STAIL*TMP2/(B*SREF);
Y5=1.5*SPLAN*TMP3/SREF;
Y6=8*STAIL*TMP2/(B*SREF);
P2=Y2-Y3*Y5/Y6;
P3=Y1-Y3*Y4/Y6;
ALFTR=(-P3+sqrt(P3*P3+4.*P2*P1))/(2.*P2);
DELTR=-Y4*ALFTR/Y6-Y5*ALFTR*ALFTR/Y6;
CNA=2+1.5*SPLAN*ALFTR/SREF+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
CND=8*STAIL/(B*SREF);
CMAP=2*TMP4+1.5*SPLAN*ALFTR*TMP3/SREF+8*SWING*TMP1/(B*SREF);
CMA=CMAP+8*STAIL*TMP2/(B*SREF);
CMD=8*STAIL*TMP2/(B*SREF);
XMA=Q*SREF*DIAM*CMA/XIYY;
XMD=Q*SREF*DIAM*CMD/XIYY;
ZA=-32.2*Q*SREF*CNA/(WGT*VM);;
ZD=-32.2*Q*SREF*CND/(WGT*VM);
WZ=sqrt((XMA*ZD-ZA*XMD)/ZD);
WAF=sqrt(-XMA);
ZAF=.5*WAF*ZA/XMA;
XK1=-VM*(XMA*ZD-XMD*ZA)/(1845*XMA);
XK2=XK1;
TA=XMD/(XMA*ZD-XMD*ZA);
XK3=1845*XK1/VM;
W=(TAU*WCR*(1+2.*ZAF*WAF/WCR)-1)/(2*ZETA*TAU);
W0=W/sqrt(TAU*WCR);
Z0=.5*W0*(2*ZETA/W+TAU-WAF^2/(W0*W0*WCR));
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XKC=(-W0^2/WZ^2-1.+2.*Z0*W0*TA)/(1.-2.*Z0*W0*TA+W0*W0*TA*TA);
XKA=XK3/(XK1*XKC);;
XK0=-W*W/(TAU*WAF*WAF);
XK=XK0/(XK1*(1+XKC));
WI=XKC*TA*W0*W0/(1+XKC+W0^2/WZ^2);
XKR=XK/(XKA*WI);
XKDC=1.+1845./(XKA*VM);
E=0.;
ED=0.;
DELD=0.;
DEL=0.;
X=0.;
T=0;
H=.0001;
S=0;
while T,=(TF-.00001)

EOLD=E;
EDOLD=ED;
DELOLD=DEL;
DELDOLD=DELD;
XOLD=X;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
E=E+H*ED;
ED=ED+H*EDD;
DEL=DEL+H*DELD;
DELD=DELD+H*DELDD;
X=X+H*XD;
T=T+H;

end
THD=XK3*(E+TA*ED);
DELC=XKR*(X+THD);
DELDD=WACT*WACT*(DELC-DEL-2.*ZACT*DELD/WACT);
EDD=WAF*WAF*(DEL-E-2.*ZAF*ED/WAF);
XNL=XK1*(E-EDD/WZ^2);
XD=WI*(THD+XKA*(XNL-XNCG*XKDC));
FLAG=1;

end
FLAG=0;
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
DEL=.5*(DELOLD+DEL+H*DELD);
DELD=.5*(DELDOLD+DELD+H*DELDD);
X=.5*(XOLD+X+H*XD);
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S=S+H;
if S..0099999

S=0.;
count=count+1;
ArrayT(count)=T;
ArrayXNL(count)=XNL;
ArrayXNCG(count)=XNCG;

end
end
figure
plot(ArrayT,ArrayXNL,ArrayT,ArrayXNCG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration (G) ’)
clc
output=[ArrayT’,ArrayXNL’,ArrayXNCG’];
save datfil.txt output /ascii
disp ’simulation finished’

The open-loop transfer function for the three-loop flight-control system
neglecting actuator dynamics has already been derived as

HGNO
ACTUATOR

¼ �K0 1þ 2z0
v0

sþ s2

v2
0

� �,
s 1þ 2zAF

vAF
sþ s2

v2
AF

� �� �

If the dynamics of the actuator are now included, it is easy to show that the open-
loop transfer function is simply a multiplication of the previous open-loop trans-
fer function with the actuator transfer function or

HGACTUATOR ¼
�K0 1þ 2z0

v0
sþ s2

v2
0

� �
s 1þ 2zAF

vAF
sþ s2

v2
AF

� �
1þ 2zACT

vACT
sþ s2

v2
ACT

� �
Therefore the magnitude and phase of the open-loop transfer function can be
written by inspection of the previous expression as

HGACTUATORj j ¼ �K0

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

v2
0

� �2
þ 2z0v

v0

� �2

1� v2

v2
AF

� �2

þ 2zAFv
vAF

� �2
" #

1� v2

v2
ACT

� �2

þ 2zACTv
vACT

� �2
" #

vuuuuuuut

f ¼ �90þ 57:3 tan�1

2z0v
v0

1� v2

v2
0

2
664

3
775� tan�1

2zAFv
vAF

1� v2

v2
AF

2
664

3
775� tan�1

2zACTv
vACT

1� v2

v2
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2
6664

3
7775

2
6664

3
7775
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Listing 23.2 is a program that evaluates the magnitude and phase of the open-
loop transfer function (the preceding two equations) for different frequencies. We
can see from the listing that the magnitude is expressed in units of dB whereas the
phase is expressed in units of deg. The program runs quickly because numerical
integration is not involved.

The output of Listing 23.2 is a Bode plot as shown in Fig. 23.4. We can see that
the achieved gain crossover frequency of 60 rad/s is close to the desired goal of
50 rad/s. We did not meet the exact design goal because in the derivation of
the formula for the open-loop gain crossover frequency it was assumed that the

Fig. 23.4 Desired crossover frequency is achieved—even in presence of actuator dynamics.

Fig. 23.5 Time constant control can be achieved with autopilot gain algorithm.
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crossover frequency was far beyond the dynamics of the airframe, which is not
quite true. Figure 23.4 also indicates that the flight-control system stability
margins are adequate since the gain margin (gm) is 11 dB and the phase
margin (fPM) is 45 deg.

Figure 23.5 indicates that the autopilot gain algorithm is successful in con-
trolling the flight-control system time constant. When the desired time constant
is reduced to 0.1 s, the new gains become KA ¼ 3.72 deg/g-s, vI ¼ 11.2 rad/s, and
KR ¼ 0.098 s. Recall that when the desired autopilot time constant was 0.3 s the
autopilot gains were KA ¼ 1.15 deg/g-s, vI ¼ 12.9 rad/s, and KR ¼ 0.0928 s.

LISTING 23.2 OPEN-LOOP RESPONSE OF THREE-LOOP AUTOPILOT

count=0;
FR=3.;
DIAM=1.;
XL=20.;
CTW=0.;
CRW=6.;
HW=2.;
CTT=0.;
CRT=2.;
HT=2.;
XN=4.;
XCG=10.;
XHL=19.5;
WACT=150.;
ZACT=.7;
VM=3000.;
XNCG=10.;
WCR=50.;
ZETA=.7;
TAU=.3;
ALT=0.;
A=1000.;
if ALT,=30000.

RHO=.002378*exp(-ALT/30000.);
else

RHO=.0034*exp(-ALT/22000.);
end
WGT=1000.;
XNLLIN=0.;
XACC=XCG;
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
SREF=3.1416*DIAM*DIAM/4.;
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XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2.;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
P1=WGT*XNCG/(Q*SREF);
Y1=2+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
Y2=1.5*SPLAN/SREF;
Y3=8*STAIL/(B*SREF);
Y4=2*TMP4+8*SWING*TMP1/(B*SREF)+8*STAIL*TMP2/(B*SREF);
Y5=1.5*SPLAN*TMP3/SREF;
Y6=8*STAIL*TMP2/(B*SREF);
P2=Y2-Y3*Y5/Y6;
P3=Y1-Y3*Y4/Y6;
ALFTR=(-P3+sqrt(P3*P3+4.*P2*P1))/(2.*P2);
DELTR=-Y4*ALFTR/Y6-Y5*ALFTR*ALFTR/Y6;
CNA=2+1.5*SPLAN*ALFTR/SREF+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
CND=8*STAIL/(B*SREF);
CMAP=2*TMP4+1.5*SPLAN*ALFTR*TMP3/SREF+8*SWING*TMP1/(B*SREF);
CMA=CMAP+8*STAIL*TMP2/(B*SREF);
CMD=8*STAIL*TMP2/(B*SREF);
XMA=Q*SREF*DIAM*CMA/XIYY;
XMD=Q*SREF*DIAM*CMD/XIYY;
ZA=-32.2*Q*SREF*CNA/(WGT*VM);
ZD=-32.2*Q*SREF*CND/(WGT*VM);
WZ=sqrt((XMA*ZD-ZA*XMD)/ZD);
WAF=sqrt(-XMA);
ZAF=.5*WAF*ZA/XMA;
XK1=-VM*(XMA*ZD-XMD*ZA)/(1845*XMA);
XK2=XK1;
TA=XMD/(XMA*ZD-XMD*ZA);
XK3=1845*XK1/VM;
W=(TAU*WCR*(1+2.*ZAF*WAF/WCR)-1)/(2*ZETA*TAU);
W0=W/sqrt(TAU*WCR);
Z0=.5*W0*(2*ZETA/W+TAU-WAF^2/(W0*W0*WCR));
XKC=(-W0^2/WZ^2-1.+2.*Z0*W0*TA)/(1.-2.*Z0*W0*TA+W0*W0*TA*TA);

544 TACTICAL AND STRATEGIC MISSILE GUIDANCE



XKA=XK3/(XK1*XKC);
XK0=-W*W/(TAU*WAF*WAF);
XK=XK0/(XK1*(1+XKC));
WI=XKC*TA*W0*W0/(1+XKC+W0^2/WZ^2);
XKR=XK/(XKA*WI);
XKDC=1.+1845./(XKA*VM);
for I=2:160

W=10^(.025*I-1);
XMAGTOP=-XK0*sqrt((1.-(W/W0)^2)^2+(2.*Z0*W/W0)^2);
XMAGBOT=W*sqrt((1.-(W/WAF)^2)^2+(2.*ZAF*W/WAF)^2);
XMAG=XMAGTOP/XMAGBOT;
XMAGACT=1./sqrt((1.-W*W/(WACT*WACT))^2+(2.*ZACT*W/WACT)^2);
PHASETOP=atan2(2.*Z0*W/W0,1.-(W/W0)^2);
PHASEBOT=atan2(2.*ZAF*W/WAF,1.-(W/WAF)^2);
PHASEACT=atan2(2.*ZACT*W/WACT,1.-W*W/(WACT*WACT));
GAIN=20.*log10(XMAG*XMAGACT);
PHASE=-90.+57.3*(PHASETOP-PHASEBOT-PHASEACT);
count=count+1;
ArrayW(count)=W;
ArrayGAIN(count)=GAIN;
ArrayPHASE(count)=PHASE;

end
figure
semilogx(ArrayW,ArrayGAIN),grid
xlabel(’Frequency (Rad/Sec)’)
ylabel(’Gain (Db)’)
axis([.1 1000 -60 40])
figure
semilogx(ArrayW,ArrayPHASE),grid
xlabel(’Frequency (Rad/Sec)’)
ylabel(’Phase (Deg)’)
axis([.1 1000 -400 100])
clc
output=[ArrayW’,ArrayGAIN’,ArrayPHASE’];
save datfil.txt output /ascii
disp ’simulation finished’

To check if the open-loop crossover frequency remains the same when one
reduces the desired flight-control system time constant from 0.3 s to 0.1 s, it is
necessary to go back to the frequency domain. Figure 23.6 shows that although
the open-loop gain changes at some frequencies when the time constant is
reduced, the gain crossover frequency remains unchanged thus showing that
the open-loop gain crossover frequency is independent of the flight-control
system time constant.

We can see from Fig. 23.7 that if the desired time constant in the flight-control
algorithm is reset to 0.3 s and if we increase the desired crossover frequency from
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50 rad/s to 100 rad/s the achieved crossover frequency is 104 rad/s, which is
close to the desired goal. In this case the open-loop crossover frequency is far
beyond the airframe dynamics thus justifying the approximation made in the deri-
vation of the formula for the crossover frequency. However we can also see from
Fig. 23.7 that the inclusion of the actuator dynamics tends to reduce the stability
margins when the crossover frequency is increased. In this case the gain margin
has been reduced from 11 dB to 1.5 dB while the phase margin has been
reduced from 45 deg to 5 deg.

Fig. 23.7 Crossover frequency can be controlled but higher crossover frequency reduces
stability margins.

Fig. 23.6 Actual crossover frequency is independent of time constant.
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Figure 23.8 confirms from a time domain point of view that the higher cross-
over frequency flight-control system (which has lower stability margins) has an
oscillatory response. In practice the selection of the open-loop crossover fre-
quency is limited by the dynamics of the actuator.

Figure 23.9 shows that when the actuator natural frequency is increased to
300 rad/s the step response stabilizes and is well behaved when the open-loop
crossover frequency is 100 rad/s. In practice the maximum open-loop crossover
frequency should be approximately one third the bandwidth of the actuator.

Fig. 23.8 High crossover frequencies are dangerous when actuator dynamics are
considered.

Fig. 23.9 Increasing actuator bandwidth allows operation at high crossover frequencies.
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If the flight-control system damping is reduced from 0.7, system performance
will suffer. Figure 23.10 shows that for the nominal case in which it is desired that
the flight-control system time constant be 0.3 s and the open-loop crossover fre-
quency be 50 rad/s, reducing the damping to 0.4 reduces the stability margins. In
this case the phase margin reduces from 43 deg to 6 deg while the gain margin
reduces from 11 dB to 3.8 dB.

Finally, Fig. 23.11 confirms from a time domain point of view that decreasing
the system damping reduces the stability margins. We can see that when the

Fig. 23.10 Decreasing damping decreases stability margins.

Fig. 23.11 Damping can be controlled, but low damping is dangerous when actuator
dynamics are considered.
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damping is decreased from 0.7 to 0.4 the system step response becomes
oscillatory.

EXPERIMENTS WITH FLIGHT CONDITION

The autopilot gain algorithm was used on the hypothetical missile airframe of
Chapter 21 for the flight condition in which there was a 10-g step acceleration
command when the missile was traveling at 3000 ft/s. Three-loop autopilot
gains were determined at sea level, 30-kft altitude, and 50-kft altitude. The gain
algorithm was told that the desired flight-control system time constant was
0.3 s, the damping was 0.7, and the open-loop crossover frequency was 50 rad/s.
The resultant autopilot gains for each of the three flight conditions are summar-
ized in Table 23.1. We can see from the table that the autopilot gain KA increases
by a factor of 4 in going from sea level to 50-kft altitude. The gain KR increases by
a factor of nearly 10 whereas the gain vI remains approximately constant.

It is apparent from Fig. 23.12 that the autopilot gains enable the flight-control
system to maintain the same step response for the three different flight conditions.
The only difference between each of the step responses is that the wrong-way
effect increases as the altitude increases. The autopilot gain algorithm does not
attempt to control the airframe zeroes and therefore the wrong-way effect will
get worse as the altitude increases.

To understand why the wrong-way tail effect gets worse at the higher altitudes,
it is necessary to examine the flight-control system transfer functions in more
detail. For example, the flight-control system transfer function from commanded
to achieved acceleration is given by

nL
nc

¼ 1� s2

v2
z

� �,
ð1þ stÞ 1þ 2zs

v
þ s2

v2

� �

where the negative sign in the numerator of the preceding equation indicates that
the airframe zero is in the right-half plane. We recall from Chapter 21 that the
airframe zero vz is related to the airframe parameters according to

vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaZd �MdZa

Zd

r

TABLE 23.1 AUTOPILOT GAINS VARY WITH FLIGHT CONDITION

Altitude KA KR vI

0 kft 1.15 deg/g 0.0928 s 12.9 rad/s

30 kft 1.98 deg/g 0.264 s 19.3 rad/s

50 kft 4.16 deg/g 0.726 s 19.7 rad/s
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For the three different flight conditions the linearized airframe parameters were
calculated and are summarized in Table 23.2. Using the preceding linearized aero-
dynamic parameters, the airframe zero can be evaluated at the three different alti-
tudes yielding

vzj0 kft ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
642 � 0:65� 555 � 2:94

�0:65

r
¼ 43:2 rad=s

vzj30 kft ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
240 � 0:239� 204 � 1:17

�0:239

r
¼ 27:6 rad=s

vzj50 kft ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
99:1 � 0:0957� 81:7 � 0:533

�0:0957

r
¼ 18:8 rad=s

We can see from the preceding calculations that the right-half plane airframe zero
decreases as the altitude increases thus causing more wrong-way effect.

For the same 10-g step acceleration input command, Fig. 23.13 shows how
the missile fin rate response changes with time. We can see that the maximum
fin rate increases with increasing altitude. At sea level only a few deg/s of fin
rate are required whereas at 50 kft altitude nearly 600 deg/s are required to
ensure the well-behaved step response of Fig. 23.12. In practice, the actuator
must be sized to handle the expected maximum fin rate or else saturation
occurs and flight catastrophe can result. It is apparent from Fig. 23.13 that the
requirements for actuator fin rate sizing will take place at the highest expected
altitude in the flight envelope.

Fig. 23.12 With exception of wrong-way effect, acceleration response of autopilot is
independent of flight condition.
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Using a transfer function type of analysis, we can try and understand why
more fin rate is required at the higher altitudes. We have shown in Chapter 21
that the airframe transfer function from fin rate to achieved acceleration is
given by

nL
d

¼ K1 1� s2

v2
z

� �,
1þ 2zAFs

vAF
þ s2

v2
AF

� �" #

Using the chain rule from calculus, we can find the transfer function of fin rate due
to commanded acceleration by combining the previous airframe transfer function
with the flight-control system transfer function yielding

_d

nc
¼ sd

nL
� nL
nc

¼ s 1þ 2zAFs
vAF

þ s2

v2
AF

� �,
K1ð1þ stÞ 1þ 2zs

v
þ s2

v2

� �	 


Fig. 23.13 Fin rate increases with increasing altitude.

TABLE 23.2 LINEARIZED AERODYNAMIC PARAMETERS FOR DIFFERENT FLIGHT CONDITIONS

Altitude Ma Md Za Zd

0 kft 2642 s22 2555 s22 22.94 s21 20.65 s21

30 kft 2240 s22 2204 s22 21.17 s21 20.239 s21

50 kft 299.1 s22 281.7 s22 20.533 s21 20.0957 s21
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We can see from the preceding transfer function that the magnitude of the fin
rate is inversely proportional to the aerodynamic gain K1. We have shown in
Chapter 21 that the aerodynamic gain is given by

K1 ¼ �VMðMaZd � ZaMdÞ
1845Ma

Evaluating the aerodynamic gain at the three different flight conditions using the
values of Table 23.2 for the various aerodynamic parameters reveals that the mag-
nitude of the aerodynamic gain decreases as the altitude increases or

K1j0 kft ¼
�3000ð642 � 0:65� 2:94 � 555Þ

�1845 � 642 ¼ �3:07 g= deg

K1j30 kft ¼
�3000ð240 � 0:239� 1:17 � 204Þ

�1845 � 240 ¼ �1:23 g= deg

K1j50 kft ¼
�3000ð99:1 � 0:0957� 0:533 � 81:7Þ

�1845 � 99:1 ¼ �0:558 g= deg

Because the fin rate transfer function is inversely proportional to the aerodynamic
gain, the fin rate magnitude will increase with increasing altitude as was already
demonstrated in Fig. 23.13.

GUIDANCE SYSTEM ANALYSIS

The guidance system with the flight-control system modeled explicitly appears in
Fig. 23.14. In this model the airframe is represented by the second-order transfer
function derived in Chapter 21, and the three-loop autopilot is modeled in con-
junction with a second-order actuator model. In this homing loop model we
can see that there are four random error sources that will cause miss distance:
white semiactive noise, white glint noise, white range independent noise, and a
uniformly distributed target maneuver. The airframe parameters and the autopilot
gains in the flight-control system are a function of the flight condition. In this
model we have assumed that the missile speed and altitude are constant so that
the aerodynamic parameters and flight-control gains will be constant for a
given engagement. The various homing loop parameters used in the study of
this section appear in Table 23.3.

The adjoint of the homing loop was taken and appears in Fig. 23.15. Shown
in the adjoint diagram are the miss distance outputs due to the four random
error sources. The values of the error sources used in the ensuing study appear
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Fig. 23.14 Homing loop with flight-control system.
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in Table 23.4. The spectral densities for each of the error sources can be calculated
from the preceding table according to

FRN ¼ 2TRNs
2
RN ¼ 2 � 0:01 � 0:012 ¼ 2 � 10�6 rad

2

hz

FGL ¼ 2TGLs
2
GL ¼ 2 � 0:1 � 102 ¼ 20

ft2

hz

FFN ¼ 2TFNs
2
FN ¼ 2 � 0:01 � 0:0022 ¼ 8 � 10�8 rad

2

hz

FnT ¼ n2T
tF

¼ 64:42

5
¼ 829

ft=s2

hz

The adjoint simulation, derived from Fig. 23.15, appears in Listing 23.3. We can
see from the listing that the adjoint can yield miss distance results (MISS ¼ 1,
TINT ¼ 0), fin rate results at a particular time to go (MISS ¼ 2, TINT ¼ tgo), or com-
manded acceleration results at a particular time to go (MISS ¼ 3, TINT ¼ tgo) by
simply changing the initial conditions on the adjoint differential equations. We
can also see from Listing 23.3 that the aerodynamic parameters and autopilot
gains are computed automatically for a given flight condition using the formulas
derived in Chapter 22 and this chapter.

Running the adjoint simulation to calculate miss distances for the three
different flight conditions yields the miss distance error budget of
Table 23.5. Here we can see that the total rms miss distance is independent
of flight condition because the autopilot gain algorithm has maintained the
same flight-control system response at the three different flight conditions.
We can also see from Table 23.5, that for the values of the error sources
selected, the major contributors to the miss distance are target maneuver
and glint noise. In this particular case, improving the sensor (such as reducing

TABLE 23.3 NOMINAL GUIDANCE SYSTEM PARAMETERS

Name Definition Value

Vc Closing velocity 4000 ft/s

T1 Seeker track loop time constant 0.1 s

T2 Noise filter time constant 0.15 s

N0 Effective navigation ratio 3

vACT Actuator natural frequency 150 rad/s

zACT Actuator damping 0.7
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Fig. 23.15 Adjoint model of homing loop.
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range independent noise and semiactive noise) will not significantly reduce the
total rms miss distance.

Miss distance results were generated as a function of the radome slope for
each of the three different flight conditions. We can see from Fig. 23.16 that at

TABLE 23.4 NOMINAL ERROR SOURCES

Error source Parameter values

Semiactive noise .01 rad @ 30 kft in 0.01 s

Glint noise 10 ft in 0.1 s

Range independent noise 0.002 rad in 0.01 s

Random target maneuver 2 g over 5 s

TABLE 23.5 MISS DISTANCE PERFORMANCE APPEARS TO BE INDEPENDENT OF ALTITUDE

Error source 0 kft 30 kft 50 kft

Random maneuver 12.4 ft 12.7 ft 13.2 ft

Range independent noise 2.01 ft 2.06 ft 2.17 ft

Semiactive noise 2.27 ft 2.33 ft 2.44 ft

Glint noise 9.03 ft 9.21 ft 9.61 ft

RMS miss 15.6 ft 16.0 ft 16.6 ft

Fig. 23.16 High-altitude performance is more sensitive to radome slope.
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the lower altitudes there is very little miss distance variation with radome slope.
However, at 50-kft altitude we can see that the miss distance can be very large
due to either large negative or positive slopes. The specification on the allow-
able radome slope swing will be set at the highest operating altitude [6].

LISTING 23.3 ADJOINT SIMULATION OF HOMING LOOP WITH DETAILED FLIGHT-CONTROL
SYSTEM

count=0;
FR=3.;
DIAM=1.;
XL=20.;
CTW=0.;
CRW=6.;
HW=2.;
CTT=0.;
CRT=2.;
HT=2.;
XN=4.;
XCG=10.;
XHL=19.5;
WACT=150.;
ZACT=.7;
TF=5.;
VM=3000.;
XNCG=10.;
WCR=50.;
ZETA=.7;
TAU=.3;
ALT=0.;
XNT=64.4;
XNP=3.;
VC=4000.;
T1=.1;
T2=.15;
PHIRN=.000002;
PHIGL=20.;
PHIFN=.00000008;
RA=30000.;
R=0.;
MISS=1;
TINT=0.;
A=1000.;
if ALT,=30000.

RHO=.002378*exp(-ALT/30000.);
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else
RHO=.0034*exp(-ALT/22000.);

end
WGT=1000.;
XNLLIN=0.;
XACC=XCG;
SWING=.5*HW*(CTW+CRW);
STAIL=.5*HT*(CTT+CRT);
SREF=3.1416*DIAM*DIAM/4.;
XLP=FR*DIAM;
SPLAN=(XL-XLP)*DIAM+1.33*XLP*DIAM/2.;
XCPN=2*XLP/3;
AN=.67*XLP*DIAM;
AB=(XL-XLP)*DIAM;
XCPB=(.67*AN*XLP+AB*(XLP+.5*(XL-XLP)))/(AN+AB);
XCPW=XLP+XN+.7*CRW-.2*CTW;
XMACH=VM/A;
XIYY=WGT*(3*((DIAM/2)^2)+XL*XL)/(12*32.2);
TMP1=(XCG-XCPW)/DIAM;
TMP2=(XCG-XHL)/DIAM;
TMP3=(XCG-XCPB)/DIAM;
TMP4=(XCG-XCPN)/DIAM;
B=sqrt(XMACH^2-1);
Q=.5*RHO*VM*VM;
P1=WGT*XNCG/(Q*SREF);
Y1=2+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
Y2=1.5*SPLAN/SREF;
Y3=8*STAIL/(B*SREF);
Y4=2*TMP4+8*SWING*TMP1/(B*SREF)+8*STAIL*TMP2/(B*SREF);
Y5=1.5*SPLAN*TMP3/SREF;
Y6=8*STAIL*TMP2/(B*SREF);
P2=Y2-Y3*Y5/Y6;
P3=Y1-Y3*Y4/Y6;
ALFTR=(-P3+sqrt(P3*P3+4.*P2*P1))/(2.*P2);
DELTR=-Y4*ALFTR/Y6-Y5*ALFTR*ALFTR/Y6;
CNA=2+1.5*SPLAN*ALFTR/SREF+8*SWING/(B*SREF)+8*STAIL/(B*SREF);
CND=8*STAIL/(B*SREF);
CMAP=2*TMP4+1.5*SPLAN*ALFTR*TMP3/SREF+8*SWING*TMP1/(B*SREF);
CMA=CMAP+8*STAIL*TMP2/(B*SREF);
CMD=8*STAIL*TMP2/(B*SREF);
XMA=Q*SREF*DIAM*CMA/XIYY;
XMD=Q*SREF*DIAM*CMD/XIYY;
ZA=-32.2*Q*SREF*CNA/(WGT*VM);
ZD=-32.2*Q*SREF*CND/(WGT*VM);
WZ=sqrt((XMA*ZD-ZA*XMD)/ZD);
WAF=sqrt(-XMA);
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ZAF=.5*WAF*ZA/XMA;
XK1=-VM*(XMA*ZD-XMD*ZA)/(1845*XMA);
XK2=XK1;
TA=XMD/(XMA*ZD-XMD*ZA);
XK3=1845*XK1/VM;
W=(TAU*WCR*(1+2.*ZAF*WAF/WCR)-1)/(2*ZETA*TAU);
W0=W/sqrt(TAU*WCR);
Z0=.5*W0*(2*ZETA/W+TAU-WAF^2/(W0*W0*WCR));
XKC=(-W0^2/WZ^2-1.+2.*Z0*W0*TA)/(1.-2.*Z0*W0*TA+W0*W0*TA*TA);
XKA=XK3/(XK1*XKC);
XK0=-W*W/(TAU*WAF*WAF);
XK=XK0/(XK1*(1+XKC));
WI=XKC*TA*W0*W0/(1+XKC+W0^2/WZ^2);
XKR=XK/(XKA*WI);
XKDC=1.+1845./(XKA*VM);
for R=-.06:.01:.06

X1=0.;
X2=0.;
X3=0.;
X4=0.;
X5=0.;
X6=0.;
X7=0.;
X8=0.;
X9=0.;
X10=0.;
X11=0.;
X12=0.;
X13=0.;
X14=0.;
X15=0.;
if MISS==1

X3=1.;
elseif MISS==2

X8=1.;
elseif MISS==3

X6=XNP*VC/32.2;
end
T=0;
H=.0001;
S=0;
TP=T+.00001+TINT;
while TP,=(TF - 1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
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X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
X7OLD=X7;
X8OLD=X8;
X9OLD=X9;
X10OLD=X10;
X11OLD=X11;
X12OLD=X12;
X13OLD=X13;
X14OLD=X14;
X15OLD=X15;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
X7=X7+H*X7D;
X8=X8+H*X8D;
X9=X9+H*X9D;
X10=X10+H*X10D;
X11=X11+H*X11D;
X12=X12+H*X12D;
X13=X13+H*X13D;
X14=X14+H*X14D;
X15=X15+H*X15D;
TP=TP+H;
STEP=2;

end
TGO=TP+.00001;
X1D=X2;
X2D=X3;
Y1PZ=(X6/T2+X5)/T1;
X3D=Y1PZ/(VC*TGO);
X4D=-Y1PZ;
X5D=-Y1PZ+R*Y1PZ;
Y2PZ=-XKA*WI*X7;
X6D=-X6/T2+XNP*VC*XKDC*Y2PZ/32.2;
X7D=XKR*WACT*WACT*X8;
X8D=X9-2.*ZACT*WACT*X8;
Y4PZ=XK1*(-32.2*X2-Y2PZ);
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X9D=-WACT*WACT*X8+X10*WAF*WAF-WAF*WAF*Y4PZ/WZ^2;
Y3PZ=XK3*(X7D+WI*X7+(X4-X5)/57.3);
X10D=-2.*ZAF*WAF*(X10-Y4PZ/WZ^2)+X11+TA*Y3PZ;
X11D=-WAF*WAF*(X10-Y4PZ/WZ^2)+Y4PZ+Y3PZ;
X12D=X1*X1;
X13D=(Y1PZ/(VC*TGO))^2;
X14D=(Y1PZ*VC*TGO/RA)^2;
X15D=Y1PZ^2;
FLAG=1;

end;
FLAG=0;
X1=.5*(X1OLD+X1+H*X1D);
X2=.5*(X2OLD+X2+H*X2D);
X3=.5*(X3OLD+X3+H*X3D);
X4=.5*(X4OLD+X4+H*X4D);
X5=.5*(X5OLD+X5+H*X5D);
X6=.5*(X6OLD+X6+H*X6D);
X7=.5*(X7OLD+X7+H*X7D);
X8=.5*(X8OLD+X8+H*X8D);
X9=.5*(X9OLD+X9+H*X9D);
X10=.5*(X10OLD+X10+H*X10D);
X11=.5*(X11OLD+X11+H*X11D);
X12=.5*(X12OLD+X12+H*X12D);
X13=.5*(X13OLD+X13+H*X13D);
X14=.5*(X14OLD+X14+H*X14D);
X15=.5*(X15OLD+X15+H*X15D);

end
XMFN=sqrt(X15*PHIFN);
XMRN=sqrt(X14*PHIRN);
XMGL=sqrt(X13*PHIGL);
XMUDNT=XNT*sqrt(X12/TGO);
RMS=sqrt(XMFN^2+XMRN^2+XMGL^2+XMUDNT^2);
count=count+1;
ArrayR(count)=R;
ArrayXMFN(count)=XMFN;
ArrayXMRN(count)=XMRN;
ArrayXMGL(count)=XMGL;
ArrayXMUDNT(count)=XMUDNT;
ArrayRMS(count)=RMS;

end
figure
plot(ArrayR,ArrayXMFN,ArrayR,ArrayXMRN,ArrayR,ArrayXMGL,ArrayR,...
ArrayXMUDNT,ArrayR,ArrayRMS),grid

xlabel(’Radome Slope’)
ylabel(’Standard Deviation of Miss (Ft) ’)
clc
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output=[ArrayR’,ArrayXMFN’,ArrayXMRN’,ArrayXMGL’,ArrayXMUDNT’,...
ArrayRMS’];

save datfil.txt output /ascii
disp ’simulation finished’

We can examine the miss distance results at high altitude in more detail.
Figure 23.17 shows the miss distance error budget at 50-kft altitude as a function
of radome slope. For large negative slopes all the noise error sources cause the
miss to be big whereas for large positive slopes the dominant contributor to the
miss is random target maneuver. If the maximum rms miss that can be tolerated
at 50-kft altitude is 25 ft, then the radome slope swing would have to be confined
to range from R ¼ 20.03 to R ¼ 0.03 for a total radome swing of 0.06.

Increasing the flight-control system time constant at high altitude is some-
times effective in reducing system sensitivity to radome slope. Figure 23.18
shows that when the flight-control system time constant is increased from 0.3 s
to 0.5 s the guidance system performance appears to be less sensitive to radome
slope. However a closer examination of Fig. 23.18 reveals that if the allowable
rms miss is 25 ft then the maximum negative slope that could be tolerated is
20.05 and the maximum positive slope that could be tolerated is 0.01 for a
total radome swing of 0.06, which is the same radome swing as before. Soon we
will find another reason why increasing the time constant may be beneficial at
high altitudes.

We can also run the adjoint program to generate fin rate results at a specific
time to go before intercept. Therefore a number of adjoint runs will yield fin rate
results for all times to go. These results can be inverted for a particular flight time
to yield rms fin rate as a function of time. Figure 23.19 displays rms fin rate as a
function of time, obtained from the adjoint program of Listing 23.3, for a 5-s flight

Fig. 23.17 Miss distance error budget at 50-kft altitude.
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assuming zero radome slope for the three different flight conditions. We can see
that the largest fin rates occur at the higher altitudes and at the end of the flight.
Figure 23.19 indicates that if intercepts are to be supported at 50-kft altitude for
this example, the actuator must be able to support rms fin rates in excess of
500 deg/s.

The fin rate results can be examined in more detail at 50-kft altitude.
Figure 23.20 presents the adjoint fin rate error budget. We can see that at the

Fig. 23.19 Fin rate increases with increasing altitude.

Fig. 23.18 Sometimes increasing flight-control system time constant reduces sensitivity to
radome slope.
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beginning of flight the large fin rates are due to semiactive noise. An improved
sensor will relax these fin rate requirements. However at the end of the flight
the large fin rates are mainly due to glint noise. Because the glint noise is
usually a function of the target and not the sensor, it would be difficult to relax
the fin rate requirement at this altitude.

Figure 23.21 shows that the fin rate can be significantly reduced by increasing
the flight-control system time constant from 0.3 s to 0.5 s. Therefore increasing
the flight-control system time constant at the higher altitudes might be considered
to be a viable option for a given level of actuator performance.

Fig. 23.20 Fin rate error budget at 50 kft altitude.

Fig. 23.21 Fin rate can be reduced by increasing flight-control system time constant.
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The adjoint program was run again to yield commanded acceleration infor-
mation. We can see from Fig. 23.22 that the rms commanded acceleration is inde-
pendent of flight condition. For this example 25 g of rms missile acceleration
capability would be required to prevent the missile from acceleration saturation.
Avoiding saturation will validate the rms miss distance results of the previous
figures. If saturation occurs, the rms miss distance will be considerably higher.

A typical rms commanded acceleration error budget, obtained from the
adjoint simulation of Listing 23.3, appears in Fig. 23.23. Here we can see that
near the end of the flight most of the rms commanded acceleration is due to

Fig. 23.22 Commanded acceleration profile is independent of altitude.

Fig. 23.23 Acceleration error budget at sea level.
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both random target maneuver and glint noise. Therefore an improved sensor will
not relax the acceleration requirements because only the acceleration due to semi-
active and range independent noise will be reduced. The guidance system must be
sized to handle the commanded acceleration at the end of the flight due to the
random target maneuver and glint noise.

Finally Fig. 23.24 shows that increasing the flight-control system time constant
does not reduce the rms commanded acceleration requirements. Therefore
increasing the time constant is mainly an option for reducing the fin rate require-
ments and possibly also to desensitize the system to radome effects but not for
reducing the acceleration requirements.

SUMMARY

In this chapter we have shown how the three-loop autopilot and associated gain
selection algorithm can be used to independently specify the time constant,
damping, and crossover frequency. Typical performance studies were conducted
using the method of adjoints to show how miss distance results could be gener-
ated, actuator requirements set, and missile acceleration requirements derived.
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CHAPTER 24

Trajectory Shaping Guidance

INTRODUCTION

In all of the guidance work done thus far, the goal has been to hit the target using
the least amount of energy. In some applications, in addition to hitting the target,
it may also be desirable to shape the missile trajectory near impact. For example,
in antitank or antiballistic missile applications we may want to have the missile
approach the target at certain strike angles to improve lethality. In this chapter
we will show how the guidance problem can be reformulated so that a new gui-
dance law can be developed that both hits the target using minimum energy
and, in addition, travels on the desired trajectory. It will be shown that the new
guidance law is actually the same one used to land the Apollo spacecraft on the
moon. We will then evaluate the trajectory shaping guidance law and see how
it performs in a more realistic nonlinear environment.

PROBLEM SETUP

Before we derive the new guidance law, we must first express mathematically what
we desire to do. Let us first revisit our homing loop model for a zero-time constant
guidance system as shown in Fig. 24.1.

As was the case in Chapter 8 for deriving augmented proportional navigation, we
are still assuming a constant target maneuver, which means that the derivative of nT
must be zero. Therefore we can express the model of Fig. 24.1 in matrix form as

_y
€y
_nT

2
4

3
5 ¼

0 1 0
0 0 1
0 0 0

2
4

3
5 y

_y
nT

2
4

3
5þ

0
�1
0

2
4

3
5nc

This is the same form as the state space matrix differential equation

ẋ ¼ Fx þ Gu
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As with our other guidance pro-
blems, we still desire to minimize
the integral of the commanded accel-
eration squared. In addition, we want the miss distance to be zero. We will soon
see that selecting the relative velocity at the end of flight to be some specified value
is the same as shaping the missile trajectory. Mathematically we have just stated
that our goals are

y tFð Þ ¼ 0 and _y tFð Þ ¼ _yF subject to minimizing
ðtF
0
n2c tð Þ dt

Recall from Chapter 8 that the general solution to the state space
differential equation describing the homing loop model is given by the vector
relationship

x tFð Þ ¼ F tF � tð Þx tð Þ þ
ðtF
t
F tF � lð ÞG lð Þu lð Þ dl

where F is the fundamental matrix. By comparing the state space equation to our
matrix equation representing the homing loop model of Fig. 24.1 we can see that
F, G, and u are given by

F ¼
0 1 0

0 0 1

0 0 0

2
64

3
75

G ¼
0

�1

0

2
64

3
75

u ¼ nc

We have already shown in Chapter 8 that for the systems dynamics matrix F
under consideration the continuous fundamental matrix is given by

F tð Þ ¼
1 t :5t2

0 1 t
0 0 1

2
4

3
5

Fig. 24.1 Zero-time constant homing
loop model for guidance law development.
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Substitution of the preceding matrices into the general solution of the state space
equation yields

y tFð Þ
_y tFð Þ
nT tFð Þ

2
64

3
75 ¼

1 tF � t :5 tF � tð Þ2
0 1 tF � t

0 0 1

2
64

3
75 y tð Þ

_y tð Þ
nT tð Þ

2
64

3
75

þ
ðtF
t

1 tF � l :5 tF � lð Þ2
0 1 tF � l

0 0 1

2
64

3
75 0

�1

0

2
64

3
75nc lð Þ dl

We can multiply out the preceding matrix equation and end up with three scalar
equations. Because we are only interested in controlling the relative position and
velocity at the end of flight we can ignore the last scalar equation of the three
equations and obtain

y tFð Þ ¼ y tð Þ þ tF � tð Þ _y tð Þ þ :5 tF � tð Þ2nT tð Þ �
ðtF
t

tF � lð Þnc lð Þ dl

_y tFð Þ ¼ _y tð Þ þ tF � tð ÞnT tð Þ �
ðtF
t
nc lð Þ dl

We will see in the next section how the Schwartz inequality can be used on the
preceding two scalar equations to obtain the trajectory shaping guidance law.

USING THE SCHWARTZ INEQUALITY FOR TRAJECTORY SHAPING GUIDANCE

We will first simplify the guidance problem by using shorthand notation to rep-
resent the two scalar equations that were just derived in the preceding section. Let
us first define

f1 ¼ y tð Þ þ tF � tð Þ _y tð Þ þ :5 tF � tð Þ2nT tð Þ
f �2 ¼ _y tð Þ þ tF � tð ÞnT tð Þ

h1 lð Þ ¼ tF � l

h2 lð Þ ¼ 1

We can now rewrite the two scalar equations at the end of the preceding section in
shorthand notation as

y tFð Þ ¼ f1 �
ðtF
t
h1 lð Þnc lð Þ dl

_y tFð Þ ¼ f �2 �
ðtF
t
h2 lð Þnc lð Þ dl
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Recall that we want the miss distance to be zero [y(tF) ¼ 0] and we also want to
specify the value of the relative velocity at the terminal time. Therefore, the two
preceding equations simplify to

f1 ¼
ðtF
t
h1 lð Þnc lð Þ dl

f �2 � _y tFð Þ ¼
ðtF
t
h2 lð Þnc lð Þ dl ¼ f2

Let us now combine the two preceding scalar equations into one equation by
introducing a new variable d or

f1 � df2 ¼
ðtF
t

h1 lð Þ � dh2 lð Þ½ �nc lð Þ dl

If we apply the Schwartz inequality to the preceding expression we obtain

f1 � df2ð Þ2�
ðtF
t

h1 lð Þ � dh2 lð Þ½ �2 dl
ðtF
t
n2c lð Þ dl

Inverting the preceding equation and solving for the integral of the square of the
commanded acceleration yields

ðtF
t
n2c lð Þ dl � f1 � df2ð Þ2Ð tF

t h1 lð Þ � dh2 lð Þ½ �2 dl

The integral of the square of the acceleration will be minimized when the
equality sign of the preceding inequality holds. According to the Schwartz
inequality, the equality sign holds when

nc lð Þ ¼ K h1 lð Þ � dh2 lð Þ½ �

where K is a constant. We will soon use the preceding equation. When the equality
sign holds, the integral of the square of the commanded acceleration can be
expanded to

z ¼
ðtF
t
n2c lð Þ dl ¼ f1 � df2ð Þ2Ð tF

t h1 lð Þ � dh2 lð Þ½ �2 dl

¼ f1 � df2ð Þ2Ð tF
t h21 lð Þ dl� 2d

Ð tF
t h1 lð Þh2 lð Þ dlþ d2

Ð tF
t h22 lð Þ dl
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In the work that follows we will be performing many algebraic manipulations. To
simplify our task, we will again use shorthand notation. We can define

h21
�� �� ¼ Ð tFt h21 lð Þ dl
h22
�� �� ¼ Ð tFt h22 lð Þ dl
h1h2k k ¼ Ð tFt h1 lð Þh2 lð Þ dl

Therefore, our expression for the integral of the square of the commanded accel-
eration simplifies to

z ¼ f1 � df2ð Þ2
h21k k � 2d h1h2k k þ d2 h22k k

Now we have to choose a value for the variable d. The best value of d is one
that minimizes the preceding expression. We know from calculus that the value
of d that minimizes the preceding expression can be found by taking the derivative
of the preceding expression with respect to d and setting the result to zero. Using
the quotient rule from calculus to take the derivative yields

dz
dd

¼0

¼ h21
�� ���2d h1h2k kþd2 h22

�� ��� �
2 f1�df2ð Þ �f2ð Þ� f1�df2ð Þ2 �2 h1h2k kþ2d h22

�� ��� �
h21k k�2d h1h2k kþd2 h22k k� �2

We can now solve the preceding expression for d. After some algebra, we obtain

d ¼ f1 h1h2k k � f2 h21
�� ��

f1 h22k k � f2 h1h2k k
Because we know that

f1 ¼
ðtF
t
h1 lð Þnc lð Þ dl

and

nc lð Þ ¼ K h1 lð Þ � dh2 lð Þ½ �
Substitution yields

f1 ¼
ðtF
t
h1 lð ÞK h1 lð Þ � dh2 lð Þ½ � dl

If we solve for the constant K we obtain

K ¼ f1Ð tF
t h1 lð Þ h1 lð Þ � dh2 lð Þ½ � dl ¼ f1

h21k k � d h1h2k k
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Therefore, the optimal acceleration command can be rewritten as

nc lð Þ ¼ K h1 lð Þ � dh2 lð Þ½ � ¼ f1 h1 lð Þ � dh2 lð Þ½ �
h21k k � d h1h2k k

Substitution of the optimal value of d in the preceding expression yields

nc lð Þ ¼
f1 h1 lð Þ � h2 lð Þ f1 h1h2k k � f2 h21

�� ��
f1 h22k k � f2 h1h2k k
� �� �

h21k k � h1h2k k f1 h1h2k k � f2 h21
�� ��

f1 h22k k � f2 h1h2k k
� �

After some algebra, we obtain

nc lð Þ ¼ f1h1 lð Þ h22
�� ��� h1h2k k f2h1 lð Þ þ f1h2 lð Þ½ � þ f2h2 lð Þ h21

�� ��
h21k k h22k k � h1h2k k2

or in the time domain

nc tð Þ ¼
f1h1 tð Þ h22

�� ��� h1h2k k f2h1 tð Þ þ f1h2 tð Þ½ � þ f2h2 tð Þ h21
�� ��

h21k k h22k k � h1h2k k2

Now we have enough information to evaluate the numerator and denominator of
the preceding expression to find the new guidance law. Recall that for this problem

f1 ¼ y tð Þ þ tF � tð Þ _y tð Þ þ :5 tF � tð Þ2nT tð Þ ¼ y þ tgo _y þ :5t2gonT

f2 ¼ f �2 � _y tFð Þ ¼ _y tð Þ þ tF � tð ÞnT tð Þ � _y tFð Þ ¼ _y þ tgonT � _y tFð Þ
h1 tð Þ ¼ tF � t ¼ tgo
h2 tð Þ ¼ 1

Therefore, we can easily solve the necessary integrals as

h21
�� �� ¼

ðtF
t
h21 lð Þ dl ¼

ðtF
t

tF � lð Þ2 dl ¼ t3go
3

h22
�� �� ¼

ðtF
t
h22 lð Þ dl ¼

ðtF
t
dl ¼ tgo

h1h2k k ¼
ðtF
t
h1 lð Þh2 lð Þ dl ¼

ðtF
t

tF � lð Þ dl ¼ t2go
2

where the time to go until intercept is given by

tgo ¼ tF � t
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Substituting the preceding expressions into the formula for the acceleration
command yields

nc tð Þ ¼
(
ðyþ tgo _yþ :5t2gonTÞtgotgo � :5t2go

h
_yþ tgonT � _yFÞtgo
�

þðyþ tgo _yþ :5t2gonTÞð1Þ
i
þ _yþ tgonT � _yF
� �ð1Þ t3go

3

),
t3go
3
tgo �

t2go
2

 !2" #

After some algebra, we see that the new trajectory shaping guidance law simplifies
to

nc tð Þ ¼
6y þ 4 _ytgo þ nTt2go þ 2 _y tFð Þtgo

t2go

The guidance law that landed the Apollo spacecraft on the moon in 1969 used the
preceding guidance law. In the Apollo case, there was no target acceleration and
the relative velocity at intercept was chosen to be zero (that is, this special case is
also known as a rendezvous). Therefore, the Apollo guidance law is simply [1–4]

nc tð ÞApollo¼
6y þ 4 _ytgo

t2go

ALTERNATE FORM OF TRAJECTORY SHAPING GUIDANCE LAW

We can rewrite the trajectory shaping guidance law of the preceding section as

nc tð Þ ¼
4y þ 4 _ytgo þ nTt2go þ 2y þ 2 _y tFð Þtgo

t2go
¼ 4 y þ _ytgo
� �

t2go

þ 2 y þ _y tFð Þtgo
� �þ nTt2go

t2go

Recall that the formula for the line of sight angle is given by

l ¼ y
RTM

¼ y
Vctgo

¼ y
Vc tF � tð Þ

Therefore, the line of sight rate can be found by differentiating the preceding
expression using the quotient rule from calculus. After some algebra, we obtain

_l ¼ y þ _ytgo
Vct2go
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Therefore, the trajectory shaping guidance law simplifies to

nc tð Þ ¼ 4Vc _lþ 2 lVc þ _y tFð Þ½ �
tgo

þ nT

To express the guidance law in terms of a final angle rather than a final relative
velocity, we can invert the expression for the line of sight rate and solve for the
relative velocity or

_y ¼
_lVct2go � y

tgo
¼

_lVct2go � _lVctgo

tgo
¼ _lVct

2
go � lVc

We can evaluate the preceding expression at intercept. At the end of the flight,
time to go is zero and the final line of sight angle is lF. Therefore, at the end of
the flight we can see that the relative velocity is simply

_y tFð Þ ¼ �l tFð ÞVc ¼ �lFVc

and the trajectory shaping guidance law simplifies to

nc tð Þ ¼ 4Vc _lþ 2Vc l� lF½ �
tgo

þ nT

Thus, we can see that we can think of the trajectory shaping guidance law as
one that minimizes the integral of the square of the commanded acceleration,
makes the miss zero, and drives the final line of sight angle to the designer-chosen
value lF. The trajectory shaping guidance law appears to be a form of augmented
proportional navigation (with an effective navigation ratio of 4 and a different
multiplier for the target acceleration term) plus an extra term that is proportional
to the difference between the true line of sight angle and the desired line of sight
angle at the end of the flight.

TESTING TRAJECTORY SHAPING GUIDANCE IN THE LINEAR WORLD

Now that the trajectory shaping guidance law has been derived, it is important to
first test the new guidance law in the linear world to see if it works as anticipated.
In addition, we would like to compare trajectory shaping guidance with pro-
portional navigation in terms of both accuracy and acceleration requirements.
Figure 24.2 presents a block diagram of a zero-lag homing loop to be used in eval-
uating both proportional navigation and trajectory shaping guidance. We can see
from the homing loop that the two sources of error considered are target maneu-
ver, nT, and heading error, HE. We can see from Fig. 24.2 that the two measures of
performance will be the miss distance, y(tF), and the final line of sight angle, lF.

The homing loop model of Fig. 24.2 was programmed, and the resultant
engagement simulation appears in Listing 24.1. We can see from the listing that
the parameter PN determines the type of guidance law to be used. If PN¼1 then
proportional navigation is used, whereas if PN¼0 the trajectory shaping guidance
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law is used. When trajectory shaping guidance is used the final specified line of
sight angle is denoted XLAMFDEG and is in units of degrees. The trajectory
shaping guidance law assumes that time-to-go information and line of sight
angle and rate information are available. It is important to note that proportional
navigation does not require time-to-go information.

The nominal case of Listing 24.1 was run in which there was a 10-s flight and
220 deg of heading error. When the trajectory shaping guidance law is used it is
specified that the final line of sight angle should be 230 deg. We can see from
Fig. 24.3 that both guidance laws enable the missile to take out the heading

Fig. 24.2 Homing loop model for guidance law comparison.

Fig. 24.3 Both guidance laws enable missile to take out the heading error disturbance and
hit the target using different relative trajectories.
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error and hit the target because y(10)¼0 in both cases. However, we can see that
the relative trajectories are totally different for both guidance laws.

The acceleration requirements for both guidance laws are displayed in
Fig. 24.4. We can see that significantly more commanded acceleration is required
for trajectory shaping guidance to take out 20 deg of heading error (25 g at the
beginning of the flight and approximately 230 g near the end of the flight)
than is required with proportional navigation (10 g at the beginning of the
flight and 0 g near the end of the flight).

LISTING 24.1 LINEAR ENGAGEMENT SIMULATION FOR GUIDANCE LAW COMPARISON

n=0;
XNT=0.;
HEDEG=-20.;
XNCLIM=999999.;
PN=0;
XLAMFDEG=-30.;
VC=4000.;
VM=3000.;
TF=10.;
XNP=3.;
XLAMF=XLAMFDEG/57.3;
Y=0.;
YD=-VM*HEDEG/57.3;
T=0.;

Fig. 24.4 Trajectory shaping guidance requires more acceleration than proportional
navigation to take out heading error disturbance.
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H=.001;
S=0.;
while T,=(TF-.0001)

YOLD=Y;
YDOLD=YD;
STEP=1;
FLAG=0;
while STEP ,=1
if FLAG==1

STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
T=T+H;

end
TGO=TF-T+.00001;
XLAM=Y/(VC*TGO);
XLAMD=(Y+YD*TGO)/(VC*TGO*TGO);
if PN==1

XNC=XNP*VC*XLAMD;
else

XNC=4.*VC*XLAMD+XNT+2.*VC*(XLAM-XLAMF)/TGO;
end
if XNC.XNCLIM

XNC=XNCLIM;
end
if XNC,-XNCLIM

XNC=-XNCLIM;
end
YDD=XNT-XNC;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
S=S+H;
if S.=.09999
S=0.;
n=n+1;
XLAMDEG=XLAM*57.3;
XNCG=XNC/32.2;
ArrayT(n)=T;
ArrayY(n)=Y;
ArrayXNCG(n)=XNCG;
ArrayXLAMDEG(n)=XLAMDEG;

end
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end
figure
plot(ArrayT,ArrayY),grid
title(’Relative Trajectory’)
xlabel(’Time (Sec) ’)
ylabel(’Y (Ft)’)
figure
plot(ArrayT,ArrayXNCG),grid
title(’Commanded Acceleration’)
xlabel(’Time (Sec) ’)
ylabel(’XNC (G)’)
axis([0 10 -40 30])
figure
plot(ArrayT,ArrayXLAMDEG),grid
title(’Line-of-Sight Angle’)
xlabel(’Time (Sec) ’)
ylabel(’XLAM (Deg)’)
axis([0 10 -30 10])
clc
output=[ArrayT’,ArrayY’,ArrayXNCG’,ArrayXLAMDEG’];
save datfil.txt output /ascii
disp ’*** Simulation Complete’

Finally, we can see from Fig. 24.5 that with trajectory shaping guidance the line
of sight angle matches the design goal of 230 deg at the end of the flight. With
proportional navigation the final line of sight angle is not controlled and it is
really a matter of luck on what that angle will be (that is, approximately 8 deg

Fig. 24.5 Trajectory shaping guidance law can control final line of sight angle.

580 TACTICAL AND STRATEGIC MISSILE GUIDANCE



in this example). Thus, we can say that simulation results indicate that trajectory
shaping guidance appears to be working correctly against the heading error
disturbance.

Next, both guidance laws were compared in terms of their response to a 6 g
target maneuver. Again, we can see from Fig. 24.6 that both guidance laws
enable the missile to hit the maneuvering target because y(10)¼0 in both cases.
As was the case before, both guidance laws result in relative trajectories that are
significantly different.

Again, we can see from Fig. 24.7 that trajectory shaping guidance requires
more acceleration than proportional navigation to hit the maneuvering target.
For the case of the 6 g maneuvering target and desired final line of sight angle
of 230 deg, trajectory shaping guidance required 20 g at the beginning of flight
and 220 g at the end of flight. On the other hand, proportional navigation,
which did not reach the final line of sight angle goal, required 0 g at the beginning
of flight and nearly 20 g at the end of flight.

From Fig. 24.8 we can see that with trajectory shaping guidance we achieved
the goal of the line of sight angle becoming –30 deg at the end of the flight. We
can also see that for this example proportional navigation ended up with a final
line of sight angle of 14 deg. Thus, we can conclude that simulation results indi-
cate that trajectory shaping guidance appears to be working correctly against the
target maneuver disturbance.

Other cases were run with the trajectory shaping guidance law for the case in
which there was220 deg of heading error and the final line of sight angle is made
a parameter. Figure 24.9 shows that the acceleration requirements for the trajec-
tory shaping guidance law are dependent on the final line of sight angle.
Figure 24.10 shows that the various design goals for the final line of sight angle

Fig. 24.6 Trajectory shaping guidance law can also hit maneuvering target.
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are all met with trajectory shaping guidance in the presence of the heading error
disturbance, provided adequate acceleration is available.

Finally, even more cases were run with the trajectory shaping guidance law for
the situation in which there was a 6 gmaneuvering target and the final line of sight
angle was made a parameter. Figure 24.11 shows that the acceleration require-
ments for the trajectory shaping guidance law are again dependent on the final
line of sight angle. Figure 24.12 shows that the various design goals for the final

Fig. 24.8 Trajectory shaping guidance law can still control final line of sight angle—even
in presence of maneuvering target.

Fig. 24.7 Trajectory shaping guidance law requires more acceleration than proportional
navigation against maneuvering target.

582 TACTICAL AND STRATEGIC MISSILE GUIDANCE



line of sight angle are all met with trajectory shaping guidance in the presence of
the target maneuver disturbance.

CLOSED-FORM SOLUTIONS

With the proportional and augmented proportional navigation guidance laws, we
were able to derive closed-form solutions for the missile acceleration due to a step

Fig. 24.9 Acceleration requirements depend on final line of sight angle specification when
disturbance is heading error.

Fig. 24.10 Final line of sight angle goals are met in presence of heading error with
trajectory shaping guidance.

TRAJECTORY SHAPING GUIDANCE 583



in target maneuver, heading error, and a step in target displacement for a zero-
time constant missile guidance system. The solutions were obtained by solving
a linear, first-order, time-varying differential equation as was demonstrated in
Chapters 2 and 19. Let us see if we can use the same techniques to derive accel-
eration formulas for the trajectory shaping guidance law.

Consider the case in which the only disturbance to the guidance system is
target maneuver. From Fig. 24.2 we can see that the relative acceleration is

Fig. 24.11 Acceleration requirements still depend on final line of sight angle specification
when disturbance is target maneuver.

Fig. 24.12 Final line of sight angle goals are met in presence of target maneuver with
trajectory shaping guidance.
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simply target acceleration minus missile acceleration, or

€y ¼ nT � nc

Substituting the original expression for the trajectory shaping guidance law into
the preceding equation yields

€y ¼ nT � nc tð Þ ¼ nT � 6y þ 4 _ytgo þ nTt2go þ 2 _y tFð Þtgo
t2go

" #

¼ �6y � 4 _ytgo � 2 _y tFð Þtgo
t2go

or more simply

€y þ 4 _y
tF � t

þ 6y

tF � tð Þ2 ¼
�2 _y tFð Þ
tF � t

with initial conditions

y 0ð Þ ¼ 0 and _y 0ð Þ ¼ 0

Recall that in Chapters 2 and 19 we obtained closed-form solutions by solving a
first-order linear differential equation with time-varying coefficients. However,
now we now have a second-order linear differential equation with time-varying
coefficients. The solution to such an equation is extremely difficult at best. Let
us see if we can take another, less conventional, approach to the problem.

Recall that the general solution to the state space equation at the final time

ẋ ¼ Fx þ Gu

was given by

x tFð Þ ¼ F tF � tð Þx tð Þ þ
ðtF
t
F tF � lð ÞG lð Þu lð Þ dl

We can also say that the general solution to the state space equation can be
expressed in terms of the initial conditions at time zero as

x tFð Þ ¼ F tFð Þx 0ð Þ þ
ðtF
0
F tF � lð ÞG lð Þu lð Þ dl
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Therefore, for the homing-loop problem under consideration we have

y tFð Þ
_y tFð Þ
nT tFð Þ

2
4

3
5 ¼

1 tF :5t2F
0 1 tF
0 0 1

2
4

3
5 y 0ð Þ

_y 0ð Þ
nT 0ð Þ

2
4

3
5

þ
ðtF
0

1 tF � l :5 tF � lð Þ2
0 1 tF � l
0 0 1

2
4

3
5 0

�1
0

2
4

3
5nc lð Þ dl

Multiplying out the preceding matrix equation and leaving out the third scalar
equation yields

y tFð Þ ¼ y 0ð Þ þ tF _y 0ð Þ þ :5t2FnT 0ð Þ �
ðtF
0

tF � lð Þnc lð Þ dl

_y tFð Þ ¼ _y 0ð Þ þ tFnT 0ð Þ �
ðtF
0
nc lð Þ dl

We still want to minimize the integral of the square of the commanded accelera-
tion subject to the miss being zero and the relative velocity at the end of flight
being specified or

y tFð Þ ¼ 0 and _y tFð Þ ¼ _yF subject to minimizing
ðtF
0
n2c tð Þ dt

We get the same solution for the acceleration command as before or

nc tð Þ ¼
f1h1 tð Þ h22

�� ��� h1h2k k½ f2h1 tð Þ þ f1h2 tð Þ� þ f2h2 tð Þ h21
�� ��

h21k k h22k k � h1h2k k2

except that this time the shorthand notation definitions have changed to

f1 ¼ y 0ð Þ þ tF _y 0ð Þ þ :5t2FnT 0ð Þ
f2 ¼ _y 0ð Þ þ tFnT 0ð Þ � _y tFð Þ

h1 tð Þ ¼ tF � t ¼ tgo
h2 tð Þ ¼ 1

h21
�� �� ¼

ðtF
0
h21 tð Þ dt ¼

ðtF
0

tF � tð Þ2 dl ¼ t3F
3

h22
�� �� ¼

ðtF
0
h22 tð Þ dt ¼

ðtF
0
dt ¼ tF

h1h2k k ¼
ðtF
0
h1 tð Þh2 tð Þ dt ¼

ðtF
0

tF � tð Þ dt ¼ t2F
2
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Substitution of the preceding definitions into the formula for the acceleration
command yields

nc tð Þ ¼
	

y 0ð Þ þ tF _y 0ð Þ þ :5t2FnT 0ð Þ� �
tgotF � :5t2F _y 0ð Þ þ tFnT 0ð Þ � _y tFð Þ½ �tgo

�

þ½ y 0ð Þ þ tF _y 0ð Þ þ :5t2FnT 0ð Þ� 1ð Þ�þ _y 0ð Þ þ tFnT 0ð Þ � _y tFð Þ½ � 1ð Þ t
3
F

3


,

t3F
3
tF � t2F

2

� �2" #

After much algebra, we obtain

nc tð Þ ¼
12y 0ð Þ tgo � tF

2

� �
þ tF _y 0ð Þ 6tgo � 2tF

� �þ t3FnT 0ð Þ þ tF _y tFð Þ 6tgo � 4tF
� �

t3F

The preceding expression is the closed-form solution for the total missile accelera-
tion due to the various initial conditions or error sources when using the trajectory
shaping guidance law. Therefore, the missile acceleration due to an initial condition
in relative velocity can be written by inspection from the preceding formula as

nc tð Þ _y0
 ¼ tF _y 0ð Þ 6tgo � 2tF

� �
t3F

¼ 2 _y 0ð Þ
tF

2� 3t
tF

� �
Because the initial relative velocity and heading error are related by

_y 0ð Þ ¼ �VMHE

we can say that the acceleration due to heading error is given by

nc tð ÞjHE ¼ �2VMHE
tF

2� 3t
tF

� �
Therefore, the acceleration required to take out the heading error is proportional to
the amount of heading error and inversely proportional to the amount of homing
time. More heading error and less homing time both work in the direction of
increasing the missile acceleration requirements.

From the general closed-form acceleration formula, we can see that the accel-
eration due to a target maneuver is given by

nc tð ÞjnT ¼ t3FnT 0ð Þ
t3F

¼ nT 0ð Þ

We can see from the preceding expression that in this case the missile is simply
matching the target acceleration. Therefore, as expected, larger target maneuvers
will require more acceleration capability from the missile.
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Finally, we can see that the acceleration due to shaping the trajectory to match
a desired final relative velocity can also be written by inspection of the total accel-
eration formula as

nc tð Þ _yF

 ¼ tF _y tFð Þ 6tgo � 4tF
� �
t3F

¼ 2 _y tFð Þ
tF

1� 3t
tF

� �
Recall that the final relative velocity can also be expressed in terms of the final line
of sight angle as

_y tFð Þ ¼ �Vcl tFð Þ
Therefore, the acceleration due to shaping the final line of sight angle can be
rewritten as

nc tð ÞjlF ¼
�2Vcl tFð Þ

tF
: 1� 3t

tF

� �
The acceleration requirements are proportional to the amount of shaping we want
to do and inversely proportional to the amount of homing time. Larger desired
final line of sight angles (that is, more shaping) will require more missile
acceleration.

To check the formulas derived in this section, cases were run with the linear
engagement simulation of Listing 24.1. First, a case was run with trajectory
shaping guidance in which the desired final line of sight angle was zero and
there was a 6 g target maneuver for a 10-s flight. Recall that the formula for the
commanded missile acceleration due to a maneuvering target is given by

nc tð Þ nT ¼ nT 0ð Þj
We can see from Fig. 24.13 that the simulation results of Listing 24.1 (namely,
XNT ¼ 193.2, HEDEG ¼ 0, PN ¼ 0, XLAMFDEG ¼ 0) and the preceding formula
are in exact agreement, thus demonstrating that the acceleration due to target
maneuver formula is correct.

Listing 24.1 was again run with trajectory shaping guidance in which the
desired final line of sight was zero and there was a –20 deg heading error for a
10-s flight. Recall that the formula for the commanded missile acceleration due
to heading error is given by

nc tð ÞjHE ¼ �2VMHE
tF

2� 3t
tF

� �
We can see from Fig. 24.14 that the simulation results of Listing 24.1 (namely,
XNT ¼ 0, HEDEG ¼ 220, PN ¼ 0, XLAMFDEG ¼ 0) and the preceding formula
are in exact agreement, thus demonstrating that the acceleration due to heading
error formula is also correct.
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Finally, Listing 24.1 was run again with trajectory shaping guidance in which
the desired final line of sight angle is set to –30 deg. In this case there is no
heading error or target maneuver. However, the flight time is still 10-s. Recall
that the formula for the commanded missile acceleration due to specifying the
final line of sight angle is given by

nc tð Þ lFj ¼ �2Vcl tFð Þ
tF

1� 3t
tF

� �
We can see from Fig. 24.15 that again the simulation results of Listing 24.1
(namely, XNT ¼ 0, HEDEG ¼ 0, PN¼0, XLAMFDEG ¼ 230) and the preceding

Fig. 24.13 Formula for acceleration due to target maneuver is accurate.

Fig. 24.14 Formula for acceleration heading error is accurate.
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formula are in exact agreement, thus demonstrating that the acceleration due to
specifying the final line of sight angle formula is also correct.

NONLINEAR RESULTS

The trajectory shaping guidance law was really derived for operation in the world
in which the geometry was linear. This implies small angle approximations. It is
now of interest to see how the new guidance law works in the two-dimensional
world in which the equations of motion are nonlinear. Listing 24.2 is a slight
modification of the original zero-time constant nonlinear missile-target engage-
ment simulation of Listing 2.1. An option has been included so that the target
can either be stationary (target flight path rate has been modified so there is no
division by zero) or moving. It is important to note that the trajectory shaping gui-
dance law requires knowledge of the target acceleration. In the nonlinear engage-
ment simulation, the target acceleration perpendicular to the line of sight is used
in the guidance law. The components of the target acceleration in the downrange
and altitude direction can be expressed in terms of the target flight path angle as

nT1 ¼ nT sinb

nT2 ¼ nT cosb

Therefore, the target acceleration that appears perpendicular to the line of sight
can be obtained from trigonometry and can be expressed as

nTPLOS ¼ �nT1 sin lþ nT2 cosl

Fig. 24.15 Formula for acceleration because of controlling final line of sight
angle is accurate.
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Now the trajectory shaping guidance law for the nonlinear world can be written as

nc tð Þ ¼ 4Vc _lþ 2Vc l� lF½ �
tgo

þ nTPLOS

where the direction of the commanded acceleration is perpendicular to the line of
sight. The new nonlinear engagement simulation appears in Listing 24.2. We can
see that the simulation can also be run using proportional navigation by simply
setting APN ¼ 0.

The nominal case of Listing 24.2 was run for the example in which the target is
considered to be stationary (namely, VT ¼ 0) and is located 30-kft downrange
from the missile (namely, RT1IC ¼ 30000). The missile is traveling at 3000 ft/s
and is initially at 10-kft altitude (namely, VM ¼ 3000, RM1IC ¼ 10000). The geo-
metry is such that the missile is on a collision path with the target (that is, zero
heading error). We can see from Fig. 24.16 that when proportional navigation
is used the missile essentially travels in a straight line to the target because it is
already on a collision triangle with the target. However, in this application we
would like to hit the target vertically for lethality reasons (such as an antitank
application). This means that for the trajectory shaping guidance law we would
like the final line of sight angle to be 290 deg (namely, XLAMFDEG ¼ 290). We
can see from Fig. 24.16 that it indeed appears that the trajectory shaping guidance
law is enabling the missile to hit the target near vertically. In addition, we can see
that the trajectory shaping guidance law trajectory is entirely different than the
proportional navigation guidance trajectory. Of course, trajectory shaping gui-
dance requires time-to-go information, whereas proportional navigation does not.

Fig. 24.16 Trajectory shaping also works in the nonlinear world.
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LISTING 24.2 NONLINEAR ENGAGEMENT SIMULATION TO TEST TRAJECTORY SHAPING
GUIDANCE LAW

n=0;
XNTG=0.;
HEDEG=0.;
XNP=3.;
RM1IC=0.;
RM2IC=10000.;
RT1IC=30000.;
RT2IC=0.;
VM=3000.;
VT=0.;
XNCLIMG=9999999.;
APN=1;
XLAMFDEG=-90.;
H=.0001;
XNCLIM=32.2*XNCLIMG;
XLAMF=XLAMFDEG/57.3;
XNT=32.2*XNTG;
RM1=RM1IC;
RM2=RM2IC;
RT1=RT1IC;
RT2=RT2IC;
BETA=0.;
VT1=-VT*cos(BETA);
VT2=VT*sin(BETA);
HE=HEDEG/57.3;
T=0.;
S=0.;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
XLAM=atan2(RTM2,RTM1);
XLEAD=asin(VT*sin(BETA+XLAM)/VM);
THET=XLAM+XLEAD;
VM1=VM*cos(THET+HE);
VM2=VM*sin(THET+HE);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
while VC .= 0

if RTM , 1000
H=.00001;

else
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H=.0001;
end
BETAOLD=BETA;
RT1OLD=RT1;
RT2OLD=RT2;
RM1OLD=RM1;
RM2OLD=RM2;
VM1OLD=VM1;
VM2OLD=VM2;
STEP=1;
FLAG=0;
while STEP ,=1
if FLAG==1

STEP=2;
BETA=BETA+H*BETAD;
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
T=T+H;

end
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
XLAM=atan2(RTM2,RTM1);
XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM);
TGO=RTM/VC;
if APN==0

XNC=XNP*VC*XLAMD;
else

XNT1=XNT*sin(BETA);
XNT2=XNT*cos(BETA);
XNTPLOS=-XNT1*sin(XLAM)+XNT2*cos(XLAM);
XNC=4.*VC*XLAMD+XNTPLOS+2.*VC*(XLAM-XLAMF)/TGO;

end
if XNC.XNCLIM

XNC=XNCLIM;
end
if XNC,-XNCLIM

XNC=-XNCLIM;
end
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AM1=-XNC*sin(XLAM);
AM2=XNC*cos(XLAM);
VT1=-VT*cos(BETA);
VT2=VT*sin(BETA);
if VT==0.

BETAD=0.;
else

BETAD=XNT/VT;
end
FLAG=1;

end
FLAG=0;
BETA=.5*(BETAOLD+BETA+H*BETAD);
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
S=S+H;
if S.=.09999
S=0.;
n=n+1;
RT1K=RT1/1000.;
RT2K=RT2/1000.;
RM1K=RM1/1000.;
RM2K=RM2/1000.;
XLAMDEG=XLAM*57.3;
XNCG=XNC/32.2;
ArrayT(n)=T;
ArrayRT1K(n)=RT1K;
ArrayRT2K(n)=RT2K;
ArrayRM1K(n)=RM1K;
ArrayRM2K(n)=RM2K;
ArrayXNCG(n)=XNCG;
ArrayXLAMDEG(n)=XLAMDEG;

end
end
RTM
figure
plot(ArrayRT1K,ArrayRT2K,ArrayRM1K,ArrayRM2K),grid
title(’Engagement Geometry’)
xlabel(’Downrange (Kft) ’)
ylabel(’Altitude (Kft)’)
figure
plot(ArrayT,ArrayXNCG),grid
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title(’Commanded Acceleration’)
xlabel(’Time (Sec) ’)
ylabel(’XNC (G)’)
axis([0 14 -20 25])
figure
plot(ArrayT,ArrayXLAMDEG),grid
title(’Line-of-Sight Angle’)
xlabel(’Time (Sec) ’)
ylabel(’XLAM (Deg)’)
axis([0 14 -100 0])
clc
output=[ArrayT’,ArrayRT1K’,ArrayRT2K’,ArrayRM1K’,...

ArrayRM2K’,ArrayXNCG’,ArrayXLAMDEG’];
save datfil.txt output /ascii
disp ’*** Simulation Complete’

Figure 24.17 shows that the price paid for shaping the trajectory is that con-
siderable acceleration is required by the missile to hit the target. Unlike pro-
portional navigation, which does not require any acceleration to hit the target
in this scenario because it is already on a collision triangle, trajectory shaping gui-
dance requires more than 20 g of acceleration at the beginning of the flight and
nearly 210 g at the end of the flight.

Finally, we can see from Fig. 24.18 that the line of sight angle for trajectory
shaping guidance achieved the design goal by reaching –90 deg at the end of
the flight. Figure 24.18 also shows that proportional navigation, which does not
shape the trajectory, ended up with a final line of sight angle of –18.4 deg. We

Fig. 24.17 A great deal of acceleration may be required to shape trajectory to get a final
line of sight angle of –90 deg.
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can also see from Fig. 24.18 that because proportional navigation enabled the
missile to fly directly to the target, the flight time was nearly 4 s shorter than
when the trajectory shaping guidance law was used.

It is of considerable interest to see if the formulas we derived in the previous
section for the commanded acceleration are useful in predicting the nonlinear
results. Recall that in the previous section we showed that the acceleration in
units of ft/s2 required to turn the missile through and angle of lF in units of
radians is given by

nc tð Þ lFj ¼ �2VclF
tF

1� 3t
tF

� �

where Vc is the closing velocity in ft/s, tF is the amount of flight or guidance time,
and t is instantaneous time both in units of seconds. For the problem depicted in
Fig. 24.16, the final line of sight angle that would have been achieved without tra-
jectory shaping guidance is –18.4 deg (see Fig. 24.18). Therefore, trajectory
shaping guidance is attempting to change the angle from –18.4 deg to –90 deg,
or a change of –71.6 deg. In addition, we can tell from Fig. 24.18 that the
amount of guidance time for trajectory shaping guidance is 13.6 s.

Figure 24.19 indicates that the linear formula for missile acceleration is not
very accurate in this example for predicting the nonlinear commanded missile
acceleration. It is hypothesized that perhaps the angular change in the line of
sight angle is too great for linear theory to hold. Another case was run with the
nonlinear simulation in which the desired final line of sight angle was –30 deg
(a change of only 11.6 deg from –18.4 deg that could be obtained with pro-
portional navigation). Because there is less trajectory shaping, the flight time

Fig. 24.18 Trajectory shaping enables line of sight angle to reach its goal.
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reduces to 10.6 s. We can see from Fig. 24.20 that the formula now matches the
nonlinear results quite accurately.

Another, more stressing case was considered in which the target was both
moving and maneuvering. In this example, the missile had a –20 deg heading
error, while the target was executing a 6 g maneuver. Two cases were con-
sidered—one in which the desired final line of sight angle was –30 deg and the
other in which the desired final line of sight angle was 30 deg. Figure 24.21
shows that when trajectory shaping guidance was used intercepts were achieved
in both cases. It is too difficult to tell from Fig. 24.21 if the final line of sight

Fig. 24.19 Linear formula is not a great match to nonlinear results.

Fig. 24.20 Linear formula is nearly perfect when angular turn is smaller.
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angle design goals have actually been met. Figure 24.22 displays the commanded
acceleration profiles that were required in both cases for successful intercepts. We
can see that for the –30 deg intercept the maximum positive acceleration was 30 g
while the maximum negative acceleration was –10 g. We can also see that for the
30-deg intercept the maximum positive acceleration was only 10 g while the
maximum negative acceleration was –5 g. Finally, we can see from Fig. 24.23
that the design goals for the final line of sight angles for both cases were met.

Fig. 24.21 Trajectory shaping guidance works against maneuvering target for different
approach angles.

Fig. 24.22 Acceleration requirements are larger with maneuvering target than with
stationary target.
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Again, it is of considerable interest to see if the formulas we derived in the pre-
vious section for the commanded acceleration are useful in predicting the non-
linear results. Recall that the total acceleration in units of ft/s2 required to turn
the missile through an angle of lF in units of radians in the presence of target
maneuver nT in units of ft/s2 and heading error HE in units of radians is given by

nc tð Þ Totalj ¼ �2VclF
tF

1� 3t
tF

� �
þ nT þ�2VMHE

tF
2� 3t

tF

� �

For the case of interest the closing velocity is approximately 4000 ft/s while the
flight time turns out to be 14.5 s. We can see from Fig. 24.24 that the match
between the formula and simulation results is not very accurate.

It is hypothesized that the reason for the inaccurate comparison of Fig. 24.24 is
because of the highly maneuvering target. As the target maneuvers, the portion of
the maneuver perpendicular to the line of sight diminishes, making the formula
less accurate. To test the hypothesis another case was run in which the maneuver
level decreased to 3 g. The heading error remained at 220 deg, and the desired
final line of sight angle remained at 230 deg. For this case, the time of flight
reduced to 11.4 s. We can see from Fig. 24.25 that now the formula is an excellent
approximation to the nonlinear results.

Thus, we can see that the trajectory shaping guidance law also works in the
nonlinear world. We have demonstrated that under many circumstances we
also have formulas that can be used to predict or explain the resultant acceleration
requirements on the missile when trajectory shaping guidance is used.

Fig. 24.23 Trajectory shaping guidance meets design goals against maneuvering target.

TRAJECTORY SHAPING GUIDANCE 599



SUMMARY

In this chapter the trajectory shaping guidance law has been derived. It was
demonstrated that with this new guidance law we could not only hit the target
but could also control the final line of sight angle. The price paid for the trajectory
shaping was that more acceleration was required to hit the target. Formulas were
also derived that could be used to predict the missile acceleration requirements for
the newguidance lawunder a variety of circumstances. It was demonstrated that the
formulas were also an accurate indicator of performance in the nonlinear world.

Fig. 24.25 Linear formula is much more accurate when target maneuver level is lower.

Fig. 24.24 Linear formula not very accurate for highly maneuvering target.
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CHAPTER 25

Filtering and Weaving Targets

INTRODUCTION

So far we have shown that we could considerably improve our performance
against weaving targets if we could either use a special purpose guidance law or
somehow achieve a smaller guidance system time constant. If we choose to use
the guidance law that is optimal against weaving targets, we then have to estimate
the target acceleration, target jerk, and target weave frequency.

In this chapter we will explore the various filtering options that can be used
against a weaving target by using a step-by-step approach. First we shall see
how our original linear three-state Kalman filter from Chapter 9 is able to function
in the presence of a weaving target. Although with this filter we cannot use the
weave guidance law that was derived in Chapter 20, we can use either proportional
navigation, augmented proportional navigation, or optimal guidance. Next we will
assume that the target weave frequency is known (that is, estimated or derived
using other sensors or phenomenology) and proceed to derive an optimal linear
four-state weave Kalman filter that estimates both target acceleration and jerk.
This filter can be used with either the weave guidance law or compensated
weave guidance law that were both derived in Chapter 20. Finally, we will
assume that the target weave frequency is not known in advance but must also
be estimated. In this case an extended five-state Kalman filter that estimates the
relative position, relative velocity, target acceleration, jerk, and weave frequency
will be derived. All three Kalman filters and appropriate guidance laws will be
compared in terms of both performance and robustness.

REVIEW OF ORIGINAL THREE-STATE LINEAR KALMAN FILTER

The original three-state linear Kalman filter from Chapter 9 was derived based on
the homing loop model of Fig. 25.1. Recall that in this guidance system model we
measured noisy relative position y� and were attempting to estimate relative pos-
ition, relative velocity, and target acceleration. As was the case in Chapter 9, the
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achieved missile accel-
eration nL was assumed
to be known, and the target acceleration was considered to be modeled as white
noise through an integrator. It is important to note that we have already shown
in Chapter 4 that the shaping filter equivalent of a target maneuver with constant
amplitude and random starting time is mathematically equivalent (that is, in
terms of second-order statistics) to white noise through an integrator.

According to the results of Chapter 4, the spectral density of the white noise
source us depicted in Fig. 25.1 was shown to be

Fs ¼ n2TMAX

tF

where nTMAX is the assumed maximum target maneuver level magnitude and tF
is the flight time. The model of Fig. 25.1 can be expressed in state space form as

_y
€y
_nT

2
4

3
5 ¼

0 1 0
0 0 1
0 0 0

2
4

3
5 y

_y
nT

2
4

3
5þ

0
�1
0

2
4

3
5nL þ 0

0
us

2
4

3
5

Because the systems dynamics matrix of the preceding equation is given by

F ¼
0 1 0
0 0 1
0 0 0

2
4

3
5

the continuous fundamental matrix can easily be derived (as was the case in
Chapter 9) as

FðtÞ ¼
1 t :5t2

0 1 t
0 0 1

2
4

3
5

Fig. 25.1 Homing loop
model for Kalman
filter development.
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By replacing t with the sampling time Ts we can obtain the discrete form of the
fundamental matrix as

Fk ¼
1 Ts :5T2

s
0 1 Ts

0 0 1

2
4

3
5

The discrete measurement equation can be written by inspection of Fig. 25.1 as

y�k ¼ 1 0 0½ �
yk
_yk
nTk

2
4

3
5þ yk

Therefore, the discrete measurement matrix can be written by inspection of the
preceding equation as

Hk ¼ 1 0 0½ �

The continuous control matrix G can also be written by inspection of the
original state space equation as

G ¼
0
�1
0

2
4

3
5

Therefore the discrete control matrix Gk becomes

Gk ¼
ðTs

0
F tð ÞG tð Þdt ¼

ðTs

0

1 t :5t2

0 1 t
0 0 1

2
4

3
5 0

�1
0

2
4

3
5dt ¼ �:5T2

s
�Ts

0

2
4

3
5

Recall the discrete Kalman filtering equation is given by

x̂k ¼ Fkx̂k�1 þ Gkuk�1 þ Kk zk �HFkx̂k�1 �HGkuk�1ð Þ
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Substitution of the appropriate matrices into the preceding matrix difference
equation yields

ŷk
_̂yk
n̂Tk

2
64

3
75¼

1 Ts :5T2
s

0 1 Ts

0 0 1

2
64

3
75 ŷk�1

_̂yk�1

n̂Tk�1

2
64

3
75þ

�:5T2
s

�Ts

0

2
64

3
75nLk�1 þ

K1k

K2k

K3k

2
64

3
75

� y�k � 1 0 0½ �
1 Ts :5T2

s

0 1 Ts

0 0 1

2
64

3
75 ŷk�1

_̂yk�1

n̂Tk�1

2
64

3
75� 1 0 0½ �

�:5T2
s

�Ts

0

2
64

3
75nLk�1

0
B@

1
CA

We can multiply out the terms of the preceding matrix equation to yield the
linear three-state Kalman filter scalar equations as

RESk ¼ y�k � ŷk�1 � Ts _̂yk�1 � :5T2
s nTk�1 � nLk�1ð Þ

ŷk ¼ ŷk�1 þ Ts _̂yk�1 þ :5T2
s n̂Tk�1 � nLk�1ð Þ þ K1k RESk

_̂yk ¼ _̂yk�1 þ Ts n̂Tk�1 � nLk�1ð Þ þ K2k RESk
n̂Tk ¼ n̂Tk�1 þ K3k RESk

A simulation of the linear three-state linear Kalman filter as part of a missile
guidance system is a modified form of Listing 9.2 and appears in Listing 25.1. The
simulation now has a single time constant representation of the flight control
system plus a weaving target rather than a constant target maneuver. We can
see from the listing that there is 3-g weaving target with a weave frequency of
2 rad/s. Nominally there is still 1 mr of measurement noise, but the closing ve-
locity has been increased to 9000 ft/s to reflect a ballistic target engagement.
We can see from the listing that the guidance law options for this filter are
either proportional navigation, augmented proportional navigation, or optimal
guidance (namely, APN ¼ 0, 1 or 2, respectively). Because there is a single time
constant representation of the flight control system, the achieved missile accelera-
tion rather than the commanded acceleration enters the filtering equations.

LISTING 25.1 ORIGINAL THREE-STATE LINEAR KALMAN FILTER AND WEAVING TARGET

n=0;
TAU=.5;
APN=0;
VC=9000.;
XNT=96.6;
XNTREAL=96.6;
XNTMAX=96.6;
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W=2.;
YIC=0.;
VM=3000.;
HEDEG=0.;
HEDEGFIL=20.;
XNP=3.;
SIGRIN=.001;
TS=.01;
TF=10.;
Y=YIC;
YD=-VM*HEDEG/57.3;
YDIC=YD;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIN=XNTMAX*XNTMAX/TF;
RTM=VC*TF;
SIGNOISE=SIGRIN;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEGFIL/57.3)^2;
P23=0.;
P33=XNTMAX*XNTMAX;
T=0.;
H=.001;
S=0.;
YH=0.;
YDH=0.;
XNTH=0.;
XNC=0.;
XNL=0.;
while T,=TF

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;

Y=Y+H*YD;
YD=YD+H*YDD;
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XNL=XNL+H*XNLD;
T=T+H;

end
XNT=XNTREAL*sin(W*T);
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
XNLD=(XNC-XNL)/TAU;
YDD=XNT-XNL;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
if S.=(TS-.0001)

S=0.;
TGO=TF-T+.000001;
RTM=VC*TGO;
SIGNOISE=SIGRIN;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)+TS5*PHIN/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+.5*TS2*P33)...

+TS4*PHIN/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIN*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIN*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIN;
M33=P33+PHIN*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;
XLAMNOISE=SIGNOISE*randn;
YSTAR=RTM*(XLAM+XLAMNOISE);
RES=YSTAR-YH-TS*YDH-.5*TS*TS*(XNTH-XNL);
YH=K1*RES+YH+TS*YDH+.5*TS*TS*(XNTH-XNL);
YDH=K2*RES+YDH+TS*(XNTH-XNL);
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XNTH=K3*RES+XNTH;
XLAMDH=(YH+YDH*TGO)/(VC*TGO*TGO);
if APN==0

XNC=XNP*(YH+YDH*TGO)/(TGO*TGO);
elseif APN==1

XNC=XNP*(YH+YDH*TGO+.5*XNTH*TGO*TGO)/(TGO*TGO);
else

XS=TGO/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGO*TGO);
C2=XNPP/TGO;
C3=.5*XNPP;
C4=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
XNC=C1*YH+C2*YDH+C3*XNTH+C4*XNL;

end
n=n+1;
XNTG=XNT/32.2;
XNTHG=XNTH/32.2;
ArrayT(n)=T;
ArrayXNTG(n)=XNTG;
ArrayXNTHG(n)=XNTHG;
ArrayY(n)=Y;
ArrayYSTAR(n)=YSTAR;

end
end
figure
plot(ArrayT,ArrayXNTG,ArrayT,ArrayXNTHG),grid
title(’Acceleration Estimate’)
xlabel(’Time (Sec) ’)
ylabel(’Acceleration (G)’)
figure
plot(ArrayT,ArrayY,ArrayT,ArrayYSTAR),grid
title(’Measurement and Signal’)
xlabel(’Time (Sec) ’)
ylabel(’Y (Ft)’)
clc
output=[ArrayT’,ArrayXNTG’,ArrayXNTHG’,ArrayY’,ArrayYSTAR’];
save datfil.txt output /ascii
disp ’*** Simulation Complete’

Before we see how well the filter can estimate the weaving target maneuver, it
is important to see how much effective noise there is on the filter measurement in
this high closing velocity engagement. Figure 25.2 shows that although there is
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only 1 mr of measurement noise on the line of sight angle, the high closing vel-
ocity causes there to be significant noise on the effective measured relative pos-
ition y�. Essentially, the filter will have to take two derivatives of this noisy
measurement to estimate target acceleration.

The nominal case of Listing 25.1 was run and Fig. 25.3 shows that the
three-state linear Kalman filter’s estimate of target acceleration is not very

Fig. 25.2 With high closing velocity 1 mr of measurement noise translates into a great deal
of noise on relative position.

Fig. 25.3 With 1 mr of measurement noise the three-state Kalman filter has difficulty in
estimating the sinusoidal nature of the weave maneuver.
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good. The effective high-noise environment prevents the filter from accurately
estimating the sinusoidal motion of the target maneuver. Near the end of the
flight, where the effective measurement noise on relative position is diminished,
the filter estimate improves but lags the actual target maneuver. It is important
to note that the Kalman filter is really optimized for a constant target maneuver
and is therefore suboptimal in this example because it is mismatched to the real
world. However, the presence of process noise in the filter enables the Kalman
filter to track all types of target maneuvers. Process noise lets the filter know
that its model of the real world may be in error.

Listing 25.1 was modified so that the measurement noise was decreased by an
order of magnitude to .1 mr (namely, SIGRIN ¼ .0001). We can see from Fig. 25.4
that the effective measurement of relative position nowmore closely resembles the
actual relative position. As a consequence of the reduced measurement noise we
can see from Fig. 25.5 that the filter’s estimate of the target maneuver now better
approximates the sinusoidal nature of the maneuver. The estimate of the target
maneuver is nearly perfect, except there is approximately a half-second lag
between the actual maneuver and the estimate.

Thus, we can conclude that the original three-state linear Kalman filter of
Chapter 9 can track a weaving target quite effectively if the measurement noise
can be made small.

FOUR-STATE WEAVE KALMAN FILTER

If we had a priori information that the target maneuver was sinusoidal in nature,
one would think that a better Kalman filter could be designed. To design a Kalman
filter optimized to estimate the states of a weaving target, we must first express the

Fig. 25.4 Reducing measurement noise by order of magnitude is beneficial.
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sinusoidal target motion in some statistical fashion. First recall from Chapter 1
that the Laplace transform of a sinusoidal signal is given by

£ sin vtð Þ ¼ v

s2 þ v2

Therefore, if we assume that the target maneuver is sinusoidal in shape and that
the starting time is still uniformly distributed over the flight time, we get the model
of Fig. 25.6. Here the input to the sinusoidal transfer function is white noise us
with spectral density

Fs ¼ n2TMAX

tF

where again nTMAX is the peak of the sinusoidal maneuver and tF the flight time. It
was shown in Chapter 4 that mathematically this is the shaping filter equivalent

Fig. 25.6 Homing loop model for Kalman filter to be designed for sinusoidal
target maneuver.

Fig. 25.5 Reducing measurement noise by order of magnitude improves target
acceleration estimate.
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of a target maneuver with sinusoidal amplitude but random starting time (where
the starting time is uniformly distributed over the flight time).

In this homing system model we also effectively measure noisy relative
position y�. If the range from the interceptor to the target is known, it is easy
to show that measuring relative position is equivalent to measuring the line of
sight angle. The linear four-state weave Kalman filter will estimate relative pos-
ition, relative velocity, target acceleration, and target jerk. The homing loop
model of Fig. 25.2 assumes that the achieved missile acceleration nL and the
target weave frequency v are both known and do not have to be estimated.

The model of Fig. 25.6 can be expressed in state space form as
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The systems dynamics matrix of the preceding equation can be written by
inspection and is given by

F ¼
0 1 0 0
0 0 1 0
0 0 0 1
0 0 �v2 0

2
664

3
775

The fundamental matrix can be derived from the systems dynamics matrix
according to

F tð Þ ¼ £�1 sI� Fð Þ�1� �

Therefore, the fundamental matrix in the Laplace transform domain can be
expressed as

F sð Þ ¼ sI� Fð Þ�1¼
s �1 0 0
0 s �1 0
0 0 s �1
0 0 sþ v2 0

2
664

3
775
�1

From the preceding equation we can see that first we must take the inverse of a
four-by-four matrix and then take its inverse Laplace transform to find the

FILTERING AND WEAVING TARGETS 613



fundamental matrix in the time domain. After considerable algebra, the continu-
ous fundamental matrix turns out to be

F tð Þ ¼

1 t
1� cosvt

v2

vt � sinvt
v3

0 1
sinvt
v

1� cosvt
v2

0 0 cosvt
sinvt
v

0 0 �v sinvt cosvt

2
66666664

3
77777775

By replacing time t with the sampling time Ts we obtain the discrete form of the
fundamental matrix as

Fk ¼

1 Ts
1� cos x

v2

x � sin x
v3

0 1
sin x
v

1� cos x
v2

0 0 cos x
sin x
v

0 0 �v sin x cos x

2
66666664

3
77777775

where

x ¼ vTs

The discrete measurement equation can be written by inspection of Fig. 25.6 as

y�k ¼ 1 0 0 0½ �
yk
_yk
€yTk

€y_Tk

2
664

3
775þ yk

which means that the discrete measurement matrix is given by

Hk ¼ 1 0 0 0½ �
The continuous control matrix G can be written by inspection of the original

state space equation as

G ¼
0
�1
0
0

2
664

3
775
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After some algebra the discrete control matrix Gk becomes

Gk ¼
ðTs

0
F tð ÞG tð Þdt ¼

�:5T2
S

�TS
0
0

2
664

3
775

Finally, the continuous process noise matrix can be written from the system
state space equation by inspection as

Q ¼ E 0 0 0 vus½ �
0
0
0
vus

2
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After some algebra the discrete process noise matrix can be derived from the
continuous process noise matrix according to

Qk ¼
ðTs

0
F tð ÞQFT tð Þdt ¼

Q11 Q12 Q13 Q14

Q12 Q22 Q23 Q24

Q13 Q23 Q33 Q34

Q14 Q24 Q34 Q44

2
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where

Q11 ¼ Fs

v5
:333x3 � 2 sin x þ 2 x cos x þ :5x � :25 sin 2x
� �

Q12 ¼ Fs

v4
:5x2 � x sin x þ :5 sin2 x
� �

Q13 ¼ Fs

v3
sin x � x cos x � :5x þ :25 sin 2x½ �

Q14 ¼ Fs

v2
cos x þ x sin x � :5 sin2 x � 1
� �

Q22 ¼ Fs

v3
1:5x � 2 sin x þ :25 sin 2x½ �

Q23 ¼ Fs

v2
1� cos x � :5 sin2 x
� �

Q24 ¼ Fs

v
sin x � :5x � :25 sin 2x½ �

Q33 ¼ Fs

v
:5x � :25 sin 2x½ �

Q34 ¼ :5Fs sin2 x

Q44 ¼ vFs :5x þ :25 sin 2x½ �
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Recall that in the preceding set of expressions the process noise and normal-
ized weave frequency have been defined as

Fs ¼ v2n2TMAX

tF

x ¼ vTs

Recall that the discrete Kalman filtering equation is given by

x̂k ¼ Fkx̂k�1 þ Gkuk�1 þ Kk zk �HFkx̂k�1 �HGkuk�1ð Þ
Substitution of the appropriate matrices into the preceding matrix difference
equation yields
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We can multiply out the terms of the preceding matrix equation to yield the
Kalman filter scalar equations

RESk ¼ y�k � ŷk�1�Ts _̂yk�1�
1� cosxð Þ

v2
€̂yTk�1

� x� sinxð Þ
v3

€̂y_Tk�1
þ :5T2

s nLk�1

ŷk ¼ ŷk�1þTs _̂yk�1þ
1� cosxð Þ

v2
€̂yTk�1

� x� sinxð Þ
v3

€̂y_Tk�1
� :5T2

s nLk�1 þK1kRESk

_̂yk ¼ _̂yk�1þ
sinxð Þ
v

€̂yTk�1
þ 1� cosxð Þ

v2
€̂y_Tk�1

�TsnLk�1 þK2kRESk
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€̂yTk
¼ cosx€̂yTk�1

þ sinx
v

€̂y_Tk�1
þK3kRESk

€̂y_Tk
¼�v sinx€̂yTk�1

þ cosx€̂y_Tk�1
þK4kRESk

Both the Riccati equations and Kalman filtering equations for the linear four-
state weave Kalman filter were programmed as part of the homing loop, and the
resultant linearized missile-target engagement simulation appears in Listing 25.2.
We can see that the simulation has a single time constant representation of the
flight control system plus a 3 g weaving target with a weave frequency of 2 rad/s.
Nominally there is 1 mr of measurement noise on the line of sight angle and
the closing velocity is 9000 ft/s to reflect a ballistic target engagement. We can
see from Listing 25.2 that the guidance law options for this filter are either pro-
portional navigation, augmented proportional navigation, optimal guidance,
weave guidance, or compensated weave guidance (namely, APN ¼ 0, 1, 2, 3, or
4, respectively).

The nominal case of Listing 25.2 was run, and Fig. 25.7 shows that the linear
four-state weave Kalman filter’s estimate of target acceleration is much better than
the general purpose linear three-state Kalman filter when the measurement noise
is 1 mr (see Fig. 25.3). Compared with the previous section, when the amount of
measurement noise is large, it is now easier to see from the state estimates of the
weave Kalman filter that the target maneuver is indeed sinusoidal. In addition, the
weave Kalman filter also yields estimates of the target jerk. We can see from
Fig. 25.8 that the weave Kalman filter provides fairly good estimates of the
target jerk.

Fig. 25.7 Four-state weave Kalman filter yields better estimates than three-state Kalman
filter when measurement noise is large.
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To see if the four-state weave Kalman filter is truly working properly, it is
necessary to examine the errors in the state estimates. Figures 25.9 and 25.10
show that the errors in the estimates of target acceleration and jerk appear to
lie within the theoretical bounds (that is,+ square root of P33 and P44, respect-
ively) approximately 68% of the time, indicating that the filter is working properly.

Figures 25.11 and 25.12 indicate that when the measurement noise on the line
of sight angle is reduced by an order of magnitude to .1 mr, the four-state weave

Fig. 25.9 Weave Kalman filter estimation errors for target acceleration are within
theoretical bounds.

Fig. 25.8 Weave Kalman filter also provides a fairly good estimate of target jerk when
measurement noise is large.
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Kalman filter estimates of target acceleration and jerk improve significantly. In
fact, we can see that the estimates of these states are nearly perfect in the
low-noise environment.

Thus, we can conclude that if the target is maneuvering in a sinusoidal fashion,
and we have knowledge of the target wave frequency, superior estimates of the target
acceleration and jerk can be obtained with the linear four-state weave Kalman filter.

Fig. 25.10 Weave Kalman filter estimation errors for target jerk are within
theoretical bounds.

Fig. 25.11 Reducing measurement noise improves four-state weave Kalman filter’s target
acceleration estimate.

FILTERING AND WEAVING TARGETS 619



LISTING 25.2 WEAVE KALMAN FILTER AND WEAVING TARGET

n=0;
TAU=.5;
APN=0;
ORDER=4;
MVR=1;
VC=9000.;
W=2.;
WREAL=2.;
WH=W;
XNT=96.6;
XNTREAL=96.6;
TS=.01;
YIC=0.;
VM=3000.;
HEDEG=0.;
HEDEGFIL=20.;
XNP=3.;
SIGRIN=.001;
SIGGL=0.;
RA=21000.;
SRN=0.;
TF=10.;
QPERFECT=0;
PHASE=0./57.3;

Fig. 25.12 Reducing measurement noise improves weave Kalman filter’s target
jerk estimate.
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X=WH*TS;
Y=YIC;
YD=-VM*HEDEG/57.3;
PHIS=WH*WH*XNT*XNT/TF;
RTM=VC*TF;
SIGNOISE=sqrt(SIGRIN^2+(SIGGL/RTM)^2+(SRN*RTM*RTM/(RA*RA))^2);
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
PHI=zeros(ORDER);
P=zeros(ORDER);
Q=zeros(ORDER);
IDNP=eye(ORDER);
PHI(1,1)=1;
PHI(1,2)=TS;
PHI(1,3)=(1-cos(X))/(WH*WH);
PHI(1,4)=(X-sin(X))/(WH*WH*WH);
PHI(2,2)=1;
PHI(2,3)=sin(X)/WH;
PHI(2,4)=(1-cos(X))/(WH*WH);
PHI(3,3)=cos(X);
PHI(3,4)=sin(X)/WH;
PHI(4,3)=-WH*sin(X);
PHI(4,4)=cos(X);
Q(1,1)=PHIS*(.333*X^3-2*sin(X)+2*X*cos(X)+.5*X-.25*sin(2*X))/(WH^5);
Q(1,2)=PHIS*(.5*X*X-X*sin(X)+.5*sin(X)*sin(X))/(WH^4);
Q(2,1)=Q(1,2);
Q(1,3)=PHIS*(sin(X)-X*cos(X)-.5*X+.25*sin(2*X))/(WH^3);
Q(3,1)=Q(1,3);
Q(1,4)=PHIS*(cos(X)+X*sin(X)-.5*sin(X)*sin(X)-1)/(WH*WH);
Q(4,1)=Q(1,4);
Q(2,2)=PHIS*(1.5*X-2*sin(X)+.25*sin(2*X))/(WH^3);
Q(2,3)=PHIS*(1-cos(X)-.5*sin(X)*sin(X))/(WH*WH);
Q(3,2)=Q(2,3);
Q(2,4)=PHIS*(sin(X)-.5*X-.25*sin(2*X))/WH;
Q(4,2)=Q(2,4);
Q(3,3)=PHIS*(.5*X-.25*sin(2*X))/WH;
Q(3,4)=.5*PHIS*sin(X)*sin(X);
Q(4,3)=Q(3,4);
Q(4,4)=WH*PHIS*(.5*X+.25*sin(2*X));
P(1,1)=SIGN2;
P(2,2)=(VM*HEDEGFIL/57.3)^2;
P(3,3)=XNT*XNT;
P(4,4)=WH*WH*XNT*XNT;
HMAT=[1 0 0 0];
HT=HMAT’;
PHIT=PHI’;
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T=0.;
H=.001;
S=0.;
XNC=0.;
XNL=0.;
XLAM=Y/RTM;
if MVR==0

YTDD=XNTREAL;
YTDDD=0.;

else
YTDD=XNTREAL*sin(WREAL*T);
YTDDD=XNTREAL*WREAL*cos(WREAL*T);

end
if QPERFECT==1

YH=Y;
YDH=YD;
YTDDH=YTDD;
YTDDDH=YTDDD;

else
YH=0.;
YDH=0.;
YTDDH=0.;
YTDDDH=0.;

end
while T,=(TF-.0001)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;

Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;

end
TGO=TF-T+.000001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
if MVR==0

YTDD=XNTREAL;
else

YTDD=XNTREAL*sin(WREAL*T);
end
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XNLD=(XNC-XNL)/TAU;
YDD=YTDD-XNL;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
if S.=(TS-.00001)

S=0.;
TGO=TF-T+.000001;
RTM=VC*TGO;
SIGNOISE=sqrt(SIGRIN^2+(SIGGL/RTM)^2+(SRN*RTM*RTM/(RA*RA))^2);
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
RMAT=[SIGN2];
PHIP=PHI*P;
PHIPPHIT=PHIP*PHIT;
M=PHIPPHIT+Q;
HM=HMAT*M;
HMHT=HM*HT;
HMHTR=HMHT+RMAT;
HMHTRINV=inv(HMHTR);
MHT=M*HT;
GAIN=MHT*HMHTRINV;
KH=GAIN*HMAT;
IKH=IDNP-KH;
P=IKH*M;
if MVR==0

YTDD=XNTREAL;
YTDDD=0.;

else
YTDD=XNTREAL*sin(WREAL*T);
YTDDD=XNTREAL*WREAL*cos(WREAL*T);

end
XLAMNOISE=SIGNOISE*randn;
YSTAR=RTM*(XLAM+XLAMNOISE);
RES=YSTAR-YH-TS*YDH-(1-cos(X))*YTDDH/(WH*WH)-(X-sin(X))...

*YTDDDH/(WH*WH*WH)+.5*TS*TS*XNL;
YH=YH+TS*YDH+(1-cos(X))*YTDDH/(WH*WH)+(X-sin(X))...

*YTDDDH/(WH*WH*WH)+GAIN(1,1)*RES-.5*TS*TS*XNL;
YDH=YDH+sin(X)*YTDDH/WH+(1-cos(X))*YTDDDH/(WH*WH)...

+GAIN(2,1)*RES-TS*XNL;
YTDDHNEW=cos(X)*YTDDH+sin(X)*YTDDDH/WH+GAIN(3,1)*RES;
YTDDDH=-WH*sin(X)*YTDDH+cos(X)*YTDDDH+GAIN(4,1)*RES;
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YTDDH=YTDDHNEW;
if APN==0

XNC=XNP*(YH+YDH*TGO)/(TGO*TGO);
elseif APN==1

XNC=XNP*(YH+YDH*TGO+.5*YTDDH*TGO*TGO)/(TGO*TGO);
elseif APN==2

XS=TGO/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGO*TGO);
C2=XNPP/TGO;
C3=.5*XNPP;
C4=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
XNC=C1*YH+C2*YDH+C3*YTDDH+C4*XNL;

elseif APN==3
XP=WH*TGO;
XNC=XNP*(YH+YDH*TGO)/(TGO*TGO)+XNP*YTDDH*...
(1.-cos(XP))/XP^2+XNP*YTDDDH*(XP-sin(XP))/(XP*XP*WH);

else
XS=TGO/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGO*TGO);
C2=XNPP/TGO;
C3=XNPP*(1.-cos(WH*TGO))/(WH*WH*TGO*TGO);
C4=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
C5=XNPP*(WH*TGO-sin(WH*TGO))/(WH*WH*WH*TGO*TGO);
XNC=C1*YH+C2*YDH+C3*YTDDH+C4*XNL+C5*YTDDDH;

end
YTDDG=YTDD/32.2;
YTDDHG=YTDDH/32.2;
ERRY=Y-YH;
SP11=sqrt(P(1,1));
SP11P=-SP11;
ERRYD=YD-YDH;
SP22=sqrt(P(2,2));
SP22P=-SP22;
ERRYTDDG=(YTDD-YTDDH)/32.2;
SP33G=sqrt(P(3,3))/32.2;
SP33GN=-SP33G;
ERRYTDDDG=(YTDDD-YTDDDH)/32.2;
SP44G=sqrt(P(4,4))/32.2;
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SP44GN=-SP44G;
YTDDG=YTDD/32.2;
YTDDHG=YTDDH/32.2;
YTDDDG=YTDDD/32.2;
YTDDDHG=YTDDDH/32.2;
n=n+1;
ArrayT(n)=T;
ArrayYTDDG(n)=YTDDG;
ArrayYTDDHG(n)=YTDDHG;
ArrayYTDDDG(n)=YTDDDG;
ArrayYTDDDHG(n)=YTDDDHG;
ArrayERRYTDDG(n)=ERRYTDDG;
ArraySP33G(n)=SP33G;
ArraySP33GN(n)=SP33GN;
ArrayERRYTDDDG(n)=ERRYTDDDG;
ArraySP44G(n)=SP44G;
ArraySP44GN(n)=SP44GN;

end
end
figure
plot(ArrayT,ArrayYTDDG,ArrayT,ArrayYTDDHG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration and Estimate (G)’)
figure
plot(ArrayT,ArrayYTDDDG,ArrayT,ArrayYTDDDHG),grid
xlabel(’Time (Sec)’)
ylabel(’Jerk and Estimate (G/S)’)
figure
plot(ArrayT,ArrayERRYTDDG,ArrayT,ArraySP33G,ArrayT,ArraySP33GN)...

,grid
xlabel(’Time (Sec)’)
ylabel(’Error in Estimate of Acceleration (G)’)
figure
plot(ArrayT,ArrayERRYTDDDG,ArrayT,ArraySP44G,ArrayT,ArraySP44GN)...

,grid
xlabel(’Time (Sec)’)
ylabel(’Error in Estimate of Jerk (G/S)’)
clc
output=[ArrayT’,ArrayYTDDG’,ArrayYTDDHG’,ArrayYTDDDG’,...

ArrayYTDDDHG’];
save datfil.txt output -ascii
output=[ArrayT’,ArrayERRYTDDG’,ArraySP33G’,ArraySP33GN’...

,ArrayERRYTDDDG’,ArraySP44G’,ArraySP44GN’];
save covfil.txt output -ascii
disp ’simulation finished’
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MISS DISTANCE ANALYSIS

To see how the various filtering and guidance law options perform in terms of the
RMS miss distance in the presence of a weaving target, the homing loop model of
Fig. 25.13 is considered. With this guidance system model the Kalman filter can
either be the general-purpose, linear, three-state filter or the special-purpose, four-
state, weave filter. When the linear, three-state Kalman filter is used, the possible
guidance laws that can be used are either proportional navigation or optimal gui-
dance. Recall that these two guidance laws can be expressed as

ncPN ¼ N 0

t2go
y þ _ytgo
� �

ncOptimal ¼
N 0

t2go
y þ _ytgo þ

t2go
2
€yT � nLT

2 e�x þ x � 1ð Þ
" #

With proportional navigation, the effective navigation ratio is usually chosen
to be a constant in the range of 3 to 5. With optimal guidance the effective naviga-
tion ratio is not constant but can be computed from

N 0 ¼ 6x2 e�x � 1þ xð Þ
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

Fig. 25.13 Guidance system model for miss distance analysis.
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We showed in Chapter 8 that when the missile is very far away from the target
(that is, tgo is large) the effective navigation ratio approaches 3. As the missile gets
closer to the target, the navigation ratio increases to a larger number. Both gui-
dance laws make use of the state estimates from the linear three-state Kalman
filter (that is, estimates of relative position, relative velocity, and target accelera-
tion). The compensated weave guidance law can only be used with the four-state
weave Kalman filter given by

ncWeave Lag ¼
N 0

t2go

"
y þ _ytgo þ

1� cosvtgo
v2

€yT þ vtgo � sinvtgo
v3

€y_T

� nLT
2 e�x þ x � 1ð Þ

#

where the effective navigation ratio is the same as it was with the optimal guidance
law. Again, this guidance law makes use of the state estimates from the linear four-
state weave Kalman filter (that is, estimates of relative position, relative velocity,
target acceleration, and target jerk). It is important to note that when this guidance
law is used in conjunction with the weave Kalman filter it is assumed that the
target weave frequency is known.

The parameters used for the guidance system analysis appear in Table 25.1.
We can see from the table that the weaving target has a 3 g maneuver amplitude
and a weave frequency of 2 r/s. The flight control system time constant is set at
.5 s. Notice the high closing velocity in Table 25.1 is representative of a ballistic
target engagement.

Experiments were run with the different guidance system configurations.
Twenty-five Monte Carlo sets were run for flight times ranging from .5 s to
10 s in steps of .5 s. We can see from Fig. 25.14 that for the case in which there
is a infinite missile acceleration capability and 1 mr of measurement noise, both
the three-state Kalman filter using optimal guidance and the four-state weave
Kalman filter using the compensated weave guidance law yield approximately

TABLE 25.1 NOMINAL VALUES FOR EXPERIMENT

Parameter Value

Autopilot time constant .5 s

Missile velocity 3000 ft/s

Closing velocity 9000 ft/s

Target acceleration level 3 g

Target weave frequency 2 r/s
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the same results. Both guidance laws yield significantly smaller RMS miss dis-
tances than proportional navigation.

The previous case assumed that the missile had infinite acceleration capability.
If the acceleration limit is set to 10 g (more than a 3 to 1 advantage over the target),
we can see from Fig. 25.15 that the RMS miss distance performance of optimal
guidance deteriorates significantly. In this particular case we can see that the

Fig. 25.14 Both optimal guidance and compensated weave guidance have
similar performance.

Fig. 25.15 Weave guidance can be superior to optimal guidance when acceleration
saturation effects are considered.
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compensated weave guidance law in combination with the four-state weave
Kalman filter yields dramatic performance advantages. Thus, we can conclude
that it is only advantageous to use compensated weave guidance rather than
optimal guidance if the missile has a small missile to target acceleration advantage
and knows the target weave frequency.

If we compare Figs. 25.16 and 25.15, we can see that reducing the measure-
ment noise by an order of magnitude to .1 mr improves the performance of
both optimal guidance and compensated weave guidance. However, because in
this example there is still a small missile to target acceleration advantage, it is
still better to use compensated weave guidance if the target weave frequency
is known.

Recall that the four-state weave Kalman filter and compensated weave gui-
dance law both required knowledge of the target weave frequency. So far it has
been assumed that the target weave frequency has been known perfectly. Errors
in the knowledge of the target weave frequency will degrade both the performance
of the four-state weave Kalman filter and compensated weave guidance law.
Figure 25.17 shows that when the estimated weave frequency is either twice as
large or half as small as the actual target weave frequency, significant performance
degradation may occur. By comparing Figs. 25.17 and 25.16 we can see that when
the target weave frequency is in error we can do just as well and sometimes better
by using optimal guidance and the three-state Kalman filter because this combi-
nation does not require knowledge of the target weave frequency. Thus, we can see
that if the target weave frequency is not known in advance it must somehow be
estimated in real time if we wish to derive the benefits of the compensated
weave guidance law.

Fig. 25.16 Reducing measurement noise improves performance of both systems but
compensated weave guidance is still better.
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EXTENDED KALMAN FILTER [1]

To build a Kalman filter that can estimate the target weave frequency, it is first
necessary to write the state equations representing our model of the real world.
From Fig. 25.6 we can say that the equations for the homing loop with a weave
target maneuver are still given by

_y ¼ _y

€y ¼ €yT � nL
€y_T ¼ €y_T
€y€T ¼ �v2€yT þ vus1

We now need an additional equation that says something about the target
weave frequency. If the target weave frequency is constant its derivative must
be zero. However, for protection we can say that the derivative of the frequency
is simply white noise or

_v ¼ us2

In the preceding five scalar differential equations, us1 and us2 are white process
noise sources. Uncertainty in when the target starts to maneuver is reflected in us1,
while uncertainty in the fact that the weave frequency may not be a constant is
reflected in us2. In the previous section we used for the spectral density of the
first white process noise

Fs1 ¼ v2
EXPn

2
TMAX

tF

Fig. 25.17 Compensated weave guidance performance can be worse than optimal guidance
if estimated weave frequency is in error.
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where vEXP can be interpreted as the maximum expected target weave frequency,
nTMAX is the maximum target maneuver level, and tF is the amount of homing
time. For now we will simply treat the spectral density of the second white
process noiseFs2 as a fudge factor whose value will be determined by experiment.

Because the target weave frequency is a state, the preceding differential
equations describing our model of the real world are nonlinear and the resultant
filter will be an extended Kalman filter rather than a linear Kalman filter.
However, the measurement equation for this model is still linear and turns out
to be

y� ¼ 1 0 0 0 0½ �

y
_y
€yT
€y_T
v

2
66664

3
77775þ y

The systems dynamics matrix can be determined from the system state
equations as a matrix of partial derivatives given by

F ¼

@ _y
@y

@ _y
@ _y
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@€yT
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66666666666666666664

3
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where the partial derivatives are evaluated at the current state estimates. After
taking the appropriate partial derivatives, the systems dynamics matrix turns
out to be

F ¼ @f xð Þ
@x

¼

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 �v̂2 0 �2v̂€̂yT
0 0 0 0 0

2
66664

3
77775

We will use a two-term Taylor series expansion to obtain the fundamental
matrix. The number of terms used in the series approach is not critical because
the fundamental matrix will only be used in the Riccati equations [2]. The
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approximate fundamental matrix turns out to be

Fk 	 I þ FTs ¼

1 Ts 0 0 0
0 1 Ts 0 0
0 0 1 Ts 0
0 0 �v̂2Ts 1 �2v̂€̂yTTs

0 0 0 0 1

2
66664

3
77775

From our model of the real world, the continuous process noise matrix can be
found from

Q ¼E wwT
� � ¼ E

0
0
0
us1
us2

2
66664

3
77775 0 0 0 us1 us2½ �

2
66664

3
77775 ¼

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 Fs1 0
0 0 0 0 Fs2

2
66664

3
77775

where the spectral densities Fs1 and Fs2 have been previously defined. The dis-
crete process noise matrix can be obtained from the continuous process noise
matrix according to

Qk ¼
ðTs

0
F tð ÞQFT tð Þdt

After some algebra we obtain

Qk ¼

0 0 0 0 0
0 0 0 0 0

0 0 Fs1
T3
s

3
Fs1

T2
s

2
0

0 0 Fs1
T2
s

2
Fs1Ts þ 4

T3
s

3
v̂2€̂yTFs2 �v̂T2

s €̂yTFs2

0 0 0 �v̂T2
s €̂yTFs2 TsFs2

2
666666664

3
777777775

Note that the elements of the discrete process noise matrix are also evaluated
at the current state estimates. Finally, the equations for the extended Kalman filter
are simply

ŷk ¼ �yk þ K1k y�k � �yk
� �

_̂yk ¼ �_yk þ K2k y�k � �yk
� �

€̂yTk
¼ �€yTk

þ K3k y�k � �yk
� �

€̂y_Tk
¼ �€y_Tk

þ K4k y�k � �yk
� �

v̂k ¼ v̂k�1 þ K5k x�k � �xk
� �
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where the barred quantities represent projections of the previous state estimates to
the current time. Normally, the barred quantities would be obtained by multiply-
ing the previous state estimates by the fundamental matrix to project the states
ahead one sampling interval. However, because the fundamental matrix in this
example is not exact (because it was obtained by using a two-term Taylor series
approximation to a linearized systems dynamics matrix), it is better to use
brute force to obtain the necessary projections of all the states. In this case we
actually numerically integrate the nonlinear equations of motion forward one
sampling interval. Euler integration is used with an integration step size that is
much smaller than the sampling interval to accurately numerically integrate the
state equations forward.

Listing 25.3 presents a simulation of the extended Kalman filter as part of the
homing loop. We can see that routine PROJECT is used to propagate ahead the state
estimates one sampling interval. It is important to note that the extended Kalman
filter’s estimate of the target weave frequency is intentionally initialized wrong to
21 r/s (that is, WHIC ¼ 21) rather than to 2 r/s (W ¼ 2). The incorrect initiali-
zation is used to ensure that the extended Kalman filter is robust to
initialization errors.

The nominal case of Listing 25.3 was run in which there was 1 mr of measure-
ment noise and the second process noise spectral density Fs2 was set to zero. At
first, it appears from Fig. 25.18 that the extended Kalman filter is unable to esti-
mate the target weave frequency. However, a closer examination of Fig. 25.18
reveals that the estimated magnitude of the target weave frequency in the
steady state is nearly correct (that is, 2.5 r/s rather than 2 r/s), but the sign is
wrong. If the filter was initialized with a positive frequency, the sign would

Fig. 25.18 Extended Kalman filter is able to estimate target weave frequency magnitude
but not the sign.
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have been correct. Figures 25.19 and 25.20 reveal that the large amount of
measurement noise causes the estimate of the target acceleration and jerk to be
fairly bad, except at the end of the flight.

We can see from Fig. 25.21 that reducing the measurement noise by an order
of magnitude to .1 mr improves the estimate of the magnitude of the target weave
frequency. However, we are still unable to estimate the sign of the target weave
frequency. Figures 25.22 and 25.23 now show that the estimates of target

Fig. 25.20 Except for the end of flight, large amount of measurement noise causes bad
estimate of target jerk.

Fig. 25.19 Except for the end of flight, large amount of measurement noise causes bad
estimates of target acceleration.
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acceleration and jerk are very good for most of the flight with the
reduced measurement noise, even though the sign of the target weave frequency
is in error. However, these estimates are not quite as good as those estimates that
were obtained with the four-state linear weave Kalman filter when the target
weave frequency was known precisely (see Figs. 25.11 and 25.12 for comparison).

Fig. 25.22 Extended Kalman filter’s estimate of target acceleration is fairly good after a
transient period when measurement noise is reduced by an order of magnitude.

Fig. 25.21 Reducing the measurement noise improves the extended Kalman filter’s
estimate of the magnitude of the target weave frequency.
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Figure 25.24 shows that if we add a small amount of process noise (namely,
Fs2 ¼ .1) to the frequency state, our estimate of the target weave frequency
magnitude improves. However, if we add too much process noise (namely,
Fs2 ¼ 1) to the frequency state, Fig. 25.25 shows that our estimate of the target
weave frequency can actually diverge. Therefore, for safety reasons we will
simply keep the second process noise source at zero (namely, Fs2 ¼ 0) for
future experiments.

Fig. 25.24 Adding small amount of process noise to frequency state slightly improves
frequency estimate.

Fig. 25.23 Extended Kalman filter’s estimate of target jerk is also fairly good after a
transient period when measurement noise is reduced an order of magnitude.
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LISTING 25.3 EXTENDED KALMAN FILTER

n=0;
PHIS2=0.;
XNT=96.6;
W=2.;
PHASEDEG=0.;
SIGRIN=.0001;
SIGGL=0.;
SRN=0.;
RA=21000.;
WHIC=-1.;
TS=.01;
TF=10.;
PHIS1=W*W*XNT*XNT/TF;
QPERFECT=0;
VC=9000.;
XNP=3.;
XNCLIM=9999999.;
APN=4;
TAU=.5;
HEDEG=0.;
VM=3000.;
QEKF=0;
PHASE=PHASEDEG/57.3;
ORDER=5;

Fig. 25.25 Adding too much process noise to frequency state causes frequency estimate
to diverge.
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TGO=TF;
T=0.;
X=W*T;
S=0.;
Y=0.;
YD=-XNT/W-VM*HEDEG/57.3;
YTDD=XNT*sin(W*T);
YTDDD=XNT*W*cos(W*T);
XNC=0.;
XNL=0.;
H=.001;
HP=.001;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
TS6=TS5*TS;
TS7=TS6*TS;
WH=WHIC;
if QPERFECT==1

YH=Y;
YDH=YD;
YTDDH=YTDD;
YTDDDH=YTDDD;
WH=W;

else
YH=0.;
YDH=0.;
YTDDH=0.;
YTDDDH=0.;

end
PHI=zeros(ORDER);
P=zeros(ORDER);
Q=zeros(ORDER);
IDNP=eye(ORDER);
RTM=VC*TF;
SIGNOISE=sqrt(SIGRIN^2+(SIGGL/RTM)^2+(SRN*RTM*RTM/(RA*RA))^2);
YNOISE=SIGNOISE*RTM;
P(1,1)=YNOISE*YNOISE;
P(2,2)=(VM*20./57.3)^2;
P(3,3)=XNT*XNT;
P(4,4)=(W*XNT)^2;
P(5,5)=W^2;
HMAT=[1 0 0 0 0];
HT=HMAT’;
while T,=(TF-.0001)

638 TACTICAL AND STRATEGIC MISSILE GUIDANCE



YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;

end
YTDD=XNT*sin(W*T);
TGO=TF-T+.00001;
XNLD=(XNC-XNL)/TAU;
YDD=YTDD-XNL;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
if S.=(TS-.00001)

S=0.;
YTDD=XNT*sin(W*T);
YTDDD=XNT*W*cos(W*T);
PHI(1,1)=1.;
PHI(1,2)=TS;
PHI(2,2)=1.;
PHI(2,3)=TS;
PHI(3,3)=1.;
PHI(3,4)=TS;
PHI(4,3)=-WH*WH*TS;
PHI(4,4)=1.;
PHI(4,5)=-2.*WH*YTDDH*TS;
PHI(5,5)=1.;
Q(3,3)=PHIS1*TS*TS*TS/3.;
Q(3,4)=PHIS1*TS*TS/2.;
Q(4,3)=Q(3,4);
Q(4,4)=4.*WH*WH*YTDDH*YTDDH*PHIS2*TS*TS*TS/3.+PHIS1*TS;
Q(4,5)=-WH*YTDDH*TS*TS*PHIS2;
Q(5,4)=Q(4,5);
Q(5,5)=PHIS2*TS;
PHIT=PHI’;
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PHIP=PHI*P;
PHIPPHIT=PHIP*PHIT;
M=PHIPPHIT+Q;
HM=HMAT*M;
HMHT=HM*HT;
RTM=VC*TGO;
SIGNOISE=sqrt(SIGRIN^2+(SIGGL/RTM)^2+(SRN*RTM*RTM/...

(RA*RA))^2);
YNOISE=SIGNOISE*RTM;
RMAT=[YNOISE^2];
HMHTR=HMHT+RMAT;
HMHTRINV=inv(HMHTR);
MHT=M*HT;
GAIN=MHT*HMHTRINV;
KH=GAIN*HMAT;
IKH=IDNP-KH;
P=IKH*M;
RTM=VC*TGO;
XLAM=Y/RTM;
XNOISE=SIGNOISE*randn;
XLAMS=XLAM+XNOISE;
[YB,YDB,YTDDB,YTDDDB]=PROJECT(T,TS,YH,YDH,YTDDH,YTDDDH,...

HP,XNL,WH);
RES=RTM*XLAMS-YB;
YH=YB+GAIN(1,1)*RES;
YDH=YDB+GAIN(2,1)*RES;
YTDDH=YTDDB+GAIN(3,1)*RES;
YTDDDH=YTDDDB+GAIN(4,1)*RES;
WH=WH+GAIN(5,1)*RES;
if APN==0

XNC=XNP*(YH+YDH*TGO)/(TGO*TGO);
elseif APN==1

XNC=XNP*(YH+YDH*TGO+.5*YTDDH*TGO*TGO)/(TGO*TGO);
elseif APN==2

XS=TGO/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGO*TGO);
C2=XNPP/TGO;
C3=.5*XNPP;
C4=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
XNC=C1*YH+C2*YDH+C3*YTDDH+C4*XNL;

elseif APN==3
XP=WH*TGO;
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XNC=XNP*(YH+YDH*TGO)/(TGO*TGO)+XNP*YTDDH*...
(1.-cos(XP))/XP^2+XNP*YTDDDH*(XP-sin(XP))/(XP*XP*WH);

else
XS=TGO/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGO*TGO);
C2=XNPP/TGO;
C3=XNPP*(1.-cos(WH*TGO))/(WH*WH*TGO*TGO);
C4=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
C5=XNPP*(WH*TGO-sin(WH*TGO))/(WH*WH*WH*TGO*TGO);
XNC=C1*YH+C2*YDH+C3*YTDDH+C4*XNL+C5*YTDDDH;

end
if XNC.XNCLIM

XNC=XNCLIM;
end
if XNC,-XNCLIM

XNC=-XNCLIM;
end
ERRYTDD=YTDD-YTDDH;
ERRYTDDG=ERRYTDD/32.2;
ERRYTDDD=YTDDD-YTDDDH;
ERRYTDDDG=ERRYTDDD/32.2;
ERRW=W-WH;
SP44=sqrt(P(4,4));
SP44P=-SP44;
SP33=sqrt(P(3,3));
SP33P=-SP33;
SP33G=SP33/32.2;
SP33PG=SP33P/32.2;
SP44G=SP44/32.2;
SP44PG=SP44P/32.2;
SP55=sqrt(P(5,5));
SP55P=-SP55;
YTDDG=YTDD/32.2;
YTDDHG=YTDDH/32.2;
YTDDDG=YTDDD/32.2;
YTDDDHG=YTDDDH/32.2;
XNCG=XNC/32.2;
n=n+1;
ArrayT(n)=T;
ArrayYTDDG(n)=YTDDG;
ArrayYTDDHG(n)=YTDDHG;
ArrayYTDDDG(n)=YTDDDG;
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ArrayYTDDDHG(n)=YTDDDHG;
ArrayW(n)=W;
ArrayWH(n)=WH;
ArrayERRYTDDG(n)=ERRYTDDG;
ArraySP33G(n)=SP33G;
ArraySP33PG(n)=SP33PG;
ArrayERRYTDDDG(n)=ERRYTDDDG;
ArraySP44G(n)=SP44G;
ArraySP44PG(n)=SP44PG;
ArrayERRW(n)=ERRW;
ArraySP55(n)=SP55;
ArraySP55P(n)=SP55P;

end
end
figure
plot(ArrayT,ArrayYTDDG,ArrayT,ArrayYTDDHG),grid
xlabel(’Time (Sec)’)
ylabel(’Acceleration and Estimate (G)’)
figure
plot(ArrayT,ArrayYTDDDG,ArrayT,ArrayYTDDDHG),grid
xlabel(’Time (Sec)’)
ylabel(’Jerk and Estimate (G/S)’)
figure
plot(ArrayT,ArrayW,ArrayT,ArrayWH),grid
xlabel(’Time (Sec)’)
ylabel(’Frequency and Estimate (G/S)’)
figure
plot(ArrayT,ArrayERRYTDDG,ArrayT,ArraySP33G,ArrayT,...

ArraySP33PG),grid
xlabel(’Time (Sec)’)
ylabel(’Error in Estimate of Acceleration (G)’)
figure
plot(ArrayT,ArrayERRYTDDDG,ArrayT,ArraySP44G,ArrayT,...

ArraySP44PG),grid
xlabel(’Time (Sec)’)
ylabel(’Error in Estimate of Jerk (G/S)’)
clc
output=[ArrayT’,ArrayYTDDG’,ArrayYTDDHG’,ArrayYTDDDG’,...

ArrayYTDDDHG’,ArrayW’,ArrayWH’];
save datfil.txt output -ascii
output=[ArrayT’,ArrayERRYTDDG’,ArraySP33G’,ArraySP33PG’,...

ArrayERRYTDDDG’,ArraySP44G’,ArraySP44PG’];
save covfil.txt output -ascii
disp ’simulation finished’

function[YB,YDB,YTDDB,YTDDDB]=PROJECT(TP,TS,YPH,YDPH,...
YTDDPH,YTDDDPH,HP,XNLP,WPH)
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T=0.;
Y=YPH;
YD=YDPH;
YTDD=YTDDPH;
YTDDD=YTDDDPH;
W=WPH;
XNL=XNLP;
H=HP;
while T,=(TS-.0001)

YTDDDD=-W*W*YTDD;
YTDDD=YTDDD+H*YTDDDD;
YTDD=YTDD+H*YTDDD;
YDD=YTDD-XNL;
YD=YD+H*YDD;
Y=Y+H*YD;
T=T+H;

end
YB=Y;
YDB=YD;
YTDDB=YTDD;
YTDDDB=YTDDD;

To demonstrate the robustness of the five-state extended Kalman filter,
another experiment was conducted. This time a case was considered in which
the target maneuvered, but not sinusoidally. Instead, the target performed a con-
stant 3-g maneuver. Figure 25.26 shows that in this case the extended Kalman
filter correctly estimated, after an initial transient period, that the target weave fre-
quency was zero. Figure 25.27 shows that after 4 s the filter is able to estimate that
the level of the constant target maneuver is 3 g. Finally, Fig. 25.28 shows that the
estimate of the target jerk is zero. This should be the case when the target man-
euver is constant. Thus, we can conclude that the five-state extended Kalman
filter is indeed robust.

Miss distance experiments were conducted with the three-state linear Kalman
filter and the five-state extended Kalman filter when both were part of the homing
loop. The guidance law options for the linear Kalman filter were proportional
navigation and optimal guidance. The extended Kalman filter was always used
in conjunction with the compensated weave guidance law. A close examination
of this guidance law reveals that the sign of the target weave frequency does not
influence the guidance command. Therefore, the inability of the five-state
extended Kalman filter to correctly determine the sign of the target weave fre-
quency should not be important for guidance purposes.

Figure 25.29 shows that when there are no constraints on the missile accelera-
tion and there is 1 mr of measurement noise, both the three-state linear Kalman
filter with optimal guidance and five-state extended Kalman filter with compen-
sated weave guidance yield superior miss distance performance to that of a pro-
portional navigation guidance system. Both optimal guidance and compensated
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weave guidance yield similar performance as measured by the RMS miss distance.
However, we can see from Fig. 25.30 that if there is a 10-g missile acceleration
limit, optimal guidance degrades severely and the best performance is obtained
by the five-state extended Kalman filter with compensated weave guidance. In
this case, the performance of optimal guidance and proportional navigation are

Fig. 25.26 Filter correctly estimates weave frequency of zero in presence of constant
target maneuver.

Fig. 25.27 After initial transient period extended Kalman filter is able to estimate constant
target maneuver.
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similar and both yield much larger RMS miss distances when compared with the
compensated weave guidance law.

Reducing the measurement noise by an order of magnitude to .1 mr improves
the performance of all the guidance systems. When there is no constraint on
the available missile acceleration Fig. 25.31 again shows that optimal guidance
and compensated weave guidance yield much better performance than a pro-
portional navigation guidance system. We can also see from Fig. 25.31 that the

Fig. 25.28 Extended Kalman filter is able to correctly estimate that constant target
maneuver has no jerk term.

Fig. 25.29 Both compensate weave guidance and optimal guidance yield similar
performance when there are no missile acceleration constraints.
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performances of both optimal guidance and compensated weave guidance are vir-
tually identical. However, we can see from Fig. 25.32 that the performance of the
optimal guidance system degrades when there is a 10-g missile acceleration limit,
and the performance of the extended Kalman filter with the compensated weave
guidance law is much better. The trends are identical to the case in which the
measurement noise was an order of magnitude larger.

Fig. 25.31 With reduced measurement noise, both compensated weave guidance and
optimal guidance still yield similar performance when there are no missile
acceleration constraints.

Fig. 25.30 With missile acceleration constraints, five-state extended Kalman filter with
compensated weave guidance yields the best results.
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SUMMARY

This chapter shows various filtering options that can be used in conjunction with
advance guidance laws to improve the performance of missile guidance system
against weaving targets. A conventional linear three-state Kalman filter can be
used in conjunction with the optimal guidance law to yield significant perform-
ance improvements compared with proportional navigation. Similar performance
improvements can also be obtained with a four-state weave Kalman filter in con-
junction with the compensated weave guidance law if the target weave frequency
is known. This filtering and guidance approach will perform better than optimal
guidance when there is a low missile-to-target acceleration advantage. If the target
weave frequency is not known it can be estimated with a five-state extended
Kalman filter. Similar performance improvements can be obtained with this non-
linear filter and guidance law approach.
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Fig. 25.32 With missile acceleration constraints, five-state extended Kalman filter with
compensated weave guidance yields the best results when measurement noise is reduced.
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CHAPTER 26

Alternative Approaches to Guidance
Law Development

INTRODUCTION

So far this text has made use of the Schwartz inequality to derive guidance laws
analytically. The Schwartz inequality was used because it was the simplest tech-
nique known to the author for the derivation of missile guidance laws. In this
chapter we will investigate two alternative ways of developing guidance laws.
These techniques can either be used to check analytically derived guidance laws
or can be used to derive more advanced guidance laws when the Schwartz inequal-
ity technique becomes too cumbersome. The first alternative approach presented
is based on optimal control theory and is the most general. The optimal control
approach consists of the numerical integration of the nonlinear matrix Ricatti
differential equation to solve for the guidance law control gains. In addition, a
totally different approach for the numerical derivation of guidance laws is also
presented in this chapter. This innovative technique is numerically much faster
than the optimal control method and is especially convenient when the dynamics
of the flight control system are too complex for any analytical approach. In both
preceding approaches numerical examples are presented showing how the results
of the new techniques compare to the analytical expressions for the previously
derived guidance laws. Finally, a new guidance law will be developed in this
chapter for the case in which there is a significant right-half-plane zero in the
flight control system of a tail-controlled missile. It will be shown that the new gui-
dance law, which is developed numerically, offers improved system performance
at very high altitudes.

OPTIMAL CONTROL

Guidance laws do not have to be derived analytically as has been done so far in this
text. For example, optimal control theory [1, 2] can be used to numerically derive
guidance laws. With optimal control theory a performance index is set up, and a
nonlinear matrix Ricatti differential equation needs to be solved in order to obtain
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the control gains of the resultant guidance law. At the very least this numerical
approach can also be useful as an independent check of the accuracy of the ana-
lytically derived guidance laws that were presented earlier in this text. In addition,
the numerical approach is useful in situations in which the analytical approach is
either impossible or too complex (that is, very high order model of flight control
system dynamics) to apply. To demonstrate the utility of the optimal control
approach, we will first state the theoretical equations to be solved and then
derive two guidance laws numerically for which we already have closed-
form solutions.

Optimal control theory states that guidance laws can be derived either analyti-
cally or numerically if our model of the real world can be expressed in state-space
form as

ẋ ¼ Fx þ Gu

where the control u (guidance command) is linearly related to the states x
according to

u ¼ �Cx

In the preceding equation C is a set of control gains. The expression involving
C is another way of writing a missile guidance law. With optimal control tech-
niques we are trying to minimize a performance index. Previously when we
derived guidance laws in this text, we simply tried to make the miss distance
zero subject to minimizing the integral of the acceleration squared or

yðtFÞ ¼ 0 subject to minimizing
ðtF
0
n2c ðtÞ dt

With standard optimal control techniques we cannot quite minimize the
preceding performance index. However a nearly equivalent performance index J
can be expressed in matrix form and is given by

J ¼ xTðtFÞSFxðtFÞ þ
ðtF
0
uTBu dt

where x(tF) is the state vector at the final time. The miss y(tF) is one element of that
state vector. By judiciously choosing SF, we can make the first term of J equal to
the miss distance squared [y2(tF)]. In addition, by making B a small scalar we
can come close to our desire of making the miss zero subject to minimizing the
integral of the acceleration squared.

Optimal control theory shows that minimizing J for our state space model of
the real world yields a guidance law in which the control gains are linearly related
to the states. Obtaining those control gains involves solving the nonlinear matrix
Riccati differential equation

Ṡ ¼ �FTS� SFþ CTBC
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with boundary value

S(tF) ¼ SF

The control gains for the optimal guidance law are related to the solution of the
preceding differential equation for S and can be obtained from

C ¼ B�1GTS

There can be significant numerical difficulty in solving the matrix Riccati
differential equation numerically because it is a boundary-value problem. In
fact, in this text we have not yet solved a boundary-value problem numerically.
However, this difficulty can be easily avoided by simply changing variables in
order to convert the nonlinear matrix differential equation with a boundary
value to one with an initial condition. Recall that from the overdot notation we
know that

Ṡ ¼ dS
dt

Therefore if we define

t ¼ tF � t

we can say that

dS
dt

¼ � dS
dt

Therefore by changing variables the nonlinear matrix differential equation
becomes

Ṡ ¼ FTSþ SF� CTBC

with initial value

S(0) ¼ SF

Because we have changed variables, S is now a function of t or time to go rather
than t or time. The control gains for the optimal guidance law are still obtained
from

C ¼ B�1GTS

but again the gains are now functions of time to go rather than a function of time.
Double-precision arithmetic plus a very small integration step size are often
required for the successful integration of the Riccati equations because of their
numerical fragility.
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The preceding optimal control equations are only valid for driving the relative
position and/or relative velocity or some other quantities to zero at the end of the
flight. The technique cannot be used to drive a quantity, such as the relative ve-
locity, to a specified value at the end of the flight such as was done in using the
Schwartz inequality to derive the trajectory-shaping guidance law of Chapter 24.

USING OPTIMAL CONTROL TO DERIVE GUIDANCE LAW FOR
SINGLE-LAG FLIGHT CONTROL SYSTEM

In Chapter 8 we have already derived an optimal guidance law when the missile
flight control system was modeled as a single lag. For the single-lag flight control
system the overall model for guidance law development was previously displayed
in Fig. 8.13 and is repeated here for convenience in Fig. 26.1. Recall that in this
model the relative acceleration is simply the difference between target acceleration
nT and the achieved missile acceleration nL. Integrating the relative acceleration
twice yields relative position y. At the end of the flight, the relative position is
the miss distance y(tF).

As was shown in Chapter 8, the model of Fig. 26.1 can be put in state-space
form as shown next. Here we are making the assumption that the target maneuver
is constant and therefore its derivative is zero.

_y
€y
_nT
_nL

2
664

3
775 ¼

0 1 0 0
0 0 1 �1
0 0 0 0
0 0 0 � 1

T

2
664

3
775

y
_y
nT
nL

2
664

3
775þ

0
0
0
1
T

2
664
3
775nc

Because the state-space equation is given by

ẋ ¼ Fx þ Gu

the appropriate state-space matrices
for the single-lag flight control
system can be written by inspection
as

F ¼

0 1 0 0

0 0 1 �1

0 0 0 0

0 0 0 � 1
T

2
6664

3
7775

Fig. 26.1 Single-lag flight control
system model for guidance

law development.
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G ¼

0

0

0

� 1
T

2
6664

3
7775

u ¼ nc

As was mentioned earlier at the beginning of this section, the performance
index that is usually chosen for guidance problems is one in which we make
the miss zero subject to minimizing the integral of the square of acceleration. A
convenient way of expressing this desire is shown next for the performance
index J. Here the parameter g is used as a fudge factor in the derivation of the gui-
dance law (meaning that g numerically prevents the guidance gains from becom-
ing infinite when the time to go approaches zero). Using smaller values of g will
cause us to pay more attention to the miss (that is, make the miss smaller). The
performance index for our optimal control problem is given by

J ¼ y2ðtFÞ þ g

ðtF
0
n2c dt

Because the generalized performance index for optimal control problems is
given by

J ¼ xTðtFÞSFxðtFÞ þ
ðtF
0
uTBu dt

the matrices in the preceding performance index expression can also be written by
inspection as

SF ¼

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775

B ¼ g

We now have all of the information we need to integrate the matrix Ricatti
equations and solve for the control gains. In this example the Ricatti equations
can also be solved in closed form [3, 4]; however, we shall simply use second-order
Runge–Kutta numerical integration to obtain the Ricatti equation solution.

Analytically, we already know from Chapter 8 that for the single-lag flight
control system the closed-form solution for the optimal guidance law is given by

nc ¼ N 0

t2go
½ y þ _ytgo þ 0:5nTt

2
go � nLT

2ðe�x þ x � 1Þ�
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In the preceding equation the effective navigation ratio can be expressed as

N 0 ¼ 6x2ðe�x � 1þ xÞ
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

where T is the flight control system time constant and x is defined as

x ¼ tgo
T

Alternatively we can also present the optimal guidance law in terms of control
gains or

nc ¼ C1y þ C2 _y þ C3nT þ C4nL

where C1 through C4 are the control gains. Equating the preceding expression with
the optimal guidance law yields the equations for each of the control gains as

C1 ¼ N 0

t2go

C2 ¼ N 0

tgo

C3 ¼ 0:5N 0

C4 ¼ �T2ðe�x þ x � 1ÞN 0

t2go
¼ �N 0ðe�x þ x � 1Þ

x2

The preceding equations will be considered the exact solution for the control gains
for our guidance problem.

We can numerically integrate the nonlinear matrix Ricatti differential
equation and solve for the control gains and then compare the numerical
results with the preceding closed-form solutions. Listing 26.1 uses the matrices
of this section to numerically integrate the nonlinear matrix differential equation
with the appropriate initial conditions. The nominal parameters for Listing 26.1
are a flight-control-system time constant of 1 s, a flight time of 10 s, and a per-
formance index weighting of 0.00001. Second-order Runge–Kutta integration is
used to numerically integrate the Ricatti equation. After some experimentation
an integration step size of 0.0001 s was chosen because it yielded accurate
answers and still allowed the program to run quickly. Note that the denominator
in the closed-form solution for the effective navigation ratio goes to zero as time to
go approaches zero. To avoid that singularity, 0.0001 was added to the denomi-
nator as can be seen from Listing 26.1.

654 TACTICAL AND STRATEGIC MISSILE GUIDANCE



LISTING 26.1 INTEGRATING RICATTI EQUATIONS TO GET OPTIMAL CONTROL GAINS FOR
SINGLE-LAG FLIGHT CONTROL SYSTEM

clear
TAU=1;
GAM=.00001;
TF=10;
F=zeros([4,4]);
S=zeros([4,4]);
count=0;
G(1,1)=0;
G(2,1)=0;
G(3,1)=0;
G(4,1)=1./TAU;
F(1,2)=1;
F(2,3)=1;
F(2,4)=-1;
F(4,4)=-1./TAU;
S(1,1)=1;
T=0;
H=.0001;
S1=0;
while ~(T .= (TF-.0001))

S1=S1+H;
SOLD=S;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
HSD=H*SD;
S=S+HSD;

T=T+H;
end
SF=S*F;
GT=G’;
GTS=GT*S;
GAMINV=1./GAM;
C=GAMINV*GTS;
SFT=SF’;
CT=C’;
CTC=CT*C;
CTBC=GAM*CTC;
SFSFT=SF+SFT;
SD=SFSFT-CTBC;

FLAG=1;
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end
FLAG=0;
H2=.5*H;
HSDP=H2*SD;
SS=SOLD+S;
SSP=.5*SS;
S=SSP+HSDP;
if S1.=.009999

S1=0;
C1=-C(1,1);
C2=-C(1,2);
C3=-C(1,3);
C4=-C(1,4);
NP=C2*T;
XS=T/TAU;
W1=1./TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(BOT1+BOT2+.0001);
C1TH=XNPP/(T*T);
C2TH=XNPP/T;
C3TH=.5*XNPP;
C4TH=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
count=count+1;
ArrayT(count)=T;
ArrayC1(count)=C1;
ArrayC1TH(count)=C1TH;
ArrayC2(count)=C2;
ArrayC2TH(count)=C2TH;
ArrayC3(count)=C3;
ArrayC3TH(count)=C3TH;
ArrayC4(count)=C4;
ArrayC4TH(count)=C4TH;
ArrayNP(count)=NP;
ArrayXNPP(count)=XNPP;

end
end
output=[ArrayT’,ArrayC1’,ArrayC1TH’,ArrayC2’,ArrayC2TH’, . . .

ArrayC3’,ArrayC3TH’,ArrayC4’,ArrayC4TH’,ArrayNP’,ArrayXNPP’];
save datfil.txt output /ascii
disp ’simulation finished’
clc
figure
semilogy(ArrayT,ArrayC1,ArrayT,ArrayC1TH),grid
xlabel(’Time (s) ’)
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ylabel(’C1’)
axis([0 10 .01 1000])
figure
semilogy(ArrayT,ArrayC2,ArrayT,ArrayC2TH),grid
xlabel(’Time (s) ’)
ylabel(’C2’)
axis([0 10 .1 200])
figure
semilogy(ArrayT,ArrayC3,ArrayT,ArrayC3TH),grid
xlabel(’Time (s) ’)
ylabel(’C3’)
axis([0 10 1 20])
figure
semilogy(ArrayT,-ArrayC4,ArrayT,-ArrayC4TH),grid
xlabel(’Time (s) ’)
ylabel(’-C4’)
axis([0 10 .1 20])
figure
semilogy(ArrayT,ArrayNP,ArrayT,ArrayXNPP),grid
xlabel(’Time (s) ’)
ylabel(’Effective Navigation Ratio’)
axis([0 10 .1 40])

The nominal case of Listing 26.1 was run, and the control gain outputs are dis-
played along with the analytical solution (“Formula”) in Figs. 26.2–26.5. We can
see that the numerical and analytical results are in near perfect agreement, thus
verifying the accuracy of the numerical integration in the optimal control
approach. Figure 26.6 compares the effective navigation ratios for the optimal

Fig. 26.2 Formula and simulation results agree for first control gain.
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guidance law from both the analytical and numerical approaches and shows they
are equivalent. Thus we can now feel confident about using Listing 26.1, with
minor modifications for the matrices, to generate other guidance laws using the
optimal control technique.

DERIVING GUIDANCE LAW FOR WEAVING TARGET USING OPTIMAL CONTROL

As another example of the utility of the optimal control approach for deriving
guidance laws, let us consider an example involving a weaving target. In this
case we shall consider the flight control system to be perfect (that is, zero time
constant). We have already shown in Chapter 20 that a weave maneuver could

Fig. 26.3 Formula and simulation results agree for second control gain.

Fig. 26.4 Formula and simulation results agree for third control gain.
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be represented analytically by a shaping network. The overall model for guidance
law development was presented in Fig. 20.16 for the weaving target and is repeated
in Fig. 26.7 for convenience.

As was shown in Chapter 20, the shaping network to the left of the summing
junction in Fig. 26.7 represents the sinusoidal maneuver. The model of Fig. 26.7
can be put in state space form as shown here:

_y
€y
_nT
€nT

2
664

3
775 ¼

0 1 0 0
0 0 1 0
0 0 0 1
0 0 �v2 0

2
664

3
775

y
_y
nT
_nT

2
664

3
775þ

0
�1
0
0

2
664

3
775nc

Fig. 26.5 Formula and simulation results agree for fourth control gain.

Fig. 26.6 Formula and simulation results agree for effective navigation ratio.
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As was the case in the preceding section, we will still assume that the performance
index to be minimized is given by

J ¼ y2ðtFÞ þ g

ðtF
0
n2c dt

Now that we have formulated the guidance problem, the appropriate matrices
required by the matrix Ricatti differential equation can be written by inspection as

F ¼

0 1 0 0

0 0 1 0

0 0 0 1

0 0 �v2 0

2
6664

3
7775

G ¼

0

�1

0

0

2
6664

3
7775

SF ¼

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775

u ¼ nc and B ¼ g

We have already shown in Chapter 20 that for the weaving target the closed-
form solution for the optimal guidance law, known as weave guidance, is given by

nc ¼ 3
t2go

y þ _ytgo þ 1� cosvtgo
v2

� �
nT þ vtgo � sinvtgo

v3

� �
_nT

� �

Note that in the preceding equation for the weave guidance law the effective navi-
gation ratio is three.

Fig. 26.7 Model for weave guidance law derivation.
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As was done in the preceding section, we can also express the guidance law in
terms of control gains or

nc ¼ C1y þ C2 _y þ C3nT þ C4 _nT

By comparing the preceding equation with the weave guidance law, we can easily
see that the control gains for the weave guidance law are given by

C1 ¼ 3
t2go

C2 ¼ 3
tgo

C3 ¼ 3
t2go

1� cosvtgo
v2

� �

C4 ¼ 3
t2go

vtgo � sinvtgo
v3

� �
The preceding equations can be viewed as the exact solution for the control gains
for the weaving guidance law.

We can slightly modify Listing 26.1 to solve for the control gains in the
weaving target problem. Listing 26.2 shows that we still numerically integrate
the nonlinear matrix Ricatti equation with a small integration step size and
solve for the control gains. A comparison is made between the results obtained
by numerical integration and the preceding closed-form solutions. Statements
that have changed from Listing 26.1 in order to find the weave guidance law
are highlighted in bold in Listing 26.2. The nominal case considered by Listing
26.2 had a target weave frequency of 1 r/s, a flight time of 10 s, and a performance
index weighting of 0.00001. Again, second-order Runge–Kutta integration was
used to numerically integrate the matrix Ricatti differential equation, and an inte-
gration step size of 0.0001 s was still used to get accurate answers.

LISTING 26.2 INTEGRATING MATRIX RICATTI EQUATION TO GET OPTIMAL CONTROL
GAINS FOR WEAVING TARGET

clear
W=1;
GAM=.00001;
TF=10;
F=zeros([4,4]);
S=zeros([4,4]);
count=0;
G(1,1)=0;
G(2,1)=-1.;
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G(3,1)=0;
G(4,1)=0.;
F(1,2)=1;
F(2,3)=1;
F(3,4)=1.;
F(4,3)=-W*W;
S(1,1)=1;
T=0;
H=.0001;
S1=0;
while ~(T .= (TF-.0001))

S1=S1+H;
SOLD=S;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
HSD=H*SD;
S=S+HSD;

T=T+H;
end
SF=S*F;
GT=G’;
GTS=GT*S;
GAMINV=1./GAM;
C=GAMINV*GTS;
SFT=SF’;
CT=C’;
CTC=CT*C;
CTBC=GAM*CTC;
SFSFT=SF+SFT;
SD=SFSFT-CTBC;
FLAG=1;

end
FLAG=0;
H2=.5*H;
HSDP=H2*SD;
SS=SOLD+S;
SSP=.5*SS;
S=SSP+HSDP;
if S1.=.009999

S1=0;
C1=-C(1,1);
C2=-C(1,2);
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C3=-C(1,3);
C4=-C(1,4);
NP=C2*T;
XNPP=3.;
C1TH=XNPP/(T*T);
C2TH=XNPP/T;
C3TH=XNPP*((1.-cos(W*T))/W^2)/T^2;
C4TH=XNPP*((W*T-sin(W*T))/W^3)/T^2;
count=count+1;
ArrayT(count)=T;
ArrayC1(count)=C1;
ArrayC1TH(count)=C1TH;
ArrayC2(count)=C2;
ArrayC2TH(count)=C2TH;
ArrayC3(count)=C3;
ArrayC3TH(count)=C3TH;
ArrayC4(count)=C4;
ArrayC4TH(count)=C4TH;
ArrayNP(count)=NP;
ArrayXNPP(count)=XNPP;

end
end
output=[ArrayT’,ArrayC1’,ArrayC1TH’,ArrayC2’,ArrayC2TH’,...

ArrayC3’,ArrayC3TH’,ArrayC4’,ArrayC4TH’,ArrayNP’,ArrayXNPP’];
save datfil.txt output /ascii
disp ’simulation finished’
clc
figure
plot(ArrayT,ArrayC3,ArrayT,ArrayC3TH),grid
xlabel(’Time (s) ’)
ylabel(’C3’)
axis([0 10 0 1.5])
figure
plot(ArrayT,ArrayC4,ArrayT,ArrayC4TH),grid
xlabel(’Time (s) ’)
ylabel(’C4’)
axis([0 10 0 1])

The nominal case of Listing 26.2 was run, and the control gain outputs for C3

and C4 are displayed along with the analytical solution (“Formula”) in Figs. 26.8
and 26.9. We can see that again the numerical and analytical results are in near
perfect agreement, thus again verifying the accuracy of the numerical integration.
Therefore we have again demonstrated that the optimal control technique is a
viable alternative approach for numerically deriving missile guidance laws.
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GUIDANCE PORTION DUE TO MANEUVERING TARGETS

We have seen in this text that all of the guidance laws can be expressed as a navi-
gation ratio time the zero effort miss and divided by the square of time to go until
intercept. In addition, we have noted that the first two terms in the guidance law
relate to proportional navigation and the other terms relate to target maneuver
and the dynamics of the flight control system. Therefore we can say that in
general all guidance laws can be expressed as

nc ¼ N 0

t2go
ZEM ¼ N 0

t2go
½y þ _ytgo þ ZEMTGT þ ZEMFCS�

Fig. 26.8 Formula and simulation results agree for third control gain.

Fig. 26.9 Formula and simulation results agree for fourth control gain.
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where ZEMTGT is the zero effort miss due to the target maneuver and ZEMFCS is
the zero effort miss due to the flight control system. In this section we shall present
an alternative analytical technique for finding the zero effort miss due to target
maneuver and demonstrate that the new technique yields answers that we
know to be true.

Reference 5 shows that in general the zero effort miss caused by the target
maneuver is given by

ZEMTGT ¼ �
ðtF
t
ða� tFÞnTðaÞ da

where a is a dummy variable, nT is the target maneuver (which does not have to be
a constant), and tF is the time of flight. Let us consider two cases to which we know
the answers in order to demonstrate that the preceding relationship is correct.

First let us consider the example of a constant target maneuver. In this case the
closed-form solution for the zero effort miss becomes

ZEMCONST
TGT

¼ �nT

ðtF
t
ða� tFÞ da ¼ �nT

ðtF
t
a da� tF

ðtF
t
da

� �

Integration of the preceding expression yields

ZEMCONST
TGT

¼ �nT
a2

2

tF
t

� tFa

tF
t

�
¼ �nT

t2F
2
� t2

2
� t2F þ tFt

� ��

which simplifies to

ZEMCONST
TGT

¼ nTðtF � tÞ2
2

¼ nTt2go
2

where

tgo ¼ tF � t

We recognize the zero effort miss caused by constant target maneuver as the term
we used in the augmented proportional navigation guidance law, thus verifying
the theoretical expression presented at the beginning of this section.

Let us now consider another example in which the target maneuver is not a
constant but is a sinusoid with weave frequency v and arbitrary phase angle f.
In this case we can express the time-varying target acceleration as

nTðtÞ ¼ aT sinðvt þ fÞ
where aT is the amplitude of the sinusoidal maneuver. By taking the derivative of
the preceding expression, we can also find the target jerk as

_nTðtÞ ¼ aTv cosðvt þ fÞ
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Substitution of the expression for the sinusoidal target maneuver in the formula
for the zero effort miss yields

ZEMWEAVE ¼ �
ðtF
t
ða� tFÞnTðaÞ da ¼ �aT

ðtF
t
ða� tFÞ sinðvaþ fÞ da

Let us recall from integral tables thatð
sinðvaþ fÞ da ¼ � 1

v
cosðvaþ fÞð

a sinðvaþ fÞ da ¼ � a

v
cosðvaþ fÞ þ 1

v2
sinðvaþ fÞ

Therefore the zero effort miss becomes

ZEMWEAVE ¼ �aT � a

v
cosðvaþ fÞ þ 1

v2
sinðvaþ fÞ

� �tF
t

	

þ tF
v
cosðvaþ fÞ

h itF
t



After evaluation of the limits and some simplification, we obtain

ZEMWEAVE ¼ �aT

(
t
v
� tF

v

� �
cosðvt þ fÞ

þ 1
v2

½sinðvtF þ fÞ � sinðvt þ fÞ�
)

We can expand

sinðvtF þ fÞ ¼ sin½vðtF � t þ tÞ þ f� ¼ sin½vðtgo þ tÞ þ f�
¼ sinðvtgo þ vt þ fÞ

and recognize that

sinðvtgo þ vt þ fÞ ¼ sinvtgo cosðvtgo þ fÞ þ cosvtgo sinðvt þ fÞ
The expression for the zero effort miss caused by the weave maneuver then

becomes

ZEMWEAVE ¼ �aT
�tgo
v

cosðvt þ fÞ þ 1
v2

½sinvtgo cosðvt þ fÞ
	

þ cosvtgo sinðvt þ fÞ � sinðvt þ fÞ�
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Simplification of the preceding expression yields

ZEMWEAVE ¼ �aT
�vtgo þ sinvtgo

v2

� �
cosðvt þ fÞ

�

þ sinðvt þ fÞ cosvtgo � 1

v2

� ��

Substitution of the expressions for target acceleration and jerk yields

ZEMWEAVE ¼ nT
1� cosvtgo

v2

� �
þ _nT

vtgo � sinvtgo
v3

� �
The preceding expression is identical to the portion of the zero effort miss related
to target acceleration and jerk in the weave guidance law. Thus we have again ver-
ified the theoretical formula presented at the beginning of this section.

ALTERNATIVE NUMERICAL APPROACH AS A RESULT OF FLIGHT CONTROL
SYSTEM DYNAMICS

For completeness an alternative and efficient numerical method for calculating the
optimal guidance law as a result of the dynamics of the flight control system is
presented in this section. It is based upon the work of Rusnak and Meir [6].
Consider a flight control system transfer function H(s), where H(s) ¼ nL(s)/
nC(s). Reference 6 shows that the optimal control gains can be calculated by
first computing the quantity L(tgo)

LðtgoÞ ¼ L�1 1
s2
� nLðsÞ
nCðsÞ

� �
tgo

�
gþ

ðtgo
0

L�1 1
s2
:
nLðsÞ
nCðsÞ

� �
tgo

( )2

dt

" #
¼ N

D

where L –1 is the inverse Laplace transform. The symbols N and D have been used
as shorthand for numerator and denominator, respectively. Therefore the inverse
Laplace transform of the item in the brackets of the preceding equation represents
the time response of the flight control system to a ramp t acceleration command
nc(t) (the Laplace transform of t is 1/s2). The guidance law control gains for
the first three states (assuming constant target acceleration) are computed from
L(tgo) as

C1ðtgoÞ ¼ LðtgoÞ
C2ðtgoÞ ¼ LðtgoÞtgo
C3ðtgoÞ ¼ 0:5LðtgoÞt2go
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Reference 6 also states that the control gains for the flight control system states i¼
1 through N can be expressed as

C3þiðtgoÞ ¼ �LðtgoÞL�1 1
s2
:
nLðsÞ
pið0Þ

� �
tgo

where p1 through pN are the states of the flight-control-system transfer function.
Therefore the quantity in brackets of the preceding equation represents the flight
control systems response to a ramp input t on the derivative of the ith state of the
flight control system. Note that the actual effective navigation ratio is related to
L(tgo) according to

N 0ðtgoÞ ¼ LðtgoÞt2go
The best way of illustrating this innovative technique is to work an example

for the single time constant flight control system as was done in Ref. 7.
Figure 26.10 is the block diagram equivalent of the preceding equations for the
effective navigation ratio and control gains. The resultant differential equations
resulting from this block diagram are simple and well behaved numerically.

Recall that for the preceding system the optimal guidance law can be expressed
in terms of the gains as

nc ¼ C1y þ C2 _y þ C3nT þ C4nL

Figure 26.10 was simulated, and the effective navigation ratio and C4 gain were
compared to the analytical results derived earlier. Listing 26.3 is a simulation of

Fig. 26.10 Reference 5 method for finding classic optimal guidance law for single time
constant flight control system.
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Fig. 26.10 using second-order Runge-Kutta integration with an integration step
size of 0.01 s. This technique is not as numerically fragile as the optimal control
method. Therefore this simulation will run approximately 100 times faster than
the simulation using the optimal control approach because of the much larger
integration step size. Listing 26.3 also presents the formulas for the effective navi-
gation ratio and C4 gain of the actual optimal guidance law.

The nominal case of Listing 26.3 was run. Figures 26.11 and 26.12 indicate that
there is excellent agreement for the effective navigation ratio and fourth control
gains using this new technique when compared to the closed-form solutions.
Thus we have confidence that no programming errors were made in Listing
26.3 and that a large integration interval yielded the correct answers.

LISTING 26.3 NUMERICAL APPROACH TO GUIDANCE-LAW DEVELOPMENT FOR SINGLE-LAG
FLIGHT CONTROL SYSTEM USING RUSNAK AND MEIR TECHNIQUE

clear
count=0;
TAU=1.;
GAM=.00001;
T=0.;
H=.01;
S=0.;
X1=0.;
X2=0.;

Fig. 26.11 Rusnak and Meir technique is equivalent to Riccati equation method for
single-lag flight control system.
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X3=0.;
while ~(T .= (10.-.0001))

S=S+H;
X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
T=T+H;

end
X1D=(T-X1)/TAU;
X2D=X1^2;
D=X2+GAM;
X3D=-X3/TAU+T;
FLAG=1;

end
FLAG=0;
X1=.5*(X1OLD+X1+H*X1D);
X2=.5*(X2OLD+X2+H*X2D);
X3=.5*(X3OLD+X3+H*X3D);
if S.=.09999

Fig. 26.12 Rusnak and Meir technique yields accurate fourth control gain for single-lag
flight control system.
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S=0.;
PZ=X1/D;
XNP=PZ*T*T;
C1=PZ;
C2=PZ*T;
C3=.5*PZ*T*T;
C4=-X3*PZ;
XS=T/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPTH=TOP/(BOT1+BOT2+.0001);
C4TH=-XNPTH*(exp(-XS)+XS-1.)/(XS*XS);
count=count+1;
ArrayT(count)=T;
ArrayC4(count)=C4;
ArrayC4TH(count)=C4TH;
ArrayXNP(count)=XNP;
ArrayXNPTH(count)=XNPTH;

end
end
output=[ArrayT’,ArrayC4’,ArrayC4TH’,ArrayXNP’,ArrayXNPTH’];
save datfil.txt output /ascii
disp ’simulation finished’
clc
figure
semilogy(ArrayT,ArrayXNP,ArrayT,ArrayXNPTH),grid
xlabel(’Time (s) ’)
ylabel(’NP’)
axis([0 10 .1 40])
figure
semilogy(ArrayT,-ArrayC4,ArrayT,-ArrayC4TH),grid
xlabel(’Time (s) ’)
ylabel(’-C4’)
axis([0 10 .1 20])

DERIVING NEW GUIDANCE LAW FOR CUBIC FLIGHT CONTROL SYSTEM

So far in this chapter we have used the new techniques to derive guidance laws
for which we already had the closed-form solution. This was done to give us con-
fidence that the alternative techniques actually worked. In the next two sections
we shall use both new techniques to numerically develop a new guidance law
that would not be possible to derive using the Schwartz inequality.

When more accurate representations of the missile flight control system
are used, closed-form solutions for the resultant guidance law either become
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impossible to derive or unwieldy because of the flight control system complexity.
However guidance laws do not have to be derived in closed form for them to
be useful. The more advanced guidance laws can be developed numerically,
and the resultant control gains can be stored in a flight computer for
guidance-law implementation [7]. In fact, this approach is similar to the way
autopilot gains are stored as a function of flight condition in the missile flight
computer [8].

We saw in Chapter 23 that a more realistic model for the flight control system
of a tail-controlled missile (compared to the single-lag representation) is given by
the transfer function

nL
nc

¼
1� s2

v2
z

� �

ð1þ stÞ 1þ 2z
v
sþ s2

v2

� �� �

In this transfer function we have modeled the “wrong-way” tail effect with left-
and right-half-plane zeros. The denominator of the flight control system consists
of a dominant real pole followed by a higher-frequency quadratic. To use optimal
control techniques to derive a new guidance law, we must first place the preceding
transfer function in state-space form. The first step is to multiply out the denomi-
nator of the flight control system transfer function or

nL
nc

¼ 1� s2

v2
z

� ��
1þ 2z

v
þ t

� �
sþ 2zt

v
þ 1
v2

� �
s2 þ t

v2
s3

� �

Wewould like to split the transfer function so that we can start to write differential
equations in state-space format. This can be accomplished by using the chain rule
from calculus, as was done in Chapter 1, or

nL
nc

¼ e
nc

� nL
e

Using the preceding equation yields the two transfer functions:

e
nc

¼ 1

�
1þ 2z

v
þ t

� �
sþ 2zt

v
þ 1
v2

� �
s2 þ t

v2
s3

� �
nL
e
¼ 1� s2

v2
z
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Cross multiplying and converting
to the time domain yields the two
differential equations describing the
cubic flight control system as

e
��� ¼ v2

t
nc � e� 2z

v
þ t

� �
_e

�

� 2zt
v

þ 1
v2

� �
€e

�

nL ¼ e� €e
v2
z

Using the preceding two differential
equations, we can express the new
model for guidance-law develop-
ment in block diagram form as
shown in Fig. 26.13.

Figure 26.13 can be converted to
state-space form by inspection.
Thus the state-space equation for

the homing loop with the cubic flight control system is given by
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Therefore the systems dynamics and control matrices are given by

F ¼

0 1 0 0 0 0
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1
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Fig. 26.13 Cubic flight control system
model for guidance-law development.
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G ¼

0

0

0

0

0
v2

t

2
666666664

3
777777775

Because we are still trying to minimize the performance index

J ¼ y2ðtFÞ þ g

ðtF
0
n2cdt

we can say that

SF ¼

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775

u ¼ nc and B ¼ g

To see what the new guidance law looks like, let us consider a numerical
example. The flight-control-system transfer function used to test the new gui-
dance law is considered to be

nL
nc

¼ 1� s2

52

� ��
ð1þ sÞ 1þ 2�0:7

20
sþ s2

202

� �� �
This means that the right-half-plane zero is at the low frequency of 5 r/s. The

dominant time constant is 1 s, and the damping and natural frequency of the flight
control system are 0.7 and 20 r/s, respectively. This type of transfer function
might be representative of a tail-controlled missile, such as the one of Fig. 21.3,
flying at very high altitude and low velocity [7]. Because our model of the real
world has six states, the new guidance law will have six control gains. Listing
26.4 is our optimal control program with the new matrices and changes in code
(from Listings 26.1 and 26.2) highlighted in bold.

The nominal case of Listing 26.4 was run. The time constant of the cubic flight
control system is identical to that of the single-lag flight control system previously
considered in Listing 26.1. To compare the new guidance law to the guidance law
that was optimal for the single-lag flight control system, it is easiest to compare the
effective navigation ratios. Figure 26.14 shows that both effective navigation ratios
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approach 3 when the time to go before intercept is very large and that both navi-
gation ratios get large near intercept and go to zero at intercept. However, the new
effective navigation ratio also goes negative near intercept in an attempt to com-
pensate for the right-half-plane zero of the flight-control-system transfer function.

The resultant guidance law is given by

nc ¼ C1y þ C2 _y þ C3nT þ C4eþ C5 _eþ C6€e

where the y, _y, and nT are obtained from a Kalman filter and e, _e, and €e can be
derived by reconstructing states within the flight control system. As was already
mentioned, there is no need to compute all six control gains in the missile in
real time. These gains can be computed as part of the missile design and stored
in the onboard computer memory as part of the overall data input. During a
missile intercept, the control gains would be determined by table look-up. At
each guidance update, the values of time to go, vz, v, t, and z, are the inputs to
a table look-up algorithm. The outputs are the six control gains C1 through C6.

The autopilot is usually designed to have a particular response as a function of
Mach and altitude, so that vz, v, t, and z can be looked up based on Mach and
altitude. Alternatively and more simply, the control gains can be stored and
looked up directly as a function of Mach, altitude, and time to go.

LISTING 26.4 INTEGRATING RICATTI EQUATIONS TO GET OPTIMAL CONTROL GAINS FOR
CUBIC FLIGHT CONTROL SYSTEM

clear
TAU=1.;
WZ=5.;

Fig. 26.14 New guidance-law effective navigation ratio goes negative near intercept.
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W=20.;
Z=.7;
TF=10.;
GAM=.00001;
F=zeros([6,6]);
S=zeros([6,6]);
count=0;
G(1,1)=0.;
G(2,1)=0.;
G(3,1)=0.;
G(4,1)=0.;
G(5,1)=0.;
G(6,1)=W*W/TAU;
F(1,2)=1;
F(2,3)=1;
F(2,4)=-1.;
F(2,6)=1./WZ^2;
F(4,5)=1.;
F(5,6)=1.;
F(6,4)=-W*W/TAU;
F(6,5)=-W*W*(2.*Z/W+TAU)/TAU;
F(6,6)=-W*W*(1./W^2+2.*Z*TAU/W)/TAU;
S(1,1)=1;
T=0;
H=.0001;
S1=0;
while ~(T .= (TF-.0001))

S1=S1+H;
SOLD=S;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
HSD=H*SD;
S=S+HSD;

T=T+H;
end
SF=S*F;
GT=G’;
GTS=GT*S;
GAMINV=1./GAM;
C=GAMINV*GTS;
SFT=SF’;
CT=C’;
CTC=CT*C;
CTBC=GAM*CTC;
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SFSFT=SF+SFT;
SD=SFSFT-CTBC;
FLAG=1;

end
FLAG=0;
H2=.5*H;
HSDP=H2*SD;
SS=SOLD+S;
SSP=.5*SS;
S=SSP+HSDP;
if S1.=.009999

S1=0;
C1=-C(1,1);
C2=-C(1,2);
C3=-C(1,3);
C4=-C(1,4);
C5=-C(1,5);
C6=-C(1,6);
NP=C2*T;
count=count+1;
ArrayT(count)=T;
ArrayC4(count)=C4;
ArrayC5(count)=C5;
ArrayC6(count)=C6;
ArrayNP(count)=NP;

end
end
output=[ArrayT’,ArrayC4’,ArrayC5’,ArrayC6’,ArrayNP’];
save datfil.txt output /ascii
disp ’simulation finished’
clc
figure
plot(ArrayT,ArrayNP),grid
xlabel(’Time (s) ’)
ylabel(’NP’)
axis([0 10 -10 50])

ALTERNATIVE APPROACH TO CUBIC FLIGHT-CONTROL-SYSTEM GUIDANCE LAW

For completeness the alternative method was used for the derivation of the gui-
dance law for the cubic flight control system. Recall that the transfer function
of the cubic flight control system was given by

nL
nc

¼ 1� s2

v2
z

� ��
ð1þ stÞ 1þ 2z

v
sþ s2

v2

� �� �
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Applying the methodology of Ref. 6 yields the block diagram of Fig. 26.15. The
first three control gains can be found from the solution for the effective navigation
ratio as

C1 ¼ N 0

t2go

C2 ¼ N 0

tgo

Fig. 26.15 Reference 6 method for finding control gains for cubic autopilot.
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C3 ¼ 0:5N 0

where t in the block diagram represents tgo.
Listing 26.5 simply programs Fig. 26.15. The gains C1 through C6 are gener-

ated by numerically solving the differential equations of Fig. 26.15, and the
program is set up to run a case for the autopilot transfer function

nL
nc

¼ 1� s2

52

� ��
ð1þ sÞ 1þ 2�0:7

20
sþ s2

202

� �� �
Note that the integration step size H is again 100 times larger than the step size
required for the optimal control technique.

The nominal case of Listing 26.5 was run, and the resultant effective naviga-
tion ratio is displayed in Fig. 26.16. This figure shows that the effective navigation
ratio generated by the method of Ref. 6 is completely equivalent to that generated
by the optimal control method. Thus we have further confirmation that the
alternative method for generating guidance gains can either be used as a substitute
for the more traditional method or can be used as an independent check in control
gain selection.

LISTING 26.5 ALTERNATIVE APPROACH FOR OBTAINING CONTROL GAINS FOR CUBIC
FLIGHT-CONTROL-SYSTEM GUIDANCE LAW

clear
count=0;
TAU=1.;

Fig. 26.16 Method of Ref. 6 is equivalent to optimal control method for cubic autopilot.
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GAM=.00001;
WZ=5.;
W=20.;
Z=.7;
T=0.;
H=.01;
S=0.;
X=0.;
E=0.;
ED=0.;
EDD=0.;
E1=0.;
E2=0.;
E2D=0.;
E3=0.;
E3D=0.;
E4=0.;
E4D=0.;
E5=0.;
E5D=0.;
E5DD=0.;
while ~(T .= (10.-.0001))

S=S+H;
XOLD=X;
EOLD=E;
EDOLD=ED;
EDDOLD=EDD;
E1OLD=E1;
E2OLD=E2;
E2DOLD=E2D;
E3OLD=E3;
E3DOLD=E3D;
E4OLD=E4;
E5OLD=E5;
E5DOLD=E5D;
E5DDOLD=E5DD;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

X=X+H*XD;
E=E+H*ED;
ED=ED+H*EDD;
EDD=EDD+H*EDDD;
E1=E1+H*E1D;
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E2=E2+H*E2D;
E2D=E2D+H*E2DD;
E3=E3+H*E3D;
E3D=E3D+H*E3DD;
E4=E4+H*E4D;
E5=E5+H*E5D;
E5D=E5D+H*E5DD;
E5DD=E5DD+H*E5DDD;
T=T+H;

end
EDDD=W*W*(T-(1./W^2+2.*Z*TAU/W)*EDD-(2.*Z/W+TAU)*ED-E)/TAU;
XN=E-EDD/WZ^2;
XD=XN^2;
D=X+GAM;
PZ=XN/D;
XNP=T*T*PZ;
E2DD=W*W*(-(1./W^2+2.*Z*TAU/W)*E2D-(2.*Z/W+TAU)*E2-E1)/TAU;
E1D=E2+T;
C4=-(E1-E2D/WZ^2)*PZ;
E4D=W*W*(-(1./W^2+2.*Z*TAU/W)*E4-(2.*Z/W+TAU)*E3D-E3)/TAU;
E3DD=E4+T;
C5=-(E3-E4/WZ^2)*PZ;
E5DDD=T-W*W*((1./W^2+2.*Z*TAU/W)*E5DD+(2.*Z/W+TAU)*E5D+E5)
/TAU;C6=PZ*(-E5+E5DD/WZ^2);
FLAG=1;

end
FLAG=0;
X=.5*(XOLD+X+H*XD);
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
EDD=.5*(EDDOLD+EDD+H*EDDD);
E1=.5*(E1OLD+E1+H*E1D);
E2=.5*(E2OLD+E2+H*E2D);
E2D=.5*(E2DOLD+E2D+H*E2DD);
E3=.5*(E3OLD+E3+H*E3D);
E3D=.5*(E3DOLD+E3D+H*E3DD);
E4=.5*(E4OLD+E4+H*E4D);
E5=.5*(E5OLD+E5+H*E5D);
E5D=.5*(E5DOLD+E5D+H*E5DD);
E5DD=.5*(E5DDOLD+E5DD+H*E5DDD);
if S.=.09999

S=0.;
count=count+1;
ArrayT(count)=T;
ArrayC4(count)=C4;
ArrayC5(count)=C5;
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ArrayC6(count)=C6;
ArrayXNP(count)=XNP;

end
end
output=[ArrayT’,ArrayC4’,ArrayC5’,ArrayC6’,ArrayXNP’];
save datfil.txt output /ascii
disp ’simulation finished’
clc
figure
plot(ArrayT,ArrayXNP),grid
xlabel(’Time (s) ’)
ylabel(’NP’)
axis([0 10 -10 50])

PERFORMANCE COMPARISON OF GUIDANCE LAWS IN PRESENCE OF CUBIC
FLIGHT CONTROL SYSTEM

In the last two sections we have numerically derived a guidance law that is optimal
when the flight-control-system transfer function is given by

nL
nc

¼ 1� s2

52

� ��
ð1þ sÞ 1þ 2�0:7

20
sþ s2

202

� �� �
Figure 26.17 indicates that the step response of the preceding cubic transfer func-
tion is totally different than the step response for the single-lag representation
when the dominant time constant is 1 s. The single-lag inaccuracy in the step
response is mainly caused by the low-frequency numerator zero of 5 r/s.

Fig. 26.17 Single-lag flight control system response does not match cubic response when
numerator zero is 5 r/s.
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Figure 26.18 demonstrates than when the numerator zero is increased to 100 r/s
the single-lag and cubic representations of the flight control system are
virtually identical.

We are now ready to see if there is a performance benefit in using the numerical
solution for the cubic guidance law. As was mentioned earlier, there is no need to
compute all six control gains in the missile in real time. These gains can be com-
puted as part of the missile design and stored in the onboard computer memory
as part of the overall data input as was suggested in Ref. 7. To illustrate part of
that concept, Listing 26.6 computes the six control gains for the cubic guidance
law for a given set of flight-control-system parameters in routine generatepains.m
using the optimal control approach. The resultant gains, which are a function of
the time-to-go until intercept, are stored in memory and called when needed.
For academic purposes and to get to the heart of the matter, the simulation is set
up so that all states are known perfectly (that is, no filtering is required), and the
only disturbance is a 0.5-g target maneuver. The program evaluates the miss dis-
tances for a variety of flight times. The real flight control system in the simulation
is identical to the cubic transfer function. By setting the parameter APN, we can
choose from a variety of guidance laws (0 ¼ proportional navigation, 1 ¼
augmented proportional navigation, 2 ¼ optimal guidance for single-lag flight
control system, and 3 ¼ optimal guidance for cubic flight control system).

LISTING 26.6 SIMULATION FOR EVALUATING DIFFERENT GUIDANCE LAWS

count=0;
TAU=1.;
W=20.;

Fig. 26.18 Single-lag flight-control-system response matches cubic response when
numerator zero is 100 r/s.
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Z=.7;
WZ=5.;
APN=3;
XNT=16.1;
TS=.01;
GAM=.00001;
XLIM=9999999.;
TFMAX=10.;
XNP=3.;
VC=4000.;
VM=3000.;
if APN==3

[C1,C2,C3,C4,C5,C6]=GENERATEGAINS(TAU,W,Z,WZ,GAM,TFMAX,TS);
end
for TF=.1:.1:10.

E=0.;
ED=0.;
EDD=0.;
T=0;
H=.0001;
S=0.;
Y=0.;
YD=0.;
XNC=0.;
RTM=VC*TF;
while T, (TF-.00001)

S=S+H;
EOLD=E;
EDOLD=ED;
EDDOLD=EDD;
YOLD=Y;
YDOLD=YD;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
E=E+H*ED;

ED=ED+H*EDD;
EDD=EDD+H*EDDD;
Y=Y+H*YD;
YD=YD+H*YDD;
T=T+H;

end
TGO=TF-T+.0001;
RTM=VC*TGO;
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XLAM=Y/RTM;
XNCG=XNC/32.2;
EDDD=W*W*(XNC-E-(2.*Z/W+TAU)*ED-(2.*Z*TAU/W+1./W^2)...

*EDD)/TAU;
XNL=E-EDD/WZ^2;
YDD=XNT-XNL;
FLAG=1;

end
FLAG=0;
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
EDD=.5*(EDDOLD+EDD+H*EDDD);
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
if S.=(TS-.0001)

S=0.;
if APN==0

XNC=XNP*(Y+YD*TGO)/(TGO*TGO);
XNPP=XNP;

elseif APN==1
XNC=XNP*(Y+YD*TGO+.5*XNT*TGO*TGO)/(TGO*TGO);
XNPP=XNP;

elseif APN==2
XS=TGO/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(.0001+BOT1+BOT2);
C1P=XNPP/(TGO*TGO);
C2P=XNPP/TGO;
C3P=.5*XNPP;
C4P=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
XNC=C1P*Y+C2P*YD+C3P*XNT+C4P*XNL;

else
JJ=fix(TGO/TS)+1;
XNC=C1(JJ)*Y+C2(JJ)*YD+C3(JJ)*XNT+C4(JJ)*E...

+C5(JJ)*ED+C6(JJ)*EDD;
XNPP=C2(JJ)*TGO;

end
if XNC.XLIM

XNC=XLIM;
elseif XNC,-XLIM

XNC=-XLIM;
end
XNCG=XNC/32.2;

end
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end
count=count+1;
ArrayTF(count)=TF;
ArrayY(count)=Y;

end
figure
plot(ArrayTF,ArrayY),grid
xlabel(’Flight Time (s)’)
ylabel(’Miss (ft) ’)
clc
output=[ArrayTF’,ArrayY’];
save datfil.txt output /ascii

function[C1,C2,C3,C4,C5,C6]=GENERATEGAINS(TAU,W,Z,WZ,GAM,TF,TS)
F=zeros([6,6]);
S=zeros([6,6]);
G(1,1)=0.;
G(2,1)=0.;
G(3,1)=0.;
G(4,1)=0.;
G(5,1)=0.;
G(6,1)=W*W/TAU;
F(1,2)=1;
F(2,3)=1;
F(2,4)=-1.;
F(2,6)=1./WZ^2;
F(4,5)=1.;
F(5,6)=1.;
F(6,4)=-W*W/TAU;
F(6,5)=-W*W*(2.*Z/W+TAU)/TAU;
F(6,6)=-W*W*(1./W^2+2.*Z*TAU/W)/TAU;
S(1,1)=1 ;
T=0;
H=.0001;
S1=0;
ICOUNT=1;
while T, (TF-.0001)

S1=S1+H;
SOLD=S;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
HSD=H*SD;
S=S+HSD;
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T=T+H;
end
SF=S*F;
GT=G’;
GTS=GT*S;
GAMINV=1./GAM;
C=GAMINV*GTS;
SFT=SF’;
CT=C’;
CTC=CT*C;
CTBC=GAM*CTC;
SFSFT=SF+SFT;
SD=SFSFT-CTBC;
FLAG=1;

end
FLAG=0;
H2=.5*H;
HSDP=H2*SD;
SS=SOLD+S;
SSP=.5*SS;
S=SSP+HSDP;
if S1.=(TS-.0001)

S1=0;
C1(ICOUNT)=-C(1,1);
C2(ICOUNT)=-C(1,2);
C3(ICOUNT)=-C(1,3);
C4(ICOUNT)=-C(1,4);
C5(ICOUNT)=-C(1,5);
C6(ICOUNT)=-C(1,6);
ICOUNT=ICOUNT+1;

end
end

A case was first run with Listing 26.6 in which the numerator zero of the flight
control system was set to 100 r/s (WZ ¼ 100). We know from Fig. 26.18 that in
this case the single-lag representation of the flight control system is excellent.
Therefore it comes as no surprise that the performance of the optimal guidance
law, as shown in Fig. 26.19, is very good and far superior to the performance of
proportional navigation.

Another case was run with Listing 26.6 in which the numerator zero of the
flight control system was reduced to 10 r/s (WZ ¼ 10). We can see from
Fig. 26.20 that the performance of the single-lag optimal guidance law deteriorates
significantly for flight times less than 25. On the other hand the cubic guidance
law yields nearly perfect performance in that the miss distance is always zero.
The decrease of the right-half-plane zero does not significantly influence the
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proportional-navigation results. However the proportional-navigation results are
generally worse than that of both other guidance laws.

Finally a case was run with Listing 26.6 in which the numerator zero of the
flight control system was further reduced to 5 r/s (WZ ¼ 5). We know from
Fig. 26.17 that in this case the single-lag representation of the flight control
system is terrible because it totally misses the significant wrong-way tail effect.
Therefore it comes as no surprise that the performance of the optimal single-lag
guidance law, as shown in Fig. 26.21, is terrible and in fact is much worse than

Fig. 26.19 Optimal guidance law for single-lag flight control system works well when
numerator zero is 100 r/s.

Fig. 26.20 Optimal guidance law for single-lag deteriorates when numerator zero is 10 r/s
while optimal guidance law for cubic works perfectly.
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proportional navigation. The decrease in the right-half-plane zero to 5 r/s now
significantly affects the performance of proportional navigation. Again we can
see that the cubic guidance law yields nearly perfect performance.

SUMMARY

In this chapter we have presented two new techniques for deriving missile gui-
dance laws numerically. It was shown that both techniques can accurately numeri-
cally derive guidance laws that have previously been derived analytically. In
addition, a new guidance law for a complex missile flight control system was
derived using the new techniques. It was shown that the new guidance law can
yield significant performance benefits for a tail-controlled missile traveling at
low speed and high altitude.

REFERENCES

[1] Bryson, A. E., and Ho, Y. C., Applied Optimal Control, Blaisdell, Waltham, MA, 1969.
[2] Gelb, A., Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974,

pp. 356–361.
[3] Cottrell, R. G., “Optimal Intercept Guidance for Short-Range Tactical Missiles,” AIAA

Journal, Vol. 9, No. 7, 1971, pp. 1414, 1415.
[4] Nesline, F. W., and Zarchan, P., “A New Look at Classical Versus Modern Homing

Guidance,” Journal of Guidance and Control, Vol. 4, No. 1, 1981, pp. 78–85.

Fig. 26.21 Optimal guidance law for single lag goes unstable when numerator zero is 5 r/s
while optimal guidance law for cubic works perfectly.

ALTERNATIVE APPROACHES TO GUIDANCE LAW DEVELOPMENT 689



[5] Asher, R. B., and Matuszewski, J. P., “Optimal Guidance with Maneuvering Targets,”
Journal of Spacecraft and Rockets, Vol. 11, No. 3, 1974, pp. 204–206.

[6] Rusnak, I., and Meir, L., Journal of Guidance, Control, and Dynamics, Vol. 14, No. 5,
1991, pp. 1056–1058.

[7] Zarchan, P., Greenberg, E., and Alpert, J., “Improving the High Altitude Performance
of Tail-Controlled Endoatmospheric Missiles,” AIAA Paper 2002-4770, Aug. 2002.

[8] Wells, B. H., “Tactical Missile Structural Testing and Model Verification for Autopilot
Design,” Proceedings of the 1991 AIAA Guidance and Control Conference, AIAA,
Washington, DC, 1991.

690 TACTICAL AND STRATEGIC MISSILE GUIDANCE



CHAPTER 27

Filter Bank Approach to Weaving
Target Problem

INTRODUCTION

We showed in Chapter 20 that interceptor performance against a weaving target
could be improved considerably by use of a special-purpose compensated weave
guidance law. Essentially the compensated weave guidance law makes an internal
prediction of where the target will be at intercept and also compensates for the
missile’s own flight-control-system dynamics. This information enables the
missile to guide directly to the predicted intercept point using a minimum of
energy. If the weave frequency of the target is known in advance, it was shown
in Chapter 25 that when the measurement noise was low a four-state linear
weave Kalman filter could be designed to yield excellent estimates of the necessary
states to implement the compensated weave guidance law. If, on the other hand,
the target weave frequency was not known, we also showed in Chapter 25 that the
target weave frequency could be estimated under certain circumstances, with a
five-state extended Kalman filter. Because all extended Kalman filters are sensitive
to large initialization errors, this type of filter will only work if it is initialized with
a target frequency estimate that is close to the actual target weave frequency. In
this chapter we shall show how a bank of linear four-state weave Kalman
filters, each one tuned to a different target weave frequency, can be used to esti-
mate the target weave frequency and improve system performance when the
measurement noise is low. It will be demonstrated that the filter bank approach
is more robust than an extended Kalman filter when there is a large uncertainty
in the target weave frequency.

REVIEW OF FIVE-STATE EXTENDED-KALMAN-FILTER PERFORMANCE

The guidance system used in this chapter for the weaving target problem is
identical to the one used in Chapter 25 and is repeated in Fig. 27.1 for conven-
ience. Note that the two sources of error in the guidance system are measurement
noise and a sinusoidal target maneuver. The Kalman filter, shown in the homing

691



loop of Fig. 27.1, can either be a four-state linear weave Kalman filter, a five-state
extended Kalman filter (both of which were fully described in Chapter 25), or a
bank of linear weave four-state Kalman filters (which will be fully described
later in this chapter). The parameters to be used in the analysis of the Fig. 27.1
guidance system are the same ones used in Chapter 25 and are repeated in
Table 27.1 for convenience.

It is well known that, in general, the extended Kalman filter is sensitive to initi-
alization errors [1]. This means that if the five-state extended Kalman filter of
Chapter 25 is not initialized with a target weave frequency estimate that is
fairly close to the actual target weave frequency the performance of the extended
Kalman filter can degrade considerably. For example, Listing 25.3 was run for the

Fig. 27.1 Guidance system model for miss distance analysis.

TABLE 27.1 NOMINAL SYSTEM INPUTS FOR VARIOUS STUDIES

Parameter Definition Value

nT Target acceleration 3 g

nLIM Missile acceleration limit 10 g

sNoise Seeker measurement noise 0.1 mr

Vc Closing velocity 9000 ft/s

T Flight-control-system time constant 0.5 s

v Target weave frequency Varies from 1 to 10 r/s

tF Flight time 10 s

Ts Sampling time 0.01 s
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case in which the actual target weave frequency was 2 r/s and the initial estimate
of the target weave frequency WHIC was varied. In Fig. 27.2 we can see that if the
initial estimate of the target weave frequency is 3 r/s (in error by 1 r/s) the
extended Kalman filter is able to estimate the target weave frequency after
3 s. However, if the initial estimate of the target weave frequency is 4 r/s (in
error by 2 r/s), the filter’s estimate of the target weave frequency diverges from
the truth and is in considerable error.

Thus it appears that we need some other way of estimating the target weave
frequency when we have no idea of what the target weave frequency might be.

REVIEW OF FOUR-STATE LINEAR WEAVE KALMAN-FILTER PERFORMANCE

The four-state linear weave Kalman filter was derived in Chapter 25. The states of
that filter are relative position y, relative velocity _y, target acceleration €yT , and target
jerk €y_T . With this linear Kalman filter it is assumed that the weave frequency of
the target v is known and does not have to be estimated. Chapter 25 showed that
the scalar equations for the four-state linear weave Kalman filter are given by

RESk ¼ y�k � ŷk�1 � Ts _̂yk�1 �
1� cos x

v2

� �
€̂yTk�1

� x � sin x
v3

� �
€̂y_Tk�1

þ 0:5T2
s nLk�1

ŷk ¼ ŷk�1 þ Ts _̂yk�1 þ
1� cos x

v2

� �
€̂yTk�1

þ x � sin x
v3

� �
€̂y_Tk�1

� 0:5T2
s nLk�1 þ K1kRESk

Fig. 27.2 Extended Kalman filter is unable to estimate target weave frequency if initial
frequency estimate is in error by 2 r/s.
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_̂yk ¼ _̂yk�1 þ
sin x
v

� �
€̂yTk�1

þ 1� cos x
v2

� �
€̂y_Tk�1

� TsnLk�1 þ K2kRESk

€̂yTk
¼ cos x€̂yTk�1

þ sin x
v

� �
€̂y_Tk�1

þ K3kRESk

ŷTk ¼ �v sin x€̂yTk�1
þ cos x€̂y_Tk�1

þ K4kRESk

where

x ¼ vTs

Ts is the sampling time or time between measurements, and v is the target weave
frequency, which is assumed to be known. The Kalman gains (K1, K2, K3, and K4)
are obtained from the matrix Ricatti equations. Details concerning the fundamen-
tal, measurement, process noise, and measurement noise matrices can also be
found in Chapter 25. The filter is optimal if the real target maneuver is a sinusoid,
the target weave frequency is known, and the compensated weave guidance law
is used.

The compensated weave guidance law, which is optimal in the sense that it
requires the least acceleration in the integral squared sense against weave maneu-
vers, issues guidance commands proportional to the zero effort miss and inversely
proportional to the square of time to go until intercept. Chapter 20 showed that
the compensated weave guidance law is given by

nc ¼ N 0

t2go
y þ _ytgo þ 1� cosvtgo

v2

� �
€yT

�

þ vtgo � sinvtgo
v3

� �
€y_T � nLT

2ðe�x þ x � 1Þ
�

where in this case x (not to be confused with x in Kalman-filter equations) is
given by

x ¼ tgo
T

In the preceding equation tgo is the time to go until intercept, and T is defined as
the approximate time constant of the flight control system. Again v is the target
weave frequency, which is assumed to be known. The effective navigation ratio in
the compensated weave guidance law is time varying and is given by

N 0 ¼ 6x2ðe�x � 1þ xÞ
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

The compensated weave guidance law consists of five terms: the first two
terms are related to the line-of-sight rate, the third term proportional to the
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target acceleration, a fourth term is proportional to target jerk, and a fifth term is
proportional to the achieved missile acceleration. The first two terms in the com-
pensated weave guidance law are proportional navigation. The third and fourth
terms in the guidance law compensate for the sinusoidal motion of the target
while the fifth term compensates for the dynamics in the missile flight control
system. Details of the derivation of the compensated weave guidance law can
also be found in Chapter 20.

It was also demonstrated in Chapter 25 that the four-state linear weave
Kalman filter in conjunction with the compensated weave guidance law worked
very well if the target weave frequency was known as shown in Fig. 27.3. Here
we can see that we have virtually perfect estimates of the target acceleration
after a very brief period of time.

However, if knowledge of the target weave frequency is in error the filter’s esti-
mate of the target acceleration will deteriorate. For example, consider the case
where the actual target weave frequency is 2 r/s but the filter thinks the target
weave frequency is 1 r/s. In this case we are underestimating the target weave fre-
quency. Figure 27.4 shows that the filter estimate of the target acceleration does
not track the actual target acceleration very well when the target weave frequency
is underestimated. Figure 27.5 also shows that when the target weave frequency is
overestimated at 4 r/s the Kalman filter’s estimate of target acceleration
also deteriorates.

Lack of knowledge of the target weave frequency will not only yield poorer
state estimates but will also influence system performance as measured by the
rms miss distance. A 50-run Monte Carlo miss distance experiment was repeated
from Chapter 25 in which the flight times ranged from 0.5 to 10 s in steps of 0.5 s

Fig. 27.3 Linear weave four-state Kalman filter works well if target weave frequency
is known.
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using a modified version of Listing 25.2. Figure 27.6, which is identical to
Fig. 25.17 (except scales have changed), shows that the price paid for the lack
of knowledge of the target weave frequency is increased rms miss distance.
When the target weave frequency is known, the maximum rms miss distance is
5 ft. However, when knowledge of the target weave frequency is in error on the
low side by 1 r/s the maximum rms miss distance is 20 ft. Similarly, when knowl-
edge of the target weave frequency is in error on the high side by 2 r/s the

Fig. 27.4 Four-state linear weave Kalman-filter’s estimate of target acceleration
deteriorates when we underestimate target weave frequency.

Fig. 27.5 Four-state linear weave Kalman-filter’s estimate of target acceleration
deteriorates when we overestimate target weave frequency.
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maximum rms miss distance is 15 ft. Clearly we need a better way of estimating
the acceleration of a weaving target when the target weave frequency is unknown.

FILTER BANK METHODOLOGY

The fixed multiple model adaptive estimator or MMAE technique for determining
an unknown parameter within a bank of Kalman filters was first developed by
D. T. Magill in 1965 [2]. With this technique several Kalman filters are run in par-
allel with each one being tuned to a different parameter value. The likelihood
function and Bayes’ rule are used to determine the probability that a filter is the
correct one. Estimates from each of the filters are weighted by the probability
that it is the correct one and combined to form a resultant estimate [3–5].

The basic idea of this chapter is to use a bank of linear four-state weave
Kalman filters, each one assuming a different target weave frequency, operating
in parallel (that is, all filters receive the same measurements). Each filter is
totally independent of every other filter in the filter bank. It is postulated that
by using the fixed MMAE approach at every guidance update we can determine
the probability that a given filter is the correct one (that is, tuned to the correct
target weave frequency). The resultant estimates are then obtained by adding
the state estimates of each filter multiplied by the probability that the filter is
the one tuned to the correct frequency.

With the fixed MMAE approach each filter is totally independent of every
other filter in the filter bank. The fixed MMAE approach makes use of the residual
RES and covariance of the residual C of each filter in the filter bank. For the
problem concerning the linear four-state weave Kalman filter, the residual and

Fig. 27.6 Miss distance performance of four-state linear weave Kalman filter deteriorates
when target weave frequency estimate is in error.
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residual covariance are scalars. The ith filter residual and covariance at the kth
instant are given by

RESkðiÞ ¼ zk �HFkðiÞx̂k�1ðiÞ �HGkuk�1

s2
RESk

ðiÞ ¼ CkðiÞ ¼ HMkðiÞHT þ Rk

It can also be shown that there is something called the likelihood function of the
residual f, which is computed using the filter residual and covariance. The likeli-
hood function is also a scalar for the four-state linear weave Kalman filter. The
likelihood function for the ith filter at the kth instant is given by the scalar

fkðiÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pCkðiÞ

p e�0:5RES2kðiÞ=CkðiÞ

The probability pk(i) that the ith filter is the correct one at the kth instant can be
computed according to Bayes’ rule as

pkðiÞ ¼ fkðiÞpk�1ðiÞPr
i¼1 fkðiÞpk�1ðiÞ

¼ fkðiÞpk�1ðiÞ
fkð1Þpk�1ð1Þ þ fkð2Þpk�1ð2Þ þ fkð3Þpk�1ð3Þ þ � � � þ fkðrÞpk�1ðrÞ

Note that the preceding equation is recursive and therefore needs initial estimates
for the probability that each filter is the correct one. If we assume that it is equally
likely that any one of r filters in the filter bank is the correct one, then we can say
that [6]

p0ðiÞ ¼ 1
r

Thus at each instant of time we have a set of r probabilities (numbers ranging from
zero to unity) telling us the likelihood that any filter is the correct one. The r prob-
abilities add up to unity. The estimated target weave frequency to be used by the
compensated weave guidance law can be found by weighting the frequency
assigned to each filter by the probability that the filter is the correct one or

v̂k ¼ pkð1Þvð1Þ þ pkð2Þvð2Þ þ pkð3Þvð3Þ þ � � � þ pkðrÞvðrÞ
where v(1) . . . v(r) are the tuned frequencies assumed by each of the r filters. The
resultant state estimates to also be used by the compensated weave guidance law
are obtained by using the state estimates of each individual filter weighted by the
probability that the filter is correct or

x̂k ¼ pkð1Þx̂kð1Þ þ pkð2Þx̂kð2Þ þ pkð3Þx̂kð3Þ þ � � � þ pkðrÞx̂kðrÞ
where x̂kð1Þ . . . x̂kðrÞ are the state estimates of each of the r filters.
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THREE FILTER BANK EXAMPLE

To better understand the mechanics of the fixed MMAE approach, it is best to first
consider a numerical example in which there are only three filters in the filter
bank. In this example it is assumed that one of the three filters is actually the
correct one (meaning tuned to the correct target weave frequency). If three
four-state linear weave Kalman filters are run in parallel, each one tuned to a
different target weave frequency, the equations of the preceding section simplify.
The likelihood function for each of the three filters at the kth instant is given by

fkð1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pCkð1Þ

p e�0:5RES2kð1Þ=Ckð1Þ

fkð2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pCkð2Þ

p e�0:5RES2kð2Þ=Ckð2Þ

fkð3Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pCkð3Þ

p e�0:5RES2kð3Þ=Ckð3Þ

where each of the covariances Ck(i) can be found from each filters set of Ricatti
equations according to

Ckð1Þ ¼ HMkð1ÞHT þ Rk

Ckð2Þ ¼ HMkð2ÞHT þ Rk

Ckð3Þ ¼ HMkð3ÞHT þ Rk

and the residuals can be found from the error signal within the filter as

RESkð1Þ ¼ zk �HFkð1Þx̂k�1ð1Þ �HGkuk�1

RESkð2Þ ¼ zk �HFkð2Þx̂k�1ð2Þ �HGkuk�1

RESkð3Þ ¼ zk �HFkð3Þx̂k�1ð3Þ �HGkuk�1

The probability that any given filter of the three filters is the correct one can be
found from Bayes’ rule as

pkð1Þ ¼ fkð1Þpk�1ð1Þ
fkð1Þpk�1ð1Þ þ fkð2Þpk�1ð2Þ þ fkð3Þpk�1ð3Þ

pkð2Þ ¼ fkð2Þpk�1ð2Þ
fkð1Þpk�1ð1Þ þ fkð2Þpk�1ð2Þ þ fkð3Þpk�1ð3Þ

pkð3Þ ¼ fkð3Þpk�1ð3Þ
fkð1Þpk�1ð1Þ þ fkð2Þpk�1ð2Þ þ fkð3Þpk�1ð3Þ
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We can see from the preceding set of equations that at any instant of time

pkð1Þ þ pkð2Þ þ pkð3Þ ¼ 1

Again, pk(1) represents the probability that the first filter is correct at the kth
instant. To start the preceding recursion for calculating the probabilities that a
filter is correct, we assume initially each filter is equally likely to be the correct
filter or

p0ð1Þ ¼ 1
3

p0ð2Þ ¼ 1
3

p0ð3Þ ¼ 1
3

At each instant of time, we calculate the probability that each filter is correct and
then weigh the assumed frequency and estimates of each of the three filters
according to their probabilities as

v̂ k ¼ pkð1Þvð1Þ þ pkð2Þvð2Þ þ pkð3Þvð3Þ
x̂k ¼ pkð1Þx̂kð1Þ þ pkð2Þx̂kð2Þ þ pkð3Þx̂kð3Þ

Listing 27.1 implements the fixed MMAE approach for three four-state linear
weave Kalman filters along with the inputs of Table 27.1. This listing is based upon
the single four-state linear weave Kalman filter approach of Listing 25.2. However
in Listing 27.1 we only consider the compensated weave guidance law. In addition,
in Listing 27.1 the actual target weave frequency is 2 r/s. One filter in the filter
bank is tuned to 1 r/s, the other is tuned to 2 r/s, and the third filter is tuned
to 4 r/s. Therefore the correct filter in this example is the one tuned to 2 r/s.
The additional code in going from the single filter approach of Listing 25.2 to
the fixed MMAE approach of Listing 27.1 is highlighted in bold.

LISTING 27.1 THREE-FILTER FIXED MMAE APPROACH TO WEAVING TARGET PROBLEM

clear
count=0;
TAU=.5;
ORDER=4;
VC=9000.;
XLIM=322.;
W1=1.;
W2=2.;
W3=4.;
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WREAL=2.;
XNT=96.6;
XNTREAL=96.6;
TS=.01;
YIC=0.;
VM=3000.;
HEDEG=0.;
HEDEGFIL=20.;
XNP=3.;
SIGRIN=.0001;
TF=10.;;
PHASE=0./57.3;
X1=W1*TS;
X2=W2*TS;
X3=W3*TS;
Y=YIC;
YD=-VM*HEDEG/57.3;
PHIS1=W1*W1*XNT*XNT/TF;
PHIS2=W2*W2*XNT*XNT/TF;
PHIS3=W3*W3*XNT*XNT/TF;
RTM=VC*TF;
SIGNOISE=SIGRIN;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
PHI1=zeros([4,4]);
P1=zeros([4,4]);
Q1=zeros([4,4]);
IDNP=eye(4);
PHI2=zeros([4,4]);
P2=zeros([4,4]);
Q2=zeros([4,4]);
PHI3=zeros([4,4]);
P3=zeros([4,4]);
Q3=zeros([4,4]);

PHI1(1,1)=1;
PHI1(1,2)=TS;
PHI1(1,3)=(1-cos(X1))/(W1*W1);
PHI1(1,4)=(X1-sin(X1))/(W1*W1*W1);
PHI1(2,2)=1;
PHI1(2,3)=sin(X1)/W1;
PHI1(2,4)=(1-cos(X1))/(W1*W1);
PHI1(3,3)=cos(X1);
PHI1(3,4)=sin(X1)/W1;
PHI1(4,3)=-W1*sin(X1);
PHI1(4,4)=cos(X1);
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PHI2(1,1)=1;
PHI2(1,2)=TS;
PHI2(1,3)=(1-cos(X2))/(W2*W2);
PHI2(1,4)=(X2-sin(X2))/(W2*W2*W2);
PHI2(2,2)=1;
PHI2(2,3)=sin(X2)/W2;
PHI2(2,4)=(1-cos(X2))/(W2*W2);
PHI2(3,3)=cos(X2);
PHI2(3,4)=sin(X2)/W2;
PHI2(4,3)=-W2*sin(X2);
PHI2(4,4)=cos(X2);

PHI3(1,1)=1;
PHI3(1,2)=TS;
PHI3(1,3)=(1-cos(X3))/(W3*W3);
PHI3(1,4)=(X3-sin(X3))/(W3*W3*W3);
PHI3(2,2)=1;
PHI3(2,3)=sin(X3)/W3;
PHI3(2,4)=(1-cos(X3))/(W3*W3);
PHI3(3,3)=cos(X3);
PHI3(3,4)=sin(X3)/W3;
PHI3(4,3)=-W3*sin(X3);
PHI3(4,4)=cos(X3);
Q1(1,1)=PHIS1*(.333*X1^3-2*sin(X1)+2*X1*cos(X1)+.5*X1-...

.25*sin(2*X1))/(W1^5);
Q1(1,2)=PHIS1*(.5*X1*X1-X1*sin(X1)+.5*sin(X1)*...

sin(X1))/(W1^4);
Q1(2,1)=Q1(1,2);
Q1(1,3)=PHIS1*(sin(X1)-X1*cos(X1)-.5*X1+...

.25*sin(2*X1))/(W1^3);
Q1(3,1)=Q1(1,3);
Q1(1,4)=PHIS1*(cos(X1)+X1*sin(X1)-.5*sin(X1)*...

sin(X1)-1)/(W1*W1);
Q1(4,1)=Q1(1,4);
Q1(2,2)=PHIS1*(1.5*X1-2*sin(X1)+.25*sin(2*X1))/(W1^3);
Q1(2,3)=PHIS1*(1-cos(X1)-.5*sin(X1)*sin(X1))/(W1*W1);
Q1(3,2)=Q1(2,3);
Q1(2,4)=PHIS1*(sin(X1)-.5*X1-.25*sin(2*X1))/W1;
Q1(4,2)=Q1(2,4);
Q1(3,3)=PHIS1*(.5*X1-.25*sin(2*X1))/W1;
Q1(3,4)=.5*PHIS1*sin(X1)*sin(X1);
Q1(4,3)=Q1(3,4);
Q1(4,4)=W1*PHIS1*(.5*X1+.25*sin(2*X1));

Q2(1,1)=PHIS2*(.333*X2^3-2*sin(X2)+2*X2*cos(X2)...
+.5*X2-.25*sin(2*X2))/(W2^5);
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Q2(1,2)=PHIS2*(.5*X2*X2-X2*sin(X2)+.5*sin(X2)...
*sin(X2))/(W2^4);

Q2(2,1)=Q2(1,2);
Q2(1,3)=PHIS2*(sin(X2)-X2*cos(X2)-.5*X2+.25*...

sin(2*X2))/(W2^3);
Q2(3,1)=Q2(1,3);
Q2(1,4)=PHIS2*(cos(X2)+X2*sin(X2)-.5*sin(X2)*...

sin(X2)-1)/(W2*W2);
Q2(4,1)=Q2(1,4);
Q2(2,2)=PHIS2*(1.5*X2-2*sin(X2)+.25*sin(2*X2))/(W2^3);
Q2(2,3)=PHIS2*(1-cos(X2)-.5*sin(X2)*sin(X2))/(W2*W2);
Q2(3,2)=Q2(2,3);
Q2(2,4)=PHIS2*(sin(X2)-.5*X2-.25*sin(2*X2))/W2;
Q2(4,2)=Q2(2,4);
Q2(3,3)=PHIS2*(.5*X2-.25*sin(2*X2))/W2;
Q2(3,4)=.5*PHIS2*sin(X2)*sin(X2);
Q2(4,3)=Q2(3,4);
Q2(4,4)=W2*PHIS2*(.5*X2+.25*sin(2*X2));

Q3(1,1)=PHIS3*(.333*X3^3-2*sin(X3)+2*X3*cos(X3)+...
.5*X3-.25*sin(2*X3))/(W3^5);

Q3(1,2)=PHIS3*(.5*X3*X3-X3*sin(X3)+.5*sin(X3)*...
sin(X3))/(W3^4);

Q3(2,1)=Q3(1,2);
Q3(1,3)=PHIS3*(sin(X3)-X3*cos(X3)-.5*X3+.25*...

sin(2*X3))/(W3^3);
Q3(3,1)=Q3(1,3);
Q3(1,4)=PHIS3*(cos(X3)+X3*sin(X3)-.5*sin(X3)*...

sin(X3)-1)/(W3*W3);
Q3(4,1)=Q3(1,4);
Q3(2,2)=PHIS3*(1.5*X3-2*sin(X3)+.25*sin(2*X3))/(W3^3);
Q3(2,3)=PHIS3*(1-cos(X3)-.5*sin(X3)*sin(X3))/(W3*W3);
Q3(3,2)=Q3(2,3);
Q3(2,4)=PHIS3*(sin(X3)-.5*X3-.25*sin(2*X3))/W3;
Q3(4,2)=Q3(2,4);
Q3(3,3)=PHIS3*(.5*X3-.25*sin(2*X3))/W3;
Q3(3,4)=.5*PHIS3*sin(X3)*sin(X3);
Q3(4,3)=Q3(3,4);
Q3(4,4)=W3*PHIS3*(.5*X3+.25*sin(2*X3));

P1(1,1)=SIGN2;
P1(2,2)=(VM*HEDEGFIL/57.3)^2;
P1(3,3)=XNT*XNT;
P1(4,4)=W1*W1*XNT*XNT;

P2(1,1)=SIGN2;
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P2(2,2)=(VM*HEDEGFIL/57.3)^2;
P2(3,3)=XNT*XNT;
P2(4,4)=W2*W2*XNT*XNT;
P3(1,1)=SIGN2;
P3(2,2)=(VM*HEDEGFIL/57.3)^2;
P3(3,3)=XNT*XNT;
P3(4,4)=W3*W3*XNT*XNT;
HMAT=[1 0 0 0];
HT=HMAT’;
PHIT1=PHI1’;
PHIT2=PHI2’;
PHIT3=PHI3’;
T=0.;
H=.001;
S=0.;
XNC=0.;
XNL=0.;
XLAM=Y/RTM;
YTDD=XNTREAL*sin(WREAL*T);
YTDDD=XNTREAL*WREAL*cos(WREAL*T);

YH1=0.;
YDH1=0.;
YTDDH1=0.;
YTDDDH1=0.;

YH2=0.;
YDH2=0.;
YTDDH2=0.;
YTDDDH2=0.;

YH3=0.;
YDH3=0.;
YTDDH3=0.;
YTDDDH3=0.;

PROB1=.333;
PROB2=.333;
PROB3=.333;
while T,=(TF-.0001)

S=S+H;
YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
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while STEP ,=1
if FLAG==1

STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;

end
TGO=TF-T+.000001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
YTDD=XNTREAL*sin(WREAL*T);
XNLD=(XNC-XNL)/TAU;
YDD=YTDD-XNL;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
if S.=(TS-.00001)

S=0.;
TGO=TF-T+.000001;
RTM=VC*TGO;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
PHIP1=PHI1*P1;
PHIPPHIT1=PHIP1*PHIT1;
M1=PHIPPHIT1+Q1;
HM1=HMAT*M1;
HMHT1=HM1*HT;
HMHTR1=HMHT1(1,1)+SIGN2;
HMHTRINV1(1,1)=1./HMHTR1;
MHT1=M1*HT;
GAIN1=MHT1*HMHTRINV1;
KH1=GAIN1*HMAT;
IKH1=IDNP-KH1;
P1=IKH1*M1;

PHIP2=PHI2*P2;
PHIPPHIT2=PHIP2*PHIT2;
M2=PHIPPHIT2+Q2;
HM2=HMAT*M2;
HMHT2=HM2*HT;
HMHTR2=HMHT2(1,1)+SIGN2;
HMHTRINV2(1,1)=1./HMHTR2;
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MHT2=M2*HT;
GAIN2=MHT2*HMHTRINV2;
KH2=GAIN2*HMAT;
IKH2=IDNP-KH2;
P2=IKH2*M2;

PHIP3=PHI3*P3;
PHIPPHIT3=PHIP3*PHIT3;
M3=PHIPPHIT3+Q3;
HM3=HMAT*M3;
HMHT3=HM3*HT;
HMHTR3=HMHT3(1,1)+SIGN2;
HMHTRINV3(1,1)=1./HMHTR3;
MHT3=M3*HT;
GAIN3=MHT3*HMHTRINV3;
KH3=GAIN3*HMAT;
IKH3=IDNP-KH3;
P3=IKH3*M3;
CPZ1=HMHTR1;
CPZ2=HMHTR2;
CPZ3=HMHTR3;

YTDD=XNTREAL*sin(WREAL*T);
YTDDD=XNTREAL*WREAL*cos(WREAL*T);
XLAMNOISE=SIGNOISE*randn;
YSTAR=RTM*(XLAM+XLAMNOISE);

RES1=YSTAR-YH1-TS*YDH1-(1-cos(X1))*YTDDH1/...
(W1*W1)-(X1-sin(X1))*YTDDDH1/(W1*W1*W1)...
+.5*TS*TS*XNL;

YH1=YH1+TS*YDH1+(1-cos(X1))*YTDDH1/(W1*W1)+...
(X1-sin(X1))*YTDDDH1/(W1*W1*W1)+GAIN1(1,1)*RES1-...
.5*TS*TS*XNL;

YDH1=YDH1+sin(X1)*YTDDH1/W1+(1-cos(X1))*YTDDDH1/(W1*W1)...
+GAIN1(2,1)*RES1-TS*XNL;

YTDDHNEW1=cos(X1)*YTDDH1+sin(X1)*YTDDDH1/W1+...
GAIN1(3,1)*RES1;

YTDDDH1=-W1*sin(X1)*YTDDH1+cos(X1)*YTDDDH1+GAIN1(4,1)*RES1;
YTDDH1=YTDDHNEW1;

RES2=YSTAR-YH2-TS*YDH2-(1-cos(X2))*YTDDH2/(W2*W2)-...
(X2-sin(X2))*YTDDDH2/(W2*W2*W2)+.5*TS*TS*XNL;

YH2=YH2+TS*YDH2+(1-cos(X2))*YTDDH2/(W2*W2)+...
(X2-sin(X2))*YTDDDH2/(W2*W2*W2)+...
GAIN2(1,1)*RES2-.5*TS*TS*XNL;

YDH2=YDH2+sin(X2)*YTDDH2/W2+(1-cos(X2))*...
YTDDDH2/(W2*W2)+GAIN2(2,1)*RES2-TS*XNL;
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YTDDHNEW2=cos(X2)*YTDDH2+sin(X2)*YTDDDH2/W2+...
GAIN2(3,1)*RES2;

YTDDDH2=-W2*sin(X2)*YTDDH2+cos(X2)*YTDDDH2...
+GAIN2(4,1)*RES2;

YTDDH2=YTDDHNEW2;

RES3=YSTAR-YH3-TS*YDH3-(1-cos(X3))*YTDDH3/...
(W3*W3)-(X3-sin(X3))*YTDDDH3/(W3*W3*W3)...
+.5*TS*TS*XNL;

YH3=YH3+TS*YDH3+(1-cos(X3))*YTDDH3/(W3*W3)+...
(X3-sin(X3))*YTDDDH3/(W3*W3*W3)+...
GAIN3(1,1)*RES3-.5*TS*TS*XNL;

YDH3=YDH3+sin(X3)*YTDDH3/W3+(1-cos(X3))*...
YTDDDH3/(W3*W3)+GAIN3(2,1)*RES3-TS*XNL;

YTDDHNEW3=cos(X3)*YTDDH3+sin(X3)*YTDDDH3/W3+...
GAIN3(3,1)*RES3;

YTDDDH3=-W3*sin(X3)*YTDDH3+cos(X3)*YTDDDH3...
+GAIN3(4,1)*RES3;

YTDDH3=YTDDHNEW3;

F1=exp(-.5*RES1*RES1/CPZ1)/sqrt(6.28*CPZ1);
F2=exp(-.5*RES2*RES2/CPZ2)/sqrt(6.28*CPZ2);
F3=exp(-.5*RES3*RES3/CPZ3)/sqrt(6.28*CPZ3);

PROB1=PROB1*F1/(PROB1*F1+PROB2*F2+PROB3*F3);
PROB2=PROB2*F2/(PROB1*F1+PROB2*F2+PROB3*F3);
PROB3=PROB3*F3/(PROB1*F1+PROB2*F2+PROB3*F3);

WHPZ=W1*PROB1+W2*PROB2+W3*PROB3;
YHPZ=YH1*PROB1+YH2*PROB2+YH3*PROB3;
YDHPZ=YDH1*PROB1+YDH2*PROB2+YDH3*PROB3;
YTDDHPZ=YTDDH1*PROB1+YTDDH2*PROB2+YTDDH3*PROB3;
YTDDDHPZ=YTDDDH1*PROB1+YTDDDH2*PROB2+...

YTDDDH3*PROB3;

XS=TGO/TAU;
TOP=6.*XS*XS*(exp(-XS)-1.+XS);
BOT1=2*XS*XS*XS+3.+6.*XS-6.*XS*XS;
BOT2=-12.*XS*exp(-XS)-3.*exp(-2.*XS);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGO*TGO);
C2=XNPP/TGO;
C3=XNPP*(1.-cos(WHPZ*TGO))/(WHPZ*WHPZ*TGO*TGO);
C4=-XNPP*(exp(-XS)+XS-1.)/(XS*XS);
C5=XNPP*(WHPZ*TGO-sin(WHPZ*TGO))/(WHPZ*...

WHPZ*WHPZ*TGO*TGO);
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XNC=C1*YHPZ+C2*YDHPZ+C3*YTDDHPZ+C4*XNL+...
C5*YTDDDHPZ;

if XNC.XLIM
XNC=XLIM;

end
if XNC,-XLIM

XNC=-XLIM;
end
YTDDG=YTDD/32.2;
YTDDHPZG=YTDDHPZ/32.2;
count=count+1;
ArrayT(count)=T;
ArrayPROB1(count)=PROB1;
ArrayPROB2(count)=PROB2;
ArrayPROB3(count)=PROB3;
ArrayWREAL(count)=WREAL;
ArrayWHPZ(count)=WHPZ;
ArrayYTDDG(count)=YTDDG;
ArrayYTDDHPZG(count)=YTDDHPZG;

end
end
output=[ArrayT’,ArrayPROB1’,ArrayPROB2’,ArrayPROB3’,...

ArrayWREAL’,ArrayWHPZ’,ArrayYTDDG’,...
ArrayYTDDHPZG’];

save datfil.txt output /ascii
disp ’simulation finished’
clc
figure
plot(ArrayT,ArrayPROB1,ArrayT,ArrayPROB2,ArrayT,...

ArrayPROB3),grid
xlabel(’Time (s) ’)
ylabel(’Probability’)
axis([0 10 0 1.2])
figure
plot(ArrayT,ArrayWREAL,ArrayT,ArrayWHPZ),grid
xlabel(’Time (s) ’)
ylabel(’Frequency (r/s)’)
axis([0 10 0 4])
figure
plot(ArrayT,ArrayYTDDG,ArrayT,ArrayYTDDHPZG),grid
xlabel(’Time (s) ’)
ylabel(’Acceleration (g)’)
axis([0 10 -6 6])

The nominal case of Listing 27.1 was run, and we can see from Fig. 27.7 that
after 2 s the algorithm figures out that the correct filter is most likely the filter
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tuned to 2 r/s. After 3.5 s the algorithm is almost certain that the 2 r/s filter is
correct. Figure 27.8 shows that although it takes about 3.5 s to be absolutely
certain which filter is correct, the interim estimates of the target weave frequency
are quite close to the actual target weave frequency for the entire flight. Figure 27.9
shows that combining the state estimates of the three filters in a weighted manner
yields excellent estimates of the target acceleration after only 2 s.

Listing 27.1 was modified to operate in the Monte Carlo mode. In addition, the
flight time was varied from 0.5 to 10 s in steps of 0.5 s. For each flight time 50 runs
were made to calculate the rms miss distance. We can see from Fig. 27.10 that the

Fig. 27.8 Estimated target weave frequency is always quite close to actual target
weave frequency.

Fig. 27.7 Fixed MMAE approach identifies correct filter after 3 s.
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three-filter bank, which uses filter frequencies of 1, 2, and 4 r/s, yields rms miss
distances that are usually less than 5 ft. Superimposed on Fig. 27.10 are the rms
miss distance results for the mismatched four-state linear weave Kalman filters.
The rms miss distances for the mismatched filters are usually several times
larger than the filter bank results. Clearly the fixed multiple model or MMAE
approach can yield significantly improved performance.

Miss-distance results can be further improved if there is less uncertainty in the
target weave frequency (that is, more filters in the filter bank). Figure 27.11 shows

Fig. 27.10 Fixed MMAE approach yields improved performance when target weave
frequency is unknown.

Fig. 27.9 Target acceleration estimate excellent after 3 s.
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that if the filter bank frequencies are 1, 2, and 3 r/s, respectively, the rms miss-
distance performance improves slightly because at most we have a 1-r/s error
in knowledge of the target weave frequency rather than 2 r/s as was the case in
Fig. 27.10.

Figure 27.12 compares the optimal performance of the four-state linear weave
Kalman filter (that is, when filter knows actual target weave frequency is 2 r/s),
and the fixed multiple model results. Although there is room for improvement,
we can see that the three-filter bank results are approaching the near-optimal

Fig. 27.12 Three-filter bank fixed MMAE approach results yield near-optimal performance.

Fig. 27.11 Fixed MMAE performance is improved slightly when there is less uncertainty in
actual target weave frequency.
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results when at most there is a 1-r/s error in knowledge of the target
weave frequency.

In the preceding cases it was assumed that the missile acceleration limit was
10 g. Another case was run in which the missile acceleration limit was removed.
The performance of the single tuned Kalman filter should improve for flight
times of less than 2 s. Figure 27.13 presents the comparison between the
optimal performance of the single tuned Kalman filter and the filter bank
approach. We can see that rms miss-distance results of the filter bank get even
closer to the optimal single tuned filter results when the missile acceleration

Fig. 27.13 Comparison of optimal weave Kalman filter and three filter-fixed MMAE
approach when acceleration limit is removed.

Fig. 27.14 Target weave frequency of filter closest to truth is selected.
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limit is removed. This means that filter bank approach is yielding near optimal
performance.

So far we have assumed that one of the filters in the filter bank is tuned to the
actual target weave frequency. Actually this is a requirement for the fixed MMAE
approach to work best. Let us see what happens when all three filters are tuned to
the wrong frequency. A case was run where the actual target weave frequency was
2 r/s, but the three filters in the filter bank were tuned to 1, 2.5, and 3 r/s, respect-
ively. We can see from Fig. 27.14 that the filter estimate closest to the truth is
selected with the fixed MMAE approach. Figure 27.15 indicates that although
we do not know the truth, the estimate of target acceleration is excellent after 2 s.

SUMMARY

It has been demonstrated in this chapter that a bank of linear four-state weave
Kalman filters can be used for purposes of estimating the target weave frequency
using the fixed MMAE technique. This filter bank approach makes use of each
filter’s likelihood function and Bayes’ rule. It is shown that combining filter
outputs in a probabilistic sense yields excellent estimates of the target weave fre-
quency and yields small rms miss if the seeker measurement noise can be kept to
the 0.1-mr level when the closing velocity is 9000 ft/s.
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CHAPTER 28

Engagement Simulations in
Three Dimensions

INTRODUCTION

So far all of the engagement simulations presented in this book have either been
in one or two dimensions. This was done to make it easier for the reader to readily
understand all of the concepts presented in the text. In this chapter we shall
provide several examples on how to convert important elements of engagement
simulation code to three dimensions in both the tactical and strategic worlds.
Complete three-dimensional tactical and strategic engagement simulations will
be presented to illustrate all important points discussed.

WEAVING TARGETS IN THREE DIMENSIONS

So far all of the guidance laws presented in the text have only been presented in
one dimension. The extension of the guidance laws to three dimensions is quite
straightforward and can most easily be done by making use of the zero effort
miss concept. Recall that the zero effort miss is simply the miss distance that
would result if the target continued to do what it is currently doing and the
interceptor issued no further acceleration commands. We have previously
demonstrated that all of the guidance laws presented in this text can be expressed
in terms of the zero effort miss. The resultant guidance command is equal to the
effective navigation ratio times the zero effort miss perpendicular to the line of
sight divided by the square of time to go until intercept. The only difference
between all of the guidance laws presented in this text is the way in which
the zero effort miss is computed. In three dimensions we can define the relative
position and velocity components between the missile and target as

RTM1 ¼ xT � xM
RTM2 ¼ yT � yM
RTM3 ¼ zT � zM
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VTM1 ¼ _xT � _xM
VTM2 ¼ _yT � _yM
VTM3 ¼ _zT � _zM

Let us start with the simplest guidance law, proportional navigation. For pro-
portional navigation the components of the zero effort miss in three dimensions
are simply

ZEM1 ¼ RTM1 þ VTM1tgo
ZEM2 ¼ RTM2 þ VTM2tgo
ZEM3 ¼ RTM3 þ VTM3tgo

The weave guidance law on the other hand has a more complex expression for
the zero effort miss that we shall deal with later in this section. As was mentioned
earlier, for guidance purposes we are only interested in the component of the zero
effort miss that is perpendicular to the line of sight. To find the component of
the zero effort miss that is perpendicular to the line of sight, we must first find
the component of the zero effort miss that is parallel to the line of sight. If the
zero-effort-miss vector (ZEM) is defined as

ZEM ¼ ZEM1iþ ZEM2jþ ZEM3k

then a unit vector along the line of sight can be expressed as

1RTM ¼ RTM1iþ RTM2jþ RTM3k
RTM

where the relative range between the missile and target is simply

RTM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
TM1 þ R2

TM2 þ R2
TM3

q
The vector parallel to the line of sight has a magnitude equal to the dot

product of the two vectors (zero effort miss and line of sight) and is along the
same direction as the unit line-of-sight vector. Therefore the zero-effort-miss
vector parallel to the line of sight is given by

ZEMPAR ¼ ZEMDOTRTM
RTM1iþ RTM2jþ RTM3k

RTM

� �

where the quantity ZEMDOTRTM can be computed as

ZEMDOTRTM ¼ZEM1RTM1 þ ZEM2RTM2 þ ZEM3RTM3

RTM
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The zero-effort-miss vector perpendicular to the line-of-sight ZEMPER is
simply the vector difference between the zero-effort-miss vector ZEM and the
zero effort miss parallel to the line-of-sight ZEMPAR or

ZEMPER ¼ ZEM� ZEMPAR

Therefore we can say that

ZEMPER ¼ ZEMPER1iþ ZEMPER2jþ ZEMPER3k

where the components of the zero effort miss perpendicular to the line of sight can
be computed as

ZEMPER1 ¼ ZEM1 � ZEMDOTRTM � RTM1

RTM

ZEMPER2 ¼ ZEM2 � ZEMDOTRTM � RTM2

RTM

ZEMPER3 ¼ ZEM3 � ZEMDOTRTM � RTM3

RTM

As was mentioned earlier, the desired interceptor guidance commands are
proportional to the zero effort miss perpendicular to the line of sight and inversely
proportional to the square of time to go. Therefore the individual acceleration
components of the guidance command are given by

aM1 ¼ N 0ZEMPER1

t2go

aM2 ¼ N 0ZEMPER2

t2go

aM3 ¼ N 0ZEMPER3

t2go

where the effective navigation ratio N0 is a constant set equal to three for
proportional navigation.

The compensated weave guidance law, which is optimal in the sense that it
requires the least acceleration against target weave maneuvers in the presence
of a single-time-constant missile flight control system, also issues guidance com-
mands proportional to the zero effort miss and inversely proportional to the
square of time to go until intercept. In one dimension the compensated weave
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guidance law was shown in Chapter 20 to be

nc ¼ N 0

t2go
y þ _ytgo þ

1� cosvtgo
v2

� �
€yT

�

þ vtgo � sinvtgo
v3

� �
y
���
T � nLT

2ðe�x þ x � 1Þ
�

where x is given by

x ¼ tgo
T

In the preceding expressions tgo is the time to go until intercept, and the
bracketed quantity is the zero effort miss. The effective navigation ratio for the
compensated weave guidance law is not a constant but is given by

N 0 ¼ 6x2ðe�x � 1þ xÞ
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

We can see that the compensated weave guidance law consists of five terms:
the first two terms are related to the line-of-sight rate, the third term is pro-
portional to the target acceleration, the fourth term is proportional to target
jerk, and the fifth term is proportional to the achieved missile acceleration. The
first two terms in the guidance law are proportional navigation, the third and
fourth terms in the guidance law compensate for the sinusoidal motion of the
target, and the fifth term compensates for the flight-control-system dynamics.
Details of the derivation of the compensated weave guidance law can be found
in Chapter 20.

Thus the zero effort miss for the compensated weave guidance law in three
dimensions can be expressed as

ZEM1 ¼ RTM1 þ VTM1tgo þ 1� cosvtgo
v2

� �
aT1

þ vtgo � sinvtgo
v3

� �
_aT1 � T2ðe�x þ x � 1ÞaM1

ZEM2 ¼ RTM2 þ VTM2tgo þ
1� cosvtgo

v2

� �
aT2

þ vtgo � sinvtgo
v3

� �
_aT2 � T2ðe�x þ x � 1ÞaM2
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ZEM3 ¼ RTM3 þ VTM3tgo þ 1� cosvtgo
v2

� �
aT3

þ vtgo � sinvtgo
v3

� �
_aT3 � T2ðe�x þ x � 1ÞaM3

where aM1, aM2, and aM3 are the three components of the achieved missile accel-
erations. The target acceleration components are represented by aT1, aT2, and aT3,
whereas the components of target jerk are given by _aT1, _aT2, and _aT3. The
implementation of the compensated weave guidance law in three dimensions is
the same as the implementation of proportional navigation. Therefore the only
difference between the two guidance laws is in the expressions for the zero
effort miss.

Now let us consider a numerical example to test our implementation of gui-
dance laws in three dimensions. A weaving or spiraling target is chosen as the
threat. The acceleration equations of a three-dimensional spiraling target are
given by

aT1 ¼ aT sinvt

aT2 ¼ aT cosvt

aT3 ¼ 0

where the subscript 1 indicates the downrange direction, the subscript 2 denotes
the altitude direction, and the subscript 3 denotes the cross-range direction. Thus
in this example the target is traveling in the cross-range direction and spiraling in
the downrange and altitude direction. Because the compensated weave guidance
law requires target jerk, we can calculate it exactly by differentiating the preceding
equations. The resultant components of the target jerk are given by

_aT1 ¼ aTv cosvt

_aT2 ¼ �aTv sinvt

_aT3 ¼ 0

A three-dimensional tactical engagement simulation, utilizing the preceding
equations, appears in Listing 28.1. From Listing 28.1 we can see that the target
is traveling at 1000 ft/s and is spiraling at 3 r/s with an acceleration level of
6 g. The missile is traveling at 3000 ft/s and has an infinite acceleration limit.
There is a single-lag time constant of 1 s representing the dynamics of the flight
control system in each of the three channels of the guidance system. From
Listing 28.1 we can see that if QPN is set to 1 the missile uses proportional naviga-
tion for guidance, and if QPN is set to 0 the missile uses the compensated weave
guidance law. The program is set up to run a number of cases—each of which
has a different initial missile-target separation. Each separation corresponds to
a different flight time. In this way we can generate adjoint-type curves using
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the brute-force approach as we did in Chapter 3 for the two-dimensional non-
linear engagement simulation. At the end of each flight, the components of the
miss, along with the total miss, are printed out as a function of the engagement
time. The only source of error in the simulation is the spiraling target maneuver.

LISTING 28.1 THREE-DIMENSIONAL TACTICAL ENGAGEMENT SIMULATION WITH
SPIRALING TARGET

clear
count=0;
QPN=1;
TAU=1.;
W=3.;
AT=193.2;
VT=1000.;
VM=3000.;
XNP=3.;
XNCLIM=9999999999.;
for RT3IC=40000:-500:500

RM1=0.;
RM2=10000.;
RM3=0.;
RT1=0.;
RT2=10000.;
RT3=RT3IC;
VT1=-AT/W;
VT2=0.;
VT3=-VT;
T=0.;
S=0.;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM3=RT3-RM3;
RTM=sqrt(RTM1^2+RTM2^2+RTM3^2);
VM1=0.;
VM2=0.;
VM3=VM;
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VTM3=VT3-VM3;
VC=-(RTM1*VTM1+RTM2*VTM2+RTM3*VTM3)/RTM;
AM1=0.;
AM2=0.;
AM3=0.;
while VC.=0
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if RTM,1000
H=.0002;
else
H=.01;
end
RT1OLD=RT1;
RT2OLD=RT2;
RT3OLD=RT3;
RM1OLD=RM1;
RM2OLD=RM2;
RM3OLD=RM3;
VM1OLD=VM1;
VM2OLD=VM2;
VM3OLD=VM3;
VT1OLD=VT1;
VT2OLD=VT2;
VT3OLD=VT3;
AM1OLD=AM1;
AM2OLD=AM2;
AM3OLD=AM3;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
RT3=RT3+H*VT3;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
RM3=RM3+H*VM3;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
VM3=VM3+H*AM3;
VT1=VT1+H*AT1;
VT2=VT2+H*AT2;
VT3=VT3+H*AT3;
AM1=AM1+H*AM1D;
AM2=AM2+H*AM2D;
AM3=AM3+H*AM3D;
T=T+H;

end
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM3=RT3-RM3;
RTM=sqrt(RTM1^2+RTM2^2+RTM3^2);
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VTM1=VT1-VM1;
VTM2=VT2-VM2;
VTM3=VT3-VM3;
VC=-(RTM1*VTM1+RTM2*VTM2+RTM3*VTM3)/RTM;
TGO=RTM/VC;
AT1=AT*sin(W*T);
AT2=AT*cos(W*T);
AT3=0.;
if QPN==1

ZEM1=RTM1+VTM1*TGO;
ZEM2=RTM2+VTM2*TGO;
ZEM3=RTM3+VTM3*TGO;

else
AT1D=AT*W*cos(W*T);
AT2D=-AT*W*sin(W*T);
AT3D=0.;
X=TGO/TAU;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNP=TOP/(.0001+BOT1+BOT2);
ZEM1=RTM1+VTM1*TGO+AT1*(1.-cos(W*TGO))/W^2+. . .

(AT1D*(W*TGO-sin(W*TGO))/W^3)-. . .
AM1*TAU*TAU*(exp(-X)+X-1.);

ZEM2=RTM2+VTM2*TGO+AT2*(1.-cos(W*TGO))/W^2+. . .
(AT2D*(W*TGO-sin(W*TGO))/W^3)-. . .
AM2*TAU*TAU*(exp(-X)+X-1.);

ZEM3=RTM3+VTM3*TGO+AT3*(1.-cos(W*TGO))/W^2+. . .
(AT3D*(W*TGO-sin(W*TGO))/W^3)-. . .
AM3*TAU*TAU*(exp(-X)+X-1.);

end
ZEMDOTRTM=(ZEM1*RTM1+ZEM2*RTM2+ZEM3*RTM3)/RTM;
ZEMPER1=ZEM1-ZEMDOTRTM*RTM1/RTM;
ZEMPER2=ZEM2-ZEMDOTRTM*RTM2/RTM;
ZEMPER3=ZEM3-ZEMDOTRTM*RTM3/RTM;
AM1P=XNP*ZEMPER1/(TGO*TGO);
AM2P=XNP*ZEMPER2/(TGO*TGO);
AM3P=XNP*ZEMPER3/(TGO*TGO);
AM1D=(AM1P-AM1)/TAU;
AM2D=(AM2P-AM2)/TAU;
AM3D=(AM3P-AM3)/TAU;
if AM1.XNCLIM

AM1=XNCLIM;
end
if AM1,-XNCLIM

AM1=-XNCLIM;
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end
if AM2.XNCLIM

AM2=XNCLIM;
end
if AM2,-XNCLIM

AM2=-XNCLIM;
end
if AM3.XNCLIM

AM3=XNCLIM;
end
if AM3,-XNCLIM

AM3=-XNCLIM;
end
XNCG=sqrt(AM1^2+AM2^2+AM3^2)/32.2;
FLAG=1;

end
FLAG=0;
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
RT3=.5*(RT3OLD+RT3+H*VT3);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
RM3=.5*(RM3OLD+RM3+H*VM3);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
VM3=.5*(VM3OLD+VM3+H*AM3);
VT1=.5*(VT1OLD+VT1+H*AT1);
VT2=.5*(VT2OLD+VT2+H*AT2);
VT3=.5*(VT3OLD+VT3+H*AT3);
AM1=.5*(AM1OLD+AM1+H*AM1D);
AM2=.5*(AM2OLD+AM2+H*AM2D);
AM3=.5*(AM3OLD+AM3+H*AM3D);
S=S+H;
if S.=.09999

S=0.;
RT1K=RT1/1000.;
RT2K=RT2/1000.;
RT3K=RT3/1000.;
RM1K=RM1/1000.;
RM2K=RM2/1000.;
RM3K=RM3/1000.;

end
end
count=count+1;
ArrayT(count)=T;
ArrayRTM1(count)=RTM1;
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ArrayRTM2(count)=RTM2;
ArrayRTM3(count)=RTM3;
ArrayRTM(count)=RTM;

end
output=[ArrayT’,ArrayRTM1’,ArrayRTM2’,ArrayRTM3’,ArrayRTM’];
save datfil.txt output /ascii
disp ’simulation finished’
clc
figure
plot(ArrayT,ArrayRTM1),grid
xlabel(’Time (s) ’)
ylabel(’RTM1 (ft)’)
axis([0 10 -30 30])
figure
plot(ArrayT,ArrayRTM2),grid
xlabel(’Time (s) ’)
ylabel(’RTM2 (ft)’)
axis([0 10 -30 30])
figure
plot(ArrayT,ArrayRTM3),grid
xlabel(’Time (s) ’)
ylabel(’RTM3 (ft)’)
axis([0 10 -30 30])
figure
plot(ArrayT,ArrayRTM),grid
xlabel(’Time (s) ’)
ylabel(’RTM (ft)’)
axis([0 10 0 30])

The nominal case of Listing 28.1 was run using the proportional navigation
guidance law. The three components of the miss vs flight time are shown in
Figs. 28.1, 28.2, and 28.3. We can see that the miss oscillates with flight time in
Figs. 28.1 and 28.2, and the amplitude of the miss agrees with the single plane
results of Fig. 20.7. This should not be surprising because identical inputs were
used. We can see from Fig. 28.3 that the miss is virtually zero in the cross-range
direction because there is no target maneuver in that direction. However we can
see from Fig. 28.4 that the total miss is virtually a constant vs flight time after an
initial transient period. This should not be surprising because the target weave was
a sine wave in one direction and a cosine wave in the other direction, which yields
circular motion. Apparently the total miss is also along a circle in the downrange
and altitude direction. Therefore we have to be careful when looking at single
plane results for a weaving target. One gets the impression from single plane
results that the miss can be large or small depending on the flight time. In actuality
the peak miss distance for the single plane results will define the radius of a circle
or the three-dimensional miss distance for the weaving target.
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Listing 28.1 was rerun using the compensated weave guidance law (QPN ¼ 0).
Figure 28.5 displays the total miss vs flight time for the same case of the 3-r/s
spiraling 6-g target and the flight-control-system time constant of 1 s. We can
see that with the compensated weave guidance law the miss is reduced from
nearly 20 ft to virtually zero when we move to three dimensions, as predicted
by theory and the planar results.

Fig. 28.1 Downrange component of miss oscillate at same frequency as 3-r/s weaving
target maneuver.

Fig. 28.2 Altitude component of miss oscillates at same frequency as 3-r/s weaving
target maneuver.
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BALLISTIC TARGET TRAJECTORY GENERATOR IN THREE DIMENSIONS

Let us now consider a three-dimensional example of a ballistic target trajectory.
For simplicity let us consider an example in which a ballistic target is impulsively
launched from Monte Carlo to Las Vegas. Because we are neglecting the boost
phase of the target, only gravity acts on the ballistic target. As was shown in

Fig. 28.3 Cross-range component of miss is virtually zero because target does not
maneuver in that channel.

Fig. 28.4 Total three-dimensional miss caused by 3-r/s weaving target approaches a
constant in steady state.
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Chapter 11, a convenient coordinate system for the simulation of our strategic
engagements is an Earth-centered Cartesian coordinate system as shown in
Fig. 28.6. Because this coordinate system is fixed in inertial space (even though
the Earth rotates), all missile acceleration differential equations can be integrated
directly to yield velocity and position, without having to worry about Coriolis
effects.

Because only gravity acts on the ballistic missile of our example, the three
differential equations describing the acceleration of a target in a gravity field
can be derived from Newton’s law of universal gravitation in the Earth-centered
Cartesian coordinate system as [2]

€x ¼ �gm x

ðx2 þ y2 þ z2Þ1:5

€y ¼ �gm y

ðx2 þ y2 þ z2Þ1:5

€z ¼ �gm z

ðx2 þ y2 þ z2Þ1:5

where xT, yT, and zT are component dis-
tances to the ballistic missile measured
from the center of the Earth and gm is the

Fig. 28.5 Compensated weave guidance also dramatically reduces the total miss in
three dimensions.

Fig. 28.6 Earth-centered coordinate system.

ENGAGEMENT SIMULATIONS IN THREE DIMENSIONS 727



gravitational parameter with value

gm ¼ 1:4077 � 1016 ft3=s2

in the English system of units.
We would like to relate our inertial Earth-centered system (also known as the

ECI coordinate system), where we will integrate the target equations of motion to
a system in which we can draw maps (with longitude and latitude) using tools
such as the Mapping Toolbox in MATLAB. It is convenient to use an Earth coor-
dinate system for the drawing of maps (also known as the Earth-centered Earth-
fixed or ECEF coordinate system). Our Earth coordinate system (xe, ye, ze) is
related to the inertial coordinate system (x, y, z) through the rotation of the
Earth v as shown in Fig. 28.7 [2]. In Fig. 28.7 the Earth rotates at v rad/s, and
t is time.

By inspection of Fig. 28.7, we can see that we can convert ECI coordinates to
ECEF coordinates by using the trigonometric relationships

xe ¼ x cosvt þ y sinvt

ye ¼ �x sinvt þ y cosvt

ze ¼ z

Fig. 28.7 Relationship between ECI and ECEF coordinate system.
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Because the Earth rotates once per day, Earth rotation is given approx-
imately by

v 	 3608
1 day

¼ 6:28 rad
86,400 s

¼ 7:27 � 10�5 rad=s

Therefore an object can be expressed either in ECI or ECEF coordinates. An
object that is in ECEF coordinates can also be converted to longitude, latitude, and
altitude according to Fig. 28.8 [1].

If an object is in space, the distance from the center of the Earth to the object is
simply the radius of the Earth plus the altitude of the object or

r ¼ aþ alt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e þ y2e þ z2e

q

Longitude and latitude can be derived from Fig. 28.8 as

long ¼ tan�1 ye
xe

� �

lat ¼ tan�1 zeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e þ y2e

p
 !

Fig. 28.8 Relationship between ECEF and mapping coordinates.
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In addition, if an object is expressed in mapping coordinates, we can convert
longitude and latitude to ECEF coordinates according to

xe ¼ r cosðlatÞ cosðlongÞ
ye ¼ r cosðlatÞ sinðlongÞ
ze ¼ r sinðlatÞ

We now have enough information to simulate an impulsively launched bal-
listic missile. All that we are missing is the three-dimensional Lambert routine to
provide the initial velocity of the ballistic missile. The new three-dimensional
Lambert routine is shown in Listing 28.2. We can see that it is a straightforward
extension of the already derived two-dimensional efficient Lambert routine in
Chapter 13. Reference 3 is another good source for understanding the code.
In Listing 28.2 we enter the longitude and latitude of the target launch point
(Monte Carlo) and its final destination (Las Vegas). It is specified that it will
take the ballistic missile 2000 s to reach its destination. The missile starting
and ending points are converted to ECI coordinates. We can see from the
listing that the missile’s destination must be modified in ECI coordinates
because the Earth rotates significantly in 2000 s. As was already mentioned, all
integrations are carried out in ECI coordinates. The inertial missile trajectory
outputs are first converted to ECEF coordinates and then to longitude and lati-
tude. In addition, the downrange (from missile launch point) and altitude of the
missile are computed. The longitude and latitude outputs of the missile can be
supplied to the MATLAB Mapping Toolbox in order to obtain geographical
context.

LISTING 28.2 MATLAB BALLISTIC MISSILE TRAJECTORY GENERATOR

count=0;
SWITCH1=0;
XLONGTDEG=7.42;
XLATTDEG=43.75;
XLATFDEG=36.175;
XLONGFDEG=-115.136;
TF=2000.;
A=2.0926E7;
GM=1.4077E16;
W=-6.283185/86400.;
XLONGF=XLONGFDEG/57.3;
XLATF=XLATFDEG/57.3;
XLONGT=XLONGTDEG/57.3;
XLATT=XLATTDEG/57.3;
XLONGF=XLONGF-W*TF;
XF=A*cos(XLATF)*cos(XLONGF);
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YF=A*cos(XLATF)*sin(XLONGF);
ZF=A*sin(XLATF);
XT=A*cos(XLATT)*cos(XLONGT);
YT=A*cos(XLATT)*sin(XLONGT);
ZT=A*sin(XLATT);
[VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TF,XF,YF,ZF,SWITCH1);
XTD=VRX;
YTD=VRY;
ZTD=VRZ;
XTINIT=XT;
YTINIT=YT;
ZTINIT=ZT;
T=0.;
H=.001;
S=0.;
ALTNM=(sqrt(XT^2+YT^2+ZT^2)-A)/6076.;
while ALTNM.-1

XTOLD=XT;
YTOLD=YT;
ZTOLD=ZT;
XTDOLD=XTD;
YTDOLD=YTD;
ZTDOLD=ZTD;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

XT=XT+H*XTD;
YT=YT+H*YTD;
ZT=ZT+H*ZTD;
XTD=XTD+H*XTDD;
YTD=YTD+H*YTDD;
ZTD=ZTD+H*ZTDD;

T=T+H;
end
TEMPBOTT=(XT^2+YT^2+ZT^2)^1.5;

XTDD=-GM*XT/TEMPBOTT;
YTDD=-GM*YT/TEMPBOTT;
ZTDD=-GM*ZT/TEMPBOTT;
ALTNM=(sqrt(XT^2+YT^2+ZT^2)-A)/6076.;
FLAG=1;

end
FLAG=0;
XT=.5*(XTOLD+XT+H*XTD);
YT=.5*(YTOLD+YT+H*YTD);
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ZT=.5*(ZTOLD+ZT+H*ZTD);
XTD=.5*(XTDOLD+XTD+H*XTDD);
YTD=.5*(YTDOLD+YTD+H*YTDD);
ZTD=.5*(ZTDOLD+ZTD+H*ZTDD);
S=S+H;
if S.=9.9999

S=0.;
XTE=XT*cos(W*T)-YT*sin(W*T);
YTE=XT*sin(W*T)+YT*cos(W*T);
ZTE=ZT;
XLATT= atan2(ZTE, sqrt(XTE^2+YTE^2));
XLATTDEG=57.3*XLATT;
XLONGT= atan2(YTE, XTE);
XLONGTDEG=57.3*XLONGT;
DISTRTNM=distance3d(XTE,YTE,ZTE,XTINIT,YTINIT,ZTINIT);
count=count+1;
ArrayT(count)=T;
ArrayDISTRTNM(count)=DISTRTNM;
ArrayALTNM(count)=ALTNM;
ArrayXLONGTDEG(count)=XLONGTDEG;
ArrayXLATTDEG(count)=XLATTDEG;

end
end
figure
plot(ArrayDISTRTNM,ArrayALTNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
clc
output=[ArrayT’,ArrayDISTRTNM’,ArrayALTNM’];
save datfil.txt output /ascii
output=[ArrayT’,ArrayXLONGTDEG’,ArrayXLATTDEG’];
csvwrite(’trajfil.txt’,output)

disp ’simulation finished’

function DISTKM=distance3d(XT,YT,ZT,XF,YF,ZF)
R=sqrt(XT^2+YT^2+ZT^2);
RF=sqrt(XF^2+YF^2+ZF^2);
A=2.0926E7;
CBETA=(XT*XF+YT*YF+ZT*ZF)/(R*RF);
if CBETA,=1.

BETA=acos(CBETA);
DISTKM=A*BETA/3280.;

else
DISTKM=(XF-XT)/3280.;

end
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function [VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TF,XF,YF,ZF,SWITCH1)
PI=3.1415926535898;
DEG_PER_RAD=57.3;
EARTH_RADIUS=2.0926E7;
GM=1.4077E16;
HALFPI=PI/2.;
FT_PER_KM=3280.;
RAD_PER_SEC=1/57.3;
RF0X=XF-XT;
RF0Y=YF-YT;
RF0Z=ZF-ZT;
R0DOTRF=XT*XF+YT*YF+ZT*ZF;
R0DOTRF0=XT*RF0X+YT*RF0Y+ZT*RF0Z;
R0MAG=sqrt(XT^2+YT^2+ZT^2);
RFMAG=sqrt(XF^2+YF^2+ZF^2);
RF0MAG=sqrt(RF0X^2+RF0Y^2+RF0Z^2);
RATIO=R0MAG/RFMAG;
GMDIVR0=GM/R0MAG;
COS_T=R0DOTRF/(R0MAG*RFMAG);
VNUMER=GMDIVR0*(1.-COS_T);
T_MIN=0.;
if SWITCH1==0

G_MIN=HALFPI-acos(R0DOTRF0/(R0MAG*RF0MAG));
G_MAX=HALFPI;
THETA=acos(COS_T);

else
G_MIN=-HALFPI;
G_MAX=-HALFPI+acos(R0DOTRF0/(R0MAG*RF0MAG));
THETA=2.*PI-acos(COS_T);

end
SIN_T=sin(THETA);
COT_HALFT=1./tan(THETA/2.);
GAMMA=(G_MAX+G_MIN)/2.;
GOLD=G_MIN;
TOLD=0.;
T=0.;
ITERS=1;

S=.5*(R0MAG+RFMAG+RF0MAG);
BL=sqrt(R0MAG*RFMAG)*cos(THETA/2.)/S;
BT=sqrt(8.*GM/(S*S*S))*TF;

while (abs(TF-T).(.00000001*TF))
SIN_G=sin(GAMMA);
COS_G=cos(GAMMA);
TAN_G=SIN_G/COS_G;
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COS_TPLUSG=cos(THETA+GAMMA-2.*PI);
TERM1=(RATIO*COS_G-COS_TPLUSG)*COS_G;
RV0MAG=sqrt(VNUMER/TERM1);
LAMBDA=RV0MAG*RV0MAG/GMDIVR0;
if LAMBDA,1.9999999
TERM0=sqrt(2./LAMBDA-1.);
TERM1=(TAN_G*(1.-COS_T)+(1.-LAMBDA)*SIN_T)/. . .

((2.-LAMBDA)*RATIO);
TERM2=(COS_G+COS_G)/(LAMBDA*TERM0*TERM0*TERM0);
TERM3= atan2(TERM0, (COS_G*COT_HALFT-SIN_G));
T=(R0MAG/(RV0MAG*COS_G))*(TERM1+TERM2*TERM3);

elseif LAMBDA.2.0000001
TERM0=sqrt(1.-2./LAMBDA);
TERM1=(TAN_G*(1.-COS_T)+(1.-LAMBDA)*SIN_T)/. . .

((2.-LAMBDA)*RATIO);
TERM2=COS_G/(LAMBDA*TERM0*TERM0*TERM0);
TERM3=SIN_G-COS_G*COT_HALFT;
TERM3=log((TERM3-TERM0)/(TERM3+TERM0));
T=(R0MAG/(RV0MAG*COS_G))*(TERM1-TERM2*TERM3);

else
TERM0=COS_G*COT_HALFT;
TERM1=TERM0-SIN_G;
TERM0=(3*TERM0*TERM1+1.)/(TERM1*TERM1*TERM1);
T=TERM0*(2.*R0MAG)/(3.*RV0MAG);

end
if T.TF & GAMMA,G_MAX
G_MAX=GAMMA;

end

if T,0. & GAMMA,G_MAX
G_MAX=GAMMA;

end
if T,TF & GAMMA.G_MIN
G_MIN=GAMMA;
T_MIN=T;

end
if (T,0.)
NEXT=(G_MIN+G_MAX)/2.;
GOLD=G_MIN;
TOLD=T_MIN;

else
NEXT=GAMMA+(TF-T)*(GAMMA-GOLD)/(T-TOLD);
if NEXT.=G_MAX
NEXT=(GAMMA+G_MAX)/2.;

elseif NEXT,=G_MIN
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NEXT=(GAMMA+G_MIN)/2.;
end
GOLD=GAMMA;
TOLD=T;

end
GAMMA=NEXT;
ITERS=ITERS+1;

if ITERS.100
break

end
end
if SWITCH1==0

GAMMA=GAMMA;
ANGLE=HALFPI-GAMMA;
SINA=sin(ANGLE);
COSA=cos(ANGLE);
V1X=XT;
V1Y=YT;
V1Z=ZT;
V2X=XF;
V2Y=YF;
V2Z=ZF;
MAG1=sqrt(V1X*V1X+V1Y*V1Y+V1Z*V1Z);
DOTMAG=V1X*V2X+V1Y*V2Y+V1Z*V2Z;
CROSSX=V1Y*V2Z-V1Z*V2Y;
CROSSY=V1Z*V2X-V1X*V2Z;
CROSSZ=V1X*V2Y-V1Y*V2X;
CROSSMAG=sqrt(CROSSX*CROSSX+CROSSY*CROSSY+CROSSZ*CROSSZ);
C2=MAG1*SINA/CROSSMAG;
C1=COSA/MAG1-DOTMAG*C2/(MAG1*MAG1);
RTEMPX=C1*V1X;
RTEMPY=C1*V1Y;
RTEMPZ=C1*V1Z;
VUNITX=C2*V2X;
VUNITY=C2*V2Y;
VUNITZ=C2*V2Z;
VUNITX=VUNITX+RTEMPX;
VUNITY=VUNITY+RTEMPY;
VUNITZ=VUNITZ+RTEMPZ;

else
ANGLE=GAMMA-HALFPI;
SINA=sin(ANGLE);
COSA=cos(ANGLE);
V1X=XT;
V1Y=YT;
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V1Z=ZT;
V2X=XF;
V2Y=YF;
V2Z=ZF;
MAG1=sqrt(V1X*V1X+V1Y*V1Y+V1Z*V1Z);
DOTMAG=V1X*V2X+V1Y*V2Y+V1Z*V2Z;
CROSSX=V1Y*V2Z-V1Z*V2Y
CROSSY=V1Z*V2X-V1X*V2Z;
CROSSZ=V1X*V2Y-V1Y*V2X;
CROSSMAG=sqrt(CROSSX*CROSSX+CROSSY*CROSSY+CROSSZ*CROSSZ);
C2=MAG1*SINA/CROSSMAG;
C1=COSA/MAG1-DOTMAG*C2/(MAG1*MAG1);
RTEMPX=C1*V1X;
RTEMPY=C1*V1Y;
RTEMPZ=C1*V1Z;
VUNITX=C2*V2X;
VUNITY=C2*V2Y;
VUNITZ=C2*V2Z;
VUNITX=VUNITX+RTEMPX;
VUNITY=VUNITY+RTEMPY;
VUNITZ=VUNITZ+RTEMPZ;

end
VRX=RV0MAG*VUNITX;
VRY=RV0MAG*VUNITY;
VRZ=RV0MAG*VUNITZ;

The nominal case of Listing 28.2 was run and Fig. 28.9 presents a planar view
of the actual target trajectory. We can see that the distance from Monte Carlo to
Las Vegas is nearly 5000 n miles. The target apogee is approximately 900 n miles.

INTERCEPT POINT PREDICTION FOR BALLISTIC TARGETS

Soon, in this chapter we shall attempt to write a three-dimensional engagement
simulation for a missile intercepting a ballistic target. To initially aim the
missile, we will have to make a prediction of the intercept point. In other words
we want to know the future location of the target at a desired intercept time.
One way of finding the intercept point is by integrating the ballistic target
equations of motion forward until the desired intercept time. This method cer-
tainly works but can be time consuming—especially if a small integration step
size is used and the desired intercept time is a large number. A much better
method, which is only applicable to ballistic targets (targets that are only influ-
enced by gravity), is to use the numerical solution to Kepler’s problem. With
the Kepler method the initial target states (position and velocity) are known,
and we desire to predict the target states at some given time in the future.
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Many algorithms exist for solving Kepler’s problem, and the one used in this text
was chosen simply because it appeared in the open literature [4] and not because it
is the best. In this section we will not derive the Kepler routine but simply demon-
strate that it works.

Let us consider a ballistic target prediction problem in which the initial con-
ditions of the ballistic target are identical to that of the previous ballistic target
simulation. We desire to predict the location and velocity of the ballistic target
1000 s after target launch. Listing 28.3 directly integrates the target equations of
motion for 1000 s and prints the final states of the target. In addition, at the begin-
ning of Listing 28.3 the target’s initial conditions (converted to km and km/s) are
fed into a Kepler routine to also predict the final states of the target. Quantities
related to the Kepler subroutine are highlighted in bold.

The sample case of Listing 28.3 was run, and comparisons between numerical
integration and the use of the Kepler subroutine are presented in Table 28.1. We
can see that the difference in answers between the two methods is very small. Thus
in the future we shall use the Kepler subroutine for the prediction of the intercept
point of a ballistic target.

Fig. 28.9 Ballistic target trajectory.

TABLE 28.1 COMPARISON IN PREDICTED INTERCEPT POINT BETWEEN DIRECT
INTEGRATION AND KEPLER

Subroutine x, km y, km z, km _x, km/s _y, km/s _z, km/s

Integration 2547.4175 –3583.1082 6758.2423 –3.558504 –3.245617 –0.379447

Kepler 2547.4148 –3583.1074 6758.2384 –3.558509 –3.245615 –0.379455
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LISTING 28.3 COMPARING DIRECT INTEGRATION WITH KEPLER PROPOGATION

% Obtained from output of Listing C28L2
XT=14990432.9744621;
YT=1952093.10305573;
ZT=14469752.1663352;
XTD=996.773566434768;
YTD=-14954.8124604715;
ZTD=17528.1931768263;
TF=1000.;
A=2.0926E7;
GM=1.4077E16;
W=-6.283185/86400.;
T=0.;
H=.001;
S=0.;
T0=0.;
T1=TF;
X0(1)=XT/3280.;
X0(2)=YT/3280.;
X0(3)=ZT/3280.;
X0(4)=XTD/3280.;
X0(5)=YTD/3280.;
X0(6)=ZTD/3280.;
[X1]=KEPLER1(X0,T0,T1);
while T,=TF

XTOLD=XT;
YTOLD=YT;
ZTOLD=ZT;
XTDOLD=XTD;
YTDOLD=YTD;
ZTDOLD=ZTD;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

XT=XT+H*XTD;
YT=YT+H*YTD;
ZT=ZT+H*ZTD;
XTD=XTD+H*XTDD;
YTD=YTD+H*YTDD;
ZTD=ZTD+H*ZTDD;

T=T+H;
end
TEMPBOTT=(XT^2+YT^2+ZT^2)^1.5;
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XTDD=-GM*XT/TEMPBOTT;
YTDD=-GM*YT/TEMPBOTT;
ZTDD=-GM*ZT/TEMPBOTT;
FLAG=1;

end
FLAG=0;
XT=.5*(XTOLD+XT+H*XTD);
YT=.5*(YTOLD+YT+H*YTD);
ZT=.5*(ZTOLD+ZT+H*ZTD);
XTD=.5*(XTDOLD+XTD+H*XTDD);
YTD=.5*(YTDOLD+YTD+H*YTDD);
ZTD=.5*(ZTDOLD+ZTD+H*ZTDD);
S=S+H;
if S.=9.9999

S=0.;
end

end
XTKM=XT/3280.;
YTKM=YT/3280.;
ZTKM=ZT/3280.;
XTDKM=XTD/3280.;
YTDKM=YTD/3280.;
ZTDKM=ZTD/3280.;
ERRX=XTKM-X1(1);
ERRY=YTKM-X1(2);
ERRZ=ZTKM-X1(3);
ERRXD=XTDKM-X1(4);
ERRYD=YTDKM-X1(5);
ERRZD=ZTDKM-X1(6);
XTKM
X1(1)
YTKM
X1(2)
ZTKM
X1(3)
XTDKM
X1(4)
YTDKM
X1(5)
ZTDKM
X1(6)
ERRX
ERRY
ERRZ
ERRXD
ERRYD
ERRZD
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function [X1]=KEPLER1(X0,T0,T1)
GMX=398923.;
REX=6380.;
TLIMIT=1.E-10;
KN=10;
MUQR = 1.;
DT = T1 - T0;
DX=10.;
if (abs(DT) ,TLIMIT)

for I=1:6
X1(I) = X0(I);

end
end

TIME_FACTOR = sqrt(REX^3/GMX);
VEX = REX/TIME_FACTOR;
DT = DT/TIME_FACTOR;
for I=1:3

R0(I) = X0(I)/REX;
V0(I) = X0(I+3)/VEX;

end
R0MAG = sqrt(R0(1)^2 +R0(2)^2 +R0(3)^2);
V0MAG = sqrt(V0(1)^2 +V0(2)^2 +V0(3)^2);
D0 = R0(1)*V0(1) +R0(2)*V0(2) +R0(3)*V0(3);
SIGMA0 = D0/MUQR;
ALP0 = 2./R0MAG - V0MAG*V0MAG;
if ALP0 == 0.

A0 = 1.E30;
else

A0 = 1./ALP0;
end

X = ALP0*DT;
if ALP0 ,= 0.

X = .1*DT/R0MAG;
end
for K=1:KN

if ALP0,0.
Y = ALP0*X*X;

YQR = sqrt(-Y);
CY = (1.-cosh(YQR))/Y;
SY = (sinh(YQR) -YQR)/(YQR^3);

elseif ALP0==0.
Y = 0.;
CY = .5;
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SY = 1./6.;
else
Y = ALP0*X*X;
YQR = sqrt(Y);;
CY = (1.-cos(YQR))/Y;
SY = (YQR -sin(YQR))/(YQR^3);

end
U1 = X*(1.-Y*SY);
U2 = X*X*CY;
U3 = X*X*X*SY;
FX = R0MAG*U1 +SIGMA0*U2 +U3 -DT*MUQR;
DFX = SIGMA0*U1 +(1. -ALP0*R0MAG)*U2 +R0MAG;
DFX2 = SIGMA0*(1. -Y*CY) +(1. -ALP0*R0MAG)*U1;
SDFX = DFX/(abs(DFX));
DX0 = 16.*DFX*DFX;
DX1 = 20.*FX*DFX2;
DX2 = 16.*DFX*DFX - 20.*FX*DFX2;
if DX2 . 0.
DX = 5.*FX/(DFX +SDFX*sqrt(DX2));
else
DX = .5*X;
end
X =X -DX;

end

RMAG =DFX;
F = 1. -U2/R0MAG;
G = DT -U3/MUQR;
DF = -MUQR*U1/(RMAG*R0MAG);
DG = 1. -U2/RMAG;
for I=1:3

X1(I) = (F*R0(I) +G*V0(I))*REX;
X1(I+3) = (DF*R0(I) +DG*V0(I))*VEX;

end

STRATEGIC MISSILE-TARGET ENGAGEMENT SIMULATION

We now have enough information to write an engagement simulation. All we have
to do is to add the missile equations to the existing target simulation of Listing
28.2. We will assume that the missile is also impulsively launched (TLAUNCH
seconds after the target is launched) toward the predicted intercept point. The
nearly exact predicted intercept point is obtained from the Kepler subroutine of
the preceding section. In addition, we will add the ability to introduce determinis-
tic intercept point prediction errors (PREDERR set to desired intercept point
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prediction error). Because the missile is initially stationary (before it is launched)
but is on a rotating Earth, care must be taken on how to integrate the missile
differential equations. A careful examination of the code reveals that the missile
differential equations are different before and after launch. At some point near
the end of the flight (200 s before intercept in this code), the missile guidance
system is turned on to take out any remaining errors.

Once the missile guidance system is turned on, we have assumed that pro-
portional navigation is used as the homing guidance law. As shown at the begin-
ning of this chapter, we can express proportional navigation in terms of the zero
effort miss perpendicular to the line of sight, and an example of its implemen-
tation in three dimensions has already been presented in Listing 28.1. Recall
that the individual missile guidance acceleration components for proportional
navigation are given by

aXMGUID ¼ N 0ZEMPER1

t2go

aYMGUID ¼ N 0ZEMPER2

t2go

aZMGUID ¼ N 0ZEMPER3

t2go

If the missile is not yet in the homing phase of flight, the individual
guidance acceleration components are zero. Therefore the acceleration differential
equations for the impulsive missile after launch become

€xM ¼ �gm xM
ðx2M þ y2M þ z2MÞ1:5

þ aXMGUID

€yM ¼ �gm yM
ðx2M þ y2M þ z2MÞ1:5

þ aYMGUID

€zM ¼ �gm zM
ðx2M þ y2M þ z2MÞ1:5

þ aZMGUID

Before missile launch the acceleration differential equations are set to zero so
that the missile remains on the ground. The missile-target engagement simulation
appears in Listing 28.4. All equations that are either related to the missile or to the
relative equations are highlighted in bold. Latitude and longitude information
for the missile and target trajectories are written to the comma-delimited file
TRAJFIL.TXT. The missile attempting to intercept the threat from Monte Carlo
(and thereby protecting Las Vegas) is launched from Atlantic City.
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LISTING 28.4 THREE-DIMENSIONAL STRATEGIC MISSILE–TARGET ENGAGEMENT SIMULATION
(LAMBERT AND KEPLER SUBROUTINES NOT INCLUDED)

count=0;
SWITCH1=0;
SWITCHM=0;
TLAUNCH=200.;
XLONGTDEG=7.42;
XLATTDEG=43.75;
XLATFDEG=36.175;
XLONGFDEG=-115.136;
XLONGMDEG=-74.423;
XLATMDEG=39.364;
PREDERR=10.*6076.;
XNCLIM=161.;
XLATMDEGIC=XLATMDEG;
XLONGMDEGIC=XLONGMDEG;
TFTOT=2000.;
TF=1000.;
A=2.0926E7;
GM=1.4077E16;
W=-6.283185/86400.;
QBOOSTM=1;
XLONGF=XLONGFDEG/57.3;
XLATF=XLATFDEG/57.3;
XLONGT=XLONGTDEG/57.3;
XLATT=XLATTDEG/57.3;
XLONGM=XLONGMDEG/57.3;
XLATM=XLATMDEG/57.3;
XLONGF=XLONGF-W*TF;
XF=A*cos(XLATF)*cos(XLONGF);
YF=A*cos(XLATF)*sin(XLONGF);
ZF=A*sin(XLATF);
XT=A*cos(XLATT)*cos(XLONGT);
YT=A*cos(XLATT)*sin(XLONGT);
ZT=A*sin(XLATT);
[XTD,YTD,ZTD]=LAMBERT3D(XT,YT,ZT,TFTOT,XF,YF,ZF,SWITCH1);
XTINIT=XT;
YTINIT=YT;
ZTINIT=ZT;
XM=A*cos(XLATM)*cos(XLONGM);
YM=A*cos(XLATM)*sin(XLONGM);
ZM=A*sin(XLATM);
XMD=A*W*cos(XLATM)*sin(XLONGM);
YMD=-A*W*cos(XLATM)*cos(XLONGM);
ZMD=0.;
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RTM1=XT-XM;
RTM2=YT-YM;
RTM3=ZT-ZM;
RTM=sqrt(RTM1^2+RTM2^2+RTM3^2);
VTM1=XTD-XMD;
VTM2=YTD-YMD;
VTM3=ZTD-ZMD;
VC=-(RTM1*VTM1+RTM2*VTM2+RTM3*VTM3)/RTM;
T=0.;
H=.001;
T0=0.;
T1=TF;
X0(1)=XT/3280.;
X0(2)=YT/3280.;
X0(3)=ZT/3280.;
X0(4)=XTD/3280.;
X0(5)=YTD/3280.;
X0(6)=ZTD/3280.;
[X1]=KEPLER1(X0,T0,T1);
XTF=X1(1)*3280.;
YTF=X1(2)*3280.;
ZTF=X1(3)*3280.;
XTF=XTF+PREDERR;
S=0.;
DELV=0.;
ALTNM=(sqrt(XT^2+YT^2+ZT^2)-A)/6076.;
while VC.0

if RTM.5000.
H=.01;

else
H=.00001;

end
XTOLD=XT;
YTOLD=YT;
ZTOLD=ZT;
XTDOLD=XTD;
YTDOLD=YTD;
ZTDOLD=ZTD;
XMOLD=XM;
YMOLD=YM;
ZMOLD=ZM;
XMDOLD=XMD;
YMDOLD=YMD;
ZMDOLD=ZMD;
DELVOLD=DELV;
STEP=1;
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FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

XT=XT+H*XTD;
YT=YT+H*YTD;
ZT=ZT+H*ZTD;
XTD=XTD+H*XTDD;
YTD=YTD+H*YTDD;
ZTD=ZTD+H*ZTDD;
if T,TLAUNCH & QBOOSTM==1

XM=XM;
YM=YM;
ZM=ZM;
XMD=XMD;
YMD=YMD;
ZMD=ZMD;

else
XM=XM+H*XMD;
YM=YM+H*YMD;
ZM=ZM+H*ZMD;
XMD=XMD+H*XMDD;
YMD=YMD+H*YMDD;
ZMD=ZMD+H*ZMDD;

end
DELV=DELV+H*DELVD;

T=T+H;
end
TEMPBOTT=(XT^2+YT^2+ZT^2)^1.5;

XTDD=-GM*XT/TEMPBOTT;
YTDD=-GM*YT/TEMPBOTT;
ZTDD=-GM*ZT/TEMPBOTT;
ALTNM=(sqrt(XT^2+YT^2+ZT^2)-A)/6076.;
RTM1=XT-XM;
RTM2=YT-YM;
RTM3=ZT-ZM;
VTM1=XTD-XMD;
VTM2=YTD-YMD;
VTM3=ZTD-ZMD;
RTM=sqrt(RTM1^2+RTM2^2+RTM3^2);
VC=-(RTM1*VTM1+RTM2*VTM2+RTM3*VTM3)/RTM;
TGO=RTM/VC;
if TGO,200. & T.(TLAUNCH+50.)

ZEM1=RTM1+VTM1*TGO;
ZEM2=RTM2+VTM2*TGO;
ZEM3=RTM3+VTM3*TGO;
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ZEMDOTRTM=(ZEM1*RTM1+ZEM2*RTM2+ZEM3*RTM3)/RTM;
ZEMPER1=ZEM1-ZEMDOTRTM*RTM1/RTM;
ZEMPER2=ZEM2-ZEMDOTRTM*RTM2/RTM;
ZEMPER3=ZEM3-ZEMDOTRTM*RTM3/RTM;
ZEMPERLOSKM=sqrt(ZEMPER1^2

+ZEMPER2^2+ZEMPER3^2)/3280.;
AXMGUID=3.*ZEMPER1/(TGO^2);
AYMGUID=3.*ZEMPER2/(TGO^2);
AZMGUID=3.*ZEMPER3/(TGO^2);

else
AXMGUID=0.;
AYMGUID=0.;
AZMGUID=0.;

end
if AXMGUID.XNCLIM

AXMGUID=XNCLIM;
elseif AXMGUID,-XNCLIM

AXMGUID=-XNCLIM;
end
if AYMGUID.XNCLIM

AYMGUID=XNCLIM;
elseif AYMGUID,-XNCLIM

AYMGUID=-XNCLIM;
end
if AZMGUID.XNCLIM

AZMGUID=XNCLIM;
elseif AZMGUID,-XNCLIM

AZMGUID=-XNCLIM;
end
if T.TLAUNCH

TEMPBOTM=(XM^2+YM^2+ZM^2)^1.5;
XMDD=-GM*XM/TEMPBOTM+AXMGUID;
YMDD=-GM*YM/TEMPBOTM+AYMGUID;
ZMDD=-GM*ZM/TEMPBOTM+AZMGUID;

else
XMDD=0.;
YMDD=0.;
ZMDD=0.;

end
DELVD=sqrt(AXMGUID^2+AYMGUID^2+AZMGUID^2);
FLAG=1;

end
FLAG=0;
XT=.5*(XTOLD+XT+H*XTD);
YT=.5*(YTOLD+YT+H*YTD);
ZT=.5*(ZTOLD+ZT+H*ZTD);
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XTD=.5*(XTDOLD+XTD+H*XTDD);
YTD=.5*(YTDOLD+YTD+H*YTDD);
ZTD=.5*(ZTDOLD+ZTD+H*ZTDD);
if T,TLAUNCH & QBOOSTM==1

XM=A*cos(XLATMDEGIC/57.3)*cos(XLONGMDEGIC/57.3-W*T);
YM=A*cos(XLATMDEGIC/57.3)*sin(XLONGMDEGIC/57.3-W*T);
ZM=A*sin(XLATMDEGIC/57.3);
XMD=A*W*cos(XLATMDEGIC/57.3)*sin(XLONGMDEGIC/57.3-W*T);
YMD=-A*W*cos(XLATMDEGIC/57.3)*cos(XLONGMDEGIC/57.3-W*T);
ZMD=0.;

else
XM=.5*(XMOLD+XM+H*XMD);
YM=.5*(YMOLD+YM+H*YMD);
ZM=.5*(ZMOLD+ZM+H*ZMD);
XMD=.5*(XMDOLD+XMD+H*XMDD);
YMD=.5*(YMDOLD+YMD+H*YMDD);
ZMD=.5*(ZMDOLD+ZMD+H*ZMDD);

end
DELV=.5*(DELVOLD+DELV+H*DELVD);
TGOM=TF-T;
if T.=TLAUNCH & QBOOSTM==1

[XMD,YMD,ZMD]=LAMBERT3D(XM,YM,ZM,TGOM,XTF,YTF,ZTF,SWITCHM);
QBOOSTM=0;
XMDOLD=XMD;
YMDOLD=YMD;
ZMDOLD=ZMD;

end
S=S+H;
if S.=9.9999

S=0.;
XTE=XT*cos(W*T)-YT*sin(W*T);
YTE=XT*sin(W*T)+YT*cos(W*T);
ZTE=ZT;
XLATT=atan2(ZTE, sqrt(XTE^2+YTE^2));
XLATTDEG=57.3*XLATT;
XLONGT=atan2(YTE, XTE);
XLONGTDEG=57.3*XLONGT;
DISTRTNM=distance3d(XTE,YTE,ZTE,XTINIT,YTINIT,ZTINIT);
XME=XM*cos(W*T)-YM*sin(W*T);
YME=XM*sin(W*T)+YM*cos(W*T);
ZME=ZM;
XLATM=atan2(ZME, sqrt(XME^2+YME^2));
XLATMDEG=57.3*XLATM;
XLONGM=atan2(YME, XME);
XLONGMDEG=57.3*XLONGM;
DISTRMNM=distance3d(XME,YME,ZME,XTINIT,YTINIT,ZTINIT);
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ALTMNM=(sqrt(XM^2+YM^2+ZM^2)-A)/6076.;
AXMGUIDG=sqrt(AXMGUID^2+AYMGUID^2+AZMGUID^2)/32.2;
count=count+1;
ArrayT(count)=T;
ArrayDISTRTNM(count)=DISTRTNM;
ArrayALTNM(count)=ALTNM;
ArrayDISTRMNM(count)=DISTRMNM;
ArrayALTMNM(count)=ALTMNM;
ArrayAXMGUIDG(count)=AXMGUIDG;
ArrayXLONGTDEG(count)=XLONGTDEG;
ArrayXLATTDEG(count)=XLATTDEG;
ArrayXLONGMDEG(count)=XLONGMDEG;
ArrayXLATMDEG(count)=XLATMDEG;

end
end
XTE=XT*cos(W*T)-YT*sin(W*T);
YTE=XT*sin(W*T)+YT*cos(W*T);
ZTE=ZT;
XLATT=atan2(ZTE, sqrt(XTE^2+YTE^2));
XLATTDEG=57.3*XLATT;
XLONGT=atan2(YTE, XTE);
XLONGTDEG=57.3*XLONGT;
DISTRTNM=distance3d(XTE,YTE,ZTE,XTINIT,YTINIT,ZTINIT);
XME=XM*cos(W*T)-YM*sin(W*T);
YME=XM*sin(W*T)+YM*cos(W*T);
ZME=ZM;
XLATM=atan2(ZME, sqrt(XME^2+YME^2));
XLATMDEG=57.3*XLATM;
XLONGM=atan2(YME, XME);
XLONGMDEG=57.3*XLONGM;
DISTRMNM=distance3d(XME,YME,ZME,XTINIT,YTINIT,ZTINIT);
ALTMNM=(sqrt(XM^2+YM^2+ZM^2)-A)/6076.;
AXMGUIDG=sqrt(AXMGUID^2+AYMGUID^2+AZMGUID^2)/32.2;
count=count+1;
ArrayT(count)=T;
ArrayDISTRTNM(count)=DISTRTNM;
ArrayALTNM(count)=ALTNM;
ArrayDISTRMNM(count)=DISTRMNM;
ArrayALTMNM(count)=ALTMNM;
ArrayAXMGUIDG(count)=AXMGUIDG;
ArrayXLONGTDEG(count)=XLONGTDEG;
ArrayXLATTDEG(count)=XLATTDEG;
ArrayXLONGMDEG(count)=XLONGMDEG;
ArrayXLATMDEG(count)=XLATMDEG;
RTM
DELV
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figure
plot(ArrayDISTRTNM,ArrayALTNM,ArrayDISTRMNM,ArrayALTMNM),grid
xlabel(’Downrange (Nmi)’)
ylabel(’Altitude (Nmi) ’)
figure
plot(ArrayT,ArrayAXMGUIDG),grid
xlabel(’Time (s))’)
ylabel(’Acceleration (g) ’)
axis([0 1000 0 .5])
clc
output=[ArrayT’,ArrayDISTRTNM’,ArrayALTNM’,ArrayDISTRMNM’,. . .

ArrayALTMNM’,ArrayAXMGUIDG’];
save datfil.txt output /ascii
output=[ArrayT’,ArrayXLONGTDEG’,ArrayXLATTDEG’,ArrayXLONGMDEG’,. . .

ArrayXLATMDEG’];
csvwrite(’trajfil.txt’,output)
disp ’simulation finished’
% 3d Kepler, distance and Lambert routines previously presented in this Chapter

The nominal case of Listing 28.4 was run in which there was 10 n miles of
intercept point prediction error. Figure 28.10 displays the missile and target tra-
jectories. We can see that intercept takes place about 2500 n miles from the target
launch site at approximately 900 n miles altitude. Figure 28.11 plots the total com-
manded acceleration required for the missile to hit the target. Because homing
guidance started at 800 s (200 s before intercept), the acceleration command
was zero before that. A maximum acceleration of 0.1 g was required to take out
the prediction error in 200 s.

Fig. 28.10 Missile and target trajectories.
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SUMMARY

This chapter has shown how three-dimensional simulations can be used to convey
important information. In the tactical world we have seen how new insights
against spiraling targets can be gained in three dimensions. We saw that the
miss caused by a weaving target does not oscillate in three dimensions as it
does in one or two dimensions but in fact approaches steady state as the flight
time increases. Code has been provided to extend the Lambert routine to three
dimensions in our strategic engagement simulations. New code for a Kepler sub-
routine has been provided so that we could do intercept point prediction for three
dimensional ballistic targets without having to resort to numerical integration.
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Fig. 28.11 Acceleration required to take out prediction error.
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CHAPTER 29

Advanced Adjoint Applications

INTRODUCTION

Throughout this book we have discussed adjoints and their application to analyz-
ing missile guidance systems. We have found that adjoints can be extremely valu-
able from both practical and computational points of view if the homing loop is
linear (that is, without missile saturation). Single-run adjoint rms miss distance
results have been shown to be equivalent to thousands of Monte Carlo runs gen-
erated from a forward engagement simulation. The value of adjoints has been not
only demonstrated for continuous systems that could be described by a set of
linear differential equations but also for mixed continuous discrete systems that
could be described by a set of linear differential and difference equations.

In this chapter we shall demonstrate the utility of adjoints in two additional
applications for the missile homing loop. In both of these applications we shall
concentrate on systems that have a digital noise filter so that mixed continuous
discrete adjoints must be used. In the first example we shall consider how to
implement an adjoint if there are two samplers in the missile guidance system,
each operating at different sampling rates. In this example a two-state, constant-
gain digital fading memory filter is used as the noise filter. In the other example we
shall consider a mixed continuous guidance system with a single sampler—but
this time the digital noise filter is a three-state Kalman filter. Since the gains of
the Kalman filter and associated guidance laws are both flight time dependent
and time varying, a new interpretation of adjoint results is required.

MULTIPLE SAMPLING RATE ADJOINT

In some applications information is available more often than can be handled by
the digital noise filter because of flight computer throughput considerations. In
these applications a decision has to be made on what to do with the extra
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measurements that cannot be utilized by the digital noise filter. One technique for
handling the extra data is to preprocess the extra data [1] as shown in Fig. 29.1. In
this example the normal sampling rate for the two-state digital fading memory
noise filter is 10 Hz (Ts ¼ 0.1s) but data is available at 50 Hz (Ts ¼ 0.02 s). In
other words we have five times as much data as can be used by the digital noise
filter. In Fig. 29.1 the extra measurements are averaged by adding up five measure-
ments and then dividing by five. The next time a measurement is available, the
oldest measurement in the summation is dropped out while the new measurement
is added so that the most recent five measurements are always being averaged.
Note that the homing loop in Fig. 29.1 is similar to the mixed continuous discrete
homing loop displayed in Fig. 7.1, except for the preprocessing of the measure-
ment data and for the single time constant representation of the flight control
system. The only source of error in the guidance system of Fig. 29.1 is a constant
target maneuver nT.

Figure 29.2 presents a more detailed block diagram of the homing loop with
the two-state fading memory digital noise filter and two samplers—each operating
at a different sampling rate. The input to the fading memory filter in the block
diagram pz is the measured line-of-sight angle after it has been preprocessed
and the output of the fading memory filter is estimated line-of-sight angle l̂ and
estimated line-of-sight rate _̂l. The proportional navigation guidance law is
implemented using the estimated line-of-sight rate according to

nc ¼ N 0Vc _̂l

where N0 is the effective navigation ratio and Vc is the closing velocity. In addition
to the fading memory filter, the only other lag that exists within the guidance
system in this example is the single time constant representation of the flight
control system with time constant T. The two gains of the fading memory filter

Fig. 29.1 General form of homing loop with two sampling rates and a fading
memory filter.
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G and H determine the bandwidth of the filter and guidance system. As was
shown in Chapter 7 the two filter gains are computed from

G ¼ 1� b2

H ¼ (1� b)2

where b is a constant between 0 and 1 chosen by the designer. Higher values of b
will result in a lower filter bandwidth or a more sluggish guidance system. Also
note that in Fig. 29.2 that the line-of-sight angle has been computed in a laborious
way. This is done to have an extra integrator in the system so that when we take
the adjoint of the sampler (which will result in a differentiator) a simple cancella-
tion of an integrator and differentiator can take place. The adjoints of sampler and
hold blocks can be found in Chapter 7. To remind readers that the line-of-sight
angle can be obtained in the laborious way indicated in Fig. 29.2 we start from

Fig. 29.2 Forward model of homing loop with two samplers operating at different rates.
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the small angle definition of the line-of-sight angle which is given by

l ¼ y
RTM

Differentiation of the preceding expression using the quotient rule from calculus
yields

_l ¼ RTM _y � y _RTM

R2
TM

Because the range from missile to target is given by

RTM ¼ Vctgo ¼ Vc(tF � t)

the line-of-sight rate can be expressed as

_l ¼ Vctgo _y þ yVc

V2
c t

2
go

¼ y
Vct2go

þ _y
Vctgo

Integration of the preceding equation yields the line-of-sight angle as shown in
Fig. 29.2. The line-of-sight angle is sampled every 0.02 s (50-Hz rate), passed
through a preprocessing section and then passed through a zero-order hold.
The output of the zero-order hold is then sampled at 0.1 s (10 Hz rate) and
passed through the fading memory filter whose gains are calculated using
b ¼ 0.8. The term z21 in Fig. 29.2 represents a pure delay. Again, it is important
to emphasize that the forward model of the homing loop is presented in this way
to facilitate the generation of an adjoint block diagram.

The system parameters for the guidance system of Fig. 29.2 appears in
Table 29.1. The forward model of Fig. 29.2 is programmed and appears in
Listing 29.1. However in the forward model simulation the line-of-sight angle

TABLE 29.1 SYSTEM INPUTS FOR MULTIPLE SAMPLING RATE SYSTEM

Symbol Definition Value

Vc Closing velocity 4000 ft/s

T Flight control system time constant 0.2 s

nT Target maneuver amplitude 96.6 ft/s2 (3 g)

b Fading memory filter tuning parameter 0.8

N0 Effective navigation ratio 3

Ts Filter sampling time 0.1 s

Ts2 System sampling time 0.02 s
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does not have to be computed in the laborious way of Fig. 29.2 but instead can be
is computed more easily from the definition of the line-of-sight angle as

l ¼ y
RTM

It is important to note that Listing 29.1 is nearly identical to Listing 7.2
except for the two samplers, the preprocessing section, and the single time con-
stant representation of the flight control system. In Listing 7.2 there was only
one sampling time set at 0.1s and there were two sources of error: random
target maneuver and measurement noise. In Listing 29.1 we only consider a deter-
ministic step target maneuver that always starts at the beginning of the flight
and whose amplitude is always 3 g (96.6 ft/s2). Because there is no noise disturb-
ance in Listing 29.1, it does not have to be run in the Monte Carlo mode as was
done for Listing 7.2. However, 100 runs are made in the forward model of Listing
29.1—each with different flight times. The flight times vary between 0.1s and 10 s
in steps of 0.1s. The miss distances for each of the flight times are written to a file.
It is important to note that in this forward model simulation the high data rate
sampler is encountered first. Thus the difference equations from the high data
rate sampler are programmed first.

LISTING 29.1 SIMULATION OF FORWARD MODEL OF HOMING LOOP WITH TWO SAMPLERS
OPERATING AT DIFFERENT RATES

count=0;
VC=4000.;
TAP=.2;
XNT=96.6;
BETA=.8;
XNP=3.;
TS=.1;
TS2=.02;
for TF=.1:.1:10.0,

Y=0.;
YD=0.;
T=0.;
H=.001;
S=0.;
S2=0.;
GFILTER=1.-BETA^2;
HFILTER=(1.-BETA)^2;
XLAMHOLD=0.;
XLAMDHOLD=0.;
Y1OLD=0.;
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Y2OLD=0.;
Y3OLD=0.;
Y4OLD=0.;
Y5OLD=0.;
XNC=0.;
XNL=0.;
Y1NEW=0.;
PZ=0.;
XLAM=0.;
while T,=(TF - 1e-5)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;
STEP=2;

end;
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
XNLD=(XNC-XNL)/TAP;
YDD=XNT-XNL;
FLAG=1;

end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
S2=S2+H;
if S2.=(TS2 - 1e-5)

S2=0.;
Y1NEW=XLAM;
Y2NEW=Y1OLD;
Y3NEW=Y2OLD;
Y4NEW=Y3OLD;
Y5NEW=Y4OLD;
PZ=.2*(Y5OLD+Y5NEW+Y4NEW+Y3NEW+Y2NEW+XLAM);
Y1OLD=Y1NEW;
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Y2OLD=Y2NEW;
Y3OLD=Y3NEW;
Y4OLD=Y4NEW;
Y5OLD=Y5NEW;

end;
if S.=(TS - 1e-5)

S=0.;
RES=PZ-(XLAMHOLD+TS*XLAMDHOLD);
XLAMHNEW=GFILTER*RES+XLAMHOLD+TS*XLAMDHOLD;
XLAMDHNEW=HFILTER*RES/TS+XLAMDHOLD;
XNC=XNP*VC*XLAMDHNEW;
XLAMHOLD=XLAMHNEW;
XLAMDHOLD=XLAMDHNEW;

end;
end;
count=count+1;
ArrayTF(count)=TF;
ArrayY(count)=Y;

end;
figure
plot(ArrayTF’,ArrayY’),grid
title(’Standard miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’Miss (Ft) ’)
axis([00,10,-40,100])
clc
output=[ArrayTF’,ArrayY’];
save datfil.txt output /ascii
disp(’Simulation Complete’)

Figure 29.3 presents the adjoint model of the homing loop with two samplers
operating at different rates derived from the forward model of Fig. 29.2.
Figure 29.3 is constructed following the adjoint rules discussed in Chapters 3
and 7. As was previously mentioned, the adjoints of each sampler and hold are
taken according to the rules of adjoints of Chapter 7. Recall that the adjoint of
a sampler yields a difference equation and a differentiator. Numerical differen-
tiation is avoided in Fig. 29.3 because there is cancellation of the differentiator
with an integrator.

The adjoint of the homing loop with two samplers operating at different rates
is programmed in Listing 29.2. Because the signal flow is reversed in the adjoint
model, the low data rate sampler will be encountered first. This is the opposite
of what happened in the forward model. Therefore in the adjoint listing the differ-
ence equations for the low data rate sampler are programmed first. Also note that
there is no “for loop” in the adjoint listing and so all the miss distance results are
generated in one computer run.
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LISTING 29.2 SIMULATION OF ADJOINT MODEL OF HOMING LOOP WITH TWO SAMPLERS
OPERATING AT DIFFERENT RATES

count=1;
XNT=96.6;
XNP=3;
TF=10.;
TS=.1;
BETA=.8;
TAP=.2;
VC=4000.;
T=0.;

Fig. 29.3 Adjoint model of homing loop with two samplers operating at different rates.
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S=0.;
S2=0.;
TS2=.02;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0.;
X5=0.;
Y1OLD=0.;
Y2OLD=0.;
Y3OLD=0.;
Y4OLD=0.;
Y5OLD=0.;
Y6OLD=0.;
Y7OLD=0.;
Y8OLD=0.;
Y9OLD=0.;
Y10OLD=0.;
Y11OLD=0.;
Y11NEW=0.;
Y10NEW=0.;
Y9NEW=0.;
Y7NEW=0.;
Y6NEW=0.;
Y8NEW=0.;
Y4NEW=0.;
Y1NEW=0.;
Y2NEW=0.;
Y3NEW=0.;
Y5NEW=0.;
H=.001;
GFILTER=1.-BETA^2;
HFILTER=(1.-BETA)^2;
XMNT=0.;
while TP,=(TF-1e-5)

S=S+H;
S2=S2+H;
X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
STEP=1;
FLAG=0;
while STEP,=1
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if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
TP=TP+H;

end
TGO=TP;
X1D=X2;
X2D=X3+Y4NEW/(VC*TGO);
X3D=(Y4NEW)/(VC*TGO*TGO);
X4D=-X2-X4/TAP;
X5D=X4/TAP;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
if S.=(TS-.0001)

S=0.;
Y1NEW=X5;
TEMP1=(Y1NEW-Y1OLD)*XNP*VC;
TEMP2=HFILTER*(Y2OLD+TEMP1)/TS+GFILTER*Y3OLD;
Y2NEW=TEMP1+Y2OLD+TS*(Y3OLD-TEMP2);
Y3NEW=Y3OLD-TEMP2;
Y7NEW=TEMP2+Y7OLD;
Y1OLD=Y1NEW;
Y2OLD=Y2NEW;
Y3OLD=Y3NEW;
Y7OLD=Y7NEW;

end
if S2.=(TS2-.0001)

S2=0.;
Y6NEW=Y7NEW;
Y11NEW=.2*(Y6NEW-Y6OLD);
Y10NEW=Y11OLD+Y11NEW;
Y9NEW=Y10OLD+Y11NEW;
Y8NEW=Y9OLD+Y11NEW;
Y5NEW=Y8OLD+Y11NEW;
Y4NEW=Y4OLD+Y5OLD+Y11NEW;
Y4OLD=Y4NEW;
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Y6OLD=Y6NEW;
Y5OLD=Y5NEW;
Y8OLD=Y8NEW;
Y9OLD=Y9NEW;
Y10OLD=Y10NEW;
Y11OLD=Y11NEW;
XMNT=XNT*X1;
count=count+1;
ArrayTP(count)=TP;
ArrayXMNT(count)=XMNT;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
clc
output=[ArrayTP’,ArrayXMNT’];
save datfil.txt output -ascii
disp ’simulation finished’

The nominal cases of Listing 29.1 (equivalent to 100 runs) and of Listing 29.2
(one run) were run and the results for the miss due to a constant 3-g maneuver
for different flight times is displayed in Fig. 29.4. We can see that there is exact
agreement between the adjoint and forward simulations indicating that we have
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Fig. 29.4 Forward and adjoint models agree for homing loop with two samplers operating
at different sampling rates.
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correctly taken the adjoint of the homing loop with multiple samplers. We can
see from Fig. 29.4 that the miss distances can be quite large due to the sluggish-
ness of the fading memory filter (b ¼ 0.8). Figure 29.5 shows that when the band-
width of the fading memory filter is increased (b ¼ 0.3) the guidance system
performance improves and that there is still excellent agreement between
the adjoint and forward models, again indicating that the adjoint has been
taken correctly.

In the forward model the 3-g target maneuver always started at the beginning
of flight and the flight time was varied from 0.1 s to 10 s in steps of 0.1 s. If we
modify Listing 29.1 so that the time of flight is always 10 s but the time to go
at which the 3-g maneuver occurs is varied from 0.1 s to 10 s in steps of 0.1 s,
we can see from Fig. 29.6 that we get exactly the same results as that of
Fig. 29.4. Thus we can see that adjoint time can either be interpreted as time of
flight for a maneuver occurring at the beginning of flight or the time to go at
which the maneuver occurs for a fixed time of flight.

ADJOINT OF DISCRETE LINEAR KALMAN FILTER

So far in this book whenever adjoints have been taken the noise filter was either a
low pass filter which could be represented by a differential equation or a simple
fading memory filter that could be represented by a set of difference equations.
For more advanced guidance systems a Kalman filter is normally required as
the noise filter. Although the Kalman filter has the same structure as the fading
memory filter, its gains are not constant and must be computed from the
Ricatti equations.

15

10

5

0

–5

A
lti

tu
de

 (
km

)

1086420
Time (s)

Forward and Adjoint Models

β=0.3, Ts=0.1 s
Ts2=0.02 s, nT=3 g

Fig. 29.5 Increasing sampling rate of first sampler causes miss distance to decrease.
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More advanced guidance laws can be used if a three-state Kalman filter is
part of the guidance system. As the states of the three-state Kalman filter
generally used in this text are relative position, relative velocity, and target
acceleration possible guidance laws must be expressed in a slighly different way.
As was shown in Chapters 8 and 9, the various possible guidance laws can be
expressed in terms of the Kalman filter state estimates and control gains
according to

nc ¼ C1ŷk þ C2 _̂yk þ C3n̂Tk þ C4nLk

where ŷk is the relative position estimate, _̂yk is the relative velocity estimate, n̂Tk is
the target acceleration estimate and nLk is the missile achieved acceleration. The
gains C1, C2, C3, and C4 are known as control gains. For proportional navigation
the control gains are

C1 ¼ N 0

t2go

C2 ¼ N 0

tgo

C3 ¼ 0

C4 ¼ 0
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Fig. 29.6 Agreement between adjoint and forward models when target maneuver starting
time is varied.
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For augmented proportional navigation the control gains become

C1 ¼ N 0

t2go

C2 ¼ N 0

tgo

C3 ¼ 0:5N 0

C4 ¼ 0

With the two preceding guidance laws N0 was a constant. If we use optimal
guidance the control gains become

C1 ¼ N 0

t2go

C2 ¼ N 0

tgo

C3 ¼ 0:5N 0

C4 ¼ �N 0T2(e�x þ x � 1)
t2go

where T is the time constant of the flight control system and N0 is no longer a con-
stant but is given by

N 0 ¼ 6x2(e�x � 1þ x)
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

and x is defined as

x ¼ tgo
T

Figure 29.7 presents a block diagram of the homing loop with a three-state
linear Kalman filter as the digital noise filter. In this diagram the line-of-sight
angle measurement lk is multiplied by range to convert the actual measurement
to a pseudo measurement of relative position y�k . The Kalman filter estimates rela-
tive position ŷk, relative velocity _̂yk, and target acceleration n̂Tk . In this homing
loop there is also a single-lag representation of the flight control system with
time constant T. Both the Kalman gains K1, K2 and K3 and the control gains
C1, C2, C3, and C4 are functions of time. As was previously mentioned the
control gains determine which guidance law is used in conjunction with the
Kalman filter.
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The forward model of the Kalman filter in the homing loop of Listing 29.3, like
Listing 29.1, has only one source of error—constant target maneuver. However,
here the flight time is fixed at 10 s and the time to go at which the 3-g target man-
euver begins is made a parameter in the “for loop.” One hundred runs are made in
the forward model with the maneuver starting time varying between 0.1s and 10 s
in steps of 0.1s. This means that the time to go at which the maneuver occurs is
varying between 9.9 and 0 s in steps of 0.1s. The miss distances for each of the
times to go at which the maneuver starts for the 10 s flight are written to a file.
Note that in this forward model the sampling time is 0.1s. For each run we
solve for the Kalman gains via the Ricatti equations, although this is not necessary
as the flight time is fixed and the gains will be the same from run to run.

Fig. 29.7 Forward model of homing loop with discrete three-state Kalman filter.
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LISTING 29.3 SIMULATION OF FORWARD MODEL OF HOMING LOOP WITH THREE-STATE
KALMAN FILTER AND VARIOUS GUIDANCE LAW OPTIONS

count=0;
VM=3000.;
VC=4000.;
XNT=96.6;
YIC=0.;
HEDEGF=20.;
XNP=3.;
SIGNOISE=.001;
TS=.1;
TAU=.5;
APN=0;
TF=10.;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIN=XNT*XNT/TF;
for TSTART=.1:.1:10.0,

Y=YIC;
YD=0.;
T=0.;
H=.01;
S=0.;
RTM=VC*TF;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEGF/57.3)^2;
P23=0.;
P33=XNT*XNT;
YH=0.;
YDH=0.;
XNTH=0.;
XNC=0.;
XNL=0.;
while T,=(TF - 1e-5)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
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while STEP ,=1
if FLAG==1

Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;
STEP=2;

end;
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
XNLD=(XNC-XNL)/TAU;
if T.TSTART

YDD=XNT-XNL;
else

YDD=0.;
end;
FLAG=1;

end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
if S.=(TS - 1e-5)

S=0.;
TGO=TF-T+.000001;
RTM=VC*TGO;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)+TS5*PHIN/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+.5*TS2*P33)+TS4*PHIN/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIN*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIN*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIN;
M33=P33+PHIN*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
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P33=-K3*M13+M33;
XLAMNOISE=0.;
YSTAR=RTM*(XLAM+XLAMNOISE);
RES=YSTAR-YH-TS*YDH-.5*TS*TS*(XNTH-XNL);
YH=K1*RES+YH+TS*YDH+.5*TS*TS*(XNTH-XNL);
YDH=K2*RES+YDH+TS*(XNTH-XNL);
XNTH=K3*RES+XNTH;
XLAMDH=(YH+YDH*TGO)/(VC*TGO*TGO);
if APN==0

C1=XNP/TGO^2;
C2=XNP/TGO;
XNC=C1*YH+C2*YDH;

elseif APN==1
C1=XNP/TGO^2;
C2=XNP/TGO;
C3=.5*XNP;
XNC=C1*YH+C2*YDH+C3*XNTH;

else
X=TGO/TAU;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);
XNEW=XNPP*XNL*(exp(-X)+X-1.)/(X*X);
C1=XNPP/TGO^2;
C2=XNPP/TGO;
C3=.5*XNPP;
C4=-XNPP*(exp(-X)+X-1.)/(X*X);
XNC=C1*YH+C2*YDH+C3*XNTH+C4*XNL;

end;
end;

end;
TGOS=TF-TSTART;
count=count+1;
ArrayTGOS(count)=TGOS;
ArrayY(count)=Y;

end;
figure
plot(ArrayTGOS’,ArrayY’),grid
title(’Miss for various tgo maneuver starting times’)
xlabel(’Time to go at which maneuver occurs (S)’)
ylabel(’Miss (Ft) ’)
clc
output=[ArrayTGOS’,ArrayY’];
save datfil.txt output /ascii
disp(’Simulation Complete’)
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As was demonstrated in the previous section when adjoint results were gen-
erated for the fading memory filter, adjoint time can either be interpreted as
missile flight time or time to go at which the target maneuver started. If we
model a Kalman filter using the adjoint technique we must reverse all time
varying gains (meaning Kalman gains and control gains) according to the rules
of adjoints. Because the Kalman gains for a 10 s flight will be different than for
a 5 s flight we must fix the flight time when modeling the adjoint of a Kalman
filter. Therefore in this case adjoint time can only be interpreted as the time to
go at which the disturbance occurs. Following the rules of adjoints shown in
Chapter 7 for a mixed continuous discrete system we obtain Fig. 29.8.

The adjoint of the homing loop with the three-state Kalman filter and various
guidance law options is programmed in Listing 29.4. Note that there is no “for
loop” in the adjoint listing and so all the miss distance results will be generated

Fig. 29.8 Adjoint model of homing loop with discrete three-state Kalman filter.
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in one computer run. However, as was mentioned previously adjoint time must be
interpreted as time to go at which the constant maneuver starts for a 10 s flight.
Also note that that the Kalman gains for a 10 s flight are first computed and
stored as an array. After the Ricatti equations are finished the gains are reversed
in time and also stored as an array. This array is used to provide the Kalman gains
for each adjoint time.

LISTING 29.4 AJOINT OF HOMING LOOP WITH THREE-STATE KALMAN FILTER AND VARIOUS
GUIDANCE LAW OPTIONS

count=0;
XNT=96.6;
XNP=3.;
TF=10;
TS=.1;
APN=0;
VM=3000.;
VC=4000.;
HEDEGF=20.;
SIGNOISE=.001;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIN=XNT*XNT/TF;
RTM=VC*TF;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEGF/57.3)^2;
P23=0.;
P33=XNT*XNT;
C=0;
for T=TS:TS:TF

TGO=TF-T+.000001;
RTM=VC*TGO;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)+TS5*PHIN/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+.5*TS2*P33)+TS4*PHIN/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIN*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIN*TS3/3.;
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M23=P23+TS*P33+.5*TS2*PHIN;
M33=P33+PHIN*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;
C=C+1;
U(C)=K1;
V(C)=K2;
W(C)=K3;

end;
% Modification
% ----------------------
ICOUNT=round((TF/TS));
E(ICOUNT)=0;
F(ICOUNT)=0;
G(ICOUNT)=0;
ICOUNT=ICOUNT-1;
% ---------------------
for I=1:1:ICOUNT

REV=ICOUNT-I+1;
E(REV)=U(I);
F(REV)=V(I);
G(REV)=W(I);

end;
TAP=.5;
VC=4000.;
T=0.;
S=0.;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0.;
X5=0.;
X6=0.;
Y1OLD=0.;
Y2OLD=0.;
Y3OLD=0.;
Y4OLD=0.;
Y5OLD=0.;
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Y6OLD=0.;
Y7OLD=0.;
Y7NEW=0.;
Y6NEW=0.;
Y8NEW=0.;
Y4NEW=0.;
Y1NEW=0.;
Y2NEW=0.;
Y3NEW=0.;
Y5NEW=0.;
H=.01;
XMNT=0.;
I=1;
while TP ,= (TF - 1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
TP=TP+H;
STEP=2;

end;
TGO=TP;
X1D=X2;
X2D=X3+Y1NEW/(VC*TGO);
X3D=(Y1NEW)/(VC*TGO*TGO);
X4D=(X5+Y7NEW+X6)/TAP;
X5D=-X4D;
X6D=-X2;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
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X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
X6=(X6OLD+X6)/2+.5*H*X6D;

S=S+H;
if S.(TS-.0001)

S=0.;
K1=E(I);
K2=F(I);
K3=G(I);

[TP I E(I) TS]
I=I+1;
if APN==0

C1=XNP/TP^2;
C2=XNP/TP;
C3=0.;
C4=0.;

elseif APN==1
C1=XNP/TP^2;
C2=XNP/TP;
C3=.5*XNP;
C4=0.;

else
X=TP/TAP;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/TP^2;
C2=XNPP/TP;
C3=.5*XNPP;
C4=-XNPP*(exp(-X)+X-1.)/(X*X);

end
TEMP1=X4-Y6OLD;
TEMP2=C1*TEMP1+Y2OLD;
TEMP3=C2*TEMP1+Y3OLD;
TEMP4=C3*TEMP1+Y4OLD;
TEMP5=K1*TEMP2+K2*TEMP3+K3*TEMP4;
Y1NEW=Y1OLD+TEMP5*VC*TP;
Y2NEW=TEMP2-TEMP5;
Y3NEW=TEMP3+TS*Y2NEW;
Y4NEW=TEMP4+TS*TEMP3+.5*TS*TS*Y2NEW;
Y5=-(TS*TEMP3+.5*TS*TS*Y2NEW);
Y7NEW=Y7OLD+C4*TEMP1+Y5;
Y6NEW=X4;
XMNT=XNT*X1;
Y1OLD=Y1NEW;
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Y2OLD=Y2NEW;
Y3OLD=Y3NEW;
Y4OLD=Y4NEW;
Y6OLD=Y6NEW;
Y7OLD=Y7NEW;

count=count+1;
ArrayTP(count)=TP;
ArrayXMNT(count)=XMNT;
ArrayK1(count)=K1;

end
end
figure
plot(ArrayTP’,ArrayXMNT’),grid
title(’Miss for various tgo maneuver starting times’)
xlabel(’Time to go at which maneuver occurs (S)’)
ylabel(’Miss (Ft) ’)
clc
output=[ArrayTP’,ArrayXMNT’,ArrayK1’];
save datfil.txt output /ascii
disp(’Simulation Complete’)

The nominal cases of Listing 29.3 (equivalent to 100 runs) and of
Listing 29.4 (one run) were run for each of the guidance law options (APN ¼ 0,
1, and 2) and the results are displayed in Figs. 29.9 through 29.11. First we
can see that there is exact agreement between the adjoint and forward simulations
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Fig. 29.9 Forward and adjoint models agree for homing loop with thee-state Kalman filter
when proportional navigation is used.
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in all cases indicating that we have correctly taken the adjoint of the homing
loop with the discrete three-state Kalman filter. We can also see from the three
cases that the miss distance results get better as the guidance law becomes
more advanced.
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SUMMARY

In this chapter we have shown two new applications of the method of adjoints for
mixed continuous discrete systems. The first application involved multiple sam-
plers used in a system in which measurement data was first preprocessed at one
sampling rate and then used for input to a fading memory filter operating at
another sampling rate. The second application involved taking the adjoint of a
three-state discrete Kalman filter in the homing loop. In both examples exper-
iments were conducted with a forward model to ensure that the adjoint was
taken correctly.
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CHAPTER 30

Miscellaneous Tactical Missile
Guidance Topics

INTRODUCTION

In this chapter we shall discuss two important topics that have not yet been pre-
sented. The first topic covers the special case of shaping the interceptor trajectory
against a stationary target without requiring time to go information. This new
method will be compared to optimal guidance techniques for shaping the trajec-
tory that require time to go information. The next topic will be in finding the
minimum achievable miss distance with a radar homing missile. Formulas will
be developed that depend on error sources beyond the control of the missile
designer for establishing the minimum rms miss distance. Techniques for achiev-
ing the minimum possible rms miss are discussed and examples demonstrating
their utility are presented.

BIASED PROPORTIONAL NAVIGATION FOR TRAJECTORY SHAPING AGAINST
STATIONARY TARGETS [1]

In Chapter 24 we showed how optimal guidance techniques could be used against
maneuvering targets to shape the trajectory of the interceptor so that it could hit
the target with a desired final impact angle using minimum acceleration.
However, as with other advanced guidance laws, the implementation of optimal
guidance requires knowledge of the time to go until intercept. Time to go infor-
mation might be available in radar homing missiles but may not be available
for infrared homing missiles. In this section we shall show that for the special
case of a stationary target, the missile trajectory can also be shaped by using
biased proportional navigation. The form of biased proportional navigation dis-
cussed only requires line-of-sight rate information and knowledge of the missile’s
own velocity for the successful implementation of the guidance law. More com-
plete details on using biased proportional navigation for hitting a stationary
target can be found in Ref. 1.
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The missile-target engagement geometry for a stationary target is depicted in
Fig. 30.1. Here we can see that the missile is at an arbitrary initial flight path angle
gIC. We desire to hit the stationary target at a final flight path angle gF using
reasonable amounts of acceleration.

In Chapter 24 we showed that the optimal trajectory guidance law in which we
hit the target, minimize the integral of the commanded acceleration squared, and
attain a final line-of-sight angle lF is given by

nc ¼ 4Vc _lþ nT þ 2Vc(l� lF)
tgo

where nc is the commanded missile acceleration, Vc is the closing velocity, nT is the
target maneuver, l is the line-of-sight angle, _l is the line-of-sight rate and tgo is the
time to go until intercept. If the target is stationary, there is no target maneuver
and the final line-of-sight angle is the final flight path angle or

nT ¼ 0

gF ¼ lF

Under these conditions the optimal guidance law against a stationary target
simplifies to

nc ¼ 4Vc _lþ 2Vc(l� gF)
tgo

The optimal guidance law, in addition to hitting the target and achieving a
final flight path angle, is suppose to minimize the integral of the acceleration
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Fig. 30.1 Engagement geometry for stationary target.
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squared or

Performance Index ¼
ðtF
0

n2cdt

In addition, we shall use the preceding performance index to see how efficient
biased proportional navigation is when compared to optimal guidance. Pro-
portional navigation, which does not make use of closing velocity information,
can be written in terms of the misile flight path rate _g as [2]

_g ¼ N _l

where _l is the line-of-sight rate and N is the navigation ratio. It is important to
note that N in general is not equal to the effective navigation ratio N0 previously
discussed in Chapter 2. If the missile acceleration command is perpendicular to
the velocity vector, we can say that

_g ¼ nc
VM

Therefore we can say that this implementation of proportional navigation,
where closing velocity information is not required, can also be written as

nc ¼ VM _g ¼ NVM _l

If we equate this form of proportional navigation, where the acceleration
command is perpendicular to the velocity vector, to the traditional form of pro-
portional navigation where the acceleration command is perpendicular to the
line-of-sight we obtain

nc ¼ NVM _l ¼ N 0Vc _l

which means that the navigation ratio and the effective navigation ratio are related
according to

N ¼ N 0 Vc

VM

For a stationary target the closing velocity is approximately the missile vel-
ocity, so in this particular case the two navigation ratios are approximately
equal. Biased proportional navigation is proportional navigation plus an extra
term and can be expressed in terms of the flight path rate as

_g ¼ N _lþ bias

where the bias can be zero for different portions of the flight.
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Now let us see how we can choose a value for the bias that will help us shape
the missile trajectory. If we integrate the preceding equation from 0 to tF we obtain

gF � gIC ¼ N(lF � lIC)þ biasDt

where Dt is the amount of time the bias is on (that is, has a non-zero value). For a
stationary target

lF ¼ gF

we can use substitution to yield

gF � gIC ¼ N(gF � lIC)þ biasDt

Thus we can solve the preceding equation for the bias yielding

bias ¼ �gF(N � 1)þ NlIC � gIC
Dt

In other words if the missile is on an initial flight path angle gIC and we wish
to hit the target with a final flight path angle gF, we can solve for the bias by select-
ing a value for the amount of time Dt the bias is on.

Listing 24.2, which contains the optimal trajectory shaping guidance law, has
been modified for the case of the stationary target and appears in Listing 30.1.
Listing 30.1 provides the option of either using optimal trajectory shaping guid-
ance law (IGUID ¼ 0) or biased proportional navigation (IGUID ¼ 1). We can see
that the units in Listing 30.1 have been converted to the metric system and the
nominal case is one in which the missile is attempting to hit a stationary target
10 km downrange with a final flight path angle of –90 deg. The missile is launched
with a 30-deg heading error (or initial flight path angle of 30 deg) and the initial
missile velocity is 250 m/s. So far in our work to date the missile acceleration
command has always been perpendicular to the line of sight. In this simulation
we have the additional capability of seeing what happens if the acceleration com-
mand is perpendicular to the missile velocity vector (ICHOICE ¼ 1) or to the line
of sight (ICHOICE ¼ 0). If biased proportional navigation is used (IGUID ¼ 1) the
nominal case indicates that the bias is turned on at time zero (TBEG ¼ 0) and
turned off 30 s later (DELT ¼ 30). The performance index (X ¼ integral of com-
manded missile acceleration squared at end of flight), flight path angle, and
missile velocity are written to a file so that results can be compared. Differences
between Listing 24.2 and Listing 30.1 are highlighted in bold.

LISTING 30.1 TWO-DIMENSIONAL ENGAGEMENT SIMULATION WITH OPTIMAL TRAJECTORY
SHAPING AND BIASED PROPORTIONAL NAVIGATION GUIDANCE OPTIONS

n=0 ;
IGUID=0 ;
ICHOICE=0 ;
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GAMDEG=30. ;
GAMIC=GAMDEG/57.3 ;
DELT=30. ;
TBEG=0. ;
TEND=TBEG+DELT ;
XNP=3. ;
RM1IC=0. ;
RM2IC=0. ;
RT1IC=10000.*3.28 ;
RT2IC=0. ;
VM=250.*3.28 ;
XNCLIMG=10. ;
GAMFDEG=-90. ;
H=.0001 ;
XNCLIM=32.2*XNCLIMG ;
RM1=RM1IC ;
RM2=RM2IC ;
RT1=RT1IC ;
RT2=RT2IC ;
VT1=0. ;
VT2=0. ;
T=0. ;
S=0. ;
RTM1=RT1-RM1 ;
RTM2=RT2-RM2 ;
RTM=sqrt(RTM1^2+RTM2^2) ;
XLAM=atan2(RTM2,RTM1) ;
VM1=VM*cos(GAMIC) ;
VM2=VM*sin(GAMIC) ;
VTM1=VT1-VM1 ;
VTM2=VT2-VM2 ;
VC=-(RTM1*VTM1+RTM2*VTM2) / RTM ;
GAMF=GAMFDEG/57.3 ;
BIASDEG=(-GAMFDEG* (XNP-1.) + XNP*XLAM*57.3-GAMDEG)/DELT ;
BIAS=BIASDEG/57.3 ;
X=0. ;
while VC .=0

if RTM ,1000
H= .00001 ;

else
H= .0001 ;

end
RM1OLD=RM1 ;
RM2OLD=RM2 ;
VM1OLD=VM1 ;
VM2OLD=VM2 ;
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XOLD=X ;
STEP=1 ;
FLAG=0 ;
while STEP ,=1

if FLAG==1
STEP=2 ;
RM1=RM1+H*VM1 ;
RM2=RM2+H*VM2 ;
VM1=VM1+H*AM1 ;
VM2=VM2+H*AM2 ;
X=X+H*XD ;
T=T+H ;

end
GAM=atan2 (VM2,VM1) ;
VM=sqrt (VM1^2+VM2^2) ;
RTM1=RT1-RM1 ;
RTM2=RT2-RM2 ;
RTM=sqrt(RTM1^2+RTM2^2) ;
VTM1=VT1-VM1 ;
VTM2=VT2-VM2 ;
VC= -(RTM1*VTM1+RTM2*VTM2) / RTM ;
XLAM=atan2(RTM2,RTM1) ;
XLAMD=(RTM1*VTM2-RTM2*VTM1)/(RTM*RTM) ;
if IGUID==0

TGO=RTM/VC ;
XNC=4. *VC*XLAMD+2. *VC*(XLAM-GAMF) / TGO ;

else
if T,TBEG

GAMD=XNP*XLAMD ;
XNC=VM*GAMD ;

elseif T,TEND
GAMD=XNP*XLAMD+BIAS ;
XNC=VM*GAMD ;

else
GAMD=XNP*XLAMD ;
XNC=VM*GAMD ;

end
end
if XNC.XNCLIM

XNC=XNCLIM ;
end
if XNC,-XNCLIM

XNC=-XNCLIM ;
end
if ICHOICE==0

AM1=-XNC*sin (XLAM) ;
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AM2=XNC*cos(XLAM) ;
else

AM1=-XNC*sin(GAM) ;
AM2=XNC*cos(GAM) ;

end
XD=XNC*XNC ;
FLAG=1 ;

end
FLAG=0 ;
RM1= .5* (RM1OLD+RM1+H*VM1) ;
RM2= .5* (RM2OLD+RM2+H*VM2) ;
VM1= .5* (VM1OLD+VM1+H*AM1) ;
VM2= .5* (VM2OLD+VM2+H*AM2) ;
X= .5*(XOLD+X+H*XD) ;
S=S+H ;
if S.= .09999

S=0. ;
n=n+1 ;
RT1K=RT1/3280. ;
RT2K=RT2/3280. ;
RM1K=RM1/3280. ;
RM2K=RM2/3280. ;
XNCG=XNC/32.2 ;
GAMDEG=GAM*57.3 ;
VMM=VM/3.28 ;
XM=X/(3.28*3.28) ;
ArrayT (n) =T ;
ArrayRT1K (n) =RT1K ;
ArrayRT2K (n) =RT2K ;
ArrayRM1K (n) =RM1K ;
ArrayRM2K (n) =RM2K ;
ArrayXNCG (n) =XNCG ;
ArrayGAMDEG (n) =GAMDEG ;
ArrayXM (n) =XM ;

end
end
figure
plot(ArrayRT1K, ArrayRT2K, ArrayRM1K, ArrayRM2K), grid
title( ’ Engagement Geometry ’ )
xlabel( ’ Downrange (Kft) ’ )
ylabel( ’ Altitude (Kft) ’ )
figure
plot(ArrayT,ArrayXNCG),grid
title( ’ Commanded Acceleration ’ )
xlabel( ’ Time (Sec) ’ )
ylabel( ’ XNC (G) ’ )
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figure
plot(ArrayT, ArrayGAMDEG), grid
title( ’ Flight Path Angle ’ )
xlabel( ’ Time (Sec) ’ )
ylabel( ’ GAM (Deg) ’ )
clc
output=[ArrayT’,ArrayRT1K’,ArrayRT2K’,ArrayRM1K’,ArrayRM2K’,...

ArrayXNCG’,ArrayGAMDEG’] ;
save datfil.txt output /ascii
disp ’ *** Simulation Complete ’
RTM=sqrt(RTM1^2+RTM2^2)
VM=sqrt(VM1^2+VM2^2)

For a quick review the nominal case of Listing 30.1 was run in which the
optimal trajectory shaping guidance law was used (IGUID ¼ 0) and the missile
acceleration command was perpendicular to the line of sight (ICHOICE ¼ 0).
Another case was run in which the same optimal guidance law was used but
with the missile acceleration command perpendicular to the missile velocity
vector (ICHOICE ¼ 1). We can see from Fig. 30.2 that in both cases the missile tra-
jectories are nearly identical and the missile hits the stationary target near verti-
cally. However, Fig. 30.3 shows that the commanded acceleration profiles are
vastly different. The maximum value of the acceleration command that is per-
pendicular to the line of sight is much smaller than when the acceleration
command is perpendicular to the velocity vector and the flight time is much
longer. Figure 30.4 shows that both guidance command implementations result
in the flight path angle approaching –90 deg at intercept. Most importantly
Fig. 30.5 shows that dramatic trajectory shaping causes a severe missile velocity
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Fig. 30.2 Possible trajectories using optimal guidance for –90-deg impact against
stationary target.

784 TACTICAL AND STRATEGIC MISSILE GUIDANCE



loss when the missile acceleration command is perpendicular to the line of sight
and no velocity loss at all when the missile acceleration command is perpendicular
to the velocity vector. From a practical point of view the velocity loss in this
example cannot be tolerated because the actual acceleration capability of the
missile diminishes as the velocity of the missile decreases. In future studies of tra-
jectory shaping in this section we shall assume that the acceleration command is
perpendicular to the velocity vector (ICHOICE ¼ 1).

Next the optimal trajectory shaping guidance law was compared to biased pro-
portional navigation for the case in which the acceleration commands were per-
pendicular to the velocity vector. Biased proportional navigation was considered
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Fig. 30.3 Possible commanded acceleration profiles using optimal guidance for -90-deg
impact against stationary target.
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when the bias started at time zero and lasted for 30 s. In addition another case
was considered when the bias started at 10 s and lasted for 30 s. We can see
from Fig. 30.6 that both guidance laws result in missile trajectories that hit the
stationary target near vertically. However the optimal guidance law trajectory is
much tighter. We can also see from Fig. 30.6 that starting the bias later at 10 s
also tightens the trajectory of the missile using biased proportional navigation.
Figure 30.7 shows that the commanded acceleration profiles for the various gui-
dance approaches are quite different but the maximum accelerators are similar.
As expected, the flight time is much shorter for the tighter trajectories (optimal
guidance case and biased proportional navigation when bias starts at 10 s).
Figure 30.8 shows that both guidance laws achieve success in that the flight
path angle approaches –90 deg at intercept. Figure 30.9 shows that although
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decrease significantly when optimal trajectory shaping guidance law is used.
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the performance index is smaller for the case in which the optimal guidance law is
used but the performance index for biased proportional navigation starting at time
zero is only 33% larger. These results indicate that the acceleration requirements
for biased proportional navigation against a stationary target should not be signifi-
cantly higher than that of optimal guidance.

Figure 30.10 demonstrates that when the initial flight path angle is 30 deg,
biased proportional navigation hits the stationary target for a variety of final
impact angles. However Fig. 30.11 shows that more missile acceleration is
required as the desired final impact angle increases.

In this section we have shown that for the problem of hitting a stationary
target with a desired impact angle, biased propotional navigation is competitive
with the optimal trajectory shaping guidance law. Optimal guidance does requires
a smaller performance index (smaller integral of acceleration squared) than biased
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proportional navigation. However, the main advatage of biased proportional navi-
gation over optimal guidance in the case of a stationary target is that time-to-go
information is not required.

SMALLEST POSSIBLE MISS DISTANCE FOR A RADAR HOMING MISSILE

In preliminary analysis it is sometimes of interest to find out the smallest possible
miss distance a radar homing missile can achieve [3]. This calculation can be done
by assuming the missile has infinite acceleration capability and that the two main
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sources of error are glint noise and target maneuver. The missile designer has no
control over these error sources because they depend on the target. The standard
deviation of the glint noise sGL is approximately one fifth of the target length that
is perpendicular to the line of sight. This noise is highly correlated and can be
modeled as white noise through a low-pass filter where the time constant of the
low-pass filter TGL can range from 0.1 s to 0.25 s [4].

However if a frequency agile radar is available the glint can simply be approxi-
mated as white noise as far as the guidance system is concerned [2]. If frequency
agility is applied at the rate fs then

fs ¼ 1
Ts

where Ts is the sampling time of the frequency agile radar. The spectral density of
the white glint noise in units squared per Hz is related to the standard deviation of
the glint according to

FGL ¼ s2
GLTs

The preceding relationship is identical to the one we used in Chapter 4 with the
sampling time Ts being replaced by the integration interval.

Two factors will determine system performance if the missile has infinite
acceleration capability. The first factor is the Kalman filter used to estimate the
target states. If the Kalman filter process noise model is matched to the expected
target maneuver and if the filter measurement noise model is matched to the
actual measurement noise, then the filter is optimal. For the three-state Kalman
filter discussed throughout this text, the first state is relative position and the
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square root of the first diagonal element of the covariance matrix represents the
smallest possible rms value of the error in the estimate of position. As we
cannot control the missile any better than we can estimate the states, this quantity
also represents the smallest possible rms miss distance. The second factor is the
guidance law. If we use an optimal guidance law (also matched to the shape of
the expected maneuver) we should be able to achieve the minimum possible
rms miss provided we have adequate missile acceleration capability and that the
flight time is long enough so that system transients, such as heading error do
not contribute to the miss.

If the sampling time of the guidance system is sufficiently small, the perform-
ance of a discrete Kalman filter will approach that of a continuous Kalman filter.
In this section we shall show that the steady state, closed-form solutions for the
diagonal elements of the covariance matrix of a continuous Kalman filter that
depends on the glint noise and target maneuver levels can be found.

The original three-state linear Kalman filter of Chapter 9 was derived based
on the homing loop model of Fig. 30.12. Recall that in this guidance system
model we measured noisy relative position y� and were attempting to estimate
relative position, relative velocity, and target acceleration. As was the case in
Chapter 9, the achieved missile acceleration nL was assumed to be known, and
the target acceleration was considered to be modeled as a white noise through
an integrator. It was shown in Chapter 4 that the shaping filter equivalent of a
target maneuver with constant amplitude and random starting time (or uniformly
distributed target maneuver) is mathematically equivalent in terms of second-
order statistics to white noise through an integrator.

According to the results of Chapter 4, the spectral density of the white noise
source us depicted in Fig. 30.12 is shown to be

Fs ¼
n2TMAX

tF

where nTMAX is the assumed maximum target maneuver level magnitude and tF
the flight time over which the starting time of the maneuver is equally likely to
occur. In this example un is the measurement noise which is assumed to be

Fig. 30.12 Homing loop model to three-state Kalman filter development.
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white glint noise. The model of Fig. 30.12 can be expressed in state space form as

_y
€y
_nT

2
4

3
5 ¼

0 1 0
0 0 1
0 0 0

2
4

3
5 y

_y
nT

2
4

3
5þ

0
�1
0

2
4

3
5nL þ 0

0
us

2
4

3
5

Because the systems dynamics matrix of the preceding equation is given by

F ¼
0 1 0
0 0 1
0 0 0

2
4

3
5

and the continuous process noise matrix can be found from

Q ¼ E
0
0
us

2
4

3
5 0 0 us½ �

8<
:

9=
; ¼

0 0 0
0 0 0
0 0 Fs

2
4

3
5 ¼ n2TMAX

tF

0 0 0
0 0 0
0 0 1

2
4

3
5

The measurement equation can be seen from Fig. 30.12 to be

y� ¼ y þ un ¼ 1 0 0½ �
y
_y
nT

2
4

3
5þ un

Therefore the measurement matrix can be written by inspection of the previous
equation as

H ¼ 1 0 0½ �

and the measurement noise matrix is a scalar given by

R ¼ E[unu
T
n ] ¼ Fn

The differential equation for the covariance matrix of a continuous Kalman
filter is given by [5]

_P ¼ �PHTR�1HP þ PFT þ FP þ Q

where P is the covariance matrix and has the property of being symmetric. We can
solve the preceding equation in the steady state by setting the derivative of the
covariance matrix to zero or

0 ¼ �PHTR�1HP þ PFT þ FP þ Q
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Substitution of the appropriate matrices into the preceding equation yields

0 0 0
0 0 0
0 0 0

2
4

3
5 ¼ �

P11 P12 P13
P12 P22 P23
P13 P23 P33

2
4

3
5 1

0
0

2
4
3
5 1
Fn

1 0 0½ �
P11 P12 P13
P12 P22 P23
P13 P23 P33

2
4

3
5

þ
P11 P12 P13
P12 P22 P23
P13 P23 P33

2
4

3
5 0 0 0

1 0 0
0 1 0

2
4

3
5þ

0 1 0
0 0 1
0 0 0

2
4

3
5

�
P11 P12 P13
P12 P22 P23
P13 P23 P33

2
4

3
5þ

0 0 0
0 0 0
0 0 Fs

2
4

3
5

After taking symmetry into account and multiplying out the equations we get the
following six scalar algebraic equations.

P2
11 ¼ 2P12Fn

P2
12 ¼ 2P23Fn

P2
13 ¼ FsFn

P11P12 ¼ Fn(P22 þ P13)

P11P13 ¼ P23Fn

P12P13 ¼ P33Fn

After much algebra we find that

P11 ¼ 2F1=6
s F5=6

n

Because the square root of P11 represents the error in the estimate of relative pos-
ition, taking the square root of both sides of the preceding equation yields the best
the filter can estimate relative position or

ffiffiffiffiffiffiffi
P11

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F1=6

s F5=6
n

q

Because we cannot control the missile any better than we can estimate, the preced-
ing equation represents also the smallest possible achievable rms miss.

In order to illustrate the use of the preceding formula let us assume we have a
guidance system in which there is a 0.01-s sampling time, a standard deviation of
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10 ft of glint noise and a 5-g target maneuver whose starting time is equally likely
to occur anywhere (that is, uniformly distributed) during a 10-s flight. Therefore
the power spectral density (in units squared per Hertz) of the target maneuver and
glint noise are given by

Fs ¼ n2TMAX

tF
¼ 1612

10
¼ 2592

FN ¼ s2
GLTs ¼ 102�0:01 ¼ 1

Therefore the standard deviation of the first diagonal element of the covariance
matrix or rms value of the smallest possible miss is

ffiffiffiffiffiffiffi
P11

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F1=6

s F5=6
n

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�25921=6�15=6

p
¼ 2:72 ft

In the real word we want to build a discrete three-state Kalman filter. As was
shown in Chapter 9, the gains for such a filter are obtained by numerically solving
the recursive matrix Ricatti difference equations by iteration. As was shown in
Chapter 9, the difference equations to be solved are

Mk ¼ FkPk�1F
T
k þ Qk

Kk ¼ MkH
T[HMkH

T þ Rk]
�1

Pk ¼ (I � KkH)Mk

where Pk is the covariance matrix after an update, Fk is the fundamental matrix,
Qk is the discrete process noise matrix, Mk is the covariance matrix before
an update, Rk is the discrete noise matrix and Kk is the Kalman gain matrix. In
the preceding difference equations we need to find Rk, Fk and Qk so that we
can iterate and solve for the discrete covariance matrix Pk. It was shown in
Chapter 9 that the discrete fundamental matrix can easily be derived from the
systems dynamics matrix F as

Fk ¼
0 Ts :5T2

s
0 1 Ts

0 0 1

2
4

3
5

The discrete measurement noise Rk is simply the variance of the glint noise or

Rk ¼ s 2
GL
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Finally Chapter 9 showed that the discrete process noise matrix can be found
from the continuous process noise matrix as

Qk ¼
ðTs

0
F(t)QFT(t)dt

¼
ðTs

0

1 t 0:5t 2

0 1 t
0 0 1

2
4

3
5 0 0 0

0 0 0
0 0 Fs

2
4

3
5 1 0 0

t 1 0
0:5t2 t 1

2
4

3
5dt

¼ Fs

T5
s

20
T4
s

8
T3
s

6
T4
s

8
T3
s

3
T2
s

2
T3
s

6
T2
s

2
Ts

2
6666664

3
7777775

Listing 30.2 presents a simulation of the discrete Ricatti equations solved for
different times of flight for the case of a 5-g uniformly distributed target maneuver
and 10 ft of glint noise. The formula, obtained by solving the steady-state continu-
ous Ricatti equations, for the square root of the first diagonal element is presented
for comparison. In theory as the sampling time gets smaller, the continuous and
discrete answers for the square root of the first diagonal element of the covariance
matrix should agree.

LISTING 30.2 SOLVING DISCRETE RICATTI EQUATIONS

n=0;
VC=5.*3280.;
XNTIC=161.;
VM=3000.;
HEDEG=20.;
SIGNOISE=10.;
TS=.01;
for TF=.2:.2:10.0

TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIS=XNTIC*XNTIC/TF;
PHIN=SIGNOISE*SIGNOISE*TS;
SIGPOS=SIGNOISE;
SIGN2=SIGPOS^2;
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P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEG/57.3)^2;
P23=0.;
P33=XNTIC*XNTIC;
T=0.;
for T=TS:TS:TF

TGO=TF-T+.000001;
RTM=VC*TGO;
SIGPOS=SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)+TS5*PHIS/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+.5*TS2*P33)
M12=M12+TS4*PHIS/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIS*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIS*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIS;
M33=P33+PHIS*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;
SP11=sqrt(P11);

end;
FORM=sqrt(2.*(PHIS^.16667)*(PHIN^.83333))
n=n+1;
ArrayT(n)=T;
ArrayFORM(n)=FORM;
ArraySP11(n)=SP11;

end;
figure
plot(ArrayT’,ArrayFORM’,ArraySP11),grid
title(’RMS miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’RMS MISS (Ft) ’)
clc
output=[ArrayT’,ArrayFORM’,ArraySP11’];
save datfil.txt output /ascii
disp(’Simulation Complete’)
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Listing 30.2 was run for the cases in which the sampling time was 0.1 s and
0.01 s. We can see from Fig. 30.13 that the formula and discrete solutions are vir-
tually identical when the sampling time is 0.01 s. However, when the sampling
time is 0.1 s there is more of a difference between the formula and the solution
obtained by solving the discrete Ricatti equations. As expected, we can also see
that better performance can be obtained in a homing guidance system with
smaller sampling times.

A homing loop, based on the linearized guidance system model used in
Chapter 9 is shown in Fig. 30.14. In this homing loop the optimal guidance
law, derived in Chapter 8, is used against the random uniformly distributed
target maneuver. The homing loop includes the three-state Kalman filter that is
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Fig. 30.13 Formula agrees with simulation results when sampling time is small.

Fig. 30.14 Homing loop with random error sources, a three-state Kalman filter, and
optimal guidance law.
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required to estimate the states required by the optimal guidance law. In addition,
there is a single time constant representation of the flight control system that indi-
cates that there is a delay between the commanded and achieved missile accelera-
tion. The transfer function of the flight control system is given by

nL
nc

¼ 1
1þ sT

where T is the flight control system time constant. In Fig. 30.14 we can also see
that the acceleration command is not limited. As was previously mentioned, the
two sources of error in this homing loop are glint noise and a uniformly distrib-
uted target maneuver.

In Chapter 8 it was shown the optimal guidance law for a single time constant
guidance system where the target is executing a constant maneuver is given by

ncOG ¼ N 0

t2go
[y þ _ytgo þ 0:5nTt

2
go � nLT

2(e�x þ x � 1)]

where the effective navigation ratio can be expressed as

N 0 ¼ 6x2(e�x � 1þ x)
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

and x is defined as

x ¼ tgo
T

Listing 30.3 models the homing loop of Fig. 30.14 with the uniformly distrib-
uted target maneuver and the uncorrelated or white glint noise. Since there is
measurement noise and a random target maneuver modeled in Listing 30.3, the
simulation has to be run in the Monte Carlo mode (repeated simulation trials,
each of which has a different maneuver starting time and different sign of the
maneuver amplitude) in order to calculate the rms miss distance. The flight
time is also varied in this simulation and 100 run Monte Carlo sets are made
for flight times ranging from 0.2 s to 10 s in steps of 0.2 s. Therefore each
case studied consists of 5000 runs (100 runs times 50 flight times). We can see
from Listing 30.3 that the 3-state Kalman filter and optimal guidance law are
also modeled.

LISTING 30.3 MONTE CARLO SIMULATION OF THREE-STATE KALMAN FILTER, OPTIMAL
GUIDANCE LAW, UNCORRELATED GLINT NOISE AND UNIFORMLY DISTRIBUTED TARGET
MANEUVER IN HOMING LOOP

%This simulation runs very slowly due to the small integration interval
%and large number of runs
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%Preallocation
Z=zeros(size(1:1000));
I=zeros(size(1:50));
TF=zeros(size(1:50));
count=0;
VC=5.*3280.;
XNTIC=161.;
YIC=0.;
VM=3000.;
HEDEG=20.;
XNP=3.;
SIGNOISE=10.;
TS=.01;
TAU=.2;
RUN=100;
AMAXG=99999999.;
PZ1=.0001;
AMAX=AMAXG*32.2;
PHIN=SIGNOISE*SIGNOISE*TS;
for TF=.2:.2:10.0,

Z1=0.;
for JJ=1:RUN

SUM=rand(1);
TSTART=TF*SUM;
PZ=rand(1);
PZ=PZ-.5;
if PZ . 0

COEF=1;
else

COEF=-1;
end;
Y=0.;
YD=0.;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIS=XNTIC*XNTIC/TF;
RTM=VC*TF;
SIGPOS=SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEG/57.3)^2;
P23=0.;
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P33=XNTIC*XNTIC;
T=0.;
H=.001;
S=0.;
YH=0.;
YDH=0.;
XNTH=0.;
XNC=0.;
XNL=0.;
while T ,= (TF - 1e-5)

YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;
STEP=2;

end;
if T,TSTART

XNTC=0.;
else

XNTC=COEF*XNTIC;
end;
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XNLD=(XNC-XNL)/TAU;
XNT=XNTC;
YDD=XNT-XNL;
FLAG=1;

end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
if S.=(TS - 1e-5)
S=0.;

TGO=TF-T+.000001;
RTM=VC*TGO;
SIGPOS=SIGNOISE;
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SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22

+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)

+TS5*PHIS/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23

+.5*TS2*P33);
M12=M12+TS4*PHIS/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIS*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIS*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIS;
M33=P33+PHIS*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;
YNOISE=SIGNOISE*randn;
YSTAR=Y+YNOISE;
RES=YSTAR-YH-TS*YDH-.5*TS*TS*(XNTH-XNL);
YH=K1*RES+YH+TS*YDH+.5*TS*TS*(XNTH-XNL);
YDH=K2*RES+YDH+TS*(XNTH-XNL);
XNTH=K3*RES+XNTH;
X=TGO/TAU;
ZEM2H=YH+YDH*TGO-XNL*TAU*TAU*(exp(-X)+X-1.)...

+.5*XNTH*TGO*TGO;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(PZ1+BOT1+BOT2);
XNEW=XNPP*XNL*(exp(-X)+X-1.)/(X*X);
XNC=XNPP*ZEM2H/TGO^2;
if XNC.AMAX

XNC=AMAX;
end;
if XNC,-AMAX

XNC=-AMAX;
end;

end;
end;
SP11=sqrt(P11);
Z(JJ)=Y;
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Z1=Z(JJ)+Z1;
XMEAN=Z1/JJ;

end;
SIGMA=0.;
Z1=0.;
Z2=0.;
for JJ=1:RUN,

Z1=(Z(JJ)-XMEAN)^2+Z1;
Z2=Z(JJ)^2+Z2;
if JJ==1,

SIGMA=0.;
RMS=0.;

else
SIGMA=sqrt(Z1/(JJ-1));
RMS=sqrt(Z2/(JJ-1));

end;
end;
FORM=sqrt(2.*(PHIS^.16667)*(PHIN^.8333));
count=count+1;
ArrayTF(count)=TF;
ArrayRMS(count)=RMS;
ArraySP11(count)=SP11;
ArrayFORM(count)=FORM;

end;
figure
plot(ArrayTF’,ArrayRMS’,ArrayTF’,ArrayFORM’,ArrayTF’,ArraySP11’),grid
title(’RMS miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’RMS MISS (Ft) ’)
clc
output=[ArrayTF’,ArrayRMS’,ArraySP11’,ArrayFORM’];
save datfil.txt output /ascii
disp(’Simulation Complete’)

The nominal case of Listing 30.3 was run and rms miss versus flight time
results from the Monte Carlo simulation are presented in Fig. 30.15. Superim-
posed on the graph are the predictions from the discrete matrix Ricatti equations
(square root of the first diagonal element of the covariance matrix). Also super-
imposed on Fig. 30.15 are the smallest possible rms miss results obtained from
the formula

ffiffiffiffiffiffiffi
P11

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F1=6

s F5=6
n

q
We can see that after the transients have died out, the Monte Carlo rms miss dis-
tance results are in very close agreement with both the predictions from the
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discrete and continuous Ricatti equations. This close rms miss distance agreement
means that we are controlling the missile via the optimal guidance law as well as
we can estimate the relative position state via the three-state Kalman filter. This
means that, in the absence of missile acceleration saturation effects, we can do
no better with any other guidance law against the uniformly distributed target
maneuver.

Listing 30.3 was rerun again with the flight control system time constant
increased from 0.2 s to 1 s. Figure 30.16 shows that the Monte Carlo rms miss dis-
tance results are now larger than the theoretical projections of the Ricatti
equations. As the optimal guidance law is suppose to cancel out the single-lag
flight control system dynamics perfectly, something appears to be wrong
because the rms miss should not increase in the absence of missile acceleration
saturation effects.
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Fig. 30.15 Optimal guidance is nearly able to achieve smallest possible rms miss distance.
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Fig. 30.16 Increasing flight control system time constant increases rms miss.
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In order to understand what happened when the flight control system time
constant was increased, let us review the expression for the navigation ratio in
the optimal guidance law. As was previously mentioned, the expression for the
optimal navigation ratio is given by

N 0 ¼ 6x2(e�x � 1þ x)
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

where

x ¼ tgo
T

If we examine the denominator of the formula for N0 we can see that as tgo or x
goes to zero, the denominator goes to zero. A careful examination of Listing
30.3 indicates that a division by zero was avoided by adding the term g to the
denominator in order to prevent the expression from blowing up as tgo
approached zero or

N 0 ¼ 6x2(e�x � 1þ x)
gþ 2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

The term g was set to 0.0001 and the optimal guidance law appeared to work
rather well in the experiments conducted so far.

The miss distance experiment of Fig. 30.16 was rerun, except this time g was
reduced from 0.0001 to 0.00000001. We can see from Fig. 30.17 that making g
closer to zero enabled the optimal guidance law to yield rms miss distance
results that were much closer to the theoretical predictions of the Ricatti
equations.
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Fig. 30.17 Reducing g enables optimal guidance to achieve smallest possible rms miss
when flight control system time constant is large.
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It appears from Fig. 30.17 that miraculous performance improvement can be
obtained by reducing g in the formula for the effective navigation ratio when the
flight control system time constant is large. However reducing g has the effect of
increasing the effective navigation ratio and missile acceleration near the end of
the flight. An increase in missile acceleration near the end of the flight can lead
to acceleration saturation and increased miss distance. Figure 30.18 shows that
for the case of a large flight control system time constant (T ¼ 1 s) we only get
very small miss distances when the missile acceleration limit is infinite. For a 3
to 1 (15 g missile acceleration limit) and a 5 to 1 (25 g missile acceleration
limit) missile acceleration advantages over the target the miss distances can be
quite large.

Let us go back to the original nominal case in which the flight control system
time constant was 0.2 s and the value of g used in the optimal guidance law was
0.0001. Figure 30.19 first shows that the rms miss distances are much smaller for a
5 to 1 and a 3 to 1 missile to target acceleration advantage than they were in
Fig. 30.18. Next, Fig. 30.19 shows that with a 5 to 1 missile to target acceleration
advantage we are not too far from the smallest possible rms miss.

In this section we have developed formulas for the minimimum possible rms
miss distance for the case in where there is white glint noise, a uniformly distrib-
uted target maneuver, and infinite missile acceleration capability. As these error
sources are up to the target rather than the missile designer, they place a lower
limit on the best achievable performance of a radar homing missile that has infi-
nite acceleration capability. Finite missile acceleration capability plus other
sources of error will only serve to increase the miss distance. In the next
chapter we shall investigate a guidance law that can achieve small miss distances
when the missile to target acceleration advantage is less than three.
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Fig. 30.18 Acceleration saturation effects influence our ability to compensate for large
flight control system time constants.
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CHAPTER 31

Comparison of Differential Game
Guidance With Optimal Guidance

INTRODUCTION

In Chapter 30 we showed that the minimum possible rms miss distance could be
achieved if the Kalman filter was matched to the real world, the missile had infinite
acceleration capability, the sampling time was small and the missile employed an
optimal guidance law that was matched to the shape of the target maneuver
assuming that it was known. In the example presented in Chapter 30, the
three-state discrete Kalman filter knew (via the process noise) and the guidance
law knew that the target was performing a random uniformly distributed constant
maneuver. It was shown that when there was infinite missile acceleration available
the rms miss distances that could be achieved approached the estimation capa-
bility of the optimal filter. However, when there was only a 3 to 1 missile to target
acceleration advantage, rms miss distance performance started to degrade. In this
chapter we shall see if other guidance approaches can yield better performance
than optimal guidance when the Kalman filter is not matched to the target man-
euver and there is a low missile-to-target acceleration advantage.

Pursuit-evasion differential game theory can be used to derive a guidance law
that does not depend on on the knowledge of the future target maneuver. An
important family of pursuit-evasion games assume linear kinematics and
bounded controls [1–8]. However, usually differential game theory guidance
laws with bounded controls have not been considered for practical application
in endoatmospheric missiles because of their bang-bang nature (meaning the
missile guidance command is either at plus or minus the maximum missile
acceleration capability) which may lead to excessive induced drag or severe actua-
tor requirements. In this chapter we shall initially disregard the practical
objections to differential game guidance with bounded controls in order to see
if there might be performance benefits to this unusual missile guidance approach.
If there are substantial performance benefits to differential game guidance with
bounded controls we will see if something simple can be done to make this
type of guidance law more practical.
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In this chapter we shall first review the various types of stressing target man-
euvers we shall consider for the missile guidance law comparison. Then, we shall
the use the three-state Kalman filter of Chapter 9 (its derivation based on a con-
stant amplitude target maneuver and starting time uniformly distributed over the
flight time). The three-state Kalman filter will be used for estimating states of a
variety of other challenging target maneuvers. Under these circumstances the
Kalman filter will no longer be optimal but should still work. The Kalman filter
will estimate the states required for the different guidance laws considered and
a performance comparison will be made. The performance comparison will be
made under very stressing conditions when there is only a 2 to 1 missile-to-target
acceleration advantage.

TRADITIONAL GUIDANCE LAW REVIEW

Proportional navigation is probably the world’s most popular guidance law
because of its robustness and ease of implementation. The guidance law can be
expressed as

ncPN ¼ N 0Vc _l

where ncPN is the missile acceleration command perpendicular to the line of sight,
N0 is a designer-chosen gain usually in the range of 3 to 5, Vc is the closing velocity,
and _l is the line-of-sight rate. Here it is assumed that the line-of-sight rate and
closing velocity can be measured by the seeker. Proportional navigation can
also be written in terms of the zero effort miss ZEM (meaning the miss that
would result if the target continued to do what it was doing and the missile did
not issue acceleration commands) as

ZEMPN ¼ y þ _ytgo

ncPN ¼ N 0Vc _l ¼ N 0ZEMPN

t2go

It can be shown that proportional navigation is an optimal guidance law if the
missile has ideal dynamics (that is, zero-lag guidance system), the target does
not maneuver, and N0 ¼ 3. Here optimal means that under ideal circumstances
proportional navigation can yield zero miss distance for the least amount of
missile acceleration (that is, the integral of the acceleration squared over the
flight time is minimized). If the target is maneuvering, proportional navigation
still works but another guidance law might do better.

The augmented proportional navigation guidance law assumes that the target
is executing a constant maneuver of magnitude nT. The guidance law is pro-
portional navigation plus an extra term to account for the target maneuver and
is given by

ncAPN ¼ N 0Vc _lþ 0:5N 0nT
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where it is assumed that the target acceleration can be estimated. It can be shown
that augmented proportional navigation is an optimal guidance law (that is, zero
miss and the integral of the acceleration squared is minimized) if the target exe-
cutes a constant maneuver and N0 ¼ 3. Augmented proportional navigation can
also be written in terms of the zero effort miss as

ncAPN ¼ N 0ZEMAPN

t2go

where

ZEMAPN ¼ y þ _ytgo þ 0:5nTt
2
go

Again, if the target executes another type of maneuver, augmented proportional
navigation still works but another guidance law might do better.

It was shown in Chapter 8 that missile flight control system dynamics can
cause miss distance if the target maneuvers a short time before intercept. The
flight control system dynamics cause an unwanted delay between the commanded
acceleration nc and the achieved missile acceleration nL. Let us assume that the
dynamics of the missile flight control system can be represented by the single-lag
network

nL
nc

¼ 1
1þ sT

where T is the approximate time constant of the missile flight control system.
Since large miss distances can result if the time constant is big, it is desirable to
keep the flight control system time constant as small as possible. If we also
assume that the target is executing a constant maneuver and the time constant
of the missile flight control system is known, then it can be shown that the
optimal guidance law which compensates for the flight control system dynamics
is given by

ncOG ¼ N 0

t2go
y þ _ytgo þ 0:5nTt

2
go � nL T

2 e�x þ x � 1ð Þ
h i

where the effective navigation ratio is no longer constant and can be expressed as

N 0 ¼ 6x2 e�x � 1þ xð Þ
2x3 þ 3þ 6x � 6x2 � 12xe�x � 3e�2x

and x is defined as

x ¼ tgo
T

The effective navigation ratio for the optimal guidance law is displayed in
Fig. 31.1. We can see that at the beginning of the flight (long time to go) the
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effective navigation ratio is approximately constant and is approaching 3. As we
get closer to intercept (small time to go), the effective navigation ratio grows
considerably.

DIFFERENTIAL GAME GUIDANCE LAW

Much work has been done in the past 30-plus years on guidance laws based on
differential game theory with bounded controls [1–8]. The concept of differential
pursuit-evasion games is based on assuming that the target maneuvering strategy
is the best for maximizing the miss distance. Against such target maneuver the
optimal stategy of the interceptor missile is the guidance law based on the solution
of a differential game. This guidance law is robust with respect to the actual target
maneuver by guaranteeing the smallest miss distance against any bounded target
maneuver. This guidance law, like the guidance laws of the previous section, is also
based on the zero effort miss concept but is bang-bang in nature (missile executes
either maximum positive or negative acceleration) because the control effort is not
penalized. The bang-bang nature of this guidance law may not make it suitable for
endoatmospheric application (possibly too much induced drag or excessive actua-
tor requirements), but for the moment we will put this practical concern aside.
The differential game guidance law with bounded controls considered in this
chapter is based on the zero effort miss from the optimal guidance law, assuming
ideal target dynamics, is given by

ncDG ¼ nMAXsign(ZEMDG)
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Fig. 31.1 Normalized effective navigation ratio for optimal guidance law.
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where the zero effort miss does not depend on the future target maneuver and is
given by

ZEMDG ¼ y þ _ytgo � nLT
2 e�x þ x � 1ð Þ

where

x ¼ tgo
T

We can see that the differential game guidance zero effort miss calculation does
not depend on any assumptions concerning the target maneuver type or even the
magnitude of the current target acceleration. The fact that this guidance law
does not require knowledge of the target maneuver means that this guidance
law should perform equally as well (or as poorly) against all types of target
maneuvers.

In the preceding guidance law it is assumed that the target dynamics are ideal
in the sense that the target can execute its maneuver instantaneously without a lag.
If there are target dynamics that can be represented by a first-order lag with time
constant TT and these dynamics are known to the pursuing interceptor then the
zero effort miss becomes

ZEMDG ¼ y þ _ytgo � nLT
2 e�x þ x � 1ð Þ þ nTT

2
T e�xT þ xT � 1ð Þ

where

xT ¼ tgo
TT

If target maneuver dynamics are considered then the target maneuver level must
be estimated with a Kalman filter. If target maneuver dynamics are neglected
(TT ¼ 0), then we can see from the zero effort miss calculation that the target
maneuver level does not have to be estimated.

TARGET MANEUVERS

For the guidance law comparison it is desireable to pick a set of random target
maneuvers of varying degrees of difficulty for the pursuing interceptor. The
first target maneuver considered, and one that has been used extensively in this
text, is the uniformly distributed target maneuver. This constant maneuver’s
starting time is random and equally likely to occur anywhere during the flight
(uniformly distributed over the flight time). The magnitude of the maneuver is
fixed but for any given flight the maneuver is equally likely to be either positive
or negative. An example of a 5-g uniformly distributed target maneuver is
shown in Fig. 31.2.

Another maneuver that is often used in missile guidance system analysis is the
Poisson (or random telegraph signal) target maneuver. This target maneuver,
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while not the most realistic, is probably the most challenging to intercept of all
possible target maneuvers because it stresses the missile guidance system. The
Poisson square wave or random telegraph signal is defined as a maneuver of
amplitude þb or –b. The length of time for which the maneuver nT(t) remains
in either the positive or negative direction is random. In particular, the number
of times the maneuver changes sign (zero crossings) during one second is given
by the Poisson distribution. If P(k) represents the probability of k sign changes
in tF seconds, then we can say that

P(k) ¼ (ytF)
ke�ytF

k!

where k is the number of sign changes and y is the average number of zero cross-
ings per second. Details on how to model the Poisson maneuver both in the
forward and adjoint time domains can be found in the appendix. An example
of a 5-g Poisson target maneuver with an average of 0.5 zero crossings per
second is displayed in Fig. 31.3. Generally speaking, if good performance can be
obtained against the Poisson maneuver, even better performance will be obtained
against other types of target maneuvers.

A random weave maneuver, originally discussed in Chapter 20 is a sinusoidal
maneuver of constant frequency with a starting time that is uniformly distributed
over the flight time and whose phase is uniformly distributed between 0 deg and
360 deg. A sample 5-g, 2-r/s random weave maneuver is displayed in Fig. 31.4.

The random vertical-S maneuver is one in which the target is always at
maximum positive or negative acceleration but the sign of the acceleration is period-
ically reversed. The starting time of the maneuver is uniformly distributed over the
flight time. A sample random 5-g, 2-r/s vertical-S maneuver is displayed in
Fig. 31.5.
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Fig. 31.2 Sample uniformly distributed constant 5-g target maneuver.
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GUIDANCE LAW COMPARISON

Figure 31.6 shows the homing loop when measurement angle noise and random
target maneuver are considered as the two sources of error that can cause miss
distance. Here the three-state Kalman filter, which was originally derived in
Chapter 9, is used to estimate the states required for guidance.

Using the three-state Kalman filter, sample estimates of each of the target
maneuver types are presented in Figs. 31.7–31.10. In the following examples
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Fig. 31.3 Sample 5-g Poisson target maneuver with an average of 0.5 zero crossings
per second.
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Fig. 31.4 Sample random 5-g, 2-r/s target weave maneuver.
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the angle measurement noise standard deviation is 0.1 mr and the sampling time
is 0.01 s. The assumed process noise adjusts the bandwidth of the Kalman filter.
The value of the continuous process noise matrix (used in deriving the discrete
process noise matrix) in the English system of units was assumed to be

Qc ¼
0 0 0
0 0 0
0 0 n2TMAX

tF

2
4

3
5 ¼

0 0 0
0 0 0
0 0 1612
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Fig. 31.5 Sample 5-g, 2-r/s random vertical-S target maneuver.

Fig. 31.6 Homing loop with measurement noise and three-state Kalman filter.
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We can see from Fig. 31.7 that the estimate of the random constant target
maneuver is excellent. This should not be surprising because the three-state
Kalman filter is optimal for this type of target maneuver. The worst estimate of
the target maneuver is for the Poisson maneuver case of Fig. 31.8. In this case
the filter cannot keep up with the zero crossings of the target. More process
noise or a wider bandwidth filter would have allowed the filter to follow the
target motion better at the expense of much noisier estimates. Figures 31.9 and
31.10 show that the filter can provide reasonable estimates of both the 2-r/s
weaving and vertical-S target maneuvers. However, the filter estimates in these
two examples lag the actual target maneuver.
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Fig. 31.8 Estimating Poisson target maneuver with three-state Kalman filter.
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Fig. 31.7 Estimating random constant target maneuver with three-state Kalman filter.
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The system parameters of our homing loop shown in Fig. 31.6 are defined
below in Table 31.1. We can immediately see that system performance will be a
challenge since there is only a 2 to 1 missile-to-target acceleration advantage.

A Monte Carlo simulation of Fig. 31.6 is used to generate rms miss distance
performance and appears in Listing 31.1. Nominally 50-run Monte Carlo sets
are run for each of 100 flight times (ranging from 0.1 s to 10 s in steps of 0.1 s)
in order to generate guidance law comparisons.
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Fig. 31.10 Estimating random vertical-S target maneuver with three-state Kalman filter.
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Fig. 31.9 Estimating random weave target maneuver with three-state Kalman filter.
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LISTING 31.1 LINEARIZED MONTE CARLO SIMULATION FOR COMPARING GUIDANCE LAW
EFFECTIVENESS WHEN NOISE AND FILTERING ARE CONSIDERED

% Runs very slowly because of small integration interval
%Preallocation
Z=zeros(size(1:1000));
I=zeros(size(1:50));
TF=zeros(size(1:50));
count=0;
TSW=1;
VC=5.*3280.;
XNTIC=161;
YIC=0.;
VM=3000.;
HEDEG=20.;
XNP=3.;
SIGNOISE=.0001;
TS=.01;
TAU=.2;
NOISE=1;
RUN=50;
% TYPE OF GUIDANCE (0=PN,1=OG,2=DG,3=HYBRID)
APN=1;
XLIM=322;
XNU=.5;
W=2;
% TYPE OF MANEUVER (1=POISSON,2=UNIF CONST,3=RANDOM SINE,4=RANDOM VS
ICONSTANT=2;
for TF=.1:.1:10.0,

Z1=0;
for I=1:RUN

SUM=rand(1);

TABLE 31.1 GUIDANCE SYSTEM PARAMETERS

Parameter Definition Value

nT Target maneuver magnitude 5 g

sNoise Measurement noise standard deviation 0.0001 r

T Flight control system time constant 0.2 s

Ts Kalman filter sampling time 0.01 s

aMAX Missile acceleration limit 10 g

Vc Closing velocity 5 km/s
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TSTART=TF*SUM;
PZ=rand(1);
PZ=PZ-.5;
if PZ . 0

COEF=1;
else

COEF=-1;
end;

SUM=rand(1);
PHASE=6.28*SUM;

Y=YIC;
YD=0;
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
PHIN=XNTIC*XNTIC/10;
RTM=VC*TF;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
P11=SIGN2;
P12=0.;
P13=0.;
P22=(VM*HEDEG/57.3)^2;
P23=0.;
P33=XNTIC*XNTIC;
T=0.;
H=.001;
S=0.;
YH=0.;
YDH=0.;
XNTH=0.;
XNC=0.;
XNL=0.;
BETA=XNTIC;
QFIRST=1;
SIG=1./sqrt(2.*XNU);
XNOISE=randn;
if XNOISE . 0

XNTP=BETA;
else

XNTP=-BETA;
end;
DELT=9999.;
TNOW=0.;
while T ,= (TF - 1e-5)
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if QFIRST==1
XNOISE1=SIG*randn;
XNOISE2=SIG*randn;
DELT=XNOISE1^2+XNOISE2^2;
QFIRST=0;
TNOW=T;

end;
if T.= (DELT+TNOW)

XNTP=-XNTP;
QFIRST=1;

end;
YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;
STEP=2;

end;
if ICONSTANT==1

XNTC=XNTP;
elseif ICONSTANT==2

if T , TSTART
XNTC=0.;

else
XNTC=COEF*XNTIC;

end;
elseif ICONSTANT==3

if T , TSTART
XNTC=0.;

else
XNTC=XNTIC*sin(W*T+PHASE);

end;
else

if T , TSTART
XNTC=0.;

else
XNTC=COEF*XNTIC*sign(sin(W*(T-TSTART)));

end;
end;
TGO=TF-T+.00001;

COMPARISON OF DIFFERENTIAL GAME GUIDANCE WITH OPTIMAL GUIDANCE 819



RTM=VC*TGO;
XLAM=Y/(VC*TGO);
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
XNLD=(XNC-XNL)/TAU;
YDD=XNTC-XNL;
FLAG=1;

end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
if S . =(TS - 1e-5)

S=0.;
TGO=TF-T+.000001;
RTM=VC*TGO;
SIGPOS=RTM*SIGNOISE;
SIGN2=SIGPOS^2;
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22

+.5*TS2*P23);
M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)

+TS5*PHIN/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*

(P13+TS*P23+.5*TS2*P33). . .
+TS4*PHIN/8.;

M13=P13+TS*P23+.5*TS2*P33+PHIN*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIN*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIN;
M33=P33+PHIN*TS;
K1=M11/(M11+SIGN2);
K2=M12/(M11+SIGN2);
K3=M13/(M11+SIGN2);
P11=(1.-K1)*M11;
P12=(1.-K1)*M12;
P13=(1.-K1)*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;

XLAMNOISE=SIGNOISE*randn;
YSTAR=RTM*(XLAM+XLAMNOISE);
RES=YSTAR-YH-TS*YDH-.5*TS*TS*(XNTH-XNC);
YH=K1*RES+YH+TS*YDH+.5*TS*TS*(XNTH-XNC);
YDH=K2*RES+YDH+TS*(XNTH-XNC);
XNTH=K3*RES+XNTH;
XLAMDH=(YH+YDH*TGO)/(VC*TGO*TGO);

X=TGO/TAU;
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ZEM1H=YH+YDH*TGO-XNL*TAU*TAU
*(exp(-X)+X-1.);

ZEM2H=YH+YDH*TGO-XNL*TAU*TAU
*(exp(-X)+X-1.)+. . .
.5*XNTH*TGO*TGO;

if APN==0
XNC=XNP*(YH+YDH*TGO)/TGO^2;
elseif APN==1
X=TGO/TAU;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);

XNC=XNPP*ZEM2H/TGO^2;
elseif APN==2

XNC=XLIM*sign(ZEM1H);
else

if TGO.TSW
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);
XNEW=XNPP*XNL*(exp(-X)+X-1.)/

(X*X);
XNC=XNPP*ZEM2H/TGO^2;
if XNC.XLIM

XNC=XLIM;
end
if XNC,-XLIM

XNC=-XLIM;
end

else
XNC=XLIM*sign(ZEM1H);

end;
end;
if XNC.XLIM

XNC=XLIM;
elseif XNC,-XLIM

XNC=-XLIM;
end;

end;
end;
Z(I)=Y;
Z1=Z(I)+Z1;
XMEAN=Z1/I;

end;

COMPARISON OF DIFFERENTIAL GAME GUIDANCE WITH OPTIMAL GUIDANCE 821



SIGMA=0;
Z1=0;
Z2=0.;
for I=1:RUN,
Z1=(Z(I)-XMEAN)^2+Z1;

Z2=Z(I)^2+Z2;
if I==1,

SIGMA=0;
RMS=0.;

else
SIGMA=sqrt(Z1/(I-1));

RMS=sqrt(Z2/(I-1));
end;
end;
count=count+1;
ArrayTF(count)=TF;
ArraySIGMA(count)=SIGMA;
ArrayXMEAN(count)=XMEAN;
ArrayRMS(count)=RMS;

end;
figure
plot(ArrayTF’,ArrayRMS’),grid
title(’RMS miss for various flight times’)
xlabel(’Flight Time (S)’)
ylabel(’RMS MISS (Ft) ’)
clc
output=[ArrayTF’,ArrayRMS’];
save datfil.txt output /ascii
disp(’Simulation Complete’)

Listing 31.1 was first run in the Monte Carlo mode for the proportional navi-
gation guidance law for the case of the 5-g uniformly distributed constant target
maneuver when the missile acceleration limit was 15 g and 10 g. We can see from
Fig. 31.11 that when the missile only has a 2 to 1 acceleration advantage over the
target, the miss is unacceptable. As we are only considering missile to target accel-
eration advantages of 2 to 1 in this chapter, proportional navigation guidance will
be eliminated from further consideration.

Next Monte Carlo runs were made for both the optimal guidance (APN ¼ 1)
and differential game (APN ¼ 2) guidance laws with bounded controls in the case
of a 5-g random constant ideal target maneuver (ICONSTANT ¼ 2) and a 10-g
missile acceleration limit. We can see from Fig. 31.12 that against the random con-
stant target maneuver, both guidance laws yield similar performance for flight
times greater than 4 s. However for smaller flight times differential game guidance
with bounded controls yielded slightly smaller rms miss distances.
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Other Monte Carlo sets of runs were made for both optimal guidance and
differential game guidance laws with bounded controls for the case of a 5-g
Poisson target maneuver (ICONSTANT ¼ 1) with an average of 0.5 zero crossings
per second and a 10-g missile acceleration limit. From Fig. 31.13 we can see
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Fig. 31.12 Both optimal guidance and differential game guidance with bounded controls
have similar performance against a random constant maneuver if there is only a 2 to 1
missile-to-target acceleration advantage.
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Fig. 31.11 Proportional navigation rms miss is too large in presence of 2 to 1 missile to
target acceleration advantage.
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that against this difficult target maneuver, differential game guidance with
bounded controls performed much better than optimal guidance.

Another Monte Carlo sets of runs were made for both guidance laws for the
case of a 5-g, 2-r/s random weaving target maneuver (ICONSTANT ¼ 3) with a 10-g
missile acceleration limit. From Fig. 31.14 we can see that against the weaving
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Fig. 31.13 Differential game guidance with bounded controls is more effective than
optimal guidance against a Poisson target maneuver if there is only a 2 to 1 missile-to-target
acceleration advantage.
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Fig. 31.14 Differential game guidance with bounded controls is more effective than
optimal guidance against a random weaving target maneuver if there is only a 2 to 1
missile-to-target acceleration advantage.
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target maneuver, the differential game guidance again performed much better
than optimal guidance.

Other Monte Carlo sets of runs were made for different guidance laws for the
case of a 5-g, 2-r/s random vertical-S target maneuver (ICONSTANT ¼ 4) with a
10-g missile acceleration limit. From Fig. 31.15 we can see that against the
vertical-S target maneuver, differential game guidance with bounded controls is
again better than optimal guidance.

From the previous set of results we can see that if there was 0.1 mr of measure-
ment noise and the sampling time was 0.01 s and there was a 2 to 1 missile-to
target-acceleration advantage, the differential game guidance law with bounded
controls generally yields better performance than the optimal guidance law
against any of the four random target maneuvers considered. To see if the per-
formance benefit is due to the low measurement noise or the small sampling
time, let us now see how optimal guidance and differential game guidance with
bounded controls compare when the measurement noise is increased by an
order of magnitude against random weave maneuver. The missile-to-target accel-
eration limit is increased to 3 to 1. Figure 31.16 shows that when the measurement
noise is increased by an order of magnitude the rms miss distances increases sig-
nificantly but differential game guidance with bounded controls still yields better
performance than optimal guidance. If the measurement noise is kept at 0.1 mr
but the sampling time is increased to 0.1 s while the missile to target acceleration
advantage is 3 to 1, Fig. 31.17 shows that when the sampling time is increased by
an order of magnitude the rms miss distances increases significantly but differen-
tial game guidance with bounded controls still yields better performance than
optimal guidance.
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Fig. 31.15 Differential game guidance with bounded controls is more effective than
optimal guidance against a random vertical-S target maneuver if there is only a 2 to 1
missile-to-target acceleration advantage.

COMPARISON OF DIFFERENTIAL GAME GUIDANCE WITH OPTIMAL GUIDANCE 825



MAKING DIFFERENTIAL GAME GUIDANCE MORE PRACTICAL

So far we have demonstrated that differential game guidance with bounded con-
trols appears to be more effective than optimal guidance for a variety of very dif-
ficult target maneuvers when the missile-to-target acceleration advantage is low.
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Fig. 31.16 Differential game guidance with bounded controls is more effective than
optimal guidance against a random weave target maneuver when the measurement noise
is increased.
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Fig. 31.17 Differential game guidance with bounded controls is more effective than
optimal guidance against a random weave target maneuver when the sampling time
is increased.
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The advantages of differential game guidance with bounded controls has been well
known for more than three decades by the academic community but has not been
met with enthusiasm by practicing engineers. As was mentioned previously, one
of the main practical objections to the implementation of differential game gui-
dance with bounded controls has been the chattering back and fourth of the accel-
eration command as is illustrated in the single flight results of Fig. 31.18. Here it
can be seen that the missile acceleration command due to the vertical-S target
maneuver constantly switches back and fourth between maximum positive and
negative acceleration. It has been thought that this chattering could lead to exces-
sive induced drag or excessive actuator requirements, which would negate any of
the idealized performance benefits illustrated in this chapter.

It is hypothesized that most of the miss distance improvements offered by the
differential game guidance law with bounded controls occur in actions take near
the very end of the flight. Therefore a possible solution to this potential induced
drag problem is to limit the application of differential game guidance with
bounded controls to the last few seconds of flight. In other words optimal gui-
dance could be used for most of the flight and then TSW (parameter in Listing
31.1) seconds before the end of the flight differential game guidance with
bounded controls could be used. This type of simple switching logic could be
termed hybrid guidance and can be found in Listing 31.1 (APN ¼ 3).

Figure 31.19 illustrates the use of hybrid guidance for a single flight against
the vertical-S target maneuver with TSW ¼ 2. Here we can see a gentler missile
acceleration command profile when compared to Fig. 31.18. Chattering has
been removed from 80% of the flight.

In order to see if comparable results to differential game guidance with
bounded controls could be obtained with hybrid guidance a set of Monte Carlo
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Fig. 31.18 Sample single-run missile acceleration command profile for differential game
guidance with bounded controls indicates a great deal of chattering.
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results were generated for each of the four different random target maneuvers pre-
viously considered. The goal of the experiment was to see how small TSW could
be made so that performance degradation due to chattering would either not
result or would be considerably alleviated. Figures 31.20–31.23 show that
hybrid guidance can yield performance very similar to that of differential game
guidance with bounded controls with values of TSW ranging from 1 to 3
seconds. Thus, depending on the application, hybrid guidance may yield
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Fig. 31.20 Hybrid (TSW51 s) and differential game guidance with bounded controls yield
similar performance against random constant target maneuver.

Fig. 31.19 Sample single-run missile acceleration command profile for hybrid guidance
indicates most of the chattering has been eliminated.
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significant and achievable performance advantages over optimal guidance against
very challenging target maneuvers.

TARGET DYNAMICS

It was previously mentioned in this chapter that the target could also be modeled
as having a single time constant representation between the commanded and
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Fig. 31.22 Hybrid (TSW52 s) and differential game guidance with bounded controls yield
similar performance against random weave target maneuver.
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Fig. 31.21 Hybrid (TSW53 s) and differential game guidance with bounded controls yield
similar performance against Poisson target maneuver.
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achieved target acceleration. If the target dynamics were known, the zero effort
miss would have an extra term to account for those dynamics as shown in the
section which discussed the differential game guidance law with bounded con-
trols. Figure 3.24 shows what happens to performance in the case of the
random weave target maneuver when differential game guidance with bounded
controls is used assuming target time constants of 0 and 0.2 s. We can see that

Fig. 31.24 Compensating for target dynamics can yield better system performance when
the target time constant is 0.2 s.
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Fig. 31.23 Hybrid (TSW52 s) and differential game guidance with bounded controls yield
similar performance against random vertical-S target maneuver.
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miss distance performance improves slightly if there is a target time constant of
0.2 s—even though the guidance law is not compensating for the dynamics.
However there is a more substantial improvement in performance when the
guidance law compensates for the target dynamics.

In Fig. 31.24 it was assumed that when the target dynamics were known per-
fectly, the differential game guidance law with bounded controls could yield much
smaller miss distances. Figure 31.25 shows that the differential game guidance law

Fig. 31.25 Differential game guidance law with bounded controls does not have to know
target time constant exactly.

Fig. 31.26 Compensating for target dynamics is not as important when the target time
constant is increased from 0.2 s to 1 s.
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with bounded controls is not very sensitive to knowing the exact target time con-
stant since nearly identical performance is achieved if we overestimate or under-
estimate the target time constant.

Finally Fig. 31.26 shows that if the target time constant is increased from 0.2 s
to 1 s, the miss distances are much smaller and it is not as important to compen-
sate for the target time constant.

SUMMARY

In this chapter the differential game guidance law with bounded controls has been
introduced. In theory (that is, in noise free scenarios) this guidance law guarantees
the smallest miss distance against any bounded target maneuver, including the
entire family of unknown and/or random target maneuvers. It has been demon-
strated that in realistic noisy scenarios with an estimator in the loop, the differen-
tial game guidance with bounded controls offers considerable performance
improvements over optimal guidance when the missile-to-target acceleration
advantage is low. The chapter also demonstrates how the chattering caused by
the bang-bang nature of differential game guidance with bounded controls
could be could be reduced dramatically without significant performance degra-
dation by simply applying this guidance law in the last few seconds of flight.
Other guidance laws that can potentially eliminate the typical chattering of the
guidance laws based on differential game theory with bounded controls can be
found in Ref. 9. Finally it has been shown that if the there is a target time constant,
performance improvements could be achieved by compensating for the target
dynamics in the computation of the zero effort miss.
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CHAPTER 32

Kinematics of Intercepting
a Ballistic Target

In Chapter 13 we showed how a long-range ballistic target, using the principals
of Lambert guidance, could fly to its intended destination. In this chapter we
shall investigate the amount of velocity that is required by a pursuing interceptor
to hit the target during the target’s ballistic or midcourse portion of flight. In
addition, standard graphical methods of conveying interceptor performance
shall be introduced in this chapter. To simplify matters and to keep the discussion
generic we shall assume that both the ballistic target and pursuing interceptor
are impulsively launched, but not at the same time, so that they both get up
to speed immediately. In addition, for simplicity we shall initially consider
two-dimensional engagements on a round, non-rotating Earth where gravity is
determined by Newton’s Law of Universal Gravitation and atmospheric effects
are neglected. It shall be assumed that the interceptor knows where the ballistic
target will be at the desired intercept time [that is, predicted intercept point
(PIP) is known perfectly]. From Chapter 11 we know that the impulsive ballistic
target differential equations of motion in two dimensions are given by

€xT ¼ �gm
xT

(x2T þ y2T)
1:5

€yT ¼ �gm
yT

(x2T þ y2T)
1:5

where xT and yT are component distances from the center of the Earth to the target
and gm is the gravitational parameter with value in the English system of units of

gm ¼ 1:4077�1016 ft
3

s2

In Chapter 28 a general three-dimensional Lambert routine was presented in
Listing 28.2 showing how to calculate the initial velocity required by the ballistic
target to reach its final destination at the desired time. The call to the Lambert
routine was given by

[VRX,VRY,VRZ] ¼ LAMBERT3D (XT,YT,ZT,TGOLAM,XF,YF,ZF,SWITCH);
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where XT,YT,ZT was a three-dimensional vector describing the initial target
location, TGOLAM was the allotted time to go for the target to reach its final
destination and XF,YF,ZF was a three-dimensional vector describing the target’s
intended destination. The Lambert routine’s output is VRX,VRY,VRZ, which is a
three-dimensional vector describing the components of the required initial
target velocity.

Listing 32.1, which is based on Listing 28.3, simulates an impulsive ICBM
(Intercontinental Ballistic Missile) in two dimensions. The z coordinate in this
simulation has been set to zero and all quantities that depend on latitude have
been set to zero as well so that the two-dimensional problem will work with the
three-dimensional Lambert routine. As was previously mentioned, the Lambert
routine, which is not included in Listing 32.1, can be found in Listing 28.3. A
careful examination of Listing 32.1 reveals that the time-of-flight formula for
the minimum energy trajectory of the target has been programmed. The deri-
vation of the formula for the time of flight for a minimum energy trajectory
tFME is derived in the appendix and is given by

tFME ¼ 252þ 0:223DRkm � 5:44�10�6DR2
km

where DRkm is the desired distance of travel in km. The trajectory can be lofted by
adding TLOFT in units of seconds to tFME or depressed by subtracting TLOFT from
tFME . From a three-dimensional point of view the ICBM in Listing 32.1 is flying
across the equator (latitude is zero) starting at 0-deg longitude and traveling
10,000 km or approximately a quarter of the way around the world.

LISTING 32.1 TWO-DIMENSIONAL TRAJECTORY SIMULATION OF IMPULSIVE
TWO-DIMENSIONAL ICBM

count=0;
TS=1.;
RDESKM=10000.;
TLOFT=0.;
TFTOT=252.+.223*RDESKM-(5.44E-6)*RDESKM*RDESKM;
TFTOT=TFTOT+TLOFT;
A=2.0926E7;
GM=1.4077E16;
XLONGFDEG=57.3*RDESKM*3280./A;
XLONGTDEG=0.;
XLATTDEG=0.;
XLATFDEG=0.;
SWITCH=0;
T=0.;
S=0.;
XLONGF=XLONGFDEG/57.3;
XLATF=XLATFDEG/57.3;
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XF=A*cos(XLATF)*cos(XLONGF);
YF=A*cos(XLATF)*sin(XLONGF);
ZF=0.;
XLONGT=XLONGTDEG/57.3;
XLATT=XLATTDEG/57.3;
XT=A*cos(XLATT)*cos(XLONGT);
YT=A*cos(XLATT)*sin(XLONGT);
ZT=0.;
XTINIT=XT;
YTINIT=YT;
ZTINIT=0.;
RTINIT=sqrt(XTINIT^2+YTINIT^2+ZTINIT^2);
H=.01;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
TGOLAM=TFTOT-T;
[VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TGOLAM,XF,YF,ZF,SWITCH);
XTD=VRX;
YTD=VRY;
ZTD=VRZ;
VBOT=sqrt(XTD^2+YTD^2)/3280.;
while ALTTKM . -1

XTOLD=XT;
YTOLD=YT;
XTDOLD=XTD;
YTDOLD=YTD;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;

XT=XT+H*XTD;
YT=YT+H*YTD;
XTD=XTD+H*XTDD;
YTD=YTD+H*YTDD;
T=T+H;

end;
TEMPBOTT=(XT^2+YT^2)^1.5;
XTDD=-GM*XT/TEMPBOTT;
YTDD=-GM*YT/TEMPBOTT;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
FLAG=1;

end
FLAG=0;
XT=.5*(XTOLD+XT+H*XTD);
YT=.5*(YTOLD+YT+H*YTD);
XTD=.5*(XTDOLD+XTD+H*XTDD);
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YTD=.5*(YTDOLD+YTD+H*YTDD);
S=S+H;
if S .=(TS-.0001)

S=0.;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
DISTRTKNM=distance3dkm(XT,YT,ZT,XTINIT,YTINIT,ZTINIT);
count=count+1;
ArrayT(count)=T;
ArrayDISTRTKNM(count)=DISTRTKNM;
ArrayALTTKM(count)=ALTTKM;

end
end
figure
plot(ArrayDISTRTKNM,ArrayALTTKM),grid
xlabel(’Downrange (km)’)
ylabel(’Altitude (km) ’)
clc
output=[ArrayT’,ArrayDISTRTKNM’,ArrayALTTKM’];
save datfil.txt output /ascii
disp ’simulation finished’
% LAMBERT3D can be found in Listing 28.3
% distance3dkm can be found in Listing 28.3

Minimum energy (TLOFT ¼ 0), lofted (TLOFT ¼ 500), and depressed (TLOFT ¼
–200) trajectories for the ballistic target were run using Listing 32.1 and the resul-
tant trajectories are compared in Fig. 32.1. The initial velocity required for the
minimum energy trajectory was 7.19 km/s, while 7.33 km/s was required for
the lofted trajectory and 7.23 km/s was required for the depressed trajectory.
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Fig. 32.1 Possible trajectories for 10,000-km impulsive ICBM.
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We can see from Fig. 32.1 that all the trajectories have different apogees and arrive
at the 10,000-km destination at different times.

Now let us examine how much velocity would be required by a pursuing
impulsive interceptor to hit the ballistic target at a desired intercept time tF. It
is assumed that the interceptor is launched some time after the target is launched
and that the interceptor launch point is located z km downrange from the target
launch point as shown in Fig. 32.2.

A multiple-run simulation in which the desired intercept time TF is varied for
each run appears in Listing 32.2. From Listing 32.2 we can see that the interceptor
launch time is nominally 300 s after the target is launched (TLAUNCH ¼ 300)
and the distance from the target launch point to the missile launch point is nom-
inally 1000 km (XLONGMDEGICKM ¼ 1000). The target is flying a 10,000-km
(RDESKM ¼ 10000) minimum energy trajectory (TLOFT ¼ 0). A perfect prediction
routine predict32.m tells the interceptor where the impulsively launched target
will be at the desired intercept time TF. This prediction routine knows that the
target is impulsive and takes the initial position and velocity of the target and
integrates the target differential equations forward to the desired intercept
time, thus yielding the predicted intercept point (XTFACT and YTFACT). At the
desired interceptor launch time (TLAUNCH), a three-dimensional Lambert
routine (with z component set to zero) calculates the required interceptor vel-
ocity vector so that it will arrive at the predicted intercept point at the desired
intercept time. The equations of motion for the interceptor and target are
numerically integrated forward and the engagement simulation is stopped at
the point of closest approach, which is the miss distance. After each run the
interceptor flight time (TF-TLAUNCH) and the required interceptor velocity
(VMBO) are tabulated for interceptor burnout velocities less than 8 km/s. In
this simulation, the precise miss distance is not calculated since the integration
interval is not small enough in the main program nor the prediction routine
to get a very accurate calculation of the miss. Decreasing the integration interval
by an order of magnitude would have yielded very long running times. Under the
condition of a large integration interval, a miss of several hundred feet will be
considered a direct hit. If the integration interval was reduced by an order of
magnitude, the miss distances would be near zero. Flights are considered a
success if the required missile velocity is less than 8 km/s, the miss is less
than 1000 ft, and the altitude of intercept is greater than 50 km. We can see

Fig. 32.2 Distance between interceptor and target launch points.

KINEMATICS OF INTERCEPTING A BALLISTIC TARGET 839



from Listing 32.2 that one run involves cases in which the desired intercept time
is varied from 60 s after the interceptor is launched to 20 s before the target
would impact the ground in steps of 20 s.

LISTING 32.2 TWO-DIMENSIONAL KINEMATIC MULTIPLE-RUN ENGAGEMENT SIMULATION

count=0;
TLAUNCH=300.;
TF=1400.;
TS=1.;
XLONGMDEGICKM=1000.;
XLATMDEGICKM=0.;
RDESKM=10000.;
TFTOT=2000.;
ALTMKMIC=0.;
TLOFT=0.;
QEARTH=0;
TFTOT=252.+.223*RDESKM-(5.44E-6)*RDESKM*RDESKM;
TFTOT=TFTOT+TLOFT;
for TF=(TLAUNCH+60):20:(TFTOT-20),

SWITCH=0;
SWITCHM=0;
ALTM=ALTMKMIC*3280.;
TFTOTP=TFTOT;
RDESKMP=RDESKM;
A=2.0926E7;;
GM=1.4077E16;
XLONGFDEG=57.3*RDESKM*3280./A;
XLONGMDEGIC=XLONGMDEGICKM/111.;
XLATMDEGIC=0.;
XLONGMDEG=XLONGMDEGIC;
XLATMDEG=XLATMDEGIC;
QGUID=0;
QLAUNCH=0;
QFIRST=1;
XLONGTDEG=0.;
XLATTDEG=0.;
XLATFDEG=0.;
TBO=0.;
QBOOST=1;
QBOOSTM=1;
SWITCH=0;
SWITCHM=0;
T=0.;
S=0.;
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AXT=0.;
AYT=0.;
ATP=0.;
XLONGF=XLONGFDEG/57.3;
XLATF=XLATFDEG/57.3;
XF=A*cos(XLATF)*cos(XLONGF);
YF=A*cos(XLATF)*sin(XLONGF);
ZF=0.;
XLONGT=XLONGTDEG/57.3;
XLONGM=XLONGMDEG/57.3;;
XLATM=XLATMDEG/57.3;
XLATT=XLATTDEG/57.3;
XT=A*cos(XLATT)*cos(XLONGT);
YT=A*cos(XLATT)*sin(XLONGT);
ZT=0.;
XTINIT=XT;
YTINIT=YT;
ZTINIT=0.;
RTINIT=sqrt(XTINIT^2+YTINIT^2+ZTINIT^2);
XM=(A+ALTM)*cos(XLATM)*cos(XLONGM);
YM=(A+ALTM)*cos(XLATM)*sin(XLONGM);
ZM=0.;
XMINIT=XM;
YMINIT=YM;
ZMINIT=ZM;
RMINIT=sqrt(XMINIT^2+YMINIT^2+ZMINIT^2);
ATP=1.;
AXM=0.;
AYM=0.;
AMP=0.;
H=.01;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
XMD=0.;
YMD=0.;
ACC=0.;
AXMGUID=0.;
AYMGUID=0.;
PREDERRKM=0.;
ZEM1=0.;
ZEM2=0.;
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
TGOLAM=TFTOT-T;
[VRX,VRY]=LAMBERT3D(XT,YT,ZT,TGOLAM,XF,YF,ZF,SWITCH);
XTD=VRX;
YTD=VRY;
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ZTD=0.;
[XTFACT,YTFACT]=predict32(T,XT,YT,XTD,YTD,TF,TFTOT,XF,YF);

VBOT=sqrt(XTD^2+YTD^2)/3280.;
RTM1=XT-XM;

RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=XTD-XMD;
VTM2=YTD-YMD;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
while ~((T.(TLAUNCH+50.)) & VC,0. & RTM,10000.)

if RTM,1000
H=.0001;

else
H=.01;

end
XTOLD=XT;
YTOLD=YT;
XTDOLD=XTD;
YTDOLD=YTD;
XMOLD=XM;
YMOLD=YM;
XMDOLD=XMD;
YMDOLD=YMD;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
XT=XT+H*XTD;
YT=YT+H*YTD;
XTD=XTD+H*XTDD;
YTD=YTD+H*YTDD;
XM=XM+H*XMD;
YM=YM+H*YMD;
XMD=XMD+H*XMDD;
YMD=YMD+H*YMDD;
T=T+H;

end
TEMPBOTT=(XT^2+YT^2)^1.5;
XTDD=-GM*XT/TEMPBOTT;
YTDD=-GM*YT/TEMPBOTT;
RTM1=XT-XM;
RTM2=YT-YM;
VTM1=XTD-XMD;
VTM2=YTD-YMD;
RTM=sqrt(RTM1^2+RTM2^2);
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VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
if T.TLAUNCH

TEMPBOTM=(XM^2+YM^2)^1.5;
XMDD=-GM*XM/TEMPBOTM;
YMDD=-GM*YM/TEMPBOTM;

else
XMDD=0.;
YMDD=0.;

end
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
ALTT=sqrt(XT^2+YT^2)-A;
FLAG=1;

end
FLAG=0;
XT=.5*(XTOLD+XT+H*XTD);
YT=.5*(YTOLD+YT+H*YTD);
XTD=.5*(XTDOLD+XTD+H*XTDD);
YTD=.5*(YTDOLD+YTD+H*YTDD);
XM=.5*(XMOLD+XM+H*XMD);
YM=.5*(YMOLD+YM+H*YMD);
XMD=.5*(XMDOLD+XMD+H*XMDD);
YMD=.5*(YMDOLD+YMD+H*YMDD);
S=S+H;
if T.=TLAUNCH

TGOLAMM=TF-T;
XTF=XTFACT;
YTF=YTFACT;
ZTF=0.;
QLAUNCH=1;

end
TGOLAMM=TF-T;
if ((T.=TLAUNCH) & QBOOSTM==1)

QBOOSTM=0;
[VRXM,VRYM,VRZM]=LAMBERT3D(XM,YM,ZM,TGOLAMM,

XTF,YTF,ZTF,SWITCHM);
XMD=VRXM;
YMD=VRYM;
XMDOLD=VRXM;
YMDOLD=VRYM;
VBOM=sqrt(XMD^2+YMD^2)/3280.;
QLAUNCH=1;

end
if S.=(TS-.0001)

S=0.;
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ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
DISTRTKM=distance3dkm(XT,YT,ZT,XTINIT,YTINIT,ZTINIT);
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
DISTRMKM=distance3dkm(XM,YM,ZM,XTINIT,YTINIT,ZTINIT);
VTK=sqrt(XTD^2+YTD^2)/3280.;
ATG=sqrt(XTDD^2+YTDD^2)/32.2;
VMKM=sqrt(XMD^2+YMD^2)/3280.;
VTKM=sqrt(XTD^2+YTD^2)/3280.;

end
end
if (VBOM,8. & RTM,1000. & ALTTKM.50.)

count=count+1;
ArrayTFTL(count)=TF-TLAUNCH;
ArrayVBOM(count)=VBOM;

end
end
figure
plot(ArrayTFTL,ArrayVBOM),grid
xlabel(’Interceptor Flight Time (s)’)
ylabel(’Interceptor Velocity (km/s) ’)
clc
output=[ArrayTFTL’,ArrayVBOM’];
save datfil.txt output /ascii
disp ’simulation finished’

% This is m file for PREDICT32.M
function [xtf,ytf]=predict(tp,xtp,ytp,xtdp,ytdp,tf,tftot,xf,yf,xtinit,ytinit)
t=tp;
switch1=0;
xt=xtp;
yt=ytp;
zt=0.;
xtd=xtdp;
ytd=ytdp;
ztd=0.;
zf=0.;
a=2.0926E7;
gm=1.4077E16;
qboost=1;
h=.01;
s=0.;
axt=0.;
ayt=0.;
tgolam=tftot-t;
[vrx,vry,vrz]=LAMBERT3D(xt,yt,zt,tgolam,xf,yf,zf,switch1);
xtd=vrx;
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ytd=vry;
ztd=0;
while t,=(tf-.00001)

xtold=xt;
ytold=yt;
xtdold=xtd;
ytdold=ytd;
step=1;
flag=0;
while step ,=1

if flag==1
xt=xt+h*xtd;
yt=yt+h*ytd;
xtd=xtd+h*xtdd;
ytd=ytd+h*ytdd;
t=t+h;
step=2;

end
tembot=(xt^2+yt^2)^1.5;
xtdd=-gm*xt/tembot;
ytdd=-gm*yt/tembot;
flag=1;

end;
flag=0;
xt=(xtold+xt)/2+.5*h*xtd;
yt=(ytold+yt)/2+.5*h*ytd;
xtd=(xtdold+xtd)/2+.5*h*xtdd;
ytd=(ytdold+ytd)/2+.5*h*ytdd;

end
xtf=xt;
ytf=yt;
% LAMBERT3D can be found in Listing 28.3
% distance3dkm can be found in Listing 28.3

The nominal case of Listing 32.2 was run in which the target is on a 10,000-km
minimum energy trajectory and the interceptor is launched 300 s after the target is
launched. Addition cases are also run in which the distance from the interceptor
launch point to the target launch point was considered to be 1000 km, 5000 km,
and 9000 km respectively. We can see from Fig. 32.3 that for very short intercep-
tor flight times the required interceptor velocity can be quite large. However,
depending on the launch point separation of the interceptor and target there
appears to be a minimum required interceptor velocity. We can see from
Fig. 32.3 that a 5.3 km/s interceptor is required if the interceptor is launched
9000 km from the target launch point (or 1000 km from the target impact
point) and the flight time is approximately 1400 s.
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We can examine specific cases of the preceding example in more detail for the
scenario in which the interceptor launch point is 9000 km downrange from the
target launch point. Figure 32.4 presents the interceptor–target engagement geo-
metries for an interceptor located 9000 km downrange of the target launch
point—one in which the interceptor flight time is 800 s (6.5 km/s initial intercep-
tor velocity required according to Fig. 32.3) and the other in which the interceptor
flight time is 1400 s (5.3 km/s initial interceptor velocity is required according to
Fig. 32.3). We can see that when the flight time is shorter the interceptor flies
directly to the intercept point. However when the flight time is much longer,
the interceptor has to fly a lofted trajectory in order to reach the intercept point
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under the influence of gravity only. In practice, homing sensor constraints would
have to be checked to see if such a lofted trajectory is practical.

Figure 32.5 shows that if the interceptor launch time is increased to 1200 s
from 300 s it is not possible for the interceptor launch site to be only 1000 km
from the target launch site. In addition, we can see that lower interceptor velocities
are only possible if the interceptor is near the target impact point (z ¼ 9000 km).

Figure 32.6 examines two cases taken from Fig. 32.5 in more detail. The first
case shows an interceptor launched at 1200 s and located 5000 km from the target
launch site. In this case the interceptor has an initial velocity of 7.4 km/s and
travels for 610 s (as indicated from Fig. 32.5). In this case Fig. 32.6 indicates
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that the interceptor flies directly to the target. The second case shows an intercep-
tor launched at 1200 s and located 9000 km from the target launch site. In this
case the interceptor has an initial velocity of 3.2 km/s but also travels for 610 s
(as indicated from Fig. 32.5). In this case Fig. 32.6 indicates a lofted trajectory
for the interceptor as the interceptor is very close to the impact point of the
target and has a great deal of flight time.

OPERATIONAL AREA

Although considerable insight has been gained from the two-dimensional results
of the previous section, even more insight can be gained by examining the three-
dimensional case. In addition, we can speed up the simulation of Listing 32.2 sig-
nificantly by eliminating the numerical integration of the differential equations for
the interceptor and target. This can be done as both the interceptor and target are
impulsive. The three-dimensional Kepler subroutine that first appeared in Listing
28.3 can be used to accurately predict where the target will be at the desired inter-
cept time and the three-dimensional Lambert routine that first appeared in Listing
28.2 can be used to calculate the required interceptor velocity and direction so that
the interceptor will arrive at the intercept point at the desired intercept time. The
avoidance of numerical integration can speed up the simulation of Listing 32.2 by
several orders of magnitude. The resultant computational savings allows us to vary
more parameters and run many more cases in order to get a more complete
picture. We can set up a program in which the target trajectory is fixed so we
can figure out where the interceptor should be placed for a successful intercept.
Displaying information in this fashion is known as an operational area.

Listing 32.3 develops an operational area for an interceptor with an initial vel-
ocity that cannot exceed VBOLIM against targets that can fly different types of tra-
jectories (for example, TLOFT¼0 yields minimum energy trajectory). In addition,
checks are performed to ensure that intercepts are made above 50-km altitude. In
this three-dimensional simulation, the impulsive target is flying a minimum
energy 10,000-km trajectory along the equator. The interceptor is placed at differ-
ent downrange locations specified by longitude and latitude. The initial intercep-
tor downrange locations are longitude XLONGMDEG expressed in degrees and
varied from 0 deg to 150 deg in steps of 5 deg (0 deg corresponds to the intercep-
tor being at the target launch point while 150 deg corresponds to the interceptor
being more than 16,000 km from the target launch point). The initial interceptor
crossrange locations are latitude XLATMDEG expressed in degrees and vary from
–40 deg to 40 deg in steps of 2.5 deg. The interceptor launch time is varied
from 300 s after target launch to 1600 s after target launch in steps of 100 s. Lati-
tude and longitude have been approximately converted to distances by assuming
that 1 deg corresponds to 111 km (which is valid along the equator but overesti-
mates distances as the latitude increases). The desired intercept time is varied
from 60 s after interceptor launch to to the time the target would impact the
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ground (TFTOT) in steps of 50 s. If the required interceptor velocity is less than
VBOLIM, the intercept is considered a success and the initial interceptor location
is noted. In addition, cases are not considered in which the target velocity
would be greater than 7.5 km/s.

LISTING 32.3 GENERATING THREE-DIMENSIONAL OPERATIONAL AREAS

count=0;
TLAUNCH=300.;
RDESKM=10000.;
ALTMKMIC=0.;
TLOFT=0.;
VBOLIM=5.;
I=1;
for XLONGMDEG=0:5:150,

for XLATMDEG=-40:2.5:40,
for TLAUNCH=300:100:1600,

ALTM=ALTMKMIC*3280.;
A=2.0926E7;
GM=1.4077E16;
XLONGFDEG=57.3*RDESKM*3280./A;
XLATFDEG=0.;
PI=3.14159;
XLONGTDEG=0.;
XLATTDEG=0.;
SWITCH=0;
SWITCHM=0;
T=0.;
XLONGF=XLONGFDEG/57.3;
XLATF=XLATFDEG/57.3;
XF=A*cos(XLATF)*cos(XLONGF);
YF=A*cos(XLATF)*sin(XLONGF);
ZF=A*sin(XLATF);
XLONGT=XLONGTDEG/57.3;
XLONGM=XLONGMDEG/57.3;
XLATM=XLATMDEG/57.3;
XLATT=XLATTDEG/57.3;
XT=A*cos(XLATT)*cos(XLONGT);
YT=A*cos(XLATT)*sin(XLONGT);
ZT=A*sin(XLATT);
XM=(A+ALTM)*cos(XLATM)*cos(XLONGM);
YM=(A+ALTM)*cos(XLATM)*sin(XLONGM);
ZM=(A+ALTM)*sin(XLATM);
DISTFKM=distance3dkm(XF,YF,ZF,XT,YT,ZT);
TFTOT=252.+.223*DISTFKM-(5.44E-6)*DISTFKM*DISTFKM;
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TFTOT=TFTOT+TLOFT;
for TF=(TLAUNCH+60.):50:TFTOT,

TGOLAM=TFTOT-T;
% CALCULATE TARGET VELOCITY REQUIRED TO REACH ITS DESTINATION

[VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TGOLAM,XF,
YF,ZF,SWITCH);

XTD=VRX;
YTD=VRY;
ZTD=VRZ;

% CALCULATE TARGET STATES AT DESIRED INTERCEPT TIME
T0=0.;
T1=TF;
X0(1)=XT/3280.;
X0(2)=YT/3280.;
X0(3)=ZT/3280.;
X0(4)=XTD/3280.;
X0(5)=YTD/3280.;
X0(6)=ZTD/3280.;
[X1]=KEPLER1(X0,T0,T1);
XTF=X1(1)*3280.;
YTF=X1(2)*3280.;
ZTF=X1(3)*3280.;
ALTFKM=(sqrt(XT^2+YTF^2+ZTF^2)-A)/3280.;
if ALTFKM,50.

break
end

% CALCULATE MISSILE VELOCITY REQUIRED TO INTERCEPT TARGET AT DESIRED
INTERCEPT TIME

TGOLAMM=TF-TLAUNCH;
[VRXM,VRYM,VRZM]=LAMBERT3D(XM,YM,ZM,TGOLAMM,

XTF,YTF,ZTF,SWITCHM);
XMD=VRXM;
YMD=VRYM;
ZMD=VRZM;

% CALCULATE MISSILE STATES AT DESIRED INTERCEPT TIME
T1=TF;
T0=TLAUNCH;
X0(1)=XM/3280.;
X0(2)=YM/3280.;
X0(3)=ZM/3280.;
X0(4)=XMD/3280.;
X0(5)=YMD/3280.;
X0(6)=ZMD/3280.;
[X1]=KEPLER1(X0,T0,T1);
XMF=X1(1)*3280.;
YMF=X1(2)*3280.;
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ZMF=X1(3)*3280.;
XMDF=X1(4)*3280.;
YMDF=X1(5)*3280.;
ZMDF=X1(6)*3280.;
VBOM=sqrt(XMD^2+YMD^2+ZMD^2)/3280.;
VBOT=sqrt(XTD^2+YTD^2+ZTD^2)/3280.;
if (VBOM,VBOLIM & VBOT,7.5)

count=count+1;
ArrayTF(count)=TF;
ArrayTLAUNCH(count)=TLAUNCH;
ArrayXLONGM(count)=XLONGMDEG*111.;
ArrayXLATM(count)=XLATMDEG*111.;
ArrayVBOM(count)=VBOM;

end
end

end
end

end
figure
plot(ArrayXLONGM,ArrayXLATM,’r+’),grid
xlabel(’Downrange (km)’)
ylabel(’Crossrange (km) ’)
clc
output=[ArrayTF’,ArrayTLAUNCH’,ArrayXLONGM’,ArrayXLATM’,ArrayVBOM’];
save datfil.txt output /ascii
disp ’simulation finished’
% LAMBERT3D can be found in Listing 28.2
% distance3dkm can be found in Listing 28.2
% KEPLER1 can be found in Listing 28.3

The nominal case of Listing 32.3 was run for a 6-km/s interceptor against the
10,000-km target flying a minimum energy trajectory. Figure 32.7 displays the
resultant operational area, indicated by plus signs, and the target trajectory
represented by the solid straight line. Thus, the operational area represents
places from which an interceptor can be launched and hit the target at some
point in its trajectory. Missing from the plot are the interceptor launch and inter-
cept times that resulted in a success. Some plus signs correspond to many possible
combinations of launch and intercept times while other plus signs may be the
result of a unique combination. We can see that the operational area is very
large because the interceptor speed can be as much as 6 km/s. We can also see
that the operational area is symmetrical about the target trajectory. At first
glance these results might appear to disagree with the two-dimensional results
of Fig. 32.3 because the operational area of Fig. 32.7 at zero latitude extends
from 3000 km to more than 14,000 km. However, recall in Fig. 32.3 we only con-
sidered three downrange cases (z ¼ 1000 km, z ¼ 5000 km and z ¼ 9000 km). In
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Fig. 32.3 it was indicated that there were solutions for a 6-km/s interceptor at
z ¼ 5000 km and z ¼ 9000 km, which is certainly consistent with Fig. 32.7.

Figure 32.8 shows that when the maximum interceptor velocity is reduced
from 6 km/s to 5 km/s, the operational area shrinks considerably. When the
interceptor had a 6 km/s capability the interceptor could be placed from
3000 km to 14,500 km from the target launch site. However when the interceptor
velocity is reduced to 5 km/s we can see from Fig. 32.8 that the interceptor must
be placed from 3500 km to 12,500 km from the target launch site.

Figure 32.9 shows that the operational area reduces even more dramatically
when the interceptor velocity is further reduced to 4 km/s. Now the interceptor
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must be placed 7500 km to 10,500 km from the target launch site for an intercept
to be successful.

LAUNCH AREA DENIED

Successful target intercept information can be presented in a variety of ways. The
operational area method of presentation, presented in the last section, assumed a
fixed target trajectory that was previously represented by a thick straight line and
possible interceptor launch locations that resulted in a successful engagement
were represented by plus signs. Cases can also be run in which the target aimpoint
and initial interceptor locations are fixed and the initial target launch site is varied.
Graphics generated in this way are known as launch area denied plots. The oper-
ational area code of Listing 32.3 can be modified so that launch area denied results
can be generated (shown in Listing 32.4). Listing 32.4 has the appropriate state-
ments that generate launch area denied results and are highlighted in bold.
In this simulation we can see that the interceptor is nominally placed at the
equator at 60-deg longitude and the target launch point is varied from –100 to
200 deg in longitude (in steps of 5 deg) and from 260 deg to 60 deg in latitude
(in steps of 2.5 deg). Cases are ruled out if the required impulsive target velocity
exceeds 7.5 km/s.

LISTING 32.4 GENERATING THREE-DIMENSIONAL LAUNCH AREA DENIED RESULTS

count=0;
TLAUNCH=300.;
RDESKM=10000.;
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ALTMKMIC=0.;
TLOFT=0.;
VBOLIM=5.;
XLONGMDEG=60.;
XLATMDEG=0.;
I=1;
for XLONGTDEG=-100:5:200,

for XLATTDEG=-60:2.5:60,
for TLAUNCH=300:100:1600,

ALTM=ALTMKMIC*3280.;
A=2.0926E7;
GM=1.4077E16;
XLONGFDEG=57.3*RDESKM*3280./A;
XLATFDEG=0.;
PI=3.14159;
SWITCH=0;
SWITCHM=0;
T=0.;
S=0.;
XLONGF=XLONGFDEG/57.3;
XLATF=XLATFDEG/57.3;
XF=A*cos(XLATF)*cos(XLONGF);
YF=A*cos(XLATF)*sin(XLONGF);
ZF=A*sin(XLATF);
XLONGT=XLONGTDEG/57.3;
XLONGM=XLONGMDEG/57.3;
XLATM=XLATMDEG/57.3;
XLATT=XLATTDEG/57.3;
XT=A*cos(XLATT)*cos(XLONGT);
YT=A*cos(XLATT)*sin(XLONGT);
ZT=A*sin(XLATT);
XM=(A+ALTM)*cos(XLATM)*cos(XLONGM);
YM=(A+ALTM)*cos(XLATM)*sin(XLONGM);
ZM=(A+ALTM)*sin(XLATM);
DISTFKM=distance3dkm(XF,YF,ZF,XT,YT,ZT);
TFTOT=252.+.223*DISTFKM-(5.44E-6)*DISTFKM*DISTFKM;
TFTOT=TFTOT+TLOFT;
for TF=(TLAUNCH+60.):50:TFTOT,

TGOLAM=TFTOT-T;
% CALCULATE TARGET VELOCITY REQUIRED TO REACH ITS DESTINATION

[VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TGOLAM,XF,
YF,ZF,SWITCH);

XTD=VRX;
YTD=VRY;
ZTD=VRZ;

% CALCULATE TARGET STATES AT DESIRED INTERCEPT TIME
T0=0.;
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T1=TF;
X0(1)=XT/3280.;
X0(2)=YT/3280.;
X0(3)=ZT/3280.;
X0(4)=XTD/3280.;
X0(5)=YTD/3280.;
X0(6)=ZTD/3280.;
[X1]=KEPLER1(X0,T0,T1);
XTF=X1(1)*3280.;
YTF=X1(2)*3280.;
ZTF=X1(3)*3280.;
ALTFKM=(sqrt(XT^2+YTF^2+ZTF^2)-A)/3280.;
if ~(ALTFKM , 50.)

%CALCULATE MISSILE VELOCITY REQUIRED TO INTERCEPT TARGET AT DESIRED
INTERCEPT TIME

TGOLAMM=TF-TLAUNCH;
[VRXM,VRYM,VRZM]=LAMBERT3D(XM,YM,ZM,TGOLAMM,XTF,YTF,ZTF,SWITCHM);

XMD=VRXM;
YMD=VRYM;
ZMD=VRZM;
VBOM=sqrt(XMD^2+YMD^2+ZMD^2)/3280.;
VBOT=sqrt(XTD^2+YTD^2+ZTD^2)/3280.;
if (VBOM , VBOLIM & VBOT,7.5)

count=count+1;
ArrayTF(count)=TF;
ArrayTLAUNCH(count)=TLAUNCH;
ArrayXLONGT(count)=XLONGTDEG*111.;
ArrayXLATT(count)=XLATTDEG*111.;
ArrayVBOM(count)=VBOM;
ArrayVBOT(count)=VBOT;

end
end

end
end

end
end
figure
plot(ArrayXLONGT,ArrayXLATT,’r+’),grid
xlabel(’Downrange (km)’)
ylabel(’Crossrange (km) ’)
clc
output=[ArrayTF’,ArrayTLAUNCH’,ArrayXLONGT’,ArrayXLATT’,ArrayVBOM’,ArrayVBOT’];
save datfil.txt output /ascii
disp ’simulation finished’
% LAMBERT3D can be found in Listing 28.2
% distance3dkm can be found in Listing 28.2
% KEPLER1 can be found in Listing 28.3
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The nominal case of Listing 32.4 was run for a 5-km/s interceptor against the
impulsive ICBM target flying a minimum energy trajectory. Figure 32.10 displays
possible target launch points that are denied, indicated by plus signs, because they
can be successfully intercepted by a 5-km/s interceptor whose initial launch
location is 6660 km downrange (60-deg longitude). We can see that the launch
area denied is very large because the interceptor is located in a favorable location.
Again, it is important to note that each plus sign in Fig. 32.10 corresponds to a
different interceptor launch and intercept time that results in a successful inter-
cept. Figure 32.11 shows the same case except this time the target trajectory is
lofted (TLOFT ¼ 500). We can see that the size of the launch area denied region
shrinks considerably because the target is harder to reach since in may be
higher in altitude. Figure 32.12 shows that when the target trajectory is depressed

-6000

-4000

-2000

0

2000

4000

6000

C
ro

ss
ra

ng
e 

(k
m

)

800040000-4000
Downrange (km)

5 km/s Interceptor
Minimum Energy ICBM

Interceptor 6660 km Downrange

Target
Aimpoint

Interceptor

Possible Target
Launch Points

Fig. 32.10 Launch area denied for 5-km/s interceptor against minimum energy target.

-6000

-4000

-2000

0

2000

4000

6000

C
ro

ss
ra

ng
e 

(k
m

)

800040000-4000
Downrange (km)

Target
AimpointInterceptorPossible Target

Launch Points

5 km/s Interceptor
Lofted ICBM

Interceptor 6660 km Downrange

Fig. 32.11 Launch area denied for 5-km/s interceptor against a lofted target.

856 TACTICAL AND STRATEGIC MISSILE GUIDANCE



(TLOFT ¼ –200) the launch area denied region is roughly the same size as it was
when the target was flying a minimum energy trajectory.

DEFENDED AREA

As was mentioned in the previous sections, successful target intercept information
can be presented in a variety of ways. The operational area method of presentation
assumed a fixed target trajectory that was previously represented by thick straight
line and possible interceptor launch locations, represented by plus signs, were
varied. The previous section showed that launch area denied plots can be gener-
ated by having the target aimpoint and initial interceptor locations fixed and
varying the initial target launch site. Finally, cases can also be run in which the
target launch point and initial interceptor locations are fixed and the final
target impact point is varied. Graphics generated in this way are known as
defended area plots. The launch area denied code of Listing 32.4 can be modified
so that defended area results can be generated and is shown in Listing 32.5. This
listing has the appropriate statements that generate defended area results and are
highlighted in bold. In this simulation we can see that the interceptor is nominally
placed at the equator at 60-deg longitude and the target impact point is varied
from 20 to 200 deg in longitude and from –60 deg to 60 deg in latitude. Cases
are ruled out if the required target velocity exceeds 7.5 km/s.

LISTING 32.5 GENERATING THREE-DIMENSIONAL DEFENDED AREA RESULTS

count=0;
TLAUNCH=300.;
RDESKM=10000.;
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Fig. 32.12 Launch area denied for 5-km/s interceptor against a depressed target.
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ALTMKMIC=0.;
TLOFT=0.;
VBOLIM=5.;
XLONGMDEG=60.;
XLATMDEG=0.;
XLONGTDEGIC=0.;
XLATTDEGIC=0.;
I=1;
for XLONGFDEG=20:5:200,

for XLATFDEG=-60:2.5:60,
for TLAUNCH=300:100:1600,

ALTM=ALTMKMIC*3280.;
A=2.0926E7;
GM=1.4077E16;
XLONGTDEG=XLONGTDEGIC;
XLATTDEG=XLATTDEGIC;
PI=3.14159;
SWITCH=0;
SWITCHM=0;
T=0.;
S=0.;
XLONGF=XLONGFDEG/57.3;
XLATF=XLATFDEG/57.3;
XF=A*cos(XLATF)*cos(XLONGF);
YF=A*cos(XLATF)*sin(XLONGF);
ZF=A*sin(XLATF);
XLONGT=XLONGTDEG/57.3;
XLONGM=XLONGMDEG/57.3;
XLATM=XLATMDEG/57.3;
XLATT=XLATTDEG/57.3;
XT=A*cos(XLATT)*cos(XLONGT);
YT=A*cos(XLATT)*sin(XLONGT);
ZT=A*sin(XLATT);
XM=(A+ALTM)*cos(XLATM)*cos(XLONGM);
YM=(A+ALTM)*cos(XLATM)*sin(XLONGM);
ZM=(A+ALTM)*sin(XLATM);
DISTFKM=distance3dkm(XF,YF,ZF,XT,YT,ZT);
TFTOT=252.+.223*DISTFKM-(5.44E-6)*DISTFKM*DISTFKM;
TFTOT=TFTOT+TLOFT;
for TF=(TLAUNCH+60.):50:(TFTOT-50.),

TGOLAM=TFTOT-T;
% CALCULATE TARGET VELOCITY REQUIRED TO REACH ITS DESTINATION

[VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TGOLAM,XF,
YF,ZF,SWITCH);

XTD=VRX;
YTD=VRY;
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ZTD=VRZ;
% CALCULATE TARGET STATES AT DESIRED INTERCEPT TIME

T0=0.;
T1=TF;
X0(1)=XT/3280.;
X0(2)=YT/3280.;
X0(3)=ZT/3280.;
X0(4)=XTD/3280.;
X0(5)=YTD/3280.;
X0(6)=ZTD/3280.;
[X1]=KEPLER1(X0,T0,T1);
XTF=X1(1)*3280.;
YTF=X1(2)*3280.;
ZTF=X1(3)*3280.;
ALTFKM=(sqrt(XTF^2+YTF^2+ZTF^2)-A)/3280.;
if ALTFKM,50.

break
end

% CALCULATE MISSILE VELOCITY REQUIRED TO INTERCEPT TARGET AT DESIRED
INTERCEPT TIME

TGOLAMM=TF-TLAUNCH;

[VRXM,VRYM,VRZM]=LAMBERT3D(XM,YM,ZM,TGOLAMM,XTF,YTF,ZTF,SWITCHM);
XMD=VRXM;
YMD=VRYM;
ZMD=VRZM;
VBOM=sqrt(XMD^2+YMD^2+ZMD^2)/3280.;
VBOT=sqrt(XTD^2+YTD^2+ZTD^2)/3280.;
if (VBOM,VBOLIM & VBOT,7.5)

count=count+1;
ArrayTF(count)=TF;
ArrayTLAUNCH(count)=TLAUNCH;
ArrayXLONGF(count)=XLONGFDEG*111.;
ArrayXLATF(count)=XLATFDEG*111.;
ArrayVBOM(count)=VBOM;

end
end

end
end

end
figure
plot(ArrayXLONGF,ArrayXLATF,’r+’),grid
xlabel(’Downrange (km)’)
ylabel(’Crossrange (km) ’)
clc
output=[ArrayTF’,ArrayTLAUNCH’,ArrayXLONGF’,ArrayXLATF’,ArrayVBOM’];
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save datfil.txt output /ascii
disp ’simulation finished’
% LAMBERT3D can be found in Listing 28.2
% distance3dkm can be found in Listing 28.2
% KEPLER1 can be found in Listing 28.3

The nominal case of Listing 32.5 was run for a 5-km/s interceptor against the
impulsive ICBM target flying a minimum energy trajectory. Figure 32.13 displays
possible target impact points that can be defended, indicated by plus signs,
because they can be successfully intercepted by a 5-km/s interceptor located
6660 km downrange from the target launch point. Again, it is important to
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note that each plus sign in Fig. 32.13 corresponds to a different interceptor launch
and intercept time that results in a successful intercept. Figure 32.14 shows the
same case except this time the target trajectory is lofted (TLOFT ¼ 500). We can
see that the size of the defended area region shrinks because the target is harder
to reach since its apogee is higher than that of a minimum energy trajectory
and thus harder to reach with a 5-km/s interceptor. However the difference in
results between the minimum energy and loft target trajectories is not as great
as it was in the previous section because the interceptor is much closer to the
target impact point. Figure 32.15 shows that when the target trajectory is
depressed (TLOFT ¼ 2200) the defended area region is roughly the same size as
it was when the target was flying a minimum energy trajectory.

SUMMARY

In this chapter we have seen how to present information on successful intercepts
of an impulsive ballistic target being pursued by an impulsive interceptor. The
operational area method of presentation assumes that the target trajectory is
fixed and we figure out where the interceptor can be placed for a successful inter-
cept. The launch area denied method of presentation assumes that the target
aimpoint and initial interceptor locations are fixed and the initial target launch
site is varied. Finally, the defended area method of presentation assumes that
the target launch point and initial interceptor locations are fixed and the final
target impact point is varied. Using the three methods of presentation cases
were run in which the size of the area was influenced either by the missile velocity
or the target trajectory type.
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CHAPTER 33

Boost-Phase Filtering Options

INTRODUCTION

Intercepting ballistic missiles during their boost phase is attractive because
ballistic missiles are easy to detect and track while they are thrusting and, if the
intercept is successful, the raid size for subsequent missile defense layers is
thinned. In addition, decoys and other countermeasures, which can be very
important for midcourse phase intercepts (that is, when the target is only under
the influence of gravity) are usually considered to be more difficult to devise
against boosting targets. An important part of the boost-phase intercept
problem is the problem of tracking the boosting target and predicting where it
will be in the future. Robust filtering options that require a minimum of compu-
tation are highly desired for the boost-phase intercept application. This chapter
[1] takes the approach of simplifying the boost-phase filtering problem down to
its most basic levels so that two different fundamental approaches can be explored.

It is usually thought that the more a priori information one gives a Kalman
filter, the better the Kalman filter will perform. This is certainly true if the a
priori information is correct. If the a priori information has slight errors
however, considerable filtering errors may result. In fact if the a priori information
is incorrect, filter divergence may result. Process noise reflects how much confi-
dence we have in the mathematical representation of the model of the real
world embedded in the Kalman filter. Using large amounts of process noise in
the filter design is an engineer’s way of telling the filter that we have very little con-
fidence in our model of the real world and that the filter should always pay atten-
tion to the measurements. Using small amounts or zero process noise in the filter
design means that we are so confident in our model of the real world that the filter
can eventually stop paying attention to the measurements (Kalman gains even-
tually go to zero with zero process noise). In order to make a Kalman filter
robust to errors in a priori information, sufficient process noise must be added
to the filter—sometimes massive amounts of process noise! Although increased
process noise can often eliminate filter divergence, it also increases the errors in
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the state estimates. Sometimes it is possible that when a priori information is in
error one might have been better off with a simpler Kalman filter, requiring less
process noise, that does not require a priori information.

Although there is an extensive body of academic papers on high-order filters
for tracking applications, many systems that are built use low-order decoupled
filtering techniques [2, 3]. For both simplicity and ease of understanding we
will only consider the low-order tracking filters in this chapter. Two filtering
options for tracking a boosting intercontinental ballistic missile (ICBM) will be
investigated in this chapter. First, the performance of a decoupled two-state
Kalman filter, sometimes called a position-velocity filter, will be investigated
assuming that the current ICBM acceleration magnitude and direction is
known perfectly. Next, the degradation in performance of the two-state Kalman
filter will be studied assuming that the current acceleration magnitude is known
exactly but the current direction is not known and must be guessed. In this
case the filter will assume that the ICBM is performing a gravity turn even
though it is not. Next a simple linear three-state decoupled polynomial Kalman
filter, sometimes called a position-velocity-acceleration filter, for tracking the
boosting ICBM will also be considered. This type of filter, which does not
require a priori information, is often used in the tactical missile world for tracking
unpredictable maneuvering aircraft. Performance comparisons will be made
between the two filtering options.

ICBM MODEL

To get at the heart of the matter and to avoid unnecessary complexity, the physics
of the real world will be kept as simple as possible and an ICBM model from the
open literature will be used. One such generic ICBM model appears in the Amer-
ican Physical Society (APS) report of Ref. 4 and is representative of a two-stage,
liquid-fueled ICBM that is capable of traveling 12,000 km. The magnitude of
the longitudinal acceleration profile of the APS two-stage liquid ICBM during
its boost phase appears in Fig. 33.1.

Figure 33.1 indicates that the ICBM boost phase lasts 240 s and the disconti-
nuities in the acceleration profile are due to staging events. At the end of the first-
stage burn at 120 s the peak ICBM longitudinal acceleration is approximately 6 g
and at the end of the second-stage burn at 240 s the peak acceleration is approxi-
mately 13 g. The job of the Kalman filter will be to estimate the position, velocity,
and possibly the acceleration of the boosting ICBM.

ICBM GUIDANCE

Usually an ICBM flies straight up for a while and then performs a gravity turn
while it is in the atmosphere to minimize loading and drag effects. Once the
ICBM is out of the atmosphere or when the dynamic pressure falls below a
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certain level the ICBM can perform closed-loop guidance so that it can reach its
intended target [5]. Lambert guidance is one possible method of steering a boost-
ing ICBM to its intended target at the desired impact time. Lambert guidance
involves the numerical solution to Lambert’s problem and was discussed fully
in Chapter 13 [6–8]. Essentially, at each instant of time if the ICBM knows
where it is and where it wants to go and how long it should take to get to its
destination, the solution to Lambert’s problem tells the ICBM at each instant of
time the magnitude and direction of the required velocity vector.

As was shown in Chapter 12, with a gravity turn the ICBM’s thrust vector is
aligned with the velocity vector in an attempt to drive the angle of attack to zero in
order to minimize drag. The differential equations for the acceleration com-
ponents of the ICBM while performing the gravity turn in an ECI coordinate
system was shown to be given by

ax ¼ �gm x

(x2 þ y2)1:5
þ aT

_x

(x2 þ y2):5

ay ¼ �gm y

(x2 þ y2)1:5
þ aT

_y

( _x2 þ _y2):5

The first term in the preceding differential equation is due to gravity and the
second term is the gravity turn portion of the boosting target’s acceleration.

Listing 33.1, which is based on Listing 13.3, is a two-dimensional trajectory
generator for the APS ICBM traveling on a 7000-km trajectory. Here the ICBM
goes straight up for 20 s (TUPT ¼ 20), then performs an open-loop gravity turn
for the next 80 s (TGRAVEND ¼ 100) and finally uses closed-loop Lambert
guidance to get to its final destination. Note that the trajectory generator also
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Fig. 33.1 Two-stage APS liquid ICBM acceleration profile.
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calculates the dynamic pressure Q of the ICBM. The dynamic pressure acting on
the ICBM is given by the expression

Q ¼ 0:5rV2

where V is the booster’s velocity in ft/s and r is air density in slug/ft3. In the
English system of units air density r was shown in Chapter 10 to be (above
30-kft altitude) approximated by

r ¼ 0:0034e�alt=22000

where alt is the booster altitude in feet. The nominal case of Listing 33.1 was run
and the resultant lofted (TLOFT ¼ 500) 7000-km ICBM trajectory appears in
Fig. 33.2. We can see that the apogee of the trajectory is approximately 1800 km.

LISTING 33.1 TRAJECTORY GENERATOR FOR NOMINAL ICBM

count=0;
RDESKM=7000.;
TF=2000.;
TFINISH=999999.;
TLOFT=500.;
TGRAVEND=100.;
GAMDEGIC=89.8;
TUPT=20.;
RDESRKM=560.;
LEFT=1;
QBOOST=1;
QOOMPH=1;
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Fig. 33.2 Nominal 7000-km ICBM trajectory.
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QFINISH=1;
QZERO=0;
CW=0;
SWITCH=0;
QFIRST=1;
GAMDEG=GAMDEGIC;
H=.01;
T=0.;
S=0.;
A=2.0926E7;
GM=1.4077E16;
ALTNM=0.;
ALT=ALTNM*6076.;
ANGDEG=0.;
ANG=ANGDEG/57.3;
XLONGM=ANG;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
ALT=sqrt(X^2+Y^2)-A;
XFIRST=X;
YFIRST=Y;
X1=cos(1.5708-GAMDEG/57.3+ANG);
Y1=sin(1.5708-GAMDEG/57.3+ANG);
AXT=0.;
AYT=0.;
XLONGTDEG=57.3*RDESKM*3280./A;
XLONGRDEG=57.3*RDESRKM*3280./A;
TF=252.+.223*RDESKM-(5.44E-6)*RDESKM*RDESKM;
TF=TF+TLOFT;
XLONGT=XLONGTDEG/57.3;
XLONGR=XLONGRDEG/57.3;
XF=A*cos(XLONGT);
YF=A*sin(XLONGT);
XR=A*cos(XLONGR);
YR=A*sin(XLONGR);
AXT=0.;
AYT=0.;
Z=0;
ZF=0;
ZFIRST=0;
while ~(ALTNM,-1 | T.TFINISH)

XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
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FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
X=X+H*XD;
Y=Y+H*YD;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;

end;
if T,120.

WGT=-2622*T+440660.;
TRST=725850.;

elseif T,240.
WGT=-642.*T+168120.;
TRST=182250.;

else
WGT=5500.;
TRST=0.;

end
AT=32.2*TRST/WGT;
XD=X1;
YD=Y1;
VEL=sqrt(XD^2+YD^2);
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT+AXT;
Y1D=-GM*Y/TEMBOT+AYT;
ALT=sqrt(X^2+Y^2)-A;
ACCG=sqrt(AXT^2+AYT^2)/32.2;
FLAG=1;

end
FLAG=0;
X=(XOLD+X)/2+.5*H*XD;
Y=(YOLD+Y)/2+.5*H*YD;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
S=S+H;
Z=0.;
ZF=0.;
TGOLAM=TF-T;
if (QBOOST==1 & T.TGRAVEND)

TGOLAM=TF-T;
[VRX,VRY,VRZ]=LAMBERT3D(X,Y,Z,TGOLAM,XF,YF,ZF,SWITCH);
DELX=VRX-X1;
DELY=VRY-Y1;
DEL=sqrt(DELX^2+DELY^2);
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if (T,240 & DEL.500.)
AXT=AT*DELX/DEL;
AYT=AT*DELY/DEL;

elseif DEL,500.
TRST=0.;
QBOOST=0;
AXT=0.;
AYT=0.;
X1=VRX;
Y1=VRY;
X1OLD=X1;
Y1OLD=Y1;

else
QBOOST=0;
AXT=0.;
AYT=0.;

end
elseif (T.=TUPT & T,= TGRAVEND & QFIRST==1)

QFIRST=0;
VEL=sqrt(XD^2+YD^2);
X1=VEL*cos(1.5708-GAMDEGIC/57.3+ANG);
Y1=VEL*sin(1.5708-GAMDEGIC/57.3+ANG);
X1OLD=X1;
Y1OLD=Y1;
AXT=AT*X1/VEL;
AYT=AT*Y1/VEL;

elseif (T.=TUPT & T,=TGRAVEND)
VEL=sqrt(XD^2+YD^2);
AXT=AT*X1/VEL;
AYT=AT*Y1/VEL;

elseif T,=TUPT
RTMAG=sqrt(X^2+Y^2);
AXT=AT*X/RTMAG;
AYT=AT*Y/RTMAG;

end
if S.=.9999

S=0.;
DISTNM=distance3dkm(X,Y,Z,XFIRST,YFIRST,ZFIRST);
ALTNM=(sqrt(X^2+Y^2)-A)/3280.;
RMAG=sqrt(X^2+Y^2);
VMAG=sqrt(XD^2+YD^2);
GAMDEG=90-57.3*acos((X*XD+Y*YD)/(RMAG*VMAG));
RHO=.0034*exp(-ALT/22000.);
Q=.5*RHO*VEL*VEL;
RRMAG=sqrt(XR^2+YR^2);
RRTMAG=sqrt((X-XR)^2+(Y-YR)^2);
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ELDEG=90.-57.3*acos((XR*(X-XR)+YR*(Y-YR))/(RRMAG*RRTMAG));
if (ELDEG.2. & ELDEG,85)

ISEE=1;
else

ISEE=0;
end
count=count+1;
ArrayT(count)=T;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;
ArrayQ(count)=Q;
ArrayISEE(count)=ISEE;

end
end
figure
plot(ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (km)’)
ylabel(’Altitude (km)’)
clc
output=[ArrayT’,ArrayDISTNM’,ArrayALTNM’,ArrayQ’,ArrayISEE’];
save datfil.txt output /ascii
disp ’simulation finished’
% LAMBERT3D can be found in Listing 28.3
% distance3dkm can be found in Listing 28.3

For the boost-phase portion of the ICBM trajectory, or first 240 s of flight, the
dynamic pressure, in the English system of units, is depicted in Fig. 33.3. As was
previously mentioned, usually a gravity turn is performed while the ICBM is in the
atmosphere to reduce drag and loading effects. However, when the dynamic
pressure is low enough, closed-loop guidance can be begin. If we assume that
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Fig. 33.3 Dynamic pressure for ICBM boost-phase portion of flight.
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ICBM guidance cannot begin until the dynamic pressure drops below 600 lb/ft2

(that is, the actual number depends on booster design), then we can say that for
this example closed-loop Lambert guidance can not begin until 65 s after the
ICBM takes off. However, in order to be conservative, it shall be assumed that
closed-loop guidance can begin at 100 s where the dynamic pressure is below
50 lb/ft2.

The boost-phase portion of the ICBM 7000-km trajectory is shown in
Fig. 33.4. In this example the boosting ICBM first goes straight up for 20 s,
performs a gravity turn for the next 80 s and then switches to Lambert guidance
at 100 s after launch. Also shown in Fig. 33.4 is a tracking radar located approxi-
mately 560 km from the ICBM launch site. The radar will not be able to see the
target immediately due to the curvature of the Earth and radar elevation angle
constraints. If a minimum radar elevation angle of 2 deg is required for acquisition
then running Listing 33.1 also indicates that the radar will not be able to see the
ICBM for the first 90 s of flight (that is, when ISEE ¼ 1).

Figure 33.5 displays the downrange and altitude acceleration profiles of the
boosting ICBM. The figure indicates that for the first 20 s the downrange accelera-
tion is zero because the APS ICBM is going straight up. As was mentioned before,
the ICBM goes straight up for 20 s, a gravity turn is employed from 20 s to 100 s,
and Lambert guidance is used for the remainder of the flight. There is a staging
event at 120 s.

FILTERING OPTIONS

For radar tracking applications range and angle measurements are available.
A fully coupled extended Kalman filter (EKF) can be designed to estimate the pos-
ition, velocity, and acceleration of the target. With this approach the filter will
require accurate state and covariance initialization and have a certain compu-
tational burden. An alternative approach that has been used in older tracking
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systems [2, 3] is to transform the actual radar measurements to pseudo position
measurements and then to build decoupled linear polynomial Kalman filters in
each part of the coordinate system under consideration. Such an approach
offers a considerable reduction in computation over the EKF approach, which
means that many more targets can be tracked for a given flight computer through-
put capacity. In addition, linear polynomial Kalman filters are very robust and are
insensitive to filter initialization issues, which can be very important in military
applications. Therefore, in each of the filtering approaches considered in this
chapter, the filters will be considered to be decoupled and only the equations in
one of the channels will be presented.

If a priori information concerning the current acceleration profile of the ICBM
is available, a two-state Kalman filter can be designed to estimate the ICBM’s pos-
ition and velocity. Because the acceleration of the boosting ICBM is assumed to be
known, it does not have to be estimated. If acceleration information, also known
as a template, is not available a three-state polynomial Kalman filter can be
designed to estimate the position, velocity, and acceleration of the boosting ICBM.

Figure 33.4 presented the geometry for a surface-based radar tracking an
ICBM during its boost phase. In this generic model it is assumed that the radar
measures range and angle to the ICBM and that the radar tracks the target with
an angular accuracy of 1 mr and a range accuracy of 10 m. Measurements are
taken every second. Due to previously mentioned radar horizon and elevation
angle constraints, the radar sees the ICBM at 90 s. after target launch.

The range and angle from the radar to the target or ICBM is given by

RT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xT � xR)

2 þ (yT � yR)
2

q
uT ¼ tan�1 yT � yR
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Fig. 33.5 ICBM acceleration components during boost phase for 7000-km trajectory.
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where the coordinates of the radar xR, yR are assumed to be known and the target
location xT, yT is unknown. As was previously mentioned, although the radar
actually measures range and angle, one can pretend the radar measures down-
range and altitude in order to avoid building an EKF. Creating such position
pseudo measurements will allow us to build a linear decoupled polynomial
Kalman filter.

The target location can be expressed in terms of the radar location, angle to the
target and range to the target as

xT ¼ �RT cos uT þ xR
yT ¼ RT sin uT þ yR

Using the chain rule from calculus yields

DxT ¼ @xT
@RT

DRT þ @xT
@uT

DuT

DyT ¼ @yT
@RT

DRT þ @yT
@uT

DuT

After taking the partial derivatives we obtain

DxT ¼ � cos uTDRT þ RT sin uTDuT
DyT ¼ sin uTDRT þ RT cos uTDuT

Squaring both sides of the preceding two equations, ignoring cross-coupling
efects, and taking expectations yields

s2
x ¼ cos2 uTs

2
R þ R2

T sin
2 uTs

2
u

s2
y ¼ sin2 uTs

2
R þ R2

T cos
2 uTs

2
u

where it has been assumed that

E(Dx2T) ¼ s2
x

E(Dy2T) ¼ s2
y

E(DR2
T) ¼ s2

R

E(Du2T) ¼ s2
u

TWO-STATE TEMPLATED BASED FILTER

If cross coupling effects are neglected, two decoupled two-state linear polynomial
Kalman filters can be built. One filter is in downrange and the other in altitude so
that the position and velocity of the booster can be estimated. A template-based
Kalman filter assumes that a perfect acceleration template of the boosting target
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is available in which the current components of the booster acceleration aTx, aTy
are known exactly. Under these conditions the equations of the downrange
template-based two-state linear polynomial Kalman filter become

Resk ¼ x�Tk
� x̂Tk�1 � _̂xTk�1Ts � 0:5aTk�1T

2
s

x̂Tk ¼ x̂Tk�1 þ _̂xTk�1Ts þ 0:5aTk�1T
2
s þ K1kResk

_̂xTk ¼ _̂xTk�1 þ aTk�1Ts þ K2kResk

where Res stands for the filter residual. There is an identical set of equations for
the Kalman filter in the altitude direction. The Kalman gains for the downrange
and altitude filters will be different because the variance of the pseudo measure-
ment noise in each channel is different. The process noise matrix for both
decoupled filters is given by

Qk ¼ Fs

T3
s

3
T2
s

2
T2
s

2
Ts

2
664

3
775

where Fs is the process noise power spectral density in units squared per Hz. In
practiceFs is chosen by extensive computer experiments in which practical errors
are introduced to ensure that the filter is robust.

THREE-STATE FILTER

Kalman filters that are not template-based do not have to be invented because they
have been used in the tactical missile world for many decades for tracking unpre-
dictable maneuvering aircraft targets. These filters simply take derivatives and are
known as linear polynomial Kalman filters. For tracking an ICBM during the
boost phase in a two-dimensional world, two decoupled three-state linear
polynomial Kalman filters can also be built, one in downrange and the other in
altitude, to estimate the position, velocity, and acceleration of the boosting
ICBM. The equations of the downrange three-state linear polynomial Kalman
filter are given by [9, 10]

Resk ¼ x�Tk
� x̂Tk�1 � _̂xTk�1Ts � 0:5€̂xTk�1T

2
s

x̂Tk ¼ x̂Tk�1 þ _̂xTk�1Ts þ 0:5€̂xTk�1T
2
s þ K1kResk

_̂xTk ¼ _̂xTsk�1 þ €̂xTk�1Ts þ K2kResk

€̂xTk ¼ €̂xTsk�1 þ K3kResk

where Res again represents the filter residual. There is an identical set of equations
in the altitude direction. The Kalman gains for the downrange and altitude filters
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will be different because the variance of the pseudo measurement noise is different
in each channel. The process noise matrix for both decoupled filters is given by

Q ¼ Fs

T5
s

20
T4
s

8
T3
s

6
T4
s

8
T3
s

3
T2
s

2
T3
s

6
T2
s

2
Ts

2
6666664

3
7777775

where Fs is the process noise power spectral density in units squared per Hz. For
all studies in this chapter with the three-state linear polynomial Kalman filter, the
value of process noise is determined by experiment and is set to 260.

Listing 33.2 is a simulation of the ICBM trajectory generator with the just dis-
cussed two- and three-state linear decoupled polynomial Kalman filters. If
IFILTER ¼ 1, then the two-state template filter is used where the target acceleration
is assumed to be known. In addition, we can see that the filter does not depend on
knowledge of the target’s initial position and velocity but initializes itself by using
a two-state least squares filter for the first few measurements. If IFILTER ¼ 2, then
the three-state linear polynomial Kalman filter is used. In this case we can see that
the filter also does not depend on knowledge of the target’s initial position, vel-
ocity, and acceleration estimates but initializes itself by using a three-state least
squares filter for the first few measurements [10]. The radar elevation angle is cal-
culated and it is assumed that the radar cannot see the target unless the elevation
angle is between 2 deg and 85 deg. Filtering does not start until the radar can see
the target (ISEE ¼ 1).

LISTING 33.2 SIMULATION OF TWO POSSIBLE LINEAR DECOUPLED POLYNOMIAL KALMAN
FILTERS FOR TRACKING AN ICBM DURING BOOST PHASE

count=0;
IFILTER=1;
RDESKM=7000.;
TF=2000.;
TFINISH=240.;
TLOFT=500.;
TGRAVEND=100.;
GAMDEGIC=89.8;
TUPT=20.;
RDESRKM=560.;
SWITCH=0;
PHIS=0.;
PHIS1=260.;
ERR=0.;
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TS=1.;
SIGTHET=.001;
SIGR=10.*3.28;
QGRAV=0;
ORDER =2;
LEFT=1;
QBOOST=1;
QFINISH=1;
QFIRST=1;
GAMDEG=GAMDEGIC;
HINT=.01;
XH=0.;
XDH=0.;
XDDH=0.;
YH=0.;
YDH=0.;
YDDH=0.;
PHI=zeros([2,2]);
P=zeros([2,2]);
Q=zeros([2,2]);
IDNPZ=eye(2);
P(1,1)=99999999999.;
P(2,2)=99999999999.;
PP(1,1)=99999999999.;
PP(2,2)=99999999999.;
PHI(1,1)=1;
PHI(1,2)=TS;
PHI(2,2)=1;
HMAT(1,1)=1.;
HMAT(1,2)=0.;
PHIT=PHI’;
HT=HMAT’;
Q(1,1)=PHIS*TS^3/3.;
Q(1,2)=PHIS*TS^2/2.;
Q(2,1)=Q(1,2);
Q(2,2)=PHIS*TS;
P11=99999999999.;
P12=0.;
P13=0.;
P22=99999999999.;
P23=0.;
P33=99999999999.;
P11P=99999999999.;
P12P=0.;
P13P=0.;
P22P=99999999999.;
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P23P=0.;
P33P=99999999999.;
XN=0.;
T=0.;
S=0.;
A=2.0926E7;
GM=1.4077E16;
ALTNM=0.;
ALT=ALTNM*6076.;
ANGDEG=0.;
ANG=ANGDEG/57.3;
XLONGM=ANG;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
ALT=sqrt(X^2+Y^2)-A;
XFIRST=X;
YFIRST=Y;
X1=cos(1.5708-GAMDEG/57.3+ANG);
Y1=sin(1.5708-GAMDEG/57.3+ANG);
AXT=0.;
AYT=0.;
XLONGTDEG=57.3*RDESKM*3280./A;
XLONGRDEG=57.3*RDESRKM*3280./A;
TF=252.+.223*RDESKM-(5.44E-6)*RDESKM*RDESKM;
TF=TF+TLOFT;
XLONGT=XLONGTDEG/57.3;
XLONGR=XLONGRDEG/57.3;
XF=A*cos(XLONGT);
YF=A*sin(XLONGT);
XR=A*cos(XLONGR);
YR=A*sin(XLONGR);
AXT=0.;
AYT=0.;
Z=0;
ZF=0;
ZFIRST=0;
while ~(ALT, -1 | T.TFINISH)

XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
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X=X+HINT*XD;
Y=Y+HINT*YD;
X1=X1+HINT*X1D;
Y1=Y1+HINT*Y1D;
T=T+HINT;

end
if T,120.

WGT=-2622*T+440660.;
TRST=725850.;

elseif T,240.
WGT=-642.*T+168120.;
TRST=182250.;

else
WGT=5500.;
TRST=0.;

end
AT=32.2*TRST/WGT;
XD=X1;
YD=Y1;
VEL=sqrt(XD^2+YD^2);
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT+AXT;
Y1D=-GM*Y/TEMBOT+AYT;
ALT=sqrt(X^2+Y^2)-A;
ACCG=sqrt(AXT^2+AYT^2)/32.2;
FLAG=1;

end
FLAG=0;
X=(XOLD+X)/2+.5*HINT*XD;
Y=(YOLD+Y)/2+.5*HINT*YD;
X1=(X1OLD+X1)/2+.5*HINT*X1D;
Y1=(Y1OLD+Y1)/2+.5*HINT*Y1D;
S=S+HINT;
Z=0.;
ZF=0.;
ZR=0;
TGOLAM=TF-T;
if (QBOOST==1 && T.TGRAVEND)

TGOLAM=TF-T;
[VRX,VRY,VRZ]=LAMBERT3D(X,Y,Z,TGOLAM,XF,YF,ZF,SWITCH);
DELX=VRX-X1;
DELY=VRY-Y1;
DEL=sqrt(DELX^2+DELY^2);
if (T,240 & DEL.500.)

AXT=AT*DELX/DEL;
AYT=AT*DELY/DEL;
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elseif DEL,500.
TRST=0.;
QBOOST=0;
AXT=0.;
AYT=0.;
X1=VRX;
Y1=VRY;
X1OLD=X1;
Y1OLD=Y1;

else
QBOOST=0;
AXT=0.;
AYT=0.;

end
elseif (T.=TUPT & T,=TGRAVEND & QFIRST==1)

QFIRST=0;
VEL=sqrt(XD^2+YD^2);
X1=VEL*cos(1.5708-GAMDEGIC/57.3+ANG);
Y1=VEL*sin(1.5708-GAMDEGIC/57.3+ANG);
X1OLD=X1;
Y1OLD=Y1;
AXT=AT*X1/VEL;
AYT=AT*Y1/VEL;

elseif (T.=TUPT & T,=TGRAVEND)
VEL=sqrt(XD^2+YD^2);
AXT=AT*X1/VEL;
AYT=AT*Y1/VEL;

elseif T,=TUPT
RTMAG=sqrt(X^2+Y^2);
AXT=AT*X/RTMAG;
AYT=AT*Y/RTMAG;

end
if S.=(TS-.00001)

S=0.;
DISTNM=distance3dkm(X,Y,Z,XFIRST,YFIRST,ZFIRST);
ALTNM=(sqrt(X^2+Y^2)-A)/3280.;
RMAG=sqrt(X^2+Y^2);
VMAG=sqrt(XD^2+YD^2);
GAMDEG=90-57.3*acos((X*XD+Y*YD)/(RMAG*VMAG));
RHO=.0034*exp(-ALT/22000.);
QPRES=.5*RHO*VEL*VEL;
RRKM=sqrt((X-XR)^2+(Y-YR)^2)/3280.;
DISTRKM=distance3dkm(XR,YR,ZR,XFIRST,YFIRST,ZFIRST);
ALTRKM=(sqrt(XR^2+YR^2)-A)/3280.;
RRMAG=sqrt(XR^2+YR^2);
RRTMAG=sqrt((X-XR)^2+(Y-YR)^2);
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ELDEG=90.-57.3*acos((XR*(X-XR)+YR*(Y-YR))/(RRMAG*RRTMAG));
if (ELDEG.2. & ELDEG,85)

ISEE=1;
else

ISEE=0;
end
if ISEE==1

XN=XN+1;
if IFILTER==1

XK1=2.*(2.*XN-1.)/(XN*(XN+1));
XK2=6./(XN*(XN+1)*TS);

else
XK1=3*(3*XN*XN-3*XN+2)/(XN*(XN+1)*(XN+2));
XK2=18*(2*XN-1)/(XN*(XN+1)*(XN+2)*TS);
XK3=60/(XN*(XN+1)*(XN+2)*TS*TS);

end
TS2=TS*TS;
TS3=TS2*TS;
TS4=TS3*TS;
TS5=TS4*TS;
THET=atan2(Y-YR,XR-X);
R=sqrt((XR-X)^2+(Y-YR)^2);
THETNOISE=SIGTHET*randn;
RNOISE=SIGR*randn;
RMEAS=R+RNOISE;
THETMEAS=THET+THETNOISE;
XTS=XR-RMEAS*cos(THETMEAS);
YTS=YR+RMEAS*sin(THETMEAS);
XTNOISE=X-XTS;
SIGX=sqrt((cos(THET)*SIGR)^2+(R*sin(THET)*SIGTHET)^2);
YTNOISE=Y-YTS;
SIGY=sqrt((sin(THET)*SIGR)^2+(R*cos(THET)*SIGTHET)^2);
if IFILTER==1

RMAT(1,1)=SIGX^2;
PHIP=PHI*P;
PHIPPHIT=PHIP*PHIT;
M=PHIPPHIT+Q;
HM=HMAT*M;
HMHT=HM*HT;
HMHTR=HMHT+RMAT;
HMHTRINV(1,1)=1./HMHTR;
MHT=M*HT;
K=MHT*HMHTRINV;
KH=K*HMAT;
IKH=IDNPZ-KH;
P=IKH*M;
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if XK1.K(1,1)
XK1PZ=XK1;
XK2PZ=XK2;

else
XK1PZ=K(1,1);
XK2PZ=K(2,1);

end
if QGRAV==0

XDDH=X1D*(1.+ERR);
else

VELH=sqrt(XDH^2+YDH^2);
XDDH=AT*XDH/(VELH+.0001);

end
RES=XTS-XH-TS*XDH-.5*TS*TS*XDDH;
XH=XH+XDH*TS+.5*TS*TS*XDDH+XK1PZ*RES;
XDH=XDH+XDDH*TS+XK2PZ*RES;
RMATP(1,1)=SIGY^2;
PHIPP=PHI*PP;
PHIPPHITP=PHIPP*PHIT;
MP=PHIPPHITP+Q;
HMP=HMAT*MP;
HMHTP=HMP*HT;
HMHTRP=HMHTP+RMATP;
HMHTRINVP(1,1)=1./HMHTRP;
MHTP=MP*HT;
KP=MHTP*HMHTRINVP;
KHP=KP*HMAT;
IKHP=IDNPZ-KHP;
PP=IKHP*MP;
if XK1.K(1,1)

XK1PZP=XK1;
XK2PZP=XK2;

else
XK1PZP=KP(1,1);
XK2PZP=KP(2,1);

end
if QGRAV==0

YDDH=Y1D*(1.+ERR);
else

YDDH=AT*YDH/(VELH+.0001);
end
RESP=YTS-YH-TS*YDH-.5*TS*TS*YDDH;
YH=YH+YDH*TS+.5*TS*TS*YDDH+XK1PZP*RESP;
YDH=YDH+YDDH*TS+XK2PZP*RESP;

else
M11=P11+TS*P12+.5*TS2*P13+TS*(P12+TS*P22+.5*TS2*P23);
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M11=M11+.5*TS2*(P13+TS*P23+.5*TS2*P33)+TS5*PHIS1/20.;
M12=P12+TS*P22+.5*TS2*P23+TS*(P13+TS*P23+.5*TS2*P33);

M12=M12+TS4*PHIS1/8.;
M13=P13+TS*P23+.5*TS2*P33+PHIS1*TS3/6.;
M22=P22+TS*P23+TS*(P23+TS*P33)+PHIS1*TS3/3.;
M23=P23+TS*P33+.5*TS2*PHIS1;
M33=P33+PHIS1*TS;
BOT=M11+SIGX*SIGX;
K1=M11/BOT;
K2=M12/BOT;
K3=M13/BOT;
FACT=1.-K1;
P11=FACT*M11;
P12=FACT*M12;
P13=FACT*M13;
P22=-K2*M12+M22;
P23=-K2*M13+M23;
P33=-K3*M13+M33;
if XK1.K1

XK1PZ=XK1;
XK2PZ=XK2;
XK3PZ=XK3;

else
XK1PZ=K1;
XK2PZ=K2;
XK3PZ=K3;

end
RES=XTS-XH-TS*XDH-.5*TS*TS*XDDH;
XH=XH+XDH*TS+.5*TS*TS*XDDH+XK1PZ*RES;
XDH=XDH+XDDH*TS+XK2PZ*RES;
XDDH=XDDH+XK3PZ*RES;

M11P=P11P+TS*P12P+.5*TS2*P13P+TS*(P12P+TS*P22P+.5*TS2*P23P);
M11P=M11P+.5*TS2*(P13P+TS*P23P+.5*TS2*P33P)+TS5*PHIS1/20.;

M12P=P12P+TS*P22P+.5*TS2*P23P+TS*(P13P+TS*P23P+.5*TS2*P33P);
M12P=M12P+TS4*PHIS1/8.;
M13P=P13P+TS*P23P+.5*TS2*P33P+PHIS1*TS3/6.;
M22P=P22P+TS*P23P+TS*(P23P+TS*P33P)+PHIS1*TS3/3.;
M23P=P23P+TS*P33P+.5*TS2*PHIS1;
M33P=P33P+PHIS1*TS;
BOTP=M11P+SIGY*SIGY;
K1P=M11P/BOTP;
K2P=M12P/BOTP;
K3P=M13P/BOTP;
FACTP=1.-K1P;
P11P=FACTP*M11P;
P12P=FACTP*M12P;
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P13P=FACTP*M13P;
P22P=-K2P*M12P+M22P;
P23P=-K2P*M13P+M23P;
P33P=-K3P*M13P+M33P;
if XK1.K1

XK1PZP=XK1;
XK2PZP=XK2;
XK3PZP=XK3;

else
XK1PZP=K1P;
XK2PZP=K2P;
XK3PZP=K3P;

end
RESP=YTS-YH-TS*YDH-.5*TS*TS*YDDH;
YH=YH+YDH*TS+.5*TS*TS*YDDH+XK1PZP*RESP;
YDH=YDH+YDDH*TS+XK2PZP*RESP;
YDDH=YDDH+XK3PZP*RESP;

end
end
if IFILTER==1

ERRXTD=(X1-XDH);
SP22=sqrt(P(2,2));
ERRYTD=(Y1-YDH);
SP22P=-SP22;
count=count+1;
ArrayT(count)=T;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;
ArrayERRXTD(count)=ERRXTD;
ArraySP22(count)=SP22;
ArraySP22P(count)=-SP22;

else
ERRXTD=(X1-XDH);
SP22=sqrt(P22);
ERRYTD=(Y1-YDH);
SP22P=-SP22;
count=count+1;
ArrayT(count)=T;
ArrayDISTNM(count)=DISTNM;
ArrayALTNM(count)=ALTNM;
ArrayERRXTD(count)=ERRXTD;
ArraySP22(count)=SP22;
ArraySP22P(count)=-SP22;

end
end

end
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figure
plot(ArrayDISTNM,ArrayALTNM),grid
xlabel(’Downrange (km)’)
ylabel(’Altitude (km)’)
figure
plot(ArrayT,ArrayERRXTD,ArrayT,ArraySP22,ArrayT,ArraySP22P),grid
xlabel(’Time (s)’)
ylabel(’Velocity Error (f/s)’)
axis([90 240 -500 500])
clc
output=[ArrayT’,ArrayDISTNM’,ArrayALTNM’,ArrayERRXTD’,ArraySP22’,ArraySP22P’];
save datfil.txt output /ascii
disp ’simulation finished’
% LAMBERT3D can be found in Listing 28.3
% distance3dkm can be found in Listing 28.3

Listing 33.2 was first run assuming that the two-state template-based filter did
not require any process noise (IFILTER ¼ 1, PHIS ¼ 0). Figure 33.6 shows single
flight results that indicate when there is no process noise the velocity error of
the template based filter starts to diverge from the covariance matrix predictions.
Initially the results of Fig. 33.6 might seem strange because we have perfect knowl-
edge of the target’s current acceleration states. However, we do not have infor-
mation on where the target is going and when it will arrive at its destination.
From a filtering point of view this means that our predictions to the next measure-
ment, via the fundamental matrix, are not exact. Making the process noise zero
means that the filter will eventually stop paying attention to the measurements
and filter divergence results as is indicated in Fig. 33.6. It is important to note
that in this chapter we shall be making judgments based on single flight results.
Normally a Monte Carlo analysis is required for precise estimates in filtering
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Fig. 33.6 Filter error in estimates diverge when there is zero process noise.
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work. However, usually disaster, such as filter divergence shown in Fig. 33.6, can
be detected in a single run.

The simple engineering fix to filter divergence is to increase the filter process
noise. Figure 33.7 indicates that divergence is eliminated and filter consistency is
achieved when Fs is increased from 0 to 100. The figure indicates that, on a single
flight basis, the error in the estimate of downrange velocity is consistent with the
theoretical predictions of the covariance matrix obtained from the Riccati
equations. Perfect knowledge of the current target’s acceleration magnitude and
direction in the template-based filter helps keep downrange velocity errors to
less than 40 ft/s by the end of the ICBM boost phase.

Next, a 10% acceleration template error was introduced into our knowledge of
the ICBM’s acceleration magnitude (ERR ¼ 0.1). It was still assumed that the
current direction of the ICBM longitudinal acceleration was known perfectly.
Figure 33.8 indicates that an acceleration template error is hardly visually
noticeable.

However Fig. 33.9 shows that even a small 10% template error significantly
influences two-state template-based Kalman filter consistency. The figure demon-
strates that the downrange error in the velocity estimate diverges from the theor-
etical bounds for a 10% template error. Because our model of the real world has
additional errors, more process noise is required by the filter to obtain
filter consistency.

Figure 33.10 shows that when the filter process noise is increased by an order
of magnitude (Fs increased from 100 to 1000) the two-state template-based
Kalman filter becomes consistent and divergence is no longer an issue when
there is a 10% filter template error. The price paid for increasing the process
noise is that the theoretical errors in the velocity estimate at 240 s increases
from 40 ft/s (Fs ¼ 100) to 90 ft/s (Fs ¼ 1000).
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Fig. 33.7 With perfect acceleration template two-state Kalman filter yields excellent
downrange velocity estimates.
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So far all of the Kalman filter results have depended on a template in which the
current booster acceleration direction was known exactly. Because in reality it is
impossible to know where the ICBM is going and how it will get there, an assump-
tion must be made on the direction of the future booster acceleration vector. One
such popular assumption is to assume the ICBM acceleration direction is that of a
gravity turn [9]. As was shown in the previous section, the gravity turn assump-
tion implies that the booster thrust vector is always aligned with its velocity vector.

Many consider the gravity turn assumption to be reasonable because a gravity
turn will minimize loading and drag while the booster is in the atmosphere.
However a gravity turn is not a closed-loop guidance law that can enable an
ICBM to reach its intended target in the desired time. An ICBM performs
gravity turn type maneuvers in the atmosphere to minimize drag and loading
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Fig. 33.8 10% errors slightly degrade downrange acceleration template.
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effects, or to provide gentle maneuvering if the dynamic pressure is too high.
When the dynamic pressure is low enough, an ICBM must use a closed-loop gui-
dance law (in our case the ICBM is guiding using Lambert guidance) to reach its
intended target. Therefore there will be a model mismatch with the gravity turn
assumption of the Kalman filter and what is happening in the real world when
the dynamic pressure is low. In our real world model the target is performing a
gravity turn until 100 s and then the target switches to Lambert guidance when
the dynamic pressure for this example is close to zero.

Figure 33.11 shows that when the gravity turn assumption is incorporated in
the two-state template-based Kalman filter (QGRAV ¼ 1) there is divergence
because there is not sufficient process noise (Fs ¼ 1000).
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Figure 33.12 shows that when the filter process noise is increased by
more than an order of magnitude (Fs increased from 1000 to 50,000) the
two-state template-based Kalman filter becomes consistent and divergence
is no longer an issue with the gravity turn assumption. The price paid
for increasing the process noise is that the theoretical errors in the
velocity estimate at 240 s increases from 40 ft/s (Fs ¼ 100) to 350 ft/s
(Fs ¼ 50,000).

Therefore it has been demonstrated that our template-based gravity turn
two-state Kalman filter is very sensitive to modeling errors—even when knowl-
edge of the current acceleration magnitude and direction is perfect. Large
amounts of process noise are required to prevent filter divergence when the
acceleration direction is not known. Errors in our downrange velocity estimates
can increase by an order of magnitude when minor errors in our knowledge of
the real world are introduced. Does a Kalman filter exist that is not template-based
and is more robust than the Kalman filter just considered?

Listing 33.2 was run for the case of the three-state filter (IFILTER ¼ 2) with a
value of process noise that was determined by experiment (PHIS1 ¼ 260).
Figure 33.13 shows single flight results for the acceleration estimate. The figure
indicates that there is no problem in estimating the target acceleration without
a template with a three-state linear polynomial Kalman filter.

Figure 33.14 shows that for the nominal trajectory the filter is consistent and
that the error in the estimate of downrange velocity for the three-state polynomial
Kalman filter is approximately 200 ft/s. This error in the estimate is not as good as
the two-state filter with a perfect template and perfect knowledge of the future
intention of the target. However it is better than the two-state gravity turn
template-based Kalman filter (see Fig. 33.12).
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So far sufficient process noise has been added to the two Kalman filters
considered in order to obtain filter consistency. With a consistent filter the covari-
ance matrix of the Riccati equations can be used to obtain accurate performance
projections concerning the errors in the estimate. Figure 33.15 presents the theor-
etical error in the downrange velocity estimate for both the three-state linear poly-
nomial Kalman filter and the two-state, perfect template, gravity turn assumption
Kalman filter when they both have sufficient process noise. The figure indicates
that the resultant errors in the downrange velocity estimate for the three-state
filter are nearly half of those for the two-state, perfect template, gravity turn
assumption Kalman filter.
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Fig. 33.13 Three-state linear polynomial Kalman filter does not require a template to
estimate ICBM acceleration.
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SUMMARY

For the boost-phase intercept problem it has been demonstrated that when a
template-based Kalman filter has perfect a priori information it offers significantly
better performance than a linear three-state polynomial Kalman filter that
does not require such information. However, when the two-state template-
based filter has slight errors, this chapter shows that equivalent or sometimes
better performance can be obtained with the simpler three-state polynomial
Kalman filter.
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CHAPTER 34

Kill Vehicle Guidance and Control
Sizing For Boost-Phase Intercept

INTRODUCTION

This chapter addresses some of the guidance and control issues involved in
enabling an air-launched interceptor carrying a highly maneuverable kinetic kill
vehicle (KKV) to perform an exoatmospheric intercept of a boosting threat
target capable of traveling many thousands of kilometers [1]. The chapter takes
the reader through part of the first iteration of the multi-iteration design
process in order to get a preliminary estimate of howmuch divert and acceleration
may be required by the kinetic kill vehicle to hit the target. Simplified examples are
presented to indicate how conventional guidance and filtering techniques can be
used as a starting point in the iterative design process for this important problem
in missile defense. More advanced guidance and filtering techniques can be used
in subsequent iterations to more accurately size the kinetic kill vehicle and
improve system performance and robustness.

BACKGROUND

As was mentioned in Chapter 33, intercept of intercontinental ballistic missiles
(ICBMs) during their boost phase has long been considered attractive. A few
years ago the American Physical Society (APS) released a detailed report [2]
that studied the use of surface-based interceptors for intercepting ICBMs
during their boost phase. But the APS report found that the surface-based inter-
ceptors required for boost-phase intercept would have to be very heavy, due to
both the high required burnout velocities and lateral divert requirements of the
interceptor. In addition, in the case of an Iranian ICBM launch against the
United States, for example, the APS report showed that the interceptors would
have to be based in countries that might present a political challenge for
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the United States. Thus, in general, the APS report was pessimistic about the
success of a terrestrial-based boost-phase intercept system.

AIR-LAUNCHED INTERCEPTOR APPROACH

An alternative approach to boost-phase intercept involves the use of airborne
interceptors and was first considered in the open literature by Wilkening [3]
and then expanded upon, with considerable practical detail, by Corbett [4]. At
first glance this alternative approach to boost-phase intercept might be considered
to be inferior to surface-based interceptors, since airborne interceptors would
have even lower burnout velocities than surface-based interceptors due to aircraft
payload weight constraints. However, in this alternative approach, stealthy
aircraft, which would be used as both launch and sensor platforms, initially
would be manned but in the future would be unmanned using a platform such
as the Naval Unmanned Combat Air System Carrier (N-UCAS) [5]. Stealthiness
would enable the aircraft to penetrate enemy territory to get much closer to ICBM
launch sites than would be possible with surface-based interceptors located near
the borders of an enemy nation. Having the defensive interceptor launch platform
closer to an enemy launch site means that the required burnout velocity of an air-
launched interceptor can be much less than that of a surface-launched interceptor.

The key elements in Corbett’s boost-phase intercept system construct are
stealthy fighter aircraft with infrared search-and-track (IRST) systems to detect
and track the target and airborne interceptors with highly maneuverable kinetic
kill vehicles for exoatmospheric intercepts of the enemy missiles. In this system
construct pairs of stealthy aircraft travel in oval racetracks in opposite directions
over enemy territory. Their combined IRST systems have 360-deg coverage and
can search for, detect, and track enemy ICBMs and intermediate range ballistic
missiles (IRBMs) autonomously during their boost phase. When the IRST
system of one aircraft detects a threat, it can cue another off-board IRST
system to establish an additional angles-only track on the target so that the pos-
ition, velocity, and acceleration of the target can be estimated. When sufficient
track accuracy of the target states are obtained, a prediction is made of the
target’s position at the desired intercept time. This prediction will be imperfect
as it is impossible to know a boosting target’s future intentions. The launch air-
craft turns so that it can fire its interceptor directly at the predicted intercept
point (PIP). The interceptor’s thrust is not only used to increase the speed of
the interceptor but as the PIP is constantly changing, the interceptor thrust
vector must also be steered in order for the interceptor to hit the latest and
most refined estimate of the PIP. When the interceptor burns out, the PIP will
still be in considerable error. Therefore, additional fuel and guidance is required
so that a KKV, which separates from the interceptor after the interceptor burns
out, will hit the target using its lateral divert engines for responding to guidance
commands outside of the Earth’s atmosphere.
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GUIDANCE AND CONTROL ISSUES

The purpose of this chapter is to illustrate how some key guidance and control
issues influence the amount of fuel and acceleration the KKV must have so that
it can successfully engage both IRBMs and ICBMs during their boost phase.
Sample trade-offs will be conducted using conventional guidance and filtering
methods to illustrate the first step of an iterative design process that must take
place for all practical designs. Subsequent steps in the design process may consider
more advanced guidance and filtering techniques which in turn might reduce the
KKV divert requirements derived in this chapter.

Lambert guidance was shown in Chapter 13 to be an effective method of gui-
dance when the control authority of the interceptor is in the axial direction while
augmented proportional navigation (APN) was shown in Chapter 8 to be appro-
priate when the control authority of the KKV was in the lateral direction. There-
fore, Lambert guidance can be used while the interceptor is thrusting and APN
can be used afterwards by the KKV’s lateral divert engines. The interceptor
must be sized for both adequate burnout velocity and sufficient fuel and accelera-
tion for the KKV’s divert engines. When the KKV gets close enough to the target,
its seeker can acquire the target plume. The seeker software must be capable of
distinguishing the target hard body from the plume and enable the KKV to hit
that target’s warhead.

This chapter starts out by first considering the effects of apparent target
maneuver and guidance law (assuming zero PIP error) in a noise-free, one-
dimensional engagement environment. Formulas will be developed showing
how KKV divert requirements are related to target maneuver and KKV action
or homing time. Next engagement experiments in two dimensions are conducted
in a noise-free environment to see how simulation results compare with closed-
form solutions. Finally it is demonstrated that sensor noise and filtering effects
also play an important role in establishing KKV lateral divert requirements.

ONE-DIMENSIONAL MODEL FOR UNDERSTANDING GUIDANCE

Figure 34.1 presents the classical interceptor homing loop for understanding gui-
dance. Here nT represents the apparent target acceleration, as seen by the pursuing
interceptor, of a boosting threat. That portion of the target’s axial acceleration that
is perpendicular to the KKV-target line of sight will appear as a target maneuver to
the KKV. In this example we want to ensure that the KKV has adequate accelera-
tion capability (does not saturate near the end of the flight) so that it can hit the
target. For exoatmospheric intercepts the kill vehicle time constants are so small
that they can be neglected in a preliminary analysis. In addition, we will mainly be
concerned about the amount of KKV fuel or lateral divert required for a
successful intercept.

Under worst-case geometrical conditions, all of the threats axial acceleration
will be seen by the KKV as an apparent target maneuver. A typical acceleration
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profile for a generic one-stage, 180-s burn IRBM is displayed as the solid curve
in Fig. 34.2. Here it can be seen that the threat acceleration increases with increas-
ing time because as the IRBM propellant burns, the weight of the IRBM decreases.
In this example the maximum acceleration of the IRBM is approximately 9 g at
180 s. For academic and analytical purposes the generic IRBM acceleration can
be approximated by a parabola with zero acceleration initially and nTMAX

acceleration finally. The parabolic approximation is given by

nTParabola ¼ nTMAX
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where tF is the IRBM burnout time. It will be shown later that the real purpose of
the parabolic approximation is to enable us to rapidly estimate the KKV divert and
acceleration requirements on hypothetical threats when only a minimal amount
of information is available.

Let us simulate the one-dimensional guidance system of Fig. 34.1, assuming
the proportional navigation (PN) guidance law with an effective navigation
ratio of 3, for the academic case in which the IRBM target of Fig. 34.2 and the
interceptor are both launched at time zero and intercept occurs at target
burnout (180 s). The linearized one-dimensional engagement simulation of
Listing 2.2 was modified so that the effects on the guidance system due to a para-
bolic target maneuver could be compared to the actual apparent target maneuver
(that is, thrust divided weight). The modified code appears in Listing 34.1. The
changes to the original code are highlighted in bold. Here the guidance law can
be changed from proportional navigation (APN ¼ 0) to augmented proportional
navigation (APN ¼ 1). In addition the effects of the parabolic target maneuver
(OPTION ¼ 0) on the guidance system can be compared to the actual apparent
target maneuver (OPTION ¼ 1). The code for the IRBM’s thrust and weight
profiles (ITGT ¼ 1) appears with the differential equations before the FLAG¼1
statement. The code also considers an ICBM threat (ITGT ¼ 2) that will be
discussed later in this chapter.

LISTING 34.1 ONE-DIMENSIONAL ENGAGEMENT SIMULATION BASED ON LINEARIZED GEOMETRY

count=0;
IOPTION=0;
ITGT=1;
XNTAV=117.6;
if ITGT==1

TF=180.;
else

TF=240.;
end
PRED=0.*3280.;
VM=9000.;
VC=18000.;
XNTMAX=9.*32.2;
XNCMAX=966.;
APN=0.;
HEDEG=-57.3*PRED/(VM*TF);
YD=-VM*HEDEG/57.3;
Y=0.;
XNP=3.;
T=0.;
H=.001;
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S=0.;
DELV=0.;
SUM=0.;
XN=0.;
while T,(TF-.0001)

YOLD=Y;
YDOLD=YD;
DELVOLD=DELV;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
Y=Y+H*YD;
YD=YD+H*YDD;
DELV=DELV+H*DELVD;
T=T+H;

end;
TGO=TF-T+.00001;
if ITGT==1

if IOPTION==0
XNT=XNTMAX*(T/TF)^2;

else
if T,180.

WGT=-212.*T+44000.;
TRST=54100.;

else
WGT=3300.;
TRST=0.;

end
XNT=32.2*TRST/WGT;

end
else

if IOPTION==0
XNT=XNTAV;

else
if T,120.

WGT=-2622*T+440660.;
TRST=725850.;

elseif T,240.
WGT=-642.*T+168120.;
TRST=182250.;

else
WGT=5500.;
TRST=0.;

end
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XNT=32.2*TRST/WGT;
end

end
XLAMD=(Y+YD*TGO)/(VC*TGO*TGO);
XNC=XNP*VC*XLAMD+.5*APN*XNP*XNT;
if XNC.XNCMAX

XNC=XNCMAX;
end
if XNC,-XNCMAX

XNC=-XNCMAX;
end
DELVD=abs(XNC);
YDD=XNT-XNC;
FLAG=1;

end
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
DELV=.5*(DELVOLD+DELV+H*DELVD);
S=S+H;
if S.=.09999

S=0.;
SUM=SUM+XNT;
XN=XN+1.;
count=count+1;
ArrayT(count)=T;
ArrayXNT(count)=XNT/32.2;
ArrayXNC(count)=XNC/32.2;
ArrayDELV(count)=DELV/3.28;

end
end
figure
plot(ArrayT,ArrayXNC),grid
xlabel(’Missile Flight Time (s)’)
ylabel(’KKV Acceleration (g)’)
clc
output=[ArrayT’,ArrayXNC’,ArrayDELV’];
save datfil.txt output /ascii
disp ’simulation finished’
Y
DELV/3.28

The nominal case of Listing 34.1 was run in which the parabolic target man-
euver (OPTION ¼ 0) and actual target maneuver (OPTION ¼ 1) were used when the
proportional navigation guidance law (APN ¼ 0) was employed. Figure 34.3 shows
that in this case the actual KKV acceleration required by the PN guidance law at
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the end of the flight is 30 g or three times the maximum acceleration capability of
the target. This KKV acceleration requirement is the same as would be the case if
there was a constant target maneuver as has been shown in Chapter 2. It can also
be seen from Fig. 34.3 that the parabolic target maneuver approximation yields
nearly identical KKV acceleration requirements at the end of flight indicating
that the parabolic target maneuver approximation might be a good approximation
for a boosting target being pursued by a KKV employing PN guidance.

The one-dimensional simulation experiment was also repeated for the case in
which the interceptor guidance law was changed to augmented proportional navi-
gation (APN ¼ 1) with an effective navigation ratio of 3. The solid curve of
Fig. 34.4 represents the actual acceleration required by the KKV using the aug-
mented proportional navigation guidance law against the boosting IRBM,
whereas the dashed curve represents the required KKV acceleration due to a para-
bolic target maneuver approximation. From the solid curve of Fig. 34.4 it can be
seen that the maximum acceleration required by the KKV against the actual
boosting target is now only 3 g or about 1/3 of the maximum axial acceleration
capability of the target, whereas the parabolic approximation indicates a 4.5-g
maximum KKV acceleration or one half the maximum acceleration capability
of the target. In addition, for both the actual and parabolic target acceleration
models, the maximum acceleration no longer occurs at the end of flight. This
means that should the KKV acceleration saturate, there is a chance that it will
come out of saturation and not cause miss distance. Thus, the maximum KKV
acceleration required by the augmented proportional navigation guidance law is
nearly an order of magnitude smaller than that required by the proportional navi-
gation guidance law! This means that the performance improvement with aug-
mented proportional navigation is so great that we shall not even consider
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using proportional navigation guidance against a boosting target. Figure 34.4 also
indicates that the parabolic approximation to the target maneuver is not as good
in predicting interceptor performance as it was in the previous example where
proportional navigation guidance was used by the KKV. However, the parabolic
approximation still indicates that there is a dramatic performance improvement
with augmented proportional navigation guidance. It can be seen that using the
parabolic approximation for the boosting IRBM tends to overestimate the KKV
acceleration requirements. Therefore, for a conservative starting point the para-
bolic approximation to the boosting target might be appropriate for analysis
because of its simplicity.

DEVELOPING FORMULAS FOR DIVERT DUE TO BOOSTING TARGET AND
PIP ERRORS

Generally speaking, an exoatmospheric interceptor has to be used against a long-
range boosting target because most of the target’s flight during its boost phase is
outside the atmosphere. An endoatmospheric interceptor may be required against
short-range ballistic missiles (SRBMs) because their apogees are very low. In this
chapter only long-range IRBMs and ICBMs are considered. The KKV part of the
interceptor has lateral divert engines for implementing guidance commands
outside of the atmosphere. Since the divert engines burn propellant to implement
the guidance law, guidance terminates when the propellant is expended because
the KKV can no longer maneuver. The amount of propellant required by the
KKV is related to the lateral divert DV through the rocket equation. Thus the
amount of lateral divert required for an intercept is an important measure of
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interceptor performance. As was shown in Chapter 14, the lateral divert is simply
the integral of the absolute value of the interceptor acceleration or

DV ¼
ðtF
0

jncj dt

Figure 34.1 was evaluated, using Listing 34.1, for a 10-g parabolic target man-
euver and the APN guidance law for the missile or kinetic kill vehicle (KKV) flight
times ranging from 10 s to 50 s in steps of 10 s. The simulation results of Fig. 34.5
indicate that the amount of lateral divert required increases linearly with KKV
flight time. We can also see from Fig. 34.5 that the simulation results can be
curve fitted with a straight line and an empirical formula can be developed for
the KKV lateral divert due to a parabolic target maneuver as

DVMVR ¼ 0:25nTMAX tF

where nTMAX
is the maximum value of the parabolic maneuver in units of m/s2 and

DVMVR is in units of m/s. The quantity tF represents the KKV action time or the
amount of time the KKV is maneuvering.

Up to this point it has been assumed that the only disturbance entering the
KKV guidance system was an apparent target maneuver. Another important
error source is the PIP error. This error source is due to the fact that the location
of the boosting target at the desired intercept time is unknown. A prediction of the
intercept point must be made and this prediction will have errors. The errors will
be the same whether a PN or APN guidance law is used.

It is important to note that some people believe that the PIP errors for a boost-
ing target will be small because a priori information concerning the threat will be
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available. The point of view taken in this chapter is that even if the thrust-weight
profile of the threat was known perfectly the future direction of the acceleration
vector is unknown. In other words, we do not know where the target is going
or when it will get there based on past information. Therefore, the conservative
point of view taken in this chapter is that the system must work when information
concerning the threat is not available or denied and that the lateral divert of the
KKV must be sized accordingly. It was shown in Chapter 14 that for the model
of Fig. 34.1, the KKV lateral divert due to the PIP error for either the PN or
APN guidance laws with an effective navigation ratio of 3 is given by

DVPIP ¼ 1:5
PIP
tF

Here it can be observed that for a given PIP error, more divert will be required for
shorter KKV action times tF. Thus the total divert required, under worse case con-
ditions, is simply given by

DVTOTAPN ¼ 1:5�PIP
tF

þ 0:25�nTMAXtF

INTERCEPTOR-IRBM ENGAGEMENTS

The previously mentioned single-stage generic IRBM model was put in a two-
dimensional nonlinear simulation, assuming round Earth and Newton’s Law of
Universal Gravitation, based on Listing 13.3. The simulation was modified for a
sample 2000-km IRBM lofted trajectory and the modified simulation appears in
Listing 34.2. Although Listing 34.2 is a two-dimensional simulation, three-
dimensional Lambert and distance routines (obtained from Chapter 28) are
used by setting the z-components of various quantities to zero. As was mentioned
previously, an ICBM target (ITGT ¼ 2) option also appears in Listing 34.2 and will
be discussed later in this chapter.

LISTING 34.2 TARGET TRAJECTORY GENERATOR

count=0;
RDESKM=2000.;
% 1=IRBM,2=ICBM
ITGT=1;
TLOFT=200.;
TUPT=15.;
if ITGT==1

TPZ=180.;
else

TPZ=240.;
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end
QMIN=1;
TF=2000.;
TFINISH=3000.;
LEFT=1;
QBOOST=1;
QOOMPH=1;
CW=0;
SWITCH=0;
GAMDEG=89.99;
H=.01;
T=0.;
S=0.;
A=2.0926E7;
GM=1.4077E16;
ALT=0;
ANGDEG=0.;
ANG=ANGDEG/57.3;
XLONGM=ANG;
X=(A+ALT)*cos(ANG);
Y=(A+ALT)*sin(ANG);
Z=0;
ALT=sqrt(X^2+Y^2)-A;
XFIRST=X;
YFIRST=Y;
ZFIRST=Z;
X1=cos(1.5708-GAMDEG/57.3+ANG);
Y1=sin(1.5708-GAMDEG/57.3+ANG);
AXT=0.;
AYT=0.;
XLONGTDEG=57.3*RDESKM*3280./A;
TF=252.+.223*RDESKM-(5.44E-6)*RDESKM*RDESKM;
TF=TF+TLOFT;
XLONGT=XLONGTDEG/57.3;
XF=A*cos(XLONGT);
YF=A*sin(XLONGT);
ZF=0;
while ALT.-1

XOLD=X;
YOLD=Y;
X1OLD=X1;
Y1OLD=Y1;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
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STEP=2;
X=X+H*X1;
Y=Y+H*Y1;
X1=X1+H*X1D;
Y1=Y1+H*Y1D;
T=T+H;

end
if ITGT==1

if T,180.
WGT=-212.*T+44000.;
TRST=54100.;

else
WGT=3300.;
TRST=0.;

end
else

if T,120
WGT=-2622*T+440660.;
TRST=725850.;

elseif T,240.
WGT=-642.*T+168120.;
TRST=182250.;

else
WGT=5500.;
TRST=0.;

end
end
AT=32.2*TRST/WGT;
TEMBOT=(X^2+Y^2)^1.5;
X1D=-GM*X/TEMBOT+AXT;
Y1D=-GM*Y/TEMBOT+AYT;
ALT=sqrt(X^2+Y^2)-A;
FLAG=1;

end
FLAG=0;
X=(XOLD+X)/2+.5*H*X1;
Y=(YOLD+Y)/2+.5*H*Y1;
X1=(X1OLD+X1)/2+.5*H*X1D;
Y1=(Y1OLD+Y1)/2+.5*H*Y1D;
S=S+H;
if QBOOST==1

TGOLAM=TF-T;
[VRX,VRY,VRZ]=LAMBERT3D(X,Y,Z,TGOLAM,XF,YF,ZF,SWITCH);
DELX=VRX-X1;
DELY=VRY-Y1;
DEL=sqrt(DELX^2+DELY^2);
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if T,TPZ&DEL.500
AXT=AT*DELX/DEL;
AYT=AT*DELY/DEL;

elseif DEL,500
TRST=0.;
QBOOST=0;
AXT=0.;
AYT=0.;
X1=VRX;
Y1=VRY;
X1OLD=X1;
Y1OLD=Y1;

else
QBOOST=0;
AXT=0.;
AYT=0.;

end
if T,TUPT

RTMAG=sqrt(X^2+Y^2);
AXT=AT*X/RTMAG;
AYT=AT*Y/RTMAG;

end
end
if S.=.99999

S=0.;
DISTKM=distance3dkm(X,Y,Z,XFIRST,YFIRST,ZFIRST);
ALTKM=(sqrt(X^2+Y^2)-A)/3280.;
VELK=sqrt(X1^2+Y1^2)/3280.;
count=count+1;
ArrayT(count)=T;
ArrayDISTKM(count)=DISTKM;
ArrayALTKM(count)=ALTKM;
ArrayVELK(count)=VELK;

end
end
figure
plot(ArrayDISTKM’,ArrayALTKM’),grid
xlabel(’Downrange (km)’)
ylabel(’Altitude (km) ’)
clc
output=[ArrayT’,ArrayDISTKM’,ArrayALTKM’];
save datfil.txt output /ascii
disp ’simulation finished’
% LAMBERT3D can be found in Listing 28.3
% distance3dkm can be found in Listing 28.3
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The nominal case of Listing 34.2 was run (TLOFT ¼ 200, TUPT ¼ 200) and the
resultant IRBM trajectory is presented in Fig. 34.6. We can see that the IRBM
travels 2000 km downrange with an apogee of approximately 500 km.

The boost-phase portion or the first 180 s of the IRBM trajectory is
presented with 10-s time tics in Fig. 34.7. If it is assumed that there is cloud
cover until 7-km altitude then the IRBM can be seen by airborne IRST sensors
at 80 s. Of course, on a clear day the target can be seen much sooner.

Listing 34.3 presents an engagement simulation in which an impulsively
launched interceptor pursues the just discussed IRBM. Here we have two
options for calculating the predicted intercept point (PIP) at the desired intercept
time TF. The first option assumes that PIP is known perfectly (QPERFECT ¼ 1).
With this option the routine predict34.m integrates the target equations of
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motion forward to calculate the exact location of the target at the desired inter-
cept time. Another option for calculating the PIP, assuming no a priori infor-
mation is available, is to use a three-term Taylor series (QPERFECT ¼ 0). At the
time of interceptor launch the required velocity vector of the interceptor is cal-
culated given the location of the interceptor, its launch time, the PIP, and
desired intercept time. It is important to note that a “for loop” is included in
Listing 34.3 to find the earliest possible intercept time for an impulsive intercep-
tor whose speed is less than 4 km/s. Augmented proportional navigation gui-
dance begins at a user-specified time TGUID. Again, we can see from Listing
34.3 that the three-dimensional Lambert and distance routines are used in
the two-dimensional engagement simulation with the required z-component
inputs set to zero.

LISTING 34.3 TWO-DIMENSIONAL NONLINEAR ENGAGEMENT SIMULATION

count=0;
TLAUNCH=90.;
TF=170.;
TS=1.;
XLONGMDEGICKM=400.;
RDESKM=2000.;
GAMDEG=89.99;
TFTOT=2000.;
TUPT=15.;
TGUID=110.;
XNCLIM=322.;
XNP=3.;
QPERFECT=1;
TLOFT=200.;
ALTMKMIC=15.;
QTAYLOR=1;
PIPERRKM=0.;
QGUID=1;
ITGT=1;
SWITCH1=0;
SWITCHM=0;
DELTF=0.;
QFIX=1;
if ITGT==1

TPZ=180.;
else

TPZ=240.;
end
ALTM=ALTMKMIC*3280.;
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TFTOT=252.+.223*RDESKM-(5.44E-6)*RDESKM*RDESKM;
TFTOT=TFTOT+TLOFT;
A=2.0926E7;
GM=1.4077E16;
W=0.;
XLONGFDEG=57.3*RDESKM*3280./A;
XLONGMDEGIC=XLONGMDEGICKM/111.;
XLONGMDEG=XLONGMDEGIC;
QLAUNCH=0;
QFIRST=1;
XLONGTDEG=0.;
QBOOST=1;
QOOMPH=1;
T=0.;
S=0.;
AXT=0.;
AYT=0.;
ATP=0.;
XLONGF=XLONGFDEG/57.3;
XLONGF=XLONGF-W*TFTOT;
PIPERR=0.;
XF=A*cos(XLONGF);
YF=A*sin(XLONGF);
ZF=0;
XLONGT=XLONGTDEG/57.3;
XLONGM=XLONGMDEG/57.3;
XT=A*cos(XLONGT);
YT=A*sin(XLONGT);
XTINIT=XT;
YTINIT=YT;
RTINIT=sqrt(XTINIT^2+YTINIT^2);
XM=(A+ALTM)*cos(XLONGM);
YM=(A+ALTM)*sin(XLONGM);
ZM=0;
XFIRST=XT;
YFIRST=YT;
ZT=0;
ZFIRST=0;
DISTRTKMIC=distance3dkm(XT,YT,ZT,XFIRST,YFIRST,ZFIRST);
XMINIT=XM;;
YMINIT=YM;
RMINIT=sqrt(XMINIT^2+YMINIT^2);
XTD=cos(1.5708-GAMDEG/57.3);
YTD=sin(1.5708-GAMDEG/57.3);
ATP=1.;
AXM=0.;
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AYM=0.;
AMP=0.;
H=.01;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
XMD=0.;
YMD=0.;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=XTD-XMD;
VTM2=YTD-YMD;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
DELV=0.;
ACC=0.;
AXMGUID=0.;
AYMGUID=0.;
PREDERRKM=0.;
ZEM1=0.;
ZEM2=0.;
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
TBOT=0.;
DELVELM=0.;
PIPKMBO=0.;
ZEMPERPTOT=0.;
if QFIX==1
% FIND EXACT LOCATION OF TARGET AT DESIRED INTERCEPT TIME EXACT PIP)

[XTFACT,YTFACT]=predict34(T,XT,YT,XTD,YTD,TF,TFTOT,TUPT,XF,YF,ITGT);
ZTFACT=0;
TGOLAM=TF-TLAUNCH;
[VRX,VRY,VRZ]=LAMBERT3D(XM,YM,ZM,TGOLAM,XTFACT,YTFACT,

ZTFACT,SWITCHM);
VMXRQD=VRX;
VMYRQD=VRY;
VMRQDKM=sqrt(VMXRQD^2+VMYRQD^2)/3280.;

else
for TF=(TLAUNCH+30.):10:(TPZ-10.),

% FIND EXACT LOCATION OF TARGET AT DESIRED INTERCEPT TIME EXACT PIP)
[XTFACT,YTFACT]=predict34(T,XT,YT,XTD,YTD,TF,TFTOT,TUPT,XF,YF,ITGT);
TGOLAM=TF-TLAUNCH;
[VRX,VRY,VRZ]=LAMBERT3D(XM,YM,ZM,TGOLAM,XTFACT,YTFACT,

ZTFACT,SWITCHM);
VMXRQD=VRX;
VMYRQD=VRY;
VMRQDKM=sqrt(VMXRQD^2+VMYRQD^2)/3280.;
if VMRQDKM,4.

break
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end
end

end
TF=TF+DELTF;
while ~((T.(TF-10.))&VC,0.)

if RTM,1000
H=.00001;

else
H=.01;

end
XTOLD=XT;
YTOLD=YT;
XTDOLD=XTD;
YTDOLD=YTD;
XMOLD=XM;
YMOLD=YM;
XMDOLD=XMD;
YMDOLD=YMD;
DELVOLD=DELV;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
XT=XT+H*XTD;
YT=YT+H*YTD;
XTD=XTD+H*XTDD;
YTD=YTD+H*YTDD;
XM=XM+H*XMD;
YM=YM+H*YMD;
XMD=XMD+H*XMDD;
YMD=YMD+H*YMDD;
DELV=DELV+H*DELVD;
T=T+H;

end
if ITGT==1

if T,180.
WGT=-212.*T+44000.;
TRST=54100.;

else
WGT=3300.;
TRST=0.;

end
else

if T,120.
WGT=-2622*T+440660.;
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TRST=725850.;
elseif T,240.

WGT=-642.*T+168120.;
TRST=182250.;

else
WGT=5500.;
TRST=0.;

end
end
ATP=32.2*TRST/WGT;
TEMPBOTT=(XT^2+YT^2)^1.5;
XTDD=-GM*XT/TEMPBOTT+AXT;
YTDD=-GM*YT/TEMPBOTT+AYT;
RTM1=XT-XM;
RTM2=YT-YM;
VTM1=XTD-XMD;
VTM2=YTD-YMD;
RTM=sqrt(RTM1^2+RTM2^2);
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
ACCDOTRTM=(XTDD*RTM1+YTDD*RTM2)/RTM;
ACCPER1=XTDD-ACCDOTRTM*RTM1/RTM;
ACCPER2=YTDD-ACCDOTRTM*RTM2/RTM;
ACCPERPTOT=sqrt(ACCPER1^2+ACCPER2^2)/32.2;
if T.TGUID

TEMPBOTM=(XM^2+YM^2)^1.5;
XMDDGRAV=-GM*XM/TEMPBOTM;
YMDDGRAV=-GM*YM/TEMPBOTM;
ZEM1=RTM1+VTM1*TGO+.5*(XTDD-XMDDGRAV)*TGO^2;
ZEM2=RTM2+VTM2*TGO+.5*(YTDD-YMDDGRAV)*TGO^2;
ZEMDOTRTM=(ZEM1*RTM1+ZEM2*RTM2)/RTM;
ZEMPER1=ZEM1-ZEMDOTRTM*RTM1/RTM;
ZEMPER2=ZEM2-ZEMDOTRTM*RTM2/RTM;
ZEMPERPTOT=sqrt(ZEMPER1^2+ZEMPER2^2)/3280.;
AXMGUID=XNP*ZEMPER1/(TGO^2);
AYMGUID=XNP*ZEMPER2/(TGO^2);
TGO=RTM/VC;
if QGUID==0

XNCLIM=0.;
end
if AXMGUID.XNCLIM

AXMGUID=XNCLIM;
elseif AXMGUID,-XNCLIM

AXMGUID=-XNCLIM;
end
if AYMGUID.XNCLIM
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AYMGUID=XNCLIM;
elseif AYMGUID,-XNCLIM

AYMGUID=-XNCLIM;
end

else
AXMGUID=0.;
AYMGUID=0.;

end
if T.TLAUNCH

TEMPBOTM=(XM^2+YM^2)^1.5;
XMDD=-GM*XM/TEMPBOTM+AXMGUID;
YMDD=-GM*YM/TEMPBOTM+AYMGUID;

else
XMDD=0.;
YMDD=0.;

end
ACCNEW=sqrt(AXMGUID^2+AYMGUID^2);
DELVD=ACCNEW;
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
FLAG=1;

end
FLAG=0;
XT=.5*(XTOLD+XT+H*XTD);
YT=.5*(YTOLD+YT+H*YTD);
XTD=.5*(XTDOLD+XTD+H*XTDD);
YTD=.5*(YTDOLD+YTD+H*YTDD);
XM=.5*(XMOLD+XM+H*XMD);
YM=.5*(YMOLD+YM+H*YMD);
XMD=.5*(XMDOLD+XMD+H*XMDD);
YMD=.5*(YMDOLD+YMD+H*YMDD);
DELV=.5*(DELVOLD+DELV+H*DELVD);
S=S+H;
if QBOOST==1

TGOLAM=TFTOT-T;
[VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TGOLAM,XF,YF,ZF,SWITCH1);
VTX=VRX;
VTY=VRY;
DELVXT=VTX-XTD;
DELVYT=VTY-YTD;
VELT=sqrt(XTD^2+YTD^2);
DELVELT=sqrt(DELVXT^2+DELVYT^2);
if (T,TPZ & DELVELT.500.)

AXT=ATP*DELVXT/DELVELT;
AYT=ATP*DELVYT/DELVELT;

elseif DELVELT,500.
TRST=0.;
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QBOOST=0;
AXT=0.;
AYT=0.;
XTD=VTX;
XTDOLD=XTD;
YTD=VTY;
YTDOLD=YTD;
TBOT=T;

else
QBOOST=0;
QOOMPH=0;
AXT=0.;
AYT=0.;
TBOT=T;

end
end
if T,TUPT

RTMAG=sqrt(XT^2+YT^2);
AXT=ATP*XT/RTMAG;
AYT=ATP*YT/RTMAG;

end
if T.=TLAUNCH

TGOLAMM=TF-T;
if QPERFECT==1

XTF=XTFACT;
YTF=YTFACT;

elseif (QPERFECT==0 & QTAYLOR==1)
TGOM=TF-T;
XTF=XT+XTD*TGOM+.5*XTDD*TGOM*TGOM;
YTF=YT+YTD*TGOM+.5*YTDD*TGOM*TGOM;

end
ZTF=0;
QLAUNCH=1;
PIPERR=sqrt((XTF-XTFACT)^2+(YTF-YTFACT)^2)/3280.;

end
TGOLAMM=TF-T;
if (T.=TLAUNCH & QFIRST==1)

QFIRST=0;
TGOPZ=TF-TLAUNCH;
[VRX,VRY,VRZ]=LAMBERT3D(XM,YM,ZM,TGOPZ,XTF,YTF,ZTF,SWITCHM);
VMXRQD=VRX;
VMYRQD=VRY;
VMRQDKM=sqrt(VMXRQD^2+VMYRQD^2)/3280.;
XMD=VMXRQD;
XMDOLD=XMD;
YMD=VMYRQD;
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YMDOLD=YMD;
end
if S.=(TS-.0001)

S=0.;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
DISTRTKM=distance3dkm(XT,YT,ZT,XFIRST,YFIRST,ZFIRST);
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
DISTRMKM=distance3dkm(XM,YM,ZM,XFIRST,YFIRST,ZFIRST);
VTK=sqrt(XTD^2+YTD^2)/3280.;
ATG=sqrt(XTDD^2+YTDD^2)/32.2;
VMKM=sqrt(XMD^2+YMD^2)/3280.;
VTKM=sqrt(XTD^2+YTD^2)/3280.;
XLAM=atan2(RTM2,RTM1);
ATPLOS=-XTDD*sin(XLAM)+YTDD*cos(XLAM);
ATPLOSG=ATPLOS/32.2;
ZEMPLOS=-ZEM1*sin(XLAM)+ZEM2*cos(XLAM);
ZEMPLOSG=ZEMPLOS/3280.;
XNCPLOSG=(-AXMGUID*sin(XLAM)+AYMGUID*cos(XLAM))/32.2;
DELVKM=DELV/3280.;
ACCNEWG=ACCNEW/32.2;
AXMGUIDG=AXMGUID/32.2;
AYMGUIDG=AYMGUID/32.2;
if T.TLAUNCH

PIPKM=sqrt((XTFACT-XTF)^2+(YTFACT-YTF)^2)/3280.;
PIPPLOS=-(XTFACT-XTF)*sin(XLAM)+(YTFACT-YTF)*cos(XLAM);
PIPPLOSKM=PIPPLOS/3280.;

else
PIPKM=0.;
PIPPLOSKM=0.;

end
count=count+1;
ArrayT(count)=T;
ArrayDISTRTKM(count)=DISTRTKM;
ArrayALTTKM(count)=ALTTKM;
ArrayDISTRMKM(count)=DISTRMKM;
ArrayALTMKM(count)=ALTMKM;
ArrayATPLOSG(count)=ATPLOSG;
ArrayXNCPLOSG(count)=XNCPLOSG;
ArrayPIPPLOSKM(count)=PIPPLOSKM;

end
end
figure
plot(ArrayDISTRTKM,ArrayALTTKM,ArrayDISTRMKM,ArrayALTMKM),grid
xlabel(’Downrange (km)’)
ylabel(’Altitude (km) ’)
figure
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plot(ArrayT,ArrayATPLOSG,ArrayT,ArrayXNCPLOSG),grid
xlabel(’Time (s)’)
ylabel(’Acceleration (g) ’)
clc
output=[ArrayT’,ArrayDISTRTKM’,ArrayALTTKM’,ArrayDISTRMKM’,ArrayALTMKM’,...

ArrayATPLOSG’,ArrayXNCPLOSG’];
save datfil.txt output /ascii
disp ’simulation finished’
DELV/3.28

% predict34.m subroutine file
function [xtf,ytf]=predict(tp,xtp,ytp,xtdp,ytdp,tf,tftot,tupt,xf,yf,itgt)
if itgt==1

tpz=180;
else

tpz=240;
end
t=tp;
switch1=0;
xt=xtp;
yt=ytp;
zt=0.;
xtd=xtdp;
ytd=ytdp;
ztd=0.;
zf=0.;
a=2.0926E7;
gm=1.4077E16;
qboost=1;
h=.01;
s=0.;
axt=0.;
ayt=0.;
ztd=0;
while t,=(tf-.00001)

xtold=xt;
ytold=yt;
xtdold=xtd;
ytdold=ytd;
step=1;
flag=0;
while step ,=1

if flag==1
xt=xt+h*xtd;
yt=yt+h*ytd;
xtd=xtd+h*xtdd;
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ytd=ytd+h*ytdd;
t=t+h;
step=2;

end
tembot=(xt^2+yt^2)^1.5;
xtdd=-gm*xt/tembot+axt;
ytdd=-gm*yt/tembot+ayt;
if itgt==1

if t,180.
wgt=-212.*t+44000.;
trst=54100.;

else
wgt=3300.;
trst=0.;

end
else

if t,120
wgt=-2622*t+440660.;
trst=725850.;

elseif t,240.
wgt=-642.*t+168120.;
trst=182250.;

else
wgt=5500.;
trst=0.;

end
end
atp=32.2*trst/wgt;
flag=1;

end;
flag=0;
xt=(xtold+xt)/2+.5*h*xtd;
yt=(ytold+yt)/2+.5*h*ytd;
xtd=(xtdold+xtd)/2+.5*h*xtdd;
ytd=(ytdold+ytd)/2+.5*h*ytdd;
if qboost==1

tgolam=tftot-t;
[vrx,vry,vrz]=LAMBERT3D(xt,yt,zt,tgolam,xf,yf,zf,switch1);
vtx=vrx;
vty=vry;
delvxt=vtx-xtd;
delvyt=vty-ytd;
delvelt=sqrt(delvxt^2+delvyt^2);
if (t,tpz&delvelt.500.)

axt=atp*delvxt/delvelt;
ayt=atp*delvyt/delvelt;
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elseif delvelt,500.
trst=0.;
qboost=1;
axt=0.;
ayt=0.;
xtd=vtx;
xtdold=xtd;
ytd=vty;
ytdold=ytd;

else
qboost=0;
qoomph=0;
axt=0.;
ayt=0.;

end
if t,tupt

rtmag=sqrt(xt^2+yt^2);
axt=atp*xt/rtmag;
ayt=atp*yt/rtmag;

end
end

end
xtf=xt;
ytf=yt;
% LAMBERT3D can be found in Listing 28.3
% distance3dkm can be found in Listing 28.3

Assuming that 10 s are required by the aircraft IRST sensors to establish a firm
track on the IRBM, then the earliest an interceptor can be launched would be at
90 s (Fig. 34.7 shows cloud break occurring at 80 s). Figure 34.8 depicts an impul-
sively air-launched 3.4 km/s interceptor (that is, it takes zero seconds to get up to
speed being launched at 90 s and 15-km altitude) at the PIP. In this scenario an
intercept is to occur at 170 s or 10 s before the IRBM burns out. The case in
which the PIP is known perfectly is done first in order to establish KKV divert
requirements due to an apparent target maneuver. Next a post target burnout
intercept, where there is no apparent target maneuver, is investigated in order
to establish KKV divert requirements due to PIP error.

Let us first examine the case in which there is no PIP error. In this exercise the
interceptor would not even require a KKV as it can fly directly toward the perfect
PIP. However, as part of this academic exercise, the KKV guidance system, using
the APN guidance law, is turned on at 110 s (20 s after interceptor launch to
account for the fact that in the real world it might take 20 s for the interceptor
to build up to speed). Since the portion of the IRBM acceleration that is perpen-
dicular to the LOS appears as a target maneuver to the pursuing interceptor, the
KKV will maneuver in order to hit the apparently maneuvering target. The KKV

918 TACTICAL AND STRATEGIC MISSILE GUIDANCE



maneuvering will occur even though the PIP is known perfectly! The interceptor-
target engagement geometry for this example is displayed in Fig. 34.8.

The required KKV acceleration to hit the target along with the target accel-
eration perpendicular to the LOS is displayed in Fig. 34.9. Here it can be
observed that for this engagement geometry the maximum target acceleration
perpendicular to the LOS is approximately 3.6 g and the maximum KKV accel-
eration required by the APN guidance law is approximately 0.7 g or approxi-
mately five times less acceleration than the target. The amount of lateral divert
required by the KKV, as indicated by the engagement simulation, is 208 m/s
in this example.
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If the divert formula based on the parabolic target maneuver is utilized it can
be seen that the theoretical KKV divert predicted is 540 m/s or

DVMVR ¼ 0:25nTMAXtF ¼ 0:25 � 36 � (170� 110) ¼ 540
m
s

As expected, the theoretical KKV divert prediction is observed to be very conser-
vative since it is more than twice as high as the actual KKV divert required as indi-
cated by the engagement simulation. Generally speaking, it was found that the
KKV divert due to the apparently maneuvering one-stage IRBM target, as indi-
cated by the engagement simulation, for different initial separations between
both the interceptor and target launch points, was usually less than a few
hundred m/s and is thus considered to be negligible.

A potentially more important error source against this one-stage IRBM target
can be the PIP error. One simple way of predicting where the target will be
at intercept is to use a three-term Taylor series based on the current position,
velocity, and acceleration of the target or in two dimensions

xF ¼ x þ _xtgo þ 0:5€xt2go

yF ¼ y þ _ytgo þ 0:5€yt2go

where tgo is given by

tgo ¼ tF � t

In other words the future location of the object at some time tF is the current target
position plus the current target velocity times the time to go plus one-half the
current target acceleration times the time to go squared. The Taylor series
method of prediction has many faults but its main virtue is that it does not
require a priori information.

Figure 34.10 shows a case in which the PIP is not known as and is calculated
from the preceding three-term Taylor series. In this example the PIP error perpen-
dicular to the line of sight is 89 km when the interceptor starts to guide. In this
academic exercise, the KKV guidance system is immediately turned on after the
target burns out (so that none of the KKV divert is due to the apparent target
maneuver), and an intercept geometry is set up so that the desired intercept
time is also after target burnout at 230 s, but the achieved intercept time in the
nonlinear engagement simulation turns out to be 223 s. To accommodate the
postboost intercept time and to ensure that the intercept geometry was kinemati-
cally feasible the interceptor launch point was moved further downrange from the
target launch point.

Figure 34.11 displays the KKV acceleration profile for the engagement with
the 89-km PIP error. It can be seen that when the KKV guidance system turns
on at 180 s there is an immediate step in KKV acceleration. After the initial
step the KKV acceleration saturates for a brief period of time (simulation has
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10-g limit on KKV) and then linearly decreases to zero which is in accordance
with theory. The lateral divert required by the KKV, as indicated by the engage-
ment simulation, is 2.8 km/s and intercept occurs at 223 s. Had the KKV not satu-
rated, the divert would have been slightly higher. The enormous amount of divert
required for this hypothetical secenario was due to the fact that the interceptor
was launched while the target was boosting. If the interceptor was launched
after the target boost phase and the engagement was kinematically feasible,
much less divert would be required for the intercept.

A formula was previously provided for the KKV divert due to PIP error. For
the case in which there is 89 km of PIP error and the time to take it out is 43 s
(2232 180 ¼ 43), the theoretical divert formula indicates that 3.1 km/s of
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Fig. 34.11 Large initial KKV acceleration is required to take out PIP error in short time.
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KKV lateral divert is required or

DVPIP ¼ 1:5
PIP
tF

¼ 1:5
89,000

(223� 180)
¼ 3:1

km
s

which is close to the engagement simulation results of Fig. 34.11.
The scenario of Fig. 34.8 was rerun for several cases where the interceptor

launch point was gradually moved closer to the target launch point and intercept
occurred during the target boost phase. Recall that the interceptor launch time is
90 s and KKV guidance starts at 110 s. In each case, the earliest boost-phase inter-
cept time was selected, assuming the interceptor speed could be no greater than
4 km/s. The simulated and calculated divert results appear along with the PIP
error perpendicular to the line of sight in Table 34.1. Figure 34.12 compares
both the simulated and computed divert requirements for the KKV due to PIP

TABLE 34.1 DETAILS OF PIP ERROR EXPERIMENT

Distance (km) tF (s) DVSim (m/s) PIP (m) DVFormula (m/s)

400 170 570 20,400 510

350 160 410 12,500 375

300 150 290 7200 270

250 140 210 3900 195

200 130 140 1800 135

150 120 110 700 105

100 120 110 680 102
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Fig. 34.12 Most of the KKV divert is due to PIP error for one-stage IRBM.
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error. It is important to note that the simulated results include the effect of the
apparent target maneuver, whereas the divert formula does not. We can see
that the theoretical divert formula due to PIP error slightly underestimates the
total required KKV lateral divert as indicated by the simulation. This means
that for the one-stage IRBM example most of the KKV divert is due to the PIP
error rather than the apparent target maneuver.

INTERCEPTOR-ICBM ENGAGEMENTS

Next a two-stage liquid ICBM threat with a 240-s burn time, as described in [2],
was considered as the target for analysis. A sample lofted 10,000-km trajectory for
the ICBM was generated using Listing 34.2 (ITGT ¼ 2, TLOFT ¼ 500, TUPT ¼ 20)
and is depicted in Fig. 34.13 where it can be seen that the apogee of this trajec-
tory is approximately 2000 km. The boost-phase portion or first 240 s of the
ICBM trajectory is displayed in Fig. 34.14 with 20-s time tics. It can be observed
that the ICBM breaks the clouds, assuming a 7-km altitude cloud cover, at
approximately 60 s.

The total axial acceleration of the ICBM is depicted in Fig. 34.15. Here it can
be seen that the first staging event occurs at 120 s with a maximum acceleration of
6 g and the second staging event occurs at 240 s with a maximum acceleration of
nearly 13 g. If the interceptor is launched early and the KKV guidance starts before
120 s, then the KKV guidance system will experience a large step in target accel-
eration at 120 s. It is apparent that this complex apparent acceleration cannot be
represented by a single parabola.

An engagement was set up using Listing 34.3 in which the initial interceptor
launch point is about 900 km from the target launch site. The interceptor is
launched at 80 s and the KKV guidance system using the APN guidance law is
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Fig. 34.13 Sample 10,000-km ICBM trajectory.
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initiated at 100 s or about 20 s before the first target staging event. The engage-
ment geometry is depicted in Fig. 34.16.

Figure 34.17 displays the target axial acceleration that is perpendicular to the
LOS (dashed curve) for the engagement of Fig. 34.16. As was mentioned pre-
viously, this acceleration projection appears as a target maneuver to the KKV.
The resultant KKV acceleration response to the apparent target maneuver
(solid curve) is also displayed in Fig. 34.17. It can be seen that at first the KKV
acceleration closely follows the apparent target maneuver and then changes
abruptly when the target goes through the staging event at 120 s. The magnitude
of the KKV acceleration after the staging event becomes a fraction of the actual
target acceleration perpendicular to the LOS. The resultant lateral divert required
by the KKV is shown in Fig. 34.17 to be 998 m/s.
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The average acceleration of the target maneuver while the KKV guidance
system is activated can be computed from the target acceleration perpendicular
to the LOS and is shown in Fig. 34.17 to be 1.3 g. If we pretend that the
average target acceleration represents the complex apparent target maneuver
shown in Fig. 34.17 then we can calculate the theoretical KKV divert from
Chapter 14 (assuming APN guidance with an effective navigation ratio of 3) to be

DVAPN ¼ 0:75nTAV tF ¼ 0:75 � 13 � (230� 100) ¼ 1268
m
s

which is approximately 25% greater than the value of 998 m/s shown in
Fig. 34.17.
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An important purpose of the preceding divert formula is to qualitatively
explain the simulation results and to suggest that the required KKV divert
increases with increasing homing or action time. The formula also suggests that
launching the interceptor earlier may increase the KKV divert requirements for
a given intercept time. Thus an important purpose of the divert formula is to
suggest future simulation experiments that must be conducted as part of the itera-
tive design process.

The scenario of Fig. 34.16 was rerun for several cases where the interceptor
launch point was gradually moved closer to the target launch point. Recall that
the interceptor launch time is 80 s and KKV guidance starts at 100 s. In each
case, the earliest boost-phase intercept time was selected, assuming the interceptor
speed could be no greater than 4 km/s. Therefore for the 900-km downrange case
it was found the intercept time could be reduced from 230 s (see Fig. 34.17) to
220 s. The simulated and calculated divert results appear both in Table 34.2 and
Fig. 34.18. It is important to note that the calculated results are based on an aver-
age target acceleration of 1.3 g, which may not be accurate for all of the cases
examined. However, it can be seen that the KKV divert trend is accurately captured
with the simple divert formula appropriate for a constant average target maneuver.

Figure 34.19 shows another set of cases where the distance from the intercep-
tor launch point to the target launch point is varied in the same way as was done
in Fig. 34.18. However, this time the PIP is calculated from a three-term Taylor
series rather than being perfect. It can be seen from the engagement simulation
results of Fig. 34.19 that for the two-stage ICBM case the KKV divert requirements
do not change significantly when PIP errors are considered. In fact sometimes the
PIP errors reduce the miss distance because of the direction of the PIP error. Thus
it can be concluded that for the ICBM case the apparent target maneuver is the
major contributor to the KKV divert requirements.

TABLE 34.2 DETAILS OF BOOSTING ICBM EXPERIMENT

Downrange (km) tF (s) DVSIM (m/s) DVFormula (m/s)

900 220 896 1170

800 210 823 1072

700 190 727 878

600 180 689 780

500 160 557 585

400 150 463 487

300 130 177 292

200 120 141 195

100 110 2 98
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NOISE AND FILTERING

Ideally we would like to have an aircraft sensor that could measure both range and
angle to the target so that we can estimate the target states required for calculating
the PIP and for implementing Lambert guidance for the boosting interceptor and
APN guidance for the KKV. Unfortunately, an airborne radar that can see the
target at the long distances required might be too heavy for airborne applications.
Similarly, an airborne LADAR may also not work at required distances to see the
target. On the other hand, an IRST sensor can see the boosting target at great dis-
tances but can only measure angle. For angle-only tracking of an unpredictable
target, triangulation or stereo tracking is generally required to get target state
estimates. In order to triangulate on the target two aircraft are required, each
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having an IRST sensor, separated by a large distance known as a baseline. From
the angle-only measurements of the two sensors, filters can be designed to esti-
mate the position, velocity, and acceleration of the target. The triangulation of
the angle measurements is also known as stereo tracking. One logical choice for
filtering would be to design an extended Kalman filter (EKF) for this stereo
tracking application.

Another choice might be to design an even simpler filter for the first step of the
iterative design process so that initial estimates of the increase in KKV divert
requirements due to sensor noise can be rapidly obtained. Such a choice might
be the use of linear decoupled polynomial three-state Kalman filters using pseudo
measurements. Although decoupled linear polynomial three-state Kalman filters
are not optimal in this stereo tracking application, they can easily and rapidly
be designed by pretending the sensors are measuring distances to the target
rather than angles from the sensor to the target. Later on, during subsequent
stages of the iterative design and sizing process, more complex filters such as
the EKF can be considered to see if they can reduce the resultant KKV divert
requirements.

The basis for the pseudo measurements for the decoupled linear polynomial
three-state Kalman filters in two dimensions can be derived from Fig. 34.20.
Here we see two sensors measuring angles u1 and u2. It is assumed that the
location of the sensors (xs1, ys1 and xs2, ys2) are known, but the location of the
target (xT, yT) is unknown.

From Fig. 34.20 one can express the two sensor measurements of the angles u1
and u2 as

u1 ¼ tan�1 ys1 � yT
xs1 � xT

� �

u2 ¼ tan�1 ys2 � yT
xs2 � xT

� �

Fig. 34.20 Two angle-only sensors tracking a target.
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Here we have two nonlinear equations with two unknowns. After some alge-
braic manipulation one can solve for the coordinates of the target in terms of the
angle measurements and the sensor locations as

x�T ¼ xs2 tan u2ð Þ � xs1 tan u1ð Þ þ ys1 � ys2
tan u2ð Þ � tan u1ð Þ

yT� ¼ ys1 � xs1 tan u1ð Þ þ xs2 tan u2ð Þ tan u1ð Þ � xs1 tan2 u1ð Þ þ ys1 � ys2ð Þ tan u1ð Þ
tan u2ð Þ � tan u1ð Þ

Thus the two pseudo measurements x�T and y�T will serve as inputs to the two
decoupled three-state linear polynomial Kalman filters. One also has to develop
formulas for the variance of the pseudo measurement noise to be used by the
Riccati equations in the Kalman filter. The variance of the pseudo measurement
noise on xT can be found by using the chain rule from calculus. According to
the chain rule

DxT ¼ @xT
@u1

Du1 þ @xT
@u2

Du2

By squaring and taking expectations of both sides of the preceding equation one
can express the variance of the pseudo measurement noise in terms of the
variances of each of the IRST sensors as

s2
xT ¼ @xT

@u1

� �2

s2
u1
þ @xT

@u2

� �2

s2
u2

where the partial derivatives are evaluated as

@xT
@u1

¼ xs2 � xs1ð Þ tan u2ð Þ þ ys1 � ys2
cos u1ð Þ tan u2ð Þ � tan u1ð Þð Þ½ �2

@xT
@u2

¼ xs1 � xs2ð Þ tan u1ð Þ þ ys2 � ys1
cos u2ð Þ tan u2ð Þ � tan u1ð Þð Þ½ �2

The variance of the pseudo measurement noise on yT can be found in a
similar way.

A Monte Carlo simulation was set up where it was assumed that angle
measurements were taken 10 times per second. The interceptor and KKV were
command guided (first with Lambert guidance and then APN) until 10 s before
intercept based on the Kalman filter estimates. The two linear polynomial
three-state Kalman filter initial state estimates were set to zero (in other words,
“cold starting” the filter) and within 10 s accurate state estimates were obtained
using least squares filter techniques [6]. During the last 10 s it was assumed
that homing guidance took place and that near-perfect estimates of the target
states were available at a 100-Hz rate so that APN guidance could be implemented
with range estimates being uplinked from the aircraft to the KKV. The code
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appears below in Listing 34.4. Setting RUN¼1 allows the simulation to run in the
single flight mode while setting RUN ¼ 50 allows the simulation to run in the
Monte Carlo mode.

LISTING 34.4 TWO-DIMENSIONAL MONTE CARLO ENGAGEMENT SIMULATION USING
STEREO TRACKING

%Runs very slowly in Monte Carlo mode
count=0;
PHIS=576;
TLAUNCH=80.;
TF=230.;
TS=.1;
XLONGMDEGICKM=400.;
XLONGS2DEGKM=500.;
RDESKM=10000.;
GAMDEG=89.99;
TFTOT=2000.;
TUPT=20.;
TGUID=100.;
XNCLIM=322.;
XNP=3.;
QPERFECT=0;
TLOFT=500.;
ALTMKMIC=15.;
QTAYLOR=1;
PIPERRKM=0.;
QGUID=1;
ITGT=2;
DELTF=0.;
QFIX=0;
SIGTHET1=.00005;
THOM=10.;
BIAS1=0.;
RUN=50;
VMRQDKMIC=4.;
if ITGT==1

TPZ=180.;
else

TPZ=240.;
end
SIGTHET2=SIGTHET1;
XLONGS1DEGKM=XLONGMDEGICKM;
ORDER=3;
ALTM=ALTMKMIC*3280.;
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TFTOT=252.+.223*RDESKM-(5.44E-6)*RDESKM*RDESKM;
TFTOT=TFTOT+TLOFT;
for JJ=1:RUN,

SWITCHM=0;
SWITCH1=0;
A=2.0926E7;
GM=1.4077E16;
W=0.;
XLONGFDEG=57.3*RDESKM*3280./A;
XLONGMDEGIC=XLONGMDEGICKM/111.;
XLONGMDEG=XLONGMDEGIC;
XLONGS1DEG=XLONGS1DEGKM/111.;
XLONGS2DEG=XLONGS2DEGKM/111.;
QLAUNCH=0;
QFIRST=1;
XLONGTDEG=0.;
QBOOST=1;
QOOMPH=1;
T=0.;
S=0.;
AXT=0.;
AYT=0.;
ATP=0.;
XLONGF=XLONGFDEG/57.3;
XLONGF=XLONGF-W*TFTOT;
PIPERR=0.;
XF=A*cos(XLONGF);
YF=A*sin(XLONGF);
ZF=0;
XLONGT=XLONGTDEG/57.3;
XLONGM=XLONGMDEG/57.3;
XLONGS1=XLONGS1DEG/57.3;
XLONGS2=XLONGS2DEG/57.3;
XT=A*cos(XLONGT);
YT=A*sin(XLONGT);
ZT=0;
XTINIT=XT;
YTINIT=YT;
ZTINIT=0;
RTINIT=sqrt(XTINIT^2+YTINIT^2);
XM=(A+ALTM)*cos(XLONGM);
YM=(A+ALTM)*sin(XLONGM);
ZM=0;
XS1=(A+ALTM)*cos(XLONGS1);
YS1=(A+ALTM)*sin(XLONGS1);
XS2=(A+ALTM)*cos(XLONGS2);
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YS2=(A+ALTM)*sin(XLONGS2);
XFIRST=XT;
YFIRST=YT;
ZFIRST=0;
DISTRTKMIC=distance3dkm(XT,YT,ZT,XFIRST,YFIRST,ZFIRST);
XMINIT=XM;
YMINIT=YM;
RMINIT=sqrt(XMINIT^2+YMINIT^2);
XTD=cos(1.5708-GAMDEG/57.3);
YTD=sin(1.5708-GAMDEG/57.3);
ATP=1.;
AXM=0.;
AYM=0.;
AMP=0.;
H=.01;
ALTTKM=(sqrt(XT^2+YT^2)-A)/3280.;
XMD=0.;
YMD=0.;
RTM1=XT-XM;
RTM2=YT-YM;
RTM=sqrt(RTM1^2+RTM2^2);
VTM1=XTD-XMD;
VTM2=YTD-YMD;
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
DELV=0.;
ACC=0.;
AXMGUID=0.;
AYMGUID=0.;
PREDERRKM=0.;
ZEM1=0.;
ZEM2=0.;
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
TBOT=0.;
DELVELM=0.;
PIPKMBO=0.;
ZEMPERPTOT=0.;
if QFIX==1

[XTFACT,YTFACT]=predict34(T,XT,YT,XTD,YTD,TF,TFTOT,TUPT,XF,YF,ITGT);
ZTFACT=0;
TGOLAM=TF-TLAUNCH;
XLONGM=atan2(YM,XM);
XLONGT=atan2(YTFACT,XTFACT);
[VRX,VRY,VRZ]=LAMBERT3D(XM,YM,ZM,TGOLAM,XTFACT,

YTFACT,ZTFACT,SWITCHM);
VMXRQD=VRX;
VMYRQD=VRY;

932 TACTICAL AND STRATEGIC MISSILE GUIDANCE



VMRQDKM=sqrt(VMXRQD^2+VMYRQD^2)/3280.
else

for TF=(TLAUNCH+30.):10:(TPZ-10.),
[XTFACT,YTFACT]=predict34(T,XT,YT,XTD,YTD,TF,TFTOT,TUPT,

XF,YF,ITGT);
ZTFACT=0;

TGOLAM=TF-TLAUNCH;
XLONGM=atan2(YM,XM);
XLONGT=atan2(YTFACT,XTFACT);
[VRX,VRY,VRZ]=LAMBERT3D(XM,YM,ZM,TGOLAM,XTFACT,

YTFACT,ZTFACT,SWITCHM);
VMXRQD=VRX;
VMYRQD=VRY;
VMRQDKM=sqrt(VMXRQD^2+VMYRQD^2)/3280.;
if VMRQDKM,VMRQDKMIC

break
end

end
end
TF=TF+DELTF;
XH=0.;
XDH=0.;
XDDH=0.;
YH=0.;
YDH=0.;
YDDH=0.;
PHI=zeros([3,3]);
P=zeros([3,3]);
Q=zeros([3,3]);
IDNPZ=eye(3);
P(1,1)=99999999999.;
P(2,2)=99999999999.;
P(3,3)=99999999999.;
PP(1,1)=99999999999.;
PP(2,2)=99999999999.;
PP(3,3)=99999999999.;
PHI(1,1)=1;
PHI(1,2)=TS;
PHI(1,3)=.5*TS*TS;
PHI(2,2)=1;
PHI(2,3)=TS;
PHI(3,3)=1;
HMAT(1,1)=1.;
HMAT(1,2)=0.;
HMAT(1,3)=0.;
PHIT=PHI’;

KILL VEHICLE GUIDANCE AND CONTROL SIZING FOR BOOST-PHASE INTERCEPT 933



HT=HMAT’;
Q(1,1)=PHIS*TS^5/20;
Q(1,2)=PHIS*TS^4/8;
Q(1,3)=PHIS*TS^3/6;
Q(2,1)=Q(1,2);
Q(2,2)=PHIS*TS^3/3;
Q(2,3)=PHIS*TS*TS/2;
Q(3,1)=Q(1,3);
Q(3,2)=Q(2,3);
Q(3,3)=PHIS*TS;
XN=0.;
while ~((T.(TF-10.)) & VC,0.)

if RTM,1000
H=.00001;

else
H=.01;

end
XTOLD=XT;
YTOLD=YT;
XTDOLD=XTD;
YTDOLD=YTD;
XMOLD=XM;
YMOLD=YM;
XMDOLD=XMD;
YMDOLD=YMD;
DELVOLD=DELV;
STEP=1;
FLAG=0;
while STEP ,=1

if FLAG==1
STEP=2;
XT=XT+H*XTD;
YT=YT+H*YTD;
XTD=XTD+H*XTDD;
YTD=YTD+H*YTDD;
XM=XM+H*XMD;
YM=YM+H*YMD;
XMD=XMD+H*XMDD;
YMD=YMD+H*YMDD;
DELV=DELV+H*DELVD;
T=T+H;

end
if ITGT==1

if T,180
WGT=-212.*T+44000.;
TRST=54100.;
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else
WGT=3300.;
TRST=0.;

end
else

if T,120.
WGT=-2622*T+440660.;
TRST=725850.;

elseif T,240.
WGT=-642.*T+168120.;
TRST=182250.;

else
WGT=5500.;
TRST=0.;

end
end
ATP=32.2*TRST/WGT;
TEMPBOTT=(XT^2+YT^2)^1.5;
XTDD=-GM*XT/TEMPBOTT+AXT;
YTDD=-GM*YT/TEMPBOTT+AYT;
RTM1=XT-XM;
RTM2=YT-YM;
VTM1=XTD-XMD;
VTM2=YTD-YMD;
RTM=sqrt(RTM1^2+RTM2^2);
VC=-(RTM1*VTM1+RTM2*VTM2)/RTM;
TGO=RTM/VC;
ACCDOTRTM=(XTDD*RTM1+YTDD*RTM2)/RTM;
ACCPER1=XTDD-ACCDOTRTM*RTM1/RTM;
ACCPER2=YTDD-ACCDOTRTM*RTM2/RTM;
ACCPERPTOT=sqrt(ACCPER1^2+ACCPER2^2)/32.2;
if (T.TGUID & TGO,THOM)

TEMPBOTM=(XM^2+YM^2)^1.5;
XMDDGRAV=-GM*XM/TEMPBOTM;
YMDDGRAV=-GM*YM/TEMPBOTM;
ZEM1=RTM1+VTM1*TGO+.5*(XTDD-XMDDGRAV)*TGO^2;
ZEM2=RTM2+VTM2*TGO+.5*(YTDD-YMDDGRAV)*TGO^2;
ZEMDOTRTM=(ZEM1*RTM1+ZEM2*RTM2)/RTM;
ZEMPER1=ZEM1-ZEMDOTRTM*RTM1/RTM;
ZEMPER2=ZEM2-ZEMDOTRTM*RTM2/RTM;
ZEMPERPTOT=sqrt(ZEMPER1^2+ZEMPER2^2)/3280.;
AXMGUID=XNP*ZEMPER1/(TGO^2);
AYMGUID=XNP*ZEMPER2/(TGO^2);
TGO=RTM/VC;
if QGUID==0

XNCLIM=0.;
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end
if AXMGUID.XNCLIM

AXMGUID=XNCLIM;
elseif AXMGUID,-XNCLIM

AXMGUID=-XNCLIM;
end
if AYMGUID.XNCLIM

AYMGUID=XNCLIM;
elseif AYMGUID,-XNCLIM

AYMGUID=-XNCLIM;
end

end
if T,=TGUID

AXMGUID=0.;
AYMGUID=0.;

end
if T.TLAUNCH

TEMPBOTM=(XM^2+YM^2)^1.5;
XMDD=-GM*XM/TEMPBOTM+AXMGUID;
YMDD=-GM*YM/TEMPBOTM+AYMGUID;

else
XMDD=0.;
YMDD=0.;

end
ACCNEW=sqrt(AXMGUID^2+AYMGUID^2);
DELVD=ACCNEW;
ALTMKM=(sqrt(XM^2+YM^2)-A)/3280.;
FLAG=1;

end
FLAG=0;
XT=.5*(XTOLD+XT+H*XTD);
YT=.5*(YTOLD+YT+H*YTD);
XTD=.5*(XTDOLD+XTD+H*XTDD);
YTD=.5*(YTDOLD+YTD+H*YTDD);
XM=.5*(XMOLD+XM+H*XMD);
YM=.5*(YMOLD+YM+H*YMD);
XMD=.5*(XMDOLD+XMD+H*XMDD);
YMD=.5*(YMDOLD+YMD+H*YMDD);
DELV=.5*(DELVOLD+DELV+H*DELVD);
S=S+H;
if QBOOST==1

TGOLAM=TFTOT-T;
XLONGM=atan2(YT,XT);
XLONGT=atan2(YF,XF);
[VRX,VRY,VRZ]=LAMBERT3D(XT,YT,ZT,TGOLAM,XF,YF,ZF,SWITCH1);
VTX=VRX;
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VTY=VRY;
DELVXT=VTX-XTD;
DELVYT=VTY-YTD;
VELT=sqrt(XTD^2+YTD^2);
DELVELT=sqrt(DELVXT^2+DELVYT^2);
if (T,TPZ & DELVELT.500.)

AXT=ATP*DELVXT/DELVELT;
AYT=ATP*DELVYT/DELVELT;

elseif DELVELT,500.
TRST=0.;
QBOOST=0;
AXT=0.;
AYT=0.;
XTD=VTX;
XTDOLD=XTD;
YTD=VTY;
YTDOLD=YTD;
TBOT=T;

else
QBOOST=0;
QOOMPH=0;
AXT=0.;
AYT=0.;
TBOT=T;

end
end
if T,TUPT

RTMAG=sqrt(XT^2+YT^2);
AXT=ATP*XT/RTMAG;
AYT=ATP*YT/RTMAG;

end
if T.=TLAUNCH

TGOLAMM=TF-T;
if QPERFECT==1

XTF=XTFACT;
YTF=YTFACT;

elseif (QPERFECT==0 & QTAYLOR==1)
TGOM=TF-T;
XTF=XT+XTD*TGOM+.5*XTDD*TGOM*TGOM;
YTF=YT+YTD*TGOM+.5*YTDD*TGOM*TGOM;

end
ZTF=0;
QLAUNCH=1;
PIPERR=sqrt((XTF-XTFACT)^2+(YTF-YTFACT)^2)/3280.;

end
TGOLAMM=TF-T;
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if (T.=TLAUNCH & QFIRST==1)
QFIRST=0;
TGOPZ=TF-TLAUNCH;
[VRX,VRY,VRZ]=LAMBERT3D(XM,YM,ZM,TGOPZ,XTF,YTF,

ZTF,SWITCHM);
VMXRQD=VRX;
VMYRQD=VRY;
VMRQDKM=sqrt(VMXRQD^2+VMYRQD^2)/3280.;
XMD=VMXRQD;
XMDOLD=XMD;
YMD=VMYRQD;
YMDOLD=YMD;

end
if S.=(TS-.0001)

S=0.;
THET1=atan2(YS1-YT,XS1-XT);
THET2=atan2(YS2-YT,XS2-XT);
THET1NOISE=SIGTHET1*randn;;
THET2NOISE=SIGTHET2*randn;;
THET1S=THET1+THET1NOISE+BIAS1;
THET2S=THET2+THET2NOISE;
TOP1=XS2*tan(THET2S)-XS1*tan(THET1S)+YS1-YS2;
XTS=TOP1/(tan(THET2S)-tan(THET1S));
TOP2=XS2*tan(THET2S)*tan(THET1S)-XS1*tan(THET1S)*

tan(THET1S)...
+tan(THET1S)*(YS1-YS2);
YTS=YS1-XS1*tan(THET1S)+TOP2/(tan(THET2S)-tan(THET1S));
XTNOISE=XT-XTS;
YTNOISE=YT-YTS;
DXDT1=(tan(THET2)*(XS2-XS1)+YS1-YS2)/((cos(THET1)*

(tan(THET2)...
-tan(THET1)))^2);

DXDT2=(tan(THET1)*(XS1-XS2)+YS2-YS1)/((cos(THET2)*
(tan(THET2)-...

tan(THET1)))^2);
SIGX=sqrt((DXDT1*SIGTHET1)^2+(DXDT2*SIGTHET2)^2);
DYDT1=-XS1/(cos(THET1)*cos(THET1));
DYDT1=DYDT1+(XS2*tan(THET2)*tan(THET2)-2.*XS1*

tan(THET1)*...
tan(THET2)+(YS1-YS2)*tan(THET2)+XS1*

tan(THET1)...
*tan(THET1))/((cos(THET1)*(tan(THET2)...

-tan(THET1)))^2);
DYDT2=(tan(THET1)*tan(THET1)*(XS1-XS2)-(YS1-YS2)*...
tan(THET1))/((cos(THET2)*(tan(THET2)-tan(THET1)))^2);
SIGY=sqrt((DYDT1*SIGTHET1)^2+(DYDT2*SIGTHET2)^2);
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XN=XN+1.;
XK1=3*(3*XN*XN-3*XN+2)/(XN*(XN+1)*(XN+2));
XK2=18*(2*XN-1)/(XN*(XN+1)*(XN+2)*TS);
XK3=60/(XN*(XN+1)*(XN+2)*TS*TS);
RMAT(1,1)=SIGX^2;
PHIP=PHI*P;
PHIPPHIT=PHIP*PHIT;
M=PHIPPHIT+Q;
HM=HMAT*M;
HMHT=HM*HT;
HMHTR=HMHT+RMAT;
HMHTRINV(1,1)=1./HMHTR(1,1);
MHT=M*HT;
K=MHT*HMHTRINV;
KH=K*HMAT;
IKH=IDNPZ-KH;
P=IKH*M;
if XN,10.

XK1PZ=XK1;
XK2PZ=XK2;
XK3PZ=XK3;

else
XK1PZ=K(1,1);
XK2PZ=K(2,1);
XK3PZ=K(3,1);

end
RES=XTS-XH-TS*XDH-.5*TS*TS*XDDH;
XH=XH+XDH*TS+.5*TS*TS*XDDH+XK1PZ*RES;
XDH=XDH+XDDH*TS+XK2PZ*RES;
XDDH=XDDH+XK3PZ*RES;
RMATP(1,1)=SIGY^2;
PHIPP=PHI*PP;
PHIPPHITP=PHIPP*PHIT;
MP=PHIPPHITP+Q;
HMP=HMAT*MP;
HMHTP=HMP*HT;
HMHTRP=HMHTP+RMATP;
HMHTRINVP(1,1)=1./HMHTRP(1,1);
MHTP=MP*HT;
KP=MHTP*HMHTRINVP;
KHP=KP*HMAT;
IKHP=IDNPZ-KHP;
PP=IKHP*MP;
if XN,10.

XK1PZP=XK1;
XK2PZP=XK2;
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XK3PZP=XK3;
else

XK1PZP=KP(1,1);
XK2PZP=KP(2,1);
XK3PZP=KP(3,1);

end
RESP=YTS-YH-TS*YDH-.5*TS*TS*YDDH;
YH=YH+YDH*TS+.5*TS*TS*YDDH+XK1PZP*RESP;
YDH=YDH+YDDH*TS+XK2PZP*RESP;
YDDH=YDDH+XK3PZP*RESP;
if (T.TGUID & TGO.THOM)

RTM1H=XH-XM;
RTM2H=YH-YM;
RTMH=sqrt(RTM1H^2+RTM2H^2);
VTM1H=XDH-XMD;
VTM2H=YDH-YMD;
VCH=-(RTM1H*VTM1H+RTM2H*VTM2H)/RTMH;
TGOH=RTMH/VCH;
TEMPBOTM=(XM^2+YM^2)^1.5;
XMDDGRAV=-GM*XM/TEMPBOTM;
YMDDGRAV=-GM*YM/TEMPBOTM;
ZEM1H=RTM1H+VTM1H*TGOH+.5*(XDDH-XMDDGRAV)*

TGOH^2;
ZEM2H=RTM2H+VTM2H*TGOH+.5*(YDDH-YMDDGRAV)*

TGOH^2;
ZEMDOTRTMH=(ZEM1H*RTM1H+ZEM2H*RTM2H)/RTMH;
ZEMPER1H=ZEM1H-ZEMDOTRTMH*RTM1H/RTMH;
ZEMPER2H=ZEM2H-ZEMDOTRTMH*RTM2H/RTMH;
AXMGUID=XNP*ZEMPER1H/(TGOH^2);
AYMGUID=XNP*ZEMPER2H/(TGOH^2);
if QGUID==0

XNCLIM=0.;
end
if AXMGUID.XNCLIM

AXMGUID=XNCLIM;
elseif AXMGUID,-XNCLIM

AXMGUID=-XNCLIM;
end
if AYMGUID.XNCLIM

AYMGUID=XNCLIM;
elseif AYMGUID,-XNCLIM

AYMGUID=-XNCLIM;
end

end
if RUN==1
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end
end
if RUN==1

ERRXTDD=(XTDD-XDDH)/32.2;
SP33X=sqrt(P(3,3))/32.2;
SP33XP=-SP33X;
ERRYTDD=(YTDD-YDDH)/32.2;
SP33Y=sqrt(PP(3,3))/32.2;
SP33YP=-SP33Y;
count=count+1;
ArrayT(count)=T;
ArrayERRXTDD(count)=ERRXTDD;
ArraySP33X(count)=SP33X;
ArraySP33XP(count)=SP33XP;

end
end
count=count+1
ArrayJJ(count)=count;
ArrayRTM(count)=RTM;
ArrayDELV(count)=DELV/3.28;

end
if RUN==1

figure
plot(ArrayT,ArrayERRXTDD,ArrayT,ArraySP33X,ArrayT,ArraySP33XP),grid
xlabel(’Time (s)’)
ylabel(’Acceleration Error (f/s) ’)
axis([0 240 -10 10])
clc
output=[ArrayT’,ArrayERRXTDD’,ArraySP33X’,ArraySP33XP’];
save datfil.txt output /ascii

else
figure
plot(ArrayJJ,ArrayRTM),grid
xlabel(’Run’)
ylabel(’Miss (ft) ’)
figure
plot(ArrayJJ,ArrayDELV),grid
xlabel(’Run’)
ylabel(’Divert (m/s) ’)
clc
output=[ArrayJJ’,ArrayRTM’,ArrayDELV’];
%save (’datfil.txt’, ’output’, ’-ascii’)

save datfil.txt output /ascii
RTMSORT=sort(ArrayRTM)
DELVSORT=sort(ArrayDELV)
RTM90=RTMSORT(45)
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DELV90=DELVSORT(45)
end
disp ’simulation finished’

% LAMBERT3D can be found in Listing 28.3
% distance3dkm can be found in Listing 28.3
% predict34 can be found in Listing 34.3

A case was run against the ICBM target in which the shooter aircraft (with the
first sensor) was 800-km downrange of the target launch point and the second
sensor was 900-km downrange of the target launch point. Both sensors were
15 km in altitude and the intercept time was set at 230 s for the case where
there were no PIP errors. In addition it was assumed that the angular accuracy
of both sensors was 50 mr and that the filter sampling time was 0.1 s.
Figures 34.21 and 34.22 show how the linear polynomial Kalman filter is able
to estimate the target acceleration for different values of filter process
noise (Fs). Figure 34.22 shows that the filter with less process noise yields a
much smoother estimate of target acceleration. However, by comparing the accel-
eration estimates to that of Fig. 34.21, one can see that the price paid for the
smoother estimate is that the estimated target acceleration lags the actual
target acceleration.

Frequently, in investigating Kalman filter performance, it is popular to look at
the error in the estimates as was shown in Chapter 9. Figure 34.23 shows how the
single run error in the acceleration estimate for the filter with larger process noise
(Fs ¼ 576) compares to the theoretical predictions provided by the Riccati
equations. It can be seen that the single run results fall within the theoretical
bounds, which indicates that the filter is consistent. On the other hand,
Fig. 34.24 shows that when the process noise is reduced (Fs ¼ 9) the filter is no
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Fig. 34.21 Large Kalman filter process noise yields noisy estimates of target acceleration.
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longer consistent. However, one can also see that the errors in the acceleration
estimate of the filter with less process noise is smaller than when the process
noise is increased. We shall soon see from a performance point of view which
filter is better for this particular boost-phase intercept problem.

INTERCEPTOR ENGAGEMENTS WITH NOISE AND FILTERING

Fifty run Monte Carlo sets were run for both the ICBM and IRBM targets to see
how much the inclusion of noise and filtering increased the KKV lateral divert
requirements. The 90% point (that is, 90% of the flights had required divert
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Fig. 34.22 Reducing Kalman filter process provides smoother estimates of
target acceleration.
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Fig. 34.23 Filter is consistent when process noise is high but estimation errors are large.
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that was less than the amount shown in the following figures) in a Monte Carlo set
was used as the figure of merit. Figure 34.25 shows that the KKV divert require-
ments still increase with the initial distance from the interceptor launch point to
the target launch site increasing. One can also see that sensor noise may increase
the KKV lateral divert requirements substantially over the case where the state
estimates are perfect. Figure 34.25 also shows that the selection of the amount
of process noise that is used in the filter is important. Lower amounts of process
noise may reduce the interceptor divert requirements—even though the filter is
not consistent! However, even with a small value of process noise the divert
requirements can still increase more than 500 m/s over the case without noise
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Fig. 34.24 Filter is not consistent when process noise is low but estimation errors are
much lower.
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or filtering. In addition, the inclusion of noise and filtering limits the maximum
distance that the interceptor launch point can be from the target launch site.
Thus, the inclusion of sensor noise and filtering is a very important part of the
design process in setting KKV divert requirements. Subsequent iterations in the
design and sizing process must include alternative filtering approaches such as
the EKF to see if KKV divert requirements can be reduced.

The amount of sensor measurement noise is also very important. Figure 34.26
shows that if the sensor noise increases from its nominal value of 50 mr to 200 mr
the lateral divert requirements can sometimes increase by more than 200 m/s at
the longer ranges. More importantly, the maximum distance the missile launch
point can be from the target launch point is reduced when the measurement
noise is increased. Thus, one can see that the guidance and control engineer
must interact with the sensor designer to establish reasonable sensor require-
ments to achieve a balanced system design.

The IRBM engagement results were also repeated for the case in which noise
and filtering were considered. One can see from Fig. 34.27 that including these
realistic effects also increase the KKV lateral divert requirements. In practice, a
wide variety of threats and possible trajectories would have to be considered in
deriving KKV lateral divert requirements.

It has been mentioned that there are many steps in the iterative design pro-
cess. In later steps other sources of error must be considered to highlight potential
problems and to suggest design work that must be performed. For example, in the
analysis conducted so far we have not considered measurement angle bias errors.
Let us repeat the results of Fig. 34.25, where there is 50 mr of measurement noise
and no bias errors, to now include a 100 mr angle bias error on the first IRST
sensor. Figure 34.28 shows that the bias error increases the KKV lateral divert
requirements. Methods for improving the KKV divert performance have to be
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explored. Thus alternative filter structures must also be examined in subsequent
iterations of the design process to see if the influence of biases can be alleviated.
Included for study in later iterations of the design process should be such tra-
ditional approaches such as redesigning the Kalman filter, increasing the
homing time to avoid biases, placing more stringent design requirements on
the IRST sensor, or including a star tracker on the aircraft. If no acceptable
solutions to the bias error can be found, we can see that the effective range of
the interceptor will be diminished. It is important to point out that problems
are a normal part of the design process and that the search for solutions to
these problems often leads to engineering innovation if the right people
are involved.
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SUMMARY

This chapter illustrates, through simplified examples, how airborne interceptor
guidance and filtering technology are important in determining KKV lateral
divert requirements against both boosting IRBM and ICBM threats. It was
shown that with 50 mr of aircraft IRST sensor noise and 2 km/s of KKV, divert
boost-phase intercepts of both IRBM and ICBM targets could be achieved if the
interceptor launching aircraft could be within 300 km to 800 km of the target
launch site. Traditional methods of guidance and filtering were employed to
achieve these results. These methods were used to illustrate how sensor noise, pre-
diction error, and apparent target maneuver work together in setting the KKV’s
lateral divert requirements. Simple formulas have been developed that can be
used to understand and explain engagement simulation results. Alternative gui-
dance and filtering techniques have to be explored in subsequent iterations of
the design process to see if the KKV divert and acceleration requirements can
be reduced.
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APPENDIX

Additional Examples

INTRODUCTION

In this appendix additional examples will be presented showing the interested
reader how to use the source code listings found in the supporting materials for
this book. The listings are often slightly modified so that the reader will under-
stand examples of specific changes that can be made in order to explore issues
beyond the scope of the text.

SOFTWARE DETAILS

To facilitate learning, source code that is formatted for both IBMandMacintosh com-
puters containing all of the text’sMATLAB listings are included on theAIAAwebsite.
The equivalent FORTRAN source code listings can also be found on this website.

The MATLAB and FORTRAN source code should run, as is, with either
MATLAB R2010b software or Version 11.05 of the Absoft Macintosh Pro
Fortran compiler. The software has been tested on a MacPro Intel Mac Computer.
Use of different computers or compilers in either the Macintosh- or IBM-
compatible world may require some slight modification of the source code.

The naming conventions of the source code files for both languages are slightly
different. The MATLAB naming convention is CxLy.M where x corresponds to
Chapter number and y corresponds to listing number. In other words C4L2.M
corresponds to MATLAB Listing 4.2 of the text (that is, Chapter 4, Listing 2).
The FORTRAN naming convention is C4L2.F.

SENSITIVITY OF OPTIMAL GUIDANCE TO TIME TO GO ERRORS

In evaluating the performance of the optimal guidance law, we have seen tremen-
dous performance benefits over proportional navigation in the presence of gui-
dance system dynamics. It has been assumed that the time to go information,
required by optimal guidance, was perfect. Adjoint Listing 8.2 was modified to
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include scale factor SF and bias BIAS errors on the estimated time to go TGOH
when the optimal guidance option was used (APN ¼ 2). An error-free time to
go case would require SF ¼ 1 and BIAS ¼ 0. Time to go errors are not introduced
into the proportional navigation option (APN ¼ 0) because in practice this gui-
dance law does not require time to go but works directly on the line-of-sight
rate. Statements that have been modified from the original Listing 8.2 are high-
lighted in boldface in Listing A.1.

Cases were rerun for proportional navigation (APN ¼ 0), optimal guidance with
a time to go scale factor error of 0.9 (APN ¼ 2, SF ¼ 0.9, BIAS ¼ 0), and optimal gui-
dance with a time to go bias error of 0.1 s (APN ¼ 2, SF ¼ 1, BIAS ¼ 0.1). The miss
distance sensitivity to a 3-g target maneuver when the guidance system time con-
stant is 1 s is displayed in Fig. A.1. We can see that both scale factor and bias
errors degrade the optimal guidance performance. Figure A.1 shows that the per-
formance of optimal guidance with a 0.9 scale factor error is worse than that of pro-
portional navigation for flight times greater than 8 s and with a 0.1 s bias error is
worse than that of proportional navigation for flight times greater than 5.5 s. [1].
Therefore time to go must be known accurately in order for optimal guidance to
perform better than proportional navigation.

LISTING A.1 ADJOINT SIMULATION OF OPTIMAL GUIDANCE SYSTEM (MODIFIED LISTING 8.2)

XNT=96.6;
XNP=4.;
TAU=1.;
TF=10.;

Fig. A.1 Time to go must be known accurately for optimal guidance to yield
performance benefits.
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VM=3000.;
HEDEG=-20.;
APN=2;
BIAS=.1;
SF=1;
T=0.;
S=0.;
TP=T+.00001;
X1=0.;
X2=0.;
X3=1.;
X4=0.;
XNPP=0.;
H=.01;
HE=HEDEG/57.3;
n=0.;
while TP,=(TF-1e-5)

X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
TP=TP+H;
end
TGO=TP+.00001;
if APN==0
C1=XNP/(TGO*TGO);
C2=XNP/TGO;
C3=0.;
C4=0.;
elseif APN==1
C1=XNP/(TGO*TGO);
C2=XNP/TGO;
C3=.5*XNP;
C4=0.;
else

TGOH=SF*TGO+BIAS;
if TGOH,0
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TGOH=.0001;
end

X=TGOH/TAU;
TOP=6.*X*X*(exp(-X)-1.+X);
BOT1=2*X*X*X+3.+6.*X-6.*X*X;
BOT2=-12.*X*exp(-X)-3.*exp(-2.*X);
XNPP=TOP/(.0001+BOT1+BOT2);
C1=XNPP/(TGOH*TGOH);
C2=XNPP/TGOH;
C3=.5*XNPP;
C4=-XNPP*(exp(-X)+X-1.)/(X*X);
end
X1D=X2+C3*X4/TAU;
X2D=X3+C2*X4/TAU;
X3D=C1*X4/TAU;
X4D=-X4/TAU-X2+C4*X4/TAU;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
S=S+H;
if S.=.0999

S=0.;
n=n+1;
ArrayTP(n)=TP;
ArrayXMNT(n)=XNT*X1;
ArrayXMHE(n)=-VM*HE*X2;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
clc
output=[ArrayTP’,ArrayXMNT’,ArrayXMHE’];
save datfil.txt output /ascii
disp ’simulation finished’

SIMULATING AN IMPULSE

So far, when the adjoint simulation technique has been used the impulse required
for the implementation of the adjoint method has been simulated by finding the
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appropriate initial conditions on the various integrators in the system. In some
applications, in which the adjoint method is being automated, it may be advan-
tageous to actually simulate the impulse rather than trying to develop the logic
in finding the appropriate initial conditions [2]. Listing 3.1 has been modified
to show how the impulse can be simulated. Changes to the original source code
have been highlighted in boldface. We can see that before the STEP ¼ 1 statement
the height of the impulse is chosen so that the simulated impulse has unit area.
The width of the impulse is half an integration interval since the differential
equations are called twice with the second-order Runge–Kutta integration tech-
nique. Before the STEP ¼ 1 statement we can see that the impulse is added only
once to the derivative of x3. When we come back to this section of code at
other times the value of the simulated impulse will be zero.

We can see from Figs. A.2 and A.3 that the miss due to target maneuver and
heading error is identical whether we are using Listing 3.1 where initial conditions
are used for the impulse or Listing A.2 where the impulse is actually simulated. How-
ever it is important to note that when the impulse is simulated the answers are more
sensitive to the integration step size than when the initial condition method is used.
This means that the answers in Listing A.2 will start to diverge from the true answers
sooner than the answers from Listing 3.1 if the integration interval is made larger.

LISTING A.2 SIMULATING AN IMPULSE RATHER THAN USING INITIAL CONDITIONS FOR USE IN
THE ADJOINT METHOD (EQUIVALENT TO LISTING 3.1)

n=0.;
XNP=4;

Fig. A.2 Both impulse and initial condition methods are equivalent for target
maneuver disturbance.
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XNT=96.6;
TAU=1;
TF=10;
VM=3000;
HEDEG=-20;
T=0.;
S=0.;
TP=T+.00001;
X1=0;
X2=0;
X3=0;
X4=0;
H=.01;
HE=HEDEG/57.3;
while TP,=(TF-1e-5)

S=S+H;
X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
if TP,H/2

IMPULSE=2./H;
else

IMPULSE=0;
end
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
TP=TP+H;

end
X1D=X2;
X2D=X3;
Y1=(X4-X2)/TAU;
TGO=TP+.00001;
if STEP==2

IMPULSE=0;
end
X3D=XNP*Y1/TGO+IMPULSE;
X4D=-Y1;
FLAG=1;
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end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
if S.=.0999

S=0.;
n=n+1;
ArrayTP(n)=TP;

ArrayXMNT(n)=XNT*X1;
ArrayXMHE(n)=-VM*HE*X2;

end
end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
figure
plot(ArrayTP,ArrayXMHE),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Heading Error Miss (Ft)’)
clc
output=[ArrayTP’,ArrayXMNT’,ArrayXMHE’];
save datfil.txt output /ascii
disp ’simulation finished’

Fig. A.3 Both impulse and initial condition methods are equivalent for heading
error disturbance.
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DIFFERENT GUIDANCE SYSTEM DISTRIBUTIONS

So far in the text we have chosen the binomial distribution as our canonic gui-
dance system form (that is, all equal time constants). The canonic guidance
system form was chosen for simplicity since only the total guidance system
time constant had to be specified. It was never demonstrated how the binomial
guidance system compared to other canonic guidance system forms in terms of
the resultant performance projections.

In this section we will consider two additional guidance system forms. The
only feature that the various guidance systems will have in common with the bino-
mial guidance system is that the total guidance system time constant will be the
same. The fifth-order binomial guidance system adjoint block diagram of
Fig. 6.5 was modified so that other guidance system configurations could be
studied by input changes and the resultant adjoint block diagram appears in
Fig. A.4. We can see that if QD ¼ 0 and all the time constants are the same
(i.e., T1 ¼ T2 ¼ T3 ¼ T4 ¼ T5) we have the fifth-order binomial guidance
system that we have already studied. However, now we have the flexibility to
make the individual time constants different from one another. If QD ¼ 1 in
Fig. A.4, we have three real poles and a quadratic distribution for the guidance
system. Again the real poles can all have different values. Note that the only dis-
turbance in the guidance system of Fig. A.4 is a step target maneuver.

Fig. A.4 Canonic guidance system adjoint block diagram.
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The adjoint simulation of Listing 6.1 was modified to correspond to Fig. A.4,
and the resultant simulation appears in Listing A.3. The statements that have
changed from Listing 6.1 have been highlighted in boldface. We can see from
the listing that the only disturbance to the guidance system is a 1-g target
maneuver.

LISTING A.3 CANONIC GUIDANCE SYSTEM ADJOINT SIMULATION

n=0;
QD=0.;
XNT=32.2;
XNP=4.;
T1=.0667;
T2=.133;
T3=.2;
T4=.267;
T5=.333;
W=10;
Z=.7;
TF=10;
VC=4000;
T=0.;
S=0;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0;
X5=0;
X6=0;
X7=0;
X8=0;
X9=0;
X10=0;
H=.01;
while TP,=(TF-1e-5)

S=S+H;
X1OLD=X1;
X2OLD=X2;
X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
X7OLD=X7;
X8OLD=X8;
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X9OLD=X9;
X10OLD=X10;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;

X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
X7=X7+H*X7D;
X8=X8+H*X8D;
X9=X9+H*X9D;
X10=X10+H*X10D;
TP=TP+H;

end
X1D=X2;
X2D=X3;
TGO=TP+.00001;
X3D=(X4+X5/T2)/(VC*TGO*T1);
X4D=-(X4+X5/T2)/T1;
X5D=-X5/T2+XNP*VC*X6/T3;
X6D=-X6/T3+QD*W*W*X9+(1.-QD)*X7/T4;
X7D=-X7/T4+X8/T5;
X8D=-X8/T5-X2;
X9D=X10-2.*Z*W*X9;
X10D=-W*W*X9-X2;
FLAG=1;

end
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
X6=(X6OLD+X6)/2+.5*H*X6D;
X7=(X7OLD+X7)/2+.5*H*X7D;
X8=(X8OLD+X8)/2+.5*H*X8D;
X9=(X9OLD+X9)/2+.5*H*X9D;
X10=(X10OLD+X10)/2+.5*H*X10D;
if S.=.0999

S=0;
XMNT=XNT*X1;
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n=n+1;
ArrayTP(n)=TP;
ArrayXMNT(n)=XNT*X1;
end

end
figure
plot(ArrayTP,ArrayXMNT),grid
xlabel(’Flight Time (Sec)’)
ylabel(’Target Maneuver Miss (Ft)’)
clc
output=[ArrayTP’,ArrayXMNT’];
save datfil.txt output /ascii

disp ’simulation finished’

For reference the first guidance system studied is the fifth-order binomial gui-
dance system in which all the individual time constants are 0.2 s or

nL
_l
¼ N 0Vc

ð1þ 0:2 sÞð1þ 0:2 sÞð1þ 0:2 sÞð1þ 0:2 sÞð1þ 0:2 sÞ
We can see that the total time constant of the preceding expression is 1 s since

T ¼ 0:2þ 0:2þ 0:2þ 0:2þ 0:2 ¼ 1 s

The next guidance system under consideration has five unequal time constants
where the second time constant is twice as big as the first, the third time constant
is three times as big as the first, the fourth time constant is four times bigger than
the first, and the fifth time constant is five times bigger than the first or

nL
_l
¼ N 0Vc

ð1þ 0:0667 sÞð1þ 0:133 sÞð1þ 0:2 sÞð1þ 0:267 sÞð1þ 0:333 sÞ
Again we can see that the total time constant of the preceding expression is also 1 s
since

T ¼ 0:0667þ 0:133þ 0:2þ 0:267þ 0:333 ¼ 1 s

The last fifth-order guidance system configuration studied is the one with three
real poles and a quadratic distribution or

nL
_l
¼ N 0Vc

ð1þ 0:1 sÞð1þ 0:2 sÞð1þ 0:56 sÞ½1þ ð2 � 0:7=10Þsþ ðs2=102Þ�
Again we can see that the total time constant of the preceding expression is 1 s
since

T ¼ 0:1þ 0:2þ 0:56þ 2 � 0:7=10 ¼ 1 s
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The adjoint simulation results appear in Fig A.5 where the miss distance due
to a 1-g step target maneuver disturbance is presented as a function of flight time
We can see that all of the miss distance curves are close to one another, indicating
that the performance of all of the guidance system configurations considered are
approximately the same since the total guidance system time constant of each gui-
dance systems is 1 s. This means that the value of the total guidance system time
constant is far more important than the guidance system pole distribution.

SAMPLING EXPERIMENTS

In Chapters 7 and 9 we conducted simplified data rate studies with both the digital
fading memory and Kalman noise filters. We concluded that the miss distance due
to noise and target maneuver tended to decrease as the data rate increased (that is,
sampling time decreased). For simplicity, in the data rate studies, the measure-
ment noise standard deviation was held constant as the data rate changed. In
many systems, when one gets into the details of the signal processing, it becomes
readily apparent that the data rate and measurement noise standard deviation are
not independent. In these systems the measurement noise spectral density F
remains constant, which means that the standard deviation of the simulated
digital measurement noise is proportional to the square root of the data rate (in
other words, inversely proportional to the square root of the sampling time Ts) or

s ¼
ffiffiffiffiffi
F

Ts

s

Fig. A.5 All fifth-order guidance system configurations yield approximately same answers if
total guidance system time constant is same.
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Therefore if we double the data rate (that is, sampling time halved), we must
also increase the standard deviation of the simulated digital measurement noise by
41.4% (2.5 ¼ 1.414). In this section we shall repeat the experiments of Chapters 7
and 9 to see if the miss due to digital measurement noise still decreases with
increasing data rate when the measurement noise spectral density is held constant.

The miss distance adjoint program of Listing 7.3 represents the adjoint of a
digital two-state fading memory filter in the homing loop. The program was
modified so that a change in the data rate would cause a change in the standard
deviation of the measurement noise according to the preceding relationship under
the constant spectral density assumption. It was assumed that a sampling time of
0.1 s (10 Hz data rate) corresponded to 1 mr of measurement noise. Adjoint runs
were made in which the sampling time was considered a parameter. Figure A.6
shows that the standard deviation of the miss distance due to digital measurement
noise still decreases with increasing data rate, although not as dramatically as was
the case in Fig. 7.22.

The Monte Carlo simulation used to generate Fig. 9.12 was also modified so
that the equivalent spectral density of the measurement noise would remain con-
stant and the standard deviation of the digital measurement noise would vary with
data rate. Fifty run Monte Carlo sets were run for 20 different values of flight time
at data rates of 2 Hz (Ts ¼ 0.5 s), 10 Hz (Ts ¼ 0.1 s), and 20 Hz (Ts ¼ 0.05 s). We
can see from Fig. A.7 that, although the noise miss distance dependence on data
rate is not as dramatic as in Fig. 9.13, the miss distance still decreases with increas-
ing data rate (decreasing sampling time).

In summary, we can say that even in cases in which it is appropriate to hold
the measurement noise spectral density constant when data rate studies are con-
ducted, the noise induced miss still decreases with increasing data rate when either

Fig. A.6 Increasing data rate still reduces miss due to digital measurement noise.
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a fading memory or Kalman filter is used. Both of these digital noise filters take
into account information concerning the data rate so that they can both
achieve good performance when the data rate changes.

BRUTE FORCE FREQUENCY RESPONSE [3]

We have seen in Chapter 22 how we can find the frequency response of a linear
system by first analytically deriving the open-loop transfer function of the system
under consideration and then finding its magnitude and phase as a function of
frequency. Because a great deal of algebraic manipulation of the system under
consideration is involved in this procedure, it is easy to make an error. This
section will show that an independent check of the frequency response can be
made by using a brute force simulation approach on the system under
consideration.

Recall that when we are finding the frequency response of a system we are
essentially finding the amplitude and phase of the steady-state sinusoidal
output of a linear system driven by a sinusoidal input, as can be seen in Fig.
A.8. It is important to note that for a frequency response the sinusoidal output
magnitude and phase is found for different sinusoidal input frequencies.

Fig. A.7 Measurement noise miss still increases with decreasing sampling rate.

Fig. A.8 Model for brute force frequency
response method.
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Here, the sinusoidal input to the linear system of Fig. A.8 is given by

x ¼ sinvt

where v is the sinusoidal input frequency. Because the system under consider-
ation is linear, the output in the steady state (that is, after transients have died
out) must also be a sine wave and can be expressed as

y ¼ A sinðvt þ fÞ
where A is the amplitude of the sinusoidal output and f is the phase angle.
Because the system is linear, the frequency of the system output is the same as
the frequency of the input. If we multiply the steady-state system output by a
sine wave of the same frequency as the input and integrate the result over a
period, we obtain P or

P ¼
ð2p=v
0

y sinvt dt ¼
ð2p=v
0

A sinðvt þ fÞ sinvt dt ¼ Ap
v

cosf

Similarly, if we multiply the steady-state system output by a cosine wave of the
same frequency as the input and integrate the result over a period, we obtain Q or

Q ¼
ð2p=v
0

y cosvt dt ¼
ð2p=v
0

A sinðvt þ fÞ cosvt dt ¼ Ap
v

sinf

From the two preceding equations we can see that P and Q are related to the mag-
nitude and phase of the system output according to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
¼ Ap

v

f ¼ tan�1 Q
P

In other words, information concerning the magnitude and phase of the
system’s steady-state sinusoidal output because of a sinusoidal input can be
obtained from P and Q. To make the two preceding relationships useful we
must first figure out a way to determine when we are in steady state (that is, tran-
sients have died out). If we integrate over a period and evaluate P0, and then inte-
grate again over another period and evaluate P1, the difference is

DP1 ¼ P1 � P0
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If the difference is very small or zero we know we are in steady state. If not, we
evaluate other differences until we are in steady state or

DP2 ¼ P2 � P1

..

.

DPn ¼ Pn � Pn�1

To see if the brute-force frequency response technique works, let us again con-
sider the rate gyro flight control system that was originally presented in Fig. 22.11
of Chapter 22. If we break the loop at the actuator (as was done in Fig. 22.15) the
open-loop transfer function can be obtained by brute force from Fig. A.9. In this
diagram, we will first choose a sinusoidal input frequency and then evaluate P and
Q when steady state is reached. Another input frequency will be chosen and the
process will be repeated. Enough input frequencies will be chosen to compute a
proper frequency response.

To simulate Fig. A.9, we must first convert the transfer functions of the block
diagram to differential equations. If

x ¼ �sinvt

we have already shown that by using the chain rule from calculus that the transfer
function for the actuator can be converted to the differential equation

€d ¼ v2
ACT x � d� 2zACT

vACT

_d

� �
while the airframe transfer function becomes

€e ¼ v2
AF d� e� 2zAF

vAF
_e

� �
and the system output becomes

y ¼ KRK3ðeþ Ta _eÞ
The computerized method for finding the brute-force frequency response

appears in Listing A.4. Notice that the integration interval is small as in other
simulations of the rate gyro flight control system. Error criteria are set to

Fig. A.9 Computing frequency response by brute force.
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ensure that P is in steady-state. For example, we assume that it takes at least 20 s
for transients to die out. At the lower frequencies it will take longer for the tran-
sients to die out, and therefore we have an additional error criteria (that is, test
when differences in P over a period are sufficiently small). We can see from
Listing A.4 that the “For loop” increments the sinusoidal input frequency in an
intelligent manner. The resultant magnitude and phase of the system output for
each input frequency is printed out and also written to a file.

LISTING A.4 BRUTE-FORCE FREQUENCY RESPONSE PROGRAM

% Program runs very slowly
n=0;
ZACT=.7;
WACT=150;
K3=-1.89;
TA=.457;
ZAF=.058;
WAF=25.3;
KR=.1;
PI=3.1416;
H=.0001;
for I=2:160

W=10^(.025*I-1);
PERIOD=2.*PI/W;
T=0.;
S=0.;
E=0.;
ED=0.;
DEL=0.;
DELD=0.;
P=0.;
Q=0;
PPREV=0;
QPREV=0;
DELP=0;
DELQ=0;
DELPOLD=0;
DELQOLD=0;
DELDELP=100;
DELDELQ=100;
while ~(T.20. & abs(DELDELP),.0001)

EOLD=E;
EDOLD=ED;
DELOLD=DEL;
DELDOLD=DELD;
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POLD=P;
QOLD=Q;
STEP=1;
FLAG=0;
while STEP,=1
if FLAG==1
STEP=2;

E=E+H*ED;
ED=ED+H*EDD;
DEL=DEL+H*DELD;
DELD=DELD+H*DELDD;
P=P+H*PD;
Q=Q+H*QD;
T=T+H;

end
X=-sin(W*T);
DELDD=WACT*WACT*(X-DEL-2.*ZACT*DELD/WACT);
EDD=WAF*WAF*(DEL-E-2.*ZAF*ED/WAF);
Y=KR*K3*(E+TA*ED);
PD=Y*sin(W*T);
QD=Y*cos(W*T);
FLAG=1;

end
FLAG=0;
E=.5*(EOLD+E+H*ED);
ED=.5*(EDOLD+ED+H*EDD);
DEL=.5*(DELOLD+DEL+H*DELD);
DELD=.5*(DELDOLD+DELD+H*DELDD);
P=.5*(POLD+P+H*PD);
Q=.5*(QOLD+Q+H*QD);
S=S+H;
if (S.=(PERIOD-.0001))
S=0.;

DELP=P-PPREV;
DELQ=Q-QPREV;
PPREV=P;
QPREV=Q;
DELDELP=DELPOLD-DELP;
DELDELQ=DELQOLD-DELQ;
DELPOLD=DELP;
DELQOLD=DELQ;

end
end
PHASE=57.3*atan2(DELQ,DELP);
if PHASE.90.

PHASE=PHASE-360;
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end
GAIN=10.*log10((DELP^2+DELQ^2)*W*W/(PI*PI));
n=n+1;
ArrayW(n)=W;

ArrayPHASE(n)=PHASE;
ArrayGAIN(n)=GAIN;
end
figure
plot(ArrayW,ArrayGAIN),grid
xlabel(’Frequency (r/s)’)
ylabel(’Gain (db)’)
figure
plot(ArrayW,ArrayPHASE),grid
xlabel(’Frequency (r/s)’)
ylabel(’Phase (deg)’)
clc
output=[ArrayW’,ArrayGAIN’,ArrayPHASE’];
save datfil.txt output /ascii
disp ’simulation finished’

Listing A.4 was run for the nominal case, and Fig. A.10 displays the open-loop
frequency response obtained by the method of brute force. By comparing this
open-loop response to that of Fig. 22.16, we can see that both responses are iden-
tical in magnitude and phase. However, the analytic frequency response method
of Chapter 22 (namely, Listing 22.2) yields the answers faster because numerical
integration techniques are not involved. It is important to note that when using
the analytical frequency response method, it is easier to make mistakes in
setting up the program. On the other hand, the brute-force method has a
longer computer running time (the running time in MATLAB is more than

Fig. A.10 Brute-force method results are identical to those of Fig. 22.16.
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15 minutes while in FORTAN it is less than a minute) because numerical inte-
gration is involved for each input frequency, but there is less chance of making
a mistake in setting up the program because it is similar to simulation.

Table A.1 shows, for selected frequencies, how the frequency and time domain
approaches compare. It can be assumed that the frequency domain answers are
exact and the time domain answers are approximate. We can see that the gain
is identical for both methods, but at the higher frequencies the phase angle
obtained by the time domain method is in slight error.

In summary, we can say that the brute-force method for finding the open-loop
frequency response of a system can be used as a useful check on analytically
derived answers.

MINIMUM ENERGY TRAJECTORIES

We derived the hit equation in Chapter 11. The formula for the required velocity
for an impulsive missile to travel a certain distance was given by

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gmð1� cosf)
a cos g½cos g� cosðfþ gÞ�

s

where f was related to the distance to be traveled, gm was a gravitational constant,
a was the radius of the Earth, and g was the flight path angle.

A minimum energy trajectory is one in which the velocity to travel a certain
distance is minimized. To minimize the velocity in the preceding expression, we
set the derivative of the velocity with respect to the flight path angle to zero or

dV
dg

¼ 0

TABLE A.1 BOTH METHODS ARE NUMERICALLY IDENTICAL

Frequency domain Time domain

v, r/s Gain, db Phase, deg Gain, db Phase, deg

0.112 –14.46 2.85 –14.46 2.85

0.501 –14.25 12.5 –14.25 12.5

3.981 –7.91 58.0 –7.91 58.0

33.4966 11.53 –100.43 11.53 –100.45

149.624 –11.30 –179.5 –11.30 –179.4

1000 –58.1 –257.85 –58.1 –258.53
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After much algebra one can show that the flight path angle that yields minimum
energy trajectories gME is given by [4]

gME ¼ p

4
� f

4

Recall that when we use Lambert guidance we specify where we are, where we
want to go, and the amount of time it takes to get there. Therefore, in future
uses of Lambert guidance for minimum energy trajectories we would like to
specify the flight time that yields the appropriate flight path angle gME. Recall
in Chapter 11 we showed that the formula for the flight time was given by

tF ¼ a
V cos g

tan gð1� cosfÞ þ ð1� lÞ sinf
ð2� lÞ 1� cosf

l cos2 g
þ cosðgþ fÞ

cosg

� �
8>><
>>:

þ 2 cos g

l
2
l
� 1

� �1:5 tan
�1

ffiffiffiffiffiffiffiffiffiffi
2
l � 1

q
cos g

tan f
2

� sin g

2
664

3
775
9>>>=
>>>;

Listing A.5 programs the preceding formulas for the minimum energy flight
path angle, velocity, and flight time. We can see that a loop appears in which
the downrange distance to be traveled is varied from 100 to 20,000 km in steps
of 100 km. Listing A.12 then calculates the flight time that corresponds to each
minimum energy trajectory.

The simulation of Listing A.5 was run, and the minimum energy flight time
corresponding to each downrange to be traveled is displayed in Fig. A.11. We
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Fig. A.11 Deriving flight time formula for minimum energy trajectories.
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can see that it appears that the flight time for a minimum energy trajectory is a
linear function of downrange (that is, distance to be traveled in kilometers).
Superimposed on the graph is the best linear least-squares curve fit to the
simulation results. We can see that if the downrange to be traveled is expressed
in kilometers then the minimum energy flight time in units of seconds can be
expressed as

tFME ¼ 252þ 0:223DRkm � 5:44 � 10�6DR2
km

LISTING A.5 CALCULATING FLIGHT TIME FOR A MINIMUM ENERGY TRAJECTORY

n=0;
GM=1.4077E16;
A=2.0926E7;
CONST=sqrt(GM/A);
for DISTKM=100:100:20000,

PHI=DISTKM*3280./A ;
GAM=3.14159/4.-PHI/4.;
GAMDEG=57.3*GAM;
TOP=GM*(1.-cos(PHI));
TEMP=A*cos(GAM)/A-cos(PHI+GAM);
BOT=A*cos(GAM)*TEMP;
V=sqrt(TOP/BOT);
XLAM=A*V*V/GM;
TOP1=tan(GAM)*(1-cos(PHI))+(1-XLAM)*sin(PHI);
BOT1P=(1-cos(PHI))/(XLAM*cos(GAM)*cos(GAM));
BOT1=(2-XLAM)*(BOT1P+cos(GAM+PHI)/cos(GAM));
TOP2=2*cos(GAM);
BOT2=XLAM*((2/XLAM-1)^1.5);
TOP3=sqrt(2/XLAM-1);
BOT3=cos(GAM)/tan(PHI/2)-sin(GAM);
TEMP=(TOP2/BOT2)*atan2(TOP3,BOT3);
TF=A*(TOP1/BOT1+TEMP)/(V*cos(GAM));
n=n+1;
ArrayDISTKM(n)=DISTKM;
ArrayTF(n)=TF;

end
figure
plot(ArrayDISTKM,ArrayTF),grid
xlabel(’Distance (km)’)
ylabel(’Flight Time (s)’)
clc
output=[ArrayDISTKM’,ArrayTF’];
save datfil.txt output /ascii
disp ’simulation finished’
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To test the minimum energy formula for flight time, Listing 13.3 was modified
to include the new formula. We can see that the distance to be traveled is 40 deg
(namely, 70 deg – 30 deg) or approximately 4500 km. In this simulation, a two-
stage booster flies to its intended target according to Lambert guidance.

The first case run was for a minimum energy trajectory. In this case, the flight
time turned out to be 1130 s. Trajectories corresponding to flight times of 1000 s
and 1500 s were also run. We can see from Fig. A.12 that decreasing the flight time
from the minimum energy value depresses the trajectory, whereas increasing the
flight time from its minimum energy value lofts the trajectory.

To ensure that a flight time of 1130 s corresponds to a minimum energy
trajectory, a comparison was made of the velocity profiles for each of the three
trajectories. Figure A.13 shows that the final velocity for the 1000 s trajectory is
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5.75 km/s, the final velocity for the 1500 s trajectory is 5.82 km/s, and the final
velocity for the minimum energy trajectory is 5.61 km/s. As expected, the
minimum energy trajectory yields the smallest final velocity. However, it is impor-
tant to note that the velocity differential between all three trajectories is not
very large.

TRAJECTORY SHAPING GUIDANCE IN THREE DIMENSIONS

In Chapter 24 we showed that the trajectory shaping guidance law in one dimen-
sion was given by

ncðtÞ ¼
6y þ 4 _ytgo þ nTt2go þ 2 _yðtFÞtgo

t2go

where y was the relative position between the target and missile, _y was the relative
velocity between target and missile, nT was the target acceleration, and _y(tF)
was the desired relative velocity at intercept between the target and missile. In
Chapter 28 we showed how several of the guidance laws presented in the text
could be programmed in three dimensions. In this section we shall also show
how we can convert the trajectory shaping guidance law to three dimensions.
Before we can convert the preceding guidance law to three dimensions, it is
first necessary to write the trajectory shaping guidance law in a slightly different
form than was presented in Chapter 24. Expanding the final relative velocity term
of the trajectory shaping guidance law yields

nc ¼
6y þ 4 _ytgo þ nTt2go þ 2½ _yTðtFÞ � _yMðtFÞ�tgo

t2go

If we assume that the target velocity does not change very much during the flight,
then we can say that

_yTðtFÞ 	 _yT

and the trajectory shaping guidance law can then be rewritten as

nc ¼
6y þ 4 _ytgo þ nTt2go þ 2½ _yT � _yMðtFÞ�tgo

t2go

Because we know that

_y ¼ _yT � _yM
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we can also say that

nc ¼
6y þ 4 _ytgo þ nTt2go þ 2½ _y þ _yM � _yMðtFÞ�tgo

t2go

or

nc ¼
6y þ 6 _ytgo þ nTt2go þ 2½ _yM � _yMðtFÞ�tgo

t2go

LISTING A.6 TRAJECTORY SHAPING GUIDANCE LAW IN THREE-DIMENSIONAL SIMULATION

n=0;
XNTG=4.;
VT=1000.;
VM=3000.;
RM1=0.;
RM2=10000.;
RM3=-1000.;
RT1=30000.;
RT2=10000.;
RT3=0.;
GAMFPDEG= -30.;
GAMFYDEG= 20.;
XNT=32.2*XNTG;
BETA=0.;
VT1=-VT*cos(BETA);
VT2=VT*sin(BETA);
VT3=0;
GAMFP=GAMFPDEG/57.3;
GAMFY=GAMFYDEG/57.3;
[VM1,VM2,VM3,TF]=LAUNCHLOGIC(RM1,RM2,RM3,RT1,RT2,RT3,VT1,VT2,...

VT3,VM);
H=.0001;
T=0.;
S=0.;
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM3=RT3-RM3;
RTM=sqrt(RTM1^2+RTM2^2+RTM3^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VTM3=VT3-VM3;
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VC=-(RTM1*VTM1+RTM2*VTM2+RTM3*VTM3)/RTM;
VM1F=VM*cos(GAMFP)*cos(GAMFY);
VM2F=VM*sin(GAMFP);
VM3F=VM*cos(GAMFP)*sin(GAMFY);
while ~(VC,0)

if RTM,1000.
H=.00001;

else
H=.0001;

end
BETAOLD=BETA;
RT1OLD=RT1;
RT2OLD=RT2;
RT3OLD=RT3;
RM1OLD=RM1;
RM2OLD=RM2;
RM3OLD=RM3;
VM1OLD=VM1;
VM2OLD=VM2;
VM3OLD=VM3;
STEP=1;
FLAG=0;
while STEP,=1

if FLAG==1
STEP=2;
BETA=BETA+H*BETAD;
RT1=RT1+H*VT1;
RT2=RT2+H*VT2;
RT3=RT3+H*VT3;
RM1=RM1+H*VM1;
RM2=RM2+H*VM2;
RM3=RM3+H*VM3;
VM1=VM1+H*AM1;
VM2=VM2+H*AM2;
VM3=VM3+H*AM3;
T=T+H;

end
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM3=RT3-RM3;
RTM=sqrt(RTM1^2+RTM2^2+RTM3^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VTM3=VT3-VM3;
VC=-(RTM1*VTM1+RTM2*VTM2+RTM3*VTM3)/RTM;
TGO=RTM/VC;
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BETAD=XNT/VT;
XNT1=XNT*sin(BETA);
XNT2=XNT*cos(BETA);
XNT3=0.;
VT1=-VT*cos(BETA);
VT2= VT*sin(BETA);
VT3=0.;
VM=sqrt(VM1*VM1+VM2*VM2+VM3*VM3);
XNC1=((6.*RTM1+6.*VTM1*TGO)/TGO^2) +2.0*(VM1-VM1F)/(TGO)+XNT1;
XNC2=((6.*RTM2+6.*VTM2*TGO)/TGO^2) +2.0*(VM2-VM2F)/(TGO)+XNT2;
XNC3=((6.*RTM3+6.*VTM3*TGO)/TGO^2) +2.0*(VM3-VM3F)/(TGO)+XNT3;
XNCG=sqrt(XNC1^2+XNC2^2+XNC3^2)/32.2;
XNCDOTVM=(XNC1*VM1+XNC2*VM2+XNC3*VM3)/VM;
AM1=XNC1-XNCDOTVM*VM1/VM;
AM2=XNC2-XNCDOTVM*VM2/VM;
AM3=XNC3-XNCDOTVM*VM3/VM;
GAMYDEG=57.3*atan2(VM3,VM1);
GAMPDEG=57.3*atan2(VM2,sqrt(VM1^2+VM3^2));
FLAG=1;

end
FLAG=0;
BETA=.5*(BETAOLD+BETA+H*BETAD);
RT1=.5*(RT1OLD+RT1+H*VT1);
RT2=.5*(RT2OLD+RT2+H*VT2);
RT3=.5*(RT3OLD+RT3+H*VT3);
RM1=.5*(RM1OLD+RM1+H*VM1);
RM2=.5*(RM2OLD+RM2+H*VM2);
RM3=.5*(RM3OLD+RM3+H*VM3);
VM1=.5*(VM1OLD+VM1+H*AM1);
VM2=.5*(VM2OLD+VM2+H*AM2);
VM3=.5*(VM3OLD+VM3+H*AM3);
S=S+H;
if S.=.0999

S=0.;
n=n+1;
RT1K=RT1/1000.;
RT2K=RT2/1000.;
RT3K=RT3/1000.;
RM1K=RM1/1000.;
RM2K=RM2/1000.;
RM3K=RM3/1000.;
ArrayT(n)=T;
ArrayRM1K(n)=RM1K;
ArrayRM2K(n)=RM2K;
ArrayRM3K(n)=RM3K;
ArrayRT1K(n)=RT1K;
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ArrayRT2K(n)=RT2K;
ArrayRT3K(n)=RT3K;
ArrayGAMPDEG(n)=GAMPDEG;
ArrayGAMFPDEG(n)=GAMFPDEG;
ArrayGAMYDEG(n)=GAMYDEG;
ArrayGAMFYDEG(n)=GAMFYDEG;
ArrayXNCG(n)=XNCG;

end
end
n=n+1;

RT1K=RT1/1000.;
RT2K=RT2/1000.;
RT3K=RT3/1000.;
RM1K=RM1/1000.;
RM2K=RM2/1000.;
RM3K=RM3/1000.;
ArrayT(n)=T;
ArrayRM1K(n)=RM1K;
ArrayRM2K(n)=RM2K;
ArrayRM3K(n)=RM3K;
ArrayRT1K(n)=RT1K;
ArrayRT2K(n)=RT2K;
ArrayRT3K(n)=RT3K;
ArrayGAMPDEG(n)=GAMPDEG;
ArrayGAMFPDEG(n)=GAMFPDEG;
ArrayGAMYDEG(n)=GAMYDEG;
ArrayGAMFYDEG(n)=GAMFYDEG;
ArrayXNCG(n)=XNCG;

figure
plot(ArrayRM1K,ArrayRM2K,ArrayRT1K,ArrayRT2K),grid
xlabel(’Downrange (kft)’)
ylabel(’Altitude (kft)’)
figure
plot(ArrayRM1K,ArrayRM3K,ArrayRT1K,ArrayRT3K),grid
xlabel(’Downrange (kft)’)
ylabel(’Crossrange (kft)’)
figure
plot(ArrayT,ArrayGAMPDEG,ArrayT,ArrayGAMFPDEG),grid
xlabel(’Time (Sec)’)
ylabel(’Pitch Reentry Angle (deg)’)
figure
plot(ArrayT,ArrayGAMYDEG,ArrayT,ArrayGAMFYDEG),grid
xlabel(’Time (Sec)’)
ylabel(’Yaw Reentry Angle (deg)’)
figure
plot(ArrayT,ArrayXNCG),grid
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xlabel(’Time (Sec)’)
ylabel(’Commanded Acceleration (g)’)
axis([00,10,00,60])
clc
output=[ArrayT’,ArrayRM1K’,ArrayRM2K’,ArrayRM3K’,ArrayRT1K’,...

ArrayRT2K’,ArrayRT3K’,ArrayGAMPDEG’,ArrayGAMFPDEG’,...
ArrayGAMYDEG’,ArrayGAMFYDEG’];

save datfil.txt output -ascii
disp ’simulation finished’
RTM

function [VM1,VM2,VM3,TF]=LAUNCHLOGIC(RM1,RM2,RM3,RT1,RT2,RT3,...
VT1,VT2,VT3,VM)

for TF=.1:.1:10,
RTM1=RT1-RM1;
RTM2=RT2-RM2;
RTM3=RT3-RM3;
RT1F=RT1+VT1*TF;
RT2F=RT2+VT2*TF;
RT3F=RT3+VT3*TF;
THET=asin((RT2F-RM2)/(VM*TF));
PSI=atan2(RT3F-RM3,RT1F-RM1);
VM1=VM*cos(THET)*cos(PSI);
VM2=VM*sin(THET);
VM3=VM*cos(THET)*sin(PSI);
RM1F=RM1+VM1*TF;
RM2F=RM2+VM2*TF;
RM3F=RM3+VM3*TF;
RTM1F=RT1F-RM1F;
RTM2F=RT2F-RM2F;
RTM3F=RT3F-RM3F;
RTMF=sqrt(RTM1F^2+RTM2F^2+RTM3F^2);
VTM1=VT1-VM1;
VTM2=VT2-VM2;
VTM3=VT3-VM3;
VC=-(RTM1F*VTM1+RTM2F*VTM2+RTM3F*VTM3)/RTMF;
if VC,0

break
end

end

An examination of the term in brackets of the preceding expression indicates that
we are attempting to make the missile velocity _yM reach a specified value at the
end of the flight. Soon we will show that this is equivalent to controlling the
missile flight-path angle. By duplicating the expression for the trajectory
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shaping guidance law in each of the Earth’s inertial coordinates, we can express
the guidance law in three dimensions by inspection as

nc1 ¼
6RTM1 þ 6VTM1tgo þ nT1t2go þ 2½VM1 � VM1ðtFÞ�tgo

t2go

nc2 ¼
6RTM2 þ 6VTM2tgo þ nT2t2go þ 2½VM2 � VM2ðtFÞ�tgo

t2go

nc3 ¼
6RTM3 þ 6VTM3tgo þ nT3t2go þ 2½VM3 � VM3ðtFÞ�tgo

t2go

where RTM and VTM are relative position and velocity, respectively. In the preced-
ing expressions, 1, 2, and 3 represent downrange, altitude, and cross range,
respectively, in the Earth or inertial coordinate system. Thus the guidance com-
mands are in each of those directions. For the trajectory shaping guidance law
we want to make the total acceleration perpendicular to the missile velocity
vector. This will ensure that the missile velocity will remain constant throughout
the flight. A similar approach was taken in [5].

If we want to make the missile hit the target at desired flight-path angles gPF
and gYF, we can say that the desired missile velocity components at the end of the
flight are given by

VM1ðtFÞ ¼ VM cos gPF cos gYF
VM2ðtFÞ ¼ VM sin gPF
VM3ðtFÞ ¼ VM cos gPF sin gYF

where VM is the total missile velocity. The trajectory shaping guidance law was
implemented in the three-dimensional simulation of Listing A.6. In the
nominal case of the simulation, the target is executing a constant 4-g maneuver
perpendicular to the target velocity vector in the altitude-downrange plane. In
addition, it is desired that the missile hit the target with a pitch flight-path
angle of 230 deg and a yaw flight-path angle of 20 deg. The simulation calculates
the instantaneous pitch and yaw flight-path angles, as well as the miss distance, to
see if the trajectory shaping guidance law meets its objectives. A missile launch
logic subroutine, valid for flight times of less than 10 s, is included to place the
missile on a collision triangle (assuming no target maneuver) with the target.

The nominal case of Listing A.6 was run. The resultant altitude-downrange
and crossrange-downrange trajectories of Figs A.14 and A.15 indicate that the
missile is hitting the target. In addition we can see that there is much curvature
to the missile, trajectory indicating that a great deal of trajectory shaping has
taken place.

Figures A.16 and A.17 present the missile pitch and yaw flight-path angle pro-
files, respectively. We can see from both figures that the missile is meeting the
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desired pitch and yaw flight-path-angle objectives at the end of the flight. However
we also can see from Fig. A.18 that the price paid for the trajectory shaping is a very
large commanded missile acceleration. Chapter 24 goes into detail in showing how
the acceleration requirements of trajectory shaping guidance can be reduced.

MODELING POISSON TARGET MANEUVER

So far in this text we have mainly considered the uniformly distributed step or
weave target maneuvers for evaluating guidance system performance. We were

Fig. A.15 Engagement viewed in crossrange-downrange plane.

Fig. A.14 Engagement viewed in altitude-downrange plane.
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able to find shaping filter equivalents for these maneuvers so that the method of
adjoints could be utilized to efficiently evaluate guidance system performance.
Another maneuver that is often used in missile guidance system analysis is the
Poisson (or random telegraph signal) target maneuver. The Poisson square
wave is defined as a maneuver of amplitude þb or 2b. The length of time for
which the maneuver nT(t) remains in either position is random [6]. In particular,

Fig. A.16 Trajectory shaping guidance law enables missile to achieve pitch
flight-path-angle objective.

Fig. A.17 Trajectory shaping guidance law enables missile to achieve yaw
flight-path-angle objective.
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the number of times the maneuver changes sign (zero crossings) is given by the
Poisson distribution. If P(k) represents the probability of k sign changes in tF
seconds, then we can say that

PðkÞ ¼ ðntFÞke�ntF

k!

where k is the number of sign changes and v is the average number of zero
crossings per second. This type of maneuver can be very stressing to a missile gui-
dance system and is similar in shape to the vertical-S maneuver of Chapter 6.
A typical realization of a 3-g Poisson target maneuver (y ¼ 0.5 s21, b ¼ 3 g,
and tF ¼ 20 s21) is shown in Fig. A.19.

The two steps in simulating a Poisson square wave are in a forward simulation
are as follows:

1. Determine the initial sign of the square wave from a Gaussian random
number generator with zero mean and unity standard deviation.

2. The length of time between sign changes Dt is determined by squaring and
adding two Gaussian distributions with zero mean and standard deviation
given by

s ¼ 1ffiffiffiffiffi
2n

p

The second step for making the Poisson target maneuver is displayed in Fig. A.20.

Fig. A.18 Great deal of acceleration is required to make trajectory shaping guidance
law work.
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In Chapter 4, Fig. 4.15 modeled a single-time-constant proportional naviga-
tion guidance system whose only error source was a uniformly distributed
target maneuver. A Monte Carlo simulation of that guidance system appeared
in Listing 4.5. Listing A.7 modifies Listing 4.5 by replacing the uniformly distrib-
uted step target maneuver with the Poisson target maneuver. Statements that
pertain to the modeling of the Poisson target maneuver have been highlighted
in boldface. In addition we can see from Listing A.7 that 1000 runs are made
(rather than 50 runs in Listing 4.5) for each flight time and that the flight time

Fig. A.20 Simulating Poisson target maneuver.

Fig. A.19 Poisson square wave target maneuver.
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is incremented every 0.2 s (rather than every second in Listing 4.5) in order to get
better accuracy.

LISTING A.7 MONTE CARLO SIMULATION OF SINGLE-TIME-CONSTANT GUIDANCE SYSTEM
DRIVEN BY POISSON TARGET MANEUVER

count=0;
VC=4000;
XNT=96.6;
VM=3000;
XNP=3;
TAU=1;
RUN=1000;
BETA=96.6;
XNU=.5;
for TF=.2:.2:10,

Z1=0;
for I=1:RUN

QFIRST=1;
SIG=1./sqrt(2.*XNU);
PZ=uniform;
PZ=PZ-.5;
if PZ . 0

COEF=1;
else

COEF=-1;
end;
XNT=COEF*BETA;
DELT=9999.;
TNOW=0;

Y=0;
YD=0;
T=0;
H=.01;
S=0;
XNC=0;
XNL=0;
while T,=(TF - 1e-5)
if QFIRST==1

XNOISE1=SIG*randn;
XNOISE2=SIG*randn;
DELT=XNOISE1^2+XNOISE2^2;
QFIRST=0;
TNOW=T;

end;
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if T.=(DELT+TNOW)
XNT=-XNT;
QFIRST=1;

end
YOLD=Y;
YDOLD=YD;
XNLOLD=XNL;
STEP=1;
FLAG=0;
while STEP ,=1
if FLAG==1
Y=Y+H*YD;
YD=YD+H*YDD;
XNL=XNL+H*XNLD;
T=T+H;
STEP=2;

end
TGO=TF-T+.00001;
RTM=VC*TGO;
XLAMD=(RTM*YD+Y*VC)/(RTM^2);
XNC=XNP*VC*XLAMD;
XNLD=(XNC-XNL)/TAU;
YDD=XNT-XNL;
FLAG=1;
end;
FLAG=0;
Y=.5*(YOLD+Y+H*YD);
YD=.5*(YDOLD+YD+H*YDD);
XNL=.5*(XNLOLD+XNL+H*XNLD);
S=S+H;
end;
Z(I)=Y;
Z1=Z(I)+Z1;
XMEAN=Z1/I;

end;
SIGMA=0;
Z1=0;

Z2=0.;
for I=1:RUN
Z1=(Z(I)-XMEAN)^2+Z1;

Z2=Z(I)^2+Z2;
if I==1
SIGMA=0;
RMS=0.;
else
SIGMA=sqrt(Z1/(I-1));
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RMS=sqrt(Z2/(I-1));
end
end;
count=count+1;
ArrayTF(count)=TF;
ArrayRMS(count)=RMS;

end;
figure
plot(ArrayTF,ArrayRMS)
title(’Shaping filter Monte Carlo results’)
xlabel(’Time’)
ylabel(’RMS Miss (ft)’)
clc
output=[ArrayTF’,ArrayRMS’];
save datfil.txt output -ascii
disp ’simulation finished’

The shaping filter equivalent of a Poisson target maneuver can be represented
by white noise us through a low-pass filter with time constant 1/2y as shown in
Fig. A.21 [6]. In this figure the white-noise input has spectral density Fs given by

Fs ¼ b2

n

and the initial condition on the integrator has value b (to ensure that the standard
deviation of the shaping filter output is b at all times).

Because the network of Fig. A.21 is driven by both an impulse and white
noise, we can take its adjoint. The resultant adjoint block diagram of the Poisson
target maneuver appears in Fig. A.22. In this figure we are using the same notation
as the adjoint of the single-time-constant homing loop of Fig. 4.17. The outputs

Fig. A.21 Shaping filter equivalent of Poisson target maneuver.
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MBT and MIC of Fig. A.22 represent the adjoint outputs of the miss caused
by noise and miss caused by random initial condition on the shaping filter,
respectively. Therefore the total rms miss caused by the Poisson target maneuver
is given by

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBT2 þMIC2

p
The adjoint of the single-time-constant proportional navigation guidance

system was taken, and the resultant adjoint simulation appears in Listing A.8.
Only a few modifications to the original adjoint simulation of Listing 4.6 were
required, and these statements are highlighted in boldface.

The nominal cases of Listing A.7 (Monte Carlo code) and Listing A.8 (adjoint
code) were run, and the rms miss distance vs flight results as a result of the Pois-
son target maneuver are displayed in Fig. A.23. We can see that the Monte Carlo
results, which required 50,000 runs (50 flight times multiplied by 1000 runs per
flight time), are identical to the single-run adjoint results.

Fig. A.22 Adjoint of Poisson target maneuver.
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LISTING A.8 ADJOINT OF SINGLE-TIME-CONSTANT GUIDANCE SYSTEM DRIVEN BY POISSON
TARGET MANEUVER

count=0;
XNT=96.6;
XNP=3;
TAU=1;
TF=10;
T=0;
S=0;
TP=T+.00001;
X1=0;
X2=0;
X3=1;
X4=0;
X5=0.;
X6=0;
X7=0;
H=.01;
XNU=.5;
BETA=96.6
while TP ,= (TF - 1e-5)

STEP=1;
FLAG=0;
S=S+H;
X1OLD=X1;
X2OLD=X2;

Fig. A.23 Adjoint and Monte Carlo models agree for Poisson target maneuver disturbance.
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X3OLD=X3;
X4OLD=X4;
X5OLD=X5;
X6OLD=X6;
X7OLD=X7;
while STEP ,=1

if FLAG==1
STEP=2;
X1=X1+H*X1D;
X2=X2+H*X2D;
X3=X3+H*X3D;
X4=X4+H*X4D;
X5=X5+H*X5D;
X6=X6+H*X6D;
X7=X7+H*X7D;
TP=TP+H;

end;
X1D=X2;
X2D=X3;
Y1=(X4-X2)/TAU;
TGO=TP+.00001;
X3D=XNP*Y1/TGO;
X4D=-Y1;
X5D=X1*X1;
X6D=X2-2.*XNU*X6;
X7D=(2.*XNU*X6)^2;
FLAG=1;

end;
FLAG=0;
X1=(X1OLD+X1)/2+.5*H*X1D;
X2=(X2OLD+X2)/2+.5*H*X2D;
X3=(X3OLD+X3)/2+.5*H*X3D;
X4=(X4OLD+X4)/2+.5*H*X4D;
X5=(X5OLD+X5)/2+.5*H*X5D;
X6=(X6OLD+X6)/2+.5*H*X6D;
X7=(X7OLD+X7)/2+.5*H*X7D;
S=S+H;
if S.=.000999

S=0.;
XMBT=BETA*sqrt(X7/XNU);
XIC=BETA*X6;
RMS=sqrt(XMBT^2+XIC^2);

count=count+1;
ArrayTP(count)=TP;
ArrayRMS(count)=RMS;

end;
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end
figure
plot(ArrayTP, ArrayRMS),grid
title(’Adjoint model using shaping filter approach’)
xlabel(’Flight Time (S)’)
ylabel(’RMS Miss (Ft)’)
%axis([00,10,00,30])
clc
output=[ArrayTP’,ArrayRMS’];
save datfil.txt output /ascii
disp(’Simulation Complete’)
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 ballistic coefficient estimations 373–388 

 breaking if severely overestimating 

   ballistic coefficient 385f 

 differential equation for 

   one-dimensional ballistic 

   target 375 

 estimate constant target maneuver 645f 

 estimating ballistic coefficient 380f 

 filtering and weaving targets 630–646 

 fully coupled 871 

 homing loop 633 

 noise reduction 635f 636f 

 not realizing broken 385f 

 numerical example 379–386 

 one-dimensional ballistic target 376–378 
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Extended Kalman filter (EKF) (Cont.) 

 target acceleration 635f 

 target jerk 636f 

 target weave frequency magnitude 633f 

 theoretical equations 373–374 

 unable to estimate ballistic 

   coefficient 384f 

 unable to estimate target weave 

   frequency 693f 

F 

Fading memory filters 137 962 

 adjoint of second-order 151f 

 different order 138t 

 digital fading memory noise filters in 

   homing loop 137 

 general form with two sampling 

   rates 752 

 homing loop 138–145 752f 

 increasing sampling rate 156f 

 Monte Carlo version 143L–145L 

 noise transmission 140f 

 properties 155–157 

 yields less miss due to target 

   maneuver 155f 

Fifth-order binomial guidance system 110f 429f 

 acceleration limit 434L–436L 

 adjoint  111f 112L–114L 395f

    396L–399L 430f 431L–432L 

 miss distances 394–398 396t 
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Fifth-order binomial guidance system (Cont.) 

 missile homing loop 453 

 radome effects 128f 

 steady-state standard peak miss 454f 

Fifth-order guidance system 

 forward and adjoint models 437f 

 time constant 960f 

Fifth-order normalized miss 433f 

Filtering  644f 

  See also specific name of 

   filter 

 bandwidth decreases noise-induced 

   miss 202f 

 bank approach to weaving target 

   problem 691–713 

 bank methodology 697–698 

 becoming sluggish 200f 

 boost-phase 863–892 

 boost-phase filtering options 871–872 

 consistent when process noise high but 

   estimation errors large 943f 

 extended Kalman filter 630–646 

 five-state extended-Kalman-filter 

   performance 691–693 

 four-state extended-Kalman-filter 

   performance 693–696 

 four-state weave Kalman filter 611–625 

 guidance law effectiveness 817L–822L 

 identifying correct 709f 

 interceptor engagements with noise 943–946 
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 lagging signal 139f 

 linearized Monte Carlo simulation 817L–822L 

 measurement noise model 789 

 miss distance analysis 626–629 

 not consistent when process noise low 

   but estimation errors lower 944f 

 options 863–892 

 original three-state linear Kalman filter 603–610 

 performance using adjoints to evaluate 148–154 

 Riccati equations 699 

 time constant 73f 

 and weaving targets 603–648 

Final flight path angle 785f 

Final line of sight angle 

 acceleration requirements 583f 584f 

 formula for acceleration 590f 

 heading error 583f 

 target maneuver 582f 584f 

 trajectory shaping guidance law 580f 582f 

Fin deflections 

 acceleration at sea level 482f 

 acceleration capability 483f 

 accuracy 492f 

 angle of attack 482f 

 angle of attack at sea level 481f 

Finite acceleration capability 457 
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Fin rate 

 adjoint program 562 

 altitude 551 551f 563 

 error budget at 50 kft altitude 564f 

 increasing altitude 563f 

 inversely proportional to aerodynamic 

   gain 552 

 reduced by increasing flight-control 

   system time constant 564f 

 transfer function 551 

First control gain 657f 

First-order normalized miss 428f 

First sampler 762f 

Five-state extended Kalman filter 

 acceleration constraints 646f 647f 

 compensated weave guidance 646f 647f 

 demonstrate robustness 643 

 noise reduction 647f 

 performance 691–693 

Fixed MMAE approach 

 identifying correct filter after 3s 709f 

Fixed MMAE performance 

 improved when less uncertainty 

   in actual target weave 

   frequency 711f 

Fixed multiple model adaptive estimator 

   (MMAE) 697 

Flat-Earth model accuracy with doubled 

   missile speed 234f 
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Flat-Earth model inaccuracy with missile 

   speed doubled twice 235f 

Flight condition 

 acceleration response 550f 

 damped when autopilot gain 

  linear rate gyro flight-control 

 system  514f 

Flight condition experiments 

 three-loop autopilot 549–552 

Flight conditions 

 aerodynamic gain 552 

 linearized aerodynamics 551t 

Flight control design introduction 499–528 

 guidance system interactions 506–507 

 open-loop flight-control system 499–505 

 open-loop transfer function 515–519 

 rate gyro flight-control system 508–514 

 simplified expression for open-loop 

   crossover frequency 525–526 

 time domain verification of open-loop 

   results 520–524 

Flight control system. See also Open-loop 

   flight-control system; Rate gyro 

   flight-control system; Single-lag 

   flight control system 

 acceleration 566f 

 acceleration saturation effects 804f 

 actuator dynamics little effect on 515f 

 adjoint simulation of homing loop 557L–562L 

 aerodynamically controlled missiles 460 
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Flight control system. See also Open-loop (Cont.) 

 airframe parameters and autopilot 

   gains 552 

 autopilot gain 549 

 autopilot gain determining 

   damping 510f 

 causing miss distance 809 

 closed-form solutions for guidance law 671–672 

 closed-loop transfer function 536 

 from commanded to achieved 

   acceleration 549 

 conceptual block diagram 500f 

 damping reduction 548 

 dynamics 667–670 

 fin rate  564f 

 gain  536 

 guidance law 674 

 high altitude 562 

 homing loop 553f 

 increasing autopilot gain 509 

 output acceleration input 

   command 533 

 performance comparison 682–688 

 radome slope sensitivity 563f 

 response due at sea level 502 

 rms miss 803f 

 rms miss distance 805f 

 single time constant 

   representation 797 
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Flight control system. See also Open-loop (Cont.) 

 tail-controlled missile 672 

 three-loop autopilot 530f 

Flight path angle 

 acceleration requirements 789f 

 biased PN 788f 

 guidance laws 787f 

 and increasing distance to be 

   traveled 254f 

 optimal trajectory shaping guidance 

   law 785f 

 required for initial booster design 268f 

 trajectory changes 788f 

Flight time 

 adjoint miss distance 449 

 calculating and minimum energy 

   trajectories 970L 

 flight-path angle 254f 

 minimum energy formula 971 

 against minimum energy ICBM 846f 

 minimum energy trajectories 969f 

 required initial interceptor 

   velocity 846f 

 strategic considerations 254 

Force equation 474–477 

Forces acting on one-dimensional ballistic 

   target 376f 

FORTRAN source code 949 
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Forward and adjoint models 

 agreeing for fifth-order guidance 

   systems 437f 

 homing loop 775f 

 three-state Kalman filter and 

   proportional navigation 775f 

 three-state Kalman filter when optimal 

   guidance used 775f 

 two samplers operating different 

   sampling rates 761f 

Forward models 

 discrete three-state Kalman filter 765f 766L–768L 

 miss due to step in target displacement 434L–436L 

 simulation with three-state Kalman 

   filter 766L–768L 

 simulation with two samplers operating 

   at different rates 755L–757L 

 target maneuver starting time is 

   varied 763f 

 two samplers operating at different 

   rates 753f 

Fourier transform of autocorrelation 

   function 70 

Four-state extended-Kalman-filter 

   performance 693–696 

Four-state Kalman filter 466 

 target weave frequency 629 
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Four-state linear weave Kalman filter 693 

 estimate of target acceleration 696f 

 miss distance performance 697f 

 run in parallel 699 

 target weave frequency 695f 

Four-state weave Kalman filter 

 filtering and weaving targets 611–625 

 target acceleration estimate 619f 

 vs. three-state Kalman filter 617f 

Fourth control gain formula and 

   simulation 659f 

Fourth-order Runge-Kutta integration 

 technique 93f–95f 

 yields accuracy 92f 

Frequency domain 

 airframe zero 496f 

 open-loop crossover frequency 545 

 rate gyro flight-control system 509 

Fuel mass fraction 

 missile speed 216f 

 required for strategic applications 258f 

G 

Gain margin (gm) 516 546 

 open-loop response 525 

Gain scheduling 509 

Gain selection 529 

Gaussian distribution 61 

 random numbers 64f 66f 67f 

Gaussian noise analysis 62–66 
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Gaussian probability density function 62f 

Gaussian random number generator 63L 

GEM trajectories during boost 

   phase 293f 

General energy management (GEM) 

 angle reaching steady state 293f 

 Lambert guidance 290–297 

 sign conventions 292f 

 simulation 294L–297L 

 steering 290–297 

 steering basic angles 291f 

 trajectories hitting target 298f 

German V-2 229–230 

Glint noise 797 

 and uniformly distributed target 

   maneuver 797L–801L 

Grain crossover frequency 516–517 

Gravity  231f 

 acceleration levels 327f 

 compensation 325–328 

 divert requirements for long-range 

   case 328f 

 guidance law 328 

 missile and target 326 

 model for understanding 326f 

 Newton’s law 231 232 243

    273 903 

 polar coordinate system with missile 

   in 237f 
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Gravity (Cont.) 

 simulation 235L–237L 240L–241L 

 tactical zones 223–226 

 using flat-Earth model 230f 

Gravity turn 

 boosters 266–271 

 ICBM  886 

 Kalman filter 887f 888f 

 simulation 268L–270L 

Guidance law(s) 163–184 

 acceleration 181f 

 acceleration requirements 174f 

 advanced 163–184 

 alternative approach 677–681 

 Apollo spacecraft 575 

 augmented proportional navigation 165–170 

 augmented proportional navigation 

   derivation 171–173 

 bang-bang nature 810 

 benefits for stressing trajectory 370f 

 closed-form solutions 671–672 

 commands 368f 

 comparable in terms of miss 

   distance 175f 

 comparison of differential game 

   guidance with optimal 

   guidance 808–809 813–825 

 and control issues 895 

 cubic flight control system 673f 682–688 

 derivation 171f 
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Guidance law(s) (Cont.) 

 desired flight path angle 787f 

 different trajectories 786f 

 effectiveness with noise and filtering 817L–822L 

 evaluation against weaving target 468L–470L 

 expression 664 

 flight-control system transfer 

   function 674 

 forward model simulation with three- 

   state Kalman filter 766L–768L 

 heading error disturbance and relative 

   trajectories 577f 

 homing loop model 577f 

 linear engagement simulation, law 231 232 578L–580L 

 maximum acceleration command 

   similar for both 787f 

 missile flight control system 671–672 

 navigation ratio 675f 

 optimal guidance 177–183 

 options and adjoint model with three- 

   state Kalman filter 770L–774L 

 popular 808 

 portion due to maneuvering targets 664–666 

 proportional navigation 163–164 

 simulation for evaluating different 683L–687L 

 single-lag flight control system 652–657 669L–671L 

 single-lag model 175f 178f 

 strategic intercepts 299–300 

 three dimensions by inspection 978 

 time constants influence 174–176 
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Guidance law(s) (Cont.) 

 trajectory shaping guidance 575 

 zero-time constant homing 570f 

Guidance law development alternative 

   approaches 649–689 

 cubic flight-control-system guidance 

   law 677–681 

 deriving guidance law for weaving 

   target using optimal control 658–663 

 deriving new guidance law for cubic 

   flight control system 671–676 

 flight control system dynamics 667–670 

 guidance portion due to maneuvering 

   targets 664–666 

 optimal control 649–651 

 performance comparisons 682–688 

 single-lag flight control system 652–657 

Guidance system 

 adjoint of fifth-order binomial 111f 112L–114L 395f

    396L–399L 430f 431L–432L 

 adjoint of single time constant 444f 

 distributions 956–959 

 flight control design introduction 506–507 

 homing loop 796 

 interacting with open-loop 

   flight-control system 506–507 

 linearized single time constant 444f 

 miss distance analysis 626f 692f 

 navigation ratio 450 451 

 parameters 627t 817t 
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Guidance system (Cont.) 

 techniques to improve performance 463–470 

 three-loop autopilot 552–565 

 weaving targets 463–470 

Guidance system dynamics 

 multiple targets 430–433 

 reduction of miss distance 470f 

 weaving targets 452–456 

Guidance system time constant 

 aerodynamically controlled 

   missiles 460 

 ballistic target challenges 399 401–405 

 constraints 401–405 

 fifth-order guidance system 

   configurations 960f 

 miss due to saturation and target 

   displacement 437f 438f 

 optimal guidance yielding smaller 

   noise-induced miss 209f 

 optimal guidance yielding smaller 

   target-maneuver-induced 

   miss 211f 

 reducing miss 461f 

 stabilizing effect 132f 

 yielding good performance 462f 

Gyro flight-control system 

 damped when autopilot gain is 

   function of flight 

   condition 514f 

 simulation 513 
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Heading error 15 

 disturbance 28f 583f 

 final line of sight angle 583f 

 formula for acceleration 589f 

 guidance laws 577f 

 impulse and initial condition 

   methods 955f 

 vs. increasing effective navigation 

   ratio 21f 

 induced miss information 50f 

 linearized model 38f 

 normalized miss 57f 

 proportional navigation guidance 31f 

 single time constant guidance 

   system 57f 

 trajectory shaping guidance 578f 

High altitude 

 flight-control system time constant 562 

 miss distance 562 

 performance sensitive to randome 

   slope 556f 

High closing velocity noise 610f 

Higher-order guidance system dynamics 

 multiple targets 430–433 

 weaving targets 452–456 

Hit equation 249–253 

Hit maneuvering target 581f 

Homing lamp 191f 
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Homing loop 35–58 576 

 acceleration saturation 122f 

 adjoint  42f 552 

 adjoint model 51f 391f 555f

    758L–761L 769f 770L–774L 

 adjoint of second-order fading memory 

   filter 151f 

 adjoint simulation 557L–562L 

 APN  166f 

 covariance analysis 89–106 93–99 

 covariance analysis program 96L–98L 

 designed for sinusoidal target 

   maneuver 612f 

 digital fading memory noise filters 137–162 

 digital two-state fading memory 

   filter 961 

 discrete three-state Kalman filter 765f 

 error sources 797 

 extended Kalman filter 633 

 fading memory filter 143L–145L 752f 

 flight-control system 553f 

 forward and adjoint models 761f 774f 775f 

 forward model 753f 765f 

 forward model simulation 755L–757L 

 guidance law 577f 

 Kalman filter development 189f 604f 

 Kalman filters 187–211 

 linearized guidance system model 796 

 method of adjoints 35–36 

 Monte Carlo simulation 81L–83L 797L–801L 
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Homing loop (Cont.) 

 Monte Carlo version 143L–145L 

 noise  814f 

 open-loop flight-control system 507f 

 optimal guidance law 796f 

 proportional navigation 36f 774f 

 radome effects 402L–404L 

 random target maneuver 81L–83L 

 step in target displacement 416f 

 three-state Kalman filter 774f 775f 814f 

 three-state linear Kalman filter 790 790f 

 weaving target 453 

Hybrid game guidance with bounded 

   controls 828f 829f 830f 

Hybrid guidance 828f 

Hypothetical missile 478f 

I 

Ideal delay 520 

Impulse method 

 adjoint system 43f 

 heading error disturbance 955f 

 response of original system 43f 

 target maneuver disturbance 953f 

Impulse simulation 952 953L–955L 

Impulsive Intercontinental Ballistic 

   Missile 836 

Impulsive two-dimensional 

   Intercontinental Ballistic 

   Missile 836L–838L 
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Infrared search-and-track (IRST) 

   systems 894 

Initial condition method 

 heading error disturbance 955f 

 target maneuver disturbance 953f 

Initial interceptor velocity 846f 

Integra of acceleration 778–779 

Integrating acceleration pulse 

 position 340f 

 velocity 339f 

Integrating matrix Riccati equation 661L–663L 

Integrating Riccati equations 675L–677L 

 single-lag flight control system 655L–657L 

Integration step size degrading 

   accuracy 91f 

Integration with Kepler propagation 738L–741L 

Intercept 

 during boost phase 863 893 

 goes negative 675f 

Intercepting ballistic target 835–862 

 properties 362–369 

Interceptor 

 against depressed target 857f 861f 

 engagements with noise and filtering 943–946 

 finite acceleration capability 457 

 ICBM engagements 923–926 

 IRBM engagements 903–922 

 launch point 846f 847f 

 launch time 847f 

 against minimum energy ICBM 846f 
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Interceptor (Cont.) 

 single-stage strategic 258f 

 target impact point 847f 

 target launch points 839f 

Intercept point 

 between direct integration and 

   Kepler 737t 

 prediction for ballistic targets 736–740 

Intercontinental ballistic missiles (ICBM) 

 acceleration 889f 

 acceleration component 872f 

 acceleration magnitude and 

   direction 864 

 acceleration profile 865f 

 boosting 864 

 boosting details 926t 

 boost phase 864–870 870f 871f

    872f 875L–884L 893

    924f 

 engagement 923–926 925f 945f 

 experiment 926t 

 filtering options 864–870 

 gravity turn assumption 886 

 guidance 864–870 

 initial interceptor velocity 846f 

 intercept 893 927f 

 Kalman filter 864 

 KKV divert 923–926 945f 

 Lambert guidance 865 

 noise  945f 
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Intercontinental ballistic missiles (ICBM) (Cont.) 

 position and velocity estimation 872 

 range engagement 925f 

 three-state linear polynomial Kalman 

   filter 889f 

 total axial acceleration 923 

 trajectory 839f 866f 871f

    923f 924f 

 two-dimensional trajectory 

   stimulation 836L–838L 

 two-stage Kalman filter 872 

 two staging events 924f 

Intermediate range ballistic missiles 

   (IRBM) 894 

 axial acceleration approximation by 

   parabola 896f 

 boosting target overestimates 

   KKV acceleration 

   requirements 901f 

 boost phase portion 907f 

 engagement 903–922 946f 

 KKV  903–922 946f 

 noise  946f 

 target one-stage error source 920 

 trajectory 907f 

Inverse Laplace transforms 4t 667 

Iterations dramatically reduced 284t 
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Kalman filter 137 962 

 adjoint applications 762–775 

 application 373 

 applications to homing loop 189–191 

 ballistic coefficient 386f 

 bandwidth appears independent of 

   sampling rate 203f 

 consistent with gravity turn 

   assumption 888f 

 control gains 764 

 diverges with gravity turn 

   assumption 887f 

 diverging template errors 886f 

 downrange velocity estimates 885f 

 dynamical model 375 

 equation 605 616 

 estimate constant target maneuver 644f 

 estimate of target maneuver for 

   nominal case 196f 

 guidance system 201f 

 homing loop 187–211 189f 197L–199L

    604f 612f 

 ICBM boosting 864 

 ICBM position and velocity 

   estimation 872 

 Kalman gains 192 

 linear polynomial 874 

 MATLAB 197L–199L 
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Kalman filter (Cont.) 

 modeling errors sensitivity 888 

 noise  620f 

 numerical examples 193–203 

 optimal guidance experiments 204–210 

 part of homing lamp 191f 

 performance 863 

 prediction of performance 199f 

 process noise 386f 789 887f

    942f 944f 

 Riccati equations 929 

 scalar equations 616 

 sinusoidal target maneuver 612f 

 target acceleration 943f 

 target jerk estimate 620f 

 target maneuver 201f 

 target maneuver level 811 

 techniques 373 

 theoretical equations 187–188 

 tracking ICBM during boost phase 875L–884L 

 two-stage 872 

 two-state 885f 886f 887f 

 two-state linear polynomial 873–874 

Kalman gain 863 874 

 homing loop 192 

 increases with decreasing sampling 

   rate 202f 

 matrix  188 
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 matrix Riccati equations 694 

 noise estimate 200f 

 profiles for nominal case 194f 

Kepler 

 predicted intercept point 737t 

 problem 736–737 

 propagation in comparing direct 

   integration 738L–741L 

 subroutine three-dimensional 848 

Kill vehicle guidance and control sizing 893–948 

 air-launched interceptor approach 894 

 background 893 

 boost-phase intercept 893–948 

 developing formulas for divert 901–902 

 guidance and control issues 895 

 interceptor engagements with noise 

   and filtering 943–946 

 interceptor-ICBM engagements 923–926 

 interceptor-IRBM engagements 903–922 

 noise and filtering 927–942 

 one-dimensional model for 

   understanding guidance 895–900 

Kinematics of intercepting ballistic target 835–862 

 defended area 857–860 

 launch area denied 853–856 

 operational area 848–852 

Kinetic kill vehicle (KKV) 893 894 895

    902 

 acceleration 901f 921f 
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Kinetic kill vehicle (KKV) (Cont.) 

 acceleration profile 920 

 acceleration requirement 900 919f 

 lateral divert 903 922 927f 

 maximum range engagement 919f 

 PIP errors 903 921f 927f 

Kinetic kill vehicle divert 

 angle bias errors 946f 

 due to boosting two-stage ICBM 927f 

 due to parabolic target maneuver in 

   APN guidance system 902f 

 due to PIP error for one-stage 

   IRBM 922f 

 formula 902f 

 ICBM engagement measurement 

   noise 945f 

 improving performance 945–946 

 measurement noise for IRBM 

   engagement 946f 

 prediction 920 

 process noise 944f 

 sensor noise 928 

 trend  926 

L 

Lambert guidance 273–298 

 basis  285f 

 booster reaches target 290f 

 booster simulation 285L–288L 

 booster steering 284–289 
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Lambert guidance (Cont.) 

 GEM steering 290–297 

 GEM trajectories 293f 298f 

 minimum energy trajectories 969 

 numerical example 277–280 

 problem 274–276 

 solution to Lambert’s problem, 

    274–276 

 speeding up Lambert routine 281–283 

 statement of Lambert’s problem 273 

 steering boosting ICBM 865 

Lambert routine 303 835–836 

 more efficient 282L–283L 

 speeding up 281–283 

 using brute force approach 278L–280L 

Lambert solution 

 X component of achieved velocity 

   reached 289f 

 Y component of achieved velocity 

   reached 289f 

Laplace transform 4t 

 definition 1–2 

 miss distance 448 

 numerical techniques 1–3 

Lark missile 13 

Lateral divert 

 due to PIP error 903 

 requirements 301f 

Launch altitude drag effects 

   reduce 225f 
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Launch angles trajectory profiles 224f 

Launch area denied 

 interceptor against depressed 

   target 857f 

 interceptor against minimum energy 

   target 856f 

 kinematics of intercepting a ballistic 

   target 853–856 

 plots  853 

Launch points with same flight 

   time 847f 

Law airframe damping increases 

   sensitivity to radome 508f 

L’Hopital’s rule 111 

Linear airframe 

 rate gyro flight-control system 511L–513L 

 simulation 489L–492L 

Linear decoupled polynomial Kalman 

   filters 875L–884L 

Linear engagement simulation 578L–580L 

Linear formula 

 accuracy maneuvering target 600f 

 angular turn acceleration 597f 

 missile acceleration 596 

 vs. nonlinear results 597f 

Linearization 

 engagement model 25f 

 representing missile airframe with 

   transfer functions 482–486 
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Linearization (Cont.) 

 tactical missile guidance 

   fundamentals 24 

Linearized aerodynamics 

 flight conditions 551t 

 open-loop flight-control system 502 

 parameter 526 

 at sea level and at 50 kft 507t 

Linearized airframe 485f 

 equations 485 

Linearized engagement model 28f 

Linearized engagement simulation 26L–27L 

 tactical missile guidance fundamentals 25–28 

Linearized geometry model adequate for 

   investigating saturation 

   effects 123f 

Linearized guidance system model 

 accurate performance projections 109f 

 homing loop 796 

Linearized Monte Carlo simulation 817L–822L 

Linearized single time constant guidance 

   system 444f 

Linear Kalman filter 762–775 

Linear models 37 

 accurately approximates actual missile 

   acceleration 488f 

 development 411–419 

 heading error miss 38f 

 with large angle of attack 492 
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Linear models (Cont.) 

 less accurate at larger fin 

   deflections 492f 

 miss and flight time 38f 

 missile acceleration 28f 

 multiple targets 411–419 

 overestimates 28f 

 reasonable at higher altitudes 493f 

 yielding accurate performance 

   projections 418f 

Linear performance projections 427f 

Linear polynomial Kalman filters 874 

Linear proportional navigation guidance 

   homing loop 416f 

Linear rate gyro flight-control system 

 damped when autopilot gain is 

   function of flight 

   condition 514f 

 simulation 513 

Linear system noise analysis 70 

Linear three-state Kalman filter 626 

Linear three-state Kalman filter scalar 

   equations 606 

Line-of-sight angle 

 acceleration requirements 583f 584f 

 formula for acceleration 590f 

 heading error 583f 

 missile velocity to decrease 786f 

 noise  156f 

 target deceleration 368f 
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Line-of-sight angle (Cont.) 

 target maneuver 584f 

 trajectory shaping 596f 

 trajectory shaping guidance law 580f 582f 

Line-of-sight lines 310 

Line-of-sight rate 

 pulsed guidance 340f 

 three-state filter yields excellent 

   estimate of 161f 

Lofted and depressed trajectories vs. 

   minimum energy 

   trajectories 971f 

Low-pass filter 

 covariance analysis and homing 

   loop 90 

 example 71–74 90 

 noise analysis 71–74 

 output agrees with theory 73f 

 white noise input 90f 

M 

Mach number 476 

Magnitude 

 decreases as altitude increases 497f 

 open-loop transfer function 525 

Maneuverability vs. speed 223f 

Maneuvering target 

 design goals against 599f 

 different approach angles 598f 

 final line of sight angle 582f 
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Maneuvering target (Cont.) 

 guidance portion 664–666 

 higher navigation ratio yields less 

   acceleration 23 

 linear formula accuracy 600f 

 practical evasive 120–121 

 proportional navigation 23f 

 vs. stationary target 598f 

 trajectory shaping guidance 581f 598f 599f 

Mapping coordinates 729f 

MATLAB 

 ballistic missile trajectory generator 730L–736L 

 computing sampled standard deviation 68L–69L 

 engagement simulation 314 

 Gaussian random number 

   generator 63L 

 generate probability density function 64L–65L 

 Kalman filter in homing loop 197L–199L 

 orbit generator 246 247L–248L 

 Riccati equations 194L–196L 

 simulation engagement 303 

 simulation of low-pass filter driven by 

   white noise 74L–75L 

 source code 949 

 source code and engagement 

   simulation 363 

 thrust-weight computations 264L–266L 

Matrix Riccati equations 651 653 

 Kalman gains 694 

 matrices 660 
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Mean   60 

Miss 

 adjoint noise 152f 

 altitude component 725f 

 compensated weave guidance 727f 

 crossrange component 726f 

 degrades with increasing turning rate 

   time constant 130f 

 downrange component 725f 

 due to active range dependent 

   noise 394 

 due to digital measurement 

   noise 961f 

 due to noise 157f 

 due to noise for aircraft and ballistic 

   targets 406–408 

 due to ramp target maneuver 115f 

 due to range independent noise 392 

 due to saturation and target 

   displacement 437f 438f 

 due to step in target displacement 431L–432L 434L–436L 

 due to target displacement from 

   nonlinear engagement 

   simulation 423f 

 due to target maneuver 157f 

 due to weaving target 448f 

 faster fading memory filter 155f 

 faster noise filter 156f 

 fifth-order binomial guidance system 394–398 

 fifth-order normalized 433f 
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 first-order normalized 428f 

 flight control system time 

   constants 805f 

 flight time linear model 38f 

 flight times 142f 143f 

 guidance system time constant 461f 

 heading error for single time constant 

   guidance system 57f 

 heading error linearized model 38f 

 method of brute force 457 

 Monte Carlo results 152f 

 noise  152f 204 395f

    396L–399L 962f 

 noise-induced 202f 

 optimal guidance law 790 

 parabolic target maneuver 117f 

 reduction 461f 727f 805f 

 steady-state peak 458f 459f 

 steady-state standard 454f 

 total three-dimensional 726f 

 uncompensated weave guidance 467f 

 weaving target and saturation 

   effects 458f 

 zero effort miss 463 

Miss distance 

 acceleration advantage 462 

 adjoint model 101f 

 adjoint program 103L–104L 961 

 adjoint simulation 554 
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 adjoint yields accurate 47f 

 analysis 626–629 626f 692f 

 closed-form solutions 447–451 

 decreasing weave frequency 445f 

 due to noise 389–393 

 error budget 562f 

 filtering 626–629 

 function of flight time 449 

 guidance laws 175f 

 guidance system dynamics 470f 

 guidance system model 626f 692f 

 high altitude 562 

 Laplace transform 448 

 missile flight control system 809 

 Monte Carlo rms 801–802 

 normalization factors 452 

 optimal guidance system 184f 

 performance independent of 

   altitude 556t 

 performance of four-state linear weave 

   Kalman filter 697f 

 proportional navigation 107–136 

 radar homing missile 788–804 

 radome slope 556 

 realistic maneuvers 121f 

 single time constant guidance 

   system 452 

 weaving targets 447–451 626–629 
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Miss distance formula 

 closed-form 393 

 fifth-order binomial guidance 

   system 396t 

 nonlinear simulation 54f 

Missile 

 achieving pitch flight-path-angle 

   objective 980f 

 ballistic target 303 

 ballistic target properties 359–361 

 boosting target 314 314f 

 collision triangle 305f 314f 
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