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General Preface (Preface to Volume I)

The development of telescope optics is a fascinating story. Until this cen-
tury, the optical theory of reflecting telescopes was essentially limited to the
Cartesian treatment of axial imagery. In 1905, Karl Schwarzschild initiated
a revolution by applying third order (Seidel) theory to the field imagery of
2-mirror telescopes. Since then, the whole gamut of possible telescope systems
has been invented, analysed and, in many cases, tried out in practice.

Over all its history, the optical development of the telescope has also de-
pended on technical inventions, above all in mirror materials, glasses, support
systems and means of achieving high reflectivity. Over the last 30 years, de-
velopments have been particularly spectacular, above all in manufacture and
test techniques and generally in enhancing the image quality available.

When I started this work in 1988 there was little literature in book form
available on telescope optics. Two of the best were in German: “Die Fern-
rohre und Entfernungsmesser” by Konig-Ko6hler (1959) and the monograph
on “Teleskope” by K. Bahner in “Handbuch der Physik”, Vol. XXIX, which
appeared in 1967. A major part of this latter work was devoted to a con-
densed, but excellent exposition of the theory of telescope optics. Inevitably,
more modern technical developments which have since assumed great im-
portance could not be included; furthermore, the fact that it was written in
German has reduced its impact and dissemination to a limited section of the
interested community.

In 1987, “Astronomical Optics” by D. J. Schroeder appeared. Harland
Epps kindly drew my attention to this excellent book in 1988 and I reflected
then whether scope for a further work on the subject still existed. I finally
concluded that it did: Schroeder’s book covers a much wider field, since
“astronomical” optics includes the broad subject of astronomical instruments,
whereas my intention was (and remains) only the comprehensive coverage of
the optics of the reflecting telescope, in the broadest interpretation of that
term. Furthermore, Schroeder’s work emerged more from the university orbit
and includes much basic optical theory addressed to graduate students who
need, and can profit from, the whole physics background.

The aim of the present book is different from Schroeder’s. It is addressed
primarily to specialists in the field, both in the astronomical community itself
and in the industries concerned, although I hope it may also be useful to stu-
dents. Consequently, subjects such as practical alignment and test techniques,
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as well as maintenance aspects, occupy a significant part. Nevertheless, there
are inevitably major overlap areas with both Bahner’s and Schroeder’s books
which the informed reader will recognise. This overlap, involving repetitions
in a somewhat different context, is unavoidable for a complete presentation.

Bahner’s book included sections on achromatic objectives for refracting
telescopes, astrographic objectives and oculars. No such material is included
in this book. The refractor as such and the optical design of oculars are
only of historical interest in large telescope optics and are only mentioned
in this context. Of course, refracting elements still play an important role
in wide-field telescopes, field correctors and focal reducers, and these are
dealt with in Chapters 3 and 4. In general, mirrors supply the optical power
while refracting elements have only the subordinate but important role of
improving the imagery.

I favour the morphological approach with a strong emphasis on the his-
torical background of the subject. In this sense, Chapter 5 is to be seen as
essential background for understanding the current situation in telescope op-
tics. For the background of the general theory of optical aberrations and
diffraction, the reader is referred to specialist books in the field of optics.
Only the essential consequences of Gaussian optics, third order theory and
diffraction theory are given: the emphasis is on a complete treatment of the
application to reflecting telescope optics.

At the suggestion of the publisher, the work has been split into two vol-
umes. The first volume deals with the historical development (but there is
no claim to completeness as a history of telescope optics - that would be a
separate work) and the theory of reflecting telescope optics, including that
of the refracting corrector elements. The second volume deals with technical
aspects and modern developments in general. Although there is considerable
cross-referencing between the volumes, the split is a logical one, since each
volume has its own entity.

Every attempt has been made to give complete references to the interna-
tional literature. It is hoped that the work will be useful, apart from its own
content, as a “source book” of the subject.

While I was writing the book, three further works on the subject were pub-
lished: “Telescope Optics” by Rutten and van Venrooij (1988), “Astrooptik”
by Laux (1993) and “Reflective Optics” by Korsch (1991). The first two are
primarily destined for amateurs, but have equally great value for profession-
als. As with the works of Bahner and Schroeder, there is considerable overlap
with my material and I have referred to them liberally in my text. I only
became aware of Korsch’s work when my own text was finished, but again
there is inevitably considerable overlap of treatment. However, not only the
content and aim of these five works, all admirable, are very different, but also
their styles. In this sense, I feel confirmed in my own enterprise.

Chapter 3 of Vol. I, dealing with the aberration theory of reflecting tele-
scopes, is the longest and certainly one of the most important in the whole
work. It is in this area that there is the greatest overlap with the above
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books. However, an illustration of the major, and legitimate, differences in
presentation is the data given on the optical quality of systems discussed.
Spot-diagrams are the commonest way of representing the quality according
to geometrical optics. Rutten-van Venrooij and Laux give virtually complete
spot-diagram analyses of the systems they discuss, a very valuable feature.
To keep Vol. I within reasonable bounds, I have preferred to limit myself to
chosen examples, intended to illustrate with spot-diagrams the key points of
the development. Some of these are taken from the literature; but most of
those in Chapter 3 (and a few in Chapter 4) have been optimized by Bernard
Delabre of ESO from starting systems I set up from the basic theory, or with
minor modifications emerging from the calculations. I am deeply grateful for
this major contribution to the work.

I owe a great debt of gratitude to many specialist members of the as-
tronomical community and associated industrial concerns, particularly Carl
Zeiss (Oberkochen) and REOSC (Paris), who have generously supplied in-
formation. This debt extends, too, to many ESO colleagues. Above all, I am
grateful to the ESO management for supporting the project and for extensive
help in establishing the final text. In the detailed work, I wish to thank specif-
ically, as well as Bernard Delabre mentioned above, Marion Beelen, Samantha
Milligan, Baxter Aitken (who has not only played a major role in the text-
processing but also kindly read through the entire work), Ed Janssen (who
drew and formatted the figures) and Hans-Hermann Heyer for much hard
work and enthusiastic support. My gratitude is also due to Richard West for
general encouragement and support. Finally, I thank the publisher, Springer-
Verlag, for excellent cooperation, and, last but by no means least, my wife
Anne, for much help with the text and, above all, for patience throughout
the whole task.

D-85296 Rohrbach Ray N. Wilson
January 1996



Preface to Volume II

The aim and style of Vol.II follows exactly the intentions expressed in the
preface to Vol.I, above. The general approach is, therefore, again historical
and morphological, although the subjects of Vol.II are, in general, more re-
cent than much of the theory of Vol.I. Most of the developments described
are a product of the last 50 years — many of them, indeed, of the last 20
years. Nevertheless, the history of the developments discussed often goes
back a long way: in Chap.4 there is a reference to W.Herschel in 1800, in
Chap. 3 to S. D. Poisson in 1829. It is my hope that the two volumes together
include the most complete bibliography of reflecting telescope optics that
exists. Chapter 1 of Vol.II, dealing with manufacture and test technology,
has 166 numbered references; Chap. 3, dealing with modern technical solu-
tions for reflecting telescopes in general and the longest in the book, has 260
numbered references. So Vol. II will hopefully also serve as a source book.

One important consequence of the fact that the bulk of the material of
Vol.II is, in its nature, modern or ultra-modern, is that the exposition given
is bound to date fairly rapidly in those areas where development is most
intensive. Such a key area is, of course, adaptive optics, the correction of
atmospheric seeing dealt with in Chap. 5. Depending on the material involved,
the cut-off date for new developments in this book lies between about 1993
and February 1998 at the latest. So developments after 1993 are only partially
covered and effectively not at all after 1997.

Since no developments occurring in 1998 could be included in the text, it
follows that there is no reference to the remarkable “First Light” results of
the ESO VLT UT1, the first telescope with an 8 m monolithic primary to be
completed. The image quality (raw) published at “First Light” was remark-
able enough, with best star images having a FWHM equal to 0.43 arcsec or
even 0.38 arcsec. However, on 6 June 1998 this was bettered by star images
of the globular cluster M55 with a FWHM of 0.27 arcsec! Such remarkable
results, expected to be achieved only about 3 years later, are a complete vin-
dication both of the thin-meniscus active technology of the telescope and of
the excellent site of Paranal in Chile. It is clear that the age of very large
telescopes based on new technology, initiated with dramatic success by the
two Keck 10m telescopes completed in 1992 and 1996 respectively, will in
the next few years be represented by about a dozen or more superb individ-
ual instruments using different technologies and all with apertures between
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61/ m and 10 m, some of which are intended for linked operation in the inter-
ferometric mode. A marvellous astronomical prospect for the new millenium
indeed! It is my hope that I have done justice in this book to all these projects
and the remarkable technologies driving them.

It was my intention to include specific chapters on solar telescopes, X-ray
telescopes using near-grazing incidence, and interferometry with telescopes.
Subsequently, I abandoned coverage of these fields for the following reasons.
Solar telescopes have very different requirements from those of normal astro-
nomical telescopes, and refracting telescopes, which are not treated in this
work, still play a significant role. Similarly, X-ray telescopes have very special
technical requirements, though the close link to the Mersenne telescope was
indicated in Vol.I. Furthermore, these systems have been admirably dealt
with by Korsch in his “Reflective Optics” (Academic Press, 1991). The inter-
ferometric requirements for telescopes have been treated briefly in Chap. 5;
but I concluded that a treatment in depth of interferometry with telescopes
would require a whole book in its own right, even if my own expertise in this
field were adequate, which is not the case.

I owe a vast debt of gratitude to a wide circle of friends and colleagues
in the astronomical community and the “big optics” community associated
with it. Specific acknowledgments are given at the beginning of Chap.1 in
the areas of manufacture and testing of optical surfaces. The other chapters,
above all Chap. 3, are so wide-ranging that it would be impossible to express
adequate acknowledgment in this preface to the many sources of generous
help and advice. I hope, therefore, it will suffice here if I thank globally
all those who have helped with information or figure material. I believe the
credits in the text, references and, above all, the figures are the best way to
express my deep gratitude.

Specifically, I wish here to thank the management of ESO for their con-
tinued encouragement and support of the whole project, above all for the
major work of the preparation of the figures. This was organised through the
kind help of Richard West and executed, as for Vol.I, by Ed Janssen. He
has again done a wonderful job in a key area and I express here my grateful
thanks to him. My thanks are also due to Hannes Heyer for his assistance
on the photographic side. On the technical side, many colleagues have given
valuable information, particularly Philippe Dierickx, Lothar Noethe, Martin
Cullum, Paul Giordano, Bernard Delabre and Francis Franza. The original
text processing was done by Marion Beelen, Samantha Milligan and Baxter
Aitken, to whom I express my gratitude for an enormous task. Ingrid Weber
has given valuable secretarial help in many ways. Finally, the ESO library
has been a central factor in the fundamentally important area of literature:
my grateful thanks are due to Uta Grothkopf and Angelika Treumann for
their efficient and friendly service.

As with Vol.I, the collaboration with Springer-Verlag has been excellent
in all respects. I express here my grateful thanks to Prof. W. Beiglbock and his
staff for the help and understanding they have constantly given me; also for
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financial support in preparation of the revised and corrected manuscript. The
latter text-processing work has been carried out with admirable efficiency and
cooperation by Mr. Adam Leinz, to whom I also express my grateful thanks.

When Vol.II appears, about the end of 1998, the whole project will have
covered a period of exactly ten years, perhaps 67 years full-time equivalent.
My wife, Anne, has not only given me much valuable help in checking the
style and correctness of the text, but also borne with my obsession with the
task with great patience and understanding, for which I owe her a great debt
of gratitude.

D-85296 Rohrbach Ray N. Wilson
June 1998



Contents

1. Manufacture and test procedures .........................
1.1 Introduction and acknowledgements ......................
1.2 Grinding, polishing and figuring technology ................

1.2.1 Background of optical surface working ..............
1.2.2 Lapping techniques .......................... ...,
1.3 Test technology .........cciiiiiiiineiiiiiienenn..
1.3.1 General aspects of test technology development . .....
1.3.2 Interferometers.............. ...
1.3.3 Test procedures other than interferometry ...........
1.3.4 Null (compensation) systems.......................
1.3.5 Test systems for Cassegrain secondary mirrors .......
1.3.6 Test methods for large flats . .......................

2. Sensitivities, alignment of telescopes
and test procedures in function ................. ... .. ...,
2.1 Sensitivities. ...........oiii i e
2.1.1 Decentering errors . ...........ouuuieeiinneuunnnenn
2.1.2 Despace €ITOIS ... ... cotiiiii e,
2.2 Alignment and adjustment of telescopes ...................
2.2.1 General theoretical principles of telescope alignment . .
2.2.2 General set-up situation and definition
of the aims of alignment.................... [P
2.2.3 Alignment at the prime focus of telescopes
with field corrector .......... ... . ..ol
2.2.4 Alignment of Schmidt telescopes ...................
2.2.5 Field correctors at the Cassegrain focus .............
2.3 Test methods and image analysis of telescopes in function ...
2.3.1 Classical qualitative methods ......................
2.3.2 “Pupil plates”: geometrical assessments
of defocused star images...............ooiiii.,
2.3.3 Hartmann-based techniques........... e
2.3.4 Curvature sensing: the Roddier test.................
2.3.5 Other methods of testing the optical quality
of telescopes in function . .............. ... ... ... ...



XVI

Contents

Modern telescope developments:

pupil segmentation and techniques to reduce mass........ 169
3.1 Evolution and revolution in telescope optics................ 169
3.2 Examples of modern projects usmg the technologies
of Table 3.3 ... ... i e 175
3.2.1 Direct segmentation with a filled aperture ........... 175
3.2.2 Separate telescopes with monolithic primaries
on a single mount (MMT-type indirect segmentation) . 186
3.2.3 Other large telescope projects
using lightweighted monolithic blanks ............... 192
3.2.4 Projects with thin-meniscus flexible primaries,
controlled actively, or of stiff composites............. 199
3.3 Blank production for new technology telescopes ............ 216
3.3.1 General considerations and physical properties . ...... 216
3.3.2 Glass ceramic blank production .................... 223
3.3.3 Fused quartz (silica) blank production .............. 225
3.3.4 Modern blank production
with BSC (borosilicate) glass (Pyrex) ............... 227
3.3.5 Modern blank production in metal.................. 231
3.3.6 Compacted powder, sintered
or vapour-deposited materials for blanks ............ 238
3.3.7 Lightweight composite materials for blanks .......... 240
3.3.8 Liquid mirror telescopes (Hg) ...................... 240
3.4 Mirror support systems in modern telescopes............... 242
3.4.1 The basic laws of axial supports for mirrors.......... 242
3.4.2 Modern work on the theory of mirror supports:
axial support solutions .............. ... ... ... ... 253
3.4.3 Lateral (radial) supports for mirrors ................ 259
3.4.4 Mirrorhandling ................. .. ... . ... ... 272
3.5 Active optics control systems ............. ... ... 274
3.5.1 Introduction and definitions ....................... 274
3.5.2 The principles of the ESO active optics system,
as developed for the 3.5m NTT .................... 279
3.56.3 Operational results for the ESO 3.5m NTT
and conclusions from its performance ............... 291
3.5.4 Extension of the active optics system
tothe ESO8m VLT .............................. 298
3.5.5 Other active optics developments in current projects .. 304
3.5.6 Conclusions on the current state of development
and future potential of active optics in telescopes.. ... 313
3.6 Local environmental aspects of telescopes.................. 314
3.6.1 Definition of “local air” and its importance .......... 314
3.6.2 Recent evolution in telescope enclosures

and “local air” error measurements
in functioning telescopes ............. ... ... ... 318



Contents XVII

3.6.3 Other recent investigations by laboratory experiment
or theory: mirror seeing ................ . ... ......
3.6.4 Further work on “dome seeing” in general ...........
3.6.5 General conclusions on local air seeing and enclosures .

3.7 Optical data of the major ground-based telescope projects
using new technology ............ .. ... i i,

Image quality specification and optical efficiency criteria. .
4.1 Classical specification criteria: geometrical angular

or wavefront aberration ................... ... ...
4.2 Specifications for modern ground-based telescope projects . ..
4.3 Optical efficiency criteria .......... ... ... .o oL,

Atmospheric optics, adaptive optics, telescope quality
for interferometry ......... ... ... . il
5.1 Atmospheric optics ... e
5.1.1 Atmospheric refraction and atmospheric dispersion . ..
5.1.2 Atmospheric turbulence (“seeing”)..................
5.2 Adaptive optics . ... ...t
5.2.1 Definitions and aims: active and adaptive optics......
5.2.2 The principles of adaptive optics ...................
5.2.3 Practical systems for adaptive optics
in astronomical telescopes ............... . ... ...
5.2.4 Limitations of the isoplanatic patch:
artificial reference sources .........................
5.2.5 Adaptive optics for the ESO VLT
and experimental correction results
(COME-ON and COME-ON PLUS systems).........
5.2.6 Adaptive optics using laser reference sources
for military purposes applicable to astronomy . .......
5.3 Site selection in height ........... ... ... .. .. oo
5.4 High resolution imaging apart from adaptive optics .........
5.4.1 Michelson interferometry .............. ... ... ... ...
5.4.2 Speckle interferometry ................. ... ...

Mirror Reflecting Coats: Production and Cleaning........

6.1 Introduction: evolution to the current situation.............

6.2 Modern perspectives for reflecting coatings ................

6.2.1 Multi-coat enhancement of reflecting coats...........
6.2.2 Silver reflecting coat with single protecting coat

and other recent developments .....................

6.2.3 Cleaning and maintenance of reflecting coats.........

6.2.4 SUMMAIY . .ttt ettt e e iieeae,

345

349

349
353
367



XVIII Contents

7. Adapters and beam combination aspects, baffles .......... 449
71 Adapbers ......oouiiin i 449
7.1.1 Background of adapter development ................ 449

7.1.2 The adapter for the ESO 3.5m NTT (Nasmyth focus) 450

7.1.3 The adapters for the VLT 8 m unit telescopes ........ 456

7.1.4 Beam combination aspects.......... ... ... ... ... 458

7.1.5 Mountings and field rotation....................... 459

7.2 Baflles ..ot e 459

8. Maintenance and operation of telescope optics............ 469
8.1 Ground-based telescopes ...t 469

8.2 Space teleScopes. .. ..ottt 474
Appendix: Mathematical symbols.......................... ... 475
References . .. ..ot e 477
List of figures...........ooiiimt i 499
Listof tables ............ i e 515
Name index ......... it e e 519

Subject IndexX .. ...ttt 525



1. Manufacture and test procedures

1.1 Introduction and acknowledgements

Optical manufacture and testing is a vast subject which can only be dealt with
as a review in the current chapter. Apart from many literature sources, I am
particularly grateful for the generous information given during visits to the
workshops of REOSC in Paris, Carl Zeiss in Oberkochen and Horst Kaufmann
in Crailsheim. The former are two of the world’s major producers of large
astronomical optics, the latter an example of an excellent small workshop
capable of producing mirrors up to 1 m diameter. Information by post has also
been generously supplied by R.E. Parks in Tucson, G. Lemaitre in Marseilles,
R. Angel in Tucson, Litton ITEK in Lexington, Eastman Kodak in Rochester,
the Keck 10 m telescope development team and T. Korhonen in Turku. Much
of this chapter reflects the technologies practised by these sources. Sincere
thanks are also due to ESO, in particular to Philippe Dierickx, for valuable
information concerning the production of the optics for the VLT.

1.2 Grinding, polishing and figuring technology

1.2.1 Background of optical surface working

The principle of rubbing the optical surface with a tool and abrasive is as
old as the spectacle lens. The simple geometrical fact that this automatically
tends to produce a spherical surface because of constant curvature in all
tool positions still has fundamental importance in the bulk of manufacturing
processes.

The initial preparation of the rough form of mirror blanks is performed
today with great efficiency by diamond milling machines. The conventional
optical work can then avoid removal of large quantities of glass by coarse
grinding and can proceed effectively to fine grinding with silicon carbide
(Carborundum) and smoothing with aluminium oxide (Aloxite). Classically,
fullsize cast iron tools, turned to the required radius, are used, but for very
large mirrors such procedures with fullsize tools may no longer be practicable.

Polishing for high quality surfaces is still performed by pitch laps covering
the tools — the same material as was used by Newton for the first reflector in

R. N. Wilson, Reflecting Telescope Optics IT
© Springer-Verlag Berlin Heidelberg 1999
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1668. Rouge (iron oxide), used as polishing abrasive till about 1950, has now
been displaced by cerium oxide (Cerox) except for special processes.

Classical working methods are well described in older books, for example
Dévé [1.1] or Twyman [1.2]. For the case of astronomical optics, an excellent
account is given by Maksutov [1.3]. It has long been agreed that the grinding
process with glass surfaces consists of conchoidal fracturing [1.2] [1.4] [1.5]
under pressure. The polishing process, on the other hand, has been a matter of
debate between three main theories, the mechanical, the chemical and the flow
theories. The mechanical theory sees the essential process as a slow removal of
glass material through fine abrasive in association with the pitch surface and
water. The chemical theory assumes chemical effects in which water and the
polishing abrasive play a complex role including recrystallisation. The flow
theory assumes local flow effects from intensive local heating. Each of these
theories has protagonists with valid arguments in their support [1.2] [1.3] [1.5].
A review was given by Gotz [1.6] in which it was concluded that all three
can play a significant role, the relative importance depending strongly on
the numerous physical parameters involved. That mechanical removal takes
place is widely accepted and is the basis of figuring operations. The fact that
a high level of polish can be achieved with diamond [1.7], with which chemical
reactions are assumed to be absent, supports the view that the mechanical
process can be so fine that the residual roughness can be reduced to the
order of a few nm. Conventional polishing of glass gives a surface structure
better than 0.5nm, the highest quality being about 0.05nm [1.7]. Since the
classical value for the radius of an atom, defined from scattering effects, is
about 0.1nm (1 A), such a quality of polish implies a perfect surface within
the limits of the structure of the material. A polishing quality of 0.5nm is
also achieved with metal surfaces such as the Canigen (nickel) coating on
aluminium mirrors. A modern analysis of polish has been given by Izumitani
[1.7] [1.8].

1.2.2 Lapping techniques

The fundamental law governing the removal of material by an optical lapping
process is Preston’s Law [1.9] [1.10]

U=Ap , (1.1)

where U is the wear per unit time, A is a constant depending on the physical
parameters of the process (Preston constant), p is the pressure of the tool
on the workpiece surface and v is the relative velocity of the tool to the
workpiece. The integral wear over a surface per unit time is then

+z p+
E U= A/ / yp(:::, y)v(z,y)dzdy (1.2)
-z Joy

The larger the area of the tool, the more area elements dx dy can be worked
in parallel and the more efficient the operation. For a given area element
dz dy the total wear in time ¢ is
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/ t Uz, y)dt = / t Ap(t)v(t) dt (1.3)
0 0

which expresses the possibilities of influencing the figure by varying the pa-
rameters p, v and t. The possibilities are then:

— For a tool of fixed area to vary the effective time ¢ by directing the move-
ments of the tool.

— To vary the effective time ¢ by varying the area of the tool.

~ To vary the pressure p exerted by the tool at different points.

— To vary the relative velocity v applied by the tool at different points.

In practice, this leads to the control possibilities [1.7] given in Table 1.1.

Small workshops [1.11] (or in general for optical elements < 1m) will
mainly use l.a), 2 and 3.a) [1.12] [1.13], with effectively fullsize tools, but
all possibilities are exploited for large sizes involving steep aspherics. Which
methods are used will depend on the preferences and experience of the manu-
facturer.

An important aspect for larger sizes is the support of the workpiece, above
all for mirrors, because deflection errors enter directly with a factor 2 into the
wavefront aberration of the mirror. Lens surfaces are far less critical (4 x) in
this respect. For smaller sizes, a mirror is usually stiff enough with a classical
aspect ratio of 6-8 to be supported on compressed, elastic pads. For a mirror
of 700 mm, Kaufmann [1.11) used 12 foam rubber supports, each about 25 mm
thick, when supporting the mirror. For classically rigid mirrors, such supports
have been used for larger mirrors with plane backs.

More sophisticated supports for large sizes of more flexible mirrors will
have to resist and compensate the pressure of polishing tools. For fullsize
tools, the supports may be modifications of the two basic mirror support
systems due to Grubb and Lassell (Chap. 5 of RT'O I) whose use in classical
telescopes is described by Maksutov [1.3]. We shall refer again to these basic
supports in Chap. 3.

We shall now consider the main modern developments in lapping tech-
niques on the basis of Table 1.1.

1.2.2.1 Computer controlled polishing: CCP. As in virtually all other
aspects of optics technology, modern computers have played an essential role
in figuring and test technology. Some of the first systematic attempts to ap-
ply computer controlled polishing to telescope mirror figuring were reported
by Brown [1.14] concerning work at Grubb-Parsons. Brown emphasized the
dilemma which thereafter forced progress: rigid, fullsize tools not only tend to
produce the spherical form but also ensure rotational symmetry; but they are
difficult to apply to steep aspherics unless made more flexible or given very
limited amplitude of movement. He gave preliminary results for computer
control using fullsize tools whereby the computer program controlled the
movement and the area and shape of the polishing surface (2. in Table 1.1).
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Table 1.1. Figuring control possibilities resulting from Preston’s Law

1. Full aperture tools (diameter limit 4-5m)

a) Stiff

b) Flexible (allowing variable pressure)

c) Driven (stressed laps)

d) Stress polishing (stressed workpiece — fabrication “active optics”)
2. Full aperture pattern tools (e.g. “petal” laps, variable area and shape)

3. Sub-aperture tools
a) Variable dwell time (movement control)
b) Variable pressure
c) Variable size (area)

4. Membrane tools (combining all the above features)

At that time (1970), the reference test data had to be derived by scanning
photographic interferograms; today the existence of CCD cameras with di-
rect readout (see § 1.3) makes the feedback loop to the polishing process far
more rapid and convenient.

Perkin-Elmer (now Hughes Danbury) in the U.S.A. also started an am-
bitious and systematic program of Computer Controlled Polishing (CCP) in
the early 1970s. The test input was based on the scanning of interferograms
by a high speed digitized microdensitometer giving a phase map of the errors
[1.15]. The basic technique was the computer control of sub-aperture tools (3.
in Table 1.1) because of the advantages analysed by Lysyannyi [1.16]. These
advantages are the ability to adapt to aspheric surfaces if the tool is relatively
small and free to tilt; the ability to operate rapidly on high spatial frequency
errors, and the relative insensitivity to workpiece distortion through pressure
since the removal of material is local. The disadvantage of small tools is the
loss of natural control of rotational symmetry: this must be established by
the computer control. In a classic paper, Jones [1.17] established the princi-
ples of such a CCP system. The machine had a small rotating tool assembly
which travelled over the workpiece surface along a predetermined path. This
path and the velocity along the path were controlled by a small computer.
The tool size could be varied (3.c) in Table 1.1), but for a given choice the
controlled parameter was the polishing time at a given point (“dwell time”)
(3.a) in Table 1.1), the pressure being held constant. Figure 1.1 shows the
CCP head unit. z and y servo-drives controlled the velocity of the polish-
ing tool carriage along the beam and the latter’s velocity along two support
rails. The entire polishing tool could be rotated by a hydraulic servo motor.
Careful experiments were performed to determine the optimum movement
configuration shown in Fig. 1.2. An epicyclic configuration was the best. The
head was mounted on a plate and a motor and drive system used to move
the plate in a small circle. While the head travelled in a 3.8 cm diameter cir-
cle, it also rotated at higher speed causing the two 3.5 cm diameter polishing
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Fig. 1.1. Perkin-Elmer CCP head unit (Jones [1.17])

pads, separated by 3.8 cm, to rotate about the point H midway between their
centers.

Jones [1.17] cites three impressive first results. A 38 cm diameter Cervit
mirror was polished flat in 4 hours with the CCP, the quality being improved
from 0.22 Arms to 0.012Arms (A = 633nm). A lightweighted beryllium mir-
ror, 81 x 83 cm, was polished flat in 65 hours from 0.40 Arms to 0.05 A rms.
An aspheric corrector plate was taken with 99 hours polishing time from
1.56 Arms to 0.17 Arms, surpassing the figure goal of 0.20 Arms. Further de-
tails and progress with the CCP were given by Jones [1.18] [1.19]. A flexible
1.5 m ULE mirror with 9 cm thickness and hyperbolic form was polished from
1.35 Arms to 0.074 X rms, most of the residual error being in the edge zone.
This was improved by special work. A further example is a 1.8 m diameter
lightweight ULE f/1.5 spherical mirror. The starting figure had 0.161 Arms
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Fig. 1.2. Epicyclic tool configurations for Perkin-Elmer CCP (Jones [1.17])

error (Fig.1.3(a)). The computer provided the prediction surface shown in
Fig.1.3(b) with 0.091 Arms for the first CCP run, which consisted of six
passes over the mirror along an annular spiral path taking 23 hours. This
gave the result of Fig. 1.3 (¢) with 0.084 Arms, 10 % better than the improve-
ment predicted. The accuracy of the prediction from Fig.1.3(b) and (c) is
impressive. Table 1.2 shows the further progress in three further cycles taking
49 hours, giving finally 0.039 A rms. The lower rate of convergence at the end
was due to the figure measuring error of 0.028 Arms. The initial and final
interferograms are shown in Fig. 1.4.

Table 1.2. Progress in figuring a 1.8 m lightweighted spherical /1.5 mirror with
the Perkin-Elmer CCP (Jones [1.19])

Cycle Polishing time Predicted rms Actual rms
(hours) wavefront error error in
in A (A = 633nm) A
Initial state - - 0.161
1 23 0.091 0.084
2 15 0.054 0.060
3 17 0.030 0.050
4 17 0.020 0.039

Although this demonstration was performed on a spherical mirror, the
result represented a milestone in the figuring of large astronomical mirrors,
since the actual form of the surface is of little consequence with the small
tools used. The limitation of convergence was effectively determined by the
test procedures. Since these have further improved since 1980, Jones effec-
tively proved that the problem of automatic figure control for astronomical
mirrors was solved, apart from minimal edge effects and limitations of speed
of polishing dictated by the tool size. CCP was used for polishing the primary
of the Hubble Space Telescope (HST) to very high measured figure quality,
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Fig. 1.3a—c. Figuring with the Perkin-
Elmer CCP on a 1.8 m diameter light-
weighted spherical f/1.5 mirror (Jones
(c) [1.19])

as reported by Facey et al. [1.20]. Of course, this could take no account of
the systematic error of the test procedure subsequently revealed in the HST
primary.

A further paper by Jones [1.21] was dedicated to the problem of the appli-
cation of CCP to segment production for segmented large mirrors with specific
reference to the Keck telescope [1.22] (Chap. 3). Jones points out the advan-
tages of CCP for segments, which, in the normal case of aspheric primaries,
have no axis of symmetry, are hexagonal rather than circular and must have
accurate figures to the very edge, an extremely difficult requirement. A CCP
experiment was performed on an existing spherical mirror, cut to form a 60°
segment of a 0.91m diameter mirror with 30 % linear obscuration. The seg-
ment was extremely steep with £/0.66. For convenience in testing, the surface
figured was a sphere, but the figuring technology would have been the same
for an off-axis aspheric. The aim was a best effort surface in a limited time. In
general, the same principles were used as in the previous CCP experiments,
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Fig. 1.4. Interferograms of a 1.8 m lightweighted spherical /1.5 mirror, (a) initially,
(b) after 72 hours of polishing with the Perkin-Elmer CCP (Jones [1.19])

but the extreme requirements for the edge required a special “overhang” tech-
nique, giving greater pressure on the edge zone compared with the constant
pressure used elsewhere. Initially, the surface was too high along most of the
cut edges. The initial error was fairly low, 0.042 Arms. The CCP was used
for 5 iterative cycles, using a raster movement over the workpiece, the total
time being less than 4 hours. The resulting figure (Fig. 1.5) was 0.012 A rms
(A = 633nm). This demonstration proved that the CCP technology with
small tools was a powerful rival to the “stress polishing” technique finally
preferred for the segment manufacture of the Keck telescope [1.23]. This is
the technique 1.d) of Table 1.1 which will be further discussed below.

Fig. 1.5. Segment im-
proved using the Perkin-
Elmer CCP (Jones [1.21]).
The figure shows virtually
no deviation at the edge
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CCP has been developed and applied in recent years by all the major
manufacturers of large telescope optics. Jones further developed his earlier
CCP work at ITEK into a powerful and universal system — see below.

REOSC in France developed such a system (CCST-Computer Controlled
Surfacing Technique) about 1985 and has since applied it to the manufacture
of the ESO VLT 8.2m primary mirrors [1.24] [1.25] [1.26]. The method is
applied to both aspheric grinding and polishing, since for large, modern pri-
maries with steep aperture ratios it is no longer reasonable to do aspherizing
solely by polishing. The technique is essentially identical except that ceramic
tiled tools are used in grinding and pitch tiles in polishing. The smallest
tools have a diameter about one eighth of the full diameter. The CCST is
a “dwell time” control of such small tools, using constant pressure and con-
stant relative surface velocity to ensure optimum surface “cleanness” (quality
of polish). REOSC combines CCST figuring with the use of large-size flexible
tools (in the VLT case 5m diameter) to achieve surface smoothing. These
are effectively of type 2. in Table 1.1, with a patterned tool surface shape.
Their flexibility enables, too, the use of variable pressure in the group 1.b)
of Table 1.1. Figure 1.6 shows a CCST head able to work mirrors up to 2m.
An example of the use is a 60 cm test mirror which was taken from an ini-
tial 0.53 Arms by seven polishing runs to 0.11 Arms and a further seven to
0.05 Arms (Fig.1.7). This left a slight edge error due to a defect in the test

Fig. 1.6. Computer Controlled Surfacing Technique (CCST) at REOSC [1.25] for

mirrors up to 2m diameter
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(a)

(b)

(c)

Fig. 1.7. CCST at REOSC [1.25] with a 60cm test mirror. (a) The initial state,
(b) after 7 polishing runs, (c) after a further 7 polishing runs
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program which did not have enough sampling points for the wavefront at
the edge. Such edge errors can now be avoided. The limit of correction is
set simply by the noise of the wavefront measurement and can be pushed to
the order of 0.01 Arms with modern interferometric techniques. REOSC also
use computer control with large patterned (petal) laps, but the precision of
prediction of material removal was not then considered as accurate as that
with the small sub-aperture tools.

In connection with their study for the 8.2m VLT primaries [1.27], Carl
Zeiss of Oberkochen have also perfected a CCP system capable of going to
the limits of noise in the wavefront measurement. A detailed analysis was
made of the merits of generating aspherics by both grinding and polishing
by:

1) Larger-size petal laps used with a short stroke and reduced rotational
speed of the tool.

2) Larger-size petal laps used with a fixed azimuth relationship to the mirror
to attack non-rotationally symmetrical errors.

3) Sub-aperture tools using CCP as above.

Figure 1.8 shows a typical petal tool for 1). Such a system has the advantages
that the entire mirror is machined at once and that non-rotationally symmet-
rical errors are largely reduced and can be further suppressed by technique
2). However, this and short strokes can produce ripple. The sub-aperture tool
method 3) has been fully tested with CCP. Zeiss not only uses dwell-time as
the controlling parameter, but also variable pressure (3.b) as well as 3.a) in
Table 1.1). This gives very powerful control. At that time (1985), Carl Zeiss
tended to prefer the sub-aperture CCP method which has since been further
refined. In addition, the powerful membrane method [1.27] [1.28] — see below
— has been perfected and offers all advantages. According to Beckstette [1.7],

Fig. 1.8. Petal tool for aspheriz-
ing by grinding or polishing con-
sidered by Carl Zeiss [1.27] for the
ESO VLT 8.2m primaries
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Carl Zeiss have used CCP with small sub-aperture tools and pressure con-
trol for the working of the Galileo 3.5m primary (the Italian version of the
NTT). The same technology was also used for the optics-of the SOFIA space
project [1.28]. Many small tools were used and the smoothing of residual
edge errors was achieved with the membrane polisher — see below — which
was also applied as a correction for Galileo. Spherical mirrors of 30 cm di-
ameter have also been polished routinely by CCP using 1cm tools at Carl
Zeiss, Jena, to a quality of 0.1 A ptv. For mirrors of 3.5m diameter, the final
polishing stage to optimum figure is best achieved by CCP with a small, rigid
tool using pressure rather than dwell-time control [1.7]. The time required is
< 200 hours.

The earlier work of R.A. Jones described above has been further devel-
oped by him and associates at Litton ITEK [1.29] [1.30] [1.31]. The system is
named Computer Controlled Optical Surfacing (CCOS) and has been devel-
oped not only to produce aspheric surfaces of high precision, both axisym-
metric and off-axis segments, but also to accelerate and automate the whole
production process so that high volume production is possible. The major
advances were made after 1986, with a number of new processes based on a
deeper understanding of the physics and mechanics of glass processing. The
most spectacular results have been achieved with thin (solid or lightweight)
face plates, on- or off-axis, for active or semi-active systems, and lightweight
thick mirrors predominantly on-axis for passive systems. For such elements,
polishing pressure in conventional polishing operations would produce print-
through of the structure or support, so new techniques were essential. CCOS
can solve these problems and is quite general in application to any aspheric
surface irrespective of rotational symmetry. The principle is a feedback sys-
tem, similar to that described above, using an orbital tool motion. Figure
1.9 shows the basic CCOS cycle. An improved algorithm (“Proportional Op-
tion”) for the dwell-time function (Fig.1.10) gave dramatic improvement in
convergence.

A computer regulates 6 robot motions: three positional, two tilt, one tool
orientation. At that time (Dec. 1991), Litton ITEK had 9 CCOS units. Dur-
ing grinding, a non-rotating orbiting tool is moved over the workpiece, the
orbit amplitude being fixed in advance. The pad surface must adapt to the
curvature change. It is rigid and cannot flex because it must smooth ripples,
so it must wear to shape. This is why a fixed angular orientation is required to

Test Compare Determine
surface > prior 1 polishing

error prediction parameters

A A

Y

Polish | Generate | Predict Fig. 1.9. Operations for a
with -« control [ figure CCOS cycle (Litton ITEK
CCOS file progress [1.31))
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Fig. 1.10. A block diagram showing key components of the “proportional option”

CCOS algorithm (Litton ITEK

(1.31])

the optical axis. The work path must be optimized to minimize the required

pad shape change.

In polishing, the pitch must flow to adapt to the surface change. Low spa-
tial frequencies are corrected by “figuring”, high spatial frequencies by “pad
smoothing”. In “figuring”, the spatial frequency is lower than the pad size,
in “pad smoothing” it is higher [1.29]. Figure 1.11 shows a CCOS machine
capable of handling 4 m workpieces.

Fig. 1.11. Arboga NC unit usable for CCOS and machining operations (Litton

ITEK [1.31))
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Fig. 1.12. Interferograms for a lightweight test piece after conventional and vacuum
induced force surfacing (Litton ITEK [1.31])

CCOS technology is based on small-size tools. Tool loading can produce
printthrough in lightweighted blanks, so a vacuum system was developed to
apply tool pressure without loading. Figure 1.12 shows the striking differ-
ence in the resulting interferogram if this vacuum system is combined with
microgrinding.

Microgrinding is another important development [1.30] [1.31]. Classical
fine grinding used abrasives of about 10 um leaving a similar sub-surface dam-
age depth for removal by polishing. Because material removal is some 50 times
slower in polishing than grinding, polishing time was a major part of the to-
tal manufacturing schedule. Microgrinding uses 1-3 um diamond abrasives
with composite metal (e.g. brass) or ceramic lapping tools. A surface form
accuracy of 0.1 pm can be achieved with microgrinding and CCOS. The pol-
ishing process is left with the task of removal of a 1-2 pum damage layer and
minimal figuring to produce the final figure accuracy of about 0.02 um rms.

2 100 g 100
- Grinding - Grinding
1 10
E 1O\ g
g 1oy _poishng  § 10 \Merogrning
2 0.1} 2 0.1F _Polishing
[0 0]
g 0.0} @ 0.01F
£ 5
@ 0 ® 0 .
Machine time Machine time
(a) Convergence curve (b) Convergence curve
without microgrinding with microgrinding

Fig. 1.13a, b. Gain in total machine time using microgrinding with CCOS (Litton
ITEK [1.30]) i
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Microgrinding also produces a semi-specular surface suitable for interferomet-
ric testing. Figure 1.13 shows the gain in machine time. For large aspheric
optics, the CCOS fabrication times were reduced from about 40 to 10 weeks
over three years. A further factor of two was expected. Examples were given
of both off-axis aspheric segments and centered aspheric mirrors.

A recent review of CCOS techniques and other modern techniques is given
by Jones [1.32].

1.2.2.2 Membrane and strip tools. This elegant technique (4. in
Table 1.1) has been developed at Carl Zeiss, Oberkochen, and is described
by Heynacher [1.33] and by Beckstette and Heynacher [1.10]. The membrane
method makes direct use of Preston’s Law — Eq.(1.1) — by separating the
two operating parameters: relative velocity v and the pressure p. Figure 1.14
shows the principle of membrane polishing. The tool consists of two major
parts: a fairly thin membrane which carries the polishing pitch and performs
the relative motion between tool and workpiece and a set of actuators at the
tool’s rear (upper) side which apply the necessary pressure for material re-
moval. This pressure is dynamically controlled by a computer. The complete
membrane tool works, in principle, like an arrangement of many small tools
working in parallel with the CCP technique. However, the amount of mate-
rial removed by each sub-tool is controlled by the pressure applied through
the actuator instead of the dwell-time approach of normal CCP or its vari-
ants. The membrane must be designed to be flexible enough to accommodate
the desired variations in curvature of the aspheric surface, but stiff enough
to provide adequate smoothing of the printthrough effect of the actuators.
In the basic form of the technique, the membrane will be more-or-less full-
size. For a 4 m diameter mirror, the membrane might be up to 20 cm thick.
Possible materials are aluminium or plastics. It should be noted that the
geometry of the actuators is fixed relative to the workpiece: the membrane

2

actuator

mirror

membrane

hydraulic piston drive
“rails" guiding drive motion
lift-off arm

H
7

DU WN

Membrane tool polishing machine ‘
Fig. 1.14. The principle of membrane polishing (Carl Zeiss [1.10] [1.33])
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moves between them. This has the important advantage that the abrasive
effect can be directed specifically at any point, with appropriate smoothing
by the membrane. The membrane technique combines all the advantages of
other methods:

— The tool can directly remove errors with high and medium spatial frequen-
cies. The highest spatial frequency which can be attacked is only limited
by the actuator size.

— The tool does not rely on its own shape or adaptation to the mirror shape
to remove low spatial frequency errors. This reduces mirror support prob-
lems during the process and deals with the problem of tool adjustment to
variations in curvature of the aspheric by appropriate membrane flexibility.

— As the tool covers (either in 2 dimensions or — see below — in 1 dimension)
the whole workpiece surface, it can apply bending moments at the edges
of the “subtools” which prevent the inherent edge problem of small tools
with CCP [1.21] and also the production of ripples.

— The large tool area gives high material volume removal.

— The removal function can be changed without any tool preparation, since
the pressure parameter is used. Test data, suitably modified, are fed
straight to the computer for the next iteration.

- A “self-teaching mode” can accommodate physical parameters such as
hardness of material, support or structure printthrough.

— With small tool CCP work, a “hole” in the wavefront is serious because
the whole surface must be lowered to the same level. The membrane tool
is much more efficient, since the whole surface is worked.

— The membrane tool can be used for off-axis segments just as well as for
axisymmetric surfaces.

1 mirror

2 membrane tool

3 drive system

4 optional second lap
R direction of stroke

Fig. 1.15. Rectangular (strip) membrane tool for working axisymmetrical surfaces,
e.g. primary mirrors (Carl Zeiss [1.10])
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The membrane principle has been modified for the production of large axi-
symmetrical prime mirrors as shown in Fig. 1.15, using a rectangular (strip)
membrane. The relative motion between tool and workpiece is performed by
rotating the mirror and giving a radial stroke to the tool. For primaries with
a relatively big central obstruction, the rectangular tool automatically com-
pensates the increased relative velocity with zone radius by reduced relative
polishing area: such a tool gives nearly uniform material removal with uni-
form pressure distribution. Since the rectangular membrane has only small
radial shifts, its flexibility can be much lower than that necessary if it rotated
freely. This is an important advantage in reducing edge and ripple problems.

Figure 1.16 shows a lapping process of the 3.5 m ESO NTT £/2.2 primary
using two rectangular membrane tools. At that time (1986), the pressure
variation technique was not fully operational, so aspherization was done by
lapping from the sphere using area compensated tools of basic rectangular
shape. The pitch surface for each step was computer controlled. Since there
was no relative motion other than mirror rotation between tool and mirror
surface, the pitch-trim was critical for avoiding high frequency ripple. This
was controlled with great success, particularly because of the rectangular
tool shape. About 200 um of aspherization was produced; also further fine
correction.

Non-rotational errors were removed by CCP with two medium- to small-
size, circular tools, whose polishing pressure was controlled as discussed in
§1.2.2.1 above.

Fig. 1.16. Lapping of the ESO NTT 3.5m primary (f/2.2) with two rectangular
tools at Carl Zeiss in 1986 [1.10] [1.34]
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These two techniques gave the remarkably smooth surface correspond-
ing to an “Intrinsic Quality”, after low spatial frequency term removal, of
dgo = 0.095 arcsec or a wavefront error of 13.5 nm rms. No hand figuring was
required (see Chap. 3).

The efficiency of material removal in aspherizing is of central importance
as aspherics get steeper, since the deviation from the best fitting sphere to
the aspheric increases with the inverse cube of the f/no and linearly with the
diameter. This is evident from the second (third order) term of Eq. (3.11) of
RTO 1. For the 3.5m, f/2.2 NTT primary, the deviation is 210 um; for 8 m,
f/1.8 VLT primaries 890 um; for an 8 m, f/1.0 primary 5200 um [1.10]!

Computer controlled figuring using a type of strip tool has been proposed
and applied by Korhonen and Lappalainen [1.35] [1.36]. As with the Carl Zeiss
membrane polisher, the parameter controlling the rate of polishing removal
is pressure rather than dwell-time. The tool consists of subtools which are
equipped with computer controlled force actuators. The turntable and stroke
mechanism are equipped with position encoders, the local polishing pressure
then being adapted to the requirements at that position. The force actuators
are electromagnetic, the response time being only limited by the rise time of
the current in the coil. Therefore a virtually continuous variation of polishing
force is possible. A force response accuracy of 1% can be achieved. Actuators
are available which are suitable for large mirrors, or for lightweight or thin
components where low surface pressures are applied.

Fig. 1.17. Computer controlled figuring of a 60cm test mirror (Korhonen and
Lappalainen [1.35])



1.2 Grinding, polishing and figuring technology 19

Figure 1.17 shows a linear tool with six actuators applied to the figuring of
a 60 cm test mirror. The actuator response time is < 0.01s. Because the force
distribution can be controlled within about 1%, the quantitative control of
the figuring procedure depends mainly on other parameters, e.g. pitch quality,
polishing compound and water mixture. At that time, clear results were not
available but a predictability of 90 % was hoped for, a big advance on classical
methods. The necessary stroke length is small, but the rigid subtools smooth
out high spatial frequency errors. It would be possible to increase the tool
width in azimuth to improve azimuthal smoothing, working with 2 or more
actuators in parallel if required.

1.2.2.3 Stressed laps. This technique, corresponding to 1.c) of Table 1.1,
has been proposed and developed by Angel et al. The basis was laid down
by Angel and Parks [1.37] and by Angel [1.38]. The specific aim was to solve
the problems associated with the production of very steep aspheric primaries,
working at £/1.0. If the tool shape adapts to the desired shape of the surface
at the local point of contact, then the situation is no different from working a
sphere with a similar sized tool. This overcomes one of the main problems of
CCP unless very small tools are used. But larger tools give better smoothing.
For a local point of contact at distance y from the aspheric axis of a primary
mirror of radius of curvature r, the distance z7, between its local surface and
a spherical reference surface touching at point y is given by [1.37]

bsy?r2 (2 + cos 26) N bsyricosf®  beri

4r3 2r3 83 ’
where 7, is measured from the contact point y, € from the direction of the
radius vector from the aspheric axis and bs is the Schwarzschild constant.
Omitting terms in tilt and piston, this leads to three terms [1.37] in fo-
cus (curvature), astigmatism and coma. A similar analysis was given for the
analogous problem of stress polishing, for which the workpiece is stressed, by
Lubliner and Nelson [1.39]. Angel discussed the generation of these terms by
spring-loaded laps and demonstrated that they could be very effectively pro-
duced. For figuring an 8 m, f/1.0 paraboloid, he envisaged an active stressed
lap of 2m diameter (giving good smoothing) needing a bending of about
2mm ptv as it is translated and rotated over the 8 m surface. The cycling
stress period would be a few seconds, the forces being updated about every
millisecond. After fine grinding with IR testing at 10 um, the same active
lap would be faced with pitch for polishing. For distortion of fairly stiff steel
tools, forces up to 1000 kg were envisaged. If necessary, smaller tools of 1 m
or 0.5m diameter would be used for finishing.

Further developments were given by Martin, Angel and Cheng [1.40]. The
first application of actively controlled stressed-lap polishing was the 1.8 m,
£/1.0 primary of the Vatican telescope, the stressed lap having a diameter
of 0.60 m. The maximum lap distortions at the edge of the mirror are given,
from modified equations following [1.39)], as :

zL (1.4)
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(0zp)20 = —853um  (focus)
(0z1)22 = —363um  (astigmatism)
(0z1)31 = —224pm  (coma)

Moments were applied through a set of lever arms attached to the edge of
the lap by means of electro-mechanical actuators mounted at the top of the
lever arms and tensing wires in the required modal fashion. The Stressed-
Lap Polishing Machine is shown in Fig. 1.18. A microcomputer controls the
translation of the lap and the rotation of the lap and the mirror. Positions
are sensed by encoders, and speeds of all three motors are updated about
20 times a second. A cycle of polishing strokes is determined by computer
simulation to establish a desired removal function. A separate microcomputer
controls the shape of the lap.

A further demonstration was given by Wizinowich and Angel [1.41] using
a full-size stressed lap. The origins of this approach go back to Brown [1.42],
who used a passively deformed full-size rigid tool to aspherize the primary of
the 4.2m WHT. The limitation of such a passive deformation proportional
to p4, where p is the zonal radius, to give the required asphericity as third
order spherical aberration, is that an excentric position (overhang) of the
tool due to the polishing stroke produces a mismatch which is, to a first
approximation, the differential of the function, i.e. third order coma. The
concept of the active full-size stressed lap is to correct this mismatch by a
comatic deformation of the lap actively adjusted to the overhang (Fig.1.19).
The resultant figure of Fig.1.19(c) is a Schmidt plate surface. For normal
primary mirrors with bs < 0, the aspherization has the wrong sign, so this
procedure would have to be reversed; but it is directly applicable to steep
convex hyperbolic secondaries. An important advantage of the method is that,
once the desired shape is attained, continued polishing produces uniform wear
and does not change it. Polishing time is therefore uncritical in contrast to
work with rigid laps. The authors give results of a successful demonstration
on a 20 cm diameter pyrex blank of 3.4 cm thickness. The Schmidt plate form
produced by grinding corresponded to a pure fourth order profile difference
term of about 30 um, very close to the prediction. After polishing, the residual
departure from the desired fourth power figuring due to higher order terms
was 60 nm rms.

This experiment gave further confidence in the use of stressed sub-
diameter laps for fast primaries.

The successful completion of the Vatican (Lennon) 1.8 m, f/1.0 primary
was documented by the Progress Report of the Steward Observatory Mirror
Lab [1.43]. Figure 1.20 shows the final interferogram. It was said at that time
to be the fastest and most aspheric telescope mirror ever made: indeed, its as-
phericity is about 5% times higher than that of the 3.5m, £/2.2 NTT primary.
It has a borosilicate, honeycomb blank made by the S.0. Mirror Laboratory.
The wavefront error is 17nm rms, a remarkable achievement for such a steep
aspheric function. The figure quality was taken from 440 nm rms to the final
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Fig. 1.18. Stressed-Lap Polishing Machine at Steward Obs. Mirror Lab (Martin
et al. [1.40})
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Fig. 1.19. Schematic demonstration of avoiding lap mismatch through overhang
by stressing a. full-size lap with a coma term as well as spherical aberration. (a) Lap
centered over workpiece, (b) decentered with supplementary comatic distortion, (c)
the generated aspheric surface (Wizinowich and Angel [1.41])

Fig. 1.20. Final inter-
ferogram of the Vati-
can (Lennon) 1.8 m, £/1.0
primary produced by
stressed-lap  technology
(Steward Obs. Mirror
Lab [1.43])

17nmrms in only 8 months. The encircled energy (including diffraction) has
(dso)diffr. = 0.28 arcsec. According to Beckers [1.44], the final interferogram
was achieved after some additional hand retouching following the stressed-lap
polishing.

Another success reported was the completion of the Phillips Lab 3.5m,
£/1.5 primary with a final wavefront error of 20nmrms and an encircled en-
ergy (dso)diffr. = 0.17 arcsec. The stiffness of the honeycomb blank enabled
the simple support of 16 triangular “load spreaders” and 4 two-point “load-
spreaders” to be used, together with 20 additional single point attachments.
In the operating telescope cell, these will connect to programmable force ac-
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tuators for active control. For polishing they rested on glycerine-filled pads,
interconnected to distribute forces in correct proportion. This simple pas-
sive support, together with 3 radial single-point restraints, proved entirely
adequate, also for avoiding astigmatism.

1.2.2.4 Stress polishing (stressed workpiece). The concept of “stress
polishing” (deforming the workpiece by stresses, working it spherical, then
releasing the stresses to form the required aspheric shape) was first formu-
lated and systematically applied by Schmidt [1.45] to the manufacture of a
corrector plate for his newly invented Schmidt telescope. The method has
been much applied to the manufacture of smaller Schmidt plates of amateur
sizes and is well described by Wenske [1.46]. A solid steel plate is turned off
to leave a rim about 3mm wide with a diameter exactly that of the plate,
the depth being about 2 mm. The rim must be carefully turned flat and fine
ground. Up to 250 mm diameter, the glass plate has a thickness of 6-7 mm
at maximum and must be carefully worked as a plane-parallel optical plate.
The plate is carefully sealed on the steel rim with thick vacuum grease, then
the thin chamber is pumped out to cause the plate to assume a concave up-
per surface. Schmidt showed that this led to an axisymmetrical deformation
involving the terms p? and p*, where p is the plate radius from its center.
The sag of the plate is measured with a spherometer. Wenske gives the proof
from an empirical formula that the sag of the plate must be set at

1.065 pi
(n-1)r® ~’
where z, is the sag, pp, is the semi-diameter of the corrector plate in the
Schmidt telescope, r the radius of curvature of its mirror and n the refractive
index of the plate. The required bending can be achieved without excessive
strain for f/nos > £/2. For steeper cameras, either the plate must be thinner,
causing polishing problems, or both plate sides must be aspherized. The opti-
mum Schmidt plate form is given if the constrained, concave plate is ground
and polished with a convex spherical tool whose sag is given by

0.940 pi,
- 1.6
“ (n—1) r3 (16)

If correctly carried out, this should lead to the profile form

Zpl = (1.5)

302 o 1 4
8(n — 1)r3p  4(n— 1)r3p ’ (L.7)
the optimum form from geometrical optics without taking account of diffrac-
tion — see the discussion in §3.6.2.2 of RTO I and Eq. (3.242) therein, which
is identical with (1.7) for a profile parameter k; of 1.5.

A definitive analysis of Schmidt plate manufacture by such elastic means
has been given by Lemaitre [1.47]. In the above Schmidt-type arrangement
with the plate supported at its edge with an underpressure difference g giving
a constant load, the deformation is given to the third order term by

dzp =
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3(1-v2) q (pm\3 3+v\_, 4
“Elas 16 E(t) 1+u )P ~FP P (18)

where p = p/pm, t is the thickness, E Young’s modulus and v the Poisson
ratio of the glass. Now, if the sagged surface is ground and polished spherical
with a convex tool of radius of curvature r, then setting w = pp, /2r;, the
resulting sphere is

25 = w(p* + wW'p")pm (1.9)

Releasing the underpressure, the top surface will assume the desired profile
zseh if

ZSch — ZElas + 25 =0 (1.10)
From Eq. (3.242) of RTO I, setting the plate parameter ky = 1.5, we have
Pm 32 4
_ S22 1.11
ZSch 256(n — 1)N® <2P p ) (1.11)
Equation (1.10) then leads to the following third-degree equation
3+v 3 (9 + V) 1
— 5120 — —————— =0 1.12
1024(1+u>°" Ol = T N m ) (1.12).

This equation always has a unique and positive real root which is < 1 since
N? > 2 for all but extremely steep Schmidt telescopes. It follows with
0 < v < 0.5 that the term in w? is negligible. This is simply the equivalent of
the statement that the term in p* for the sphere is negligible compared with
the 7* term from the elastic deformation.

Since r = 8wNry, the radius of the spherical tool r, can be expressed as
a function of the radius r of the Schmidt mirror, giving from (1.12)

_64(1 +v)(n—-1)
= ) N2r (1.13)

For a typical case with v = 0.2 and n = 1.5, then r; = 4.174 N?r.
Knowing w, we can deduce the plate thickness ¢ from (1.8) as

Tt

3 \ q 1/3

t= 4(1 v)(n l)E T (1.14)
Equations (1.13) and (1.14) completely define the manufacturing conditions.
For highly aspheric plates, a maximum ¢ representing a full vacuum under
the plate is desirable. A typical borosilicate crown ruptures at N = 1.75 if
only one face is figured; at N = 1.40 if both faces are figured. This is in
agreement with Wenske’s conclusions for amateur Schmidt telescopes.

The above classical method produces, in principle, an aspheric plate of the
required form over its whole surface. If one accepts an unusable zone at the
edge, one can find a configuration of load and support that results in plates
with twice the asphericity possible with the classical method. This method,
proposed by Lemaitre [1.47], is shown in Fig.1.21. It also has the advantage
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Fig. 1.21. Principle of the dioptric elas-
ticity method of stress polishing for the

production of Schmidt plates proposed
[ ] by Lemaitre [1.47]

A A

of requiring only a flat tool, not a spherical one depending on Eq.(1.13).
The disk of radius ps is supported on a metal ring of radius p;. A load p;
is exerted on the inner zone and a load py on the outer zone. The deformed
disk is ground and polished flat under these loads.

The basic equation is the Lagrange differential equation for small defor-
mations z of a thin plate of constant thickness ¢

D, V%(V?z) —p=0 , (1.15)
where D, is the rigidity constant
Et3
D= ———— .
T 12(1 —w?) (1.16)

and p is the load on the plate. With a circular plate, the Laplacian operator
V2 in polar coordinates can be used:

o2 10
57 " pdp
In an elegant reduction, Lemaitre shows that there are an infinite number of
solutions in terms of the normalized parameter pairs of radius (p2/p1) and
pressure (p2/p1) which satisfy the “Kerber condition” (Schmidt plate param-
eter ky = 1.5) for zone 1 of Fig. 1.21, inside the support ring. If the surface is
worked flat as shown, the right profile is obtained whatever thickness is used;
the same apparatus can be used with different plate thicknesses to compen-
sate Schmidt mirrors of different curvatures. However, it remains prudent to
adapt the final mirror to the finished plate. From a reasonable range of pa-

rameter pairs giving Kerber profiles, Lemaitre establishes a rupture limit of
£/1.40 for a normal borosilicate glass if one face is figured; f/1.10 if both sides

V= (1.17)
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Fig. 1.22. Fringes of
equal thickness of a
plate made by the diop-
tric elastic (stress pol-
ishing) method (Lemai-
tre [1.47])

are figured. In quartz, £/1.0 plates have been made, representing the limit for
classical optical materials.

Figure 1.22 shows Fizeau fringes of a small plate manufactured as above.
One fringe represents a deformation of the refracted wavefront of A(n — 1)/
2n ~ \/6 for a refractive index n ~ 1.5.

The great attraction of stress polishing, as shown in Fig. 1.22, is the inher-
ent smoothness (freedom from high spatial frequency errors) of the technique,
a common virtue of all active optics procedures, whether performed at the
tool, the workpiece before manufacture, or the workpiece after manufacture.

Stress polishing was applied by Lemaitre to many smaller elements over
15 years [1.48]. A summary in the global framework of active optics is given in
a more recent paper [1.49]. He considers very large mirrors with a thickness in
agreement with an axial support density under gravity to give an acceptable
sag between supports. The total amplitude of flexure for an infinite plate of
thickness t supported on a triangular mesh of points separated by a, where
the supports have diameter b, is given by

3 brgat [ B2 B b2]

20 (1.18)

=—(1-v2 —+ =1

64 ) Et? a? + 2 a2
where 4, is the relative density, v the Poisson ratio, g the acceleration due to
gravity and E Young’s modulus. For typical values of b/a < 0.1, the term in
the bracket > 0.94 and can usually be set ~ 1. The support density in the
triangular arrangement is ng = 2/v/3 a2, giving from (1.18)

(1-v*)sg

z0n§t2 ~ 16E

= constant (1.19)
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for a given material. For glasses and aluminium, the physical parameters are
similar with v ~ 0.25, 8, ~ 2.5 x 103kgm™3, E ~ 8 x 10!°Pa, g ~ 10ms~2
giving

zonit? ~ 1.8 x 10°m™! (1.20)

b

Lemaitre then considers the stressed polishing situation for mirror thicknesses
t giving a reasonable support density. The basic form is the constant thick-
ness distribution (CTD), but he also considers vase type forms with variable
thickness distribution (VTD), as shown in Fig.1.23. In the CTD class, the
mirror is subjected to a tangential couple as shown; in the VTD class, dif-
ferent loadings can be combined with different VTD. Examples are given of
distortion in the modes of astigmatism, coma and spherical aberration. The
latter, symmetrical mode can be seen as analogous to the problem of Schmidt
plates, discussed above, which was successfully applied to the 0.62m correc-
tor for the OHP Schmidt telescope. For intermediate size mirrors, Lemaitre
has mainly considered applications to Cassegrain secondary mirrors (includ-
ing active in-situ form variation potential) or plane mirrors such as reflecting
Schmidt plates. The author suggested to him in 1989 that one of the best ap-
plications with CTD would be the production of aspheric primary mirrors by
spherical polishing under stress, combined with active control in the telescope
to relax the low spatial frequency manufacturing tolerances (see §3.5.5.1).
This exploits in an optimum way the potential of active optics both before
and after manufacture. It was hoped (March 1992) to fabricate a test mirror
suitable for the primary of a 1.8 m RC telescope in this way. With active

<_> ] 4
| I 2 5
| | 3 i 76

Fig. 1.23. Mirror forms for stressed polishing with constant thickness distribution
(CTD) and variable thickness distributions (VID) (Lemaitre [1.49})
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optics control, the material for such a mirror is uncritical: it could be glass
ceramic, aluminium or stainless steel. In stainless steel, the cheapest option,
the thickness for stress polishing would be about 45 mm, giving an aspect
ratio of 40. Unfortunately, up to the time of writing (March 1997), it has not
been possible to pursue this project.

The most dramatic application of stress polishing so far has been for
the off-axis segments of the segmented 10 m primary of the Keck telescope.
Previous work had been concerned with axisymmetrical deformation or de-
formations in certain low spatial frequency aberration modes [1.48]. Lubliner
and Nelson [1.39] performed the first general theoretical analysis of strain
deformation for the production of non-axisymmetric mirrors, in particular
off-axis segments of a large paraboloid. They considered the general case of
the difference w normal to the surface between a local sphere in contact with
some off-axis point of the paraboloid and the corresponding local segment of
the paraboloid. If the function w is expressed in similar terms as those used
for active optics control (Chap. 3) in the NTT, we have

w = agop? + iz2p” €05 2¢ + 31 p° cos ¢ + azzp® cos 3¢}
)

1.21
+a4op4 + a42p4 cos2¢+ ... ( )

where p and ¢ are the normalized radius and azimuth about the axis of the
local sphere. Let the vertex radius of curvature of the paraboloid be rg, the
semi-diameter of the off-axis plate be a, the radius of curvature of the sphere
rs, and the slope of the paraboloid at the off-axis point ¢ = p,/rg, then
Lubliner and Nelson give the coefficients of (1.21) as:

a? (1o 9, 5¢
=2 (o 4
aso - (7‘3 +e24 86 + 45 +. ) (defocus)
2
a“ , 3, 154 . .
= e J —_— .
Q2 4r0€ ( 5¢ + 3¢ + ’ (astigmatism)
al 11 21
=——e(l- =2+ =et+...
g1 = o §E< e + 1€ + > (coma)
o2 S (1.22)
Qg3 = — o€ e (1-32+6e"+..) (triangular)
o
at (spherical
= — —4¢?
a0 = g[( ) 1-4e®+ )] aberration)
at , B (fifth order
a2 = 41”85 1-5+..) astigmatism)
V

The principal term in each coefficient oy, is of the order (a™/rg**)e™.
Since both a and p, are small compared with rg, it follows that the largest of
the neglected terms of Eq. (1.21) have high orders of a/rg and €. For a < 1m,
ro = 40 m (f/2.0 paraboloid) and p, < 5m, the neglected terms are <~ 1nm.
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The sphere radius may be chosen to minimize the rms value of w in (1.21).
Lubliner and Nelson give as a close approximation

a’
Ts = Ts0 <1 + —47”30) ’ (1'23)

where rgo = 2ry/(cos  + cos® §), in which 6 is the semi-aperture angle of the
paraboloid at the off-axis point.

The relative importance of the various coefficients in practice is shown in
Fig.1.24. As would be expected, the coma as3; and astigmatism ay, terms
are completely dominant.
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i a33: Fig. 1.24. Coefficients describing de-
flections needed to transform a sphere
a42_ into an off-axis parabola (segments
0.01 Lo 1 |/11|11 with @ = 0.7m, 7"0:40111)- Best fit-
0.1 1.0 10 ting sphere assumed. (Lubliner and
Off Axis Distance p,(m) Nelson [1.39])

The plate bending theory is based on Egs. (1.15)—(1.17) for thin plates.
The desired deflection expressed by Eq. (1.21) may be produced by a combi-
nation of bending moments and shearing forces around the edge and uniform
transverse loading. For the loading required, a more accurate theory for mod-
erately thick plates was used.

Stress analysis could be performed for the maximum allowable stress on
the basis of thin plate theory, leading to an equation for the largest off-axis
distance ppmax that may be achieved without exceeding the allowable stress.
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(@
Fig. 1.25. Reconstructed interferograms of stress polishing on a 36 cm circular,
off-axis segment of a paraboloid. (a) Original spherical mirror under stress before
polishing (9.9pmrms); (b) Final result relative to the paraboloid with best fit

position (0.03 pm rms). The lower contour plots were generated from a fourth-order
fit. (Nelson et al. [1.50])

The technique was applied first [1.50] to a circular blank, 36 cm in di-
ameter and with an aspect ratio of 14. Two iterations were performed with
the remarkable result that a 9.9 pm rms deflection from the polished sphere
was produced with an error from the desired surface of only 0.03um. The
maximum forces applied were about —20kg, the maximum couples about
250 kg cm. Figure 1.25 shows the reconstructed interferogram of the original
spherical mirror under stress before polishing (9.9 pm rms) (a) and the final
result relative to the desired parabola with the mirror in the best fit position
(0.03 pmrms) (b).

If it were possible to fill the aperture with circular segments, the evidence
above implies that stress polishing provides an admirable solution for get-
ting a smooth, correct figure right to the edge. Experiments at KPNO [1.51]
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[1.52] also confirmed successful stress polishing with circular segments. How-
ever, problems were reported as soon as cutting to the final hexagonal shape
was carried out [1.53]. The segment size had been increased from 1.4m to
1.8m with thickness 7.5c¢m. Also the primary paraboloid was steeper with
£/1.75. Cutting after polishing was preferred because it was considered much
more favourable for getting high quality to within a few mm of the segment
edge. As reported previously, achieving a quality of about 40 nm rms by stress
polishing the circular blanks (Zerodur) could be reliably achieved; but cut-
ting to produce the hexagon introduced warping of about 500 nm rms, over
ten times the error of the circular segments. The warping was mainly in the
defocus mode, with a little coma and astigmatism. It was thought to be due
to two possible sources: release of residual stress from the casting, and stress
due to the subsurface damage of the ground back. However, it was felt that
a residual unpredictable warping was inevitable to a level that would not
be acceptable. The best solution was considered to be permanent active op-
tics correction in the telescope using a “warping harness” based on springs
attached to the whiffle tree supports [1.54].

Production techniques at ITEK for the segments were reported further in
1988 [1.55]. The manufacturing steps were:

Convez Side Polish— Stressed Mirror Polishing —
Cutting and Boring — Support Mounting — Final Figuring

The error budget was < 40 nm rms on the figure and < 0.3 mm on the radius.
The figure quality from stressed polishing was < 150 nm. Final figuring was
being tackled by computer controlled optical surfacing (CCOS — see above)
and by a “warping harness”. With the latter, an FE prediction showed that
the dgo value could be reduced from 0.84 arcsec after cutting to 0.27 arcsec
by warping, close to the specification of 0.24 arcsec. Modelling was done with
a NASTRAN beam model [1.56].

Further details of the manufacture of the segments at ITEK were given
by Mast and Nelson in 1990 [1.57]. The desired surface is now expressed in
Zernike polynomials, which modifies Eq. (1.21) to

w = Cao[20” — 1] + Caalp? cos 24 + C1[(36° — 20) cos 6]

1.24
+C33[p® cos 3] + Cuo[60* —6p% + 1]+ Caz[(4p* —3p?) cos 24 } (1.24)

From the symmetry of the hexagonal geometry, 5 types of segment are re-
quired. Table 1.3 gives the desired coefficients in microns for the extreme
inner and extreme outer types, the other segment type values lying on mono-
tonic functions between these extreme values. The difficulty consists in gen-
erating the dominant defocus (Cy), astigmatism (C22) and coma (Cs1)
terms as discussed above. The total error budget for the telescope gives
dgg = 0.42 arcsec; for the primary 0.34arcsec, and for the segment figur-
ing 0.24 arcsec. The cutting produces errors which are predominantly axi-
symmetrical. In one case, these were dC2 = 1.470 pm, 6Cyo = —0.253 um,
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Table 1.3. Desired Zernike coefficients (microns) for extreme inner and outer seg-
ments (Mast and Nelson [1.57])

Segment Cao Ca2 Cs Css Cio Caz
Inner 5774.221 —11.481 -4.410 0.007 0.001 0.002
Outer 5684.125 —100.910 -12.669 0.170 0.015 0.016

80Cgs = 0.043 um, 6Cge = —0.083 um. The corresponding surface error was
0.794pmrms with dgg = 3.94 arcsec, a large value. However, the variation
from segment to segment was fairly modest, but by no means negligible. The
fabrication experience at ITEK was summed up as follows:

Using stress polishing, a polished asphere (Csp ~ 50pum, C3; ~ 10 um) was
produced in about 6 weeks to within ca. 250 nm rms of the desired surface.
Further convergence to the desired quality of 20-40 nm rms was slower and
costly. In addition, errors in predictions of warping from cutting residual
stress release were typically 200nmrms and sometimes 1000 nm rms. The
strategy adopted was:

— Use “adjustable optics” (i.e. dc active optics in the terminology of this
book) to optimize the figure using a 30 spring warping harness.
— Stop polishing when
— The polished surface error is < 250 nm rms
— The predicted surface meets the final goals where the prediction includes
— The predicted improvement by positioning the hexagon cut
— The predicted warping from cutting
— The predicted improvement by the warping harness.

Table 1.4 reproduces results quoted for six segments before and after
correction with the warping harness. The rms target was given as about
0.020-0.040 pm rms and was largely met, but the discrepancy was higher than
the dgp target of 0.24 arcsec, with an average value of 0.52 arcsec.

Table 1.4. Segment quality before and after final correction with the warping
harness for six segments (Mast and Nelson [1.57])

Segment Error Error
rms (pm) dso (arcsec)
Before After Before After

SN 005 0.61 0.040 2.83 0.62
SN 006 0.28 0.026 1.55 0.47
SN 007 0.26 0.025 1.69 0.47
SN 008 0.21 0.032 141 0.56
SN 009 0.72 0.054 3.89 0.63
SN 018 0.11 0.019 0.80 0.34
Target 0.24
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After this publication, the Keck telescope celebrated “first light” with
nine segments in place and it was stated that about half the segments were
in operation in Feb. 1992. The performance was limited by the quality of the
individual segments, not by their relative adjustment [1.58]. The conclusions
will be discussed further in Chap.3. At that time, it appeared that stress
polishing could be highly successful with circular elements, either axisym-
metric or off-axis, but that the problems with non-circular segments were
not fully solved. Subsequently, they were effectively solved by the technique
of ion beam figuring, discussed in the next section.

1.2.2.5 Ion beam figuring (IBF'). The effectiveness of this technique was
first demonstrated by Wilson, Reicher and McNeill in 1988 [1.59]. It was,
above all, developed by the Eastman Kodak Company who set up a practical
figuring facility in operation since about 1990. This admirable work has been
widely reported in company brochures and publications [1.60] [1.61] [1.62]
[1.63] [1.64] [1.65]. Ion beam figuring (IBF) is a perfect complement to com-
puter controlled small tool polishing. An ion beam “tool” is unaffected by
workpiece influences (such as local surface fit and edge effects). The accuracy
achievable is limited only by the accuracy of the test data for virtually any
optical form. IBF functions by sputtering material from the workpiece, at
the atomic level, by means of a momentum transfer from a directed ion beam
which physically bombards the surface.

The Eastman Kodak facility was designed for workpieces up to maximum
dimensions of 2.5 x 2.5 X 0.6 m mounted in a high-vacuum chamber. The ion
source directs a beam upwards on to the workpiece, positioned face down. It
is a Kaufman broad-beam ion source producing a well-controlled, collimated
beam of argon ions. This generates the neutral-ion-beam removal function
for material removal. Beam removal function distributions ranging from 5 to
15cm in diameter have been demonstrated [1.64]. The translation system of
the ion source has three linear and two angular degrees of freedom, enabling
fine figuring control over a very broad spatial frequency band. It follows that
this technique is ideal for correcting edge or printthrough (quilting) errors
left over from conventional techniques in massive or lightweighted blanks.

There can be no doubt that IBF is one of the most important techni-
cal developments in optical manufacture that have emerged in the last few
decades.

Figure 1.26 shows schematically Kodak’s ion figuring system [1.60]. By
analogy with computer-controlled small tool technology, the IBF process is a
“dwell time” process, material removal being proportional to the dwell time
and therefore accurately predictable. The beam removal function is highly
symmetrical and near-Gaussian in form. In an investigation of thermal ef-
fects [1.61], sharp temperature changes of nearly 30°C were recorded as the
ion beam scanned back and forth near the sensor location. The maximum
temperatures detected on the front face of a 20cm x 20cm lightweighted
workpiece were 100-120°C and 65°C on the back face. No adverse effects
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Fig. 1.26. Schematic of Kodak’s ion figuring system [1.60]

were observed from ion beam heating, which supports the general conclusion
that workpiece heating is not a problem if care is taken in critical cases.

An impressive example quoted in a Kodak brochure [1.65] was the correc-
tion of a 1.3m ULE frit-bonded, ultra-lightweight, off-axis primary segment
by the ion figuring process. The surface figure error of the segment following
conventional polishing was 5.02 Aptv (0.62 Arms) with A = 632.8 nm. This
was corrected to 0.17 Aptv (0.015 Arms) in four iterations. Such IBF pro-
cessing can give up to 1000 % improvement in surface figure per iteration,
whereas conventional polishing techniques were found to lead to improve-
ments of 110-130% per correction cycle. Another interesting example, the
successful correction of printthrough (quilting), is given by Allen and Romig
[1.61] with interferograms before and after correction.

Undoubtedly one of the most important and striking successes of IBF so
far reported has been the correction of off-axis, aspheric segments for the
Keck 10m telescope primary [1.62] [1.64]. The case reported in detail [1.62]
concerned segment SN 009. The diameter of such segments is 1.8 m. The stress
polishing production process, followed by cutting to the hexagon, had left in
this case an error of 3.13 um ptv (0.726 pumrms), too large to be adequately
corrected by a 30-lever warping harness. The predominant term of the error
was defocus. The IBF correction process comprised 2 iterations. For each
interation, the measured error was modelled by an 8th order (45 term) Zernike
fit which supplied the basis for the movements of the ion beam head. The first
iteration required 14 days, the second 6 days. The surface figures involved
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Table 1.5. Summary of the IBF correction results at Kodak on the Keck primary
segment SN 009 [1.62]

State Surface error (um)
ptv rms
Initial 3.13 0.726
First iteration 1.08 0.252
Second iteration 0.51 0.090

are shown in 3D models in the paper and are summarised in Table 1.5. The
optical surface figure of segment SN 009 was improved in these two IBF
iterations to yield a predicted 50 % encircled energy within 0.25 arcsec, which
was comparable to many of the other Keck telescope segments.

This successful result with such a Keck primary segment firmly established
the merits of IBF as a fundamental tool for off-axis segment production.

A similar highly successful operation was the correction of an off-axis,
aspheric petal in four iterations [1.63] — see Fig. 1.29 below. :

Figure 1.27 shows an interior view of Kodak’s Ion Figuring:Chamber in
preparation for the IBF of a 1.3m workpiece. Figure 1.28 shows the IBF
processing of one of the Keck primary mirror segments. Figure 1.29 shows

Fig. 1.27. An interior view of Kodak’s Ion Figuring Chamber showing preparation
for the IBF of a 1.3m workpiece (courtesy T.J. Wilson and the Eastman Kodak
Company)
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Fig. 1.28. Ion Beam Figuring at Kodak of one of the Keck primary mirror segments
(courtesy T.J. Wilson and the Eastman Kodak Company)

Fig. 1.29. Ion Beam Figuring at Kodak of an off-axis, aspheric petal to a surface
figure better than 0.01 umrms in four iterations (courtesy T.J. Wilson and the
Eastman Kodak Company)
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the IBF processing of the off-axis, aspheric petal (referred to above) figured
with IBF to better than 0.01 pm rms in four iterations, giving an improvement
of over 400 %.

1.2.2.6 Figuring techniques in combination with active optics giv-
ing tolerance relaxation. Reference has been made above to various forms
of active control by flexing laps or workpieces. If a general system of image
optimization is to be used, as described in Chap.3 under the term “Active
Optics”, then important relaxation of low spatial frequency manufacturing
tolerances becomes possible. Because of the close association with ESO in
connection with the 1 m test mirror for the NTT, the 3.5m NTT optics and
the contract for the 8 m primaries of the VLT, the firms REOSC in Paris
and Carl Zeiss in Oberkochen have acquired special experience in this ap-
proach. An account was given above of the CCP (Computer Controlled Pol-
ishing) methods used. We will now consider other aspects of this technology
in connection with large and very large mirrors. It is recalled that the VLT
primaries are menisci with a diameter of 8.2m and a thickness of 0.175m
(aspect ratio = 47).

REOSC technology for 8 m primary mirrors [1.25] [1.26]

a) Support concept for the VLT primaries. The support must provide
correct compensation of gravity effects and of polishing tool pressure in view
of the aspect ratio of 47. During testing, the support must provide for easy
centering and must enable the low spatial frequency terms, which are after-
wards to be corrected actively (see Chap. 3), to be corrected during figuring
to prevent “fringe swamping”, i.e. masking of high spatial frequency errors by
low spatial frequency terms which are unimportant if active optics is available
[1.66]. This enables full advantage to be taken of the low frequency tolerance
relaxation which is one of the two principal aims of active optics. The support
used by REOSC has the same geometry as that in the final telescope with
150 individual supports, all of which can be controlled to give the desired
force. Pneumatic actuators are used — see Fig. 1.30. The support operates in
two different regimes: for polishing and for testing. The piston shaft is free
during testing to avoid application of spurious forces; during polishing, a lin-
ear bearing applies constraint to stop mirror movement and each actuator is
isolated from the others to provide a pre-calibrated force.

The active control of the support also effectively provides for a “stress
polishing” facility for controlling low spatial frequency terms with large size
tools. The force control accuracy is 2-3N because of friction, though load
cells can measure to 1 N. The support is based on 3 sectors, as in the finished
telescope.
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Fig. 1.30. Pneumatic support for the figuring of the VLT 8.2m primaries (courtesy
REOSC, Works photo)

Fig. 1.31. Newly built (April 1992) optical production facility of REOSC for the
ESO VLT 8.2m primary mirrors (courtesy REOSC, Works photo)
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b) Figuring concept for the VLT primaries. REOSC analysed the rel-
ative merits of diamond milling and grinding to achieve the basic spherical
surface or required form. The maximum sag difference of the hyperboloid
to the best sphere for figuring is 2.3 mm at the edge, giving a mass of glass
(Zerodur) to be removed of about 150 kg. They concluded that a milling op-
eration is not significantly faster than grinding and that grinding is safer.
The pneumatic (air-bag) support is well adapted to grinding and polishing,
but too flexible for fast milling. Above all, vibration during milling could be
a breakage risk for the mirror.

The newly built optical production facility for the 8.2m VLT blanks
(Fig. 1.31) contains a large Computer Controlled Milling Machine (CCMM)
with final accuracy of about 100pm (see Fig.1.32); but this will only be
used to machine the support system, to locate the actuator and special pad
positions accurately and to machine the grinding and polishing tools.

Spherical grinding is performed with the maximum stiff tool size con-
sidered feasible, with 4-5m diameter. A starting spherical surface is still
considered the best guarantee of avoiding high spatial frequency and non-
axisymmetric errors. Both local errors such as “hills” and low spatial fre-
quency errors can be corrected by the active force control (stress grinding).
Aspheric grinding is performed with smaller tools of 1-2m diameter under
computer control (CCST discussed in §1.2.2.1). The surface form is smoothed
with a 4-5m flexible tool. It should be remembered that the active optics
concept puts great weight on reduction of high spatial frequencies to achieve
the “Intrinsic Quality”, the essential feature of the active optics specification.
For smoothing (fine grinding) of the surface roughness, REOSC also uses a
5m flexible tool with a ceramic tiled surface. This has a “petal-lap” form to
achieve equal wear on the aspheric surface.

The techniques for polishing are similar to those for aspheric grinding,
the basic methods being CCST and a large (5m) flexible tool of “petal lap”
form to smooth the figure. The ceramic tiles used for grinding are replaced
by pitch tiles. Figure 1.33 shows the type of lapping surface proposed. The
dashed curve is an “equal wear” petal-lap form, while the full-line shows
a possible modification to attack a high zone and neighbouring low zone.
Another approach envisaged [1.26] was a sector of about 45° form on a 4m
flexible tool of calculated flexibility, operated with variable local pressure.
The polishing with CCST was discussed in §1.2.2.1.

The REOSC test methods are discussed in §1.3.

¢) Results for the ESO VLT 8.2m primary mirrors. Up till March
1997 REOSC had completed three of the four VLT primaries [1.67] [1.68].
The whole figuring and testing procedure has effectively gone according to
plan without any significant problems — a remarkable achievement if one
considers that these are by far the largest monolithic telescope mirrors ever
manufactured. REOSC is, at this time, also figuring the two similar-sized
mirrors for the Gemini project.
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Fig. 1.32. (a) The Computer Controlled Milling Machine (CCMM) installed at
REOSC with one of the 8.2m VLT primary mirror blanks mounted on the turntable.
The relative thinness of the blank (175mm, AR = 47) is noteworthy. (Courtesy
REOSC, Works photo). (b) Another view during the grinding operation
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Fig. 1.33. “Equal wear”
petal-lap polishing form
with possible modification
(full lines) for zonal work
on the ESO 8.2m pri-
maries at REOSC [1.25]

Figure 1.34 shows a test operation being performed on one of the VLT
primaries. The production of the 8.2m mirrors has become such a matter
of routine that REOSC can now complete them at a rate of one every 8-10
months [1.68]. Dierickx et al. [1.67] give an excellent account of the practical
results. Table 1.6 gives a summary of the final values for the first two VLT
primaries. We see that the figure quality corresponding to the active mode
(Intrinsic Quality with active correction of those low frequency terms to be
corrected in the telescope) is markedly better from the CIR values than the
specification. Since the convergence was still excellent, further improvement
could readily have been achieved. However, Dierickx has shown from a simu-
lated star field, for seeing 0.4 arcsec at A = 500 nm, that there is no detectable
difference between a perfect telescope and the quality shown in Table 1.6 for
primary #1 [1.67]. Figure 1.35 shows the final interferogram of primary #2
in the active mode (Intrinsic Quality). Primary #3 has a quality at least as
good as primary #2 [1.68]

It may be concluded that the art of figuring and testing monolithic pri-
maries, even of the largest sizes that can be cast and handled, has now reached
such an advanced stage that, in combination with active optics, the degra-
dation of optical quality due to manufacture can be made negligible even for
the best conceivable ground-based atmospheric seeing. Indeed, primary #1
is diffraction limited at the H, wavelength in the red and the other two are
even better.

Of course, for future telescopes of the largest sizes, monolithic primaries
will be superseded by segmented primaries. REOSC considers that ion beam
figuring is essential for the efficient figuring of high quality segments and has
set up a practical facility which is now routinely available for all such cases.
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Fig. 1.34. A test operation being pertormed on one of the VLT primaries (courtesy

REOSC, Works photo)

Table 1.6. Summary of the results for the first two ESO VLT 8.2m primaries

(Dierickx et al. [1.67])

Property Specification | Result VLT | Result VLT
Primary #1 | Primary #2
Radius of curvature (mm) 28800+ 100 | 28762.9 28764.9
Conic constant (passive mode) —1.004616 | —1.004457 | —1.005089
Active forces applied (N) < 4120 —83 +52 +80
RMS Wavefront (active mode) (nm) N/A 43 38
RMS Slope (active mode) (arcsec) N/A 0.055 0.055
Strehl Ratio at A = 500 nm >0.25 0.714 0.791
CIR (A = 500nm, ro = 500 mm™) > 0.820 0.854 0.884
Microroughness (A) N/A 15-20 8-11

* Corresponds to atmospheric seeing of 0.20 arcsec
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Fig. 1.35. Synthetic interferogram of
the finished VLT primary #2 in the ac-
tive mode (Intrinsic Quality) (Dierickx
et al. [1.67])

Carl Zeiss (Oberkochen) technology for 8 m and smaller mirrors

a) Support concept. A detailed analysis of the necessary support for an
8 m meniscus with thickness 200 mm was performed in 1985 [1.27] for the
VLT proposal. For thin meniscus technology using active optics, the support
system is considered of central importance. There were three cases defined
for analysis:

— The dead weight axially supported
— Polishing pressure in axial direction
— Frictional forces due to polishing

Both FE and analytical methods were used. A general treatment is given by
Cheng and Humphries [1.69] and an analytical treatment, above all for the
NTT, by Schwesinger [1.70]. A proposed solution had 328 support pads and
gave, for the axial deadweight, a wavefront error of 18.6 nmrms. For active
optics simulations or control, an adequate proportion or all of these supports
would require force adjustment possibilities. The influence of polishing pres-
sure for the calculated case is shown in Fig. 1.36. The support was adequate
for reasonable polishing pressure at AR < 40, but not at AR = 80.

Since 1985, Carl Zeiss has made further major advances, also in connection
with manufacture with the strip tool. The support principle remains the same,
but with a continuous back support surface and radial relaxation. It has been
possible to work to high quality for a space project a mirror of 4m diameter
with thickness only 10 mm — an aspect ratio of 400! With a working support
of this principle, the manufacture of primary mirrors such as those of the 8 m
VLT telescopes with an aspect ratio of 46 would cause no problems at all
from the support point of view [1.7].
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Fig. 1.36. Wavefront aberration (rms) generated by polishing pressure for 8 m
mirrors with aspect ratios 20, 40 and 80 (Carl Zeiss [1.27])

b) Figuring concept. The figuring concept is documented in [1.10] [1.27]
[1.28] and [1.71]. The projects to which advanced technology has been applied
are, above all, the 3.5m NTT, the 3.5 m Galileo telescope based on the NTT
and the 2.7 m SOFIA primary. This latter had a thickness of 60 mm (AR = 45)
and an f/ratio of f/1.2 [1.28]. The technology used in such extreme cases was
the CCP technique with pressure control discussed in §1.2.2.1 using small
tools combined with a figure smoothing operation with the membrane tool
of §1.2.2.2. This was also used for the NTT and the Galileo optics and,
above all, corrects the edge zone errors of CCP. Ion beam polishing avoids
edge zone problems and is a useful touching-up technique in certain cases.
Material removal < 1pum can be achieved without serious surface roughness
problems (< 5nm). In general, Carl Zeiss commences from the sphere with
f/nos > ca.1.8.

Lap surface modification is also used (petal-laps) for figure smoothing
and can be computer controlled to some extent (in a differential sense), but
it is more difficult to apply the Preston theory than with small tools. The
strip (rectangular) tool of the membrane or strip polisher is also modified in
its polishing surface to handle axisymmetrical errors. The basic methods for
producing steep primaries are [1.28] [1.7]:

— Generation of the asphere by diamond wheel grinding

— A lapping (grinding) process using 2-3 carborundum grades with relatively
large tools to remove large errors, preferably using the strip tool

— A similar process for figuring (polishing) and fine correction, the relatively
stiff tool preventing ripple production

Aspheric lapping by grinding is applied if the normal interferogram has more
fringes than one can handle (fringe swamping). In practice, today, this means
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asphericities of > ca.10pm, although conventional polishing techniques can
handle asphericities up to 50 um. Then IR testing is applied. This sets the
test limit for lapping to about 1pum which must be corrected by polishing.
Material removal by lapping (grinding) is at least 10 times as efficient as
polishing. Polishing removes about

0.03 um /hour /kilopascal

whereby a pressure of 3-5 kilopascal is normal. Membrane polishing requires
a special membrane for each mirror and had only been extensively used up
to 1992 on the SOFIA mirror.

Fine figuring at the very end is usually done with stiff sub-aperture tools
using pressure control. Such a final stage may require up to 200 hours, but
this may be improved by a factor of 3. Typically, near the end, 5 min polishing
time may be followed by 40 min cleaning and 1-2h testing! The active optics
relaxation of low spatial frequency terms, above all astigmatism, is a big help
in retouching of high spatial frequency errors.

The NTT 3.5m, f/2.2 primary had an Intrinsic Quality (IQ) of dgg =
0.096 arcsec or W = 27nmrms [1.72] [1.71]. The equivalent results for the
similar Galileo primary were dgo = 0.07arcsec and W = 16 nmrms [1.73].
Figure 1.37 shows an interferogram of the final figure, (a) without active
correction with only piston, tilt, focus and coma removed, and (b) with active
correction (intrinsic quality). The latter was probably the highest quality
large optical surface manufactured up to that time (1992). However, it was
by no means the steepest, having a relative aperture £/2.2.

Fig. 1.37. Interferogram of the final figure of the 3.5 m, £/2.2 primary of the Galileo
telescope: (a) before active correction, (b) after active correction (Carl Zeiss [1.73])
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1.3 Test technology

1.3.1 General aspects of test technology development

In Chap. 2 we shall consider a number of test technologies suitable for testing
finished telescopes in function. The situation is quite different from that
obtaining in an optical workshop, although a number of procedures are used
in both. The most important difference is that a functioning telescope cannot
be tested by an interferometer using an artificial reference source, which rules
out the most effective forms of interferometry used in the workshop for large
optics.

Although interferometry in its simplest form (Newton’s rings) goes back
to the origins of the reflecting telescope, its application to the manufacture
of telescope optics is only a recent development. It should be remembered
that the primary of the Palomar 200-inch telescope was tested with the Fou-
cault knife-edge technique made quantitative by using masks to measure the
differences of radius of curvature of different zones, and by Hartmann tests
in the final stages. No interferometric technique was available for large op-
tics at that time. The breakthrough occurred with the introduction of the
LUPI (Laser-Unequal-Path-Interferometer) form of the Twyman and Green
interferometer made possible by lasers. But Hartmann methods and other
tests could still rival interferometry because of problems of vibration, air
turbulence and evaluation techniques. These problems have now all been ef-
fectively solved by the application of modern detectors (particularly CCDs)
and computers. Thus, the dominance of interferometry in modern testing of
large optics is far more pronounced than it was 20-30 years ago.

1.3.2 Interferometers

The best practical review of basic interferometer forms and their use is given
by Malacara [1.74]. Here, we can only briefly deal with the essential charac-
teristics and applications.

1.3.2.1 Interferometers for smaller elements. The commonest forms
are the Fizeau and Haidinger interferometers, invaluable test equipment for
workshops making high quality elements up to about 300 mm. As an example,
the workshop of H.Kaufmann in Crailsheim, producing optics up to 1m
diameter, has both a vertical and horizontal Fizeau interferometer of aperture
250 mm as well as a smaller (100 mm) Haidinger interferometer.

The Fizeau interferometer (Fig.1.38) is closely related to the simplest
Newton interferometer [1.74]. The Newton interferometer consists of an ex-
tended monochromatic source, a beam divider and two surfaces virtually in
contact producing Newton’s fringes (sphere against flat) or parallel fringes
(two flats with thin air-wedge between them or two mating spheres as in test
plate pairs). For two flats with a narrow air-wedge between them, the optical
path difference in double pass leading to dark fringes is given by
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Monochromatic
source of light

=5 Pinhole
Beam divider

: P Eye
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Collimating lens

Fig. 1.38. Schematic arrangement of a
:/Reference flat surface Fizeau interferometer using a lens colli-

::,\Sl"face under test mator (after Malacara [1.74])

20y =2t =mA (1.25)

where « is the wedge angle, y is the distance from the intersection line of
the planes, ¢ the separation and m an integer. Dark fringes result from the
phase change at the air-glass surface. The only difference, physically, in the
Fizeau compared with the Newton form, is that the air gap is much larger
so that the order of the fringes m is much higher. This makes the practical
work simpler by avoiding surface contact, but requires a collimated system
with a pinhole source. The Newton arrangement with an appreciable source
size falsifies the fringe pattern if m is large because Eq. (1.25) becomes, with
oblique vision at angle 6,

1
2t (— — tan @sin 0) = 2tcosf = mA (1.26)
cosf

In the Newton form, m < 10. For a precision /20, we require 1—cos 8 < 0.005
or § < 0.1rad, a source size of less than about 10°. If the gap is about 5mm
in the Fizeau form, then m ~ 20000 and the source must be about 50 times
smaller, in practice a pinhole with a monochromatic source and collimator.

The Fizeau interferometer can be used without a collimator for testing
spherically curved surfaces of similar radii (Fig.1.39). The reference surface
can be either the concave or convex surface. Alternatively, the two faces of a
meniscus can be tested if near to concentricity, but the order m may be very
high.

The Newton and Fizeau interferometers give fringes of equal thickness
measuring directly the variations in an air (or glass) space. In the Haidinger
interferometer, the thickness of the air (or glass) space is uniform and the
source is of large angular size (Fig. 1.40). This gives circular fringes of equal
inclination, formed at infinity. These are governed by Eq. (1.26) and are the
exact equivalent of the basic circular fringes observed with a Michelson in-
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terferometer [1.75]. The Haidinger fringes can be better seen if m is large
by focusing them by a lens. This is effectively the same as a Fizeau interfer-
ometer except that the pinhole is replaced by a hole giving a large angular
size of the source. Alternatively, the fringes can be viewed with a small tele-
scope. Kaufmann [1.11] can detect angle errors down to 0.01 arcsec with his
Haidinger interferometer.

Except for the form of Fig. 1.39, all such interferometers using collimators
are limited in test diameter by the collimator.

1.3.2.2 The classical Twyman-Green interferometer. The Twyman-
Green interferometer [1.74] is derived from the original Michelson interfer-
ometer [1.75] in exactly the same way that a Fizeau is related to the ba-
sic Haidinger interferometer. Its original form [1.76] was for testing prisms
and microscope objectives, later [1.77] also camera objectives. A detailed ac-
count of classical applications is given in [1.2]. The original form is shown in
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Fig. 1.41. The basic
form (equal path) of a
Twyman-Green interfer-
ometer: (a) testing a
plane mirror, (b) camera
objective test arrange-
ment

Fig.1.41. The camera-lens testing version (b) is normally combined with a
“nodal-slide” arrangement, whereby the field performance at field angle up,
is tested by rotating about the second nodal point N’ and axially moving the
convex reference mirror to compensate for the flat field. As with the modifi-
cation of Fig. 1.39 for the Fizeau interferometer without a collimator, there is
an equivalent Twyman-Green form whereby the plane mirrors are replaced by
identical concave mirrors (Fig. 1.42 (a)). Twyman [1.74] [1.78] suggested this
form would be suitable for testing large mirrors or lenses, as no collimator
was required; but Michelson [1.74] [1.79] had correctly pointed out that the
lack of sufficiently coherent light sources at the time meant that the optical
paths of the two arms would have to be substantially equal, i.e. the reference
concave mirror would have to be effectively as large as the test mirror. The
form of Fig. 1.42 (a) is usually called a Williams interferometer because Burch
[1.80] attributed it [1.74] to Williams.

The coherence requirements (size - spatial coherence) and monochro-
maticity (temporal coherence) of the light source were analysed by Hansen
[1.81] and are summarised by Malacara [1.74].

Fig. 1.42a,b. Twyman-Green in-
terferometer without a collimator
(Williams type) (after Malacara
[1.74])
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Concerning spatial coherence, an interferometer is “uncompensated” if it
has more glass in one arm than the other. The maximum source size has then
an elliptical form and a Michelson interferometer gives elliptical fringes. For
the case of a glass plate of thickness ¢, normal to the axis of the beam, the
mirror should be shifted for a quasi-monochromatic light source by

to = to (1 _ —1-) , (1.27)

n

where n' is the refractive index. This implies that the virtual images of the
mirrors at the end of each arm are at the same place when the interferometer
is compensated for the finite size of the source. The fringes are then localised
near the mirrors and the viewing system must be focused on them.

Concerning temporal coherence, if there is an uncompensated plate thick-
ness i, in the interferometer, then for an axial ray through a plate normal
to the axis, the change of optical path with wavelength is

dn’
Using the Rayleigh limit A(OPD) < A\/4 as the criterion for fringe visibility,
this gives
A

K
= 8ty (dn’/dN)
For non-compensation, A\ will be small, whereas white light can be used for
an exactly compensated interferometer, as was classically the case with the
Michelson interferometer.

If the arms are very unequal — as in the Laser Unequal Path Interferometer
(LUPI) below — then we have as in Eq. (1.25)

(OPD), = 2ty = mA (1.30)

From the Rayleigh criterion, the order m should not change between \ and
(A — AX) by more than %, giving

mA=(m+ (A - AN , (1.31)

where A\ is the permissible bandwidth for fringe visibility. Equations (1.30)
and (1.31) reduce to the good approximation

AN < A%/8t (1.32)

AX (1.29)

the requirement for good fringe visibility. This condition proves Michelson’s
assertion [1.79] that the testing of large optics with the Twyman-Green in-
terferometer of the Williams type (Fig.1.42(a)) before the invention of the
laser was not feasible. However, if the Williams interferometer is modified
as shown in Fig.1.42(b), whereby one concave mirror is replaced by a col-
limator lens and a flat of the same size, as (according to Burch [1.80]) was
proposed by Williams, the problem of the size of the second concave mirror is
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solved. According to Malacara, [1.74], this was also proposed by R.E. Hopkins
in conjunction with a laser source. Without this, the arms must still meet
the condition of (1.32) for equality, which remains a major problem for large
concave mirrors. In an inverted scheme with the concave mirror as reference
and the objective as the test object, complete small telescopes have been
successfully tested without a laser source [1.74] [1.82]. However, such devices
have now been replaced by the LUPI.

In two classic papers, Kingslake [1.83] [1.84] analysed the interferogram
patterns for the first order (tilt and defocus) and third order (spherical aberra-
tion, coma and astigmatism) aberrations. The corresponding interferograms,
both individually and in various combinations, are reproduced by Malacara
[1.74]. Since these interferograms give the basic forms encountered in all prac-
tical cases, they are reproduced in Fig.1.43. For details of the aberration
coefficients involved, the reader is referred to Malacara [1.74].

1.3.2.3 The Laser Unequal Path Interferometer (LUPI). The devel-
opment of gas lasers was the fundamental requirement for the practical ap-
plication of the extreme unequal paths in a Twyman-Green interferometer,
which are necessary if the reference beam is to be made small and compact
compared with large test optics. In the earlier development, single mode lasers
with very high spectral purity were very expensive and had very low power
outputs. So multimode lasers were used for which good fringe contrast could
only be obtained near certain evenly spaced OPD positions [1.74] [1.85]. If the
length of the laser having several longitudinal modes is L, then the (OPD),
on the axis to give good fringe contrast must be

OPD), =2t~ M -2L , 1.33
0

where M is a digit. However, stabilized single mode lasers are now available at
a reasonable price: they enable LUPI interferometry over any OPD required
by modern large optics without any loss of fringe contrast.

A modern, versatile form of LUPI was designed by Houston et al. [1.74]
(1.86], shown schematically in Fig. 1.44. The beam expander expands the par-
allel laser beam to the beam size of the interferometer. Slight aberration here
is uncritical as it is present in both interferometer arms. The beamsplitter
operates at the Brewster angle and has a small wedge angle to avoid reflec-
tions from the front face. The beam diverger produces a divergent beam with
negligible spherical aberration at an f/no able to cover the steepest concave
spherical mirrors to be tested (Fig.1.44(a)). Aspheric test mirrors require a
supplementary compensation or null system, whose function it is to produce
an aberrated wavefront at the position of the test mirror of the same shape as
the aspheric form required (Fig.1.44(b)). This means that all aperture rays
will meet this surface normally (see § 1.3.4) and the perfect aspheric will yield
a perfect test interferogram as for a spherical mirror tested without a null
system, i.e. a perfect autocollimation test if the test mirror has the desired
shape.
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Fig. 1.43 (1-9). Interference patterns for standard aberrations (after Malacara

[1.74] and Kingslake [1.83] [1.84]):

(1) Perfect lens: (a) No tilt or defocus, (b) With tilt, (¢} With defocus, (d) With
tilt and defocus.

(2) Interferograms showing spherical aberration (without tilt): (a) Paraxial focus,
(b) Medium focus, (¢) Marginal focus. (With tilt), same foci (d), (e), (f).

(3) Coma at the paraxial focus. The central figure has no tilt, the others are with
tilt contributions for the directions shown.

(4) Coma plus a small defocus contribution. The central figure has no tilt, the
others are with tilt contributions for the directions shown.

(5-9) see next pages
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Fig. 1.43. (continued)

(5)(6)(7)(8) Astigmatism at different foci, the central figure with no tilt, the
others with tilt contributions for the directions shown: (5) Petzval focus;
(6) Sagittal focus; (7) Best focus; (8) Tangential focus.

(9) see next page
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Fig. 1.43. (continued)

(9) Combined aberrations: (a) Spherical aberration with coma, (b) Spherical aber-
ration with astigmatism, (c) Coma with astigmatism, (d) Spherical aberration
with coma and astigmatism.

The fringe focusing lens must focus the exit pupil of the system on to
the detector. Earlier, this was a photographic plate, now an electronic de-
tector (normally a CCD camera) is an essential part of a modern LUPI.
Where is the “pupil”? If the test mirror is perfect in the sense that all in-
cident rays strike it exactly normally and return along their incident paths,
then the system has zero field and the term “pupil” is meaningless. However,
as soon as the interferogram contains error information, the reflected rays
leave the test mirror as though it is the pupil, returning through the system
with slightly different paths. For small aberrations, the law of isoplanatism
of optical systems ensures that the aberrations measured are not significantly
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diverger

Mirror
under test

Observing
screen

Adjustable Brewster angle
mirror
Laser 7R beamsplitter p
beam&
Beam A
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‘ diverger Nulil lens
Observing Aspheric surface
screen under test

Fig. 1.44a, b. Basic version of LUPI designed by Houston et al. [1.74] [1.86]
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falsified by the path change. The fringe pattern then measures the OPD
between the wavefront incident on the test mirror and its actual surface.
Therefore, the fringe focusing lens must focus the image of the test mirror,
as transferred back through the null system and beam diverger optics, on to
the detector with the correct size. Since the beams are already recombined,
the quality of this lens is uncritical. The critical element is the null system
(§1.3.4). In principle, this can be combined with the diverger optics — see
below.

The other major advance in the application of the Twyman-Green in-
terferometer, following the unequal path development due to lasers, was the
computer analysis of interferograms. This was already done using scanning
procedures of photographic records, but the real revolution has taken place
with on-line CCD cameras enabling direct read-out of the fringe coordinates.
An important new area of technology has developed (see §1.3.2.4) for deduc-
ing the phase map of the wavefront with high accuracy and convenience. The
data points are fitted by a least squares procedure to a defined polynomial.
If classical Hamilton terms (see Chap.3 of RTO I) are used, they are not
general orthogonal functions unless identical to Zernike terms without cen-
tral obstruction [1.87] (§3.10 of RTO I). The procedure is satisfactory for a
few terms but leads to an ill-conditioned matrix if many terms are used: this
reflects the situation where non-orthogonal terms of different orders balance
each other giving high individual coefficients with large errors. This situation
is not limited to interferometric analysis: it also occurs with other measures,
such as Hartmann-based tests.

Orthogonal polynomials such as those of Zernike (or natural vibration
modes — see Chap. 3) convert the matrix into a diagonal one and remove the
problem of ill-conditioning. Very effective software packages are available,
such as the FAST system [1.88], giving not only polynomial analysis from a
CCD-camera scan, but also point spread functions with diffraction, MTF data
and Strehl Intensity Ratios. Even a small workshop such as Kaufmann [1.11]
has been working with such a system since 1986. Typically it may be used
for testing telescope primary paraboloids or complete Cassegrain telescopes
in autocollimation with double pass (Fig. 1.45), though the same set-up can
be used for other forms of image analysis such as the Foucault knife edge or
direct observation of the image of a point source, as shown here. The plane
mirror is in the foreground, testing a complete Cassegrain telescope from its
Nasmyth focus.

The test of aspheric primaries alone by the standard method at their
center of curvature, as in Fig. 1.44, normally requires a null system for large
or steep mirrors. This method is in single pass and does not require a re-
flecting coat on the mirror, which is essential for double pass as in Fig. 1.45.
Kaufmann [1.11] performs such tests in single pass in a LUPI of Williams
form (Fig.1.42), avoiding null systems by doing measurements of the shifts
of the centers of curvature of different zones. This is the equivalent of the
Foucault measurements using zonal masks as practised by amateurs [1.89]
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Fig. 1.45. Set-up for testing parabolic telescope primaries with double-pass in
autocollimation against a plane mirror (courtesy H. Kaufmann [1.11])

and for the 200-inch Palomar primary. However, Kaufmann adjusts the tilt
in his Williams-type Twyman-Green to match that of any given point on
his test mirror and adjusts the focus to get a minimum number of circular
interference fringes at that point. This gives a measure of zonal radius of
curvature differences of higher precision and greater simplicity of operation
than such measures with the Foucault knife-edge. This method is essentially
similar to that proposed by Liu et al. [1.90].

1.3.2.4 Modern phase shift and fringe scanning interferometry. The
earlier evolution of fringe scanning interferometry in general is excellently
treated by Bruning [1.91], the pioneer of phase shift methods [1.92]. Pre-
viously, till the late 1960s, double-beam interferograms were recorded pho-
tographically and judged visually or measured by hand. Such photographs
contained all the errors due to air turbulence, vibrations and interferometer
errors. Reduction of these by averaging a number of photographs was a la-
borious and inefficient process, often of doubtful validity for high accuracy
and always requiring much operator experience and judgement. Passive fringe
scanning techniques for photographic interferograms were described by Jones
and Kadakia in 1968 [1.93]. Non-linear response of the photographic process
falsifies the information between fringes, so it was necessary to use many
tilt fringes over the interferogram. Although the automatic evaluation was
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a great advance, the fundamental problems of air turbulence and vibration
were not resolved.

One way of getting round the interpolation problem between fringes is to
introduce a known temporal phase shift. Real-time electronic detectors were
essential to this development, earlier with TV detectors, later with solid state
detectors as an array. Modern systems normally use CCD cameras. The in-
tensity of the fringe pattern is detected over each point of this fixed grid and
the reference path length changed in a systematic manner to change the phase
at each recording point. According to the definitions given by Wyant [1.94],
an interferometer using a constant continuous phase difference rate in time
is termed a heterodyne or phase shifting interferometer, while an interferom-
eter using phase shifts in discrete steps is a phase stepping interferometer.
Phase shifts may be generated by direct movements of the reference mirror or
by polarisation techniques. Various techniques exist [1.94] for extracting the
phase, some of which we will consider below. Since the heterodyning approach
essentially solves the interpolation problem, it is no longer necessary to in-
troduce tilt fringes into the interferogram, thereby relaxing the isoplanatism
requirements of the interferometer.

Such temporal heterodyning is not the only possible approach. Before con-
sidering the temporal heterodyne approach in more detail, it is instructive to
see how phase information can be extracted from a single interferogram.

An elegant system for direct phase detection in the case of a hologram
was given in 1972 by Ichioka and Inuiya [1.95]. The spatial spectrum of the
hologram distributed in the spatial frequency domain as a central triangu-
lar signal with two symmetrical sidebands around the reference spatial fre-
quency +k sin 8. The hologram was transformed into time-sequential signals
by a video system so that the distribution of the dispersed spectrum in the
spatial domain was transformed into the temporal one. The phase ¢ of the
hologram was extracted from the electrical signal in the temporal domain
by eliminating the unwanted spectral components through an electric filter,
the demodulating circuit, and the computing circuit. The hologram arising
from the complex amplitude A(z,y) of the object and B of the reference was
transformed by a vidicon tube into the electrical signal

I(t) = A%(t) + B? + 2A(t) B cos[wt — ¢(t)] , (1.34)

where w = ksind. The first two terms consist of the bias and very low fre-
quency components which were removed by the filter. The carrier frequency
was then removed by multiplying the third term of (1.34) by coswt and sinwt.
If this process is carried out for the complete Eq. (1.34), it gives
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Cr(t)=1I(t)coswt
= [A%(t) + B?) coswt + A(t)B cos[2wt — ¢(t)]
+A(t)B cos ¢(t)
Si(t) =I(t)sinwt
= [4%(t) + B| sinwt + A(t) Bsin[2wt — ¢(t)]
+A(t)B sin ¢(t)

The spectra of these signals are shown schematically in Fig.1.46. The spec-
trum containing the desired information of amplitude A and phase ¢ is dis-
persed as the sideband around the zero spectrum. The first two unwanted
terms in (1.35) are eliminated through the appropriate low pass filter, leav-
ing only the third terms. These are then

Cr(t) = A(t)B cos ¢(t) }
Sr(t) = A(t)Bsing(t) J ’

\ (1.35)

/

(1.36)

giving the desired amplitude and phase as

A%(t) = CR(t) + S3()
#(t) =arctan[S;(t)/Cr(t)] } (1.37)

A
Signal
AB si
sinét (AP+B?)sinot  AB sin (2ot -gt)
: /l\ i .
0 ® 20 Frequency

Fig. 1.46. Phase and amplitude extraction in the direct phase detecting system of
Ichioka and Inuiya [1.95]. The spectrum of the signal S(¢) or C(t) is shown

The system described displayed the phase map scaled linearly over the
phase, modulo 27, as a video intensity distribution, enabling real-time ana-
logue observation of the wavefront.

The above system, although extremely elegant, gives the wavefront in
analogue intensity pattern form. In general, a digital output and analysis is
an essential feature of high accuracy wavefront analysis. A general Fourier
formulation of the problem of phase extraction from a single interferogram
was given by Takeda et al. in 1982 [1.96]. Tilt is introduced to produce normal
non-contour fringes. Since this formulation is general and physically instruc-
tive, we will summarise it here using the Takeda notation. The fringe pattern
has the form
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9(z,y) = a(z,y) + b(z,y) cos2r fox + ¢(x,y)] , (1.38)

where the phase ¢(z,y) is required and a(z,y) and b(z, y) are unwanted irra-
diance variations arising from unequal transmission or non-uniform reflections
in the interferometer. b(z,y) is a measure of the fringe visibility. In general,
these vary slowly compared with the variation due to the rapid spatial mod-
ulation introduced by the tilt carrier frequency fo. Conventionally, the phase
was obtained by setting the tilt frequency fy to zero, giving contour fringes.
The weaknesses are that the sign cannot be determined (confusion of “hills”
and “valleys”); that the sensitivity is limited to 27 (otherwise there are no
fringes); and accuracy is affected by the variations a(z,y) and b(z,y). These
are the problems solved by temporal heterodyne techniques [1.91] [1.92] but
they require precision phase-shifting hardware. Takeda et al. propose instead
a general Fourier solution.

They assume an array detector with sufficient spatial resolution, particu-
larly in the z direction perpendicular to the fringes, to satisfy the sampling
theorem. Equation (1.38) is re-written as

9(z,y) = a(z,y) + c(z,y) exp(2mifox) + c*(z,y) exp(—2mifoz) , (1.39)

where

c(z,y) = 5b(z,y) explig(z,y)] (1.40)

and c* is the complex conjugate. Equation (1.39) is now Fourier transformed
with respect to z by a fast transform (FFT) giving

G(f,y) = A(f,y) +C(f — fo,9) + C*(f + fo,9) » (1.41)

where f is the spatial frequency in the z direction. Since the spatial variations
of a(z,y), b(z,y) and ¢(z,y) are slow compared with fo, the Fourier spectra
in (1.41) are separated by the carrier frequency fo, as shown schematically
in Fig. 1.47. We make use of one of the two sidebands, say C(f — fo,v), and
translate it by fo on the frequency axis to the origin to obtain C(f,y). Again
using the FFT, the inverse Fourier transform is calculated from C(f,y) with
respect to f to obtain ¢(z,y), given by (1.40). The complex logarithm gives

logc(z, y)] = log [(3) b(z, )] +id(z,y) , (1.42)

in which the imaginary part gives the desired phase completely separated
from the unwanted amplitude variation b(z,y) in the real part by using a
filter centered at fy. The carrier frequency fy is then removed by shifting to
the origin. The phase ¢ is given from the real (Re) and imaginary (Im) parts
of ¢(z,y) by

¢(z,y) = arctan [Re{c(z,y)}/Im{c(z, )} (1.43)

Takeda et al. give a procedure for overcoming the limitation of modulo 27 and
determining a uniquely defined phase function. Such a procedure is termed
phase tracking or phase unwrapping and various algorithms have been pro-
posed [1.97].
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Aty)
C*(t-fo.y) C(f-fo.y)
y
(a)
C(fy) Fig. 1.47a,b. Separated
Fourier spectra of a non-
2 »f contour (i.e. tilted) type of
y fringe pattern. The y-axis is
perpendicular to the paper.
{b) (After Takeda et al. [1.96])

The work of Takeda et al. was followed up by a notable paper by Mertz
(1.98]. He pointed out that the Fourier transform calculation technique,
though elegant and effective, was very slow for practical work and also unnec-
essary. The introduction of a tilt frequency fo is simply spatial heterodyning.
The tilt was set to give about 3 pixels per fringe in a TV video signal. Three
separate signal channels each sense one phase of a three-phase stroboscope
or moiré. This functions as a three-sample convolution filter having complex
coefficients. The complex convolution is for the three adjacent samples A, B,
C of the image

Z = Aexp(—2mi/3) + Bexp(0i) + Cexp(+27i/3) (1.44)
whose real or cosine part is
Cr=(-1/2)A+ B+ (-1/2)C (1.45)

and whose imaginary or sine part is

St = (—V3/2)A + (+V3/2)C (1.46)
Then, as in Eq. (1.37), the phase including tilt is given simply by

¢ = —arctan(S;/CR) (1.47)

Mertz indicates the circuitry required to perform this convolution and shows
practical results. This work showed that spatial heterodyning with 3 steps of
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27/3 can give all the information required to extract the phase in real time.
With 3 pixels/fringe, the phase with tilt removed is

¢ = —arctan(S;/Cg) — 21m/3 (1.48)

where m = 1,2, 3 is the pixel sampling at —27/3, 0, +27/3.

The Mertz method is called sinusoidal fitting by Macy [1.99], who com-
pares its accuracy with that achieved by the FFT method of Takeda et al.
above. He shows that the accuracy of sinusoidal fitting is less good because
it allows negative spatial frequencies which are blocked by the Fourier trans-
form function filter. The effects of negative frequencies can be removed by
smoothing with a suitable filter function.

Womack [1.100] further developed the technique for deriving the phase
from a single interferogram using spatial heterodyning with high tilt. Follow-
ing Takeda et al. from Eq. (1.38), the fringe pattern in a general 2-dimensional
formulation was given by

9(z,y) =a(z,y) + b(z,y) cos 27 ¢(z,y) }

gr(z,y) = cos 27 ¢r(z,y) (1.49)

where ¢(z,y) and ¢g(z,y) represent the unknown phase error and the known
reference (spatial heterodyne) deviation respectively. The heterodyne product
combination gave

9(z,y)9r(z,y) =a cbos 2n¢r(z,y)
+3 cos2(¢(z, y) + ¢r(z, )] (1.50)

+g cos 27(p(z,y) — dr(x,y)]

If the difference between ¢(z,y) and ¢r(z,y) is small, the third term repre-
sents a low spatial frequency term that can be, at least partially, separated
out by low pass filtering. In the spatial domain, this filtering was achieved
by convolving the product function g(z,y) gr(z,y) with a window function
h(z,y). Assuming perfect isolation of the difference term, the difference of
phase is given by

¢(z,y) — ¢r(z,y) = % arctan %% : (1.51)

where M; and M, are the third term of Eq. (1.50) and the same term with
sin 27 substituted for cos 27 respectively, M2 corresponding to the same con-
volution for a reference spatially shifted by /2.

In practice, this technique requires a window several periods wide, which
implies a high tilt fringe density so that the spatial phase shift is negligi-
ble compared with the total pupil size. A rectangular window leads to se-
rious side lobes: a much better filter is the Hamming function of the form
h(z) = ki1 + kg cos 2mz/xzo. The primary advantage of this so-called quadra-
ture multiplicative moiré algorithm (QMM) is that the modulo 7 transitions
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are widely spaced so that the measurements can be several fringes apart
without causing difficulties in removing the transitions (unwrapping). A high
accuracy was claimed, comparable with temporal heterodyne methods. How-
ever, with the microcomputer used, the time for the phase computation over
a grid sampling of 128 x 64 points and a least squares fit of tilt and focus was
about 15 minutes. This calculation time was probably the weak point of the
procedure.

All techniques for extracting phase data from a single interferogram using
high tilt as a spatial reference are essentially based on the Takeda et al.
approach in some form or other. Nugent [1.101] has analysed the errors arising
from incorrect shifting of the sidelobe (i.e. an error in the definition of the
spatial heterodyne frequency fo) and from non-linearity in the detector. He
proposes algorithms for correcting these.

Before we proceed to further optimizations of such phase retrieval meth-
ods based on a single interferogram with spatial heterodyning using tilt, it
is useful to return to the other approach of temporal heterodyning which
was effectively introduced by Bruning et al. [1.91] [1.92], since the formu-
lation and algorithms are closely related. The basic equations are given in
many sources, for example by Bruning [1.91] [1.92], Wyant [1.94] [1.102],
Grievenkamp [1.103] and Kinnstaetter et al. [1.104]. We start from the basic
interferogram intensity equation (1.38) expressed in the form

I(z,y,1) = Io(z,y) [1 + V(z,y) cos {¢(z,y) = 1}] , (1.52)
where Ij is the mean intensity, V' the fringe visibility, ¢ the desired phase and
l is a temporally variable reference phase. The data required for heterodyne
interferometry are a series of interferograms recorded with different phase
shifts [. In the heterodyne definition of Wyant [1.94], { varies linearly over a
range Al covering many periods and a sample interferogram ¢ integrates the
effect giving

1 [Ltaly?
Liz,y) = — / I(z,y,1)dl (1.53)
Al l;—Al/2

The phase shift at the center of each integration is /; and the factor Al is a
normalization so that the integrated signal in each interferogram is indepen-
dent of Al. Equation (1.53) corresponds to the integrating bucket method first
given by Wyant [1.102]. If the signal is read out continuously, this would give
an infinite number of buckets. But if the signal is read out over a short time
when the phase changes by 7/2, a three bucket detection can be performed:
from 0 to /2, from 7/2 to 7 and from 7 to 3w/2 [1.94]. In the limit when
Al — 0, the method reduces to the more common phase stepping technique
of phase shifting interferometry (PSI), whereby the phase is held constant
over the integration period, giving from (1.52)

Ii(:L', y) =Iy+ )V COS(¢ - l,,) (154)

The processing system in PSI is achieved by a correlation process in which
Eq. (1.54) is multiplied by the functions cosl; and sinl; respectively of the
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carrier frequency, giving

I;cosl; =Iycosl; + %IOV [cos ¢ + cos(¢ — 21;)] }

1.55
I;sinl; = Iysinl; + %IOV [sin ¢ — sin(¢ — 21;)] (1.55)

If the sum is taken of m such measurements over one or several complete
cycles, it follows from the averaging and the orthogonality of the sine and
cosine functions that the variable terms in /; on the right-hand side of (1.55)
vanish. This method is equivalent to synchronous detection techniques in
communication theory [1.94]. We then have

)

m
2 Z I;cosl; =mlyV cos ¢
=1

m
2 E I;sinl; =mIyVsin¢

Y (1.56)
i=1
Z Ii = mIo
1=1
from which we calculate the phase as
Yoy Iisinl;
= t == - = - .
¢ = arctan [27;1 T oo, (1.57)

One of the commonest phase stepping techniques is to shift the phase I;
from zero in steps of 7/2. This gives directly from (1.54) a set of 4 equations
enabling the phase ¢ to be determined:

Ii(z,y) =Io + IV cos ¢(z,y)
I(z,y) =Ip — IV sin¢(z,y)
I3(z,y) = Ip — IoV cos ¢(z,y)
Ii(z,y) = Iy + IV sin ¢(z, y)

The phase, modulo 27, is then given by

Iy(z,y) — Ir(z,y)
¢(z,y) = arctan [ AC S (x,y)] (1.59)
It follows from Eq.(1.54) with its three unknowns Iy, V and ¢ that three
equations (measurements) are, in principle, sufficient to determine the phase.
Introducing a constant bias of m/4, which has no effect but simplifies the
equations [1.94], the values I; are then /4, 3w /4, 57 /4. This leads to

Ii(z,y) — Ir(z,y)
It is easily shown [1.94] that the 3-bucket detection system leads to an iden-
tical result.

The pioneer work of Bruning et al. [1.92] aimed to remove the following
problems of static fringe analysis:

(1.58)

é(z,y) = arctan [
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|

Non-linearity effects of detectors, particularly photographic emulsions
The need to introduce a spatial heterodyne frequency, i.e. tilt fringes
The problems of atmospheric turbulence and vibration

Difficulties of calibration of interferometer errors

— The lengthy and cumbersome operations of previous static analysis

|

The processing took 1-2 minutes over a 1024-element photodiode array and
gave a real-time presentation. Excellent reproducibility was claimed giving
A/100 accuracy.

The above system required collection of several data frames followed by
digital processing, the phase changes being produced by a piezo-electrically-
driven reference mirror. Massie et al. [1.105] aimed to improve the speed of
real-time phase extraction by producing phase shifts by polarisation tech-
niques using Bragg cells. The 3-signal method was exploited by Frantz et al.
[1.106]. Massie’s system was further developed [1.107] to give a serial data ac-
quisition rate of 50 microsecond/point, a spatial resolution of 500 points/line
and a phase accuracy of A/100.

An important analysis of error sources in these techniques was given by
Schwider et al. [1.108]. Suppose such sources lead to an error A¢ between
the measured phase ¢’ and the true phase ¢. From (1.57) we have

m T
tang’ = iz lisink N (1.61)
Yoo Iicosl; D
where N and D simply refer to the numerator and denominator of the mea-
sured functions of the tangent. Then, from

Ap=¢' —¢ (1.62)
and (1.61) we have

A¢ = arctan (%) — arctan(tan ¢),
which reduces to

Ag¢ = arctan [

Ncos¢—Dsin¢] (1.63)

Dcos¢+ Nsin¢
Suppose the reference phase [; has an error ;. If € is small, one can set

cose = 1 and sine = ¢. Using the orthogonality relations of the sine and
cosine functions, Schwider et al. derive the following expression:

S ei— Ccos2¢p — Ssin2¢
Ag¢ = arct = .
¢ = arc an[ m — C'sin2¢ + S cos 2¢ ’ (1.64)
in which
C= Z g; cos2l;
=1 (1.65)

m
S = Z &q sin 2lz
' i=1
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This is an important relation showing that only terms in sin 2I;, cos 21;, cos 2¢
and sin 2¢ occur, apart from the linear term with mean value

1 m
m i=1

However, constant contributions independent of z,y are eliminated by the
least squares reduction algorithm, so phase disturbances stem only from the
¢-dependent terms. They show that the simple 4-step algorithm of (1.59),
having the merit of being very fast, is sensitive to such reference phase errors.
Schwider et al. give modified algorithms for reducing this sensitivity and that
due to other errors. They achieved repeatibilities in experiments to better
than A/200. One of their techniques is to use multiple sampling with m > 4.

Grievenkamp [1.103] gives an algorithm similar to Wyant’s 3-bucket algo-
rithm mentioned above yielding improved accuracy and permitting unequal
spacing of the phase steps and a range greater than 27 with 3 or more steps.

Hariharan et al. [1.109] propose an error-compensating algorithm using 5
measurements, improving on a self-calibrating 4-measurement algorithm due
to Cheng and Wyant [1.110]. The 5-measurement algorithm gives the phase
as

(1.66)

¢ = arctan [2_(12___14)_]

2I;-1Is; - I

Kinnstaetter et al. [1.104] developed a technique whereby the errors can
be displayed in an analogue way with Lissajous figures, enabling direct inter-
pretation of the nature and amount of the errors.

A general Fourier description of digital phase-measuring interferometry,
interpreting the heterodyning as a filtering process in the frequency domain, is
given by Freischlad and Koliopoulos [1.111]. They derive phase error functions
in terms of a phase shift error ¢ for six cases:

Case 1: 4 samples with 7/2 steps

Case 2: 4 samples with 7/2 steps, but with a constant phase shift
compared with case 1

Case 3: 3 samples with 7/2 steps

Case 4: 3 samples with 7/2 steps, but with a constant phase shift
compared with case 3

Case 5: 3 samples with 27/3 steps

Case 6: 5 samples with /2 steps

They show that case 6 using 5 samples at /2 steps [1.108] [1.109] gives
the lowest errors resulting from systematic effects such as a phase shift error
€ or from harmonic effects. An improved 4 sample algorithm is also given.
They point out that filter functions with weighted samples can reduce the
higher order spectral content of the filter functions, thus improving the phase
measuring accuracy. For random errors, the advantage of case 6 is less clear.
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The aim of all this work in phase shifting interferometry (PSI) from its
introduction in 1974 [1.92] onwards was to improve two aspects: the phase
measuring precision by better algorithms and the speed of the processing
to get genuinely real-time measurements. This latter is also fundamental to
absolute accuracy because of the advantage in averaging out vibration and
air turbulence.

The ultimate solution for the application of temporal heterodyning (PSI)
to large optics would appear to be at the time of writing (1992) the Simul-
taneous Phase Shift Interferometer (SPSI) of Koliopoulos [1.112]. The PSI
systems discussed above can give accuracies better than A/100 routinely, but
are still limited in large optics by vibration and air turbulence. Vibrations
reduce fringe contrast and produce rapid phase jumps. Air turbulence effects
can only be reduced by averaging: the more random the effects, the better
will be this reduction. Air stirring is therefore helpful to reduce systematic
effects such as astigmatism.

Vibration can be much reduced by damping systems, but a system which
can accept a certain amount of vibration has huge technical advantages.
Twyman-Green interferometers are sensitive to both path-length (piston)
and tilt errors. Common path interferometers such as shearing, scatterplate
or point diffraction (Smartt) interferometers are much less sensitive to piston
change but are still sensitive to tilt.

PSI methods must all read out intensity data over a solid state detector
array with high sampling. If several measures (3, 4, 5) are made with corre-
sponding phase shifts in a sequential mode, the processing time is inevitably
correspondingly greater. This limits the real-time averaging possibilities be-
cause the phase shifts are falsified over the exposures. The obvious solution is
parallel channel phase shift interferometry using polarising methods, as pro-
posed by Massie et al. [1.105] [1.107] and later by Smythe and Moore [1.113]
in a 4-channel system. The phase shifted information is available simultane-
ously for all channels.

The preferred algorithm uses 4 channels because of the hardware conve-
nience. It is the improved algorithm referred to above [1.111], whereby the
phase at each digitized pixel location is calculated by

I 1 + I2 - I3 e I4
“L+ILh+I3-14
This phase algorithm minimizes phase errors due to small intensity varia-
tions between the channels by correlating with a sampled sinusoidal reference
function. The four intensities are digitized simultaneously with four separate
digitizers.

Figure 1.48 shows the layout of the SPSI system. The major features are:

¢(z,y) = arctan (1.67)

- 4 simultaneous phase-shifted interferograms are created
— 4 electronically-shuttered CCD cameras freeze the fringe motion
— 10mWatt He-Ne laser allows very short exposure times
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~ Polarisation-based Twyman-Green (LUPI) interferometer

— Afocal imaging system

— Cameras aligned to sub-pixel tolerances

~ Interferometer wavefront accuracy < A/15 over 10 mm aperture

— Wavefront measurement accuracy is better than A\/50 ptv for a single mea-
surement

— Adjustable fringe contrast without changing the reflectivity of the reference
mirror

The four phase-shifted interferograms are generated by polarisation splitting
and amplitude separation in a dielectric coated beamsplitter (BS) of Fig. 1.48.
The 4 phase shifts of the two arms are 0, 7 and /2, 37/2 respectively.
Parallel read-out of the 4 channels is not in itself sufficient to overcome se-
vere vibration effects. This also requires extremely short exposure times, oth-
erwise fringe contrast is not adequate. The electronic shuttering and powerful
laser permit exposure times down to 10~% second. The polarisation phase-
shift system is very stable requiring minimal calibration. Standard CCD cam-
eras with format 384 x 242 pixels are used. The PC calculates the phase map
with software commercially available from the firm Phase Shift Technology.
Phase maps containing 40000 points can be calculated within 10 seconds;
Seidel aberration coeflicients with tilt and focus subtraction require a further
6 seconds. With a special interface, the phase map can be calculated modulo
27 in real time, offering data at 0.017s rates. A reference back-up system
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Fig. 1.48. Layout of the Simultaneous Phase Shift Interferometer (SPSI). From
Koliopoulos [1.112]
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using one channel allows operation in a conventional PSI mode by moving
the reference mirror with a piezoelectric transducer.

The parallel detection system has the disadvantage that the automatic
removal of detector characteristics with a single detector is lost. The biggest
problem arises from optical coherent noise differences in the different channels
due to dust, surface and coating errors and interference and scattering effects
in the CCDs. Without care to reduce these errors, they may amount to A/20
ptv. Such phase disturbances must be reduced by careful cleaning and good
quality coating of the optics. There are also spatially independent error sources
due to the channel splitting mechanism. Alignment of the system is performed
using the Lissajous figures technique of Kinnstaetter et al. [1.104].

Repeatability in a test case gave phase maps within A/1000 rms over a 6o
range. The ptv variation was about A/100.

Unquestionably, this SPSI system represents one of the most powerful
test tools available for large optics, above all because the total exposure time
for the 4 interferograms can be as short as 10~ *sec. It is also a particularly
effective test tool for measurement in air-flow (wind tunnel) applications.

We return now to the latest advances in the alternative technique of phase
measuring interferometry, that using a a single interferogram and spatial het-
erodyning by a large tilt, following the pioneer work described above by Ichioka
and Inuiya [1.95], Takeda et al. [1.96] and Mertz [1.98]. This line of devel-
opment has profited in parallel from the algorithm development and error
analysis in PSI.

The most sophisticated equipment of this type is the DIRECT 100 sys-
tem, developed at Carl Zeiss, Oberkochen, by Kiichel et al. [1.114]. Kiichel
points out that, until the development of modern phase measurement tech-
niques, optical manufacture was the only branch of manufacture where the
measurement accuracy was of the same order as the tolerances. This was the
essential barrier to improved manufacture and is the reason why a precision
of A/100 has brought a revolution in manufacturing efficiency. Conventional
PSI could achieve this accuracy on a small scale; but it was too slow to cope
with the vibration and air turbulence problems of large optics. Only the very
fast SPSI variant of temporal phase shifting developed by Koliopoulos can
cope with these.

DIRECT 100 (DMI) is an extremely fast system using spatial phase shift-
ing by tilt for measurements on a single interferogram. “Fringes” can be dis-
played in real time, but they are no longer the physical intensity fringes:
they are a calculated fringe pattern from the phase map measured. They
can be manipulated as desired. The wavelength can be chosen at will, or
a pre-defined wavefront can be subtracted. Because of the rapidity of short
exposure times of the order of 20 milliseconds and a phase unwrapping time
of 40 ms, a genuine real-time presentation is possible. A certain level of vi-
bration becomes an advantage, as it provides a sort of temporal heterodyne
overlay which improves the averaging. The main features are:
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— Real-time wavefront calculation and display

— Real-time display of wavefront gradients

— Real-time wavefront averaging

— Real-time correction of systematic residual errors of the instrument

— Insensitivity to vibrations

— Built-in “electronic hologram”

— Modular concept of the instrument

— Broad-band optics and 2 lasers

— Spatial resolution 480 x 480 points

- Automated testing sequences available (testing robot)

— Capability of averaging 1000 wavefronts in 1 minute (cycle time 60 ms)
gives reproducibility better than A/200, even with poor turbulence condi-
tions

— Because of the short exposure time (20 ms), fast phenomena such as the
wavefront from a pulsed laser can be recorded

The application to the testing of large optics is shown in Fig. 1.49. This
total system includes the possibility of active vibration stabilization in 3
dimensions. This stabilization had more significance before the introduction
of the DMI system. It is only necessary to avoid high vibration frequencies
which would seriously reduce the fringe visibility over an exposure time of
20 ms.

The evaluation is based on the spatially heterodyned fringe pattern of
Eq. (1.38) or Eq. (1.53). Following Kiichel [1.116] [1.117], we will write this in
the form
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Fig. 1.49. Schematic of the test set-up at Carl Zeiss, Oberkochen, for large optics,
including active vibration stabilization (from Kiichel and Heynacher [1.115])
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I(P)=A+ Bcos(¢p+ P) , (1.68)

with ¢ the phase to be measured which modulates the tilt carrier wave P.
This can formally be either spatial or temporal. The constant function A
includes ghost reflections from null systems, above all of the Offner type (see
§1.3.4) giving sharp reflection zones, which are objectionable even if they can,
in principle, be calibrated out. This effect (see Fig.1.50(a)) can be largely
removed by using 2 interferograms instead of one, where the second has a
phase shift § of about 7 compared with the first. Then from (1.68), with
fringes perpendicular to the z-direction:

Al(z) = Ip(z) — I,(z)

=2B(z)sin(d/2) cos [¢(z) + P(z) + 6/2 + 7 /2] (1.69)

The phase constants (6 +7)/2 are in the argument of the cosine function
and have no effect on ¢. Since the modulation B(z) of the interferogram is
only a slow and small variation of z, AI(z) is almost a pure cosine function
with a period zo, where P(z) = 2wz /xo, which can be demodulated very
accurately. The processing steps are shown in Fig. 1.50.

We will now consider the algorithm which is discussed by Kiichel [1.117]
and is a major feature of the success of the DMI system.

The phase modulated signal is measured at 5 different phase values P,
with m = 1 — 5 giving 5 equations of the form

I, = A+ Bcos P,, cos ¢ — Bsin P, sin ¢ (1.70)
These 5 equations can be evaluated in 3 groups of three equations using I,
Iy, I; I, I3, I4; I3, Iy, I to give the phase ¢ in terms of P,, in the form ¢,
withn =1...3:

¢, = arctan

I,,(cos Ppt1— c0s Ppy2)+Int1(cos Poya— cos Py)+1,40(cos P, — cos Py 1)
I,(sin P41 — sin Py o)+ 141 (sin Ppyo— sin Py)+Ip42(sin P, — sin Py 1)
(1.71)
If the measurements were error-free, the 3 values of ¢,, would be identical.
If, for example, an error €3 is introduced into the nominal value of P, in the
equation for ¢, of (1.71), then, if e € 7/2,

bt = N{ sing* Ny —ezsin Py(Iy — I3)
1= D}~ cos¢* Dy +egcos Po(I) — I3)
This is the same error function as that given by Schwider et al. [1.108] in
Egs. (1.63) to (1.65), since it reduces to the form
AD, + AN
D1 Ny ’
where AD; = g3 cos P2(I; — I3) and AN; = e2sin Po(I1 — I3). In the Kiichel

algorithm, the individual values ¢, are not calculated. Instead he calculates
a mean phase value ¢ from

(1.72)

tan @] — tan¢; ~ —tan ¢ ( (1.73)
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Fig. 1.50. Interferogram evaluation with the Carl Zeiss DMI method. (a) Typical
interferogram showing ring ghost reflection from the Offner-type null system. (b)
Phase map modulo 27. (c) Unwrapped phase map, showing astigmatism. (d) Phase
gradients in the z-direction. (From Kiichel [1.116])

N a1 N1 + as Ny + a3 N3
¢ = arctan (D) arctan [01D1 + oDy ToaDa| (1.74)

in which each individual numerator N and denominator D is multiplied by
a factor oy, which has no effect on the individual phase values. The effect
of these weighting factors is to change the metric and hence the slope of the
error function so that 3 zero points are obtained by a suitable choice of the
o The procedure is the equivalent of achieving achromatism by eliminating
the linear tilt of the chromatic function, which is also equivalent to changing
the metric of the focal length of the system for one colour to match that of
the other. If, instead of 5 phase shift values, m are taken, then in general
there are m — 2 zero points. The algorithm is therefore very insensitive to
phase shift errors.

The geometry of the pixels of the detector determines the spatial phase
shift. This is shown in Fig. 1.51, where a window of nine pixels scans fringes
placed at 45° to the pixel pattern as shown. This gives 5 phase shifts
over the window with pixel numbers as follows: 64 = —x; 54,63 = —7/2;

)

@
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Fig. 1.51. The Carl Zeiss DMI system: fringe scanning with tilt fringes at 45° to
the pixel raster (after Kiichel [1.117])

44,53,62 = 0; 43,52 = +7/2; 42 = +7. The basic pixel step is 7/2, giving
a high fringe density and spatial resolution for a 480 x 480 pixel CCD cam-
era.

Figure 1.52 shows the complete DMI system in function. Averaging is
possible over a maximum of 65000 phase maps (1 hour). Statistical air tur-
bulence is deliberately introduced by a fan, so that not only vibration but
also air turbulence is completely averaged out.

The spatial heterodyning system appears to have reached its culmina-
tion in the Carl Zeiss DMI system. It appears to have two advantages over
the ultimate temporal heterodyning method of Koliopoulos with the parallel
reading SPSI system described above, namely a single detector and a sin-
gle interferogram for the basic information. A disadvantage is that the high
tilt places more demands on the interferogram optics, but this is a soluble
problem.

The firm REOSC, Paris, has developed an evaluation system also based
on the measurement of a single interferogram with a single detector using spa-
tial rather than temporal heterodyning [1.118]. This system, which is called



1.3 Test technology 73

Fig. 1.52. The Carl Zeiss DMI system in function. Reproduced from a Carl Zeiss
brochure “Laser Interferometer DIRECT 100” (1991) (courtesy Carl Zeiss)

FLIP (FLow Interferogram Processing), uses a new algorithm for process-
ing the information in each interferogram and was developed for the testing
of the four VLT primary mirrors of 8.2m diameter for ESO. The elimina-
tion of vibration and air turbulence effects requires the averaging of several
thousand interferograms. With a sampling of 256 x 256, the system must be
capable of analysing an interferogram in less than 1 second, the exposure
time being of the order of a millisecond. Fourier transform methods were
considered but found to be too slow and too sensitive to errors. Temporal
phase shifting in conventional form was found to be too slow to overcome high
frequency vibrations. FLIP overcomes these problems by its speed and by an
algorithm dealing with the measurements on each pixel of the interferogram.
This avoids boundary effects and permits parallel processing — hence the FL
in the acronym FLIP. FLIP also has the following important characteristics:
it does not need a separate “unwrapping” calculation in order to calculate
the phase map; a theoretical error of phase calculated by FLIP is a function
of tilt and piston, and this error is completely removed by averaging if the
tilt and piston errors are random, as provoked by vibration. The accuracy
was tested by simulated known errors, such as spherical aberration, a sharp
zone with a triangular intensity function, and high frequency ripple of very
low amplitude originating from the VLT primary axial supports, on to which
errors were superimposed errors due to non-uniformity of illumination by the
laser and of reflectivity of the mirror. It was initially also tested in practice
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with great success in the manufacture of two 1.7m aluminium mirrors and
was then introduced as the general test system for precision optics. It uses
commercial, modest cost, electronic systems to achieve the required speed.
The system appears to have completely fulfilled the stringent requirements
for the fabrication of the VLT 8.2m primaries.

1.3.2.5 IR interferometry. It has been mentioned above that modern,
steep mirrors are so highly aspheric that they cannot be aspherized by pol-
ishing alone. The efficiency of grinding (lapping) arising from the Preston
constant (see above) is about 10 times higher. Although, earlier, more was
removed by polishing, the rational limit today is about 10pm. In compar-
ison, the £/2.2 NTT primary required removal of about 200 um relative to
the best-fitting sphere. Systematic aspherizing by lapping requires an accu-
rate test method. One such successful method is a LUPI interferometer using
an IR source, as used at Carl Zeiss, Oberkochen. A CO; laser supplied by
WYKO is used, with A = 10.6 um. At this wavelength, the lapped surface
is optically “smooth”. Of course, null systems are also used (see Fig.1.49).
The lapping process can be taken to within about 1pm of the final surface,
minimizing polishing.

1.3.2.6 Other interferometers in the workshop for large optics. In
Chap. 2, other interferometers are considered from the point of view of func-
tional tests of telescopes using natural stars, for which the Twyman-Green
form cannot be applied. In the workshop, such forms had some advantages
over the Twyman-Green form. However, the LUPI form of the Twyman-
Green, using modern fringe measuring techniques as outlined in §1.3.2.4, is
so accurate, rapid and powerful that the earlier disadvantages no longer ex-
ist. Of course, such evaluation techniques can also be applied to transverse
wave-shearing interferometers or point diffraction interferometers, but there
is no evident advantage over LUPIL. The reader is referred to Malacara [1.74]
for further information.

1.3.3 Test procedures other than interferometry

The primary of the Palomar 5 m telescope was mainly tested by the Foucault
knife-edge test using zonal masking (see Chap.5 of RTO I). The knife-edge
test remains unbeaten in sensitivity, but has been limited in practice by
the difficulty of obtaining quantitative results. Its quantitative automation
requires accurate photometry which is much more difficult than the phase
measurement of fringe scanning interferometry. This classical method dates
from the time before null systems — see § 1.3.4 — were introduced. These now
play an essential role in the professional manufacture of large optics. However,
smaller workshops may wish to avoid their use, for cost and technical reasons.
The interferometric zonal method of Liu et al. [1.90], referred to in §1.3.2.3,
is a modern alternative to Foucault zonal testing.
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The complication of photometric evaluation limiting the Foucault test also
applies to the Roddier curvature sensing method, discussed in Chap. 2. This
technique, which has become very effective for testing functional telescopes,
is unlikely to rival interferometry in the workshop.

Hartmann testing (see Chap. 2) was a major rival to interferometry until
fringe scanning methods were introduced, because it was much less sensitive
to vibration. It can be used for testing at the center of curvature of a con-
cave aspheric mirror in two modes: with or without a null (compensation)
system. Compared with fringe scanning interferometry, classical Hartmann
testing with a large screen in combination with null systems must be consid-
ered an old-fashioned technology. However, modern variants, such as Shack-
Hartmann, can be applied in a similar test set-up to that used for LUPI
interferometry. In principle, it could be automated in a similar way to fringe
scanning methods, but is unlikely to rival the accuracy and convenience of
the fringe scanning systems described above. It retains its interest for a com-
pletely independent cross-check for acceptance tests and was used in this way
for the primary of the NTT.

Of more interest today is the use of a Hartmann test without a null sys-
tem as an independent check on the null systems. This technique has been
successfully applied by REOSC. It has sufficient accuracy that agreement
on the value of the spherical aberration (the critical aberration for null sys-
tems — see §1.3.4) within about 30nm ptv has been obtained [1.25]. The
center of gravity of the Hartmann spots of a cross-arm screen can be mea-
sured to about 10 pm. The method is particularly useful for determining the
Schwarzschild aspheric constant b, [1.119] if the radius is accurately known,
e.g. from spherometry — see below.

Apart from the use of IR LUPI interferometry for testing aspherics gen-
erated by grinding, REOSC also successfully apply bar spherometers [1.25].
For the VLT 8.2m primaries, REOSC used bar spherometers with a length
of 1.64m. The measuring accuracy is 0.1 pmrms. The total accuracy of a
profile determination is about 1pm for low frequency errors, the measure-
ments being performed by shifting the spherometer about half its length.
The spherometer is calibrated against a suitable spherical mirror, so only
small differences require to be measured. The complete measurement of a net
of points can be made in about 30 min thanks to the automated positioning
of the spherometer by the carriage of a milling machine. Because several di-
ameters are measured, astigmatism can also be detected within the global
accuracy of the system [1.120]. Curved bar spherometers — three points on a
circle instead of a straight line — are also used [1.25]. Spherometers give both
the radius of curvature and the aspheric constant.

For the VLT, REOSC [1.120] uses the bar spherometer system above all
during rough grinding of the aspheric. During fine grinding, IR interferometry
is preferred, since it gives a higher accuracy of about 500nm ptv. Testing
during polishing is entirely with the FLIP fringe scanning interferometry
system, as described above.
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The enormous potential of mechanical measuring systems has been em-
phasized by Miller [1.121] in connection with the manufacture of the sec-
ondary for the Keck 10 m telescope. A 2-coordinate profilometer was used,
with a read-out accuracy of 25 nm. For a whole measurement, an accuracy of
A/10 (50 nm) was attained. According to Miller, if the beam of the carriage is
replaced by a reference flat, an accuracy of 10nm would be attainable. Such
profilometers may have an important role to play in future optical testing.

1.3.4 Null (compensation) systems

Figures 1.44 and 1.49 show schematically the use of null, or compensation,
systems in the test arm of a LUPI interferometer for testing aspheric concave
mirrors at their center of curvature without spherical aberration. A parabolic
primary can be tested without spherical aberration from its focus against
a flat mirror in autocollimation without a null system, but this is limited
to primaries no larger than an available test flat. Large, high quality plane
mirrors are extremely difficult to make and test and are correspondingly
expensive. Very few test flats larger than 1 m diameter exist.

If, in Fig.1.44, the null system is omitted, the situation of Fig.1.53 ob-
tains. The so-called diverger D of the interferometer is a high quality optical
system producing a convergent beam with negligible spherical aberration
over the relative aperture required to cover the test mirror. A spherical test
mirror then gives a zero aberration test system without a null system. An
aspheric (hyperbolic) mirror M, placed such that rays strike its edge zone
normally, returns these along their own paths to O; but the zones nearer
the axis are steeper and reflect the rays to an axial point O’ nearer to M
than is the point O. They therefore converge in the interferometer and show
strong zonal spherical aberration for a strongly aspheric mirror. Furthermore,
they traverse the diverger D and the interferometer with different paths from
those of the incident beam. In general, the diverger D will not be free from
aberration for a non-parallel beam and will add a further error to the final
detected aberration. The purpose of the null system is to introduce aberra-
tion which accurately compensates the theoretical aberration of the desired
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Fig. 1.53. Effect of testing a strongly aspheric concave mirror at its center of
curvature without a null system
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mirror. Then all rays will strike the mirror, having the correct aspheric form
and being correctly placed, normally: all rays return exactly along their own
paths giving an aberration-free image exactly as with a spherical mirror tested
without a null system. Figure 1.54 shows schematically the two ways this can
be achieved. In Fig.1.54 (a), a normal aberration-free diverger D is used fol-
lowed by a null system N which produces the large longitudinal spherical
aberration O’O" corresponding to the theoretical radius difference of the re-
quired aspheric. In Fig. 1.54 (b), the functions of diverger D and null system
N are combined.

O OI Ou

D+N

(b)

Fig. 1.54. Two ways of building a null system into a LUPI interferometer: (a) using
an aberration-free diverger and a separate null system, (b) a combined diverger-null
system

The function of the null system can also be understood as a system pro-
ducing a highly aberrated wavefront. This aspheric wavefront, at the correct
position M defined by the curvature of the required mirror, must be physi-
cally materialized on the front surface of the mirror blank.

An excellent review of the development of null testing is given by Offner
[1.122]. The technique was apparently invented by the great French optician
Couder [1.123] in 1927, who used a roughly afocal, 2-lens compensator for
testing a 30 cm f/5 paraboloid with the Foucault test (Fig.1.55). The sig-
nificance of this invention was not generally recognised at the time. Burch
proposed a compensator using a spherical mirror [1.124] and then a single
planoconvex lens compensator in double pass for paraboloids of modest rel-
ative aperture (f/8) [1.125]. According to Offner [1.122], a compensator was
also in use during the manufacture of the Palomar 5m {/3.3 primary, as com-
puted by Ross [1.126], who designed the PF field correctors for that telescope
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Fig. 1.55. Roughly afocal, 2-lens compensator used by Couder [1.123] in single
pass for testing a paraboloid with the Foucault test (after Offner [1.122])

—see Chap. 4 of RTO I. The Ross solution, unlike that of Couder, was in dou-
ble pass on the mirror axis, the modern solution. The lens had a diameter
of 25cm but, for the large f/3.3 paraboloid of the Palomar telescope, still
had too much zonal error. This was compensated by a weak aspheric plate
(Fig.1.56). In modern null systems, it is a rule that no aspheric surface is
acceptable, since its manufacture poses similar problems to those of the test
piece.

Fig. 1.56. Double-pass lens compensator design by Ross [1.126] for testing the 5m,
/3.3 Palomar primary (after Offner [1.122])

Compensation testing only became general following the work of Dall
[1.127] [1.128]. He re-invented the scheme of Couder, but using a single plano-
convex (non-afocal) lens with plane face towards the mirror. Dall pointed out
that the aberration introduced by the lens could be increased or reduced by
moving it towards or away from the mirror: with a single lens, paraboloids
of different focal lengths or apertures could be tested. Figure 1.57 shows the
Dall magnification parameter m = s'/s [1.122]. If n is the refractive index,
fp is the focal length of the parabola and f; that of the lens, Offner gives the
relation for balancing the aberration of the parabola at its center of curvature
as

ﬂ; _ -1-(m— 2 n?(m-12 (Bn+1)(m-1) N 3n+2
fl 4 (n—1)? (n—1) n

(1.75)
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Knife edge

Fig. 1.57. Single-pass plano-convex lens compensator due to Dall [1.122] [1.127]
(1.128]

This formula is derived from the general formula for the third order spherical
aberration of a thin lens in terms of its “shape” and “magnification” factors
[1.129] and was used in another special case in Eq.(4.52) of RTO I. Dall
found the compensation was adequate if the ratio of Eq. (1.75) lies between
5 and 20. This system has since been widely used both by amateurs and
professionals. Offner [1.122] quotes the following example. For a paraboloid
of 0.6 m aperture with f/5 we have fl’, = 3m. Taking n = 1.52 and setting
m = 2 arbitrarily gives f,/f/ = 5.888, within the limits set by Dall for
adequate compensation of zonal error. Then f/ = 0.5095m, giving from the
basic lens formula (Eq. 2.8 in RTO I)

SI

l-m=% (1.76)
with m = 2 the value s’ = —f’ = —0.5095m and hence s = -0.25475m. The
zonal wavefront error is 0.048 Arms for A = 632.8nm. Dall [1.128] gives a
curve for the calculation, assuming n = 1.52.

For large professional optics, special null systems are calculated and made
according to the requirements of the mirrors to be tested. The set-up shown
in Fig. 1.54 (a) has advantages over the Couder or Dall arrangement in that
the intermediate image enables more positive power to be used in the null
system N. The positive power gives spherical aberration of the right sign
to compensate aspheric mirrors with a Schwarzschild constant b < 0, i.e.
normal cases of elliptical, parabolic or hyperbolic primaries. However, steep
mirrors of large sizes would require very large lenses if the zonal error is to
be reasonable. This is normally not practicable, although the set-up (a) is
more flexible than (b) in that the diameter can be chosen at will. The normal
solution is to compensate the zonal error (fifth or higher order spherical
aberration) by a further lens or lenses. If the lenses are fairly close together
near the maximum beam diameter, then “compact” null systems with 2 or
3 lenses, rather like the Couder system except that there is considerable
positive power, can give excellent compensation [1.130]. If one lens is near
the aberrated intermediate image O” in Fig. 1.54 (a), then the null system is
of the Offner type [1.131]. The latter type, which we consider below, gives a
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beautifully flexible control of zonal error, but has the disadvantage of being
much more sensitive to stray light (see Fig. 1.50 (a)). With compact systems,
the zonal error control is more difficult and often requires more lenses. The
set-up of Fig. 1.54 (b) is normally compact but, by increasing its length, can
also be given the Offner form. Its principal limitation is that the diameter is
set by that of the interferometer beam. Since, for a given focal length, the
third order spherical aberration (wavefront) of a lens is proportional to the
fourth power of its diameter, this is a very important parameter in the design
of null systems.

Figure 1.54 (a) reveals two fundamentally important aspects of null system
technology. Equation (1.75) shows that the aberration introduced for a given
shape and power of the null system is a strong function of its magnification
m. This is true whatever the design of the null system, since it is, by its
nature, working well away from its minimum aberration conditions. If, then,
the paraxial magnification m = NO”/NO in Fig.1.54 (a) is slightly varied,
there is an appreciable variation in the aberration produced. If, therefore, the
null system N is set up with the wrong separation DN, then NO will also
be wrong, m will be wrong and the wrong mirror will be produced: normally
an undetectable systematic error. Such an error, if small, will only produce
an error in the third order spherical aberration, but this leads directly to a
systematic error in the Schwarzschild aspheric constant b of the test mirror.
Such errors are, unfortunately, very common and have caused many tragedies
in telescope history. The primary of the ESO 3.5m NTT had such an error
due to a spacing error of 1.8 mm which caused an aberration W ~ 3000 nm
[1.132]. Fortunately, in this case, the test tolerances had been laid out with
the active nature of the telescope in view and the error could be completely
corrected by the active optics system — see Chap. 3. The most tragic case with
the most disastrous consequences was the Hubble Space Telescope, where a
systematic error of 1.3 mm in a reflecting Offner-type null system produced
an error of W =~ 4350 nm which could not be corrected [1.133] [1.134] - see
Chap. 3.

Internal errors of compact null systems, whether they be errors of radii,
separations or refractive index, will also produce systematic third order spher-
ical aberration errors. The manufacture is therefore very critical, with ex-
treme tolerances, and correspondingly expensive. Normally, no test method
for the complete system is available: they are made to absolute tolerances.
However, workers at the Steward Observatory Mirror Lab. have recently pub-
lished a technique for the independent testing of null systems which appears
to represent a major advance in the subject — see the end of this section.

Since the wavefront generated by N in Fig.1.54 (a) is aspheric, the dis-
tance NM is also critical, since an aspheric wave changes its form as it is
propagated further into space. Only a spherical wavefront maintains its form
independent of its radius. The distance N M must be maintained within tight
tolerances so that the wavefront which is realised physically on the surface of
the mirror at that point has the correct paraxial radius and the correct lon-
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gitudinal spherical aberration O’O”. An error in the distance NM exceeding
the tolerance will also lead to an error in third order spherical aberration, i.e.
in b,.

These dangers and the accompanying problems of manufacture and set-
up are the price paid for the huge advantage of null testing: it is an analogue
means of disposing of excessive numbers of circular fringes, whose presence
inevitably reduces the accuracy of the measurement.

The Offner compensator, proposed by Offner in 1963 [1.131] [1.122] is, in
various forms, the most powerful — and probably the most widely used at
professional level — null system yet devised. Offner started from the principle
that the ideal compensator, though completely impracticable, would be a lens
as large as the test mirror and in contact with it. Since, in practice, a much
smaller lens must be used, he imaged this lens on to the test mirror with a field
lens as shown in Fig. 1.58. Offner points out [1.135] that Shupmann first used
a field lens in this way to control secondary spectrum for his medial telescopes
— see Fig. 3.70 of RTO 1. However, the field lens concept assumes there is a
field: with zero aberration, the field of a null system is effectively zero by
definition and remains very small for practical amounts of aberration. There
is therefore no need to apply the field lens principle accurately, which would
also put unnecessary restrictions on the form of the lens N. Also, the “field
lens” F' does not have to be fixed at the paraxial intermediate image. The real
power and function of the Offner system comes from the following concept
(Fig.1.59): the lens N must achieve the necessary third order longitudinal
spherical aberration corresponding to the normals of the aspheric, while the
“field lens” is simply an additional lens placed in or near the caustic of the
highly aberrated image enabling a sensitive control of higher order (zonal)
spherical aberration without much influence on the third order aberration.
The marginal rays focus at O’ and are only weakly influenced by the lens
F, while the zonal rays focusing at O” are strongly influenced so that O’O”
can be adjusted accurately to the separation of the normals to the required
mirror. The control of the third and fifth orders is thereby largely decoupled
giving more or less a diagonal solution matrix. “Compact” systems, consisting
of two or more lenses at N are much less favourable in this respect.

Fig. 1.58. Original principle of the Offner compensator using a field lens [1.131]
[1.122)
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Fig. 1.59. Effective function of a refracting Offner compensator, in which the “field
lens” controls the higher order spherical aberration

Offner [1.122] gives the following relation to define the plano-convex lens
N:

bsr n2(1-m)?2 (Bn+1)m(l—m) (3n+2)m?

R (n =1 e
In this formula, b; is the Schwarzschild constant for the mirror of paraxial
radius r, f; is the focal length of the lens N, n the refractive index and
m = §'/s the magnification defined by the sign convention m < 0. Apart from
this change in the sign convention and the generalisation to any conicoid
with bs < 0, Eq. (1.77) is essentially the same as (1.75) and assumes no effect
from the lens F' on the third order aberration. Offner gives the example of
a 1m, f/4 paraboloid as test mirror. Using a lens N of diameter 1/20 of
that of the mirror and m = -%—, the lens produces a residual zonal error of
0.23\ rms at A = 632.8 nm. This is reduced to 0.0003 X by a suitable field lens
of about twice the focal length of N. In general, such systems are a trivial
design operation with any normal optical design program. A convenient way
of assessing the compensation quality is to use such a program to calculate
the angular error from the normals at the mirror surface of the incident rays.
The surface giving zero angular errors is the surface the manufacturer will
be attempting to make.

It should be noted that the exact 1:1 reflective imagery of all such com-
pensation systems means that the third order field coma is zero: it is therefore
uncritical if the source S is not exactly on the axis.

The principles of “compact” or Offner compensators can be applied to
reflecting elements. This was recognised and applied by Burch [1.124] using
aberration generated by a spherical concave mirror with m # —1. Such an
Offner reflecting compensator is shown in Fig. 1.60. The ratio of the diameters
D of the test conicoid with Schwarzschild constant b, to that Dy of the
spherical null mirror N is given [1.122] by

Dr _ (m?-1)"
DN - 4bs(m— 1) ’

with m = s'/s as before. This ratio for paraboloids (bs = —1) is 4.0 for
m = —3 and 24.0 for m = —5. High aberration requires a large value of |m].

= (1 —m)?

(1.77)

(1.78)
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Fig. 1.60. Single mirror Offner-type compensator [1.122]

This, in turn, reduces the relative aperture of the beam. So steep, highly
aspheric test mirrors require larger or steeper compensating mirrors N.

A further development of the reflecting type is the 2-mirror Offner com-
pensator shown in Fig.1.61. This is a Gregory-type two-mirror system with
intermediate image, where both mirrors contribute to the aberration. It has
the advantage of compactness and gives a more accessible source S than the
single-mirror type of Fig.1.60. The obscuration ratio of the mirrors N; and
N, must not exceed that the test mirror M. The complete theory is given
by Offner [1.122]. Such systems can give a very high degree of compensa-
tion for fairly modest diameters. In an example quoted by Offner, a 3m,
f/1.5 paraboloid was compensated by a system with Dy, = 14.82cm and
Dy, = 27.22cm. With an appropriate field lens F, the residual wavefront
error was only 0.009 Arms at A = 632.8 nm. Better accuracy of compensation
would require larger mirrors.

Such a 2-mirror Offner compensator may be considered as the ultimate
in null system technology. However, the problems of manufacture and, above
all, adjustment to correct position remain. For the primary of the Hubble
Space Telescope (HST), a simpler refracting Offner compensator was used
together with such a 2-mirror Offner compensator for final exact compensa-

Fig. 1.61. 2-mirror Offner compensator [1.122]
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tion. Unfortunately, the 2-mirror system had a systematic axial positioning
error of about 1.3mm while the simpler refracting one was correct [1.136]
[1.134] [1.133]. The former was taken to be correct, which led to the spherical
aberration error — see Chap. 3.

Various systems for auto-compensation exist, whereby the optical arrange-
ment itself produces zero aberration without an additional null system. Most
of these are concerned with the testing of secondary mirrors and will be dealt
with in the next section.

For high quality large optics production, null systems are an essential
aspect of the test technology. Carl Zeiss uses a series of null systems during
the generation of the required aspheric, working with IR interferometry. The
lenses are made of Germanium or BaF2 [1.115]. Seven such systems were used
for the NTT. This was followed by the null system for visible interferometry,
a refractive Offner system.

REOSC proposed [1.26] 2-lens Offner-type IR compensators, using ZnS
lenses, for the manufacture of the 8.2m, f/1.8 primaries of the VLT. It was
considered best at this stage to have simple, reliable compensators and ac-
cept an error of A\/32 for A\ = 10um. For the visible interferometry, they
used refracting Offner-type systems consisting of 2 lenses (residual aberra-
tion 0.1\ for A = 632.8nm) and 3 lenses (residual aberration 0.01 X). The
lens diameters were of the order of 220 to 240 mm. A 2-mirror Offner-type
compensator with mirrors of 400 and 600 mm diameter was also considered.
This gives very high performance but, in agreement with ESO, it was de-
cided that the refractive compensators were simpler and more reliable. As we
saw in § 1.3.2.4, a small known systematic error in the interferometer system
can easily be removed during the fringe scanning processing operation, and
higher order compensation errors can be calculated with very high accuracy.
This problem is simpler than removing asymmetric interferometer errors by
calculation, though this can also be done [1.137]. A good way of eliminating
the danger of positioning errors leading to third order spherical aberration is
to use two independent null systems of different design and mount. If there is
disagreement in the aberration produced, the source of the discrepancy must
be found. The active optics concept of the VLT relaxes positioning tolerances
— see Chap. 3.

It should be mentioned that the correction of zonal spherical aberration
can be produced by means other than a lens. A synthetic hologram is one
way of achieving this [1.138]. The third order aberration is produced by a
single lens. A single lens is excellent at producing considerable aberration, but
rather inflexible in its distribution over different orders. A hologram can only
produce limited aberration, but the order is irrelevant. So the properties of
the lens and hologram are complementary. However, in practice, the method
has been rarely applied, mainly because of problems of stray light and its
effects on fringe contrast. However, the Offner-type field lens may also have
ghost image problems even if carefully coated (Fig.1.50 (a)).
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Finally, we return to the important issue of an independent test of null
systems. The significance of this has been emphasized above. Apart from
the HST case, by far the most dramatic and costly example of the terrible
consequences of errors in null systems, there have been many other cases of
“matching error” in ground-based telescopes resulting from such errors.

A solution to this problem seems now to be available, thanks to pioneer
work at the Steward Observatory Mirror Lab. by Burge, Martin et al. [1.139]
(1.140]. The key to the method is a small computer-generated hologram (CGH)
which mimics the function of the theoretical primary (or test) mirror. This
technique was specifically developed for the testing of the 6.5m, f/1.25 pri-
mary for the MMT conversion. Figure 1.62 shows the optical arrangement
for testing the null system. The hologram (CGH), consisting of a set of re-
flective rings on flat glass, is placed at the position of the paraxial center of
curvature of the primary mirror in the normal test set-up. It is designed and
made, independently of the null system, to match the wavefront that would
propagate to coincide with, and be realised on, the surface of the primary
mirror. The hologram is measured exactly as is the primary mirror, aligning
the interferometer and null system simply by translating and tilting them as
a rigid body to eliminate power, tilt and coma. Any wavefront error obtained
in this measurement would represent an error either in the hologram or in the
null system: such an error must be completely clarified and corrected before
final testing can proceed. Initially, the visible null system did, in fact, reveal
a spherical aberration wavefront error of 1.9 um. The ensuing investigation
showed that the error was indeed in the null system, due to a wrong interpre-
tation of the refractive index of the melt glass for the large lens. Without the
holographic test, this error would have been worked into the primary mirror.
After the necessary correction, the aberration measured in the hologram test
was smaller than the accuracy of the wavefront measurement in the inter-
ferometer set-up, giving complete proof of the correctness of the null system
finally used.

Diverger and
null system
AL

CGH
Shack cube

interferometer

Ol OII

Fig. 1.62. Technique for independently testing a null system. A computer-
generated hologram (CGH), placed at the paraxial center of curvature, mimics
the function of the primary (or test) mirror. (After Martin et al. [1.139])
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1.3.5 Test systems for Cassegrain secondary mirrors

1.3.5.1 The problem of testing convex mirrors. In Chaps.2 and 3 of
RTO I we considered the advantages of the Cassegrain form of reflecting tele-
scope, above all because of its strong telephoto effect and resulting compact
form compared with its focal length. In comparison, the Gregory form is little
used except for solar telescopes where the length is usually less critical, the
aperture relatively modest and an intermediate solar image is very useful for
absorbing the heat. But this great advantage of the Cassegrain form over the
Gregory for normal telescopes has its price: the conver secondary. A concave
mirror on its own can form a real image at its focus in autocollimation; at
its center of curvature with a magnification of —1; or at some other magni-
fication in the range 0 > m > —oo. Only if the source is inside the focus is
there no real image. A convez mirror on its own, on the other hand, cannot
form a real image of a real object source. This means that the imprint of its
errors on a reflected wavefront cannot be investigated with a real image with-
out supplementary optics. The technology of testing secondaries is therefore
essentially the technology of producing a real image from an optical system
including the secondary in a way where the errors of the secondary can be
separated from those of the other components.

Of course, mechanical tests are equally possible on convex as well as con-
cave mirrors. The fabrication of the 10m Keck telescope secondary referred
to above [1.121] using a precision profilometer may have great significance
for the future. Here, we shall limit ourselves to the normal optical tests. The
real image produced can be analysed by any of the methods discussed above,
normally today by interferometry.

1.3.5.2 Review of optical test methods for convex secondaries. A
general review of methods in use at the time (1974) was given by the author
[1.141]. The methods were classified according to two criteria:

A1l The system gives a real image with autocompensation of the spherical
aberration without a null system

A2 The system produces a real image with spherical aberration which must
normally be compensated by a null system

B1 The whole pupil (test surface) is covered instantaneously by the test

B1* The B1 characteristic only applies to the area of the secondary cov-
ered by the functional azial beam, not the supplementary field annulus
required for a telescope whose pupil is at the primary

B2 The whole pupil can only be determined by the integration of time-
dependent observations

Here, we shall follow this scheme with comments on each method, only briefly
if the method has low current interest. An excellent general review of most
methods has also been given by Parks and Shao [1.142]. Many methods use a
combination of primary and secondary, either in their functional or in another
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geometry. Information on the secondary is then given by subtracting known
errors of the primary from those of the total system.

M1

M2

M2.1

M2.2

M2.3

M2.4

Functional test with natural stars (Al, B1)

This is the oldest method and one still used by amateurs. The great
problem for professional telescopes is that the secondary must be made
on site. Seeing must be eliminated by a Hartmann-based or other
method using adequate integration. The method is too inefficient for
normal professional use.

Autocollimation or equivalent in functional geometry with unchanged
ray-path

Full-size plane mirror (A1, B1*)

The ideal method for small telescopes if the necessary flat exists. It
requires coated surfaces because of the double pass. Small workshops
[1.11] often find chemical silvering the most practical way of getting
reflectivity: the coating quality is not critical. The aberration of the
primary must be known. The double pass gives good sensitivity.
Theoretically, mercury pool flats can be used in a vertical set-up, but
the technology is difficult.

Double telescope (A1, B1*)

Two identical telescopes are set up opposite each other, the one (al-
ready tested) serving as a collimator for the other, otherwise only the
total error is obtained. The method is most interesting for series pro-
duction of smaller telescopes, one serving as collimator for the others.

Reduced size plane mirror (Al, B2)

This method is often used [1.11]. Extrapolation and integration of
results is reasonable up to diameters about 50 % more than that of the
flat. Beyond that, extrapolation becomes dangerous since third order
spherical aberration varies as wavefront aberration with the fourth
power of the aperture.

Pentaprism or double pentaprism (A1, B2)

This test is of great importance as a supplementary test to other Bl
tests. It provides a reliable and direct measure of spherical aberration
only and, as such, is an excellent check against systematic errors of null
systems. In my view [1.133], this was the test that was missing in the
manufacture of the Hubble Space Telescope: it would have revealed
the error at relatively low cost with great reliability.

The method was invented by Wetthauer and Brodhun in 1920 [1.143]

and is shown in Fig.1.63. The Cassegrain telescope is set up in its

functional geometry with a pinhole source at its designated Cassegrain
focus. This projects a plane wavefront above the telescope. Instead of
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Fig. 1.63. The pentaprism test for spherical aberration (schematic) [1.146]
[1.141)

an autocollimation flat, a sub-aperture is intercepted by a pentaprism
A which can be moved over a diameter of the aperture on a rail. The
pentaprism deflects the sub-aperture beam about 90° into a small tele-
scope (originally) or a camera capable of automatically detecting very
small image shifts in a more modern form. The pentaprism has the
property that the deflection angle in the plane of the diagram is un-
affected by slight rotations about an axis perpendicular to this plane,
which are inevitable when it is moved across the aperture. In other
words, the pentaprism is like a 45° mirror with a perfect constancy
of its angle as it moves over the diameter. The vertical positions of
the image in the small telescope measure the slope errors of the plane
wavefront integrated over the sub-apertures. In the horizontal plane,
the pentaprism is like a plane mirror and is simply adjusted by rota-
tion about AC to maintain the image in the central plane. The third
order spherical aberration can be extracted as the function of y® for
the angular aberration. A term in y? is due to decentering coma and is
eliminated in the reduction. It has been claimed that information on
astigmatism can also be obtained by measuring across different diame-
ters, but there is doubt concerning the validity of the reference sphere.
In any event, the test is completely justified for spherical aberration
alone. It was used in the United States in 1939 to test Schmidt cam-
eras for spectrographs [1.144] and again in 1969 [1.145]. But the most
systematic use has been by REOSC in Paris [1.146], who have applied
it systematically for over 20 years in the double pentaprism modifica-
tion. For this reason, this manufacturer has avoided “matching error”
between the aspherics of primary and secondary, which has plagued
so many telescopes because of errors in null systems. It has also been
applied systematically by Korhonen [1.36], both for the 2.5 m Nordic
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telescope and for the 1.2 m telescopes for the Geneva Observatory and
the University of Louvain. Korhonen applies the pentaprism test not
only to the combined system, but also to the primaries alone. For
parabolic primaries, this is a perfect null test in autocollimation. For
lightly hyperbolic RC primaries, the small residual spherical aberra-
tion is measured directly, giving an excellent measure of the aspheric
constant.

A sensitivity of about 1/4 arcsec can be achieved, but 0.1 arcsec is dif-
ficult because of the resolution of the sub-apertures and the sampling
over the diameter, except for very large telescopes. However, the pre-
cision attained is ample to detect systematic errors, such as those that
occurred with the Hubble Space Telescope. Other B1 methods of test
will provide the high accuracy measure of spherical aberration.

The positioning tolerances in the pentaprism test are very relaxed and
this is another great advantage of the method. There are only two
positional requirements: the position of the source S behind the pole
of the primary and the separation of M; and M». The position of S can
easily be set up to the nominal Cassegrain image position within about
1mm, an error giving negligible spherical aberration in all practical
telescopes. This will ensure freedom from spherical aberration. If the
distance M; M; is incorrect, the radius of M; or M; (or both) is wrong.
But this will not lead to spherical aberration, since the pentaprism
test will lead to a compensating aspheric form on the secondary. It
will, however, lead to a departure from the nominal telescope form,
e.g. from a strict RC telescope. However, the tolerance on M;M; is
relatively generous in such cases, so the establishment of the necessary
value is quite easy.

Mach-Zehnder (A1, B2), Prism Band (Al, B1*), Zenith mirror (Al,
B2) methods

These methods [1.141] were proposed at Carl Zeiss but not tried in
practice. They may or may not have useful advantages compared with
the pentaprism method. The zenith mirror method (small plane mir-
rors suspended from pendulums) has since been proposed and inves-
tigated by Hu [1.147]. In spite of its elegance, it is difficult to see
an advantage over the pentaprism method. It is certainly far more
sensitive to vibration.

Tests with an artificial source in functional or quasi-functional geom-
etry and with or without focal shift (A1 or A2, B1)

Tests with an artificial star at a considerable distance are very old.
Herschel established the rule that the change of spherical aberration
is negligible if the source is at least 40 focal lengths away. The hori-
zontal ray paths are then very long, usually prohibitive because of air
turbulence. If the source is nearer, the image position is shifted and



90

M4

M4.1

M4.2

1. Manufacture and test procedures

may not be accessible in the finished telescope, but possible in the
workshop. The test length can be reduced by a folding mirror [1.141].

Autocollimation tests using the primary and secondary mirrors in non-
functional geometry and ray path

Double reflection at the primary (A2, B1)

This method {1.141] [1.130], which has not, to my knowledge, been ap-
plied in practice, is shown in Fig. 1.64. The autocollimation is based on
a double reflection at both primary and secondary, the second reflec-
tion at the primary being normal and the reflections at the secondary
therefore being at the same height, giving clear information on the

S

Fig. 1.64. Test method using double reflection at primary [1.141] [1.130]

secondary in double pass. The separation of the mirrors must be suffi-
ciently small to cover the secondary with the beam, but is about twice
the normal separation. This separation determines the heights @ and
P and, with them, the obstruction relative to @ of the primary mir-
ror hole and of the plane mirror P at the secondary. A compensator
is required (A2). If the obstruction factors are too unfavourable, an
auxiliary spherical mirror can be used for the reflexion at @, which
relaxes the geometrical constraints. The double pass at both mirrors
will normally require reflecting coatings on both, but these can be of
indifferent quality. This means that the secondary could be chemically
silvered, a rapid and simple process.

As in M4.1 but with refracting optics in front of the secondary (A2,
B1) |

Instead of the double reflection at the primary, the beam is deflected
by a weak convex lens, as large as the secondary, into the normal
Cassegrain image position [1.141]. Figure 1.65 shows the arrangement.
The effective power of the lens is doubled by the double pass. The
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1

Fig. 1.65. Autocollimation test against the primary using a weak convex
lens in front of the secondary

lens must have high glass homogeneity as well as good surface figure.
In practice, a lens of the order of f/10 is sufficient. Its aberration is
immaterial if a compensator is used (A2), but it tends to compensate
the aberration of the mirror system anyway (quasi Al). If a test plane
mirror of the same size is available, the lens quality can be tested
against it independently in autocollimation.

Lytle test (A2, B1)

This test was proposed by Lytle [1.148] and has been used at REOSC
for supplementary tests of the secondaries of the ESO 3.6 m telescope
[1.141] [1.149]. The purpose was to supplement the pentaprism test
(M2.4 above), which had B2 classification, by a B1 method to reveal
the high spatial frequency quality of the surface. Instead of normal
incidence on the primary as in M4.1 and M4.2, the Lytle method
(Fig. 1.66) uses normal incidence on the secondary. The mirror sepa-
ration is greater than in M4.1, about 2% times the normal separation
in a typical case. The source O is compensated by the null system N
and imaged via the 45° plane mirror at O’, which is inside the cen-

N =—
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Fig. 1.66. The Lytle test [1.148] [1.141] [1.149]
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ter of curvature C of the primary. The primary reflects the beam to
the secondary which is placed to reflect the beam normally with its
center of curvature at O”. The Lytle test does not have the obstruc-
tion problems of M4.1, but has a longer beam path. The total beam
path for the 3.6 m tests was about 80 m. The null system has to cor-
rect considerable aberration, since the primary over-compensates the
spherical aberration of the secondary. The residual overcorrection has
the favourable sign for the lens compensator.

Test methods of the secondary alone without the primary and without
large auxiliary optics

Refraction through the mirror as a Cartesian lens (A1, B1)

This method (Fig. 1.67) is based on the work of Descartes who showed
[1.150] that aberration-free refraction at a glass-air surface requires a
hyperbolic form. The Cartesian refraction requires (see Egs. (3.10) and

(3.93) of RTO I) the condition
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where n’, n are the refractive indices of the glass and air, ¢ is the
excentricity and bs; the Schwarzschild constant, and m the magnifi-
cation (negative) of the hyperbola in reflection from focus to focus.
This latter is the same as the secondary magnification my for a clas-
sical Cassegrain telescope, but not for other forms such as the RC.
With n’/n = 1.51, Eq. (1.79) gives m = —4.92. This is a very nor-
mal magnification for modern classical Cassegrain telescopes, making
the method above all interesting for smaller and amateur telescopes.
Exploiting the extreme range of normally available glasses, m values
between about —4 and —5.4 can be achieved. Of course, high homo-
geneity of the glass is required. A collimator of the mirror diameter
can be used, but a better method is usually to apply autocollimation
by reflection from the plane back (Fig.1.67 (b)). A high quality plane

1Hyperbola Hyperbolaf
(a) (b)

Fig. 1.67a, b. Test by a refraction through the secondary as a plano-convex
Cartesian lens [1.141] [1.142]
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back surface is then required: the sensitivity to errors of the plane back
surface as a mirror is twice that of the refracting surface in double pass
for n'/n = 1.5.

Parks and Shao [1.142] give a modification, which is not quite auto-
compensating, by increasing the source distance somewhat and using
a very shallow concave spherical back surface, which is much easier to
test. For the Keck 10 m telescope secondary, this would give an error
of spherical aberration of 0.07 pm ptv.

The test has been proposed independently by various workers but its
advantage for amateurs was first pointed out by Norman [1.151].

Test by reflection through the back surface (Al or A2, B1)

This method overcomes the fundamental problem of the convex mirror
surface by treating it as a concave mirror from behind. The test can
be used in the general sense as an A2 test with a null system, with
any desired back surface of high quality and any refractive index. Of
course, high homogeneity is always required.

An excellent form of this test was given by Schmadel [1.152], giving a
true Al (autocompensating) method for the third order spherical aber-
ration (Fig.1.68). The autocompensation of the third order spherical
aberration is achieved by the only free parameter, the spherical radius
of the back surface. Unfortunately, the compensation requires a convez
back surface, making it more difficult to test than a concave surface.
However, for smaller mirrors, it can be tested by a concave proof plate.
Schmadel gives an elegant iterative procedure. The calculation with
an optical design program is trivial. For a 20-inch telescope, he gives
an example for my = —3 using Schott BK7 glass. The radius of the
hyperbolic surface is 2067 mm, the thickness of the mirror 30 mm. The
required convex radius is given as 3734.5 mm. The residual zonal error
is < A/50. The test is suitable for values of my between about —2 and
—4.

(/2]

—

Hyperbola

Fig. 1.68. Test by reflection through the back surface due to Schmadel
[1.152]
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Similar proposals were made later by Meinel and Meinel [1.153], also
discussed by Parks and Shao [1.142]. They considered the possibili-
ties for the Keck 10m telescope secondary. The Keck telescope has
me = —15/1.756 = —8.57 for the Cassegrain secondary, a high value
compared with most Cassegrain telescopes. The Meinels set up a sys-
tem similar to that of Schmadel with a convex back giving quasi-
compensation with a residual error of 0.8 Arms [1.142]. The radii were
4731 mm for the mirror and 63705 mm for the spherical convex back.
The Meinels investigated a number of cases with a convex, plane and
concave back spherical surface. They also introduced a further correc-
tion parameter: different conjugates instead of simple autocollimation
with normal reflection from the hyperboloid. In the Keck case, using
separate conjugates and a moderately concave back, they produced
a solution for the Keck secondary giving a wavefront error of only
0.06 pm rms [1.142].

For smaller amateur telescopes, the technique of Schmadel and the
Meinels is one of the most powerful and practical available. It is also
used by professional workshops [1.11]. For larger telescopes, the ho-
mogeneity of the glass is the main problem. It is possible to calibrate
this and separate it out from the surface errors [1.142]. The method
has the major advantage over M5.1 (in the autocollimation form)
that the M5.2 method is twice as sensitive to errors in the hyper-
bolic surface as in the back surface, whereas with M5.1 the situation
is the reverse.

It is instructive to recall that the secondary of the Keck telescope was
finally tested largely by a mechanical method [1.121] — see above.

Test methods of the secondary alone without the primary, but using
large auxiliary optics ‘

Hindle sphere (Al, B1)

The Hindle test [1.154] [1.155] is geometrically the most elegant way of
testing convex hyperboloids. The principle of the test (Fig. 1.69) makes
direct use of the focal properties of the hyperboloid as conjugate,
aberration-free points. In a classical Cassegrain telescope, the foci of
the secondary hyperboloid are also the primary and secondary image
positions. This is not true in an RC telescope; but the secondary is
still to high accuracy a hyperboloid, but with higher excentricity — see
Chap. 3 of RTO I. A point source at the (secondary) focus O forms
a virtual image at the conjugate focus O'. The Hindle sphere is a
spherical mirror centered on O’, giving autocollimation. If the Hindle
sphere is in the same plane as the primary, since its center of curvature
is at the prime focus O’, it is clear that the Hindle sphere is twice as
steep as the primary and, for the same vertex position, has the same
diameter. In practice, it can be made somewhat smaller as the system
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Fig. 1.69. The Hindle sphere test for secondaries [1.154] [1.155]

does not have to transmit any significant field and the image position
O can be made more favourable. For an RC telescope, the geometry
must be changed so that the distances OM; and M20O’ correspond to
the excentricity € = (—b,)!/? for the value of b,y given by Eq. (3.109)
of RTO I. For the Cassegrain secondary of the ESO 3.6 m quasi-RC
telescope, for example, a Hindle sphere would need a diameter of about
2.3m with a relative aperture about f/1.2, i.e. £/2.4 at its center of
curvature. This is steeper than for a classical Cassegrain because |bsz|

. is higher.

M6.2

Such a steep, large diameter sphere is a formidable object to make
and support. This is the limitation of the Hindle test, in practice.
For a parabolic secondary, the point O is at infinity and the beam
from the secondary is parallel: a supplementary collimator is required
to form a real image [1.122].

Inverse Hindle arrangement for a concave hyperboloid: the Silvertooth
test (A1, B1)

Silvertooth [1.156] pointed out that the Hindle geometry can be ap-
plied to concave hyperboloids. This test is assuming increasing impor-
tance, because its geometry (Fig.1.70) is more favourable than the
original Hindle geometry and also because a concave negative (or ma-
trix) of a convex hyperbolic secondary can be used to test a series of
identical secondaries. There is also the possibility of producing such
mirrors by replication from a concave master [1.157]. In the Silver-
tooth geometry the distance OMj is the short conjugate and MO’
the long conjugate, the reverse of the situation in the Hindle test. The
relative aperture of the Silvertooth sphere St is therefore modest and
its diameter does not greatly exceed the diameter of the secondary
itself. The test set-up is correspondingly compact.

The Silvertooth test was used by the Rayleigh Optical Corporation
to manufacture a negative test plate for the 48-inch RC telescope of
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jConcave hyperbolic negative (matrix)

=zaeX
O --------------- OI
1Mé --------------------
st—S
Fig. 1.70. The inverse Hindle test for concave hyperboloids: the Silvertooth
test [1.156]

the Smithsonian Astrophysical Observatory [1.158]. The two convex
mirrors were made by a test plate procedure in a Fizeau arrangement
dealt with in M6.4.

This is one of the best test techniques even for a single convex hy-
perboloid. For more than one convex mirror, it becomes even more
attractive. Such a case is the ESO VLT [1.159], where 4 identical sec-
ondaries are required for the 4 unit telescopes. The manufacturer,
REOSC, has produced a hyperbolic concave negative (matrix) for
the secondaries and tests the convex secondaries, produced by nor-
mal aspherizing techniques, against this concave master by the inter-
ferometric “test-plate” arrangement of M6.4 below. The concave ma-
trix was mot, in fact, tested by the Silvertooth test, but by the more
conventional method of autocollimination at the center of curvature,
using a refracting Offner-type null system (see also §1.3.5.3 below).
Unless a suitable spherical mirror is available for the inverse Hindle
(Silvertooth) sphere, the Offner null system is probably cheaper and
gives also flexible control of the zonal (fifth order) aberration. The
VLT secondaries have beryllium blanks, requiring cutting after figur-
ing. Should the cutting lead to unacceptable figure change, a fall-back
solution remains the replication of the secondaries from the concave
master [1.157).

M&6.3 The transmission meniscus Hindle sphere (Al or A2, B1)

According to Offner [1.122] this test was devised by Simpson et al.
in 1974 [1.160], but the test was in use at Grubb-Parsons for routine
testing before this [1.141] and was successfully used for the secondaries
of the 3.9m AAT. The arrangement is shown in Fig.1.71. The exces-
sive size of the Hindle sphere of Fig.1.69 is reduced by moving the
sphere almost into contact with the secondary. The sphere becomes
a meniscus which transmits the beam twice. The system is therefore
not strictly an Al classification as the meniscus introduces aberra-
tion. However, the back surface can be designed, taking account of the
thickness, to remove the third order spherical aberration. According to
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Fig. 1.71. The transmission meniscus Hindle sphere [1.141] [1.122] [1.160]

Offner [1.122], the zonal error is negligible: he quotes a residual wave-
front error of 0.0016 A for A = 632.8 nm. The front, concave surface
of the meniscus is the Hindle sphere which is given a 50 % reflecting
coat.

This is an excellent test which permits a certain range of secondary
parameters. Its weakness is the high homogeneity requirement of the
meniscus, a difficult element for large secondaries. In fact, it is possible
to calibrate directly the wavefront errors due to lack of homogeneity.
The test mirror M, is removed and replaced by a concave calibration
sphere S¢. If S¢ is perfect, the wavefront errors observed in autocol-
limation at O” give exactly the total wavefront error, from all sources,
introduced by the meniscus in double pass in its test function. With
the phase measurement techniques discussed in §1.3.2.4 above, this
error phase map can be stored and subtracted from the test results.
For high level products with a production schedule that can profit
from the investment in transmission Hindle spheres, the method is an
excellent one.

Interference test with a concave negative (matrix)

This was referred to in M6.2 in connection with the Silvertooth test
for testing concave hyperbolic negatives. Such negatives can also be
tested at their centers of curvature like primary mirrors using null sys-
tems. This method for testing secondaries has been used routinely and
very successfully for many years by Carl Zeiss, Oberkochen (Fig. 1.72).
Some workshops, to save work on the negative and because they are
using the pentaprism test for the basic profile of the secondary, use
a spherical negative; but this gives many circular fringes and reduced
test sensitivity over the aperture. The set-up of Fig.1.72 (a) supposes
that the secondary mirror is capable of transmitting the beam. This
is the case with modern high quality Zerodur; also, of course, with
quartz. It should be emphasized that the homogeneity requirements
are quite different from test set-ups like Fig.1.71, where the optical
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Concave hyperbolic negative

Hyperbola

—Hyperbola

(a) (b)

Fig. 1.72a, b. Matrix interference test for secondaries as used at Carl Zeiss
[1.141]

path length affects the phase directly. This is not the case in the inter-
ference test of Fig. 1.72, since localised (Haidinger) fringes are formed
in a 1 mm gap. The optics to the left of the gap simply has to transfer
these fringes without significant distortion. If the material of M, is not
suitable for transmission, the scheme of Fig.1.72 (b) can be used: the
transmission is through the matrix My with a strongly convex back
surface or with an additional collimator to converge the beam.

Auxiliary lens in front of the secondary (A2, B1)

This method (Fig.1.73) is a more extreme form of M4.2 (Fig.1.65).
The lens now has to overcome the convex nature of the secondary
alone. High homogeneity and a high quality convex (spherical) sur-
face are required for the lens. Unfortunately, such a plano-convex lens
produces undercorrected spherical aberration of the same sign as the
hyperbolic test mirror, which is difficult to correct by (null) refracting
optics. However, a concave mirror compensator such as that shown in
Fig. 1.60 is capable of such compensation. But this method remains
very far from autocompensation. One advantage is that it could be
used with a wide variety of secondaries if a variable compensator is

o

Fig. 1.73. Auxiliary convex lens in front of the secondary [1.141]
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available. The aberration of the lens alone can be calibrated by a
spherical convex mirror.

A variant of this test would use an aspheric (hyperbolic) compensating
surface on the lens which could be tested through its back surface as
a concave mirror in autocollimation.

Richardson test (A2, B1)

This method, proposed by Richardson [1.141] [1.161], resembles the
Lytle test (M4.3) in its basic approach, but replaces the primary as
the element producing the real image by an auxiliary concave mirror
M, (Fig.1.74). In fact, this test in its basic form was proposed in
1954 by Maksutov [1.3] (page 201), who also pointed out that it could
be an Al autocompensating test if the convex mirror were an oblate
spheroid rather than the opposite form, the hyperboloid. The concave
mirror can be placed closer to the secondary and is correspondingly
smaller. Its radius of curvature can be chosen to optimize the geome-
try. The mirror M4 is working at a magnification very different from
unity, unlike the primary in the Lytle test, and is spherical. It therefore
produces undercorrected spherical aberration, as does the secondary.
If the mirror N produced a corrected image of the source O at O’,
the image re-formed at O’ by reflection at M4 (twice) and M, would
be strongly undercorrected, hence also that at O. Since this is un-
favourable for a lens compensator, Richardson proposed a hAyperbolic
mirror compensator at N. Since this is concave, it can be tested at its
center of curvature by a lens compensator.

The problem of compensation, solved by using an aspheric, is a definite
weakness of the Richardson test. It was used for the secondaries of
the 3.6 m CFHT, installed at Hawaii. A significant matching error
of the aspheric constants of the secondary relative to the primary

{o]

Fig. 1.74. Richardson test [1.141] [1.161]
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resulted. This was subsequently corrected by a permanent bending of
the secondary (dc active bending). This general problem is considered
in §1.3.5.3 below.

1.3.5.3 Conclusions on optical test methods for secondaries. All the
methods above which use the secondary in combination with the primary or
with other large optical elements in an A2 mode (i.e. requiring correction
of spherical aberration by a null system) are incapable of giving reliable
information on spherical aberration because the positioning tolerances of the
null systems are impossible to meet in the long beam paths involved. This
situation applies to all M4 methods and M6.6 (Richardson test). A1 mode
methods such as the Hindle sphere are better because of autocompensation.
But one should remember that errors of positioning the source, or radius
errors on the Hindle sphere or M3 will also lead to spherical aberration. In
fact, this is true of any set-up, but the shorter and simpler the beam path,
the less the danger.

The A2 methods M4 and M6.6 are only suitable as supplements to the
pentaprism test M2.4, which is unquestionably the best method for ensuring
freedom from spherical aberration (matching error). These tests may be a use-
ful solution for a final acceptance test revealing the full aperture (B1 mode).

For amateurs or professional workshops making smaller telescopes, the
tests in the M5 group are probably the most practical, particularly those of
Schmadel and the Meinels (M5.2).

For large telescopes, the most practical and reliable methods with the B1
characteristic (test of the whole pupil at once) are probably those in the M6
group, particularly:

M6.2: The Silvertooth test for concave hyperbolic negatives (matrices)

M6.3: The transmission meniscus Hindle sphere

M6.4: The interference test using a concave matrix, produced by M6.2
or by conventional null systems

These are all likely to lead to matching error, unless extreme care in posi-
tioning is taken, particularly if null systems are used. For this reason, it is
highly desirable to add

M2.4: The pentaprism test

above all for classical “passive” telescopes. For active telescopes, matching
is less critical if sufficient dynamic range is available to allow substantial
correction of spherical aberration — see Chap. 3.

For the VLT, REOSC analysed the test procedures for the secondaries
[1.162] (see M6.2 above) and concluded that the technique M6.4, producing
the concave matrix by a conventional null system, was the most favourable,
particularly as 4 identical secondaries were required. A naked (uncompen-
sated) Hartmann test of a hyperbolic concave negative (matrix) of the sec-
ondary, tested as in M6.4, can be a satisfactory substitute for the pentaprlsm
test, as REOSC technology for the VLT has demonstrated.
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1.3.6 Test methods for large flats

Smaller flats can be tested by test plates or against a high quality collimator,
i.e. an inverse telescope, but collimators larger than 0.5 m are rare in optical
workshops. The definitive solution to this problem was given by Common in
1888 [1.163]. The method was re-invented by Ritchey in 1904 [1.164] [1.165]
and has been widely used since then. The method is very simple (Fig.1.75)
and is well described by Maksutov [1.3] (page 196) or in Malacara [1.74]
(page 274). A high quality reference spherical mirror M is tested at its center
of curvature alone, and then after a double-pass reflection at the plane mirror
under test. The double pass gives doubled sensitivity for the test of the flat, a
further advantage of the method. The incidence angle i can be made anything
convenient for the size of the flat and reference sphere available. But, if the
value of i is chosen to be the same as in its final function, for example 45° for
a Nasmyth plane mirror in a Cassegrain telescope, then the method also gives
the correct absolute value of astigmatism due to a slight curvature of the flat.
This is a very important advantage, since astigmatism is extremely sensitive
to small errors of curvature at large angles of incidence. This property has
been used in an inverse process to measure very long radii [1.3] [1.166].

Fig. 1.75. The Common-Ritchey test for plane mirrors [1.163] [1.164] [1.165]

The astigmatic difference along the axis OP due to a very long radius rp
of the plane mirror can easily be derived as follows. Without limitation of
the field angle, the astigmatic fields of a spherical concave mirror of radius r,
imaging a parallel beam, lie on a circle of radius /2 (t-image) and on straight
line (s-image) as shown in Fig. 1.76. The astigmatic difference (Aq4t) p is then
given, from the geometry of the circle, by

(Aust)p = 2 (—1— - cosi) (1.80)
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Fig. 1.76. Astigmatism due to a concave mirror imaging a parallel beam

In the Common-Ritchey set-up, the corresponding wavefront aberration for
a single pass is imposed on that of the spherical reference mirror which has a
semi-aperture angle u, (Fig.1.75). Now from Eq. (3.205) of RTO I, the astig-
matic difference is a function of the wavefront aberration expressed by Syrr
and 1/u?. For the image formed by the concave reference mirror, therefore,
(Agust) p must be multiplied by

('~ (2)

with OP = p, giving

20% [ 1 .
A = — | —- .
( ast)’r P (COS’i cos i) (1 82)
for the observed astigmatism for a single passage. In double pass we have
ap? (1 \  4p*sin?i
(Aast)2r = 2(Aast)r = i <_ - COS’L) = ’2— " (1.83)
rp \ cosi TP COSi

The corresponding sagitta z of the quasi-plane surface can be derived from
its diameter D and its radius of curvature rp from (1.83) and z = D?/8rp
as

z

_ D?(Aust)or (cosi> (1.84)

32p? sin?3%

A feeling for the great sensitivity of curvature in generating astigmatism
can be obtained by taking a typical case and setting the astigmatic effect
produced at the Rayleigh limit with W = A/4. From Eq. (3.204) of RTO I

we have

— 1/ y 2 1
= = — S = —S .
Wrin)er 5 (ym> 11 =381, (1.85)
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for the edge of the pupil with y = ym, as the total wavefront aberration for
astigmatism alone in the Gaussian plane in the absence of field curvature
Srv. Now from (3.206) of RTO I

1 1/f\*
I;n_lé = §Aast = '2‘ (a) S]II s (186)
giving from (1.85)
\? '\ oo
Aa —_— — = — .
st <y1> S111 (le) 8(Wrir)ar (1.87)
Setting (_W_I 11)cr = A/4 for the diffraction limit gives
)
Agst = | — | 2 )
" (2y1) A (1.88)

From (1.82), this gives for (rp),/4 in single pass

__ 1 .
(rp)a/a = Ty 2n <cosi - cosz)

But the distance p in this formula is the same as the effective focal length f’
of the image forming beam, giving with D = 2y,,

D? (1 D?
(TP)r/a = ~ (5& - cosi) = —)\—sinitani (1.89)

If the reference mirror has D, = 1000 mm and the projected diameter of the
flat is D = 700 mm for a typical large coudé mirror working with i = 45° and
with A = 500 nm, Eq. (1.89) gives

(Tp))\/4 = 693km!

On axis, (rp) = 0 if 1 = 0, since curvature produces no astigmatism on axis.

N ,
O@\
Fig. 1.77. General arrangement for testing afocal or quasi-afocal correctors in
autocollimation against a spherical concave reference mirror

I~
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The image at O of Fig. 1.75 can be examined by any of the methods given
in this chapter. Normally, interferometry will be used, allowing simple deduc-
tion of the error in the reference mirror. Of course, it is perfectly legitimate
to compensate the curvature astigmatism of a plane mirror by figuring into
the surface the same amount of astigmatism of opposite sign: but this com-
pensation is only strictly correct for a predetermined and fixed value of i and
requires correct orientation of the mirror.

It should be mentioned that an auxiliary concave reference mirror is a
powerful general tool in testing astronomical optics apart from its use with
plane mirrors. For example, afocal or quasi-afocal correcting systems, such as
field correctors C can be placed in front of such a concave reference mirror
M and tested in autocollimation using appropriate null systems N. Figure
1.77 shows the general arrangement for such tests.



2. Sensitivities, alignment of telescopes
and test procedures in function

2.1 Sensitivities

In Chap. 3 of RTO I we gave the essential formulae for optical errors that
arise in telescopes through maladjustments. In a 2-mirror telescope, such
errors fall into two classes: decentering errors and axial despace errors. It is
useful to recall here the relevant results from RTO I, bearing in mind that
the notation is identical and is defined in Appendix A therein.

2.1.1 Decentering errors

Expressed in arcsec, Egs. (3.363) and (3.364) in RTO I give the tangential
coma (see Fig.3.18 in RTO I) resulting from a lateral (shear) decenter &
(uniform over the field) as

[ 04 e |

2
- _%(_"l?l.v“;i [(m2 ~1) - (mg + 1)b32] %(206 265)arcsec  (2.1)

for the general case of a 2-mirror telescope, and

3m 1 6
[(514,) Comay ]6,Apla,n = —TéN—z [(mg -1) +1—:R_A} 7(206 265) arcsec
(2.2)

in the case of an aplanatic, normally RC, telescope. In (2.2) the first term in
the square bracket corresponds to the classical telescope, the second term is
the RC supplement.

As a typical case of a modern telescope we will take the ESO New Technol-
ogy Telescope (NTT) with mg = =5, N =11, f' = 38500mm, R4 = 0.229,
giving

[ (8uy) Comay ] SNTT 1.050 §(nm) arcsec , (2.3)

the RC supplement being only about 5%, typically insignificant. Equation
(2.3) shows that § = 1 mm decenter in this 3.5m telescope generates about
one arcsec of decentering coma. This sensitivity dominates the situation in
“passive” telescopes and its control is the most important feature of “active”
control.

R. N. Wilson, Reflecting Telescope Optics IT
© Springer-Verlag Berlin Heidelberg 1999
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The other decentering sensitivity comes from a rotation of the secondary
about its pole. From RTO I, Eq. (3.376), we have

3 RA (m% - 1)

{ (51‘;) Coma, ] 2,70t - 16 N2 (Upr2)arcsec aTCSEC (2.4)
where up,2 is the fotation of the secondary in arcsec. Since the derivation of
this formula places the stop by definition at the secondary, this decentering
coma is independent of the form of the mirror. For the NTT this gives

[ (5u;,) Coma, ]2’mt’NTT = —0.00852 (Upr2)arcsec ALCSEC (2.5)
or 1arcsec of coma for uprg = 117.4arcsec. This is relatively insensitive.

The balance of these two decentering errors is of great importance for the
alignment and maintenance procedures.

In §3.7.2.1 of RTO I it was emphasized that third order decentering coma
is by far the most important decentering aberration. It was also pointed out
that this dominance of coma compared with astigmatism arises because of
the linear field dependence of coma, implicit in the derivation of Egs. (2.1)
and (2.2), compared with the quadratic dependence of astigmatism. For most
“normal” (i.e. “passive”) telescopes, it will be entirely sufficient to limit the
consideration of decentering aberrations to coma alone. However, for modern
“active” telescopes of effectively diffraction-limited quality in excellent sites
capable of the exploitation of this extreme quality, decentering astigmatism
may become significant. The better the field correction of the telescope, the
more critical such astigmatism will become: this may already be true for
aplanatic telescopes and will certainly be even more so for more complex
forms giving anastigmatism.

It was shown in RT'O I how the decentering sensitivity formula for coma
of Eq.(2.1) could readily be deduced from the general recursion formulae
given in § 3.6.5.2. The equivalent formula for astigmatism can be derived in a
similar way as follows. From Fig. 3.97 and p. 259 of RTO I, we can take over
for the telecentric principal ray

Ypro = +4 )
the lateral decenter, and

T Ypr2
Ay =22
T2

(HE), = 2212
Y2

Applying the recursion formulae (3.336) to the aperture ray gives

- 2d
Yy2=1n (1 - —‘1> =1y1Ra
™

from (2.72) of RTO I, and
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vy _ _oYt

A(n)Q—(uQH)( 2r1)
1

M2=E(T1—2d1—7”2)

4
Yo
T2 = 2b32 -3
T2

Then, from (3.20) of RTO I,
ypr2 | 21\ | (Yor2) ., Y3
(Srrr)2 = —vy2 ( £ ) (u2 +1) (———) + (£> 2632% (2.6)
2

T2 ™ Y2

From (2.72) and (2.90) of RTO I

= 1 mo + 1
1= ZRA Mg

so that with
_ Y
Y1 Ra

mo +1
1= s
w2 + oy

Eq. (2.6) reduces at once to the simple form

2
(s =22 (1+0a) (2 @7
T2 T2

or

2 2 2

(5111)2 = 2y1RA (1 + bsg) (i) (2.8)
T2 T2

The factor (§/r2)? arises from the basic dependence of third order astigma-

tism on the square of the field.

These equations reveal an interesting property. If the secondary has a
parabolic form (bsz = —1), then the astigmatism due to pure lateral decenter
is zero since the spherical and aspheric terms compensate each other. This
result can also be interpreted from an elegant geometrical property of the
paraboloid: sections through it parallel to its axis are always the same as the
generating parabola itself [2.1]. This means that the vertex curvature of such
parallel sections of (a paraboloidal) M in Fig. (3.97) of RTO I is always the
same. This is operative for the sagittal beam. But the off-axis curvature in the
tangential section is less than the vertex curvature. It is given by the well-
known general formula for the radius of curvature (normal to the surface)
of any point of a function, in our case of a parabola defined by z = y2/2r
according to Eq. (3.2) of RTO I, as

2132
[1+(%) ]
pt=——"g,  — > (2.9)

dy?
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from which we have dz/dy = y/r and d%z/dy? = 1/r. Now y = 6, the lateral
decenter, giving to the third order

pe=r (1 + §§E> (2.10)

2712

From the cosine obliquity effect of the curvature in the sagittal section, bear-
ing in mind that the basic radius of curvature r of the section parallel to the
axis must be divided by the cosine of the angle to the normal because of the
transfer from a “small circle” section to a “great circle” section [2.2], we have
the normal sagittal radius of curvature

ps =T (1+1§i> (2.11)

2712

Application of Egs. (3.88) and (3.206) of RTO I, ignoring Syy and setting
spr1 = 0, lead to astigmatic focus shifts for a beam on the centered surface
at equivalent field angle §/r of

1 62
for the sagittal beam and
3 42

for the tangential beam. Since, for a parallel beam, the focal length is p/2,
the positive supplements to the radius of curvature of Egs. (2.10) and (2.11)
above exactly compensate the astigmatic contributions of Egs. (2.13) and
(2.12) respectively.

Of course, the above treatment assumes that parallel beams are falling on
a parabolic primary or secondary. But this is implicit in the assumption of a
parabola for the secondary, because such a 2-mirror telescope must have a
parallel emergent beam (i.e. must be afocal) for spherical aberration correc-
tion. Thus the above treatment with b, = —1 refers to a Mersenne afocal
telescope either of Cassegrain or Gregory form, which has, to the third order,
zero sensitivity to pure decentering astigmatism.

From Eq. (3.208) of RTO I, Eq. (2.8) above gives the angular length of the
astigmatic line for pure decenter as

5\2
(AStiine)s gen = —4%Ri(1 + bs2) <r_> (206 265) arcsec (2.14)

’ 2 2
for the general case. For an aplanatic telescope, a more convenient form in

terms of fundamental parameters is

(Astiine) s, aptan

2
_ _mz(]?}zzj Dz e RAl)(mZ : 1)] (%) (206 265) arcsec , (2.15)
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in which the second term in the square bracket represents the supplement of
the aplanatic telescope compared to the classical telescope with a parabolic
primary, for which the square bracket term is unity.

Equations (2.14) and (2.15) were recently given by Wilson and Delabre
[2.3] in a general treatment of the theory of telescope alignment, illustrated by
the NT'T. It was shown for that telescope that the very large decenter value of
d = 10 mm gives only about 1/8 arcsec for the astigmatic line from Eq. (2.15),
whereas the tangential coma from Eq. (2.2) has the enormous value of about
10.5 arcsec! This reveals the clear dominance of coma as the fundamental
error induced by lateral decenter. In the NTT, the very small astigmatism
value is also the result of its relatively high secondary magnification my = —5.
This becomes evident if we set f' = myf; and N = maNy in (2.15). A high
value of mo implies the telescope is approaching the limit case of the Mersenne
afocal form, for which (2.15) also gives zero astigmatism.

2.1.2 Despace errors

In the set-up of 2-mirror telescopes, the free parameter is the separation d
between the two mirrors, controlled by the focus movement of the secondary.
The differential effect dd; on the other parameters (see Fig.2.12 in RTO I)
is from RTO I, Egs. (3.394) to (3.399),

dL = m3dd; (2.16)
db = (m3 +1) dd; (2.17)
2
dmy = @(”22_+1_) ddy (2.18)
fl
df’ = <_—_> dd 2.19
f A-f-di) (219)

These are changes affecting the Gaussian (first order) geometry of the tele-
scope. But a change in mirror separation d; also affects the third order aber-
rations. Because of the convergence of the aberration function, only two of
these are of significance: the effect on the spherical aberration and field coma.
The latter is only significant in aplanatic systems, such as the RC telescope,
for which the field coma is nominally corrected.

The change in third order spherical aberration in arcsec due to the differ-
ential dd; is from RTO I, Eq. (3.409),

1 m2 - 1 mo + 1 3
d((s’u;)BF,SI = _32Ni3 |:< 12’)1% ) B ( ma )
2
A A

in the general case, where Ni and fi refer to the primary mirror and the
angular aberration refers to the “best focus” combination with defocus. For




110 2. Sensitivities, alignment of telescopes and test procedures in function

the RC case, we have from RTO I, Eq. (3.407), and d; = %(1 — R,) from
RTO I, Eq. (2.72),
dd;

1 9 2
[d(éu;)ap] Aplan = —W [(mz -1)+ (m>] 7{— 206 265 ar(c;e;l)

Again, the first term in the square bracket is for the classical telescope, the
second term the RC supplement. The NTT values give from (2.21)

[d(éu;,) BF] Aplan, N7 = 0:0836 dd; arcsec (2.22)

Therefore, a change dd; = 1 mm produces from (2.17) a shift of the final
image in the NTT of 26 mm and a spherical aberration at best focus of
0.0836 arcsec.

Finally, the change in third order tangential field coma in arcsec due to
the differential change dd; is given from RTO I, Eqgs. (3.415) and (3.198),

3 1 [[4Rs-3 m—1
' d= T 1-Ry) (2
[d(tsup)Comat]erld 8N12 R4 [ ( m% ) §+ ( A) ( m% )
_marT- —: 1] Uprl (—1—65—1(206 265) arcsec (2.23)
my fi

where upy; is the semi-field angle in rad, for the general case, in which

_(m2+1)3 mg — 1 2
€ - 4 mo + 1 + bs2
from RTO I, Eq.(3.41). For the RC telescope, (2.23) gives with RTO I,
Egs. (3.108) and (3.420),

3 1 4R4 —3
[d(6up) comar] piera apian = 8NZ mZR4 [_ (2(1 Z RA))

%(206265)arcsec ,  (2.24)
1

# (1= Ra)(md = 1) = (ma + D] upr
with the semi-field angle u,,; expressed in rad. The last two terms in the
square bracket express the result for a classical telescope, the first term the
RC supplement. The parameters of the NTT give in (2.24) with upy =
15 arcmin

[d(6u;,) coma, ] FiegNrT = 0-0377 dd1 () arcsec (2.25)

Therefore, a change of dd; = 1 mm, producing an image shift of 26 mm in the
NTT, generates 0.0377 arcsec of field coma, varying linearly with the field, at
the semi-field of 15 arcmin. ‘
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2.2 Alignment and adjustment of telescopes

2.2.1 General theoretical principles of telescope alignment

Although we shall also consider the cases of prime focus telescopes and
Schmidt telescopes below, the 2-mirror Cassegrain geometry has firmly be-
come the standard tool for modern astronomical research. The alignment of
classical or aplanatic (RC) Cassegrain telescopes is therefore by far the most
important aspect of modern telescope alignment in general. With minor mod-
ifications, the same principles apply to Gregory telescopes.

The sensitivities discussed in §2.1 confirm the well-known fact that the
principal decentering aberration is coma. This will remain true in any prac-
tical telescope form. The alignment must therefore have as its first aim the
reduction of decentering coma to acceptable values. With the dramatic im-
provements in optical quality arising from manufacturing technology, opti-
mum sites, thermal control and active optics (i.e. active maintenance), the
demands on alignment quality have correspondingly increased.

A “perfectly centered telescope” is an abstraction, a mathematical limit
case of no practical meaning. Residual errors will always be present, but
should be small enough to meet the image specification tolerances discussed
in Chap. 4 below. In general, one can say that the errors due to misalignment
should be small compared with the total image error of the perfectly centered
telescope, including, of course, atmospheric seeing.

It must be emphasized that the aspheric surfaces of normal 2-mirror tele-
scopes, particularly in their steep modern forms giving short systems, compli-
cate the alignment compared with, say, a lens system containing only spher-
ical surfaces. The latter have no aris: decenter is only a matter of tilt of
the surface relative to some reference “axis”. But aspheric surfaces have a
genuine unique axis of revolution. As we have seen in §3.7 of RTO I, there
are therefore two coma decentering effects of the secondary relative to the
primary as expressed by Egs.(2.1) and (2.4) above, lateral decenter of the
aspheric axis and rotation about the pole. Thus a compensation of the two
coma effects is possible. For the small decenter effects acceptable in practice,
the third order formulae given above are extremely accurate. Such a coma —
free system due to such compensation is called a “coma-free Schiefspiegler”
(CFS), following the proposals of Kutter (see Fig.3.93 of RTO I). Now, to
third order accuracy, the decentering coma is a constant vector over the field,
whereas field coma, in a telescope for which it is not corrected, grows lin-
early with the field and is therefore a radial vector growing linearly with the
distance from the field center, as shown in Fig. 2.1. In this example, the field
and decentering vectors cancel at the field point A, so this becomes the new
field center free from coma instead of the point O. However, the combined
coma in the field is still a symmetrical function about A. It follows that, if
OA is small compared with the field radius and the point A is brought to
the mechanical field center of the telescope by a small pointing change, the
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@ (b)

Fig. 2.1. Combination of (a) field coma, growing linearly with the field radius, and
(b) decentering coma, constant over the field

observer is completely unaware that decentering coma is present. Of course,
this statement is only true for small errors adequately defined by the third
order approximation and where the decentering astigmatism remains negligi-
ble. The case of Fig. 2.1 corresponds to that of a classical Cassegrain telescope
with a parabolic primary. An aplanatic (RC) telescope has no field coma to
the third order, so there is no field point of compensation of the decenter-
ing coma which therefore appears in full over the whole field. Clearly, then,
correction of decentering coma is more critical for an aplanatic telescope.

The coma-free Schiefspiegler (CFS) is therefore the practical basis of tele-
scope alignment and relaxes the theoretical abstraction of a perfectly cen-
tered system. Figures 2.2(a) and 2.2(b) show the situations of “pure” lateral
decenter and the coma-free Schiefspiegler respectively. The former is the sit-
uation corresponding to the coma of (2.1) and the astigmatism of (2.14). In
Fig.2.2(b) the line M; M, joining the poles of the mirrors is considered to
be the nominal “optical axis” of the telescope (OPT) which will also be the
definition of the “tube axis”. The fundamental parameter of the CFS is the
quantity §, the relative lateral displacement of the aspheric axes. An incident
principal ray is drawn to M; (assumed to be the pupil) with the angle up-1
such that the reflected ray passes through Ms. For CFS coma compensation,
the secondary must be rotated in the sense shown through the angle rot so
that the reflected ray is deflected further from the axial image point O to the
image point Ig. This image point I is then the effective center point of the
CFS field and is brought to the mechanical field center by a small pointing
change of the telescope, whose precise significance will be treated below.

In §3.7.1 of RTO I, the condition for coma compensation in the CFS was
given as
Upr2 _ 7‘17‘%

= — 2.26
U,p,«] (’l‘l - 2d1)2(7'1 - 2d1 - 27‘2) ( )
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Fig. 2.2. (a) “Pure” lateral decenter, (b) Coma-free Schiefspiegler (CFS) (after
Wilson and Delabre [2.3])

If this relation, defining the CFS, is entered into the formulae for the astigma-
tism contributions given by Egs. (3.349) and (3.350) in RTO I for the primary
and the secondary, then the astigmatism in the “axial” point Ig of the CFS
is [2.3]

(Astiine)s,s

mo 7‘17‘%

5\2
=211 — )
N (e = 2d1)2(rs — 2d; = 27‘2)2} <d1> (206 265) arcsec , (2.27)

where the first term 1 in the square bracket represents the contribution of
the primary and the second term that of the secondary.

Ray tracing confirms that Eq. (2.27) is extremely accurate in practice. For
the 3.5m NTT with me = -5, N =11, r; = —15400mm, ry = —4416.7 mm,
d; = —5933.3mm (see Fig.3.4 (b) in RTO I for the complete data of the
NTT), and a value § = 2.5 mm, Eq. (2.27) gives

(Astlme)z.s mm,S = —0.046 330 arcsec ,

a normally negligible value even for the best telescopes and sites. However,
the value grows with 62, so that for § = 10mm we have (Astiine)10mm,s =
—0.74127 arcsec, an unacceptable value. This reveals the fundamental ques-
tion concerning the elimination of decentering coma with a CFS: how large
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may the determinant parameter § be before other errors, notably astigmatism,
become too large [2.3]?

Two aspects of Eq. (2.27) must be emphasized. Firstly, it is independent
of the asphericity of the secondary. This is because the “axial” beam shown
in Fig. 2.2(b) strikes both mirrors “centrally”, i.e. the coma and astigmatism
introduced by M; are independent of stop position and are solely dependent
on the rotation of M, relative to the incident “axial” beam. Secondly, it is
formally only valid for the region near the CFS “axis”: the astigmatic effects
further out in the field require more detailed analysis.

Bhatia, in a ray-tracing analysis based on NTT optical geometry, has
suggested [2.4] that, for such telescopes, the zero-coma condition is a neces-
sary but not sufficient condition and that separate degrees of freedom of M,
(translation and rotation) must be used to correct both decentering coma and
astigmatism. However, he assumed a CFS with 6 > 5 mm, an unsatisfactory
state of basic adjustment and far worse than that actually established for the
NTT at initial set-up, which was about § < 2.5mm [2.3]. Here we must bear
in mind the astigmatism dependence on 42 of Eq. (2.27).

The general nature of the decentering aberration function was analysed
in a fundamental paper by Shack and Thompson [2.5]. They point out that,
when the elements of a system are decentered laterally or rotationally, the
aberration field contributions from each surface essentially remain rotation-
ally symmetrical about some point in the field. Because of the unique axis of
aspheric surfaces, the shift of the effective field center for such a surface will
be different for its spherical and aspheric components. For each effect alone,
the symmetrical nature of the aberration to its shifted field center is largely
maintained, but the combination of the different effects produces a more com-
plex field dependence. Because of the basic dependence on the square of the
field, the general case of decentering astigmatism is more complex than that
of coma. Shack and Thompson show that the general form is binodal, i.e.
the astigmatism still grows roughly with the square of the field, but about
two zero points (nodes), disposed along the field axis in the direction of the
decenter and with a separation linearly dependent on é. Figure 2.3 shows
the nature of this function. Three limit cases are important: zero separation
of the nodes corresponds to normal astigmatism varying with the square of
the field but with shifted field center; one node stationary and the other at
infinity gives a linear field dependence; both nodes at infinity with stationary
center of symmetry gives a constant astigmatism over the field.

Shack and Thompson give the vector analysis in terms of Seidel aberration
coefficients as constants in the equations for the decentered systems. The
same basic approach has recently been further refined in an excellent paper
by McLeod [2.6]. Extending formulations by Schroeder [2.7], McLeod gives
an expression for the two astigmatic components of a decentered system.
Let the field height in Fig.2.5 of RTO I be expressed in angular measure
6 = n'/f" and let the CFS rotation angle rot of M, in Fig.2.2(b) be termed
o = rot, whereby the tilted axis of My with angle o will cut the M; axis at
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Fig. 2.3. Nature of the binodal decentering astigmatism function (after Shack and
Thompson [2.5])

©

the “coma-free point” — see §3.7.2.3 of RT'O I. Then the astigmatism terms,
as wavefront aberration resolved in x,y directions relative to some vector
direction of the tilt, are given by McLeod as

(Wast)cos2g = Bo(62 — 62) + By(605 — 0y01) + Ba(aZ — af,)} (2.28)
(Wast)sin2g = 2B0820y + B1(8z0y + Oyaz) + 2B2(az0y) |

whereby ¢ is the azimuth angle in the pupil defined in § 3.2.1 of RTO 1. Equa-
tions (2.28) give the binodal field astigmatism shown in Fig. 2.3. Shack and
Thompson point out that the contours of this function are ovals of Cassini,
whereby the magnitude of the astigmatism for any field point is proportional
to the product of the distances from the two nodes.

If we define the z-direction of Egs. (2.28) to be the same as the decenter
section, i.e. the same as the z-direction of Fig.2.3, then ay in (2.28) is zero
and the function along the z-axis field direction is given by

(Wast)cos2¢,x = 3002 + B16z0; + B2a§ (229)
For the nodes, this function must be zero, giving nodal field positions (6;)n
for a given decenter oy

i [—Bl +(B? - 43032)1/2] (2.30)

(B} = 2B,




116 2. Sensitivities, alignment of telescopes and test procedures in function

The shift of the field center, halfway between the nodes, is then

; B
(gz)AnA = _Eax ) (2.31)

while the field distance from this center to the nodes is
() any = £—2 (B2 — 4BoB,)'/? (2.32)
2B,
If |Bo| and |B;| are similar and |By| is negligible in comparison, then

(0z) Any =~ £(02) Ana (2.33)

and one of the nodes will lie near the My axis, the field center of the centered
telescope. We shall see below that this approximates to the normal telescope
case.

McLeod gives expressions for By, B1, B3 in the notation of Schroeder [2.7].
In the notation of RTO I they can be written

By = (A0)10% — (Ao)2p3

B = - [2(,40)2 + (spr2 + ZCFP)(A1)2] o5 , (2.34)

By = - [(Ao)z + (spr2 + 2zcrpP)(A1)2 + (spr2 + ZCFP)2(A2)2] Z

in which
pg o (o o (1 1Y)
07 Tor |72 Spr T
A= [ L _ (Gt (2.35)
2 | spr T
bs +1
Az = 2r3 )

In these equations, p represents the ray height in the pupil, s, the pupil
distance from the surface 1 or 2, r the radius of curvature, zorp the distance
from the coma-free point to M, (taken as positive to give a positive o with
positive d), b, the Schwarzschild constant. With the normal case of the stop
at the primary, spr1 = 0 and spr2 = —dj, a positive quantity. Table 2.1 gives
the necessary data for the evaluation in the case of the ESO 3.5m NTT. For
this telescope, the coefficients of (2.34) are

By = —24.3679 pm deg ™2
Bj = +30.0717 ym deg 2 : (2.36)
By = + 0.17675pm deg ™2

the units um deg ™2 being the same as those given by McLeod for the exam-
ple of the Mt. Hopkins 1.2m RC telescope, the angular field being given in



Table 2.1. Parameters for the evaluation of Egs. (2.34) and (2.35) in the case of

the ESO 3.5m NTT

2.2 Alignment and adjustment of telescopes

Mirror 7 (mm) bs spr (mm) | zcrp (mm) p (mm)
M —15400 —1.023822 0 - +1750.0
M, —4416.7 —2.452784 +5933.3 +1676.1 +401.52
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degrees. Since this telescope has a roughly similar Cassegrain geometry to
that of the NTT, the relative values of the three coefficients are also roughly
similar. We see that |By| and |Bi| are indeed similar and that |By| is very
much smaller, as in the Mt. Hopkins case. Equation (2.33) is therefore appli-
cable to such telescopes, i.e. one of the nodes remains roughly at the M; axis.
For the NTT, the linear shift of the astigmatic field center is, from (2.31) with
§d =2.5mm and f’ = 38500 mm,

Ana = f'(6z) an, = +35.432mm (2.37)

from the M; axis. Now, for comparison, the shift of the coma-free “axis”
point I’ of the CFS of Fig.2.2(b) is [2.3]

Ancps = +32.57mm (2.38)

These two values are similar. It is important to consider whether this is always
the case or whether it is due to the specific geometry of the NT'T. In fact, it
can easily be shown to a rough approximation that

AnCFS ~ —I—2azL y (239)

if in Fig. 2.2(b) upr1 < 2upr2, as is the case, and L is the back focal distance
M, 1Ij. Similarly, if we apply the rough approximation from (2.36) that B; =
— By, then from (2.31)

Ana =~ +ia,f! (2.40)

Now L = Raf’ from (2.72) of RTO I, where R4 = 0.22944 is the axial
obstruction ratio of the NTT. We see from Egs. (2.39) and (2.40) that

Ana = Ancrs (2.41)

if the telescope has an axial obstruction ratio R4 = 0.25. That of the NTT
is quite near to this value which is indeed typical for modern Cassegrain
telescopes. Lower values of R4 will give values of Ancps less than Anga.

For Cassegrain telescopes of normal geometry as with the NTT, therefore,
the astigmatic field center shift will be similar to the shift of the CFS “axis”
I, and one of the nodes will be quite near the M; axis, since By will always
be relatively small for normal geometries. These are important geometrical
properties of the field aberrations of the decentered system.

A further theoretical property of importance is the condition for which
the nodal separation becomes zero, i.e. the case of a pure shift of field center.
This is given by Eq. (2.30) if the second term becomes zero, so that



118 2. Sensitivities, alignment of telescopes and test procedures in function

B? - 4ByB; =0
or
B2
B, = =L 2.42
’= I3, (2.42)

Since By is always negative in practice, this requires that B, also be negative.
It would be satisfied by the relative values By = —1, By = £2, By = —1,
as is also evident by substituting in the basic astigmatism equation (2.29).
However, as mentioned above, such a large negative value of B, is impossible
with normal optical geometries of Cassegrain telescopes, i.e. with fairly large
values of |mz| and normal positions of the final image. As we have seen,
the normal case is that B? > 4B, B, with B, of the wrong sign (positive)
for compensation, giving a nodal separation slightly greater than twice the
field center shift An4. The binodal astigmatic field function is, therefore, the
normal case for practical telescopes with decentering.

The first term in By of Egs.(2.28) and (2.29) is simply the normal
quadratic field astigmatism of the centered telescope. This is also given ex-
plicitly by the first of McLeod’s equations (2.34) as the wavefront aberration
of the tangential astigmatism per (unit field)?. In fact, it gives an identical
result to that of Egs. (3.61) and (3.202) in RTO I for the field astigmatism.
However, proving the equivalence of the formulae requires considerable trans-
formation: it is more readily shown from the fundamental terms of the recur-
sion formulae (§3.6.5.2 of RTO I) for the primary and secondary mirrors to
give the equivalent of (A4p); and (Ag)s in McLeod’s formulation.

The property mentioned above of the ovals of Cassini of Fig. 2.3, that the
astigmatism at any field point is proportional to the product of its distances
from the nodes, leads to an important general conclusion. In the z-section of
decenter corresponding to Eq. (2.29) the astigmatism at an edge field point
distant zg from the point of field symmetry is simply

Ast « (zg — Az)(zg + Az) = 2% - A2 | (2.43)
where + Az is the distance of the nodes from the central symmetry point.
Clearly, if Az < zg, the relative error will be small compared with the simple
assumption of a normal quadratic law applied to a shifted field center at the
field symmetry point. This assumption was made in the set-up of the NTT,
in which the image analyser normally measures the astigmatism at the field
edge and a correction is made for an effective (measured) field center shift.
The limits of the validity of this assumption have been discussed by Wilson
and Delabre [2.3]. On the basis of the measured field center shift of about
20 mm, they concluded that the effective lateral decenter d¢ss of the CFS set
up with the initial alignment was

deff < 2.6mm (2.44)
and that the assumption of a simple field center shift introduced negligible

astigmatism errors, even at the edge of the field. They concluded that, pro-
vided the value of dcfs of the CFS set up is sufficiently small, the coma-free
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condition is a sufficient as well as a necessary condition for the alignment of
“normal” telescopes, whereas Bhatia’s opposite conclusions [2.4] were based
on ¢ values of the CFS which were too large, i.e. the basic alignment pro-
cedure assumed was not adequate, bearing in mind that the effect on astig-
matism is proportional to §2. Classical Cassegrain telescopes are the least
critical, RC (aplanatic) telescopes more so (particularly if they are actively
controlled). The most critical will be wide-field anastigmatic telescopes, for
which the whole field is used for observation.

McLeod [2.6] suggests correcting the residual CFS error dfs by measure-
ments in the astigmatic field and a least-squares process to deduce dg¢. This
is an elegant approach and a similar procedure is now (end of 1996) being
applied to the NTT: a mapping of the astigmatic field to determine the posi-
tions of the field center and the nodes. The value of d.ff can then be directly
determined from the equations above. Although the assumption of a simple
field center shift in the NTT was adequate at the time of set-up, it would
make no sense today since the field can readily be mapped and the nodal
separations, even with § < 2.6mm, are by no means as negligible as was
assumed at the time.

Finally, it is instructive to tabulate some of the astigmatism values in the
z-section of Fig. 2.3 given by Eq. (2.29) for a value é = 2.5 mm in the NTT.
Expressing the corresponding decenter angle a, in degrees, we have a, =
+0.085458°. Table 2.2 gives the astigmatism as (AStiine)cos2¢,z N arcsec.
The sign of the total aberration has been reversed from that of McLeod’s
equations above to give agreement with the sign convention of Table 3.3
of RTO I. The last value, for the centered system, originates from the By
term of Eq.(2.29). If this value is modified by a simple field center shift
Any = +35.432mm, then the astigmatism (Asty;pe) errors for the edge field
points +168.0 mm of the decentered system are about +0.065 arcsec. These

Table 2.2. Astigmatism values for the decentered NTT (6 = 2.5mm) for various
field points and in comparison with the centered system

§ (mm) Field point Field height (Astiine)cos2¢,z
from M; (mm) (arcsec)
M, axis 0 -0.0012171
L.H. node —0.336 0
R.H. node +71.200 0
25 Center of ast.field (Ana) +35.432 —0.065106
CFS “axis” (Ancrs) +32.57 —0.064689
L.H. field edge -168.0 +2.040906
R.H. field edge +168.0 +0.829217
0 Centered system field edge +168.0 +1.436278
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errors are about 30 % higher than those determined from ray tracing [2.3}.
Similarly, the tabular values in the central field region between the nodes
are about 30 % higher than ray trace values. In general, third order formulae
involving the asphericity as defined by bs tend to give astigmatism results
which are somewhat too large when the astigmatism values are very small.
This is true of the McLeod formulae and also for Eq. (2.8) giving astigmatism
from simple lateral decenter. By contrast, Eq. (2.27) giving the astigmatism
at the “axial” point of a CFS remains remarkably accurate even for very small
values, because it does not involve the asphericity. For the point Ancrs =
+32.57mm it gives the accurate value —0.046330 arcsec compared with the
value —0.064689 arcsec of Table 2.2.

Apart from the decentering effects on the astigmatic field, there is another
effect arising from the coma-free Schiefspiegler (CFS) which may become
significant in the total telescope system. This is the inevitable lateral decenter
of the exit pupil, which leads to a collimation error and an inclination of the
exit beam to the mechanical telescope axis. The former can be corrected by
pointing software, but the latter is an inevitable consequence of the CFS
solution with a finite d-value. Both the above errors will increase linearly
with 8. The practical consequence of the beam inclination is the lateral shift
of the transferred pupil of an instrument mounted axially to the telescope.
The origin of these errors is treated in detail by Wilson and Delabre [2.3]
and is shown in Fig. 2.4, which demonstrates the consequence of the pointing
correction in the CFS to bring the “axial” image back from I to I on the
projected axis MoM; of the CFS. Instead of a principal ray on the M, axis
giving the central field point O for the centered telescope, the CFS pointing
correction requires a principal ray (Pr)p incident on M; which passes, after
reflection at the secondary, through I} on the CFS axis. The apparent beam
inclination to the CFS axis MaM; I} is then <, while the collimation error
is B. It is shown in the paper that the theory gives v = 2.026 arcmin in the
NTT with § = 2.5 mm, no measured value being available as the effect had not
disturbed the observations in any way. In practice, with typical spectrographs,
the pupil aberration is normally several times larger than the above value of
and is the limiting factor in pupil imagery on to gratings. Only in the thermal
IR or for interferometric use of telescopes is the angle vy likely to be more
critical, particularly for interferometry at visual wavelengths.

We may conclude, therefore, that the field astigmatism effects will set
the practical limit to the coma-free Schiefspiegler error é acceptable in nor-
mal telescopes and that this limit is about 2.5 mm with NTT geometry and
the relatively stringent conditions of active optics with image analysis at the
field edge. We have seen above that Cassegrain telescopes with a modern ge-
ometry will normally have McLeod constants in Eq. (2.29) of B; ~ —Bj and
By <« Bj. From (2.31) and (2.32) it follows that the potentially dangerous lin-
ear decentering astigmatic effects are effectively proportional to (B1/Bo)as.
Since the axial linear distances in such Cassegrain telescopes will be, to a
crude approximation, proportional to the focal length of the primary, and
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CMZ

Fig. 2.4. Pointing correction necessitated by the coma-free Schiefspiegler (CFS)
(after Wilson and Delabre [2.3])

since a; = §/z¢Fs it follows that the acceptable d-value in such telescopes,
from the astigmatic viewpoint with similar quality criteria, will be roughly
proportional to the primary f/no N;. A limit value § < 2.5 mm for the NTT
with N; = 2.2 can thus be a rough guide for most modern telescopes.

In this section, we have now established that the coma-free Schiefspiegler
(CFS) remains the basis of the alignment of 2-mirror telescopes and that the
field astigmatism effects will limit the acceptable basic decenter é of the CFS.
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In the next section, the practical procedure for establishing such a CFS is
considered.

2.2.2 General set-up situation and definition
of the aims of alignment

We shall confine ourselves in this section to Cassegrain telescopes, either in
normal geometry or with additional Nasmyth or coudé plane mirrors, since
the vast majority of modern professional telescopes are of this form. The pro-
cedures described are equally valid, with obvious modifications, for Gregory
telescopes.

The optical manufacturer should have delivered the optical elements with
tolerances in agreement with the optical specification. The prime mirror nor-
mally has a central hole. For the normal case of an aspheric primary it has a
unique aspheric axis, but this can only approximately be physically defined by
a cross or marking. Such a marking is often requested on a convex secondary.
Such definitions are made on the assumption of mirrors always mounted in
the same position on the turntable of the figuring machine and axisymmetri-
cal effects of the polishing process. According to information from Carl Zeiss,
the geometrical center of the finished cylindrical block will agree with the as-
pheric axis within one mm for a 3.5 m primary of about f/3. Such a precision
is quite adequate for a rational set-up operation.

The basic aims of the set-up and alignment operation can be defined as
follows (Fig.2.5):

a) The mechanical axis supporting the telescope tube (declination axis for an
equatorial, altitude axis for an Alt-Az) is optically defined as the t-axis.

b) A line is defined perpendicular to the t-axis which cuts this t-axis and
passes through the nominal center of the prime mirror (M;) cell. This
point may, in practice, be defined as the mechanical center of a rotator
attached to the PM cell. This line is defined as the mechanical axis of the
telescope tube and as the effective “optical axis” (OPT).

c¢) The secondary mirror (M3) is centered with its cell on OPT and its center
set perpendicular to OPT.

d) M; is mounted in its cell, preferably with a mechanical centering precision
to the cell fixation within D/5000, where D is the diameter of M;. If
this precision cannot be realised, however, it may not be serious for the
function of the telescope if the following procedure is correctly adhered to
and the theory of §2.2.1 is carefully applied.

e) A natural star near the zenith is then observed at the nominal Cassegrain
focus, i.e. at a point on, or very near, the axis OPT and focused with My
at the predefined distance behind the pole of the primary (b in Fig.2.12 of
RTO I).

f) The coma (i.e. decentering coma, since we are observing on axis) is mea-
sured by an image analyser or equivalent device. The M; cell is then tilted
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Fig. 2.5. Alignment of a Cassegrain telescope

appropriately to correct this decentering coma, or My is tilted on its fized
points. The tilt required can be calculated from Egs. (2.1), (2.2) and (2.4)
or with the aid of an optical design program. The directions required are
dealt with in §2.3.

g) General image analysis at the field center. Apart from the residual coma
not corrected by f), the spherical aberration and astigmatism are impor-
tant at this stage. Bearing in mind that such errors can also be gener-
ated in the local air surrounding the telescope and that such errors may
be stable over several hours, a fixed residual and non-negligible spherical
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aberrration at the correct axial image point will imply a systematic fig-
uring error by the manufacturer. An erroneous axial position will give
aberration according to Eq. (2.20). A non-negligible astigmatism may im-
ply a manufacturing error, but a more likely culprit at this stage is an
error somewhere in the mirror support systems.

Step f) is fundamental to the concept of practical alignment of 2-mirror
telescopes, since it is the procedure which sets up the coma-free Schiefspiegler
(CFS) discussed in detail in §2.2.1 above and shown in Figs.2.2(b) and 2.4.
The effective §-value of this CFS, desr, will be the resulting vector error
of all the lateral centering errors in the alignment procedure, including all
alignment setting errors and the basic errors of the aspheric mirror axes to
their mechanical centers. The precision of the alignment settings must take
account of the final acceptable value of d.f¢, depending on the nature of the
telescope as discussed in §2.2.1.

We now return to the steps a)—g) above and consider how they can be
achieved in detail. This detailed procedure was used by J. Andersen, F. Franza
and R. Wilson on the 1.54 m Danish telescope, an equatorially mounted RC,
at the La Silla Observatory in 1978, but would be applicable to any Cassegrain
telescope. One essential tool is a standard sighting telescope (ST) of the sort
supplied by a number of firms (e.g. Méller in Germany, Taylor-Hobson in
England, Kollmorgon in the U.S.). The ST must be of the focusable sort,
from about 2m to infinity in the case of this 1.54 m telescope. Using a Moller
ST with f = 300mm and aperture 50 mm, the focus shift is about 50 mm.
The procedures require observations of plane mirrors in autocollimation, by
which an illuminated graticule is projected and returned by the mirror, and
of cross-hairs or targets in the set-up system. Depending on the precision
of the basic mechanical mounting, a preliminary adjustment with a laser
can be very useful. In aligning a plane mirror perpendicular to the sighting
axis of an ST, the maximum angular error acceptable in order to get light
back into the ST is iD/s rad, where D is the aperture of the ST and s
the distance of the mirror. A relatively large aperture D is therefore a great
help, particularly for long distances in coudé telescopes. But the larger barrel
makes the adjustment of the reticle in the ST on its mechanical axis more
critical for the focusing movement. A preliminary laser adjustment relaxes
the requirements in angular field and therefore D. The change in effective
sighting direction with focus movement should be only a fraction of 1 arcmin,
preferably < 10 arcsec. It is possible to test and adjust an ST in this respect,
but investment in high quality equipment saves much work and time.

Another essential tool (see Fig. 2.5) is a pentaprism (PT) with an aperture
comparable with that of the ST. A pentaprism has the property (Fig.2.6)
of deflecting a beam through 90° as shown. A well-made PT will produce a
deflection of 90° with an error of a few arcsec, at most. The essential property,
however, is not so much this high deflection accuracy (5 arcsec accuracy would
be ample for our purposes) but the property of maintaining exactly the same
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d Fig. 2.6. The function of the pen-
Y taprism, an essential tool in telescope
alignment

deflection when the PT is rotated appreciably about an azis perpendicular to
the plane of Fig. 2.6. The deflection in this section is then independent of
adjustment errors of the PT. This is its essential advantage over a plane
mirror at 45°. In the planes at right angles (rotation axes in the plane of
Fig. 2.6) the PT behaves on rotation like a plane mirror. Sometimes, the PT
is supplied with a wedge prism so that straight-through vision is possible, a
useful feature. Face b is then aluminized to give about 50 % reflectivity.

For this telescope, the following requirements were specified to the manu-
facturer (see Fig.2.5):

— The inclination of the optical axis of the flat secondary collimation mirror
(SCM) and the optical axis of M> should be < 0.5 arcmin. The manufac-
turer estimated 0.1 arcmin.

— The centering of the secondary cross-hair (SCH) should be within a radius
of 0.5 mm from the optical axis of M. The manufacturer estimated 0.1 mm.

All adjustments should be made with an error appreciably less than
larcmin. M; and Mz should already be aluminized. The telescope tube is
set roughly vertical.

Alignment procedure (see Fig. 2.5)

Step (a)

1. Set up the target mirror (TM) on the §-axis (¢-axis) of the telescope.

. Set up the sighting telescope (ST) on the platform opposite the TM.
3. Using the TM in autocollimation with the ST, align the TM perpen-
dicular to the d-axis (t-axis) by rotation of the telescope in 6. When
circular image movement is effectively eliminated by adjustment of the
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TM, incline the ST until the center of the residual circle of movement
is centered in the ST. The axis of the ST is now parallel to, but not
necessarily coincident with, the é-axis.

4. Focus the ST on the target cross-hair (TCH). Center the TCH on the
d-axis by rotation of the telescope in é by translating TM as necessary.

5. Translate the ST to center the residual circle of movement of the TCH on
its axis. This brings the axis of the ST into coincidence with the §-axis.

6. Check and correct steps 3, 4 and 5 as required. In this case, 3 iterations
were sufficient to achieve the following results:

Lateral error of TCH to ST and §-axis < 0.08 mm
Error of alignment of ST axis to TM-normal < 0.05 arcmin
Error of squaring of TM to é-axis < 0.1arcmin

Step (b)

7. Mount a pentaprism (PT) in front of the ST at the intersection of the
d-axis and the mechanical axis of the telescope tube. The PT is roughly
centered to the ST axis by focusing on its face, and face a (Fig.2.6) is
squared on to the ST axis by autocollimation from this face. Neither
direction is critical but the horizontal direction should be within about
1 arcmin.

8. Mount a focus cross-hair (FCH) mechanically centered in the adapter
unit and in the plane of the telescope focus.

9. Align the FCH, as viewed via the PT, on the axis of the ST by moving
the PT parallel to the axis of the ST. The sighting line via the PT is
now a line perpendicular to the 6-azxis which cuts it and goes through the
FCH. In this case, the error of adjustment of FCH was < 0.4 mm.

10. This telescope was provided with a collimation check system consisting
of the SCM plane mirror and the primary collimation mirror (PCM),
an annular spherical mirror rigidly fixed to the edge of the central hole
of the primary and with a radius of curvature half that of the primary,
the 45° plane mirror which can be switched into the beam and the unit
containing a collimator, which can be switched into the beam, a beam
splitter, pinhole source (PS) and ocular. This system works in autocol-
limation and detects rotational or lateral shifts of M; or M,. In passive
telescopes it can be a very useful feature, in active telescopes it would
normally be superfluous. The collimator enables M to be squared on by
autocollimation with PS from SCM. Otherwise, the pinhole PS is viewed
directly in autocollimation via My and PCM to check the squaring on of
M. However, since this latter process uses only the central part of Ms,
which is effectively spherical, and the PCM, which is effectively a Hindle
sphere (see Chap.1), this autocollimation check cannot distinguish be-
tween translation and tilt errors.
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Switch in the 45° mirror and observe the PS in the ST. Align the PS on
the axis of the ST by adjusting the 45° mirror. In this case, the adjust-
ment was already correct within 0.15 mm.

Replace the FCH by a plane mirror mounted parallel to the telescope
plateholder. Using autocollimation in the ST, measure the squaring error
of this mirror (corresponding to plateholder tilt) to the sighting line. If
the error exceeds 2 arcmin, adjust the adapter (or M cell at the flexion
bars or tube attachments) and repeat the procedure from 7 onwards. In
this case, no adjustment was needed as the tilt error was only 1.2 arcmin.
The PT is rotated 180° about the telescope tube axis. The ancillary
22%°—prism on the PT is now essential for viewing with the ST through
the PT towards the TM. As in 7, the PT is adjusted roughly in height
and is squared on to the ST axis by autocollimation from the prism face
directed towards the ST.

Via the 45° mirror, the PT, the TM and back through the PT, the
illuminated PS is viewed in the ST. It is then centered:

— By rotation of the PT about the ST sighting line to get correction in
the N-S direction (horizontal error).

— By moving the PT in the E-W direction (along the axis of the ST) to
correct the E-W error (vertical error). Alternatively, the PT is moved
up or down along the telescope tube axis, which achieves the same
effect.

Once this centering is achieved, the PT must not be disturbed before the
next operations are completed.

Remove the ST from the platform and mount it in the adapter.

View the TM via the PT in autocollimation. Center the image by the ST
tilt screws. The ST axis is now parallel to the telescope tube axis.

View the TCH via the PT and center it by the ST translation movements.
The ST is now coincident with the defined sighting line and tube axis
in both E-W and N-S directions. The ST axis thereby defines OPT, the
effective telescope axis.

Recheck 15 and 16 and iterate if necessary. In this case, the precision
obtained without iteration was:

— Autocollimation < 0.05 arcmin
— Alignment on TCH < 0.03 mm

Remove the PT to allow sighting on M» with the ST.
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Step (c)

18. Focus on the SCH of M, and center My! by lateral movement of its
centering screws (if these are absent, the spiders must be adjusted). In
this case, the E-W error was corrected to < 0.07 mm. This is the direction
normally defined as “collimation error”. The N-S correction is assessed
with the telescope in the nominal zenith position. It is much less critical
since it can be corrected at once by a small change in the initialisation
of § and an appropriate tilt of the primary (see 22). In this case, the
centering range did not permit full correction and about 1.3 mm error
was left. It was not considered necessary to correct this at the spiders.
M, is now centered on OPT to the required precision.

19. Viewing through the telescope collimator and ocular, adjust (by inclining
M) the SCM in autocollimation until the image PS’ of PS is centered
on PS. This sets My perpendicular to OPT. (If the telescope has no
collimation system with PS, the same procedure is done with the ST.
A cross-check can be performed to confirm 13). Check with ST that the
centering of SCH has not been disturbed and readjust M, by translation
if necessary. In this case, no readjustment was necessary. The residual
error of inclination of My was < 4 arcsec.

Step (d)

20. Adjust the inclination of My, using the PCM in autocollimation from the
ocular, by adjusting the fired points of the M; axial support. This ad-
justment is, above all, useful to test the autocollimation system provided
with this telescope. Otherwise it is replaced by 22 below. Note that the
plateholder was squared on to OPT by 11 above by adjusting the whole
cell at the flexion bars. This should not be disturbed for this reason, also
the ST would be disturbed from its adjustment with its axis on OPT.

! The original procedure foresaw the lateral centering of M> by, instead of 12,
rotating the PT about the d-axis and viewing SCH through the ST while it was
still mounted on the platform. This procedure was abandoned for two reasons:

— Before and after rotation of the PT, the height centering of its aperture must
be performed to a much better accuracy than the centering precision required
for Ma; since in the E-W direction, a height centering error z introduces an
error 2z in the centering of Ma. While this height centering is possible, it is not
easy. The procedure adopted, by contrast, is completely uncritical regarding
height centering.

— The original procedure gives no control over the N-S adjustment of M> unless
the PT can be turned 180° with high precision. The procedure adopted, by
contrast, gives equal precision in E-W and N-S and is uncritical regarding the
rotation of the PT.

The uncritical positioning of the PT is possible in the adopted procedure because

the PT is adjusted to the sighting line while the ST is on the platform and is left

undisturbed while the ST is transferred to the adapter and its sighting line reset.
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This is why M is inclined here with its fized points, independently of its
cell and adapter.

Test the Serrurier function of the telescope tube by measuring the varia-
tion of lateral and angular decentering of M, for zenith distances between
0° and 70°. This can be done with high reliability by observing SCH, and
SCM in autocollimation, with the ST. Clock measurements can also mea-
sure the lateral movement of M; relative to the top unit. But there is
no substitute for the ST measurements which give the complete error:
clock measurements help in understanding the Serrurier behaviour. In
this case, they showed lateral movements < 0.1 mm whereas the ST mea-
surements gave 0.7 mm. Further investigations observing cross-wires over
the Serrurier struts of the tube and across the centerpiece of the tele-
scope tube proved that the ST deflections were almost entirely caused by
flexure at the image plane of the telescope, i.e. in the ST mount itself.
Eliminating this gave a total Serrurier lateral decentering sag of 0.13 mm,
including the sag of M> in its cell of 0.1 mm, an excellent value.

Steps (e) and (f)

22.

The final centering as a coma-free Schiefspiegler is done on a natural
star near the zenith. This requires image analysis of some sort for the
nominal image point behind the primary, a subject dealt with in the
section below. At this stage, all we need is the coefficient of third order
(Seidel) coma, the sensitivity of the telescope to lateral decenter from
Eqgs. (2.1) or (2.2) above and the corresponding means of correcting this
by tilting the primary on its fixed points about its pole. This translates the
intersection point of its aspheric axis at My with the long lever arm of the
separation M;Ms. The correction is thus very sensitive. There is also a
small angular change which produces a normally negligible change of the
strictly lateral decentering coma. In this case, a coma of only 0.30 arcsec
was measured with variations for zenith distances to 45° in S, N, E, W
directions < 0.25 arcsec. The coma in the zenith was reduced to 0.1 arcsec
by changing the fixed point heights by a maximum of 41 pm.

Step (g)

The image analysis was performed on this telescope in 1978 using so-
called “pupil plates”, a simple, classical technique discussed in §2.3. At
that time, it was done photographically but, today, it can be performed
with a CCD detector. More sophisticated techniques (§ 2.3) can determine
the coma and other coefficients with high accuracy. A problem always
requiring great care is the direction of the coma point in the physical
coordinate system of the telescope: this is also discussed in the next
section.
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The above alignment procedure has been given for a typical Cassegrain
telescope. Depending on the nature of the telescope, various modifications are
possible and reasonable, but the basic principles will remain. For an active
telescope, like the ESO NTT, the basic procedures are discussed in Chap. 3
but are influenced by the active concept.

2.2.3 Alignment at the prime focus of telescopes
with field corrector

At the prime focus, at which a field corrector is used, the axis of the field
corrector plays an equivalent role in the lateral centering tolerances to that of
M, in the Cassegrain focus. However, there is an important and fundamental
difference: there is no equivalent of a coma-free Schiefspiegler because the cor-
rector has normally very little total optical power and is relatively insensitive
to tilt. So if decentering coma is present, the corrector must be translated to
correct it. The decentering coma involved is approximately the field coma of
the primary induced by the field angle u,,1 of Fig. 2.2(b), whereby the point
M, corresponds to the center of the corrector. For a parabolic primary, or in
general if the stop is at the primary, this coma is given by Eq. (5.4) of RTO I
as

3 1
(6up) coma, = 16 ]—Vi(uprl)arcsec arcsec (2.45)
1

Hence a measurement of the coma value enables u,r; to be calculated from
(2.45) and, from this and the separation, the lateral decenter .., of the
corrector.

The theory of prime focus correctors was given in Chap. 4 of RTO I. If the
corrector is also correcting spherical aberration (e.g. for an RC telescope),
then this correction will be sensitive to the axial position of the corrector.
So a measurement of both coma and spherical aberration should normally be
made to give optimum adjustment both laterally and axially.

2.2.4 Alignment of Schmidt telescopes

The theory of the Schmidt telescope was given in §3.6.2 of RTO I. It was
pointed out in §3.6.2.5 that the Schmidt form is uncritical for set-up toler-
ances of the optical elements except for lateral decenter of the corrector plate.
The sensitivity to decentering coma is readily derived as follows.

The axis of the Schmidt telescope is solely (and weakly) defined by the
aspheric axis of the corrector plate. The spherical mirror has no axis and
must simply be set up normally to the plate axis. A tilt error up,; of the
mirror about its pole to this plate axis introduces a field coma of the mirror
proportional to upr1 as though the stop were at the primary. For the real stop
at the plate, the tilt error of the mirror is then, to the third order, identical
for all the real principal rays. The consequence of the tilt decenter of the



2.3 Test methods and image analysis of telescopes in function 131

mirror to the plate axis is therefore uniform decentering coma over the field as
in a decentered Cassegrain telescope. Since the decentering coma originates
at the spherical mirror as though it were at the stop, Eq.(2.45) gives its
value also in this case of a Schmidt telescope. Now, referred to the mirror
“axis” (i.e. its normal at the intersection point of the plate axis), the plate is
laterally decentered by dschm and rotated through the angle u,,1. However,
this small plate rotation is completely insensitive since it only produces a
small asymmetry in the nominal field center. The equivalent lateral decenter
of the corrector plate is then simply

0Schm = 2f{(upr1)rad (246)
If we define a fixed tolerance for the decentering coma (5u;)coma“ then the
combination of (2.45) and (2.46) gives
32
5Schm = ‘"?lef{ [(&U’;;)Comat]

Setting the decentering coma limit at 1arcsec = 1/206265rad gives for the
1m ESO Schmidt telescope with N7 = —3.0 and f] = ~3000 mm the typical
tolerance

(2.47)

rad

(0schm)Eso = 1.40mm arcsec ™! (2.48)

of decentering coma. Alternatively, one can express the tolerance for 1 arcsec
of decentering coma directly from (2.45) as a tilt of the primary by up; =
48 arcsec.

Since no Schiefspiegler compensation is possible by tilt of the corrector
plate, it follows that the Schmidt telescope is, in this sense, more sensitive
to decenter than a Cassegrain telescope with a primary having the same
f/no N;.

2.2.5 Field correctors at the Cassegrain focus

These are very simple to mount because the tolerances are much more gen-
erous than for PF correctors. The effect on spherical aberration is very small
because of the small axial beam width. Centering tolerances are generous and
will become more so, the weaker the definition of the optical axis.

2.3 Test methods and image analysis of telescopes
in function

2.3.1 Classical qualitative methods

Qualitative (subjective) testing of the image quality of telescopes is as old as
the invention of the telescope itself. The classical method is to observe the
image of a star with an eyepiece, either in focus or, better, somewhat de-
focused. For small telescopes, this remains a powerful and useful procedure.
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Above all, for telescopes whose aperture does not greatly exceed the Fried
parameter (see Chap.5), the telescope quality should be diffraction limited,
so that diffraction rings may be visible in the defocused image. A detailed
account is given in an old work by H.D. Taylor [2.8], partly reproduced by In-
galls [2.9]. With large modern telescopes great care must be taken in forming
judgements on image quality because of the magnification problem illustrated
by the Ramsden disk (Figs.1.8 and 2.8 in RTO I), i.e. the exit pupil of the
visual telescope. According to Eq. (2.45) in RTO I, the magnification is equal
to the beam compression ratio, the ratio of the diameters of the entrance
and exit pupils. As discussed in Chap. 2 of RTO I, if the star image appears
bright to the eye, the eye pupil will shrink down to about 1mm diameter
and will diaphragm down a 3.5m telescope if the magnification is less than
about 3500, a value incompatible with normal atmospheric “seeing”. For this
reason alone, visual judgements of the image quality of large telescopes with
oculars are subjective at best and completely misleading and over-optimistic
at worst.

This does not mean that assessment of the defocused image is of no in-
terest: quite the contrary, as will be illustrated below. It means simply that
the eye as detector via an ocular is quite inadequate, even qualitatively, for
large telescopes. '

A better visual method is the Foucault knife-edge method [2.10], referred
to in Chap. 5 of RT'O I as the first really scientific method of testing telescope
optics. This method remains the most sensitive ever invented and is still
widely used in workshops as a qualitative test (see Chap. 1) and by amateurs
[2.9] The limitation in its use in a functioning telescope is the atmospheric
seeing and the inability of the eye to integrate. However, the instantaneous
perception of the eye with the Foucault test can be very revealing concerning
the effects of atmospheric seeing and of local air turbulence. If the fixed
telescope errors are required, eliminating the atmospheric seeing is possible by
integration over a period of 30s for good seeing, or 60s or more for indifferent
or poor seeing, and recording the “Foucaultgram” photographically or on an
electronic detector (CCD). All that is required is an objective in the beam
after it has passed the knife-edge, which images the exit pupil of the telescope
on the photographic plate or detector. Figure 2.7 shows the result for a typical
case, the MPIA 2.2 m telescope II, after set-up at ESO La Silla. The shadow
distribution gives excellent qualitative information of the wavefront. If the
knife-edge penetrates from the left, dark areas correspond to wavefront slopes
with normals inclined to the left and obscured by the knife. The problem has
always been to interpret the photometric information. Proposals have been
made to quantify this [2.11] [2.12], but have classically met with little success
because of the difficulties of photometric analysis using photographic plates
with non-linear intensity response.

An excellent analysis of the possibilities of obtaining quantitative infor-
mation from the Foucault method with a more modern detector (a quad cell)
is given by Goad et al. [2.13]. They overcome the problem of the directional
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Fig. 2.7. Foucaultgram
of the MPIA 2.2m tele-
scope II after set-up at
La Silla in 1983. This
picture was obtained on
a 6x6cm photographic
plate with 1 m exposure

sensitivity of the Foucault knife-edge, favouring the axis perpendicular to the
knife, by rotating it. Nevertheless, they show there is still a sensitivity loss of
V/2 averaged over a rotation cycle. Furthermore, half the light is obstructed
compared with the Hartmann based sensors discussed below, giving a loss of
a factor of 2 in the error in position arising from photon noise. In spite of
these defects, the Foucault method may still have interest as a quantitative
photometric test, probably with CCD detectors, because of the enhanced pho-
tometric differences compared with the curvature sensing method discussed
below.

2.3.2 “Pupil plates”: geometrical assessments
of defocused star images

Above, we have referred to the time-honoured technique of assessing telescope
image quality by observing the defocused image of a star with an ocular. The
basic limitations of such visual assessments (diaphragming effect of the eye
pupil and lack of integration) can be overcome by recording the defocused
image on a photographic plate or modern electronic detectors such as a CCD.
The magnitude of the star observed must be such that the integration time
is at least 30s (at least 60s with indifferent seeing) for the detector and
defocused image size chosen. A detailed analysis of such procedures was in-
troduced in 1980 at the ESO La Silla observatory [2.14] and was successfully
used for many years. It has now been largely supplanted by measurements
with the ANTARES image analysis system using a CCD detector, but the
analogue presentation of such “pupil plates” still represents an important
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complementary test easily performed with a CCD. The size of the defocused
image is not critical, but the defocus must be well outside the “caustic” so
that the ordering of a raster of “rays” from the pupil is reproduced in the
defocused image. Within the caustic, this ordering is lost: physically, this
means that the Fourier transform process from pupil to image (see Chap. 3 of
RTO I) must be incomplete. Both pupil and image (transform) information
is then available, which explains the power of the method compared with
investigation of the focused image, for which the pupil information is lost un-
less recoverable by complex Fourier transform techniques. These properties,
together with time integration to eliminate atmospheric seeing, enable a pre-
cision of detection at least 5 times better than the external seeing. Exactly
the same principles apply to all Hartmann-based procedures — see below —
except that the precision in the best procedures is at least 10 times better
than the normal seeing limit.

Failure to integrate out the seeing (i.e. less than 30s although 15s may be
sufficient with excellent seeing) inevitably leads to erroneous results, as the
instantaneous atmospheric function for the frequency concerned is superim-
posed on the fixed telescope aberrations. Such measures may be interesting
for measurements in the “adaptive optics” bandpass (see Chap.5) but are
useless and dangerous for normal telescope testing.

With good seeing, the defocused image sizes given in Table 2.3 have been
proven empirically to be reasonable. Although these are not critical, it is
disadvantageous to expand the image more than necessary, since this wastes
light and reduces the relative distortions due to aberrations of the “pupil
plate” obtained. This term was introduced because the defocused image shows
the pupil in a form distorted by aberrations. Of course, it is not a direct
photograph of the pupil, which would give no information since the Fourier
transform has not begun. With CCD detectors, even relatively coarse pixels
will give ample sampling, since the pixel size is normally determined for the
focused image.

Unless spherical aberration is to be determined, it is sufficient, in principle,
to take a single plate on one side of the focus; but plates at both sides
are always desirable to give a cross-check and better accuracy. In this case,

Table 2.3. Defocused image sizes for “pupil plates” for telescopes of sizes about
1.5 to 3m [2.14]

Relative aperture

Defocused image diameter
with good seeing (mm)

Defocused image diameter
with poor seeing (mm)

£/3
£/8
£/15
£/30

1-1.5
2-2.5
3
4

2-2.5
3-4
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the sizes should be similar if photographic plates are used to give a similar
intensity distribution from the same star: linear detectors are less critical.
The aberrations and defects one aims to detect and measure with pupil
plates are the three basic third order terms (spherical aberration, decenter-
ing coma and support-induced astigmatism), all uniform over the field and
therefore only requiring measurements at the field center; higher order errors
such as ripple, zones, turned edges (up or down), and “dents” or protuber-
ances at the edge of the pupil due to excessive pressure, e.g. screws used
in primitive edge supports of secondaries. The latter are also uniform over
the field. Figure 2.8 shows the pupil plate appearance due to the third or-
der aberrations. The appearance of “geometrical adjustment error” means
the following. It may happen that the secondary is not well centered in the

Inside Focus Outside Focus
Geom. error ‘ ‘
- ‘ ‘
Astigmatism % /@/
Spherical ab.
("undercorrection”)

Fig. 2.8. Appearance of “pupil plates” showing geometrical adjustment error and
the three basic third order aberrations [2.14]



136 2. Sensitivities, alignment of telescopes and test procedures in function

telescope tube. If the primary is slightly inclined, the coma may well be ex-
cellently compensated giving a coma-free Schiefspiegler, as discussed above
in §2.2. If a beam corresponding to the field center is investigated, the pro-
jection of the secondary may not be at the center of the entrance pupil. For a
pupil plate on one side only of the focus, this effect cannot be distinguished
from coma. However, it inverts on the other side of the focus whereas coma
remains unchanged. Therefore, if plates are taken on both sides of the focus,
the mean value of the displacement of the obstruction gives the coma, the
geometrical effect being eliminated. Essentially, the information comes from
the fact that the obstructed aperture of the telescope behaves like a special
Hartmann screen with two bits of information, the outer and inner aperture
circles. Bearing in mind the aperture dependence of the transverse aberra-
tions (astigmatism with y, coma with y2, spherical aberration with y3), it is
possible to deduce the amounts of aberration present. In the coma case, if
the central obstruction were negligibly small, the displacement of its center
relative to the outer pupil is the same as the transverse size of the coma
patch of Fig. 3.18 in RTO I This stays constant as the defocus increases, so
that the relative excentricity for a given coma patch decreases linearly with
the size of the defocused image. This is the reason the latter should not be
increased more than necessary.

Measurement of the coma vector

The quantities a, b, ¢, d in Fig. 2.9 are measured from a photographic plate
with a measuring machine or from the CCD readout. A reading step of 1 pm
is desirable. The lateral coma vector L. is given by

= [ 4 (9] e o

while the direction of the coma point (towards the thin edge of the annulus)
is given by

6 = arctan (c — 6;) (2.50)

a —

The inverse scale of the telescope, defined by (2.103) in RTO I, is S um/arcsec.
Then, ignoring obstruction, the full coma vector is L./S arcsec. In practice,
we are normally concerned with a finite central obstruction factor €, usually
about 1/3. The resulting correction factor is small and easily calculated from
the geometry of the coma patch, as shown in Fig.2.10. Referring back to
Figs. 3.17 and 3.18 of RT'O I, the upper and lower marginal rays, when defo-
cused, form the points on the outer circle of Fig.2.9 lying in the symmetry
line of the coma point. For the focused image, they both pass through the
extreme circle point 1 of the coma patch in Fig.3.18 of RTO I, i.e. the point
o in Fig. 2.10. Similarly, the center of the inner circle of Fig. 2.9 corresponds
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A sk'Direction of coma point

c
A

":b"

Fig. 2.9. Evaluation of the coma vector from a pupil plate [2.14]

(Ct)o
Fig. 2.10. Geometry of the coma patch with central obstruction [2.14]

to the point i of Fig.2.10. Now it was shown that the ray coordinates of
Figs. 3.18 of RTO I or 2.10 lie on circles of diameter (1/w')Sr7(y/ym)? whose
centers are shifted by the same amount from the principal ray intersection
point. This diameter can be written
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7 2 7 2 14
) Ym Ym Y Ym Ym Ym

which shows that the diameters and shifts of the circles from the principal
ray are linear functions of the aperture, as must be the case if they fit into the
60° triangle. The significance of the measured quantity L. is then as shown
in Fig. 2.10. We have for the general case with obstruction factor

(Comat)arcsec ~ £_c_ < ! ) (2.52)

S \l—-¢

This result corresponds to the full length of the coma patch, i.e. 100 % geo-
metrical energy. In practice, the precision obtained is rarely better than about
0.25 arcsec because of distortions of the outer and inner circles of Fig. 2.9. The
coma patch itself distorts the circles unless its size is small compared with
the defocused patch. More serious, in practice, are often the local distortions
arising from supports or dome seeing effects. Nevertheless, pupil plates are
a powerful and simple way of maintaining good centering if more sophisti-
cated means, such as Shack-Hartmann, are not available. The obstruction
ratio may be deduced from the pupil plate itself, as the ratio of the circle
diameters in Fig. 2.9, provided the ratio is not seriously affected by spherical
aberration — see below. For most Cassegrain and coudé telescopes, the value
of € varies between about 0.3 and 0.15.

Pupil plates have an advantage over other methods for correcting decen-
tering coma in that the direction of the coma point can be identified from
Fig.2.9 and Eq. (2.50) in a direct analogue way if the directions of the pupil
plates are identified in « and d for an equatorially mounted telescope. There
are five means, in principle, for the correction, once the coma point direction
is known in the physical coordinates of a Cassegrain telescope:

a) Raise the primary mirror cell on the side towards the coma point (rotation
of primary)

b) Raise the primary mirror on its fixed points on the side towards the coma
point (rotation of primary)

¢) Translate the primary mirror in the opposite direction from the coma point

d) Translate the secondary mirror in the same direction as the coma point

e) Lower the secondary on the side towards the coma point (rotation of the
secondary about its vertex).

Of these, c) is rarely practicable. If sensitive movement is available, d) is
the best. a) and b) are over-sensitive, because of the long lever arm of the
point where the axis of the primary cuts the secondary, but are often the
only means available. e) is often available but too insensitive, leading to big
pointing changes. The amounts of movement required can be deduced at once
from Egs. (2.1), (2.2) and (2.4).

It should be noted that the calculation of aberrations from pupil plates
is strictly related to their original size. If an enlargement of a factor of two
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is made from the original, the coma (or any other aberration) deduced will
also be doubled.

Measurement of the astigmatism vector

It is best to judge the astigmatism solely from the external pupil shape,
since the obstruction aperture is much less sensitive. This is the case because
the transverse effect (length of the astigmatic lines) diminishes linearly with
aperture. This follows from Egs. (3.205) and (3.208) of RTO I for the diameter
of the astigmatic circle at mean focus

1 201 (Ym ?
(0up)ast,m = —=S111 (_y_) =-— (y_) Strr (i)
Y Ym Ym \ Y Ym

_ S (_Q_) rad (2.53)
Ym \Ym

In absolute terms, therefore, detection of ellipticity of the central obstruction
is € times less sensitive. '

In principle, measurement of astigmatism requires measurements of the
outer pupil across 4 diameters at 45°, but if the position of the major and
minor axes can be judged visually (usually the case if the astigmatism has
any significance), it is sufficient to measure in the estimated directions of the
axes (Fig.2.11). The diameter of the astigmatic circle at best mean focus is
(a—b)

¢ast - 9
and the length of the astigmatic lines is 2¢,4;. With the inverse scale of the
telescope as S um/arcsec

pum

¢
(Past)arcsec = 2 arcsec (2.54)

S

Since the central obstruction is not used, no correction for it is necessary.
Note that the pupil plate procedure will always reveal astigmatism if it is
present. By contrast, the focused image may reveal astigmatic lines one way
or the other; but if the chosen focus happens to be at the mean focus between

Fig. 2.11. Measurement of astigmatism from
pupil plates [2.14]
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the astigmatic lines, a circular image results which cannot be distinguished
from spherical aberration or seeing.

As with coma, astigmatism can be measured from a single focus plate on
one side of the focus; but better precision is obtained by a second measure-
ment on the other side of the focus, thereby rotating the major axis 90°. If
this rotation is not found, the error is not astigmatism: almost certainly it is
a guiding error. Confusion here is very common.

Measurements of spherical aberration

Unlike coma and astigmatism, spherical aberration can only be detected and
measured with reasonable accuracy if pupil plates are taken on both sides
of the focus to give the relative size of the central obstruction in each case.
The plates should be exposed with the same star, the same exposure times
and the same image diameters within about 20 %. If these conditions are not
respected, the differences of densities (with photographic plates) can seriously
falsify the results. Furthermore, the presence of a turned-down or turned-up
edge either at the exterior of the pupil or at the obstruction can give wrong
values. For these reasons, the evaluation of spherical aberration is less reliable
than that of coma and astigmatism.

The measurement of the diameters of the obstruction and outer pupil
diameters of the pupil plates on each side of the focus lead to a difference
AD of the central obstruction, normalized to the outer diameter, of

d

AD = D; — Dg (-’-) , (2.55)
dg

where D and Dg are the obstruction diameters of the intrafocal and extrafo-

cal plates respectively and dy and dg the corresponding outer diameters. The

change in true obstruction ratii ¢ is then given by

o= -?—fg (206 265) arcsec (2.56)
The formula for the coefficient of third order spherical aberration is then
deduced from Fig.2.12 as follows. Dy and Dg are the recorded normalized
obstruction (hole) diameters and ¢ is clearly half the difference. Let (duy)ar
be the angular aberration corresponding to the aperture of the hole in the
Gaussian focus. Then

ds’, — ds}
¢ = (duly)ar (—————SM H ) , (2.57)
dsty

where ds}, and ds; are the longitudinal aberrations of the outer (marginal)
rays and those corresponding to the hole. From (3.184) and (3.187) of RTO I
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Fig. 2.12. Deduction of the third order spherical aberration coefficient from the
relative obstruction ratio of intra- and extrafocal pupil plates [2.14]

2 ) (2.58)
- () (2)
= \ym/) 27 \ym
Hence
r_ 1 _ 2
dshy —dsly _1-¢ (2.59)

where ¢ is the obstruction factor yg /yas. Similarly, from (3.184) and (3.190)
of RTO I,

3
1
(duly)er = 511\731 (3—5) = ‘y;S[ss rad (2.60)

We wish to derive the angular spherical aberration at best focus (disk of least
confusion) for the full aperture yps. From (3.184) and (3.190) of RTO I, this
is given by

11

(dulyr)BF = y—MZSI rad (2.61)

From (2.57), (2.59) and (2.60)

6= ——Sie(l ") | (2.62)
giving with (2.61)
(dujy)BrF = —_—45(1?— =) rad (2.63)

and, finally, from (2.56)



142 2. Sensitivities, alighment of telescopes and test procedures in function

(duly,)BF = g(—i—l——szj Af—f) (206 265) arcsec (2.64)

for the spherical aberration (100% energy) of the full unobstructed aperture.
For an obstruction factor € = 1, (2.64) gives

27T AD
64 f

Note that the sign of the spherical aberration is revealed with great cer-
tainty by pupil plates. From Fig.2.12, “undercorrection” (marginal rays fo-
cusing short) gives a larger obstruction at the intrafocal position.

As an example, Fig. 2.13 shows pupil plates taken in 1978 at the set-up of
the 1.54 m Danish telescope at La Silla, discussed above in connection with
alignment procedures. Because of pressure from the observing schedule, no
pupil plates were taken on the other side of the focus although the large size
of the apparent obstruction indicated the existence of spherical aberration.
This was later confirmed and corrected by an outward shift of the final image.

N
N ..
E (P1.8) — centered to within
\ , 0.3 arcsec of coma

4 I'\ N\ N\
S J I S

South North East West
(P1.4) (PL.5) (P1.6) (PL.9)

(duy)BF = (206 265) arcsec

Fig. 2.13. Typical pupil plates, taken on one side of the focus with the 1.54m
Danish telescope at La Silla for the final centering. The negligible coma change on
inclining the telescope showed the excellent mechanical centering stability of this
telescope. Original image plate diameter ca. 2.5 mm

Irregular and high spatial frequency defects from pupil plates

Apart from the above third order aberrations, pupil plates are an excellent
method for revealing higher order and irregular defects. However, the angular
spread cannot usually be calculated. One should look out for the following
defects:
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Extrafocal Extrafocal
(uncorrected) (corrected)

Fig. 2.14. Extrafocal pupil plates taken in 1980 for the ESO 1m telescope at
La Silla showing (left) a “dent” at the top due to screw pressure on the edge of the
secondary and (right) its correction by relaxing the pressure. The two figures at the
right show schematically such an effect both extra- and intrafocally. The original
pupil plate diameter was 3.5 mm

a)

b)

d)

Dents or bumps in the outer pupil (or, more rarely, at the central hole).
These are often caused by poor quality lateral supports of the secondary —
see Fig. 2.14. Concentrated local heat sources are another common cause.
The wavefront slopes are high giving image flares. Such defects are very
serious.

Dents or bumps at spider ends. These may be due to strain on the sec-
ondary cell from the spider, but a more common cause is thermal effects
on the local air near the spider due to its thermal mass and radiation
cooling of the metal. The larger the telescope, the more likely such effects
will be.

A triangular distortion of the pupil without noticeable bumps or dents.
This is almost certainly due to over- or underloading of the axial fixed
points of the primary; or possibly the lateral fixed points of primary or
secondary. In principle, the coefficient of the triangular aberration can be
calculated but, in practice, the clear triangular effect is too small to be
measurable.

Concentric zones. Most telescopes show some zones. Very common is
turned-down or turned-up edge. A turned-down edge leads to a more
diffuse edge of lower intensity in the intrafocal pupil plate.

Such irregular errors, as with coma and astigmatism, lead to defects in the
image which are readily noticed by astronomers. Spherical aberration is much
less evident, as it is confused with external seeing because of its axial symme-
try. Correct measures of spherical aberration are therefore most important.
The same is true of concentric zones.
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Because of sampling limitations in Hartmann-based procedures, pupil
plates provide in a direct analogue fashion important information on high
spatial frequency errors which might otherwise be overlooked or misunder-
stood.

2.3.3 Hartmann-based techniques

2.3.3.1 The classical Hartmann test. The Hartmann test was invented
by J. Hartmann in 1904 [2.15] and applied to the 80 cm Potsdam refractor.
It represented the first truly scientific method of analysing image quality
in operational telescopes in that it supplied direct quantitative results. In
modified forms, it remains today the basis of most accurate measures of
telescope image quality. In its original form, the Hartmann test was used
to measure only axisymmetrical error, essentially spherical aberration but
also zones if the sampling was high enough. The principle and basic theory
of this original approach (Fig.2.15) is well described by Bahner [2.16]. The
test is shown for convenience with the Hartmann screen H placed before
an objective, but the principle is identical if it is placed before a reflecting
telescope, in front of the prime focus or Cassegrain secondary. The screen
has holes which isolate sub-apertures of mean height y from the axis, the
classical hole diameter recommendation being 0.2 to 0.5 % of the focal length.
Photographic plates are placed at I; and I well outside the caustic of the
image. Measuring axial intercepts from an arbitrary point, we have on the
assumption that the rays intersect in the meridian plane

! /
Sy—'sl —61

sh—sl, e’

where e; and e, are the separations of the “Hartmann spots” recorded on
the photographic plates. This gives

Fig. 2.15. Geometry of the classical axisymmetrical Hartmann test (after Bahner
[2.186])
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e
s =8|+ (el ;62) (sh—sh) (2.65)
where s5—s7 is the distance between the two measuring planes. The variations
As; as a function of y give the desired information regarding spherical aber-
ration and - provided the sampling of the Hartmann screen is high enough —
axisymmetrical zones. In § 3.3 in RTO I, reference was made to the general
equations of Nijboer expressing the Fourier transform from wavefront aberra-
tion to transverse ray intercepts. For the axisymmetrical case, the derivation
is very simple [2.17] and can be expressed for angular aberrations which are
small compared with the semi-aperture angle v’ for a system in air as

W’:/ mAs;sinu'du' , (2.66)
0

in which As;, is the difference in longitudinal aberration referred to a desired
mean value of s, corresponding to the wavefront reference sphere (see Fig. 3.1
of RTO I). For modest relative apertures, such as those of Cassegrain tele-
scope foci, we can set sinu’ = v’ = tanu’ = y/f’ in (2.66). Then du’ = dy/f’
and (2.66) becomes

1 [YUm
S s
For very steep prime foci, the nature of this approximation, similar to that
made in §3.10.1 of RT'O I for basic Fraunhofer diffraction theory, must be
borne in mind.

Hartmann and his successors made use of the so-called “Technical Con-
stant” T, introduced by Lehmann (2.18), to define the geometrical optical
quality of a telescope:

2 x 10° 3 olsy — sl

f? 2y

In this definition, the angular aberrations of the Hartmann radial zones are
weighted by y corresponding to their areas and the factor 2 x 10°/f’ nor-
malizes the angular error radius of the criterion roughly to arcsec. With the
fairly low sampling traditionally used, identifying the optimum focus plane
with slm posed problems. High quality optics was classically defined as having
T ~ 0.2 or less. :

The evaluation in classical terms of the axisymmetrical case, but also ex-
tended to astigmatism, is treated in detail by Danjon and Couder [2.19]. A
technical constant based on the axisymmetric case, such as that of Lehmann,
is only of academic interest today. The modern equivalent is based on a 2-
dimensional analysis leading to an rms wavefront error and corresponding
rms angular error or percentage energy concentration error — see below and
Chap. 4. This generalisation was first proposed by Kingslake [2.20] [2.16] and
requires treating each “ray”, as defined by a Hartmann screen hole, individu-
ally. For a given choice of image plane in the axial direction z, the intersection

w’ As,ydy (2.67)

T_—_

(2.68)
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Fig. 2.16. The generalised Hartmann test for individual rays measured in 2 di-
mensions (after Bahner [2.16])

points of each ray are determined in the z, y coordinates, as shown in Fig. 2.16
for y. Then
Az,

(22 — 21)
If measurements are made in the two planes I; and I, errors in spacing of
the holes in the Hartmann screen are automatically eliminated. However, two
sets of measurements are required. If the Hartmann screen is made with the
necessary precision of hole spacing, then it provides itself a reference plane
and one measurement in I; or I is sufficient. Beck and Fehlkamm [2.21]
[2.16] proposed a rectangular, equal-step grid of holes, giving the important
advantage that each ray has equal photometric weight in the total geometrical
optical image. This is the most commonly used arrangement today in all
Hartmann-based procedures, although concentric rings are also sometimes
used. The rectangular grid also gives optimum sampling of all pupil zones.
The generalisation of Hartmann testing was a logical development in parallel
with the concept of spot-diagrams, introduced by Herzberger in 1956 [2.22)
(see §3.2.5.3 in RTO I), in optical design. Both these developments were only
made possible with the introduction of modern computers.

The first generalised, 2-dimensional analysis of a modern telescope was
performed in 1960 by Mayall and Vasilevskis on the $m Lick primary [2.23],
using natural stars. The Hartmann screen did not use a rectangular grid: the
holes were on spirals intersecting radial arms with a fixed azimuthal angular
step. Analysis was first done radially, in classical Hartmann manner, and
then tangentially to measure astigmatism and azimuthal irregularities. Plates
were taken both intra- and extrafocally, but a cross check was done from the
accurate Hartmann screen which had an estimated error of positioning of
hole centers < 0.4 mm. With this screen accuracy, one plate position was, in
principle, sufficient. For a perfect paraboloid, account must be taken of field
coma (collimation error of the incident beam), since the definition of the field

dy = (y2 —y1) + 11 (2.69)
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center is not necessarily on the axis of the paraboloid. The radial distance p
of a spot from the pattern center on an extrafocal plate is then

2
o Azp% [1 + (Qp—]j,) } , (2.70)

with p, the height of a hole from the Hartmann screen center and the sec-
ond term being a consequence of the coma patch geometry of Eq.(3.194)
of RTO I. After conversion to rectangular coordinates, radial and tangential
measurements of each hole gave two equations with six unknowns: 2 for the
collimation error (position of paraboloid axis), 2 for the correction of lateral
centering in the measuring machine, 1 for orientation error affecting the tan-
gential measurement, and 1 for scaling error. These were evaluated from a
least squares solution from all the holes. The residues in radial and tangen-
tial directions gave the inclinations of the pupil elements defined by the holes
and integration along radii and round zones led to the contour map shown
in Fig. 2.17. Depending on how many holes are used, the technical constant
T derived from the generalised formula

)
T—2x108 22 (2.71)
frae
where p is the radial distance of the spot from the pattern center and § the
vector error, is given as 0.10 to 0.12 for axisymmetrical errors only and 0.16 to

Fig. 2.17. Contour map at intervals of 0.2), showing the surface of the 3m Lick
primary after correction of astigmatism on 3 January 1959 (A = 500nm) (after
Bahner [2.16])
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0.17 for both radial and tangential (full) errors. In more modern terms, 76 %
of the geometrical optical energy was concentrated in 0.34 arcsec diameter
for the radial error alone; 56 % for both radial and tangential errors. The
equivalent figures for 0.68 arcsec diameter were 98 % and 95 % respectively,
implying by interpolation about 80 % energy within 0.48 arcsec (dgo) for the
total error of the primary.

This careful test analysis introduced the modern era of telescope testing
and set the framework for the manufacturing specifications of the Bowen class
of 3.5-4m telescopes initiated during the 1960s. Surprisingly, however, there
was relatively little systematic follow-up in the United States on functioning
telescopes of the pioneer work of Mayall and Vasilevskis, although workshop
test technology was making steady progress.

Very complete Hartmann testing was performed in 1976 [2.24] on the
ESO 3.6m primary, in combination with the Gascoigne plate correctors of
this quasi-RC primary. A Hartmann screen was used with a square grid pat-
tern as proposed by Beck and Fehlkamm. This was manufactured with care so
that Hartmann plates were exposed in only one, extrafocal plane. There were
about 286 holes sampling the annular aperture of the primary. The wave-
front calculation was done by integration in the z and y directions using the
trapezoidal rule. An important feature was a polynomial analysis, whereby
polynomial terms were subtracted successively by a least squares process.
The essential purpose of this was to investigate the importance of residual
errors of various types in the telescope; but an important subsidiary aim was
to lay the basis for a future active telescope. The polynomial used at that
time was, apart from minor modifications, the same as that used later in the
NTT, which was as follows:

W' = kg integration constant
+ki1pcos(¢p +61;)  wavefront tilt
+ kozp? defocus

+ ky3p3 cos(¢ + 613)  decentering coma
+ koap third order spherical aberration p  (2.72)
+ koep fifth order spherical aberration
+ ka2p” cos(2¢ + 3) third order astigmatism

+ k3zp® cos(3¢ + 633) “triangular” coma

+ k4ap® cos(4¢ + 644) “quadratic” astigmatism

(=3

W N

/

The first two terms must be removed in any Hartmann analysis, and defocus
is also normally removed. The last two terms were applied because “triangu-
lar” error is a natural consequence of over- or underloading axial fixed points,
and a “quadratic” error with 4 symmetry axes had been detected on another
telescope. The effective powers of cos ¢ and p in these terms are in agreement
with the rules of the Hamilton Characteristic Function or the Zernike poly-
nomials given in Tables 3.1 and 3.23 of RTO I. However, the azimuthal effect
cosng is, in practice, completely dominant in a least squares fit because of
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Fig. 2.18. Hartmann tests of the ESO 3.6 m telescope after set-up in 1976 at the
prime focus with the Gascoigne plate correctors showing the effect of theoretical
removal of the polynomial terms indicated (after Franza et al. [2.24])

orthogonality, and powers p™ with m other than 3 or 4 give virtually identical
coeflicients in the cases of triangular and quadratic error respectively.

The result of the averaged Hartmann plates for zenith distances roughly
0° and about 50° in the south, west, east and north directions is shown
in Fig.2.18. This was a purely mathematical operation and there was no
means of correcting any of the terms shown except decentering coma off-line
by translating the Gascoigne plate. The mean zenith plate showed that the
diameter containing 80 % of the geometrical energy dgg was about 0.41 arcsec
if coma was removed. This showed that the specification of d75 < 0.40 arcsec
for the primary alone had been easily met, since the measured dgo values
included the errors of the Gascoigne plate, itself a difficult technical object.
The average right-hand point of the five graphs in Fig. 2.18 gives

(dso)rg ~ 0.27 arcsec

for the so-called Intrinsic Quality (IQ) of this telescope, a term that was
defined from these tests as that quality resulting after removal of those terms
which can vary in operation. This is fundamental to the concept of Active
Optics (see Chap. 3). For a passive telescope of this period, this value of the
1Q showed exceptionally smooth surfaces in the optics. The assessment of the
actual image quality was limited by problems of inferior dome seeing at the
time of telescope set-up. These were analysed in some detail in the report
[2.24]. Figure 2.19 shows the result considered most reliable for the zenith
image quality (primary combined with the “red” Gascoigne plate).

The polynomial analysis enabled a much clearer impression of the “dome
seeing” effects to be obtained. Variations of spherical aberration revealed
strong “chimney effects” when the naked primary was tested without the
Gascoigne plate. These were markedly improved by the sealing effect of the air
column by adding the Gascoigne plate. After this, the most serious variations
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Fig. 2.19. Geometrical energy concentration of the image at best focus near zenith
of the ESO 3.6 m telescope with the “red” Gascoigne plate and 10 mm filter glass.
The specification required 75 % geometrical energy concentration within 0.4 arcsec
for the primary alone. (After Franza et al. [2.24])

were in astigmatism. The stability of the telescope for decentering coma was
also investigated for “top unit” changes.

The classical Hartmann test, using a full-size screen placed above the sec-
ondary (or outside the prime focus) of a large telescope must be considered
today an old-fashioned procedure, since the “transferred pupil” techniques
treated in the next section are capable of measurements at least as accu-
rate and at higher sampling using a small instrument mounted at the focus.
Nevertheless, for smaller telescopes without access to modern detectors, the
classical Hartmann, linked to a PC for the evaluation, remains a fully valid
test procedure.

2.3.3.2 Hartmann test procedures using a “transferred pupil”: the
Shack-Hartmann test. The concept of a transfer of the exit pupil of a
telescope to an element of an instrument, for example the grating of a
spectrograph, has been standard practice for a long time. Suggestions for
a Hartmann-type test using such a transferred pupil have been made many
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times, but always met with the objection that the optics imaging the pupil
would introduce unknown supplementary errors. Such a proposal was made
in 1971 by Platt and Shack {2.25]. In a more complete form [2.26], this has
become the most widely used test for modern telescopes. In this basic form,
originally used with photographic plates, such a Shack-Hartmann (S-H) test
device was built at ESO about 1979 and has been used for testing a large
number of telescopes, both at the ESO observatory and elsewhere. More re-
cently, a very versatile version, applicable to a range of f/numbers from about
f/3 to £/50, has been constructed at ESO under the name “ANTARES”, with
a CCD detector and complete software package. The image analyser for the
application of active optics to the New Technology Telescope is also of the
S-H type.

Figure 2.20 shows the original form developed at ESO for photographic
plates with an additional system for alternative use with a CCD detector
[2.27]. A (reference) pinhole source (1) is conjugate with the axial telescope
image (9) via a beamsplitter (2) of high quality. The reference source is
transferred by the beamsplitter to the collimator (3) (often called a Fabry
lens from its analogue use in instruments) which forms the image of the exit
pupil of the telescope in the plane (4). This plane contains the Hartmann-
type screen; in the S-H device, it is a rectangular raster of square lenslets
following the proposal of Shack. Each lenslet forms a sub-aperture of the
transferred pupil and focuses the parallel beam of its sub-aperture on the
photographic plate (5) to form a spot of light. For use with a CCD, a field
lens (6) and objective (7) (schematic) transfer the plane (5) to the CCD (8)
with appropriate reduction.

Exit pupil
of telescope

Fig. 2.20. Construction (schematic) of basic Shack-Hartmann telescope test device
for use with photographic plates or CCD detector (after Wilson et al. [2.27])

In the basic ESO test device, the S-H screen (4) is a square raster
of 40x40lenslets, 1x1 mm square with a focal length about 160 mm. The
lenslets are therefore extremely weak with sagittae of the order of 2 um for a
refractive index of 1.5.

The telescope image of a suitable star (9) sends a similar beam into the
system. It is slightly displaced from the axis to give a separation of the set
of spots produced. Figure 2.21, reproduced from [2.27}, shows an actual S-H
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Fig. 2.21. Typical S-H test plate
exposed at the MPIA 2.2m tele-
scope II in 1983. The raster cor-
responding to the telescope image
shows the form of the pupil of
the telescope. The general raster
comes from the reference source.
(After Wilson et al. [2.27])

plate produced during the set-up and test of the MPIA 2.2m telescope II
at La Silla in 1983. The offset of the reference should not be more than one
third of the raster step to avoid confusion of related points.

The information on the S-H plate is a direct measure of the local wavefront
tilt corresponding to each spot. The lateral aberration of a given sub-aperture
in the telescope image plane (9) in Fig. 2.20 is transferred through the system
to the recording plane (5) with the factor f,/ f., where f, is the focal length
of the collimator (3) and f, that of the Shack lenslets (4). For an existing
Shack raster, f; must be chosen to give adequate sampling over the pupil.
The original master rasters offer a maximum sampling, in practice, of about
362 points over the unobstructed square or about 900 points over a circular,
typically obstructed, telescope aperture. This is enormous compared with the
sampling of conventional Hartmann tests. In practice, sampling of the order
of 300-400 points is ample for high-quality telescope optics with acceptable
high spatial frequency content in the wavefront error.

The procurement of suitable S-H lenslet rasters is not a trivial technical
problem. Shack [2.26] made his original masters by forming cylindrical lenses
in a milling machine and crossing copies of two such masters at right-angles.
The lenslets are so weak that the difference between crossed cylinders and
axially symmetrical lenslets is below the diffraction limit. Another process
which has been employed is by pressing spherical balls into a resin, but this
tends to give errors of overlap at the edges between the square lenslets. In our
experience, the most successful technique has been laser etching, a procedure
developed by Gale and Knop [2.28] at the RCA Laboratories in Zurich, now
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the Paul Scherrer Institute. Such negative metal masters can be copied to
produce positive copies in resin by standard techniques used, for example,
for holographic gratings. Excellent copies have been made for ESO and many
other institutes by the firm Jobin-Yvon in Paris.

Apart from the S-H raster, the components of an S-H test device are
quite simple. The collimator is uncritical and a simple doublet is sufficient
unless the telescope has a very high relative aperture (in prime focus). Only
the beamsplitter is critical since, after it, all elements are traversed by both
reference and telescope beams. In fact, the most important aspect of the ref-
erence spot grid is the effect of errors in the Shack raster itself. However, all
such errors are essentially stable. We shall see below that, with more modern
versions based solely on CCD detectors, the provision of the reference wave-
front becomes simpler. The size of the reference source is uncritical: it should
preferably be comparable with the best seeing disk, say 50 um in a telescope
like the NTT with a scale of 187 pm/arcsec.

In the original S-H concept of Fig.2.20, intended primarily for photo-
graphic plates, it is essential that the condition of isoplanatism be maintained
for the aberrations over the small angular shift of the reference source to the
telescope image. This is no problem for the conventional optical elements,
but the Shack raster may contain high spatial frequency errors whose Fourier
transform could give problems of lack of isoplanatism even over small angles.
However, with the angular shift of the order of that shown in Fig.2.21, no
such problem has been found with available raster screens.

The S-H raster screen is, in a sense, less fundamental for Hartmann-based
methods using a transferred pupil than the provision of a reference beam: this
was the essential step. It is quite possible to use a small Hartmann screen with
conventional holes instead of the S-H lenslet raster. Such a test device was
constructed and successfully used by Bahner and Loibl [2.29]. Nevertheless,
the lenticular raster screen proposed by Shack has the following important
advantages:

— Higher sampling. The contiguous disposition of the lenslets together with
the spot concentration offers a level of pupil sampling which is impossible
with a classical Hartmann screen containing simple holes. As indicated
above, sampling up to 900 points is quite feasible with available screens.

— On photographic plates, the spot-pair arrangement over the pupil shown
in Fig. 2.21 removes all problems such as emulsion distortion or measuring
machine error over a significant range, since only differential measurements
over the small vector distances of the spot-pairs are required. The infor-
mation on aberrations comes from the variations in the individual vector
differences of the spot-pairs. With modern CCD detectors, used as dis-
cussed below, this advantage is less significant.

— There is a gain of about 3.5™-5™ (25x-100x) in light efficiency due to the
spot concentration (spot diameters 100-200 pm instead of 1 mm). Since the
light of the telescope image is spread over a diameter up to 35 mm, this
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advantage is important. With III-aF plates used to test the ESO 3.6 m
telescope, stars of 8™—9™ were used; at the NTT with a CCD, the limit
is about 14™. We shall see that this advantage is particularly important
for the active control of telescopes using available guide stars for image
analysis (see Chap. 3).

According to Fig.2.20, the S-H screen is placed at the transferred exit
pupil of the telescope. In practice, this is very uncritical because only the
azial image of the telescope needs to be tested. (Tests in the field are unnec-
essary because the field aberrations are essentially stable functions which will
never vary: they will always be effectively those given by the nominal optical
design of the telescope. The variations found in the axial image will simply be
vectorially superimposed on the field aberrations as shown in Fig.2.1). The
effective field used by the telescope beam is therefore the maximum seeing
disk, plus errors of centering the star on the reference cross or guiding errors
over the integration period of the order of 30-60s. This field is so small that
the position of the pupil is anyway weakly defined. It can easily be shown
that the only practical effect of even considerable pupil position error is a
small loss of sampling.

The S-H test device is therefore a simple, robust device with generous
manufacturing tolerances.

The image analysis is performed in a similar way to that given above for
classical Hartmann testing, the standard test polynomial being of the general
form

W' = kpmp™ cos(nd + 6nm) (2.73)

shown in Egs. (2.72). Apart from the fifth order spherical aberration included
there, two other fifth order terms are sometimes included:

koap® cos(26 + 6o4) — fifth order astigmatism
24p" c08(2¢ + 624) g } (2.74)

k15p° cos(¢ + 615) — fifth order coma

In order to see the importance of different low frequency terms, it is instruc-
tive to remove the terms individually. This process is illustrated in Table 2.4
for the MPIA 2.2m telescope II, tested in October 1983 after set-up. Col-
umn 2 shows the dgg quality (diameter containing 80 % of the geometrical op-
tical energy) actually measured for this excellent passive telescope, including
residual decentering coma. The mean values were 0.47 arcsec and 0.62 arcsec
near the zenith and at Z ~ 45°N respectively. With coma removed (Col-
umn 3 - the true quality of the telescope), the values were 0.42 arcsec and
0.60 arcsec. Columns 4-9 show the effect of removal of coma C and one of
the other terms S, A, A, [J, or pairs of terms. Finally, Column 10 shows
the dgp value after removal of all five basic terms — the Intrinsic Quality
(IQ). The IQ of this telescope (not realisable because of its passive nature)
is (dso)rq@ = 0.35arcsec. The results showed that the aberrations near the
zenith were all small, only S and A having detectable effect. At Z ~ 45°N,
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Table 2.4. Shack-Hartmann test results of the MPIA 2.2 m telescope II (RC focus)
at La Silla in October 1983 (after erection and centering). All results are in arcsec

and are the mean diameters corresponding to 80 % geometrical energy obtained
from 4 S-H plates. (From Wilson et al. [2.27])

1 2 3 4 5 6 7 8 9 10
Basis Telescope | Minus | Minus | Minus| Minus| Minus| Minus | Minus | Minus
perfor- C C+S|C+A|C+aC+O| C C+S |C+S5+A
mance = Tele- +S+A|+A+A| +A+0
incl. scope = Tele-
decentering| actual scope
coma C | geom. intrinsic
(arcsec) opt. geom.
quality opt.
quality
ZENITH
Bad 0.490 0.431 | 0.398 | 0.399 | 0.424 | 0.431| 0.371 | 0.370 | 0.368
SHACK
spots
removed
Bad + 0.446 0.401 | 0.870) 0.870 0.396 | 0.398 | 0.337 | 0.332 | 0.330
doubtful
spots
removed
Mean 0.47 0.42 0.35
ZENITH DISTANCE ca. 45° N
Bad 0.628 0.610 | 0.560 | 0.490 | 0.603 | 0.601 | 0.434 | 0.427 | 0.411
SHACK
spots
removed
Bad + 0.604 0.592 | 0.558| 0.464 | 0.586 | 0.583 | 0.416 | 0.408 | 0.393
doubtful
spots
removed
Mean 0.62 0.60 0.40
Key C = 3rd order coma, S = 3rd order spherical aberration,
A = 3rd order astigmatism, A = “triangular coma” (trifoil),
[0 = “quadratic astigmatism” (quadrifoil)

the astigmatism A was the principal reason for decline in quality, also to a
lesser extent spherical aberration S. According to Bahner ([2.27]-discussion),
the increase of astigmatism at large Z was not found for the equivalent 2.2 m
telescope I at Calar Alto. It may therefore have been in the local air. This
illustrates the value of such tests. More measurements would have been nec-
essary to clear up this point.
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Fig. 2.22. Image profile of the MPIA 2.2m telescope II after set-up in October
1983 as given by the test S-H plate taken near the zenith, in comparison with the
specification (from Wilson et al. [2.27])

Figure 2.22 shows the image profile deduced from the best S-H plate near
zenith, compared with the specification. The result with coma removed was
well inside the specification for dgg but slightly outside it for d7p. It should
be emphasized that this is an excellent result for a passive telescope of this
size manufactured in the 1970s. ‘

If inadequate sampling is performed, the high spatial frequency errors will
be progressively underestimated, giving an over-favourable value for the 1Q
above all, but also for the measured telescope quality with all errors present.
The effect of reduction in sampling in the above case was given in [2.27].

The scheme shown in Fig.2.20 was essentially laid out for photographic
plates, the CCD being added later. Modern S-H test devices will use CCDs
only, with all the advantages of linear response, high efficiency and, above
all, immediate display of the results. This is yet a further example of the
revolution of CCDs in astronomy. Of course, care must be taken that pixel
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Fig. 2.23. Simplified S-H test arrangement as intended for the 8 m unit telescopes
of the ESO VLT [2.30]

sampling is adequate with the CCD: this will be discussed further in Chap. 3
in connection with active control and the NTT. For the 8 m unit telescopes
of the ESO VLT, there is no reduction from the transferred pupil to the CCD
(Fig.2.23) [2.30]. Instead of a beamsplitter, the reference source (2) can be
switched in or out as required by a switching mirror M. The S-H raster (4)
consists of lenslets of only 0.5mm square and feeds the CCD (5) directly.
The maximum beam size is then 10 mm diameter with a sampling over the
unobstructed square of 400. The CCD has 578x 592 pixels of 19 um diameter.

Although it cannot rival a test device with a CCD for on-line use, a Shack-
Hartmann tester using photographic plates may still be very useful for off-
line work if a measuring machine is available. Such a device was the so-called
ANTARES I, designed and built at ESO about 1978 for off-line testing of the
telescopes at the La Silla observatory [2.31]. This is shown in Fig. 2.24. The
square Shack raster had 40x40 lenslets of 1x1 mm, giving a maximum pupil
sampling of about 1000 with normal central obstruction of a circular pupil.
This was far higher than the normal sampling of classical Hartmann screens.
Such a device, systematically applied, can lead to dramatic improvement in
practical telescope quality.

For the active NTT, a built-in on-line S-H test device was essential to
the whole concept and the fact that CCDs were becoming readily available
for astronomical use was a fundamental technical advantage. The NTT im-
age analyser was essentially the same as the scheme of Fig. 2.20. In parallel,
a general purpose off-line S-H test device was developed in 1987, using a
CCD detector, under the name of ANTARES II. The optical concept, due to
B. Delabre and F. Franza [2.31], enables the testing of telescopes from about
f/3 to £/50. By switching elements symmetrically with a double revolver sys-
tem, this wide range of f/nos is made possible without changing the optical
path length. Figure 2.25 shows the optical scheme in the case of an /11 tele-
scope output beam. The compact transfer system reduces the S-H spot image
given by the 40x 40 mm lenslet raster by a factor of about 2.9 times to match
the CCD. The accompanying software package and output is effectively iden-
tical with that of the NT'T which is discussed in detail in Chap. 3. The output
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Fig. 2.24. The ESO off-line S-H test device ANTARES I, constructed in 1978 for
use with photographic plates [2.31]

data give not only complete information on the low spatial frequency terms
but also global information on the high spatial frequency terms. The value
of the latter and its variations give an excellent measure of the condition of
the local air (“dome seeing”). It is quite common to find telescopes whose
optical quality is completely limited by these local air conditions.

Software packages for S-H image analysis (or by any other method) can be
subject to error. The best way of testing their correctness is to use decentering
coma and despace spherical aberration from Egs. (2.1), (2.4) and (2.20) to
give known theoretical changes in these aberrations which are then measured
directly. The defocus and wavefront tilt coefficients of Egs. (2.72) may also
be used, calibrated by Egs. (3.211) and (3.212) of RTO L.

2.3.3.3 Interferometric modification of the Hartmann test. An ele-
gant interferometric modification of the Hartmann test has been proposed by
Korhonen [2.32] [2.33] [2.34] and applied with success to the 2.5 m Nordic Op-
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Fig. 2.25. Optical layout of the ESO general purpose off-line test device
ANTARES II (1987), for use with a CCD detector. The figure shows the (switch-
able) optics for an f/11 telescope output beam [2.31]

tical Telescope (NOT), both during optics fabrication and in the functioning
telescope [2.35].

The technique is based on the following principle. Suppose a Hartmann
plate is exposed in the classical way, well outside the caustic of the image,
to give the pattern of a group of spots as shown in Fig. 2.26(a). If the plate
is exposed much nearer the image so that the spots are partially overlapping
and interfering, the appearance of Fig. 2.26(b) is produced. There are strong
primary interference maxima such as A and weaker secondary maxima. The
maximum A is formed by the four spots 1, 2, 3, 4 in the same way as inter-
ference in two cross slit pairs. The center of the interference maximum is, of
course, at that point where the optical paths are equal. The measured posi-
tions of the primary maxima are reduced for the nominal focal plane exactly
as for classical Hartmann measurements. To obtain a good interferogram, the
correct distance s; of the photographic plate from the focus is

wor () o
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(a) (b) spots. (After Korhonen [2.32])

where X is the test wavelength, f’ the focal length and Ayg the hole spacing
of the Hartmann screen. A hole diameter dg about 1/3 to 1/2 of Ayy has
proved successful.

Korhonen adduces the advantage of the interferometric method over clas-
sical Hartmann from the relative size of the spots in Fig.2.26(a) and (b).
Diffraction gives a minimum diameter of the Hartmann spots, from (3.447)
of RTO I, as

¢H — 2.44)\/dH rad y (276)
while the diameter from the interference effect is
¢r = A/Ayy rad (2.77)

In a typical Hartmann screen Ayy/dy > 3. Using the same screen, this
implies

¢u/¢pr =173 (2.78)

Accepting the classical rule of photographic astrometry that the precision of
measurement of the centroid of a round image is about 1% of its diameter,
Korhonen claims higher accuracy for the interferometric method on the basis
of (2.78). The sampling can also be higher than in classical Hartmann.

The Shack-Hartmann modification is more efficient and accurate than
classical Hartmann in that the S-H spot sizes are smaller than the sub-
apertures formed by the lenslets. But Korhonen considers there is still a
gain of a factor of about 2.5 with the interferometric method over the S-H
technique [2.35] assuming equal sampling and perfect lenslets. In the form
of the test device used in 1991 on the NOT, a small Hartmann screen is
used in the transferred pupil, containing 792 holes. The interference spots
are less than 1arcsec diameter, giving a centroiding precision of the order of
0.01 arcsec, recorded on a CCD with 15 um pixels.

According to measurements with the Korhonen interferometric test de-
vice [2.35], the NOT has exceptional quality for a passive telescope at the
Cassegrain focus, dgg ~ 0.35 arcsec after removal of coma alone. The IQ is
given as (dgo)rq = 0.196 arcsec. It was intended to activate the telescope to
achieve this IQ (see Chap. 3), a perfectly feasible aim since the aspect ratio
of the primary mirror is 16.8, more extreme than the NTT (15).

Korhonen and Haarala also point out [2.34] the attractions of their in-
terferometric test for segmented mirrors, since “piston” errors of the wave-
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front can also be detected, not just slope errors as with the S-H technique.
This advantage has been recognised for the case of the segmented 10 m Keck
telescope. For the hexagonal geometry of the Keck primary, Korhonen and
Haarala propose a triangular system of Hartmann screen holes. Phase errors
in the corner of three adjacent segments are measured with a 3-hole system.

2.3.4 Curvature sensing: the Roddier test

In §2.3.2 “pupil plates” were discussed as a generalisation of time-honoured
techniques of assessing image quality by examining intra- and extrafocal im-
ages. It was shown how the three basic low spatial frequency aberration co-
efficients (spherical aberration, coma and astigmatism) can be derived from
the appearance of the obstructed pupil of a telescope. The information comes
from the pupil considered as a primitive sort of Hartmann screen containing
the following information: the z and y displacements of the center of the
obstruction circle relative to that of the outer pupil, their degree of elliptic-
ity and their relative size in the intra- and extrafocal positions. Apart from
these low spatial frequency errors, pupil plates can show irregularities in the
average circular shape at both outer and inner pupil boundaries as well as
marked photometric variations, above all from zones and ripple. An extreme
example is shown in Fig. 2.27, pupil plates exposed in 1979 for the old 50 cm
ESO telescope at La Silla [2.36]. This telescope was only used for photome-
try with a normal minimum diaphragm of 10 arcsec, so the image quality is
uncritical. If it were used for direct imaging, the loss of quality due to the
high zonal slopes would be very serious.

Beckers and Williams [2.37] were also concerned in 1979 with zonal ap-
pearances in out-of-focus images at the MMT, though in this case the effect
was much less serious. They point out that the photometric intensity dif-

Intrafocal Extrafocal

Fig. 2.27. Pupil plates showing strong “ripple” taken in 1979 at the ESO 50 cm
telescope. The plates were taken with various exposures to reveal the zones, at the
left intrafocally, at the right extrafocally. Original plate diameters 3.5 mm (left) and
2.8 mm (right). At this stage, the telescope still had 1.3 arcsec of decentering coma,
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ferences revealing the zones are a measure of the local curvature (second
derivative) of the wavefront and that photometric sensing could give the in-
formation required to calculate the wavefront. They attempted this with a
CID camera but failed because of lack of sensitivity. Interferograms had re-
vealed that the zonal wavefront errors on the primary were only about 0.1 A
though they were clearly revealed in the polaroid photographs (pupil plates).

The photometric approach was taken up later by Roddier et al. [2.38)-
[2.43]. In these and other papers, the theory of curvature sensing is analysed
in complete form. The earlier work [2.38] was more specifically concerned
with the application of wavefront sensors to adaptive optics (see Chap.5),
whereas [2.41] and [2.42] are concerned with the general application to the
testing of telescope images.

Instead of measuring the local slopes OW’/dz and W' /8y of the wave-
front function W'(z,y), Roddier et al. aim to measure the local curvatures
¢(z,y) expressed by the Laplace operator

o*w’ . W'
ox? oy?

The basis of the method [2.41] is to measure the illumination I; in a plane
P, at a distance s before the focal plane O’ (Fig.2.28) and I at the same
distance s after the focal plane. The upper figure shows the image space. P’ is
the “pupil” in the simplified sense of an equivalent telescope where the pupil
is at the principal plane, at a distance f’ from O’. Theoretically, to ensure
complete symmetry, a field lens at O’ with a focal length f’/2 should re-image
the exit pupil EP’ at a distance f’ beyond O’; but, in practice, since s < f’
this field lens can be omitted. The lower figure shows the object space. The
image space defocus planes P; and P, can be projected back into the object
space in an analogue way to that shown in Fig. 4.2 and Eq. (4.2) of RTO I
for the position of a virtual corrector plate in object space for the equivalent
of a primary at P’. This gives the symmetrical spacing of I1 and I about
P’ at a distance +Az. A local wavefront curvature error produces an excess
illumination in one plane and a lack of illumination at the other. Then the
difference AI = I; — I, provides a measure of the local wavefront curvature
or Laplace operator of the wavefront surface. If s <« f’, then according to
geometrical optics with p? = 22 4 42 defining the vector pupil position of the
sub-aperture

viw’ (2.79)

c(z,y) =

Afﬂ

T =25 (2.80)

"
where W' is expressed in units of wavelength A, p,, is the pupil radius and
I = (I + I3)/2 is the average illumination. The authors point out that the
method is fairly insensitive to non-uniformities of the intensity distribution in
the pupil plane, since they produce a similar effect in both planes P; and P>
which cancels out in the normalized difference. Radial tilts at the pupil edge
produce local shifts at the beam cross-sections. In deducing the difference
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Fig. 2.28. Curvature measurement following Roddier et al. [2.41] for testing tele-
scopes

AI, such shifts produce a narrow but strong edge signal proportional to the
radial tilt. Their general reconstruction method computes the wavefront from
its Laplace operator by solving the Poisson equation following the boundary
conditions with the edge tilt according to the Neumann potential function
[2.43).

If one is concerned with adaptive optics, the integration times will be short
and depend on the correction frequency intended; for testing of telescopes, on
the other hand, integration over the time (~ 30's) necessary to integrate out
the external atmosphere will be required, exactly as with Shack-Hartmann or
any other method. If the integrated seeing disk has the diameter (du')s rad,
then the linear blurring effect of pupil-plate information is ~ (éu’)sf’. This
blurring effect must be small compared with the minimum size dp of the
wavefront errors we wish to measure. The minimum size of the pupil plates
is then given by

(Gu)sf' < b0,
With D = 2p,,, the pupil diameter, it follows that the maximum number of
sampling points across the diameter is

D  Ds

5o (8u)sf”

Increasing s increases linearly the number of sampling points in the recon-
structed wavefront but decreases Al, i.e. the sensitivity to small amplitude
wavefront errors. The maximum sampling is therefore a compromise deter-
mined by the sensitivity of photometric detection. Equation (2.80) for the
geometrical optics case is valid if (2.81) holds.

Roddier and Roddier [2.42] [2.43] give the generalised form of (2.80) to
include the wavefront slope effect at the edge of the pupil as

(2.81)

(2.82)
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where d, is an impulse (Dirac) distribution around the pupil edge, 7 is a unit
vector perpendicular to the edge and P; is the pupil transmission function
normally assumed to be 1 inside the pupil and zero outside it.

The method was tested in practice in 1989 at the prime focus of the Uni-
versity of Hawaii 88-inch telescope [2.41]. This was an uncorrected RC prime
focus giving a large amount of systematic “overcorrected” spherical aber-
ration, confirmed by the appearance of the “pupil plates” with a relatively
larger central obstruction in the extrafocal plate (the opposite of the case
shown in Fig.2.12). The spherical aberration coefficient was estimated first
by the equivalent of (2.64) from the obstruction geometry as —10.9 pm. It was
then deduced photometrically using a CCD camera and the Poisson algorithm
to give a final estimate of —11.0 £ 0.1 um, in excellent agreement with the
geometrical estimate. This work was then extended to a reconstruction of
the mirror wavefront after removal of the spherical aberration term. Fig. 2.29
shows a contour plot of the wavefront after removal of the remaining low
frequency terms: tilt, defocus, coma, astigmatism. Zernike polynomials were
fitted, the largest values being coma and astigmatism, as one would expect.
Since the Laplace operator is zero for astigmatism, the value is obtained only
from the edge (slope) terms.

According to Roddier [2.43] the main disadvantage of curvature sensing
is error propagation in the wavefront reconstruction algorithm. It is also
weak on astigmatism since the total curvature information from the Laplace
operator is zero. The authors claim the following advantages:

a) The sensitivity is comparable to that of the Shack-Hartmann technique.
b) No additional optics is required (throughput advantage).
c) No calibration with a reference source is required.

Fig. 2.29. Contour plot of the re-
constructed wavefront from cur-
vature sensing of the primary of
the 88-inch University of Hawaii
telescope in April 1989 after re-
moval of low spatial frequency
terms. Increment 0.025um, dot-
ted line positive, dashed line neg-
ative. (From Roddier et al. [2.41])
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There is still (end of 1996) relatively little published test information avail-
able on different telescopes with the Shack-Hartmann or curvature sensing
techniques. A large amount of data is available from S-H tests (many thou-
sands alone at the NTT) and experience has shown that the sensitivity and
accuracy with modern CCDs is ample for all purposes. In practice, the limita-
tion in measuring precision is set by dome seeing, not by inherent limitations
in the S-H technique. However, apart from the results achieved at set-up of the
NTT [2.44], this data has not been published. Some comparative tests with
Shack-Hartmann (using the ESO ANTARES test device) and with curvature
sensing have been made at the Cerro Tololo 4 m telescope [2.45], but this was
too limited a basis for serious comparison of the two methods. Roddier and
Roddier [2.46] and Roddier et al. [2.47] have published more extensive data
with curvature sensing on a number of telescopes, including a comparison of
the two methods at the NTT. Such test data analyses are of fundamental im-
portance to the development and optimization of modern optical telescopes:
it is to be hoped that corresponding publications on the results of system-
atic Shack-Hartmann testing will also appear. The results quoted in [2.46]
for the NT'T indicate good general agreement in the basic aberration coeffi-
cients derived from curvature sensing and S-H measurements. It remains to
be seen whether curvature sensing will displace the S-H device. If good mas-
ter raster screens are available (as is the case), procurement of such screens is
no problem. Otherwise, S-H test devices are simple and robust. Furthermore,
the reduction algorithm is simple and direct and measurement in one im-
age plane is sufficient, an important time-saving advantage for on-line, active
control. The current evidence is that both methods are excellent for accurate
testing of functional optical quality and it is a matter of individual preference
and experience which method is chosen.

Roddier et al. [2.41] mention the interesting proposal by Behr [2.48] to
measure decentering coma by photometric measurements in a device intended
for centering telescopes. Such a device was built in ESO and tested by Franza
and Wilson [2.49] in 1980 at the Danish 1.54 m telescope at La Silla. The prin-
ciple was elegant, making use of the theoretical linear reduction in intensity
in the direction of the coma axis in a pupil plate (Fig.2.9). The out-of-focus
image was scanned by a rotating diaphragm with a small excentric hole. In
the presence of coma, this scan should produce a sinusoidal intensity func-
tion with maxima and minima in the direction of the coma axis. We found
that the device gave clear indications for coma coefficients down to about
1 arcsec, below which the results became completely random. This remained
the case even if the rotation period was much longer than the atmospheric
integration time used (60s). The reason was clearly the fundamental weak-
ness that the scanning aperture was fairly small and that an integration time
of the order of 30s would be required before the scanning hole moves a sig-
nificant fraction of its own diameter. With the small hole used, this would
have required a rotation period of over an hour. So, in fact, the device was
simply measuring the random local atmospheric variations of coma over the
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moving sub-aperture, superimposed on the fixed telescope effect. Since the
seeing was indifferent at the time, the random atmospheric coma contribu-
tions were completely dominant. The problem could have been alleviated by
using a much bigger diaphragm hole, but this would have lowered the sen-
sitivity of detection of the sinusoidal function. Hence, it was concluded that
the photometric scanning principle, though elegant in theory, had a funda-
mental weakness in practice. Instead, geometrical assessment of pupil plates
was used as discussed in §2.3.2. The Roddier curvature sensing technique
does not suffer from the weakness of the Behr scanning technique since the
whole pupil is registered in one integration.

2.3.5 Other methods of testing the optical quality of telescopes
in function

In the excellent analysis of Goad et al. [2.13], Hartmann-based wavefront
sensors were compared not only with rotating Foucault knife-edge devices
referred to above in §2.3.1 but also to radial grating interferometers [2.50]
[2.51] [2.52]. Their analysis shows that such interferometers are slightly less
efficient than rotating knife modulators, themselves a factor 2.33 times less
efficient than imaging Hartmann devices. They concluded that the Shack-
Hartmann principle was the most favourable of these three possibilities for
an adaptive optics sensor at that time, before curvature sensing was advanced
as a potential candidate.

Any interferometer which does not require a separate reference source is
a potential candidate for testing telescopes in function. This rules out all
variants of Twyman and Green interferometers (see Chap. 1), but leaves the
possibility of various forms of interferometer which produce interference in
some way only from the test wavefront coming from a star. They must be
capable of operating with a reasonably broad spectral bandpass. Two obvious
candidates are:

— The wave-shearing interferometer — Bates [2.53].
— The point-diffraction interferometer — Smartt [2.54].

According to Goad et al. [2.13], the Smartt interferometer has a too low
efficiency to be competitive in the testing of functional telescopes. It can be
used with a polychromatic source but, in its nature, involves considerable
light loss.

In the wave-shearing interferometer, the wavefront is sheared laterally
against itself. This device is technically simple [2.55] and was used with great
success by Brown at Grubb-Parsons [2.56] (see Chap. 1) for the production of
telescope optics, and has the advantage of being very insensitive to vibration.
The fringes produced correspond essentially to the first derivative of the
wavefront aberration. The obvious limitation is the wavelength dependence
of the fringe pattern which severely limits the bandpass available and lowers
the efficiency. Little attempt seems to have been made to test telescopes this
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way and it seems most unlikely it can rival the light efficiency of Hartmann-
based, curvature sensing or rotating knife techniques.

It seems that interference is better exploited in combination with a
Hartmann-type procedure, as developed by Korhonen - see §2.3.3.3. Such
possibilities are further analysed by Roddier and Roddier [2.42]. They pro-
pose the interferometric analogy of interferometric Hartmann as a phase re-
trieval system which extends the wavefront reconstruction from defocused
images into the diffraction regime. This was applied to images from the Hub-
ble Space Telescope.

Another old and well-tried test procedure which may be susceptible to
modernisation with linear detectors and computer analysis is the Ronchi
test. The origins of the Ronchi test go back to 1923 [2.57], but the modern
form dates from 1958 [2.58] [2.59] and uses a fine grating (Ronchi grating)
with a step of the order of 10~2 mm placed in front of the image. If an aber-
rated wavefront passes through the grating, then overlapping of the diffracted
orders produces distorted interference fringes which are straight and equidis-
tant if no aberration is present. Deviations in the fringes are a measure of
the aberrations.



3. Modern telescope developments: pupil
segmentation and techniques to reduce mass

3.1 Evolution and revolution in telescope optics

In Chap.5 of RTO I an account was given of the evolution of the reflecting
telescope from the optical point of view from Lord Rosse, about 1830, up to
about 1980. From about this time, the evolution of telescope optics, which
had retained certain essential features ever since Galileo’s telescopes in 1610,
was supplanted by a revolution. A summary of this process was recently given
by the author [3.1].

Up to about 1980, telescopes retained the following basic characteristics:

— A nominally rigid and monolithic primary element (objective or mirror)

— A nominally rigid or (following the Palomar 5m telescope) a passively
compensating structure holding the optical elements

— A generally “passive” nature, whereby adjustments could only be made by
off-line interventions

Within this global framework, the evolution of telescope optics was above
all represented by the physical appearance of the telescope. Figure 3.1 shows
seven major telescopes corresponding to the state of the art at the time —
see Table 3.1. Their appearance depends essentially on the f/nos of their
primaries. This evolution is shown graphically in Fig. 3.2.

The systematic reduction after 1800 occurred over a period of 200 years
because of progress in figurinig and testing techniques. Apart from a period of

Table 3.1. Evolution of primary f/no in reflecting telescopes

Telescope Date of completion | Primary f/no
W. Herschel 48-inch 1789 /10
Melbourne (Grubb) 48-inch 1869 f/7.5
Mt. Wilson (Ritchey) 60-inch 1908 £/5.0
ESO 3.6 m 1976 £/3.0
ESO NTT 3.5 m 1989 /2.2
ESO VLT 4 x 8 m 1998 ... £/1.8
Columbus (now called LBT) 2x 8m 2001 ... f/1.14

R. N. Wilson, Reflecting Telescope Optics IT
© Springer-Verlag Berlin Heidelberg 1999
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Fig. 3.1. The evolution of primary f/no in reflecting telescopes and its effect on
their appearance. From top to bottom and left to right as in Table 3.1 [3.1]

stagnation around 1940-1960, the fall in f/no has been an essentially mono-
tonic function reaching the two values shown of about f/1.5 and /1.0 for the
year 2000. Will this development go further? Opinions differ where the useful
limit lies. The aspheric figuring required for a given Schwarzschild constant
increases with the inverse cube of the f/no, while the space and mechani-
cal stability gains diminish rapidly at extreme values. At £/0.25 a spherical
primary has an edge zone parallel to the axis. Beyond that it becomes theoret-
ically impossible to obey the sine condition unless, with an aspheric primary,
the final f/no is increased, as in the Cassegrain form. Probably Galileo would
not have recognised the last three telescopes of Fig. 3.1 as telescopes at all,
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Fig. 3.2. The evolution of primary f/no in reflecting telescopes as a function of
time [3.1]

certainly not the last two. The first four telescopes followed the traditional
evolution; the last three form part of the modern revolution.

Of course, not only optics has contributed to these evolutionary and revo-
lutionary processes: also mechanics. Furthermore, without modern electronics
and computers, no revolution would have been possible. Figure 3.3 shows the
important effect, also on telescope optics, of the switch from the conventional
equatorial mount to the alt-az mount, the commonest form for modern large
telescopes. After 130 years of domination by the equatorial mount, two-axis
tracking made possible by computers and modern electronics has allowed

Fig. 3.3. “Sweep circles”, determining the enclosure size, for the ESO 3.6 m equa-
torial and the NTT 3.5m alt-az telescopes [3.1]
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this reversion to the oldest form of telescope mount. The significance for tele-
scope optics is the further huge reduction in the volume of the enclosed air.
Figure 3.3 indicates that the alt-az mount is as significant for air volume re-
duction as the tube shortening due to reduced primary f/nos. However, this
viewpoint is disputed by some authorities. For example, E.H. Richardson (pri-
vate communication 1996) doubts whether the gain is significant compared
with the technical complication of the field rotation induced.

The main driver for the telescope revolution was the ancient and funda-
mental parameter cost. For the conventional telescope, Rule [3.2] pointed out
that the cost was a function of the weight of the telescope, which depends
on the diameter. He established the basic weight-cost law for conventional
telescopes

Cost o« D% | \ (3.1)

where D is the telescope diameter. The weight of the mechanics dominates
the total weight but depends on the weight of the primary which multiplies
through the whole system of cell, tube and mount. This thinking was extended
in detailed analyses by Meinel [3.3] [3.4] [3.5]. In [3.3] he concludes the power
law of (3.1) should be 2.63 for conventional optical telescopes prior to 1975
and 2.94 for radio telescopes. At that time, a 25m NGT (New Generation
Telescope) was under discussion. Using a 2.7 power law, Meinel [3.4] predicted
a cost for a conventional telescope of 25 m aperture as $2 x 10° (1978)! Such
costs were completely unrealistic for ground-based astronomy and forced new
thinking. In 1982 [3.5], Meinel confirmed a power law of about 2.6, applica-
ble not only to conventional telescopes, but also modern conceptions with
reduced weight as well as to blanks themselves. For a 15 m telescope, he con-
cluded that the total costs ($ 1980) in three technical versions would be as
shown in Table 3.2. At that time, the MMT (Multi-Mirror-Telescope) with
4.4m equivalent aperture, was the only non-conventional telescope in func-
tion (1979) — see below. Further sophistication of cost scaling laws has been
proposed by Humphries et al. [3.6].

New thinking was also forced by flexure (support) and thermal problems
of primary mirrors. The flexure problem under gravity of a mirror is expressed
by the Couder Law [3.7]

4 2
W = k% =k (g) D? = kA’D? | (3.2)

Table 3.2. Cost estimates by Meinel [3.5] showing the advantage of modern over
conventional technology

Telescope type (15 m) Cost (million $ 1980)
Conventional (equatorial) f/2.75 1092.5
Quasi-conventional (alt-az) f/2.75 630.9
MMT (6-telescopes £/1.0) 186.1
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Fig. 3.4. The flexure-mass problem of classical mirror blanks and the solution
through segmentation [3.1]

where W is the flexure, D the diameter, ¢ the thickness of the (cylindrical)
mirror, A the “Aspect Ratio” D/t and k a constant including the modu-
lus of elasticity and relative density of the material. Figure 3.4 shows the
consequences of the Couder Law (which we will consider in depth below in
connection with active supports) for the classical extrapolation of a mirror
blank: a 4m blank extrapolated, with the same aspect ratio 4, to D =16m
has a mass 64 times as great, but the flexure W is nevertheless 16 times
greater! If the slope of the wavefront dW/dy is taken as a measure of the
effect of flexure (see Chap.4), the 16 m blank is still 4 times more flexible.
The support problem for extrapolation of conventional telescopes is therefore
as intractable as the mass problem. The Russian 6 m blank would already
have exceeded the reasonable extrapolation limit in an equatorially mounted
telescope. This telescope also reveals a further problem of classical extrapola-
tion: the thermal problems resulting from the thermal capacity which follows
the mass law. If the material of the blank has significant thermal expan-
sion, such as borosilicate glass (Pyrex), the high thermal capacity leads to
expansion problems in a conventional telescope. If a quasi-zero expansion



174 3. Modern telescope developments: segmentation and mass reduction

material is used, such as glass ceramic or ULE quartz, the thermal capac-
ity may still cause problems of mirror seeing through its thermal interaction
with the ambient air and high thermal inertia. The key word in the solution
to these problems and essentially the hinge of the revolution of modern tele-
scope optics is segmentation. This can be either direct or indirect, as shown
in Fig. 3.4. The weight gain from direct segmentation (“big-dish” segments)
is obvious: the area is that of n segments but the thickness remains that of a
single segment ¢,. The flexure is also formally that of a single segment, but
there is an additional adjustment and phase-holding problem which is far
from trivial — see below. Indirect segmentation has exactly the same effect in
achieving weight gain but produces a dilute aperture compared with the filled
aperture of direct segmentation. Two basic solutions of indirect segmentation
are possible: separate telescopes on a single mount (the MMT-type solution),
or separate telescopes on independent mounts (the “array” type solution).
In both cases, the beams can be combined, with or without phase, or both.
Clearly from Fig. 3.4, the aperture dilution may be relatively modest for the
MMT-type but is very high for the array type. However, the array type, if
combination with phase is achieved, allows the possibility of interferometry
over baselines an order of magnitude greater than the apertures, giving enor-
mous spatial resolution. The aperture dilution is then the technical problem
of sampling in the u-v plane well-known in radio astronomy.

The number of segments n in direct segmentation is a technical compro-
mise, but n is usually a fairly large number (e.g. n = 36 for the Keck 10m
telescope — see below). However, one proposal for the German 12m DGT has
a small value of n, using direct segmentation. With indirect segmentation,
proposals have been made for arrays with many telescopes (e.g. an early
proposal for the ESO VLT with n = 16 for 16 telescopes of 4m aperture
constituting a 16 m in combination). However, most indirect segmentation
proposals are for a low value of n of the order of 2 to 6, usually as low as
possible to give the largest unit telescopes achievable with monolithic pri-
maries (e.g. ESO VLT 4 x 8m, Columbus (LBT) 2 x 8 m, Gemini 2 x 8m).
In principle, of course, a combination of direct and indirect segmentation is
possible: direct segmentation with n; segments of n; unit telescopes com-
bined in an MMT or array type assembly. The beam combination of indirect
segmentation always requires further reflections, causing additional efficiency
losses unless super high reflectivity coatings are used.

For the normal indirect segmentation solution with a small value of n
giving the largest monolithic unit telescope primaries possible, the weight
and flexure problems require new technological approaches apart from the
indirect segmentation: the mass of the “segments” (primaries) is reduced
either by lightweighting structures or by using thin, flexible blanks whose
form is directly controlled by active optics. The three key technologies for
reducing weight and solving the flexure and thermal problems are shown in
Table 3.3. These three technologies are the basis of the revolution in modern
telescope optics.
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Table 3.3. The three key technologies which form the basis of the revolution in
modern telescope optics (weight reduction, control of flexure and thermal problems)

1. Segmentation: Direct or indirect

2. Lightweighted blanks:  For large “segments” (monolithic mirrors)
with or without active optics control

3. Thin, flexible blanks:  For large “segments” (monolithic mirrors)
with active optics control

Hybrid solutions exist, for example separated circular segments of a spher-
ical or aspheric primary in a diluted aperture big-dish arrangement. An ex-
ample of this is the French TEMOS project. In some form or combination,
all modern projects for very large telescopes fall into the essential scheme of
Table 3.3. This includes fixed or semi-fixed telescope designs by which the
earth’s rotation produces the field change and a large segmented primary is
used — see below.

For movable telescopes, the optical design basis remains the Cassegrain
telescope, either in classical or RC forms. More advanced forms are well
known, such as the designs using 3 or 4 powered mirrors discussed in detail
in §3.6.5 of RTO I, which give better performance with bigger fields. But
their use has remained limited by the failure to improve on simple evaporated
aluminium reflecting coats (invented in 1932!) for large optics. This is now
the most backward area of modern telescope optics: a revolution is urgently
needed and may be impending as a result of the admirable development
program of the Gemini project recently reported (1997) by Mountain, Gillett
and Kurz [3.8]. This work on protected silver coatings promises to be one
of the major technical advances in telescope technology of this century — see
also Chap. 6. Dielectric multi-coats may also provide a viable solution, but
their application still seems to be limited in practice to a maximum diameter
of about 2 m.

3.2 Examples of modern projects
using the technologies of Table 3.3

3.2.1 Direct segmentation with a filled aperture

Pioneer work took place in Italy (Bologna) in the 1950s with the work of
G.Horn-d’Arturo and in Finland of Y. Viisala (3.9]. In fact, Horn-d’Arturo
was inspired by the work of Lord Rosse [3.10] [3.11], who was the first to
attempt to make a segmented mirror in 1828. He made a 6-inch mirror con-
sisting of a central disk, axially adjustable, surrounded by a ring 1—;— inches
wide. The whole mirror was then polished spherical and the central disk
moved backwards to achieve best coincidence of the images from the disk
and ring segments. Rosse thereby reduced the spherical aberration by 50 %.
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Inspired by this idea, Horn-d’ Arturo made a fixed tesselated primary consist-
ing of 60 spherical segments of trapezoidal shape and giving a full aperture
of about 1.04m at £/10. Each segment was adjustable in depth and tilt to
produce an optimum common focus. A small field was tracked over a limited
time by moving a plate holder in the prime focus plane. The earth’s rotation
provided access to a strip of sky.

The Horn-d’Arturo concept was taken up for the Next Generation Tele-
scope (NGT) project of Kitt Peak and elaborated in a more sophisticated
form (the “Rotating Shoe”) above all by Mertz [3.12] [3.13]. It was discussed
in comparison with other concepts by Barr [3.14], from whose paper Fig. 3.5
has been reproduced. In this concept, a fixed tesselated primary of strip
form is scanned by a two-mirror secondary arrangement [3.12] rotating round
an altitude axis, along which a third mirror sends the beam to the equiva-
lent of a Nasmyth focus. Since the primary is spherical, the optical form of
the telescope is of the Gregory or Cassegrain “spherical primary” type (see
§3.2.6.3(d) of RTO I) and suffers from massive field coma. The 2-mirror sec-
ondary arrangement is designed to correct both spherical aberration and field
coma and achieves, in the form shown [3.14], a reasonable correction over
5arcmin field diameter. The whole arrangement rotates round an azimuth
axis.

The NGT became the NNTT (National New Technology Telescope)
project and has still not been realised. At a later stage an MMT-type concept
was favoured over the “Rotating Shoe” concept. The original goal was a 25 m
(1000 inch) aperture which would have required a 100m long strip primary
[3.14]. Apart from the small field resulting from the spherical primary, the
fact that the secondary scans different points of the primary during an ob-
servation can cause serious problems because of variable reflectivity and IR
background radiation.

For these reasons, and because indirect segmentation can lead to total
equivalent apertures of 15 m or more with more conventionally mounted mov-
able primaries with active control, the “Rotating Shoe” has not been further
pursued for very large telescopes. However, the system of Horn-d’ Arturo, with
the addition of an azimuth rotation and a fixed 30° tilt from the vertical to
give access to a ring of sky (“Optical Arecibo” design), has been taken over
for the 8 m Penn State Spectroscopic Survey Telescope (PSSST) of Ramsey
et al. [3.15] [3.16], using a spherical primary. A 2-mirror, prime focus cor-
rector corrects for spherical aberration and coma for a 1arcmin diameter
field, sufficient for the spectroscopic survey telescope intended. A focal plane
tracking arrangement can track objects up to 1 hour. The primary consists of
85 identical 1 m diameter circular segments of spherical form (Fig. 3.6), each
with 13m focal length. It should be noted that this is a quasi-filled aper-
ture solution, since the segments of the primary are circular. This avoids the
cutting problems of hexagonal segments and the gaps are not serious for a
telescope not intended for IR use. The image quality design goal is given as
1 arcsec [3.16]. The cost estimate in 1988 was $6 million.
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Fig. 3.5. The “Rotating Shoe” concept for a large telescope due to Mertz [3.12].
Figure reproduced from Barr {3.14] as a proposal for the NGT

Through the involvement of another institute (the University of Texas),
the PSSST was renamed by 1988 simply the SST [3.15] and was further
elaborated and discussed by Ray in 1992 [3.17], the error budget giving at
the end of 1991 a total system image of 0.66 arcsec for 50 % encircled energy.
Further developments were reported in 1996 by Sebring and Ramsey [3.18).
The universities of Stanford, Munich and Géttingen had joined the project
which is now called the Hobby-Eberly Telescope (HET). The HET has an
11m primary of spherical form with an aperture of 9.5m and contains 91
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Fig. 3.6. The 8 m Penn State Spectroscopic Survey Telescope (PSSST) project
with an “Optical Arecibo” concept using a stationary, inclined, tessellated primary
with azimuth rotation (from Ramsey et al. [3.15])

hexagonal segments. Completion was expected in 1997 at a total cost of $13.5
million. The image quality intended is quoted as 0.6 arcsec.

A further extension of the same basic concept is also reported by Bash et
al. [3.19]. They propose its application to the ELT (Extremely Large Tele-
scope) with an aperture of 25m, utilizing a 33m spherical primary array.
This paper also gives an example of the type of corrector proposed, simi-
lar to that for the HET. Figure 3.7 reproduces this design, containing four
powered, aspheric mirrors. Mirrors My, M3 and M, are conic sections, while
Ms has higher order deformations from the conic. Over a 4 arcmin field, a
quality of 0.5 arcsec (50 % encircled energy) is quoted for this system. Such
correctors are bound to be relatively complex, even for such small angular
fields, because of the huge spherical aberration of the 25m spherical pri-
mary (ca. f/1.6) and the modest size of the corrector in comparison. For
the ELT, the corrector shown in Fig. 3.7 is of the order of 4m in diameter,
less than 1/6 of the primary aperture of 25m. But the movable corrector
is still comparable in size with a classical 4m telescope. The discrepancy in
size compared with the primary aperture inevitably impairs the field correc-
tion. It is interesting to compare the ELT corrector with the optical design
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of conventionally mounted 4-mirror telescopes based on a spherical primary
(§3.6.5.3 of RT'O I). In particular, the design for the 25 m Nordic Telescope,
using a third mirror somewhat, but not much, larger than the ELT corrector
achieves, according to Ardeberg et al., with 3 aspheric mirrors in addition
to the spherical primary, a very good image quality (0.10 arcsec) over a field
of more than 20 arcmin [3.20] [3.21]. The pupil position can be optimized in
both conventional systems of this sort and in the ELT corrector. But the pupil
position shown in Fig. 3.7, not far from the focus of the primary, inevitably
leads to a major increase of diameter of the primary over its aperture, even
for modest fields.

Fig. 3.7. A corrector design for the ELT similar to that for the HET. Mirrors My,
M3 and My are conic sections, while Ms has higher order departures from the conic
(after Bash et al. [3.19])

The cost estimate of the ELT is $200 million. The constant angle of the
primary relative to gravity is claimed as a major opto-mechanical advantage
compared with conventional telescope mounts.

The extent to which “stationary”, segmented primary concepts, with their
mechanical advantage of a “gravity constant” primary, can rival current gen-
erally movable designs will also depend on the success of the latter in active
figure control of directly segmented primaries and monoliths and the effi-
ciency (and cost) of beam combination in indirect segmentation solutions.

The project for which direct segmentation has been applied in the most
sophisticated form is the Keck I 10m telescope, commissioned in 1993 when
it became the largest functioning telescope in the world [3.22]. An account of
the most important aspect of the optics of this telescope, the manufacturing
techniques for the primary segments using stress polishing and ion beam
polishing, was given in §1.2.2.4 and §1.2.2.5 above. Figure 3.8(a) shows the
arrangement of the 36 hexagonal segments, made of glass ceramic “Zerodur”
from Schott, of the f/1.75 lightly hyperbolic RC primary of 9.9m aperture
across the sides of the total hexagon. The side of the unit segment is 0.9 m
or 1.8 m across its corners, the thickness being 7.5 cm giving an aspect ratio
of 24. The segment manufacture [3.23] proved to be the most difficult aspect
of the manufacture of the Keck telescope. It is much more difficult than the
manufacture of a monolith for the following reasons:
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(o)

Fig. 3.8. Hexagonal segments (36) forming the primary mirror of the 10m Keck
telescope. (a) The complete mirror, (b) an individual segment during manufacture
(figures kindly supplied by the Keck project)

— The strongly aspheric primary means that the segments are unsymmetric,
the asymmetry growing with the distance from the axis, giving 5 differ-
ent sorts of segment. This poses not only a manufacturing problem (see
§1.2.2.4) but also a test problem.

— The segments must have high quality right to the edge, a hard requirement
which rarely obtains for monolithic mirrors, for which a manufacturing
“run-out” is normally possible.

— The segments must have the same radius of curvature to a very tight
tolerance. Normally, the focal length of a telescope with a monolithic mirror
is relatively uncritical, although this may no longer be true for the beam
combination of solutions using indirect segmentation.

— Finally, the hexagonal form arising from the packing law of nature required
cutting after figuring. The stress relief proved a major problem finally
solved by ion beam polishing to optimize the figure.

The cell and associated mechanics and controls for phasing the segments are
extremely complex. Figure 3.9 shows this complexity.

The design of the Keck project started at the beginning of 1977. When
operation started in 1993, it had taken 16 years from inception to completion,
by no means an excessive time for such an ambitious concept, both in size
and technical nature. The engineering phase started in 1985, implying only
8 years for realisation [3.24]. Every telescope conference since 1977 [3.25] has
contained accounts of the progress of the project. It should be remembered
that many aspects were laid down much earlier than for more recent projects.



3.2 Examples of modern projects using the technologies of Table 3.3 181

Fig. 3.9. The Keck 10m telescope: the prime mirror cell and associated mechanics
(figure courtesy of the Keck project)

The optical concept and realisation is above all the achievement of J. Nelson.
An excellent account of the essential features was given in 1985 [3.26]. Figure
3.10 shows a model of the mechanical structure of the Keck telescope [3.23].
As far as the optics is concerned, the most complex part apart from segment
production is the active position and tilt control. A complete account of this
system is given in §5 of ref. [3.26]. We shall discuss this aspect of the Keck
telescope in § 3.5 on active optics control.

The last segment of the primary was inserted in April 1992 [3.24]. The PF
(f/1.75) is not intended for astronomical use. The Cassegrain/Nasmyth foci
have f/15, the IR Cassegrain f/25. The secondary mirror has been successfully
completed [3.27] (see also § 1.3.3 on the test procedures used and results). The
complete optical error budget is given in refs. [3.23] [3.24] — see also §4.2. The
latest information [3.24] gives the total optical budget as dgo = 0.42 arcsec, of
which 0.24 arcsec is budgeted for segment figuring. Using the warping harness
to correct low frequency terms (see §1.2.2.4), an average segment value of
0.44 arcsec was achieved, well outside the specification. Ion beam retouching
at Kodak improved this average to 0.25 arcsec, near the specification [3.28].
The active control system seems very reliable and successful, the reliability
being limited early on by the computer system (4 failures in 6 months — board
replacement about 1 hour). Further details of the final work on the segment
manufacture and optical quality and alignment are given by Mast and Nelson
[3.28]. Dome seeing and thermal conditions appear to be favourable [3.24],
but no clear quantitative evidence was then available.
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Fig. 3.10. The space frame structure of the Keck 10m telescope [3.23]

The financial budget was largely held except for the primary segment
fabrication. For the telescope itself (Keck I), the 1996 (actual) budget esti-
mate is given by Smith [3.29] as $93.5 million. A second Keck II telescope
[3.29] was funded in 1990 with $93.3 million, the project beginning in Jan-
uary 1991. The time planned for construction until operation was 69 months.
This schedule was held and observing started in October 1996, a remarkable
achievement. The actual budget in 1996 was only $77.7 million, markedly
more favourable than the cost projection. A number of factors contributed
to this saving: technically, the most important was the reduction of segment
figuring costs due to the development of ion beam figuring.

The total optical specification of dgg < 0.42 arcsec of Keck I is relatively
modest compared with more recent projects (see Chap. 4). But, at the time
of its specification, above all bearing in mind its novel segment technology, it
was a valid and even ambitious choice for such a large project. An excellent
account of the technical function of Keck I over the first 2 years of operation
from 1994 to 1996 has been given by Gillingham [3.22]. Figure 3.11 repro-
duces his analysis of the measured image quality (FWHM arcsec at 650 nm).
In the best cases, when the segments of the primary were “restacked” and
the secondary mirror realigned, the image quality was little inferior to the
mean segment image, e.g. in January 1995 when the best segment image
was FWHM 0.35 arcsec. Of course, such results implied exceptionally good
atmospheric seeing. Gillingham concludes that the routine optical quality,
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Fig. 3.11. Star image sizes (FWHM arcsec) for segments and for a full aperture
(A = 650nm). “Best” refers to the smallest of the averages for individual segments,
“mean” is the average for all segments, “stack” is the combined image for all 36
segments. (After Gillingham [3.22])

although very good, still falls short of the potential of the site/telescope
combination. It is hoped to improve telescope adjustment and to minimize
local seeing degradation.

It is already clear from the results obtained that Keck I (Fig. 3.12) repre-
sents a milestone in the history of the telescope and astronomy and a remark-
able technical and organisational achievement. Its sheer size, combined with
excellent optical quality at one of the best (if not the best) sites on Mauna
Kea, Hawaii, makes it unrivalled by other ground-based telescopes until the
new generation of the 8 m-class telescopes comes into operation.

In 1988 Hiigenell [3.30] published a proposal for a 20m telescope
(“Zentralachsenspiegler” or ZAS, i.e. “Central axis reflector”) of segmented
primary optical concept, in principle identical to that of the Keck 10m tele-
scope. Extreme claims were made concerning novel manufacturing techniques
and other technical features, but these were not supported by theoretical or
experimental evidence or by any references. Concerning the mounting and
adjustment of the 366 segments, it was stated that the principles of the Keck
telescope would be taken over. The primary f/no was given as f/1.5 and the
focal lengths for Cassegrain/coudé and Nasmyth foci correspond to a sec-
ondary magnification my of 2.33 and 2.17 respectively. Such values would
give high central obstruction and require an extreme RC solution to give
a reasonable field. However, there was no comment on the optical design.
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Fig. 3.12. Drawing of the 10m Keck I telescope in its dome. See also the pho-
tograph on the cover of this book. (Courtesy W.M. Keck Observatory, through
J. Nelson and A. Perala)

The only comment on the optical quality specification is that “focal point
tolerances of 10 nm” are achievable on the Keck basis.

A project in which primary mirror segmentation of a different sort is pro-
posed, with only a small number of segments, is the DGT (German Large
Telescope) for which an aperture of 12 m was planned [3.31]. A two half-mirror
segmentation scheme was considered impracticable, but two other schemes
were considered feasible (Fig. 3.13). The principal argument for limiting the
number of segments is the IR background. The segmentation scheme (b) is
essentially the same as one of the proposals for the NGT [3.14] due to Aikens
et al. for use in large unit telescopes for MMT or array-type solutions for
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Fig. 3.13a, b. Proposed segmentation schemes for the DGT primary mirror (after
Appenzeller [3.31})

indirect segmentation. The attraction of the scheme (b) is that the central
element could be the largest monolith available with existing technology: in
1992 about 8 m. Aikens et al. [3.32] proposed a passively-supported central
element with an open-loop active system adjusting the outer segments to it.
This was essentially the solution adopted for the Keck 10m telescope. Ap-
penzeller proposed supporting the central monolith actively in the same way
as the ESO NTT and VLT (see §3.5). A further discussion on the feasibility
of manufacture of such a segmented 12 m primary is given by Appenzeller et
al. [3.33].

The most ambitious concept using direct segmentation of the primary
was proposed by Ardeberg et al. [3.34] for a 25m spherical primary, working
at £/0.8 (Nordic extremely large telescope). We referred to a later version
of this concept, using 4 powered mirrors, above. The optical design of such
4-mirror telescopes is discussed in §3.6.5.3 of RT'O I. In the 1992 version of
the Nordic concept, the convex M, was extremely aspheric (oblate spheroid),
the concave M3 mildly aspheric and the concave My (also segmented) highly
aspheric. M1 and My consisted of 141 segments. This design solution only
gave a field of about 40 arcsec of good correction with a primary of £/0.8. The
later concept in 1996 [3.20] [3.21] relaxes the primary to f/0.96 and has an
improved design with more normal hyperbolic (to third order) forms for M,
M5 and My. The well-corrected field is now over 20 arcmin. M; and M, retain
the number of 141 segments proposed earlier. The pupil M; is imaged on to
M, and these two segmented mirrors are actively controlled. The segment
production for the spherical segments of the primary (segments 2m wide)
is considered straightforward and amenable to mass production. Figure 3.14
shows the optical layout and the segmentation of the primary [3.20].

Other large segmented projects under discussion are a Russian 10 m tele-
scope [3.35] and a Spanish 10m telescope [3.36].
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Fig. 3.14. Optical layout (a) and primary mirror segmentation (b) for the Nordic
25m telescope concept [3.20]

3.2.2 Separate telescopes with monolithic primaries
on a single mount (MMT-type indirect segmentation)

The progenitor of all such designs was the original Multi-Mirror-Telescope
(MMT) which was inaugurated in 1979. It was not only epoch-making in
being the first major telescope to depart from the classical optical monolith
conception, but also used an alt-az mount in a revolutionary square building
which rotated synchronously with the telescope (Fig.3.15). The six 1.8m
unit telescopes working at f/2.7 were arranged around a 0.75 m central guide
telescope and the 6 images were combined in a central collecting unit. The
equivalent aperture was 4.4 m.

Soon after its completion, a review of the performance and technical as-
pects of the MMT was given by Beckers and Williams [3.37]. An account of
the image optimization and stabilization was given by Reed [3.38]. The beam
combination and stabilization arrangement is shown in Figs.3.16 and 3.17,
taken from Reed’s paper. The system envisaged utilised a laser-generated
marginal ray measurement technique to give simultaneous alignment and fo-
cus information for each of the 6 telescopes. This was intended to control the
position of each image relative to the other 5 images. Figure 3.16 shows a
pair of telescopes. On the left-hand telescope is shown the light path through
the telescope to a 6-faced beam combiner. The right-hand telescope shows
the optical path of the laser beams for aligning the telescopes.

The individual telescopes did not have very high quality, about 0.6 to
0.7 arcsec [3.39]. Nevertheless, Beckers and Williams [3.37] reported that it
was possible to use pairs of the 6 telescopes at optical and IR (5pm) wave-
lengths in a coherent way so as to cause interference, giving a resolution
corresponding to a 7m telescope. This was only possible at one point of the
field because of the tilts of the 6 image planes — see Fig.3.16. My under-
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Fig. 3.15. The 44m
equivalent MMT with
its synchronously rotat-
ing building

standing is that the complex open-loop laser active alignment system was
later abandoned in favour of the much simpler and more direct closed-loop
active approach of correction for the individual images of a star. We shall
return to this matter in §3.5.

Notable as it was as the first large telescope using indirect segmentation, it
is my view that the most important optical advance of the MMT was not the
telescope itself but its enclosure (Fig. 3.15). This represented a radical break
from the large and expensive dome of conventional telescopes and exploited
logically the symmetry advantages of the alt-az mount. The MMT enclosure
was the progenitor of the ESO NTT building and others: it initiated the
“natural ventilation” concept.

An excellent and complete account of the MMT in all its aspects was given
by Beckers et al. in 1981 [3.40]. In spite of its potential, the decision was taken
in 1987 to abandon the MMT concept because of its diluted aperture and
replace the six telescopes by a single primary of lightweight construction.
To have the same tube length, this 6.5 m monolithic primary must work
at about f/1.25. An account of this conversion was given by Chaffee [3.41].
Two secondaries of £/5.27 and f/15 were intended. First light was planned
for late 1994. A more recent account of this project is given by West et al.
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Fig. 3.16. MMT: Alignment system optical paths (from Reed [3.38])

[3.42]. The conversion to a monolithic primary more than doubles the light-
gathering power and enables, by suitable design, an increase of the angular
field of view by a factor of 15. Three secondaries give five observing foci: a)
£/9 with a field of 13 arcmin, b) £/5.25 with a field of 5 arcmin, c) /5.4 with
a field of 60arcmin, d) £f/15 (fixed/chopping) with a field of 20 arcmin, e)
/15 (fully adaptive). The large field of view at f/5.4 is made possible by a
refractive corrector designed by Epps. Minor modifications to the building
were necessary, but the total conversion budget is only $20 million. First
light is now planned for 1998.

In spite of its abandonment for quite rational astronomical and techni-
cal reasons, the basic concept of indirect segmentation in this way remains
perfectly valid. However, its normal application will be to diluted apertures
larger than feasible monolithic primaries. For the original MMT, this was no
longer the case.

An interesting MMT-type variant was the TEMOS concept of Baranne
and Lemaitre [3.43] [3.44], discussed in §3.2.6.3 (d) and §3.6.5.3 of RTO I
The primaries of the unit telescopes are then round segments of a much larger
spherical primary and use a common secondary. As illustrated in RTO I,
the addition of two more powered mirrors gives excellent compact solutions
with large well-corrected fields. However, this form of “dilute” segmentation
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Fig. 3.17. MMT: Laser alignment beam optical paths (from Reed [3.38))

would have to compete with the more efficient “direct” segmentation using
hexagonal segments, such as that of Ardeberg et al. [3.20] discussed above.
The largest MMT-type project is Columbus, recently renamed the Large
Binocular Telescope (LBT), with two 8 m-class telescopes on a single mount
(Fig. 3.18). The initial Columbus proposals (1985) were described by Stritt-
matter in 1988 [3.45]. The 8 m primaries were very steep (f/1.2) lightweighted
monoliths. A cost-performance analysis validated the MMT-type choice with
2 telescopes. With co-phasing, the maximum angular resolution, assuming
progress in adaptive optics, was planned to correspond to a 22m baseline.

189
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Fig. 3.18. The Columbus project: 2 x 8 m MMT-type (recently renamed the Large
Binocular Telescope (LBT}))

An update report was given by Salinari in 1992 [3.46]. The clear aperture
had been increased to 8.4m, steepening the primaries to f/1.142. The image
quality goal was 0.22arcsec FWHM, the specification being in terms of rg,
the Fried parameter (see Chaps. 4 and 5). A notable optical feature was that
aluminizing (and prime mirror cleaning) was to be performed on the tele-
scope without dismounting the primary. The enclosure concept was a further
extreme development from the MMT concept: it was open at the top, front,
back and sides. Overpressure at the top forces the wind downwards to give
optimum ventilation. The projected budget in 1989 was $ 60 million.

A recent account of this (renamed) Large Binocular Telescope (LBT)
project was given in 1996 by Hill [3.47]. The previously defined (parabolic)
primaries and budget are retained. The baseline optical configuration of the
LBT includes wide-field Cassegrain secondaries with optical foci above the
primaries to provide a corrected 60arcmin field at f/4, using 3-element re-
fractive correctors. Undersize Gregory secondaries for an f/15 IR focus can be
combined with folded beams in a joint interferometric focus. The Gregory sec-
ondaries are intended to give maximum flexibility for adaptive optics. Some
instruments can also use the f/15 Gregory foci directly behind the primaries.
Figure 3.19 gives a 3-D impression of the geometry of the LBT.
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Fig. 3.19. The latest Large Binocular Telescope (LBT) design. Drawing by ADS
Italia [3.47]

First light with a single optical train is scheduled for the year 2001. Binoc-
ular operation should start one or two years later.

A project which is a hybrid between an MMT concept and a directly
segmented strip mirror concept such as the “Rotating Shoe” above, is a recent
Chinese proposal for a spectroscopic survey telescope [3.48]. A strip-form
primary has an aperture 4 m wide and 12.4 m long and is of spherical form. It
is scanned by 4 tracking frames which scan different parts of the mirror, as the
secondary unit does in the “Rotating Shoe”, so that the 12.4 m strip mirror is
the equivalent of four 4 m telescopes, all mounted on a single horizontal axis
in E-W direction. The directly segmented primary consists of 94 spherical
mirrors of circular form, each of 0.75m diameter. A field of 3.58° x 3.58°
is achieved by four 1m x 1 m plates on the tracking frame performing the
tracking motion, each having about 600 fibres and 20 mm diameter correctors.

An elegant further development for wide field spectroscopic observation,
under the project name LAMOST, has been published by Wang et al. [3.49].
It is essentially a fixed Schmidt telescope with a coelostat feed, this feed
being combined with a reflecting Schmidt plate corrector. The clear aperture
is 4 m which, as the authors point out, will make it easily the largest Schmidt
telescope in the world. Both the spherical mirror and the reflecting Schmidt
plate are built up of 37 and 24 hexagonal segments respectively. The spherical
mirror works at f/5 and the system has a field of 5° diameter. Figure 3.20
shows an overview of LAMOST.

The reflecting corrector plate has an alt-az mount and the spherical mirror
axis is inclined at 25° to the horizontal. The observable sky area is defined
by —10° < § < +90° and objects can be tracked for 1.5 hours as they pass
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Fig. 3.20. Overview of the Chinese LAMOST telescope [3.49)]

through the meridian. Because of the variable inclination (cosine effect) to
the system axis, the corrector shape must also be variable. The authors give
the formula for the depth correction in terms of the corrector coordinates
and the incidence angle of the field center point. It is proposed to achieve
this variable correction by active optics control. The simulated image quality
(spot-diagrams) in the field is best in the region —10° < § < 0° (well within
larcsec) and deteriorates at large d-values (about 2arcsec at the field edge
for § = +60°).

3.2.3 Other large telescope projects
using lightweighted monolithic blanks

Apart from the 6.5m f/1.25 lightweighted blank for the MMT-upgrade and
the two 8.4m, f/1.14 blanks for the LBT (Columbus) (see §3.2.2 above),
the lightweighted blank production shop of Angel [3.50] [3.51] received an
order for a further 6.5 m blank for the Magellan project of the Carnegie In-
stitute to be set up near their site Las Campanas in Chile [3.52]. Notable
optical features of this design are a support system with designed-in damp-
ing at high frequencies, an important issue we shall return to in §3.5, and
an enclosure concept with ventilation openings near the base, a concept very
successfully pioneered by the 2.5m Nordic Optical Telescope (NOT). The
budget was given as $31.4 million without instrumentation and the comple-
tion date as (hopefully) 1997. The project is technically closely linked to
the MMT-upgrade. A more recent account is given by Johns [3.53]. The op-
tical configuration has some common features (e.g. use of Gregory as well
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as Cassegrain secondaries) with the LBT. Commissioning of Magellan 1 is
scheduled for 1998.

An account of lightweighted blank production at the Mirror Lab. facility
developed by J.R.P. Angel at the University of Arizona is given in §3.3.4
below.

Another possible candidate for two 8 m lightweighted blanks was the
Gemini 2 X 8m project. A decision on whether to choose lightweighted blanks
from Angel or thin meniscus blanks from Schott or Corning (see § 3.2.4) was
scheduled to be taken about June 1992 [3.54]. Further details of the project
were given by Osmer [3.55]. The decision finally taken on the primary blanks
was in favour of the thin meniscus solution, as in the ESO VLT and Japanese
Subaru projects. The dimensions of the Gemini primaries are given Huang
[3.56] as 8.1 m diameter and 200 mm thick. Thin meniscus blank production
is treated in § 3.3.2 and § 3.3.3. The project is international with the financial
participations US = 50 %; UK = 25%; Canada = 15%; Chile, Argentina,
Brazil = 10 %. One telescope is intended for Mauna Kea (Hawaii), the other
for Cerro Pachon (Chile), so all-sky coverage is available. Low IR emissivity
is a high priority, 2-4% background. The 8 m primaries will work at f/1.8
with a central hole of 1.2m. A wide-field focus station at f/6 is planned for
A = 0.3-2.2um and an IR focus at /16 with a 3.5arcmin field for A = 1-
30 um. The telescope image quality goal is 0.25 arcsec FWHM. For Gemini 1,
“first light” is scheduled for 1998, for Gemini 2 for 2000. Since the decision
to use thin menisci for the primaries, the Gemini project now belongs in type
in §3.2.4: but it is treated here for comparison of its general characteristics
with the other large American projects. A recent report was given by Moun-
tain et al. [3.8]. Apart from the pioneer work on silver coatings referred to in
§ 3.1 above, the Gemini project is also notable for some of the most advanced
concepts on image quality and wind-buffetting [3.56] and thermal control,
aspects dealt with in § 3.6 below.

Although not a modern telescope from the point of view of the epoch
of its conception and manufacture, the 2.4m Hubble Space Telescope (HST)
must logically be included in this section, because of the highly lightweighted
nature of its primary. A general account of the HST project was given by
O’Dell [3.57]. The optical system was defined as a conventional RC with f/24
and a primary of £/2.3. The material of the primary blank is Corning ULE
quartz (see below and §3.3.3).

In the summer of 1990, about two months after launch, came the revela-
tion that the image quality was degraded by a large amount of third order
spherical aberration arising from “matching error”. The possible correction
of this error in terms of the general theory of aspheric plates was dealt with in
§3.4 of RTO I, while its origins in null-systems error were discussed in §1.3.4
and §1.3.5. It is difficult now to recapture the euphoric atmosphere leading
up to, and accompanying the launch of the HST after delays of 7 years be-
yond the original launch date and an overrun of its original cost estimate by a
factor of 4 or 5, the official cost figure at the time (1990) being $ 1600 million
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[3.58]. A typical comment of many, on the eve of launch, was: “Stated briefly,
Space Telescope allows astronomers to see the universe with some 10 times
finer resolution and with 50 times greater sensitivity” [3.59]. This sentence
shows the danger of using the present tense about characteristics which can
only be proven in the future. It is the very common confusion in all optical
telescope history between a specification (an intention, an aim, a hope) and
a proven, quantitatively measured performance result.

In fact, an immense amount of careful and admirable technical work went
into the HST optics. An excellent account of the specification and perfor-
mance expectations was given by Schroeder [3.60]. The nominal optical pa-
rameters as an RC telescope are [3.60] [3.61]:

D; = 2400 mm 71 = 11040 mm (£/2.300) bs, = —1.0022985
Dy =310mm  rp=1358mm bs, = —1.49686
mg = —10.435 b= 1500.1 mm (see Fig.2.12 of RTO I)

' = 57601.2mm (f/24.000)

From an optical design point of view, the HST is therefore a conventional
Ritchey-Chrétien design, except that the secondary magnification mqy is
higher than is usual in a ground-based telescope for a focus used for di-
rect imaging. The new technology aspect of the optics was the extreme
lightweighted “egg-crate” primary (Fig.3.21) made in fused quartz (ULE)
by Corning. This had the virtue of being extremely rigid for its weight, but
this advantage turned sour later when the mirror was found to be much too
stiff to be corrected actively: in other words, the dynamic range was inade-
quate to correct the large spherical aberration (see § 3.5).

The basic quality specification of the HST as given by Schroeder [3.60]
was a wavefront error < A/21rms at A = 633nm combined with an rms
pointing error < 0.007 arcsec. Schroeder gives the predicted point spread
functions (PSF) for A = 1000, 633, 450 and 350 nm. He also gives the pre-
dicted optical transfer functions in various forms, encircled energies as well
as the Strehl Intensity Ratio and FWHM as functions of wavelength. These
latter two functions are reproduced in Fig. 3.22. This shows that the Strehl
Ratio was predicted to be about 0.8, the normal diffraction limit, for the test
wavelength A = 633 nm. The corresponding FWHM hardly exceeds that of
a perfect telescope and is about 0.055 arcsec for that wavelength and about
0.046 arcsec for A = 500nm. Such a value, if it had been achieved without
background smearing due to the spherical aberration, would have been about
seven times better than the “First Light” images of the groundbased NT'T
(FWHM = 0.33 arcsec — see §3.2.4 below) and would have justified the sen-
tence quoted above from Chaisson and Villard [3.59].

Schroeder [3.60] also gives the predicted encircled energy concentrations
for various wavelengths, corresponding to the same quality specification as
that for Fig. 3.22. These are shown in Fig. 3.23, reproduced from Schroeder.
Note that « in his notation is the radius of the PSF in arcsec, but it is not
equal to half the image diameters, such as dgy for the diameter containing
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Fig. 3.21. The Hubble Space Telescope (HST): the primary mirror during pol-
ishing. The fine “egg-crate” structure of the fused quartz blank is clearly visible.
Reproduced from Hecht [3.62]
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Fig. 3.23. The Hubble Space Telescope (HST): predicted encircled energy concen-
trations in two wavelength bands for the same quality specification as in Fig. 3.22.
Note that « is the radius of the PSF in the Schroeder notation. (Reproduced from
Schroeder {3.60])

80 % of the geometrical energy, more usually quoted for ground-based tele-
scopes. This is because diffraction must be taken into account for the HST,
since it had a diffraction-limited quality specification. The asymptotic trend
of the curves for A = 633, 450 and 350 nm to the value 0.8 corresponds simply
to flattening of the equivalent function for a perfect telescope due to the first
diffraction minimum (see Fig. 3.104 of RTO I).

Apart from the plethora of popular and semi-popular articles on the spher-
ical aberration error of the HST, it was carefully measured and analysed by
a major effort of the astronomical and NASA community concerned. Ac-
cording to the report of the Allen Committee [3.61] [3.63] [3.64] appointed
to investigate the origin of the error, it can be explained both in amount
and sign by an axial spacing error of about +1.3mm in the separation of
the second mirror Ny and the field lens F' (see Fig.1.61) of the reflecting
Offner-type compensator used to test the primary, which was revealed by the
Committee’s investigations. A cross-check with a simpler refracting Offner
compensator was performed, which in fact revealed the discrepancy. How-
ever, the results of the reflecting compensator (which was more accurate for
higher order compensation) were taken to be correct and the cross-check dis-
crepancy was ignored. It has been stated — and I believe this is a truism —
that this was the most costly error in the entire history of optics!

The nature, amount and significance of the spherical aberration error and
all known possibilities of correction or compensation were analysed in detail
by the HST Strategy Panel [3.65]. A summary of the conclusions was given in
the ST-ECF Newsletter [3.66]. It was concluded that the measured spherical
aberration can be fully explained by the error on the primary. The magnitude
of the measured error in the Cassegrain focus of the HST was known to
10% or better and corresponded to a longitudinal spherical aberration of
about 40mm. The equivalent wavefront aberration (see §3.3.1 of RTO I)
was 4350 nm ptv and the angular aberration corresponding to 100 % of the
geometrical energy at the Gaussian (paraxial) focus was 5.98 arcsec diameter
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or 1.50 arcsec diameter at best focus (dig0). The change of the Schwarzschild
constant of the primary from its nominal value bs; pc = —1.002299 to the
actual value bs; 4 = —1.01359 producing the above error amounts to an
error in aspherizing from the sphere of 1.13%: a large error. The analysis
of correction possibilities in terms of aspheric plates was dealt with briefly
in §3.4 of RTO I and is given in refs. [3.65] [3.66]. There are three basic
reasons why the correction of the spherical aberration of the HST in orbit
was difficult:

— The enormous wavelength bandpass extending into the far UV. This
severely limits the choice of refracting materials available and gives chro-
matic problems, thus favouring a reflecting solution.

— The high magnification my of the secondary in the HST (—10.435). This
complicates the correction due to the field aberrations introduced.

— Assuming the spherical aberration is virtually entirely induced by an error
in the primary (pupil), this has advantages in that no field coma is produced
in the uncorrected state; but it is unfavourable for most correction solutions
because the plane of the primary is not accessible.

The conclusion of the Strategy Panel was that the best solution, taking
full account of the logistic problems in orbit, was COSTAR. (Corrective Optics
Space Telescope Axial Replacement) [3.65] [3.66]. The COSTAR solution does
not attempt a general correction of the HST field: it supplies a corrector
on the axis of each instrument, which much simplifies the field correction
requirements. Because of the chromatic problems of refracting elements, a
two-mirror corrector solution proposed by Bottema [3.65] was adopted, shown
schematically in Fig.3.24. One instrument was abandoned (the High Speed
Photometer — HSP) and replaced by COSTAR, a deployable “tree” of 2-
mirror correctors for the instruments FOS, GHRS and the f/96 and f/48
optical trains of the FOC. The direct imaging camera WFPC II included a
correction in its own optical system. The production schedule of COSTAR
was tight for an intended launch at the end of 1993. A delay beyond mid-1994
would have involved a review of the whole instrument programme.
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Fig. 3.24. The Hubble Space Telescope (HST): COSTAR solution for the correction
of the spherical aberration error (from Benvenuti and Wilson [3.66))
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Meanwhile, without correction, high resolution work was still possible
by eliminating the “wings” of the spherical aberration PSF [3.61] by image
processing. The nominal FWHM (Fig. 3.22) was largely retained because of
the steepness of the spherical aberration function, but the amount of light
contained in this core image was only about 15%: in other words, at high
resolution the HST was reduced from a 2.4 m telescope to an effective aperture
of about 0.93m. Allowing for losses, it was predicted that COSTAR would
restore the effective aperture of the HST for high resolution from 15 % to over
80 % (and possibly over 90 %) of its real aperture. If this could be achieved,
the HST might yet restore its tarnished public image and justify its high cost
by spectacular astronomical discoveries.

The repair mission, including the “optical repair” of the spherical aberra-
tion error by the replacement of the Wide Field Planetary Camera WFPC I
by WFPC II and the insertion of COSTAR for the other instruments, was per-
formed in December 1993 with total success. Already in January 1994 it was
clear that the specified optical quality had effectively been restored, though

(®)

Fig. 3.25. Images before and after the repair mission of the HST: (a) The galaxy
M 100 with WFPC II compared with WFPC I; (b) A highly magnified star image
with the FOC before and after the addition of COSTAR. (Courtesy Fischer and
Duerbeck [3.67])
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the addition of the two COSTAR mirrors inevitably absorbs some light. An
excellent account of the whole story, with superb photographs, is given by
Fischer and Duerbeck [3.67]. Figure 3.25, reproduced from that work, shows
the dramatic improvement in image quality. Figure 3.25(a) compares the im-
ages of the galaxy M 100 recorded with WFPC II compared with WFPC I;
while Fig. 3.25(b) shows a highly magnified star image taken with the FOC
before and after the addition of COSTAR.

In the last 3-12- years since the successful repair mission, the HST has been
converted from a public debacle to a public and astronomical triumph. Epoch-
making results have emerged making the HST, together with the ground-
based 10 m Keck telescope for spectroscopy, the most powerful astronomical
tools in existence (1997).

3.2.4 Projects with thin-meniscus flexible primaries,
controlled actively, or of stiff composites

This is the third of the three key technologies of Table 3.3 for achieving very
large telescopes using indirect segmentation (Fig.3.4). As we saw above, di-
rect segmentation normally uses segments which are sufficiently small to be
considered as rigid mirrors with negligible flexure if carefully supported: the
active control is then limited to the relative height and tilt of the segments.
With large monolith primaries forming large indirect “segments”, general
active optics control is essential if weight reduction is to be achieved by us-
ing thin, solid blanks. An example of such indirect segmentation, where the
size of the monolithic telescopes is pushed to the currently accepted limit,
is the ESO VLT (4 x 8m telescopes in an array, using thin meniscus pri-
maries). The other projects with unit telescopes of similar size are Gemini
(2 x 8 m separate telescopes — the decision on whether to use thin meniscus
or lightweighted primary blanks was taken in favour of thin menisci in 1992
— see §3.2.3 above) and the Japanese Subaru (JNLT) consisting of 1 x 8.2m
with a thin meniscus primary. As with lightweighting technology, thin menis-
cus technology is fully applicable up to the maximum diameter currently
considered practicable (about 8 m) for monolithic telescopes before segmen-
tation in some form becomes essential. Thin meniscus technology shares with
lightweighting technology the advantage over direct segmentation solutions
that the IR background is inherently better.

Active optics control will be dealt with in detail in §3.5. As we shall see,
various aspects of active control existed in other projects conceived in the
1970s, notably the MMT and the Keck 10m telescopes. But the first fully
active telescope, optimizing the image quality in a consistent scheme from
manufacture to its operational function, was the ESO 3.5m New Technology
Telescope (NTT), which had “First Light” in 1989.

The NTT, an alt-az mounted telescope, envisaged originally three areas
of technological innovation concerned with the optics or optical quality:
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— A complete scheme of active optics control of the image quality

— A rotating building based on the concept of the MMT building, but mod-
ified to give improved natural ventilation

- A metal (aluminium) primary mirror, as well as a conventional one in glass
ceramic (Zerodur from Schott), to profit from the high thermal conductiv-
ity

The first aspect (active optics) will be dealt with in detail in § 3.5, the second
in §3.6. The third, to be discussed in § 3.3, was finally abandoned in the NTT
purely for organisational and financial reasons: in 1984-1985 we were com-
pletely confident that the competitive manufacture of the aluminium blank
was technically feasible and that the optical working presented no special
problems. Valid offers for all aspects of the work were available. The great
attraction of an aluminium blank in the NTT was that any form deforma-
tion through “warping”, previously fatal in conventional “passive” telescopes,
could be easily corrected by active optics (§3.5). Because the density and
other mechanical properties are quite similar to those of glass, the support
system for the glass mirror could have been taken over unchanged except for
minor adjustment for the total weight.

From the point of view of optical design, the NTT is a 3.5 m RC telescope
with an f/2.2 primary (considered quite steep at the time of its layout in
1981) with two identical Nasmyth foci of /11 (mg = —5.0). To simplify the
tube structure and reduce weight and length, prime, Cassegrain and coudé
foci were rejected. The primary would have been made thinner (aspect ratio
A = 18) from the active optics concept; but the management of ESO insisted
(understandably in an unproven new concept) that the NTT should have
conventional optical quality (like the ESO 3.6 m telescope) also in the passive
mode, without active correction. This dictated the limit of A = 15, which
would be thicker than necessary today. A general description of the NTT is
given by Tarenghi and Wilson [3.68]. The budget of DM 24 million, provided
by the entry of Italy and Switzerland into ESO in 1982, was not fully used.
This was much less than half the cost of the conventional ESO 3.6 m telescope
of similar size, although the optical quality of the NTT is far higher (see §3.5
and Chap. 4).

Because of the modal system of active correction, certain manufacturing
tolerances, e.g. astigmatism and spherical aberration, could be relaxed. The
manufacturer (Carl Zeiss, Oberkochen) could then concentrate on the high
spatial frequency smoothness of the optical surfaces to achieve the specifica-
tion assuming active correction in function, i.e. the “Intrinsic Quality” (IQ),
as it was termed in this active optics system [3.69]. In the case of the (for
current technology) only moderately thin NTT primary with an aspect ratio
A = 15, it is only necessary to correct six aberration modes. Of these, two
(defocus and decentering coma) are corrected by axial and lateral movements
of the secondary; the other four by deforming the primary according to $sim-
ple algorithm by force variations of the active, astatic-lever type support. If
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these are corrected to zero, the IQ is obtained. The specification for the IQ
of the NTT (total optics train of three mirrors) was

(IQ)spec = (dso)spec < 0.15 arcsec
and the value attained by the manufacturers was even better
(I1Q)fab = (dso) fab = 0.125arcsec

dgo being the diameter of the 80 % geometrical energy concentration. The
equivalent (dgo)f4p value for the primary mirror alone was 0.096 arcsec, cor-
responding to a wavefront error of 25.4 nmrms [3.68] This was a remarkable
achievement of optical manufacture at the time (1988), which has since even
been exceeded for the “Galileo” project (see below). However, it should be
mentioned that a systematic matching error with W ~ 3000 nm ptv, similar
in origin and amount to that of the HST, was present in the primary of the
NTT [3.70]. However, the relatively flexible primary permitted full correc-
tion of the error by the active optics system whose dynamic range had been
designed to cope with such possible manufacturing errors (see § 3.5).

Figure 3.26 shows the primary mirror of the NT'T, after acceptance at
Carl Zeiss while still under the test tower. After erection at the La Silla
observatory in Chile and the set-up and first application of the active optics
correction system, the “First Light” results (accompanied by the good fortune
of excellent external seeing and ventilation conditions) gave first images with
an FWHM of 0.33 arcsec, considered at that time to be the best images ever
formally recorded in ground-based astronomy. This was achieved in spite of
the fact that integration times were limited to a maximum of 10s because
of tracking limitations and lack of field rotation compensation, and that the
zenith distances were limited to about 25° because the active optics could not
be operated on-line during these first observations, only in a pre-calibrated
mode. ~

The NTT in its rotating building is shown in Fig.3.27. Although it is
not clear from this photograph, the slit of the building can effectively be
fully opened at the top, the front and the back, permitting improved venti-
lation compared with the MMT. Figure 3.28 gives a view of the underside
of the primary mirror cell, showing the 4-ring axial support geometry of the
78 supports (75 active plus 3 fixed points). Further details are given in § 3.5.

Detailed analysis of the optical performance of the NTT is given in refs.
[3.70] and [3.72] and in §3.5. The general conclusion was that the actively-
controlled telescope defects can be reduced to (dgg)ter < 0.1arcsec, but that
the limitations of the local air (“dome seeing”), in spite of the excellent ven-
tilation properties of the building, are such that

(dso)tot ~ 0.20 arcsec

probably represents the present practical limit of the total system, where
(dso)tot implies all error sources except atmospheric seeing and residual track-
ing errors. Maintenance constantly to this limit, or possibly even better,
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Fig. 3.26. The ESO NTT: the primary mirror (full diameter 3.58 m) mounted on
its final support in its cell which is placed on the manufacturing table at Carl Zeiss
for test in the test tower [3.68] [3.71]

should become even more reliable through systematic use of correlations with
temperature and wind sensors and the introduction of a fairly fast correction
cycle (ca. 10 minutes) which is still being automated in the NT'T. Such a fully
automatic cycle is necessary to complete the active optics concept [3.73]. At
present, the most difficult mode to control is defocus, because the mechanical
focusing system is not really capable of fine focus movements while maintain-
ing a tracking quality < 0.1arcsec. The NTT optical quality really requires
a tracking quality < 0.05arcsec. The Galileo project (see below) will have an
improved system.
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Fig. 3.27. The ESO 3.5m NTT in its rotating building at La Silla, Chile [3.70]

A review of the effective optical quality of the NTT in 1991 (2 years after
“First Light”) compared with the best conventional telescopes at the same
observatory is given in ref. [3.73]. We shall return to the general question of
the optical quality and efficiency of modern telescopes in Chap. 4.

It should be mentioned that the “brain” of the NTT and the essential
element of the control loop is the #mage analyser which measures not only the
coefficients of the errors to be corrected, but also gives high and low spatial
and temporal information on the errors introduced by the local air. Combined
with the temperature and wind sensors and an external seeing monitor, the
image analyser gives complete information on all the sources of degradation
of the optical image. Details of the Shack-Hartmann image analyser are given
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Fig. 3.28. The ESO 3.5m NTT showing a view of the underside of the primary
mirror cell with the 4-ring axial support geometry of the 78 supports, which are in
the recesses under the covers shown [3.70]

in §3.5 and ref. [3.72]. The fact that such devices can today be considered as
routine tools is due in no small measure to the availability of CCD detectors,
which have revolutionised telescopes not only as observational detectors but
also for technical purposes.

Following the success of the NT'T, many enquiries and tentative projects
for emulating its concept emerged, but few of them have yet been funded. One
such, which entered its commissioning phase at the beginning of 1997 [3.74],
is the Italian “Galileo” (TNG) telescope. This is essentially based on the
NTT, but has profited from certain important improvements carried out in
the NTT as well as some very significant modifications. The most important
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of these are an improved focusing system for the secondary M, and a high
frequency guiding system using the Nasmyth mirror M3. General accounts
of the telescope and its optics manufacture are given by Barbieri et al. and
Knohl et al. [3.75] [3.76] [3.77] [3.78] [3.79]. The Intrinsic Quality (1Q) of the
Galileo telescope primary exceeds even the remarkable value of the NTT (see
above), being (dgo)fqes = 0.07 arcsec corresponding to a wavefront error of
16 nm rms. Interferograms of the final figure of this 3.5 m primary are shown
in Fig.1.37 above. In its actively-corrected form (Intrinsic Quality), this is
probably one of the highest quality large optical surfaces yet produced and
is a remarkable proof of the progress in polishing and test techniques in the
last decade. Such an IQ is so good, it will be difficult to exploit it fully in the
telescope, even with an optimal active optics system at an extremely good
site (La Palma in the Canary Islands).

The largest telescope project currently underway is the ESO VLT (4 X 8 m,
giving formally a 16 m equivalent aperture at the combined focus). A review
of the VLT concept was given in 1988 by Enard [3.80] and this is still essen-
tially valid from the point of view of the optics, though not of the enclosures
or general layout. Later information was given by Beckers and Tarenghi [3.81]
and by Enard [3.82]. Recent accounts of a number of aspects were given at
the telescope conference in Landskrona in 1996, on the optical manufacturing
side above all by Dierickx et al. [3.83], already referred to and discussed in
Chap. 1 above.

Although earlier studies had been performed from 1976 onwards, and
these had eliminated a “big dish” concept and an “array” concept of 16 x 4m
telescopes in favour of an “array” concept of 4 x 8 m telescopes (Fig. 3.4), the
formal study phase of this latter concept only began in 1982. The project
on this basis was approved and funded in December 1987. The first unit
telescope is scheduled for completion and “First Light” in 1998.

The optical concept follows the NTT as a thin meniscus active telescope.
However, the NTT has a primary with D = 3.58m and an aspect ratio
A = 15 in Eq.(3.2), whereas for the VLT D = 8.2m and A = 46.9 for a
thickness ¢t = 175mm [3.83]. According to (3.2), the VLT primaries (also of
Schott “Zerodur” like the NTT) are therefore over fifty times as flexible as
the NTT primary. The optical design basis of the VLT is also a strict RC
telescope, the primaries being somewhat steeper with £/1.8. Unlike the NTT,
the pupil unit telescopes is at the secondary, for IR reasons. There are two
Nasmyth foci, as in the NTT, with f/15 (mg = —8.333) and a Cassegrain with
£/13.79. The system is optimized to the RC form for the Nasmyth foci; for the
Cassegrain, the change of spherical aberration due to the significant change
in axial image position is compensated actively by bending the primary. The
active optics system is discussed in more detail in §3.5. The axial support
has 150 individual supports. The beam combination is via the coudé focus
(f/32) of the individual telescopes (Fig.3.29) followed by the incoherent or
coherent combination train shown schematically in Fig. 3.30. The incoherent
combination does not require equal path lengths and will be mainly used for
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Fig. 3.29. The ESO 4 x 8m VLT: Nasmyth and coudé foci of the individual tele-
scopes (after Enard {3.80])

spectroscopy in the visible and IR. The mirrors of the optical trains for the
coudé and combined foci will have high efficiency coatings of 99 % or more.
On one Nasmyth side, the train is optimized for the blue, on the other side
for the red.

The coherent (interferometric) combination was one of the basic reasons
for the choice of indirect segmentation using an array (Fig.3.4). The VLT
concept assumed that four smaller, auxiliary telescopes would be part of the
VLT complex so that experience could be gained with smaller apertures. Aux-
iliary (movable) telescopes with an aperture of 1.8 m were envisaged [3.81].
They may be upgraded to 2m [3.84]. The 8 m telescopes are fixed. Plans in
1992 [3.81] envisaged a disposition of the 4 large fixed telescopes at the site
on Cerro Paranal in Chile as shown in Fig. 3.31, which also shows the possi-
ble stations for the auxiliary telescopes. A postponement of the work on the
interferometric mode (VLTT) in 1993 delayed the project. However, work is
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Fig. 3.30. The ESO 4 x 8 m VLT: principle of the beam combination showing the
incoherent combined focus as well as the interferometric combination (after Enard
[3.80])
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Fig. 3.31. The ESO 4 x 8 m VLT: layout proposed (summer 1992) for the 4 tele-
scopes on Cerro Paranal, Chile. The small circles mark the possible stations for the
auxiliary telescopes. (After Beckers and Tarenghi [3.81])
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now proceeding and it is hoped to achieve first interferometric fringes with
two of the 8 m telescopes around the year 2000, and routine operation with
the auxiliary telescopes from 2003 onwards [3.84].

The VLT enclosure (building) concept has been through a number of
phases with very different solutions [3.85]. Because of its influence on the
“local air”, the enclosure has indeed become a central (and very complex)
element in the telescope optics. The final building version is shown in Fig. 3.32
[3.86).

Fig. 3.32. The final version of the building of the 8 m VLT unit telescopes (after
Schneermann et al. [3.86])

The first choice of blank material for the four 8 m primaries was glass ce-
ramic (Zerodur from Schott, Mainz). A back-up solution — in view of the fact
that no blank of this size in glass had ever been made — was aluminium with
a Canigen (nickel) coat. Following the initial investigations for the NTT, such
aluminium blanks have been very successfully produced up to a diameter of
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1.8 m, and polished to high quality with (test) spherical forms — see § 3.3. The
active optics concept is not only the key to supporting large, thin, monolithic
blanks, but also the key to their production. Using a spin-casting procedure
(see §3.3), Schott has been able to make thin 8 m blanks (t = 175mm) in
Zerodur because of the limitation of glass mass required. Classically thick
blanks (A ~ 8) in glass ceramic cannot be made in such sizes. This is the rea-
son why a glass ceramic replacement of the borosilicate (Pyrex type) mirror
of the Russian 6 m telescope could never be made.

Schott succeeded in casting the first 8.2m VLT blank early in 1992
(Fig. 3.33), which was subsequently successfully ceramized (see §3.3). This
success, confirmed in November 1992 when ceramization was complete, rep-
resented a further milestone in the history of the reflecting telescope. In June
1993 it was transported to the new VLT optical shop of REOSC, near Paris.
It is self-evident that the handling and transport of such large glass mono-
liths is a very delicate matter which has been the subject of careful technical
studies at ESO, Schott and REOSC. The problems were considered soluble if
appropriate care was taken. The relatively much lower sensitivity to handling
and transport damage was one of the attractions of aluminium. However, the
success of the manufacture and delivery programme of all 4 VLT primary
blanks (the last being delivered in September 1996) gave final confirmation
of a brilliant technical and organisational achievement by Schott, summed

Fig. 3.33. The ESO 4 x 8m VLT: the first 8 m telescope blank ever made, before
ceramization at the Schott works, Mainz, early in 1992, intended for the first VLT
telescope. The diameter here is about 8.5m, the thickness about 250 mm. After
ceramization, completed in November 1992, the diameter was reduced to 8.2m and
the thickness to slightly more than the final t = 175 mm. The final weight is about
23500kg. (Courtesy Schott)
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up by Morian et al. [3.87]. Another account is given in an excellent general
paper on modern ground-based telescopes by Enard, Maréchal and Espiard
[3.88]. This paper also gives an admirably clear summary of the figuring and
test techniques at REOSC, dealt with in Chap.1 above.

Figure 3.34, showing the first blank ground to its final dimensions before
figuring at REOSC, gives a good impression of how thin the VLT primaries
are relative to their diameter.

Fig. 3.34. The first VLT primary blank ground to its final dimensions before fig-
uring at REOSC (D = 8.2m, ¢ slightly more than the final 175 mm, i.e. 177.9 mm).
(Courtesy REOSC)

A revealing way of understanding how flexible such modern meniscus
blanks are, is to scale them according to the Couder Law of Eq.(3.2) to a
diameter of 1 m, maintaining the same linear flexibility. The NT'T primary,
thus scaled, would have a thickness of only 18.9 mm. Such a test mirror was
used for experiments in active optics [3.89] and seemed a very thin mirror
by conventional standards. With the same scaling law, however, the VLT
primaries would have a thickness of only about 2.6 mm — no thicker than
large panes of window glass. This shows how far active optics technology has
already advanced. Whereas the NTT could still work with moderate classical
quality in the passive mode, the VLT cannot function at all without active
optics. Nevertheless, ESO is confident that active control can be achieved in
the VLT, using 16 controlled (natural flexure) modes (see §3.5) in contrast
to the 6 modes controlled in the NTT.
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The optical quality specification for the VLT has been the subject of
a rigorous analysis — see Chap.4 — and is no longer based on the simple
geometrical dgg-value used in the NTT and conventional telescopes. The error
budget should give

drms ~ 0.2 arcsec

for a Fried parameter ro = 250 mm (giving atmospheric seeing with FWHM
~ 0.4arcsec) and A = 500 nm. The above figure for d,,s includes all sources
of error apart from the external atmosphere: it includes residual tracking
error and local air effects. The latter represent the most problematic factor,
as the NTT has demonstrated. The most powerful correction weapon against
local air effects is a rapid correction cycle: in the VLT a correction cycle of
40s is intended — see § 3.5.

Another large telescope project using thin meniscus technology which is
largely completed is the Japanese National Large Telescope (JNLT), now
called Subaru. Originally, the JNLT envisaged an aperture of 7.5m [3.90],
but this was upgraded to 8 m under the name Subaru [3.91]. Reviews of its
characteristics are given by Kodaira [3.90] [3.92]. In the latter, the aperture is
given as 8.2m. The following are the (original) essential optics characteristics
[3.91] based on an aperture of 8 m:

Aperture = 8.0m[3.91] (82m
according to [3.92])

Primary focal length f; = 15.0m (f/1.875-1/2.0
according to [3.92])

Primary thickness (A) = 200mm (thin meniscus, A = 40-41
according to [3.92])

Blank material = ULE fused quartz (Corning)

Il

Field of view at PF 30 arcmin (with corrector)
Cassegrain focus £/12.2 (visual)
Field of view at Cassegrain = 6arcmin

Optical design = RC [3.92]
Cassegrain focus = {/35 (IR)
Nasmyth focus = f{/12.6

Enclosure = flushing cylindrical type
(rotates with alt-az telescope)

An artist’s impression of the telescope, in its enclosure at the site on Mauna
Kea, Hawaii, is given in Fig.3.35, reproduced from the brochure [3.91]. The
project is excellently documented in a series of JNLT Technical Reports, the
first of which gives a general outline [3.93].

The technological approach using an actively controlled thin meniscus
follows essentially the same concept as the ESO VLT. The primary is sup-
ported by 264 actuators, both axially and radially, located in bores in the
mirror. This is an important technical difference from the VLT, which we
shall discuss in §3.4. Another technical difference from the VLT is that the
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Fig. 3.385. The Japanese Subaru 8 m telescope project (reproduced from [3.91])

blank is made of Corning ULE fused quartz, not glass ceramic. Details of the
optical specification of Subaru are given in [3.91]. In terms of the FWHM
of the PSF, the values are given for the primary mirror (overall, including
diffraction) as 0.10 arcsec; for the optical system overall as 0.11 arcsec; for
the tracking overall as 0.12 arcsec; for local seeing overall as 0.12 arcsec; and
for miscellaneous sources as 0.11 arcsec. The total effect of this specification
is an FWHM of 0.23 arcsec, overall, excluding external seeing. This is very
comparable with the specification of the ESO VLT - see above and Chap. 4.

A notable feature of the studies for the Subaru project are the systematic
analyses, both theoretical and experimental, of the local air conditions and
the enclosure. We shall return to these in § 3.6.

The Subaru project emphasizes its role as an optical-IR telescope using
modern array detectors not only in the optical but also in the near IR. Com-
bined with powerful instrumentation, the brochure gives a comparison [3.91]
of telescope sensitivities, as the limiting photon flux detectable as a function
of wavelength, for a number of projects [3.91]. This is reproduced in Fig. 3.36.
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Fig. 3.36. The Subaru 8 m project compared with other telescopes from the point
of view of telescope sensitivity over the optical-IR wavelength band, expressed as
the minimum photon flux required as input (upper figure). The lower figure shows
the atmospheric transparency windows for Mauna Kea, over which Subaru has high
sensitivity. The upper figure refers to the high dispersion mode and IR data without
the effect of the atmosphere. (After the Subaru brochure [3.91])

We shall return to the important matter of the sensitivity and efficiency of
telescopes in relation to their optical specification in Chap. 4.

Subaru was planned to have “First Light” in 1998 [3.91]. According to
Kodaira [3.93], the cost estimate followed the conventional telescope cost
function given by Meinel and Meinel [3.94] in connection with the Chinese
Optical Table Top concept. This was about $100 million (1980). Kodaira
pointed out that the aim of Subaru was not a low cost telescope but a low
risk, very high quality telescope; also the infrastructure of the Subaru project
and its relation to industry are different from those common in the US or
Western Europe. Kodaira’s later cost estimate [3.92] was about $ 250 million,
tending to decrease.
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The most recent general account of the further progress of the Subaru
project has been given by Kaifu [3.95]. The ULE fused quartz blank for the
primary, made by Corning, was delivered to Contravez, Pittsburgh, in 1995.
The blank was produced by fusing 44 hexagonal ULE units together. Figuring
was planned to be complete in the summer of 1997, enabling the “First Light”
schedule to be met in the Cassegrain focus in the summer of 1998.

Another direction of thin meniscus technology, more revolutionary and
more extreme in lightweighting, involves the abandonment of one-material
mirrors in glass or metal and uses lightweight fibre composites in some form.
This approach has above all come from the technology of radio telescopes,
for which weight reduction with high stiffness was essential. Pioneer work
was done by Dornier in Germany [3.96], who developed the first reflector of
carbon fibre reinforced plastic (CFRP) in the late 1970s for a 2m satellite
antenna. This consisted of a sandwich structure with CFRP faceplates and
an aluminium honeycomb core. The surface quality of 100 um was sufficient
for direct use (CFRP is a conductor) for A > 15 mm. For shorter wavelengths
a metal coating is required, which Dornier achieved by vacuum deposition of
aluminium. Further developments were made in connection with the space
projects FIRST (Far IR Sub-mm Space Telescope), for which an 8 m mirror
with accuracy 10um was required, and SOFTA (Stratospheric Observatory
for IR Astronomy), for which a 3m mirror to optical precision was required.

The firms MAN and Krupp in Germany have also been deeply involved
in the application of CFRP to radio and submillimeter telescopes (SMT). An
example of a 10m SMT using CFRP is the SMT for Mt. Graham, Arizona,
a joint project of the MPI for Radio Astronomy in Bonn and the Steward
Observatory in Tucson, completed in 1990 [3.97]. For a shortest wavelength
A = 0.35mm, the required accuracy was 17 um rms. This work is particularly
interesting from the point of view of optical telescopes because Krupp and
collaborators at the Ruhr University in Bochum have undertaken the exten-
sion of similar technology into the optical domain. The origins of this go
back to one concept [3.98] for the DGT 12m project (see also § 3.2.1 above).
At that time, the principal technical interest was the development of the
hexapod (HP) mounting originally proposed by Felgett [3.99]. Since then,
a smaller prototype telescope of aperture 1.5m has been constructed: the
1.5m HPT. Although the hexapod mounting is still being applied and leads
to the term HPT (Hexapod Telescope), the technical interest has shifted to-
wards the novel concept for the optics [3.100] [3.101]. The principal idea of
this concept is to consider the prime mirror with its cell as a single, fixed,
actively-controlled unit. This is achieved by combining a thin Zerodur menis-
cus with a CFRP support/cell as a single hybrid structure. For the 1.5m
HPT, the Zerodur mirror is 55 mm thick (A4 = 27.3). This is not particularly
thin according to the standards of modern, actively-controlled menisci, but
for this diameter such a level of weight reduction was considered adequate
in view of the weight gain with the cell. According to Schnur [3.100], the
same thickness could be maintained up to D = 4m (A = 72.7): for larger
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diameters, maintenance of the same thickness would lead to a problem of
the CFRP structure optimization for expansion — see below. Also, with 4m
diameter and a thickness of 55 mm (A = 73), the flexibility is similar to that
of the VLT 8 m blanks: increase of diameter with this thickness could lead to
insuperable handling problems.

Pausch and Stenvers [3.101] show a model of the 1.5m hybrid mirror
(Fig. 3.37). The main problem involved in this structure is the realisation of
homogeneous temperature expansion, i.e. best adaptation of the CFRP struc-
ture to the low coefficient of expansion a ~ 0.065x 10~8 °K~1 of Zerodur, and
the length of the CFRP tubes to get the most stable behaviour from the point
of view of moisture absorption. This was solved by an optimization procedure.
In any event, an active control of the hybrid structure is essential. Since the
mass of the mirror is low, the forced-based concept of active optics as in the
NTT is no longer appropriate and a position-based concept is used — we shall
deal with this in § 3.5. There are 36 piezoelectric ceramic position actuators
at the upper connecting points of the trusswork (Fig. 3.37). The specification
calls for a figure control giving a wavefront aberration W < 36 nm rms under
all operating conditions [3.101]. Since the system has low inertia, there is the
possibility, according to Schnur [3.100], to operate this correction not only
in the normal active bandpass (§3.5) but also much faster in the adaptive
bandpass. Current plans envisage an adaptive frequency limit of the order
of 100 Hz, whereby “holes” in this adaptive bandpass (starting round 30 Hz)

Fig. 3.37. Model of the hybrid primary mirror (Zerodur/CFRP) for the 1.5m HPT
(from Pausch and Stenvers [3.101])
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would be left to avoid exciting the first or subsequent eigenfrequencies of the
structure.

The active correction is in closed-loop using a Shack-Hartmann image
analyser as in the NTT. In the adaptive bandpass, the problem of detection
within the isoplanatic angle (§3.5 and Chap. 5) remains.

A picture of the HPT and more recent information has been given by von
Appen-Schnur and Luks [3.102]. The project was finally realised by the Ger-
man company VERTEX Antennentechnik. These authors mainly report a
more ambitious development using the same basic concept: the ISLA project
(International Stratospheric Laboratory for Astrophysics). The ISLA project
will consist of two 4m and four 2m telescopes based on the HPT concept
to achieve extreme lightweighting. They will be held on a platform in the
stratosphere at a height of 15km, maintained by helium-filled airships of a
novel Russian design (Thermoplane). The great attraction of this concept is
that a high proportion of the deleterious atmospheric effects, both of tur-
bulence and absorption, are overcome at a fraction of the costs of a space
enterprise. The seeing at optical wavelengths at this altitude is significantly
less than 0.1 arcsec. The aim is that the 4m telescopes will have diffraction-
limited quality at these wavelengths (0.03 arcsec) by using simple adaptive
optics with few elements. The interferometric mode should, of course, offer
much higher resolution.

ISLA already has the support, in principle, of the German Space Agency
DARA, but is too big a project for a single country. It is hoped to launch it
as a European or international venture.

3.3 Blank production for new technology telescopes

3.3.1 General considerations and physical properties

Development in blank technology for primary mirrors has been a central
driver of progress since glass displaced speculum metal about 1860. We re-
call (see Chap.5 of RTO I) that the 4-foot Melbourne reflector (1869) was
the last major telescope to be equipped with a speculum mirror — with fatal
consequences for its operation. The key to the replacement of speculum by
plate glass was not a specific advance in glass casting technology, but the
invention of chemical silvering on glass (see Chap.5 of RTO I and [3.103]).
Because of the higher reflectivity and freedom from need to repolish to main-
tain reflectivity, the classical glass blank (which was also lighter) represented
an enormous gain which carried the reflecting telescope up to the 100-inch
Mt. Wilson primary of Ritchey. Ritchey himself was acutely conscious of the
problems associated with the thermal expansion (a ~ 8 x 10~ °K™!) and the
high thermal capacity, both during manufacture and operation (Chap.5 of
RTO I). The classical crown glass was still supplied from Europe — St. Gobain
in France. Only in 1927 did the production of large classical blanks start in
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the U.S. for the Perkins 69-inch telescope. In the late 1920s, experiments
started (Chap.5 of RTO I) in connection with the Palomar 200-inch with
both fused quartz and Pyrex (borosilicate glass). Corning supplied in 1932
a Pyrex blank for the Macdonald 82-inch (2.08 m) reflector with thickness
30cm (A = 6.95) and in 1933 a 74-inch (1.88m) blank for the David Dun-
lap telescope [3.104]. The reduction of the expansion coefficient from about
8.0 x 1076 °K ™! to about 3.2 x 1076 °K ! was so important that the classical
crown glass blank disappeared for major telescopes after about 1930.

The Pyrex age for massive blanks of classical aspect ratio culminated in
the Russian 6 m, still in use, but giving significant thermal problems (Chap. 5
of RTO I). The 5m Pyrex blank for the Palomar development was a remark-
able advance because the moderately lightweighted structure improved the
thermal properties and gave the basis for the combined axial-radial support
(Chap.5 of RTO I).

The development of massive fused quartz blanks, which failed in the 1930s,
was realised in the 1970s, giving a further reduction to o ~ 0.4 x 1076 °K 1.
Shortly afterwards, glass ceramic was developed with effectively negligible
expansion for a defined temperature, to be followed by ULE (Ultra Low
Expansion) fused quartz with similar negligible values. See Table 5.2 of RTO I
for the use of Pyrex, fused quartz and glass ceramic in classical type blanks
up to the William Herschel Telescope (WHT) completed in 1988.

Glass blanks still totally dominate the market for telescope mirrors: nor-
mal fused quartz largely removed the expansion problem; ULE and glass
ceramic have removed it totally. Pyrex has made a come-back with the ex-
treme lightweighted structures of Angel. These are the choices available for
glass blanks today (in combination with modern support and ventilation tech-
nologies) which we deal with below. However, the fact that the expansion
problem of glass has been solved does not mean that glass is the only, or
necessarily the best choice for future telescope blanks, since other physical
properties are also important, both mechanical and thermal.

Consideration of the thermal properties of blanks goes back to W. Her-
schel. Temperature effects on focus were well known. Ritchey’s work, above
all on the 100-inch Mt. Wilson telescope with its massive crown glass blank
(Chap.5 of RTO I), made very evident what he called the “edge effect”,
spherical aberration which he attributed to more rapid cooling at the edge
than near the center of the prime mirror. A remarkable and far-sighted treat-
ment of thermal aspects was given by Couder in 1931 [3.105]. He points out
that the change of focus observed with crown glass mirrors is not just due to
the basic expansion law of Gay-Lussac [3.106] for two temperatures to and t;
and expansion coefficient oy

fia = fio [l + (s —to)] (3.3)

which assumes constant temperature in the blank, but due to a difference of
temperature of the front and back surfaces with a linear gradient. In this case,
there are no internal strains and the case can be treated as simple expansion of
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parallel shells. The change of semi-aperture angle 8 at the center of curvature
is

56 = y—”%ﬂi - nyat(tb —tf) , (3.4)

where y;, and y;s are the semi-diameters of the mirror at the back and front
faces respectively, ¢ is the thickness, a; the expansion coefficient and ¢, and
t; the temperatures. From simple geometry of the normals (this is the same
procedure as the derivation of the wavefront aberration for change of focus
[3.107]), we have
00 r?
o0r = —r— = ——240 (3.5)
sin Yy
With r = 2f, this gives from (3.4)

2
of = 2L auftn - ty) (3:6)

Couder gives an example with t =0.1m, f =6m, a; = 7.5 x 10~6 for crown
glass, tp —t; = 0.2°K and

df =1.08 mm

This is over a hundred times higher than the change of focus corresponding to
a uniform change of temperature of 0.2 °K according to Eq. (3.3). This latter
case would occur for a mirror of infinite thermal conductivity and negligible
thermal capacity in ambient air of changing temperature.

Spherical aberration effects due to radial gradients in crown glass mirrors
were much more complex because stresses are introduced giving shearing
moments. Such effects were well-known to amateurs and led to the recom-
mendation to give the mirror an aspheric form of only about 80 % of the
normal parabola as the usual cooling state of the mirror would distort its
figure further from the sphere.

Such considerations led Couder to the conclusion that metal was thermally
superior to glass because of the higher thermal conductivity. He proposed
(actually as the reciprocal) the thermal quality criterion g;

= (37)

Qi CepPt

in which «; is the expansion coefficient, A; the thermal conductivity, c; the
specific heat and p; the density. (The suffix ¢ - thermal - is used in the normal
German notation of these parameters to distinguish them from other symbols
in optics). Without oy, the other parameters in (3.7) express the thermal
diffusivity a; of the material: the parameter 1/a; measures the insensitivity
to temperature change. The larger the value of ¢, the better the material.
Couder showed that crown glass was 212 times worse than fused quartz,
42 times worse than steel and 28 times worse than cast iron. Earlier (1924~
1927), he had made drum-shaped blanks of cast iron, had them enamelled
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with a thickness about 1mm and polished the enamel surface (enamel is
essentially a fused layer of flint glass with high lead content). In experiments,
he proved the excellent thermal insensitivity compared with crown glass.

Maksutov, apparently unaware of Couder’s work, did similar work in the
late 1930s [3.106] (see also Riekher [3.108]). Bearing in mind Ritchey’s “edge
effect” producing spherical aberration, he proposed the same thermal crite-
rion as Couder in Eq. (3.7) but including Young’s modulus E in the numerator
giving

(ge)m = (3.8)

QCt Pt

a high Young’s modulus being favourable in giving higher stiffness against de-
formation. Maksutov performed numerous experiments with both solid metal
mirrors and ribbed, lightweighted structures, confirming the enormous ther-
mal advantage over crown glass or Pyrex. He proposed copper, bronze and
aluminium with chromium coats, which take a good polish; or stainless steel,
polished directly. In all cases they could be provided with reflecting coats of
evaporated aluminium. Maksutov was convinced metal mirrors were prefer-
able to glass and used a stainless steel mirror in a 0.7 m telescope for Pulkowa
[3.109].

The situation today has evolved further, not only because of the invention
of glass ceramic and ULE fused quartz but also because of active optics
control of blanks, which can be made very thin, and extreme lightweighting
of borosilicate glass (Pyrex). Table 3.4 shows the physical properties of most
materials of interest for telescope mirror blanks [3.110]. The same thermal
quality criterion g; as Couder (in inverse form) is given, following Eq. (3.7).
The best materials (highest g;) are the glass ceramic Zerodur, mainly as
a result of its very low expansion coefficient (< 0.05 x 1076 °K~! for best
quality), with the value of ¢, = 15.80; and ULE fused quartz, which has an
even higher nominal value (25.7). However, this depends on the interpretation
of the expansion coefficient, where there is no real difference. The best metal
is beryllium (7.33), followed by pure aluminium (3.74), alloys being somewhat
inferior. Cast iron has 1.52, low alloy carbon steel 1.24. Stainless steels vary
from 0.63 (best ferritic) to 0.33 (austenitic). Carbon fibre is very good parallel
to the fibre, bad perpendicular to it. The worst materials are the classical
optical glasses, above all heavy flints (0.038). Pyrex (borosilicate glass) has
0.19, a value little more than half that of the worst stainless steel.

These values of ¢; entirely confirm the viewpoints of Couder and Maksu-
tov concerning the great potential of metal mirrors. Aluminium, particularly,
assumes greater interest than ever, in view of the proven possibilities of coat-
ing it with Canigen (ca. 91 % nickel) by chemical means, or with nickel coats
by electrolytic processes, allowing excellent polish (see below). Aluminium
has the great advantage over stainless steel that its density is only about 7%
higher than that of glass (Zerodur), whereas stainless steel has a value over
3 times higher. This makes lightweighting essential for large stainless steel
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Table 3.4. Physical properties of potential mirror blank materials (from Wilson
and Mischung [3.110]). (Continued overleaf)

At
At Ct Pt at cepe
Material Thermal | Specific{ Density | Thermal
conductivity | heat diffusivity
W J s Keg| o m?
m°K Kg°K 10 m3 10 S
Zerodur (1 quality) 1.63 820 2.52 0.79
Zerodur (2 quality) 1.63 820 2.52 0.79
Fused silica (transparent) 1.38 772 2.20 0.81
Fused silica (ULE) 1.3 766 2.21 0.77
BSC glass (Pyrex, Duran 50) 1.17 830 2.23 0.63
BKY7 glass 1.11 858 2.51 0.52
SF3 glass 0.71 423 4.64 0.36
Al (pure) 221 920 2.70 89.0
Al (low alloy) 160 890 2.60 69.1
Fe (pure) 67 465 7.86 18.3
Carbon steel (low alloy) 49 460 7.85 13.6
Stainless steel 25 480 7.86 6.6
(ferritic 13 % Cr, 4 % Ni)
Stainless steel 21 500 7.88 5.3
(austen. 18 % Cr, 8 % Ni)
Invar (36 % Ni) 13 500 8.13 3.2
Beryllium (pure) 162 1000 1.84 88.0
Nickel (pure) - 58 460 8.80 14.3
Canigen (90-92 % Ni)* 8 420 7.90 2.4
Titanium (90% Ti, 6 % Al, 4% V) 7 550 4.50 2.8
Silicon carbide (SiC)-CVD 193 712 3.21 84.4
Silicon carbide (SiC)-siliconized 156 670 2.92 79.7
Carbon fibre Type [
— parallel to fibre 4.2 840 1.55 3.2
— orthog. to fibre 0.7 840 1.55 0.5
Carbon fibre Type II
— parallel to fibre 5.5 840 1.55 4.2
— orthog. to fibre 1.3 840 1.55 1.0

* (hardened at 100 °C)
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Table 3.4. Physical properties of potential mirror blank materials (from Wilson
and Mischung [3.110]). (Continued overleaf)

oy g =at/oy E

Material Thermal | Thermal Relative | Young’s

expansion | insensitivity| thermal |Modulus

insensitivity
s 1 m? Zerodur
6. 1 | M o 10

10 K . K — 1000 10"” - Pa
Zerodur (1 quality) 0.05 15.80 1000 9.1
Zerodur (2 quality) 0.10 7.90 490 9.1
Fused silica (transparent) 0.4 2.0 126 7.0
Fused silica (ULE) 0.03 25.7 1620 6.8
BSC glass (Pyrex, Duran 50) 3.3 0.19 12 6.3
BK7 glass 8.3 0.063 4.0 8.1
SF3 glass 9.5 0.038 2.4 5.6
Al (pure) 23.8 3.74 237 7
Al (low alloy) 22 3.14 198 7
Fe (pure) 12 1.52 96 21
Carbon steel (low alloy) 11 1.24 78 21
Stainless steel 10.5 0.63 40 21

(ferritic 13 % Cr, 4% Ni)
Stainless steel 16 0.33 21 20
(austen. 18 % Cr, 8 % Ni)

Invar (36 % Ni) 1.2 2.67 170 14
Beryllium (pure) 12 7.33 465 30
Nickel (pure) 13 1.10 70 21
Canigen (90-92 % Ni)* 13 0.18 11 14.5
Titanium (90 % Ti, 6 % Al 4% V) 9 0.31 20 11
Silicon carbide (SiC)-CVD 2.10 40.2 2540 46.6
Silicon carbide (SiC)-siliconized 2.57 31.0 1960 31.1
Carbon fibre Type I
— parallel to fibre 0.2 16.0 1010 13
— orthog. to fibre 35 0.014 0.9 8.5
Carbon fibre Type II
— parallel to fibre (-)0.9 4.6 292 22.6
— orthog. to fibre 32.5 0.031 6.3 7.3

* (hardened at 100°C)
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Table 3.4. Physical properties of potential mirror blank materials (from Wilson
and Mischung [3.110])

E / Pt H H Kn

Material Mechanical Hardness Hardness

stiffness Knoop

J
7.9 8 .

10 Ke 10° - Pa
Zerodur (1 quality) 3.6 630
Zerodur (2 quality) 3.6 630
Fused silica (transparent) 3.2 ca. 610
Fused silica (ULE) 3.1
BSC glass (Pyrex, Duran 50) 2.8 ca. 440
BKT7 glass 3.2 520
SF3 glass 1.2 330
Al (pure) 2.6 2
Al (low alloy) 2.7 5
Fe (pure) 2.7 6
Carbon steel (low alloy) 2.7 12
Stainless steel 2.7 20

(ferritic 13 % Cr, 4 % Ni)
Stainless steel 2.5 20
(austen. 18 % Cr, 8 % Ni)

Invar (36 % Ni) 1.7 14
Beryllium (pure) 16.3 20
Nickel (pure) 2.4 8
Canigen (90-92 % Ni)* 1.8 50
Titanium (90 % Ti, 6 % Al, 4% V) 2.4 3
Silicon carbide (SiC)-CVD 14.5
Silicon carbide (SiC)-siliconized 10.7
Carbon fibre Type I
— parallel to fibre 8.3
— orthog. to fibre 5.5
Carbon fibre Type II
— parallel to fibre 14.6
— orthog. to fibre 4.7

* (hardened at 100 °C)

blanks, whereas aluminium can be used in thin meniscus form. Beryllium is
very favourable, but cost and the poisonous nature of its dust make it less
attractive for large blanks.

The criterion g; is above all related, because o; is included in the de-
nominator of Eq. (3.7), to the avoidance of distortions of the blank due to
temperature differences. Of course, this situation is also influenced by struc-
ture in the blank and any active thermal control process — see below. However,
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distortion of the blank is not the only important thermal aspect, particularly
since (for unstructured meniscus blanks) such distortions will be above all in
low spatial frequency modes and thereby correctable by active optics. The
other aspect is associated with the influence of mirror blanks as heat sources
(or sinks) in the ambient local air (“mirror seeing”). For this, the criterion
a; (thermal diffusivity) without o

At

ay = —

Ctpt
is more appropriate. Table 3.4 shows that the metals beryllium and alu-
minium are by far the most favourable with this criterion. It measures, how-
ever, only the ability of a blank to get heat transfer from its interior to its
surfaces: the transfer to the ambient air then depends on a complex situation
of ventilation and convection. Heat radiation into space is a much more pre-
dictable phenomenon. If ventilation or thermal control means exist to drive
the mirror into thermal equilibrium with the ambient air, then a high value
of a; can only be an advantage.

The criteria considered above assume that the expansion coefficient o
is a constant throughout the blank material. For large blanks this is by no
means necessarily the case, and variations in «o; can lead to distortions. This
limitation must be borne in mind when applying the simple Gay-Lussac linear
expansion law of Eq. (3.3).

(3.9)

3.3.2 Glass ceramic blank production

That a “glass ceramic” can exist with effectively zero expansion coeflicient
compared with normal glasses was discovered by accident at Corning. The
manufacture of large blanks (up to 4m diameter) was taken up by the firm
Owens-Illinois in the U.S. in the 1960s and a number of telescopes (see
Table 5.2 of RTO I) were equipped with blanks of the product “Cervit”.
Production was later ceased. At present there are three centers of produc-
tion of glass ceramic: Schott in Germany (“Zerodur”), a factory in Russia
(“Astro-Sitall”) and a factory in Shanghai, China. The Schott product “Ze-
rodur” is the best known and has achieved unsurpassed standards as well as
the largest diameter blanks.

Glass ceramic achieves a quasi-zero expansion coefficient by a.balance
between the crystalline phase (approx. 70% by volume) and the normal
amorphous glass phase (approx. 30 %) [3.111]. The glass phase exhibits the
normal positive thermal expansion whereas the crystalline phase exhibits a
negative thermal expansion. If this balance is optimized zero net expansion
results, although there is a slight dependence on temperature, of the order
of +£0.05 x 10~°K ™! from 0° to 50°C. The mean value given for the NTT
primary mirror was a; = —0.0026 x 1076 °K~!. Good transparency can be re-
alised for astronomical applications because the crystal size can be kept very
small (ca. 50 nm). The chemical properties and hardness of the two phases
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are very similar, so the uniformity of the material is excellent for polishing.
Some details of the manufacturing process are given by Pfaender [3.112]. The
blank is cast in a more or less normal way to produce a blank only in the
glass phase. However, it contains additional materials (above all TiO5 and
ZrO3) which can germinate the production of crystals. An essential feature
is that the temperature region at which the maximum production of nuclei
takes place is lower than that for maximum crystal growth. The glassy blank
is reheated to about 800 °C which initiates maximum production of nuclei;
then to about 1000°C where maximum crystallisation occurs, the time de-
termining the volume percentage of crystalline material. Crystal structures
with negative expansion coefficient are, for example, lithium-alumo-silicates.

Miiller and Hoéne8 [3.111] give some major projects that have made use
of Zerodur. Others are given in Table 5.2 of RTO I. Including more recent
projects, Zerodur has been chosen, apart from a large number of smaller
telescopes, for five 4m class projects, including the ESO NTT and Italian
TNG, for the 42 segments of the Keck 10 m primary and for the four 8 m
blanks of the ESO VLT. It has also been used for the X-ray projects ROSAT B
and AXAF. Figure 3.26 showed the 3.58 m primary of the NTT, with A = 15.
This was produced by conventional casting, the glass mass being less than
that used for previous conventional “thick” blanks of the same diameter, e.g.
the 3.5m MPIA telescope at Calar Alto or the 42m WHT at La Palma
(Table 5.2 of RTO I).

The 8m blanks for the ESO VLT were a problem of a different order
of magnitude. The essential parameter is the glass mass which means, for a
given diameter of a monolithic blank, its thickness. The active optics control
(§3.5) permits an aspect ratio (A = 46.9) which would be unthinkable for
classical passive blanks such as that for the Russian 6 m telescope. This is the
key to the successful production of 8 m blanks in glass ceramic and the reason
why manufacture of a “thick” 6 m blank for the Russian telescope failed: the
6 m is still equipped with a BSC glass (Pyrex type) mirror.

In an extensive development programme, Schott investigated [3.111] three
different techniques of lightweighting Zerodur, also a technique of producing
thin menisci by slumping flat plates. Promising results were obtained with
diameters up to 1 m. However, the technique finally chosen for the VLT 8.2m
blanks was spin-casting, similar to the technique pioneered by Angel for his
Pyrex blanks - see below. The convex meniscus back of the blank is produced
by the mould form, while the spinning process produces the concave upper
surface and transports the glass over the whole area. The volume ratio of
mirror volume to blank volume increases from 0.16 to 0.53 and every aspect
of the manufacture is made easier and cheaper. Tests with this technique
on smaller diameters were started in 1987. Details concerning the successful
production of the first 8m class blank ever produced (see Fig. 3.33) were given
by Morian and Miiller [3.113]. Two 8.5 m blanks were cast in the glassy state,
annealed and machined. The machining of the back face was a delicate stage,
since it is at this face that uncontrolled ceramization takes place because of
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the temperature gradient. If the “crust” is too thick, the blank may crack.
Ceramization (83 months) was completed for the first blank in November
1992. After final machining, the blank was delivered to REOSC for figuring
in June 1993 (see § 3.2.4 above).

The last of the 4 VLT primary blanks was delivered by Schott in Septem-
ber 1996. Handling of such blanks is a delicate matter, although the thick-
ness at delivery was still appreciably more (250 mm) than the final thickness
(175 mm). A three-point support would give tensile stresses of 5 N/mm?, well
above the tolerance of < 1 N/mm? [3.113}, so a multi-point support, specially
studied, was required.

One of the advantages of glass over metal for mirror blanks is their trans-
parency, enabling strain measurements with polarised light. The principles of
such strain measurement are given by Maksutov [3.114]. Conventional Zero-
dur blanks normally have a compressive bulk stress, which is favourable, of
< 10nm/cm. Local defects may be accompanied by higher values which can
be dangerous if they generate tension stresses.

The bubble and seed quality resulting from the spin-casting process is
particularly high.

3.3.3 Fused quartz (silica) blank production

As was mentioned in Chap.5 of RTO I, the first systematic development
of fused quartz for telescope mirror blanks was by Thomson of GEC as a
possibility for the Palomar 5m telescope [3.115]. After great difficulties, he
produced two 60inch (1.52m) blanks in 1931, but the experiments were then
stopped because of the high costs and the decision taken in favour of Pyrex.

Manufacture of large fused quartz blanks for telescopes was taken up at
Corning in 1958 with a 0.9 m blank for Stratoscope II [3.116]. In the period
1965 to 1967, four fused silica blanks were produced in the 2.6 to 4.0 m range.
Two of these were for the KPNO 4m and ESO 3.6 m telescopes — see Table 5.2
of RT'O 1. The breakthrough in technology, which Thomson had not managed
for Palomar and which was essential for D > 2.5 m, was the vertical sealing of
separate pre-cast “boules” of fused silica, usually of diameter about 1.2-1.4m.
Once this technology was proven, there was in principle no limit to the size
of fused quartz blanks that could be made, since only scaling up of furnace
equipment was required: handling and transport would limit diameters, not
manufacture.

After 1970, Corning concentrated more on lightweighted blanks for space
use, the most notable example being for the 2.4m HST primary (Fig. 3.21),
made of ULE, Ultra Low Expansion fused silica. ULE is doped with titanium
and quasi-zero expansion is claimed, compared with the small value 0.4 x
10-%°K~! for normal fused silica (see Table 3.4). Lightweighting fused silica
structures is more demanding than solid blanks, since the structure shape
must be maintained during the fusing process. The six 1.8 m primaries of the
MMT were also Corning lightweighted fused silica blanks.
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Corning has also made, since 1970, a number of large, thin blanks, up to
3 m diameter with aspect ratios A in the range 40 to 82.

Large blank manufacture, specifically for a 3 m blank but also suitable
for 8m blanks, involves the following steps [3.116]. Fused silica boules of
1.2m diameter are sawn and ground to 50 mm thickness, then edge ground
to hexagonal shape. The hexagons, together with triangular pieces for filling
edge gaps, are assembled on a flat refractory bed and given a circumference
wall of refractory material. The furnace is then heated to over 1500 °C (fused
silica requires the highest working temperatures) to produce fusion of the
vertical seams. After controlled cooling to room temperature, the blank is
machined to a thickness of 35 mm and the required diameter. A refractory
sag form is fabricated and ground on to the furnace turntable. The 3 m blank
is then placed on the sag form and sagged at the appropriate temperature to
the refractory shape. Controlled cooling gives fine annealing as the blank is
cooled to room temperature.

For an 8 m blank, 1.4 m diameter boules of very high purity and refractive
index homogeneity are selected [3.116]. Boules are sealed in stacks twice the
required thickness so that top quality glass is available, after slicing in half,
at the upper part of each slice for the “critical zone” containing the optical
surface. Since, unlike Zerodur, the highest cost in a fused silica blank comes
from the boule material itself, actively controlled thin meniscus blanks are
also very favourable for this technology.

An important feature of fused silica blank technology is the possibility of
repair. The only requirement is that the blank or parts can be put back in
the furnace with no missing fragments and that the pieces being fused can
have their surfaces properly cleaned.

The maximum stress appearing in 8 m blanks is 10 nm/cm, similar to glass
ceramic.

Earlier, with blanks made in the 1960s, the vertical seals tended to pro-
duce bubbles. However, the ESO 3.6 m “thick” fused quartz blank was worked
optically with complete success. Corning considers the current technology of
vertical seals gives much improved bubble quality: there have not been any
problems of bubbles opening up at the optical surface during grinding and
polishing of modern fused quartz blanks.

Some European manufacturers have suspected that ULE gives problems
of variable hardness. This is certainly not the case with classical fused silica.
With active optics, the small residual expansion of 0.4 x 10~6 °K ™! is of little
significance and the classical material is an excellent candidate if a glass is
chosen. Once the vertical sealing of boules is mastered, the manufacturing
process is simpler than that of glass ceramic; but in its nature, glass ceramic
is probably better in bubble and seed quality.

A fairly thin meniscus primary of fused quartz (ULE) was the preferred
solution in 1982 for the proposed Texas 7.6 m telescope [3.117], but this was
never realised in practice. A thickness of 51 cm for 7m diameter (A = 13.7)
was quoted by Nather [3.118]. This was considered as thin as reasonably
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possible at the time, whereas the ESO VLT 8 m primaries now have only one
third of that thickness.

At the present time (summer 1997), the 8.3m Subaru ULE blank has
been manufactured without problems by Corning and has now been polished
at Contravez [3.95] (see also §3.2.4 above). Similarly, following the decision
to use thin meniscus technology (see §3.2.3 above), the two 8.1m Gemini
ULE blanks have been successfully manufactured and shipped to REOSC for
polishing [3.8]. The fusing technique with boules has advantages of flexibility
in contracting for blanks. For example, boules were ordered in 1992 for the
primary of a 3.5 m North Carolina project, based on the NTT, without further
commitment at that time for delivery of a finished blank.

3.3.4 Modern blank production
with BSC (borosilicate) glass (Pyrex)

The era of classical “thick” blanks in BSC (“Pyrex”, “Duran”, etc.) with
an expansion coefficient o, ~ 3.3 x 1076 °K™1 effectively came to an end
about 1970 when fused quartz and glass ceramic with negligible expansion
became available. The last such classical BSC blank was the second blank
used for the replacement primary of the Russian 6 m telescope, the finished
mirror being inserted in the telescope in 1979 (see §5.3 of RT'O I). Such a
blank was already an anachronism at that time: attempts to replace it with
glass ceramic (Astro-Sitall) failed because of the high glass volume due to
the thickness (see §3.3.2 above).

Nowadays, the limit of supply of “Pyrex” or “Duran” solid blanks from
normal production is D = 400mm. In lightweighted form, BSC glass blanks
have been advocated and manufactured for many years by Angel, who gave
a complete account of the rationale, technique developed and facilities for
diameters up to 8 m in 1988 [3.119)]. Essentially, this technology is a refinement
and extension of that of the Palomar 5m telescope.

The principle of the Angel lightweighted BSC blanks is a much finer struc-
ture (i.e. higher lightweighting) than was used in the Palomar 5m, giving
much lower thermal inertia, combined with a sophisticated ventilation sys-
tem to maintain the mirror in thermal equilibrium, both internally and with
the ambient air. The honeycomb hexagonal structure was chosen because of
its inherent stiffness. BSC glass is cheap and has excellent chemical stability.
Instead of pouring liquid glass as in classical casting, the mould is assem-
bled and filled with many blocks of cold BSC glass which are simply melted
together to fill the mould.

The thermal stabilization aspect is described by Cheng and Angel [3.120].
The important conclusion is that the maintenance of the reflecting surface
within 0.2°C of the ambient air (giving, according to their calculations, a
mirror seeing < 0.06 arcsec) requires a faceplate which is thin (25 mm) and
well-ventilated from the back, where the heat transfer rate must correspond



228 3. Modern telescope developments: segmentation and mass reduction

to a “good breeze at the front surface (10 W/m2/°K)”. Thermal equilibrium
within the blank should be maintained to 0.1°C.

BSC glass of very high quality is required. Mostly, Angel has used E6 BSC
glass from Ohara, Japan, supplied in blocks of about 4 kg. A high homogeneity
in the thermal expansion coefficient of day < 1078°K™! is required and
obtainable.

Technically, it is easiest to make blanks with a flat back. The honeycomb
structure is optimized for loads due to gravity, polishing and wind during op-
eration. Cell size is determined by the sag of the faceplate due to gravity and
polishing pressure. The plate deflects roughly like a circular plate clamped
at the edge under uniform pressure, giving a deflection (see § 3.4)

3 qat(l -1?)

6Z = 16 _—E_t3—— y (3.].0)

where g is the pressure applied, a the cell diameter, t the faceplate thickness,
E Young’s modulus and v Poisson’s ratio. This is a fundamental formula
governing all supports (see § 3.4). For t = 25 mm, the cell spacing chosen for
an 8m blank study was 193 mm, or 223 mm across a diagonal. This gave a
quilting of about 20 nm ptv for a modest polishing pressure of 1000 Pa.

The depth of the blank structure depends on the stiffness required in
view of the support chosen. Ballio et al. [3.121] calculated that such a struc-
ture of average depth 630mm and supported on 3 hard points, deflects by
410 nm rms, under a windload force of 61.3 Pa. Using whiffle-trees to spread
the load, they estimate the effects are some 4 times smaller and < 0.06 arcsec,
the target value. :

Such considerations led to the design for the 8 m Columbus (later LBT)
and Magellan projects given in Table 3.5. We shall consider support aspects
of such blanks in § 3.4. Angel compares the rigidity to wind loading with that
of solid meniscus blanks of Zerodur of similar weight and gives deflections
some 20 times higher than for his lightweighted blank (9.2 pym rms instead of
410 nm rms under 61.3 Pa load). However, this does not take account of the
possibilities of active correction — see §3.5. Angel also points out the much

Table 3.5. Baseline design for the 8 m /1.2 BSC honeycomb blanks for the Colum-
bus (later LBT) and Magellan projects (from Angel [3.119])

Shape: plano-concave
f/no: f/1.2
Diameter: 8m

Facesheet thickness: 25 mm

Rib thickness: 12mm

Outer edge thickness: 0.84m

Inner edge thickness: 0.43m

Cell shape: hexagonal

Cell spacing: 193 mm (across faces)
Mass of blank: 14000 kg
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lower thermal inertia of the lightweighted structure giving a time constant of
< lhour compared with ~ 10hours for a meniscus. However, this argument
assumes it is equally deleterious for mirror seeing if the mirror is too cold
or too hot compared with the ambient air, which is not the case — see § 3.6.
Furthermore, it neglects the possibility of automatic correction of mirror
seeing in fairly rapid cycles — see §3.5.

Angel introduced the concept of a rotating furnace to spin the upper
surface to the right curvature. Figure 3.38 shows the casting process. The
quality of the blanks depends on the quality of the mould. The hexagonal
cores are made of ceramic fibre held down by silicon carbide bolts.
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Fig. 3.38. Schematic diagram of the honeycomb sandwich casting process: (a) the
glass blocks before firing, (b) after melting and spinning (from Angel [3.119])

In 1988, Angel reported [3.119] the successful casting of the first 3.5m
blank. This blank has been successfully polished and is used in the Apache
Point telescope.

In 1992 Hill and Angel [3.50] reported the successful casting of the 6.5 m
f/1.25 replacement blank for the MMT. The mould manufacture required
13 months. The level of lightweighting is 78 %. Figure 3.39 shows this blank
soon after the successful casting.

The Steward Observatory Mirror Laboratory (Fig. 3.40) then prepared to
tackle the primary blanks for the Magellan project (2 x 6.5m) [3.53] [3.122]
and for the LBT (earlier Columbus) project (2 x 8.4m) [3.47] [3.123]. The
available height of the test tower makes very fast primaries in this diameter
essential: the LBT primaries have a relative aperture of £/1.142 and will be
the most aspheric mirrors yet made.
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Fig. 3.89. The first 6.5m blank cast at the U. of A. Steward Observatory Mirror
Lab in April 1992 for the MMT replacement primary. The steep curvature (f/1.25)
is evident. The hexagonal blocks of ceramic fibre, here still in the casting, were
subsequently removed, leaving a lightweighted blank appreciably less dense than
water. (Original photo courtesy Roger Angel)

Fig. 3.40. The Steward Observatory facility for manufacturing and figuring
lightweighted BSC glass blanks. It was built under the grandstands of the Univer-
sity of Arizona football stadium, which limits the height of the test tower. (Courtesy
R. Angel)
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Fig. 3.41. Installation of core boxes in the mould of the 6.5 m blank for the MMT
conversion (from Hill and Angel [3.50])

Figure 3.41 shows the installation of the core boxes in the mould of the
6.5m blank for the MMT conversion [3.50]. It reveals the complexity of the
mould structure and the remarkable technical ingenuity and care that has
led to the successful production of such large honeycomb blanks.

3.3.5 Modern blank production in metal

We have referred in §3.3.1 above to the earlier thermal analyses of Couder
and Maksutov which revealed the advantages of metal mirrors from the point
of view of conductivity compared with non-zero expansion glasses. This was
demonstrated by the “thermal insensitivity” ¢; column in Table 3.4, whereby
aluminium is about 1/4 as good as top grade Zerodur. Active correction
can easily compensate for this disadvantage. Of more significance today is
“thermal diffusivity” a;, enabling heat to be removed from the inner parts
of a blank by surface cooling. Pure aluminium is the best of all the listed
materials. Because of its favourable density and cost, aluminium (pure or
alloy) seems the most favourable metal candidate for large primary blanks,
though other alternatives may be equally or more interesting for smaller
mirrors.

3.3.5.1 Aluminium blanks. Apart from the work of Couder and Maksutov
referred to in §3.3.1, no systematic attempt was made to re-introduce metal
blanks after the demise of speculum metal about 1870, until Johnson [3.124]
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used aluminium blanks for various sized telescopes, including primaries for
two 60-inch photometric telescopes, in the 1960s. These telescopes, intended
particularly for IR use, had vase-shaped primaries which were self-supporting.
Johnson did not aim for high quality as his purpose was to produce low-
cost, single-purpose photometric instruments. The first 60-inch telescope was
claimed to give images of 3—4 arcsec at its Cassegrain focus (using a Pyrex
secondary), the second one to give a stable quality of 1-2 arcsec [3.125] [3.126].
Forbes [3.127] also reported good results on a 40-cm lightweighted welded-
segment aluminium alloy mirror. It seems that these bold and far-sighted
experiments subsequently backfired because of considerable warping of the
primaries, above all, as is to be expected, in the astigmatic mode. This was
apparently in contradiction with Forbes’ and Johnson’s earlier published re-
sults [3.126], and was particularly unfortunate because it gave “metal” a bad
reputation in the USA at a time when the field was wide open for further sys-
tematic development. In hindsight, it seems that the choice of a vase-shaped
blank in aluminium alloy (i.e. changing not only the material but also the
form of conventional glass blanks) was over-ambitious in the era of purely
passive telescopes.

In 1969, a 1.37m telescope with a solid primary of pure aluminium and
150 mm thickness went into operation in Merate, Italy. This design, due to
Mottoni [3.128], was remarkable for its careful, logical concept and execu-
tion. The telescope was tested after 14 years of continuous use by an ESO
team [3.129] and found to have an optical quality quite comparable to similar
telescopes with glass mirrors. Only the lowest spatial frequency mode (astig-
matism) showed a significant coefficient (about 1A ~ 500 nm) which might
have been partly due to a small amount of warping, but even this could not
be proven compared with its original state. Even had the whole astigmatic
effect been due to warping, its correction by an active support would today
be trivial (see § 3.5).

The original definitions of the ESO 3.5m NTT [3.69], as discussed in
§3.2.4 above, envisaged an aluminium primary as well as the Zerodur pri-
mary. The rationale was that the active optics concept of the NTT represented
the logical partner for a metal mirror, since warping of a solid blank would be
in a low spatial frequency mode (above all astigmatism as in the Johnson tele-
scopes) and would be easy to correct actively. Nevertheless, since the extent
of warping with aluminium and its alloys was a largely unknown quantity and
the dynamic range of active correction must be defined by reasonable limits,
it was decided to perform systematic thermal cycling tests on model blanks.
The tests were performed on 18 blanks of 500 mm clear diameter made of
either “pure” aluminium (99.5 %) or various standard types of alloys, and by
various manufacturing techniques [3.130]. The blanks were given a standard
concave spherical figure on a Canigen (chemically deposited nickel) coat for
ease of testing and compared with a reference (uncycled) Zerodur mirror.
Details of the thermal cycling regime and results of the figure deformations
were given by Noethe et al. [3.131] [3.132]. Three types of cycle were applied:
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“soft” with a temperature range from —5 to +25°C; “hard” with —20 to
+50°C; “very hard” with —30 to +90°C. One soft cycle was performed, a
total of 50 hard cycles in seven groups of tests, and one very hard cycle. An
interesting general result (in contrast with the vase-shaped mirrors of John-
son) was that warping was mainly in the axisymmetrical mode (defocus and
spherical aberration). Some mirrors warped significantly with the soft cycle
but stabilized with further warping during the hard cycles. Other mirrors
warped mainly with the very hard cycle. Full details are given in [3.132].
The general conclusion was that a number of such blank compositions and
production processes can give entirely satisfactory results provided correct
heat treatment is applied to release stresses. Yoder [3.133] has emphasized
the advantage of cycling to much lower temperatures than those used in the
above experiments.

As a result of these experiments, offers were solicited for a 3.5m blank in
“pure” aluminium for the NTT. Perfectly valid offers were received, both for
production by casting and forging; also for the deposition of nickel layers both
by chemical means (Canigen) and electrolytic means. The costs were only
about 35 % of those of Zerodur and the leadtime only about 50 % including
nickel coating and extra transport. Furthermore, optical figuring costs would
have been only marginally higher than for Zerodur, although the preparation
of the aluminium blank surface prior to nickel coating is a delicate matter to
prevent “breakthrough” of the relatively thin (at that time 400 pm thickness
was envisaged) coating during figuring.

As mentioned in §3.2.4, the aluminium primary was abandoned in the
NTT solely for organisational, not technical reasons. This was above all be-
cause the investigative work for aluminium had absorbed considerable time
which could not be pulled back by the shorter manufacturing time, since
the Zerodur blank had been ordered much earlier. A proposal to order the
aluminium blank on the VLT budget, as an intermediate step to an 8 m alu-
minium blank, was not accepted, partly because interest had switched more
to stainless steel, which does not require a nickel coat (see §3.3.5.2). Apart
from this technical simplification, a possible bi-metallic effect between alu-
minium and nickel [3.127] is avoided.

Later, ESO reverted to aluminium as the best reserve alternative to glass
ceramic for the 8m VLT primaries. Experiments were performed with two
1.8 m diameter aluminium blanks, one manufactured by electron-beam (EB)
welding of 4 quarter segments and the other by “build-up” (BU) welding, a
process proposed by Mischung [3.110] [3.134] for the manufacture of stainless
steel blanks but later applied with great success to aluminium. This work
is described by Dierickx and Zigmann [3.135]. Build-up welding consists of
building up a cylindrical blank by continuous deposition of a welding seam
while rotating the blank. Figure 3.42 shows a 500 mm BU aluminium blank.
It was concluded that either the BU or the EB process could be successfully
extrapolated to 8 m. Either process should yield excellent homogeneity. The
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Fig. 3.42. A “built-up” (BU)
welded blank in aluminium with
a diameter 500mm (from Dier-
ickx and Zigmann [3.135])

EB process uses forged segments which show optimum homogeneity and very
low porosity.

Independently of the ESO experiments for the VLT, this technology was
pursued within the framework of multi-national EUREKA funding in the EC
under the name of the LAMA project (Large Active Mirrors for Astronomy)
managed by TELAS, a subsidiary company of Aérospatiale in France, in
association with INNSE/TECNOL in Italy and REOSC/ONERA in France.
The purpose of LAMA was to deliver a complete active mirror package.

The two 1.8m blanks for the ESO VLT experiments had a thickness
of 300mm, flat backs and a spherically-machined front surface of f/1.67
(r = 6m). After annealing and cryogenic stabilization, there followed rough
grinding by REOSC and nickel coating by TECNOL (thickness ca. 100 um).
The surfaces were then fine ground and figured by REOSC to a modest
spherical quality. This was sufficient, as the requirement was not top figuring
quality but only precise measurement of the differences resulting from ther-
mal cycling. The surface quality of the polished nickel was in all respects as
good as glass.

Thermal cycling was done with cycles between —20 and +40 °C over about
24 hours. Both mirrors underwent 32 cycles with interferometric measure-
ments after 0, 4, 8, 16 and 32 cycles. Figure 3.43 shows the initial and final
figures, and (what is the most important) the difference of the figure between
0 and 32 thermal cycles. The higher order results represent the figure after
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Fig. 3.43. Thermal cycling experiment at REOSC (Paris) on two 1.8 m aluminium
blanks showing the interferometric figure before cycling, after 32 cycles and the
difference. (a) BU welded blank. (b) EB welded blank. (From Dierickx and Zigmann
[3.135))
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mathematical removal of third order and fifth order errors. The conclusion
is that both mirrors remain stable to A\/25rms for the overall surface errors
and to A\/70rms for the higher order surface errors. Nearly all the variation
occurred in the first cycles. The lower order errors can easily be corrected
actively. Furthermore, it is estimated [3.135] that inhomogeneities in the ex-
pansion coefficient a; up to 5% (a very large tolerance) would produce lower
order effects which could be corrected actively.

There is clear evidence that aluminium technology for large blanks has
reached an advanced stage of development. Up to 4m, classical methods can
be used and the modern variants of BU and EB welding can be used both
for smaller blanks and large blanks without apparent limit. The astronomical
community has always been cautious in adopting radical new technologies,
but it seems that aluminium is poised for a major take-off. This will be
initiated by the first 4m class blank. The key to the successful application
of aluminium to large primaries remains active optics control, as is fully
accepted by the LAMA project. One of the most attractive features for very
large blanks, as was recognised by the Gemini project for its 8 m blanks, is the
higher security in handling compared with glass. The problem for a positive
decision in favour of aluminium was the lack of proof in practical function of
an intermediate blank size, say 4 m.

Further discussion of aluminium is given in a general summing-up on the
use of metal for mirrors in §3.3.5.4.

3.3.5.2 Stainless steel blanks and other iron variants. The use of
stainless steel was pursued most systematically by Maksutov, as discussed in
§3.3.1, culminating in the 0.7 m stainless steel primary for Pulkowa [3.109].
Unfortunately, little systematic information on the stability of this mirror is
available although it has been in operation for over 30 years.

A detailed analysis of the possibilities of stainless steel for large blanks was
carried out by Mischung [3.110] [3.130], above all using BU welding for the
manufacture, a well-known procedure for the manufacture of large pressure
vessels in stainless steel. Metallurgical aspects of stainless steel are extremely
complex, in their nature more so than for the aluminium alloys considered for
telescope blanks. Austenitic stainless steels have a higher content of Cr and Ni
than ferritic stainless steels. As Table 3.4 shows, the higher the alloy content
of other elements compared with pure Fe, the higher the degradation of the
thermal criteria a; and ¢, = a4/, for austenitic stainless steels by a factor of
about 5. For this reason, ferritic or martensitic stainless steels are preferable
and are probably more stable. But even ferritic stainless steels have a thermal
diffusivity a, about 13.5 times worse than pure aluminium. Invar (36 % Ni)
is 28 times worse, though its low expansion oy gives a comparable criterion
g: = ai/oy. Invar seems of little interest compared with stainless steel. An
even bigger disadvantage for very large blanks is the high density p; which is
nearly 3 times higher than that of pure aluminium. The inferior parameters
pt and a; are the price one pays for the advantage of a directly polishable
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surface, without a separate coat, and the cost advantage: for a given volume,
stainless steel is the cheapest of all potential mirror blank materials.

If the weight of a thin, solid stainless steel blank is acceptable and active
optics control is available, it may be a very attractive solution. Unfortunately,
this is likely to be limited to blanks of diameter up to the order of 2m.
Beyond this, lightweighting becomes increasingly desirable. Young’s modulus
of stainless steel is about 3 times higher than that of pure aluminium, but
this is almost exactly offset by the increase of density.

The experiments on thermal cycling of aluminium test blanks were re-
peated at ESO in modified form for stainless steel blanks, for the VLT pro-
gramme, as reported by Enard et al. [3.134]. Some of these had only mod-
erate lightweighting (cylindrical holes) while others had high lightweighting
with finer structures. Those blanks with moderate lightweighting, which ap-
proximated to solid blanks, gave reasonably satisfactory results with modest
warping largely in correctable low spatial frequency modes. But the highly
lightweighted, finely structured blanks gave poor results with sharp high spa-
tial frequency discontinuities. It was concluded that fine-structured stainless
steel blanks, which would be essential for the VLT 8 m blanks because of
the weight, were unsatisfactory without major further development and im-
provement in stability. For the VLT programme, interest therefore reverted
to aluminium as the only viable fall-back solution compared with glass.

Nevertheless, stainless steel retains its interest in certain cases because of
its low cost. For example, Lemaitre and Wilson [3.136] proposed a stainless
steel primary of diameter 1.8 m and thickness 40 mm (aspect ratio = 45) for
the VLT auxiliary (interferometric) telescopes, to be made by stress polishing
with tolerance relaxation for active optics control. The cost (July 1992) of
the stainless steel meniscus blank from the firm Ferry-Capitain in France was
about DM 22 200, almost an order of magnitude lower than that of a Zerodur
blank.

Finally, the possibility investigated by Couder [3.105] and mentioned in
§3.3.1, of using cast iron covered with a layer of enamel (flint glass) should
be borne in mind, since the thermal properties of pure iron are much superior
to stainless steels and it is far cheaper. But the limitations of the enamelling
process for reasonably sized mirrors would require further investigation.

3.3.5.3 Beryllium blanks. Reference to Table 3.4 reveals that beryllium
has excellent thermal properties and easily the best mechanical stiffness E/p;
of all the materials listed. It suffers from two major disadvantages: very high
cost and the poisonous nature of powder residues from machining or figuring.
Its main application will probably be in space optics of modest dimensions.
Even there, the advantage over lightweighted aluminium or zero expansion
glasses may be too limited unless there are further technical breakthroughs.
A further serious rival is silicon carbide (see §3.3.6).

After an early preference for silicon carbide, beryllium was finally chosen
for the secondary mirrors of the VLT 8 m telescopes. The excellent features
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of low density and high mechanical stiffness (Table 3.4) were decisive in this
case where servo oscillations up to about 15Hz are envisaged for technical
purposes (see § 3.3.6 below). The polishing and figuring of the Canigen coat
has now (August 1997) been successfully completed for the first secondary
by REOSC. According to Dierickx [3.137], the figure achieved in the active
mode (i.e. the high spatial frequency quality) is 16 nm rms, an excellent result
for such an aspheric mirror of 1.13m diameter. This success could well bring
beryllium into more general favour for the secondaries of modern ground-
based telescopes.

3.3.5.4 Summary of the situation regarding the use of metal for
mirrors. A conference was held in London in November 1992 specifically
on the possibilities of the use of metal mirrors, particularly of appreciable
size. The proceedings, edited by Bingham and Walker [3.138], still represent
the best summary of the current situation. The main emphasis was on alu-
minium, with a number of excellent contributions, for example by Rozelot
[3.139], Dierickx [3.140] and Bingham [3.141]. Stainless steel was discussed
by Lemaitre et al. [3.142] in the framework of the proposal of [3.136]. The
general viewpoint of the contributors was that aluminium, above all in com-
bination with active optics, was a perfectly viable candidate for mirrors up to
about 4 m diameter and possesses significant thermal advantages over glass.
A successful aluminium mirror of the 4m class would provide the essential
stepping stone to an 8 m aluminium mirror. The barriers to the use of alu-
minium are not technical but psychological, as discussed by Bingham et al.
[3.143]. It is the same conservatism of the ground-based astronomical com-
munity which resisted the inverse switch from speculum metal to glass at
the time of the Melbourne reflector (see RTO I, pages 410-414); or, more
recently, the switch from the equatorial back to the alt-az mount, finally im-
plemented by the Russian 6 m telescope (see RTO I, page 433). However,
the increasingly negative funding situation, particularly in Europe, for new
projects since 1992 may also have contributed to the fact that no 4 m project
with an aluminium mirror has yet (1997) been launched.

3.3.6 Compacted powder, sintered
or vapour-deposited materials for blanks

For smaller mirrors, above all for secondaries up to about 1.5m diameter,
a most interesting candidate for blanks has been recently developed in the
form of silicon carbide (SiC). The possible application of this material to the
active secondary mirrors of the ESO VLT 8 m telescopes has been considered
in detail by Dierickx et al. [3.144]. The M units of the VLT are complex units
with four active functions: focusing, active centering (coma) correction, IR
chopping and field stabilization (fast tracking). The first two functions only
require changes at a moderately slow rate; but chopping has square wavefront
modulation at 0 to 5 Hz and field stabilization a sinusoidal modulation at 0 to
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15 Hz. The two latter functions place severe demands on the mass, moment
of inertia and stiffness of M3. The size in the VLT case has been kept to a
minimum by making it the pupil of the telescope: its full diameter is 1126 mm
and the free diameter 1116 mm.

The manufacture of SiC blanks has been analysed in studies for ESO
[3.145]. The two most interesting processes appear to be:

a) Chemical Vapour Deposition (CVD): This occurs in a vacuum chamber at
about 1300°C and produces potentially 100 % dense SiC. Lightweighted
structures are produced in three steps:
~ An SiC layer is deposited on to a contoured graphite mandrel (up to

1 cm thick). This is interrupted, and
~ A graphite egg-crate structure is inserted on the back face of the layer.
~ The deposition is re-initiated to form a layer on the egg-crate structure
which also bonds it to the first layer.
— The graphite core is leached out by thermal methods after exposure by
machining.
This process gives excellent structural properties, but only allows an open
back. The CVD microstructure is polycrystalline and can be polished to
<« 10 A rms. The hardness is much higher than glass ceramic and requires
a pressure 4 times as high.

b) Siliconized SiC': This process involves:
~ Fabrication of a pre-sintered green body (SiC grains or SiC grains plus
free carbon) by processes called isostatic pressing, press moulding or
slip casting, followed by sintering.
~ Infiltration with silicon at a temperature considerably higher than the
melting point of Si.

Table 3.4 gives the physical properties of SiC as produced by CVD and sili-
conized SiC. Both thermally and mechanically, it is one of the best materials,
fully comparable with beryllium. Environmentally, its stability is reported to
be excellent, even after thermal cycles involving hundreds of degrees Celsius.
Because of the limited number of existing samples, the question of temporal
stability is not yet fully answered, but current data is favourable.

Mirror designs for the VLT secondary lead to a mass of 35kg and an
inertia of 2.8kgm? for a CVD solution (face sheet 4mm thick and total
thickness 125 mm), and corresponding figures of 20.5 kg and 1.52 kg m? for the
favoured “open tapered back” solution of the three siliconized SiC solutions
investigated. These figures are to be compared with 100 kg and 10 kgm? for
a 75 % lightweighted glass ceramic mirror.

Optical figuring of such steep aspheric mirrors in SiC is by no means
trivial, but the problems are considered soluble with known techniques and
profiting from active optics tolerance relaxation (see § 3.5) [3.146].

Dierickx et al. [3.144] give the calculated mechanical and optical perfor-
mances of the mirror and support system. The first eigenfrequencies of the
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two possibilities are 602 and 691 Hz respectively. The estimated optical qual-
ity is 0.09 arcsec rms and 0.10 arcsec rms respectively, after active correction.
Before active correction, the figures are 0.30 arcsecrms and 0.68 arcsec rms
respectively.

The positive conclusion is that an SiC secondary for the VLT could yield
comparable optical quality to that of a glass ceramic mirror; but is about
4 times more favourable in mass and inertia. Although the SiC mirror itself is
more expensive than glass ceramic, it simplifies the design of the support unit
because of its favourable mechanical properties: the total cost may therefore
not be less favourable.

In spite of these favourable prospects of SiC for the VLT secondary mir-
rors, subsequent procurement problems and the uniformly excellent mechan-
ical and thermal properties of beryllium led to a decision in favour of the
latter.

3.3.7 Lightweight composite materials for blanks

The most interesting work in this area is in carbon fibre reinforced plastic
(CFRP) and was described in some detail in § 3.2.4, above all in connection
with the 1.5m HPT development, using a hybrid of CFRP and Zerodur.
The earlier form of Dornier had used the CFRP substrate directly with an
evaporated aluminium coating. This work was applied later to space projects
(FIRST and SOFIA).

3.3.8 Liquid mirror telescopes (Hg)

The technique of producing automatically a paraboloidal primary by rotating
a bowl of mercury was first suggested and practised by Wood in 1908 [3.147]
[3.148]. By varying the angular velocity, the focal length f’ can be varied at
will according to the formula [3.149]

f'=g/2? (3.11)

where ¢ is the acceleration due to gravity and w is the angular velocity in
rad/s. It is easily shown that the balance of gravity and centrifugal force
at right angles produces a perfect paraboloid. The levelling is very critical,
an error producing a travelling wave on the surface. Wood also recognised
that the stability of the angular velocity w was also very critical. Variations
critically affect the focus, as is clear by differentiating Eq. (3.11), but also
introduce travelling waves through the accelerations involved. Wood used a
20-inch flat-based pan with rubber drive through a magnetic clutch, the whole
being placed in a well, 15 feet deep. At 12rpm, f/ was 15 feet according to
Wood [3.148] but the correct value should have been 10.19 feet according to
Eq. (3.11). Wood’s principal problem was the variation of angular velocity w,
causing ripples. These were damped fairly successfully with a glycerine layer
on the mercury, giving resolution better than 5 arcsec. He observed the moon
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and other objects using a 20 inch siderostat-type flat mirror, but recognised
the serious limitation of the fixed vertical axis. Wood also suggested using a
roughly paraboloidal pan with a thin mercury layer.

Liquid mirror telescopes (mercury) have recently been investigated more
thoroughly by Borra et al. [3.149]. They are inevitably limited to a vertical
axis and Borra et al. propose to use mercury primaries up to 1.2m at f/4.58
in a drift-scan mode using a CCD. Their experiments were mainly carried out
using a simple, fixed automatic film camera in the drift mode giving linear
star trails with integrations of 2 minutes. The best images have been about
2 arcsec FWHM, about the limit of seeing at an indifferent site. On a 1m
mirror, knife edge tests were made in 1985 showing that the central part was
of good quality. Ripples with amplitude < A/10 were detected. The angular
velocity of the mirror should be stable to better than 1 part in 10°. Since
they had no field corrector, the appreciable field coma at £/4.58 (3.3 arcsec at
semi-field angle 6.17 arcmin) was a serious problem; also focusing performed
visually with an eyepiece. Wind disturbance of the liquid mirror was pre-
vented by covering it with a mylar sheet, but this increased the wings of the
image because of high spatial frequency errors. Damping with oil films was
also being investigated.

The authors viewed the work on natural stars to be a supplement to
optical-shop tests. It seemed highly desirable to perform such tests in a mod-
ern form at the center of curvature using a null system and fixed artificial
source to establish the real quality of the mirror surface in quantitative terms.
Reference was made to a performance goal of 0.5arcsec but there was no
quantitative evidence to support that this is possible. It is claimed that limi-
tations from the Earth’s curvature and Coriolis forces would allow diameters
up to 30 m.

The latest report (1996) [3.150] of this group’s research into liquid mir-
ror telescopes reveals most impressive progress, especially in state-of-the-art
testing of the liquid surfaces with null systems at their centers of curva-
ture. An interferogram of a 2.5m mirror working at f/1.2 shows excellent
quality with exposures of 1/60s. This short exposure can detect rapid liquid
movements, but makes the interferogram sensitive to seeing. Nevertheless,
the rms wavefont quality is 0.050 A with A = 633 nm. Artificial star images
are clearly diffraction limited. Ideally, the rotation axis should coincide with
gravity within 0.25 arcsec, though 1arcsec may be tolerable. The authors
have explored the possibilities of wide-field correctors of a type proposed by
Richardson and Morbey [3.151] using 2 mirrors to correct the fixed parabolic
primary. (These are wide-field solutions of the same basic type as some of
those discussed in §3.6.5 of RTO I, but used in inclined - off-axis — form.)
They show a typical solution for a 4m liquid f/5.25 mirror observing at a
zenith distance (field angle) of 7.5° and having a field of view of 18 arcmin.
They also use the technique of electronically stepping the pixels of a CCD,
called time delay integration (TDI), for imagery, narrow band filter spec-
troscopy or slitless spectroscopy. An impressive CCD image, 5 arcmin wide,
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is shown as observed with a 3 m liquid mirror telescope built by NASA. This
reached about 23™ with an effective 100s exposure and shows faint galaxies
and stars. A 2.6m LIDAR facility at the University of Western Ontario is
also mentioned.

In view of the rapid advances that have been made in the manufacture
of conventional solid mirrors in glass and other materials in the past decade,
one should be cautious at this stage regarding the possibility of mercury
mirrors becoming a major competitor in telescopes of the largest sizes. For a
fixed primary, the “rotating shoe” form discussed in §3.2.1 with a spherical
primary scanned by a secondary arrangement, or the Hobby-Eberly telescope
solution are likely to be more flexible and cost-effective for very large sizes
than a fixed, vertical-axis paraboloid.

3.4 Mirror support systems in modern telescopes

3.4.1 The basic laws of axial supports for mirrors

The subject of mirror supports during manufacture was discussed in §1.2.2.6.
While there are common aspects in supporting the weight of the mirror
against gravity with axis vertical, this case is both simpler and more complex
than the general problem of support in a functioning telescope: it is simpler
because the installation is fixed without tilt and no gravity edge support is
required, but more difficult because lapping tool pressure and friction effects
must be taken into account.

The basic law (Eq. (3.2)) concerning the flexure of mirror blanks under
their own weight was given in 1931 by Couder [3.7] and its general significance
was discussed in § 3.1. We must now consider the origin of this Couder Law.

The essential theory of the symmetrical bending of thin cylindrical circular
plates, mounted with axis vertical and loaded symmetrically with regard
to that axis, is given by Timoshenko and Woinowsky-Krieger [3.152], from
which the following treatment is taken. Since the loading is axisymmetric, the
deformation w is also axisymmetric. The solution was first given by Poisson in
1829 [3.153]. Following the notation of [3.152], it is shown for the situation of
Fig. 3.44 (circular plate supported at its edge) that the differential equation

1df,di1d (dw)ll_ ¢ 3.19
rar ' ar |rar \"dr " Dg (3.12)

applies, where r is the radius of a zone whose deflection is w, ¢ is the intensity
of the load distributed over the plate, an axisymmetrical function of r to be
defined, and Dpg is defined by

Et3

Dg=—r—0
Fo (=)

(3.13)
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Fig. 3.44. Symmet-
rical bending of a
thin cylindrical plate
under an axisymmet-
ric force (after Tim-
oshenko, Woinowsky-
Krieger [3.152])

where E is Young’s modulus, v Poisson’s ratio and ¢ the thickness. At this
stage, we assume the weight of the plate is negligible and that the axisym-
metrical pressure distribution is produced by external means. The equation
(3.12) can easily be integrated if the intensity ¢ of the load is given as a
function of r. Let @ be the basic vertical shearing force per unit length of a
cylindrical section of radius r. Then the relation between @ and g is defined
by

Q2nr = /T g(r)2rrdr , (3.14)
0

where g(r) is a function of r in the general case. If we apply the restriction
that the load intensity g is constant over the entire surface of the plate, i.e.
a constant pressure, then (3.14) simplifies to

Q= qg (3.15)
Triple integration then gives
4 2
qr Cir r
= log, — + C: 3.16
W=GiDy T a TO2loEtCs (3.16)

for which the constants of integration C;, Cs, Cs can be calculated for various
defined cases. The case of a circular plate with horizontally clamped edges is
important for many applications, but the case of interest for telescope mirrors
is a circular plate with freely supported edges, which reduces to

q(a2 — 1"2) 9 (54vV 9
_ _ 3.17
Y=g, |“\ixs) "] > (3.17)
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where a is the radius of the plate. Inserting r = 0 gives the maximum deflec-
tion wy,e; at the center as

4
qa 5+v
o , 3.18
“maz = 64Dg (1+1/> (3.18)
which, combined with (3.13), gives finally
34 o (B + VY at
Wmaz = EE 1 14 ) (1 +V> t3 (3.19)

for the case of the freely supported plate of negligible weight under an external
uniform pressure q. The deflection therefore varies as the fourth power of the
diameter and the inverse cube of the thickness. Equation (3.19) is the same
as that given by Couder [3.154].

Following Couder, the case of Eq.(3.19) can be adapted at once to the
case of a thin cylindrical plate supported freely at its edge and deforming
under its own weight. The pressure ¢ is then given by

q=gpt , (3.20)
where g is the acceleration due to gravity and p the density. Combining (3.19)

and (3.20) gives Couder’s Law (Eq. (3.2)) for the flexibility due to gravity of
a cylindrical mirror blank:

3 54+ v\ a*
Winaz = iﬁ% 1-17) (1 1 V) = (3.21)
The flexibility under gravity varies as the fourth power of the diameter and
the inverse square of the thickness.

Timoshenko and Woinowsky-Krieger also treat the case of a thin circular
plate of negligible weight exposed to a total load P applied uniformly over
a narrow annulus of radius b (Fig. 3.45). The vertical shearing forces Q1 per
unit length of the annulus are given by

Q1 = P/2mb (3.22)

To determine the deflection, the plate is divided into two zones, as shown by
(b) and (c) in Fig.3.45. The inner zone with b > r > 0 is in a state of pure
bending produced by the uniformly distributed moments M;, while the outer
zone with b < r < a is deformed by the moments M; and the shearing forces
Q1. The authors derive the following expressions for the deflections. of the
outer and inner zones o and ¢ of the plate respectively:

o= (- o3 (555) (5] oo v )
(3.23)

e (i (552) (252 s )
(3.24)
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Following Couder [3.154] and substituting for Dg from (3.13), these equations
can be written in the more revealing form for our purpose

Wo,i = %(1 - 1/2)-11;U0,i(:—§ : (3.25)
with
U =20 -€) + (T ) (- E0)01 - ) + 206} + (B log. &z
;=21 - )+ (12) A= )1 - ) +2(65 + ) oe. G
(3.26)

where £g and (g are the normalized, dimensionless measures of the zonal
radius and annular radius where the force P is applied:

o)

Equation (3.25) shows the third fundamental law of dependence of the de-
formation of a thin circular plate, whose weight is neglected and is freely
supported at the edge. For a force P applied uniformly over a thin annulus
(axisymmetrically), the deformation of any zone is proportional to the square
of the diameter and the inverse cube of the thickness.

Suppose the annulus over which the force P is applied is reduced in radius
so that b — 0. Then @; in (3.22) becomes indeterminate, but P can remain
finite and unchanged as a force at the axial point O in Fig. 3.45. Then the
deformation is given by (3.25) with the simplification that (g in (3.26) be-
comes zero and only the outer zone corresponding to w, and U, remains. So
the dependency of w, on Pa?/t3 is also true for a single symmetrical point
force. The maximum deformation resulting at the center due to a point force
P at that point is given from (3.25) by setting both £ and (g equal to zero
in (3.26) giving

(3.27)

2
(o) max = —=(1 - u2)g (2 + h Z) 5 (3.28)

If now, again following Couder [3.154], we consider the case of a thin
cylindrical plate (mirror) supported freely at its edge and sagging with grav-
ity under the uniform pressure of its own weight according to the Couder Law
(3.21), we can now apply the result of (3.25) to the supplementary deforma-
tion produced by the free ring support round its edge with b = a (Fig. 3.45).
Clearly, this must be zero because the reaction of the ring support balances
the weight, giving a zero shearing force. The reaction force P applied upwards
at the edge is simply the weight of the mirror, so that

P = —gma®pt (3.29)
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Fig. 3.45a—c. Deformation of a thin circular plate of negligible weight, freely sup-
ported at the edge and loaded axisymmetrically at a thin annulus by a total force
P (after Timoshenko and Woinowsky-Krieger [3.152])
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We now only have the internal zone and the supplementary deformation
induced by the edge ring support is from (3.25) and (3.29)
4

(@Jome = 5 (1= AU Yea 5 =0, (3.30)
since (U;)p=¢ = 0 from (3.26). This supplementary term must be zero with
b = a, since the sag of the plate for this case was completely described by the
uniform gravity pressure effect for a free edge support by (3.21).

The general form of the deformation due to its own weight from the
uniform pressure of gravity with a free edge support was given above by
Eq. (3.17). Using the normalized parameters of (3.27), this can be immedi-
ately converted to the more convenient form of Couder

3 gp 2y, 0
where
6+ 2v 5+v
— g4 2
V=¢(k (1+U)£E+(1+U) (3.32)

The final form of the plate, sagging under gravity while supported by a
sharp ring not placed at its edge (b < a) is given by the combined effect
of the deformation with a free edge support wy according to Eq. (3.31) with
the supplementary effect of the upward reaction of the ring to the weight.
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The supplementary deformation w, of the plate is given by substituting for
P from (3.29) in (3.25) giving, as in (3.30)

3 at
we = =7 (1-1)2L0,, % (3.33)

The two deformations wy and w, can be combined by linear superposition, an
important principle introduced by Saint-Venant as a consequence of the linear
nature of Hooke’s Law [3.155 (a)]. This gives the final general form of the
Couder Law [3.154] for a thin cylindrical plate (mirror), held in equilibrium
in the gravity field by one thin support ring of any radius b < a, expressing
the deformation due to its own weight from (3.31) and (3.33) as

4
w=wy +ws = %%(1—1/2) EV—UO,,-J ‘t’—z , (3.34)
with V' defined by (3.32) and U, and U; by (3.26). Note that the dimensions
of this equation are correct if E is expressed in pascal and linear dimensions
in meters.

For the case of typical mirror glass with v = 0.25, Couder calculated the
function (%V - Uo,i) for seven values of (g and ten values of £g, giving the
result of Fig. 3.46. These curves show, on an arbitrary scale, the relative de-
formations of a mirror supported by a single thin ring at the different zones
indicated. In the best case shown with (g = 0.667, the maximum deforma-
tion is only 3.6 % of the maximum deformation of a mirror supported at its
center. We note that the expression for V' from Eq. (3.32) has three terms
depending on the zero, second and fourth powers of the normalized aperture
&g which correspond to a constant, defocus and third order spherical aberra-
tion as wavefront aberrations. U, ; contains similar terms but includes higher
orders from the log, £é& and log, (g terms. However, these are small. Couder
therefore approximated the functions of Fig. 3.46 by the simple polynomial
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Fig. 3.46. Deformation functions w for the sag of a thin cylindrical plate (mirror)
under gravity supported by a single thin support ring of seven different diameters
(after Couder [3.154])
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f(€B) = o + BE% + ~¢* (3.35)

and determined the coefficients «, 3, v with zero points for the deviation
at £ =0, 0.7 and 1.0 for the seven values of (g shown. Applying again the
principle of linear superposition of Saint-Venant, the deformation resulting
from any number of symmetrical support rings at radii by, b2, b3 ... and
supporting proportions mj, ma, ms ... of the weight of the mirror can be
deduced immediately from the extended form of (3.34). For 3 support rings,
we have from (3.34) and (3.35):

_3 gp(l - 2) [ml (a1 + Br€l + 1€E)
* ms (02 + Babh + 1ot)
+ms (a3 + B3€% + 13¢5 |

With three rings, it is clearly possible to achieve three zero points in the flex-
ure function. Couder wished to have a support ring at the edge ((g = 1) to
give a stable base for the locating fixed points. Working in the pre-computer
age, he chose the other two support radii arbitrarily, at even spacings. He
then deduced the approximately optimum load distributions by trial, with
the result of Table 3.6. The residual of spherical aberration was so small
that a value of a%/t? (cm?) > 2.3 x 10% would have been necessary to ex-
ceed the tolerance, whereas the largest telescope at that time (the 100-inch
Mt. Wilson) had a value of 0.284 x 10°.

(3.36)

Table 3.6. Three ring axial mirror support optimized by Couder in 1931 (from
Couder [3.156])

Ring 1 Ring 2 Ring 3
(e, = 0.333 (e, = 0.667 Ces = 1.000
my = 0.253 mg = 0.484 ma = 0.263

Having solved by this remarkable piece of work the general problem of
axisymmetric support, Couder turned his attention to the number of discrete
support points n required per ring. Considering the section of each ring as a
beam, he proposed the function

1 at
Waz = mvaz (n) 't_z"

as the determinant relation, where V;,(n) was some unknown function. He
determined this roughly by experiment, plotting the function w,, against n
to find where it tended to an asymptotic form. In this way, he established
rules for the number n of supports for the edge ring, including fixed points,
in terms of the flexibility a%/t2. Thus he established for a blank of diameter
1.92m, with flexibility a*/t? (cm?) = 0.374 x 105, the value n = 15 for ring 3

(3.37)
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Fig. 3.47. 3-ring support proposed
by Couder for a 1.92 m mirror (from
Couder [3.156])

of Table 3.6. The complete 3-ring support, using astatic levers, had the form
shown in Fig. 3.47.

With this classical work, Couder essentially laid down the basis of all
modern passive mirror supports. The ESO VLT 8 m primary mirrors have
six axial support rings. While the detailed analysis uses sophisticated modern
methods, the basic principles remain those established by Couder.

Let us return to the general Couder Law of Eq. (3.34) for a mirror flexing
in the gravity field while supported by a thin ring of any radius b < a. The
flexibility criterion is a*/t2, so this is the scaling law for any such passive
support system, extended also to any number of symmetrical support rings
as shown in Eq. (3.36). Now the optimization procedure for the loads my, ms,
mg in (3.36) to establish a passive support system in a classical fashion is
essentially the same as the active correction (§ 3.5) of spherical aberration by
varying these loads: the only difference is that the passive correction is done
by calculation in advance and not subsequently changed, whereas the active
correction changes it on-line according to the needs of the measured image.
It follows that the scaling law for active correction of a mirror supported in
the gravity field is identical, i.e. a*/t2. Timoshenko and Woinowsky-Krieger
[3.152] give an elegant and simple proof that the same scaling law applies
for all types of active loading for a mirror supported in the gravity field. We
saw from Eq.(3.25) the effect of a force P distributed uniformly round a
ring support. Owing to the complete symmetry of the plate and its boundary
conditions, the deformation produced at its center by an isolated load P
depends only on the magnitude of the load and on its radial distance from
the center. This deformation is unchanged if the load P is moved to another
point of the same zone. The deflection at the center also remains unchanged
if the load P is replaced by several loads, the sum of which is equal to P and
the radial distances of which are the same as that of load P. In other words,
in calculating the deformation at the center, we can replace an isolated load
P by a load P uniformly distributed along a circle whose radius is equal to
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the radial distance of the isolated load. For a load uniformly distributed along
a circle of normalized radius (g, the deflection at the center of a plate freely
supported at its edge is given from (3.25) and (3.26) as

o = 1= {24 (155)] - B + ackon i} 039

So the deformation at the center follows the same scaling law Pa?/t3 for an
isolated load P as for the same load round the ring. Following the principle
of linear superposition, the same is true for any number of isolated loads.
Now, we shall see that active optics modulation of loads must always obey
the law that the total support load must equal the weight of the mirror:
some proportion of the mirror weight must always appear on the equivalent
support circle. Therefore the substitution for P from (3.28), with some weight
factor proportion mp, will apply. This converts the scaling factor Pa?/t2 into
a*/t?, as in Eq. (3.30).

The important conclusion is that the Couder scaling factor a*/t? applies
to all passive or active support deformations for a mirror deforming under
its own weight in the gravity field in which it is held in equilibrium by any
type of axial support.

If there is no gravity field, the transformations of Egs. (3.29) and (3.20)
do not take place and other scaling laws will apply (§3.5). In particular, if
an external uniform pressure ¢ is applied to a mirror in a weightless environ-
ment, the mirror being freely supported at its edge, then from Eq. (3.17) by
introducing the Couder normalizing parameter {g = L, the scaling law goes
with ga*/t® from Eq. (3.13). If external forces P are applied, either locally
or distributed uniformly over rings, then from Eq. (3.28) the scaling law is
Pa?/t3.

It has been shown above that the Couder scaling law a*/t? applies to all
influences due to the weight of a mirror in the normal gravity field, since
the supports are only reacting to proportions of the weight of the mirror.
If, however, an ezternal force, independent of the gravity field is applied to
the mirror, then the deformation follows the scaling law Pa?/t3 of Eq. (3.28).
Such a case can occur in ground-based telescopes, due to wind-buffetting on
thin primaries (see § 3.5), resisted by the reaction only of the fixed points as-
suming the other supports are perfectly astatic. If the wind applies a uniform
external pressure ¢, then we have again from (3.17) the scaling law qa*/t3.
The case of wind-buffetting for ground-based telescopes is therefore similar
to that for weightless mirrors in space.

The stresses induced in mirrors by passive or active supports are normally
negligible compared with rupture limits. This is not the case for the handling
of large, thin mirrors such as the ESO VLT 8m primaries, which is a very
delicate operation requiring carefully designed handling supports and tools.
For the deformation cases treated above, equivalent formulae are given for the
maximum bending moments by Timoshenko and Woinowsky-Krieger [3.152],
to which the reader is referred.
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These authors also deal with the deformation of a circular cylindrical plate
with a circular central hole, a case of great importance for telescopes with a
perforated primary. If the hole is negligibly small compared with 2a = D, its
effect is negligible.

The results derived above for the symmetrical bending of circular plates
apply to the case of pure bending. The effect of shearing stresses and normal
pressures on planes parallel to the surface of the plate on bending has been
neglected. Hence only the solution for a plate bent to a spherical surface and
the solution for an annular plate with moments uniformly distributed along
the inner and outer boundaries are rigorous. All other results are approxima-
tions whose accuracy depends on the ratio a/t. More sophisticated theory,
taking account of shearing stresses and lateral pressures, was initiated by
Saint-Venant [3.155 (b)]. Timoshenko and Woinowsky-Krieger [3.152] treat
some basic cases. For example, a circular plate freely supported at its edge
and subjected to a uniform pressure ¢ gave a maximum deformation at its
center according to Eq. (3.18). Shearing stresses and lateral pressure lead to
the additional term in

at 5+v 4 (340 t?

Wmaz = GZDE [<1+u) t3 (1—V2> Zﬁ] ' (3:39)
which depends on (t/a)2. For the primary of the ESO NTT, with ¢/2a =
1/15, the second term produces an additional deformation with v ~ 0.25 of
about 2 %. Further developments of the modern theory of axial supports are
discussed below. We will consider first some further important properties of
basic theory.

Many modern telescopes -are adopting thin meniscus technology (see
§3.2.4 above). Apart from its curvature, which is tending to increase as pri-
mary f/nos get smaller, the thin meniscus approximates to a uniform flat
sheet whose size is very large compared with its thickness. Such a sheet
must be axially supported by a large number of supports, the number being
determined by the permissible sag between the supports. This may approx-
imate to a rectangular network of supports on a raster of dimensions b,
and b, as shown in Fig. 3.48. This case has been treated by Timoshenko and
Woinowsky-Krieger [3.157] and the result is quoted by Cheng and Humpbhries
[3.158] in an excellent review paper on supports. The maximum deformation
at the symmetry point between supports is given by

I qbé _ gb3by
MaT T 384D 273Dg

[o <]

Y (R+F) , (3.40)

m=24,...

where Dg was defined in (3.13) and F; and F; are functions of m and o, =
mmby, /2b,. As in (3.20), the pressure q is equal to gpt in the gravity field. For
the simplified case of a square support raster with b, = b, = b, Eq. (3.40)
reduces to

12(1 - %) bt

(‘-‘jrrum:)by=bz = 0.00581gp 5 2

(3.41)
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Once again, because of the uniform pressure due to gravity, we have the
Couder Law with wyee proportional to b* /t%. This has important conse-
quences for basic support design. For we also have for the number of supports
N per unit area, the support density,

N o 1/b (3.42)
and hence from (3.41)
Wmag & 1/N?t2 | (3.43)

so that, for a given value of deformation wmez, N x 1/t. Eq.(3.41) is the
essential basis for deciding the number of supports and hence the number of
support rings for all thin meniscus projects. The sag w4, leads to a high
spatial frequency aberration and must be kept very small — see Chap. 4.
Another important aspect of mirrors, which is closely associated with
support and deformation theory, is the property of the eigenfrequencies of
mirror blanks. For a thin circular plate, these are given by [3.159] [3.160)

fo= (kf)n% (-55) [—1—2(1—1:3—%] v , (3.44)

where (kf)n is a constant depending on the vibrational mode n. For the
individual thin meniscus primaries of the ESO VLT, the full diameter is
8.2m and the thickness 0.175m, giving an aspect ratio A = 47. The lowest
vibrational mode is always the first astigmatic mode which has in this case
for a mirror in glass ceramic (Zerodur from Schott) a frequency (f1)vrr =
16.1 Hz. These are followed by the first triangular mode ((f2)vrr = 37.9 Hz)
and the first axisymmetrical mode ((f3)vrr = 38.3 Hz). For comparison, the
NTT primary has a diameter of 3.6 m and ¢ = 0.240 m, giving A = 15. Scaling
with the law ¢/ a? from (3.44) from the VLT value gives (fi)nrr = 114.6 Hz, a
value 7.12 times higher than for the VLT primary and which is totally damped
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out by the axial support. This is also intended in the VLT support (upper
hydraulic stage), but the frequency (f1)vrr = 16.1 Hz is more dangerous as
it approaches the extended active optics bandpass (see §3.5).

3.4.2 Modern work on the theory of mirror supports:
axial support solutions

This is a very large and complex subject and only a brief review is appropriate
in this book. Recently, finite element analysis (FE) has become a powerful
tool for exact analysis. However, FE must be seen as a complement, not a
substitute, for analytical investigations, since the latter remain essential for
a physical insight into the flexure processes involved.

An excellent review of the modern theoretical basis of mirror supports
was given by Schwesinger in 1968 [3.160]. He introduced the theory by two
basic statements of approach to the general problem of support:

a) The use of the polar coordinates r, ¢ to describe the flexure modes because
of the circular form of mirror blanks. Couder had already used a modal
approach (see Eq.(3.35)) for axisymmetrical modes and the analysis of
Timoshenko and Woinowsky-Krieger [3.152] also uses polar coordinates.
But Schwesinger extended this to the definition of flexure modes by the
general Fourier equation

wWn = knfo(r)cosng (3.45)

in which n defines the flexure mode. This is particularly significant be-
cause essentially the same Fourier formulation is used in the formulation
of the Hamilton Characteristic Function (§3.2.1 of RTO I) and Zernike
polynomials (§ 3.9 of RTO I) for optical aberrations, although the bound-
ary conditions are different.

b} The principle of Saint-Venant governs the modal behaviour of flexure.
Schwesinger states this as follows: “If we have within a limited region of an
elastic body a system of forces in equilibrium with each other, the strain
produced by these forces will decrease rapidly with increasing distance
from the loaded region. The smaller that region, the shorter the radius
of straining action.” The consequence of this principle is illustrated by
the case of a continuous sinusoidal load. Equilibrium then exists in each
wave and, if the wavelength is short, the strain will not reach far into the
body, i.e. it will cause little flexure. Now in the Fourier modal definition,
each mode above n = 0 forms waves in the azimuthal direction and for
each mode there are an integral number of waves. From Saint-Venant’s
principle, the lowest modes form the longest waves and will produce the
highest flexure: the higher the mode number 7, the less will be the flexure.
However, this consequence is only true for n > 2. The axisymmetrical
mode with n = 0 produces no azimuthal wave: its radial waves are shorter
than the azimuthal waves for n = 2. The mode n = 1 is also a special
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case corresponding to tilt or coma of some order. Because of its one-axis
symmetry, compared with two-axis symmetry for n = 2, it is a less natural
deformation mode. The best illustration is the simple bending of a piece
of paper about one axis to produce a cylindrical form (n = 2). To produce
coma (n = 1), an antisymmetric bending along an axis is required. Thus
astigmatism (n = 2) is the flexure mode requiring lowest energy as is
reflected in the eigenfrequencies quoted in §3.4.1 above.

These two basic statements are fundamental to the active optics control
of monolithic mirrors, as we shall see in the next section.

Schwesinger illustrates the Saint-Venant convergence with n > 2 by the
simple example of a mirror floating in a liquid in a force-free environment
(the equivalent of a perfect axial support) subjected at its edge to an external
point force P. As discussed above, the deformation law will be in the form of
Eq. (3.28), the amount of deformation depending on the mode n. Then

P2 1/2
* . a 2
Wrms = _E-'? (; kn) ’ (346)
where k,, expresses the deformation function of the mode and w* implies that
defocus and tilt are removed. Table 3.7 gives the function &, for the first six
modes. These values demonstrate the predominance of the astigmatic mode
n = 2 and the convergence, following Saint-Venant, of the amplitudes of the
modes with n > 2. Of course, the very small value of k¢ is because the point
of application of P is at a maximum distance from the central symmetry
point.

Table 3.7. The flexure function k, in different modes for a cylindrical plate floating
in a liquid and subjected to an external point force P at its edge (from Schwesinger
[3.160])

Flexure mode Modal
n flexure function
kn - 107
0 0.425
1 1.846
2 26.50
3 5.42
4 1.90
5 0.85
6 0.45

Schwesinger concludes that the principal aim of support design must be
to avoid astigmatism. This was certainly true for passive telescopes, but is
no longer so for actively controlled telescopes.

So far we have considered only azial supports. But an inclined telescope
also requires a lateral support for the mirrors. Schwesinger [3.161] investigated
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in an exhaustive paper the deformations of a vertical mirror (horizontal axis)
in various support systems. The principal deformation induced is again astig-
matism, which is worse the steeper the curvature of the mirror. We shall see
that a lateral support principle is possible which largely eliminates astigma-
tism.

The axial support theory based on thin plates above is only an approx-
imation to real telescope mirrors, though the approximation is closer for
modern, thin menisci than for classical “thick” (4 ~ 6-8) blanks with a flat
back. Reissner [3.162] [3.163] developed a theory for thick circular plates that
includes shear deformations. This theory was used by Selke [3.164] [3.165] to
deduce more accurate values of deformations for a thick cylindrical plate
supported axially against gravity by one concentric ring and two concentric
rings respectively. For an optimum one-ring support, the maximum difference
between the deformation from classical and Reissner theory is about 6.5 %
(increase). For two rings the differences are larger, as would be expected since
the residuals are themselves much smaller. Schwesinger and Knohl [3.166]
used a similar theory to that of Reissner, due to Green [3.167]. They applied
this to the deformation of a mirror with a large central hole on a single ring
support. They pointed out the high sensitivity of the support radius.

Malvick and Pearson [3.168] used a method called dynamic relaxation
[3.169] to analyse the deformations of a 4 m blank with a 2-ring axial support
and various lateral support systems. This was effectively the blank of the 4m
KPNO telescope (see Chap.5 of RTO I). We shall return to the results for
the lateral support systems below. A similar analysis for 2.3m and 1.54m
mirrors was later given by Malvick [3.170], above all for lateral supports for
shop testing using points, bands, mercury bag and sinusoidal systems (see
below).

For the ESO 1.47m primary of the Coudé Auxiliary Telescope (CAT),
Schwesinger calculated in 1979 [3.171] a 1-ring axial support using his thick
plate theory. He had already pointed out [3.160] the high sensitivity of the
support radius for single ring supports. His work confirmed this high sensi-
tivity and, as a corollary, the high quality obtainable with a single ring if
a relatively high defocus effect with tilt of the telescope is acceptable. Fig-
ure 3.49 shows the normalized rms deformation wg on a logarithmic scale as a
function of 3 (= b), the normalized radius of the ring support. The optimum
radius is 8 = 0.6907. The function is so sharp that even a change 63 = 4-0.02
doubles the wy residual. Twelve individual supports were required for this
mirror with A = 9.3. It is instructive to compare this result with the curves
of Couder in Fig. 3.46, who, using the simple classical thin plate theory, es-
tablished an optimum support radius of 0.667. Couder’s curves also indicate
the sensitivity of the radius.

In 1980, Mack [3.172] analysed the deformations and supports of the 4.2m
alt-az mounted WHT (see Chap.5 of RTO I). This is above all interesting
for the significance of the alt-az mounting on the lateral support, which will
be discussed below.
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Fig. 3.49. Single ring axial support designed by Schwesinger for the ESO 1.47m
CAT. The normalized deformation wp is the rms deformation referred to the best
fit parabola (focus). (After Schwesinger [3.171])

In connection with the ESO active 3.5m NTT, Schwesinger [3.173] used
his analytical theory to establish the passive axial 4-ring support and cali-
brations for the active corrections both for the full-size primary and the 1m
test mirror. He also designed the push-pull radial support, discussed below.
Schwesinger’s paper, at my suggestion, gives a synopsis of his analytical the-
ory both for the axial and radial supports. The support design is fundamental
to the active optics concept: we shall return to this in § 3.5.

Fine tuning in support design can be done either with sophisticated an-
alytical theory, as discussed above, or by FE calculations. For structured
mirrors, it may prove very difficult with analytical methods to derive the
“equivalent plate” from the flexure viewpoint. Analytical methods and FE
calculations are completely complementary: they provide an excellent mutual
cross-check. It is a dangerous illusion to suppose that FE methods make the
theory superfluous, since errors which can easily occur remain undetected.

The modern axial support is essentially based on a number of concentric
support rings, laid out in the way used by Couder (Fig.3.47), with refine-
ments of the modern theory. For modern, thin blanks the actual number of
individual supports, the support density, is derived from the Couder Law for
an infinite plate (Egs. (3.41)-(3.43)), which largely determines the number of
rings and supports on them. Conventionally “thick” mirrors have 1-4 rings,
depending on size: the ESO CAT 1.4m, 1 ring; KPNO 4m, 2 rings; Palomar
5m, 3 rings (hexagons); Russian 6 m, 4 rings. The latter two incorporate the
lateral support with the axial support in bores — see § 3.4.3 below. The 3.5m
(semi-thin) NTT primary has 4 rings; the thin 8m VLT primary 6 rings.
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The nature of the individual supports disposed round the various rings can
be mechanical, pneumatic or hydraulic. The classical mechanical solution was
the astatic lever as invented by Lassell in 1842 [3.174]. This was discussed in
Chap. 5 of RTO I (Fig.5.4). The principle of a modern construction is shown
in Fig.3.50. The lever arm AOB rotates round the horizontal axis O. The
gravity force F4 of the weight at A is multiplied by the ratio AO/BO to give
the force Fip applied to the mirror back at C by a link which is, in principle,
frictionless at B and C. If the telescope is tilted to zenith angle Z in the
plane of the diagram, the force exerted decreases with cos Z. The same cos Z
relation applies also if the telescope is tilted at right angles to the plane of the
diagram. Since the weight of the mirror in the axial direction is also a function
of cos Z, this means the astatic lever automatically adjusts in the gravity field
to the reduced axial support force required when the telescope is tilted away
from the zenith. This is a marvellous property, not fully understood by the
inventor Lassell [3.174], since the adjustment for tilt in conventional passive
supports requires no change or energy consumption. This property is not
necessarily true of pneumatic or hydraulic supports, though they have other
advantages.

3?///// %1

) . 1
Prime mirror q —.c
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-lT: KA B_ Fig. 3.50. The principle of
A xle fixed to the cell the modern astatic lever

The term astatic refers to another remarkable property of such a lever.
The mirror cell supporting it will, with conventional construction, inevitably
suffer flexure several orders of magnitude greater than the flexure tolerances
of the mirror. The lever absorbs this flexure, which may be of the order of
1mm, by a slight tilt. For this tilt angle, the cosine effect is negligible and
other effects on the force Fg are theoretically zero if the points A, O and
B lie on a straight line. The forces exerted by such a lever system are thus
independent of small movements of the lever parallel to the mirror axis, i.e.
it is astatic. This is normally only possible for a force-based support, whereby
the mirror is essentially floating on a system which does not constrain it in
position: in other words, the mirror is floating in a force field and the forces
determine the shape it assumes. The classical solution for location of the
mirror in space is to provide, in addition to the astatic supports, three fized
points, usually distributed on an equilateral triangle with corners on one of
the outer rings. Classically, the fixed points, by subtraction of the sum of
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the astatic loads from the mirror weight, should carry the same load as the
astatic supports on the ring in question. Modern telescopes sometimes replace
real fixed points by virtual fixed points distributed over three equal sectors,
a system introduced by Carl Zeiss for the MPIA 2.2m and 3.5m telescopes
(see Chap.5 of RTO I).

Such an astatic support is also called a “soft” support because it does
not attempt to constrain the mirror positionally. It has many advantages,
above all in solving the problem of cell flexure in a most elegant manner, but
has the disadvantage that it offers, in its nature, no resistance (except that
provided by inertia) to external forces applied through the mirror, above all
due to wind-buffetting. We shall return to this issue in §3.5.

A “hard” support, by contrast, links the mirror firmly to a cell of high
rigidity whose flexure must be very small. Such a solution was discussed above
(§3.2.4) in connection with the German 1.5m HPT project.

Modern mirror supports frequently make use of an invention made by
T. Grubb about the same time as Lassell’s invention. This was the whiffie-
tree, used in a multi-tier form for the Lord Rosse 6-foot reflector completed
in 1845 — see § 5.1 of RTO I and Fig. 5.2. A succession of triangular plates on
universal joints converted a 3-point support into a 81-point support for the
whole mirror.

According to Bahner [3.175], whiffle-tree systems with 9 points were used
for mirrors up to 1.9 m diameter. Meyer [3.176] proposed an 18 point support.
Such systems were analysed in complete form by Hindle [3.177]. An excellent
résumé is given by Yoder [3.178]. Hindle’s basic idea was that each support
should carry the same share of the mirror weight. This can be achieved with a
3-point support but a 9-point support cannot achieve this in azimuth because
the two rings have 3 and 6 points. To achieve equal weight sharing, 18 points
are required with 6 on one ring and 12 on the other. Figure 3.51, reproduced
from Yoder [3.178], shows the geometry. Yoder gives the equations defining
the radii of the various circles which were also analysed by Hindle. The 18-
point support (Fig. 3.51 (c)) uses three pairs of triangular supports, each pair
being linked by a bar using universal joints. Yoder gives for the geometry
with D = 2Ry42:

»

Rg =0.28868D
Ro =0.40825D
R; =0.21133D (347)
Rg =0.33333D

These values of R; and Rg do not correspond exactly to the geometry giving
equilibrium between the inner and outer zones of the central disk inside Rg.
The small departure is normally accepted in order to space the 12 outer
supports equally and to make the support triangles equilateral.

Modern support systems often combine the essential features of the
Lassell-Couder ring supports with additional Grubb whiffle-trees to distribute
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Fig. 3.51. Hindle-type whiffle-tree supports with (a) 3-point, (b) 9-point, (c) 18-
point configurations (after Yoder [3.178])

the loads further. It should be noted that, in its basic concept, the Grubb
whiffle-tree support was not astatic. In modern systems using pneumatic or
hydraulic supports, with or without whiffle-trees, full astaticity may not be
essential or technically feasible.

Although the basic ideas of Couder and Hindle give a sound basis for
modern axial supports, analytical theory and FE analysis will define the final
layout. For technical details of various approaches, including pneumatic and
hydraulic designs, the reader is referred to the excellent account by Yoder
3.178].

Support systems are also strongly influenced by active optics concepts —
see §3.5.

3.4.3 Lateral (radial) supports for mirrors

3.4.3.1 The classical case: radial supports. In his classic work on axial
supports for large primary mirrors, Couder [3.7] attempted to deduce the
flexure limits for vertically mounted (horizontal axis) mirrors by a simplified
theory and by experiment. He clearly felt unable to deal with the flexure
produced under these asymmetrical conditions by theoretical means in the
general sense and approached the problem by considering the sag of a narrow,
vertical strip of a curved mirror, supported against gravity on the edge of this
strip. He concluded that the increase in vertical curvature, due to the sag
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induced by the asymmetry of the concave reflecting surface compared with
the flat back surface, was undetectable for a diameter of 1.2 m, an aspect ratio
of 9 and a focal length of 7.2 m (f/6). His experiments seemed to confirm this,
from which he concluded that astigmatic errors would only become significant
for lateral supports, operating at the outer edge of the mirror, for diameters
> 3m.

- At that time (1931) no telescope of 3m diameter existed, but design
studies were underway for the Palomar 5m telescope. For this telescope,
the lightweighted structure of the Pyrex blank (see Chap.5 of RTO I) not
only provided 36 cylindrical bores for the axial supports within the mirror
block, but also the possibility of combining these with an internal lateral
support, thereby avoiding the whole issue of flexure produced by a lateral
support operating at the edge. The lever mechanism is described by Bowen
[3.179] and shown in its original form in Fig. 3.52. The support band B, which
makes contact with the mirror, is placed in a plane normal to the optical axis
through the center of gravity of the mirror. As the zenith angle increases, the
lower end of the support system, including the weights W, attempts to swing
about the gimbals G, thereby exerting a lateral force on the band B through
the gimbals G5 in a direction normal to the optical axis. The weights and
lever arms are so adjusted that the forces exerted just balance the component
in the opposite direction of the pull of gravity on the section of the mirror
assigned to the support. Likewise, the weights W pivot about bearings P
in such a way as to exert a force along the rod R which is transmitted to
the ring S by the gimbals G3. These weights and lever arms are so adjusted
that the force exerted balances the component parallel to the optical axis
of the pull of gravity on this same section of mirror. The mirror is therefore
floating on these support systems, and, if the function is perfect, no forces are
transmitted across the mirror. In practice, friction presented a problem and
amounted to over 1% of the force applied, whereas calculation had shown
that the forces had to be correct within 0.1-0.2 % if the optical specification
was to be met. The friction problem was solved in 1948 by a redesign of the
lower part of the support system, in which the simple lever of Fig. 3.52 was
replaced by a compound lever with greatly lengthened lever arms. This led
to the successful Hartmann tests reported in 1950 — see §5.2 of RTO L.

For lightweighted mirrors with such internal support possibilities, the
Palomar 5m telescope approach still represents, in its principle, the state
of the art, though other technical solutions than mechanical levers may be
applied. Lever solutions, analogous to Palomar, are often used for combined
axial — lateral supports in secondary mirrors.

In 1954, Schwesinger [3.161] published a paper as fundamental to lateral
supports as that of Couder [3.7] to axial supports. Schwesinger’s paper was
based on his earlier thesis [3.180]. He considers the general theory of con-
cave mirrors, with a flat back, mounted with horizontal axis and various edge
support conditions. His approach, illustrated by Fig. 3.53, represented a ma-
jor advance not only because of its generality but also because he introduced
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Fig. 3.52. Palomar 5m telescope: function of the mirror support levers (from
Bowen [3.179))

modal analysis in terms of a Fourier treatment of the flexure modes analogous
to optical aberrations defined by Zernike polynomials (see §3.9 of RTO I).
We shall see in the next section that this has profound significance for the
development of active optics. The mirror is supported at its edge by some
system of forces, which does not have to be defined to derive the general
nature of the flexure. Regardless of their specific distribution, these forces,
usually compressive stresses, are equivalent to the action of two systems of
forces. The first system comprises normal stresses, tensile or compressive,
which vary along the circumference but are uniformly distributed across the
edge, i.e. parallel to the optical axis. These normal boundary forces are trans-
mitted through the mirror body so as to balance the weight of each volume
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Fig. 3.53a—d. Flexure of horizontal-axis mounted mirrors: quantities entering the
flexure problem (from Schwesinger [3.161])

element. A plane through the middle of the cylindrical edge, parallel to the
back, is defined as the middle plane of the mirror. If the mirror were symmet-
rical about its middle plane, as in Fig. 3.53 (c) with equal curvature on both
sides, there are no bending moments and the deformation in the z-direction
(optical axis) is determined by the first system of forces acting symmetrically
about the middle plane. In the notation of Schwesinger, the deformation v, is
caused only by the transverse contraction or dilatation of the mirror material,
as determined by Poisson’s ratio v.

In practice, Schwesinger considered a flat-backed mirror with concave
front face, Fig. 3.53 (b). This asymmetry leads to bending moments, arising
from the displacement dh/2 of the stress resultants as shown in the section
element of Fig.3.53 (d). The sum of these bending couples over the entire
mirror furnishes a resultant of the amount Q¢, where Q is the weight of the
mirror and ¢ the distance of its center of mass from the middle plane. The
resultant moment Q¢ is balanced by a distribution of bending moments mp
round the edge. This is the second boundary force system mentioned above.
The result is a bending of the disk in such a manner that its middie plane is
deformed in a wavy fashion, but without radial or tangential stretching.
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Schwesinger defines the following parameters:

d =ho/2R (thickness parameter or aspect ratio)
m= f/2R (aperture number or f/no)
p=71/R (normalized radius)

k= R?/4h,f (normalized shape factor) (3.48)

h = ho(1 + kp?) (thickness function for any practical
mirror surface)

It follows that
k=1/166m (3.49)

Schwesinger demonstrates that these two systems of boundary forces can
be expressed as a Fourier series of the azimuth (polar) angle ¢, measured from
the downward pointing radius of the disk. Apart from the mode n = 1, the
optical effect of the force systems is largely determined by the nature of the
support. The resulting deformations can be expressed by Fourier expansions
of the form

Ur x Fn(p)

v, ¢ = (YR?*/E) Z an | Gn(p) | cosny (3.50)

Yz n=0 Hn(p)

w = (YR?/E) Z b Kp(p) cosng (3.51)
n=0

in which a,, and b,, are coefficients appearing in similar functions of the nor-
mal stress og and the bending moment mpg respectively. In these equations,
vr, v, and v, are the deformations in the corresponding directions due to
the first system of forces on the assumption of a symmetrical mirror as in
Fig. 3.53 (c); whereas w is the axial deformation of the actual unsymmetrical
mirror (to the central plane) due to the bending moments (Fig. 3.53 (b) and
(d)) of the second system of forces. In most cases of practical importance, the
two systems of boundary forces follow the same law, so that

an =bp

7 is the density of the material, E Young’s modulus, while the functions F,,
Gn, H, and K,, involve Poisson’s ratio v and the parameters x and ¢ defined
in (3.48) and (3.49).

Schwesinger then interprets the deformation effect in terms of the Strehl
intensity ratio — see Eq.(3.465) of RTO I. With the normalized wavefront
aberration as

W = 2z/)\ wavelengths
and W as the rms value, then the Strehl ratio S is given by

S=1-4W" | (3.52)
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valid provided 1 — S <« 1, for small aberrations. He then combines his Fourier
definition with (3.52) and derives

0o 1/2
Z a2y,

n=0

W = (2yR?/EX) , (3.53)

in which the numbers Y,, are termed the optical influence numbers. We al-
ready encountered similar modal analysis in connection with the general the-
ory of axial supports (Table 3.7). Table 3.8 shows these influence numbers
for the first ten Fourier modes and four different values of «, the normalized
shape parameter of (3.48). Only the mode n = 1 (coma, since Schwesinger
removes tilt) is of fixed amount, independent of the support, and is extremely
small, which can be explained from the principle of Saint-Venant. Mode 0 is
small because the principal effect, defocus, has been removed and spherical
aberration is small. The table shows the massive dominance of the astigmatic
mode n = 2.

Table 3.8. Influence numbers Y, for the different modes n with a mirror supported
at its edge with horizontal axis (after Schwesinger [3.161])

Moden | k=0| k=01 k=02 k=03
0 0 1.01 4.04 9.1
1 0 0.0331 0.132 0.30
2 4.59 140.5 465 978
3 3.45 20.7 52.5 99
4 2.76 8.89 18.5 32
5 2.30 5.49 10.1 16
10 1.25 1.92 2.74 3.7

Schwesinger then analyses various types of edge support using the above
theory, considering the following cases:

(a) Ideal mirror radial edge support: This is the cosine distribution with ten-
sile forces in the upper half and compressive forces in the lower half,
normally known as the push-pull support (Fig.3.54(a)). All modes ex-
cept n = 1 are eliminated. Schwesinger considered it was impossible to
realise in 1954; but it has since been commonly applied. For example, it
was used in the 4m KPNO and 2.2m and 3.5m MPIA telescopes.

(b) Optimum distribution of compressive edge forces: Schwesinger shows that
this is closely approximated by the force function (1 + cos¢p) — see
Fig.3.54 (b). This force distribution gives an adequate suppression of
the astigmatic mode only if the forces are accurate to a fraction of one
percent. The simplest way of achieving such a distribution is an elastic
lining giving uniform radial stress. If this radial stress just compensates
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Fig. 3.54a—f. Various radial edge support force distributions

the weight of the mirror, the distribution (b) will be achieved. However,
it is not easy to achieve uniform stress with an elastic lining. Various
devices have been used, including mercury bags.

(c) Half compressive distribution: If the radial stress of the elastic lining in
(b) is progressively reduced, the case (c) is produced where compressive
forces only operate over the lower half, giving the lower half of the cosine
wave distribution. Although this is a fairly common type, it is not very
good: Schwesinger shows that a significant astigmatic term remains.

(d) Optimum distribution of compressive forces along the lower half edge:
The optimum distribution given by Schwesinger is relatively complex
but approximates to a flat function. In practice, this can be achieved by
a flat belt or band, or by two flexible cables, covering the lower half of the
circumference (Fig.3.54 (d)). This is then a square wave function with
sharp cut-off and the normal stress op can be expressed as the Fourier
expansion

ng——(7r/4+cos<p—%cos3<p+%cos5<pq:...) (3.54)

Clearly, this support is free from astigmatism, the principal deformation
being the triangular term in cos 3¢. The popularity of a belt suspension
is therefore justified. Schwesinger states it is only 9 % less favourable than
the optimum lower-half distribution.

(e) V-support: The astigmatic mode disappears if the angle 2¢ = 90° in
Fig. 3.54 (e). Thus a right-angled V-support is almost the optimum and
gives a big improvement over a pure edge support.
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(f) Single edge support (V-support with € = 0): This is the most primi-
tive case, also considered by Couder. The numerical values given by
Schwesinger indicate a maximum astigmatic wavefront aberration dif-
ference of about A/3 for the 1.2m mirror investigated by Couder, a value
normally detectable by fairly simple detection devices.

Table 3.9 indicates the comparative values of W for the above 6 cases,
normalized by dividing by the factor (2yR?/E)) in Eq. (3.53). Schwesinger
also gives a diagram of mirror diameters, with ordinates in terms of the shape
and aperture parameters £ and m, indicating the maximum size for values of
W = 1/15 and 1/30.

Table 3.9. Comparative deformation given by the six edge supports discussed by
Schwesinger (after Schwesinger [3.161])

Case | Type of support k=0 | k=01]k=02] k=03
(a) | Ideal support (push-pull) 0 0.0018 | 0.0036 | 0.0055
(b) | Prestressed elastic lining 0 0.0132 | 0.0289 | 0.0464
(c) | Unstressed elastic lining | 0.00920 | 0.0508 | 0.0926 | 0.1350
(d) | Belt-type suspension 0.00743 | 0.0182 | 0.0301 | 0.0421
(e) | V-support, € = 45° 0.0548 | 0.0832 | 0.1152 0.148
(f) | On-edge-support, € =0 0.0673 0.148 0.246 0.346

It should be noted that Schwesinger’s original analysis does not take ac-
count of the effect of shear stresses or central holes in primary mirrors. Nev-
ertheless, this analysis remains the standard concerning the nature of aberra-
tions generated by lateral supports. We shall consider extensions to meniscus
mirrors and the specific requirements of alt-az mounts below.

Modern computing techniques enable a general solution of the 3-dimen-
sional elastic equations. Malvick and Pearson [3.168] used the technique called
dynamic relaxation to analyse the deformations of a 4m diameter mirror
having a large central hole and a flat back. Results were given as height
contours for 4 axial support distributions with vertical axis, 8 distributions
with horizontal axis and 2 axial 4 radial distributions at 45° inclination.
Qualitatively, the results for the horizontal axis, which include all the 6 cases
of Schwesinger, illustrate admirably the essential truth of his modal analysis.
Figure 3.55 gives four examples. Further, more refined calculations were given
by Malvick [3.170] for mirrors of 2.30 m and 1.54 m diameter.

3.4.3.2 The uni-directional case: alt-az mounted telescopes. So far,
we have considered lateral supports as strictly radial force distributions as
shown in Fig. 3.54. As long as telescopes were equatorially mounted, the radial
arrangement was natural because the orientation of the mirror cell could vary
widely relative to the direction of gravity. For alt-az mounted telescopes, now
the commonest solution for large telescopes, this is no longer the case:
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(d) (f)

Fig. 3.55. A 4m diameter mirror supported in three different ways with axis hori-
zontal. Numerical determination of flexure by dynamic relaxation for the following
cases from Table 3.9: (a) push-pull through c. of g., (b) mercury bag, (d) belt type,
(f) single lower support (from Malvick and Pearson [3.168])

tilt of the cell only occurs across one diameter of the mirror. The significance
of this uni-directional tilt has been investigated by Mack [3.172] for the 4.2m
primary (flat back, aspect ratio 8) of the alt-az- mounted WHT — see Chap. 5
of RT'O I. Mack pointed out that, while the radial push-pull arrangement of
Fig.3.54 (a) will also work in the alt-az case, the horizontal forces are not
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strictly required to carry the weight which only requires vertical forces. Mack
distinguishes between the four cases shown in Fig. 3.56 and analyses the flex-
ures by finite element (FE) techniques. (a) is easily the worst, followed by
(d). Cases (b) and (c) are almost equally good, but (c) is more convenient in
practice because of the uniformity of the forces applied. In the normal push-
pull case, as was shown by Schwesinger above, -we are only concerned with
deformations of the mode n = 1, i.e. the deformations of the first type asso-
ciated with Poisson’s ratio. According to Mack, this is also true of case (d),
whereas (c) introduces bending moments. This is disputed by Schwesinger
[3.173] (see below), who considers Mack’s FE result for the ordinary push-
pull radial support consistent neither with shell theory nor with the results
of dynamic relaxation given by Malvick and Pearson [3.168])

The 3.5m primary of the NT'T, also alt-az mounted, has a meniscus pri-
mary with aspect ratio 15. A lateral support system with 24 supports was
designed by Schwesinger [3.173] which appears similar to that of Mack, but
has an important difference. The equal, vertical push-pull edge forces are
evenly spaced along the circumference, as shown in Fig. 3.57, in the plane
containing the c. of g. of the mirror. Schwesinger shows that this distribution
leads only to deformation in the mode n = 1, as with the radial push-pull
support. He shows that the equal slice approach leads not only to the mode
n = 1 but also n = 3 and will, in the presence of a central hole, also be more
sensitive to higher orders. Schwesinger concludes, therefore, that the equal
vertical distribution along the circumference is, above all, more favourable for



3.4 Mirror support systems in modern telescopes 269

Fig. 3.57. Lateral edge support (push-
pull) for the primary of the ESO NTT:

(C;‘ferr:]ti:treo?f gravity equal vertical loads at equal spacing
along the circumference (after Schwesinger
R (3.173])

active correction (see § 3.5) since third order coma is the easiest of all aberra-
tions to correct at the secondary, and fifth order coma can also be corrected
in modest amounts at the primary. He investigates also the effect of three
different values of radial and tangential forces, distributed evenly round the
circumference, as cosine and sine functions of ¢ (Fig. 3.53) respectively. The
fraction B of the weight is supported by the tangential forces. Figure 3.58
shows the residual errors for different values of 8. The case 8 = 0.5 cor-
responds to the vertical forces of the NTT support. Clearly, the agreement
with the third order coma component is much better than with a pure radial
support with 8 = 0. This agreement is even better with 3 = 0.8 but the rms
aberration is 50 % higher.
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Fig. 3.58. Lateral edge support (push-pull) for the ESO NTT: the effect of the
fraction 3 of the weight supported by a tangential force system (equal spacing
round the circumference) compared with the radial force system (after Schwesinger
[3.173])
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The possibilities of further improvement by systematic optimization of the
parameter 3 have been further investigated by Schwesinger with remarkable
success in connection with the 8m ESO VLT primaries [3.181]. Following his
previous modal approach, he points out that a well-designed lateral, push-
pull edge support will suppress all Fourier modes except the inevitable mode
n = 1 and high orders starting at n = m, — 1, where m, is the number
of edge supports. Since my; = 24 for the NTT and 48 for the VLT, these
high order modes will be very small because of convergence according to the
Saint-Venant principle. The VLT primaries have an aspect ratio of 47 and
a meniscus curvature corresponding to f/1.8. It is therefore not possible to
apply lateral radial forces at the outer edge, perpendicular to the optical axis,
such that they lie in the plane of the c. of g. of the mirror, as was done in the
NTT. If such forces are not in this plane, they cause bending moments which
will be absorbed by a reaction of the axial supports, normally the fixed points
or equivalent. Such effects can be compensated actively by the axial system
but this uses up some of the dynamic range available. A better method is to
introduce either an axial force in the edge support, giving a resultant with
the radial force no longer perpendicular to the optical axis, or bending mo-
ments. Both of these would also have cosine distributions. If equilibrium is
maintained by axial forces at the outer edge, then we are only concerned with
the mode n = 1. With 8 = 0.5 as in the case of the NTT, corresponding to
equal vertical forces with equal spacing along the circumference, the mode
n = 1 (coma) has an rms deflection value of 4000nm, a very large value
even in an active telescope. Above all, the coma orders above the third order
would cause serious problems. However, if 3 is increased to about 0.75, the
aberration of the mode n = 1 reduces at once by about two orders of mag-
nitude. Such a support is termed by Schwesinger a push-pull-shear support.
The appearance of the force distribution is shown in Fig. 3.59. The rms error
is a sensitive function of  and can reverse its sign near the optimum. Fig-
ure 3.60 shows the variation of the function in the range 0.745 < 8 < 0.760.
The optimum value in this case is 8 = 0.7529 giving an rms deflection value
for the mode n = 1 of only 8.9nm, i.e. a wavefront rms value of only 18 nm,
an amazingly small value for a diameter of 8 m! It is only about 0.22 % of the
equivalent value with § = 0.5 and the function is just as smooth.

This result was so good that there is hardly scope for further improve-
ment. With the original arrangement with 3 = 0.5, ESO had proposed an im-
provement by supporting some of the weight in the central hole. Schwesinger
investigated an optimization including a 20 % weight support in the central
hole with 8y = 0.5, an outer edge $; = 0.71 and shifts of the force applica-
tion of £20 mm from the mid-edge points of the edges, as well as balancing
of axial forces at the edge and at the central hole. But the result was much
inferior to the straight optimization with 3 above. Above all, considerable
higher order aberration is introduced.

These results are so remarkable that they seem to present a definitive
solution to the problem of lateral supports for alt-az-mounted solid mirrors.
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Fig. 3.60. Lateral outer edge support for the ESO 8 m VLT primaries showing

the optimization of the residual error w in the mode n = 1 by a shear fraction
B = 0.7529 (from Schwesinger (3.181})

Schwesinger throws up the question as to whether structured mirrors could
also profit from this approach, instead of internal lateral supports. Certainly,
for solid blanks, the addition of bores to permit internal lateral supports
seems to lose its interest compared with the optimized push-pull-shear edge
support.
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This viewpoint is supported by a further paper by Schwesinger [3.182] on
the same approach, but with further refinements in the optimization. The
final residue left above from optimization with 3 alone is further improved
by optimizing with axial shearing forces applied at the inner (hole) and outer
edges, as well as with 8. The final results for the VLT 8.2m mirror (case
no.1) and for the SOAR primary (full diameter 4.035m, aspect ratio 20,
£/2.0) (case no.2) are given in Table 3.10. The parameters 7 and & are
related to the position of the lateral support forces on the edge relative to
the mid-edge point and the relative axial forces at hole and edge respectively.
The final results for the rms deflection are 0.25 nm and < 0.1 nm, effectively
zero. Whether, in an active telescope, this improvement from the case with
optimization of § alone is worth it, is doubtful: the small amount of 18 nm
rms wavefront aberration in the VLT case is largely third order coma and its
removal actively is trivial. Nevertheless, it is important to have the theoretical
proof that an optimized edge support with additional axial shearing forces
at edge and hole can yield absolutely negligible aberration.

Table 3.10. Lateral support optimization with three parameters for 8 m (mirror
no. 1) and 4m (mirror no. 2) meniscus mirrors (from Schwesinger [3.182])

Mirror B 10° - 10° - &9 rms w
no. (deflection) nm
1 0.7529 0 0 8.9
1 0.7566 —6.231 0 5.8
1 0.7518 0 —0.438 0.83
1 0.7521 —0.652 —0.449 0.25
2 0.7698 0 0 5.9
2 0.7497 0 —-6.00 <0.1

3.4.4 Mirror handling

The basic theory of stresses induced by mirror handling (lifting) devices for
large mirrors is given by Cheng and Humphries [3.158]. The normal and
most convenient way of handling primary mirrors is a lifting device round
the central hole. For thick mirrors (aspect ratio ~ 6), a relatively modest
flange round the back of the central hole is safe enough; but as mirrors get
larger and thinner the device becomes much more critical.
From thin plate theory [3.152], the maximum tangential stress is
2

Tmaz = kpg— (3.55)

where k is a constant depending on the radius of the support ring and on
Ry /R, the ratio of the central hole radius to the radius of the mirror. This
equation supposes the forces are applied at the neutral surface so that com-
pressive stress underneath and tensile stress at the top of the blank are
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equal. Nevertheless, it gives a useful approximation for practical cases. For
Ro/R = 0.25, p = 2500 kgm~3 and v = 0.3, Eq. (3.55) assumes the form for
a mirror lifted on a narrow flange round the hole:

D2
Omaz = 2.63 % 1047 Nm™2 (3.56)

Thus, for a given diameter D, the maximum induced stress is proportional
to D/t, the aspect ratio. Figure 3.61 shows this relationship as a function of
D and for various values of D/t.

' ' ' o 'D/1=40

41— D/t=304
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Fig. 3.61. Maximum induced stress as a function of D for various values of
D/t for a mirror lifted round the periphery of its central hole with Ro/R = 0.25,
p = 2500kgm~3 and v = 0.3 (after Cheng and Humpbhries [3.158])

The tensile strengths of optical materials lie typically in the range
35 x 105 N'm~2 for flint glass to 110 x 106 Nm~2 for Pyrex. Zerodur is given
as ca. 90 x 106 Nm~2, However, a safety factor of at least 10 is used for glass
mirrors of telescopes. Furthermore, a further factor of 3-5 must be applied
because of defects such as bubbles, inclusions or non-polished edges. The
unpredictability of glass in this respect is its great weakness compared with
metals such as aluminium. Cheng and Humphries give a safe working stress
in Fig.3.61 of 3 x 105 Nm~2 (MPa). For the ESO VLT primaries, a value
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of 3-5MPa is laid down. The validation of this figure is given in a Schott
Technical Note for Zerodur [3.183]. Graphs are given of breakage probabil-
ity for stepwise increase in bending stress, for samples produced by various
grinding finishes. The acceptable bending stress is also a function of time: in
this sense, breakage probabilities for repeated processes like handling must
be accumulated.

Cheng and Humphries give figures showing the tangential and radial stress
arising from mirrors being lifted by single ring supports of radius 0.25R,
0.67R and 1.0R. The consequences of breakage during handling of very large
primaries such as 8 m blanks are so daunting that the handling tools must be
the subject of intensive study. The handling tool for the 8.2 m VLT primaries
at the glass manufacturers (Schott) consisted of 18 suction pads operating at
the front face. Such a system operating at the front face would be impractical
for the optical figuring contractor (REOSC). The handling tool there operates
on the back face through the central hole and uses 3 support points round
the central hole and 12 support points near the outer edge.

3.5 Active optics control systems

3.5.1 Introduction and definitions

The purpose of active optics control systems is, in the most general sense, the
improvement of the quality of the telescope image (effectively, of a natural
star image near the field center) by some systematic process involving the
relative positioning of the mirrors and the modification of their form by their
supports, whereby this systematic process may be carried out at any time
frequency from dc (i.e. once only at set-up) up to a certain limit. This upper
limit is a highly technical point to be discussed in detail below and which is
closely linked with the lower time frequency limit of adaptive optics. With the
definitions which we shall give below, active optics [3.69] is therefore a low
time frequency bandpass control process, whereas adaptive optics is a high
frequency bandpass control process, essentially concerned with correction of
the “external seeing” (atmosphere).

The above definition is arbitrary and other definitions have been used:
for example, irrespective of temporal frequency, that “adaptive” should refer
to a closed-loop control, “active” to an open-loop [3.184]. But the preferred
definition above is now widely accepted and has a good semantic base. The
low time frequency errors are the classical “telescope” errors arising from
fabrication, mal-adjustments and other sources associated with conventional
“passive” telescopes. The semantic opposite of “passive’, for a telescope ca-
pable of correcting such errors, is “active”. “Adaptive” is then reserved for
the higher time frequency effects of the atmosphere. This definition is also
in agreement with that of Woolf [3.185], referring also more specifically to
the application of such systems to telescopes. The aspect of “closed-loop” or
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“open-loop” is, however, also very important and will be discussed in detail
below.

Attempts to improve image quality by manipulating mirror supports,
above all at the primary, go right back through telescope history. But the
first suggestions of a systematic process seem to have been made by Couder
in 1931 [3.186] and by Maksutov in 1948 [3.187].* Couder noted the high
sensitivity to astigmatism of a primary mirror under test when supported
at only two points at the ends of a diameter. This led him to the idea that
such a “regular” aberration as astigmatism (in modern terms, we would say a
“low spatial frequency” aberration) could be corrected by “a system of forces
suitably applied”. He experimented with a system of spring blades apply-
ing push-pull forces at right angles and concluded that astigmatism polished
into a mirror could be corrected by such a device. Intuitively, as the excellent
practical optical engineer that he was, Couder recognised that astigmatism
was by far the most sensitive flexure mode long before Schwesinger intro-
duced the formal Fourier analysis of flexure modes [3.180] [3.161]. Maksutov,
apparently unaware of these experiments by Couder, proposed that mirror
counterweights could be adjusted after set-up to correct errors observed in
an ocular or with a Foucault knife-edge, including errors left by the manufac-
turer. He also observed that such a general correction was only valid for one
zenith angle. He gives no algorithm for correlating the force changes with the
image error and states the process is more an art using trial-and-error. Nev-
ertheless, this was a highly perceptive observation at the time and pointed
out the advantage of the generalised Lassell astatic lever support system for
such processes. However, it did not lead to further systematic activity.

In 1969, the author, while working at Carl Zeiss, became aware of the
approach of Schwesinger [3.188] [3.161] whereby support-induced errors were
treated systematically by a Fourier expansion. Schwesinger treated the flex-
ure errors in a way giving an interpretation which fitted in naturally with
optical wavefront aberration theory and the concept of the Strehl Intensity
Ratio (see §3.10.5 of RTO I). For some time, it had been clear to me that
the tolerances for decentering coma in Cassegrain telescopes could never be
maintained in large telescopes and that only a feedback system could control
this aberration, which was essentially identical to Schwesinger’s Fourier mode
with n = 1 (see §3.4.3.1). The Fourier treatment of Schwesinger was effec-
tively identical in form, though with different boundary conditions, to the
optical aberration formulations of Hamilton’s Characteristic Function and
Zernike’s circle polynomials (see §§3.2 and 3.9 of RTO I). This led, in the
framework of the ESO 3.6 m (passive) telescope development and test [3.189],
to the basic proposal in 1977 for an “optical feedback telescope” or an “active
optics” telescope [3.190] using these concepts systematically. This was essen-

* 1 am indebted to D.Enard and K.Bahner for drawing my attention to these
proposals by Couder and Maksutov respectively.
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tially identical with the concept used later in the ESO 3.5m NTT, which is
described in detail below.

In connection with the 2.4m HST, work in active control of mirror figure
had also been initiated in the late 1960s in the United States. Accounts of
this work were mainly given in NASA reports, but a paper was published in
1970 in the journal “Automatica” by Creedon and Lindgren, [3.191], a journal
not normally known in the astronomical and optical community. Neither this
nor the NASA reports made wide impact at the time — the author only
became aware of them in the mid-1980s when the NTT development was in
the manufacturing phase. The astronomical community in the United States,
with a few exceptions such as Meinel, showed little awareness or interest in
the potential of active optics until the late 1980s.

The results of the NASA studies were summarised by Howell and Creedon
in 1973 [3.192]. It should be borne in mind that all this work was intended for
a space telescope application, not for normal ground-based telescopes. They
were concerned with initial figuring errors, the change from 1g to Og, and
changing temperature gradients in orbit. The aim was to sense figure errors
on the primary mirror and to correct them by appropriate deformation. The
technique was successfully applied (on the ground) to a 30-inch diameter
model mirror with 0.5-inch thickness (aspect ratio 60). Using 58 actuators,
the initial error of A/2 rms (A = 0.633 um) was reduced to < A/50 rms. The
control system was a modal one, the modes used being the natural vibration
modes of the mirror [3.191]. The mode shapes are referred to as eigenvectors
of the mirror and the frequencies are eigenvalues. These were determined by
numerical calculation. The use of modal control in general, and natural modes
in particular, was an important contribution to the subject of active optics
and natural modes were later used for part of the correction process in the
ESO NTT and also in the VLT [3.193]. The control matrix had 58 eigenvalues.
The output of the matrix operations was a set of modal coefficients which
describe the desired force change patterns to be distributed on the mirror
to correct these modes. Assuming these to be corrected in a quasi “steady
state” in space, the residual error was then supposed to be the rms wavefront
error of the higher, uncontrolled modes. However, the assumptions made on
the ground might not be correct in space, leading to a control error. Since
the authors had a complex scheme for determining the 58 actuator positions
so as to compensate for uncontrolled higher orders, these positions might no
longer be optimum. :

The authors considered two possibilities for treating the errors: “deter-
ministic” and “uncorrelated”. For the deterministic case, it was found that
the “best” actuator locations (i.e. those locations that minimized the steady-
state error) were very sensitive to error distribution. Also the locations had
to be found by laborious trial-and-error computing techniques, including the
use of the steepest gradient algorithm. For this reason, and because the quasi
steady-state errors would be expected to vary slowly from thermal causes,
the uncorrelated approach was preferred. This simplified the determination
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of actuator location and reduced the sensitivity of locations, although more
actuators were required for a specific assumed error.

Further details of the active optics correction of the 30-inch test mirror are
given in a subsequent NASA report [3.194] describing the study carried out at
the Perkin-Elmer Co., now Hughes Danbury Optical Systems (HDOS). One
of the objectives was to determine the optimum positioning of the actuators
and distribution of actuator forces in order to minimize the number of con-
trol channels required and to decouple their action so as to optimize system
response. The mirror influence coefficients were determined ezperimentally
by measuring the displacement of the stressed mirror at various points, from
interferograms. The authors state clearly the advantage of modal control com-
pared with attempting to make the wavefront aberration zero over a matrix
of actuator points. This was exactly the same conclusion as that reached in-
dependently by the ESO team [3.69], an important point to which we shall
return. Thermal tests were carried out to investigate the performance of the
active optics system in the presence of thermal disturbances and to determine
the response of the thin mirror to various applied thermal gradients.

The original modal concept [3.191] proposed the determination of actua-
tor locations at or near nodal contours of higher order modes, which followed
a simple pattern for a flat plate model. However, Robertson [3.194] found that
there was no such simple pattern of the nodal contours for the thin, spherical
mirror when more than 8 modes were considered. Further, it was discovered
that by including the fifteen dominant modes, which comprised 99 % of the
specified figure error for 1 A rms amplitude, it was not possible at that time to
determine their placement to obtain anywhere near A/50 rms error with the
control system because of the very large number of possible actuator posi-
tion configurations. Robertson therefore applied a simplified modal approach
using seven sensed points, 4 controlled and 3 uncontrolled. The function of a
modal controller operating on these lines was tested for various error signals.

The above work programme was a remarkable pioneering effort, although
its application was finally rejected for the Hubble Space Telescope. Had it
been accepted and had the dynamic range been adequate to correct the large
third order spherical aberration due to matching error (see § 3.2.3), the most
serious setback in that whole project might have been averted. However, in
spite of the many positive aspects of the active optics proposals, notably the
modal approach using natural modes and the closed-loop concept of measur-
ing and correcting the errors in the primary, the total concept was extremely
complex, above all because of the ambitious concept of considering all modes:
a large number of controlled modes and also the higher order uncontrolled
modes for which the actuator positions were, in the original modal concept,
to be determined. This is in contrast to the ESO system [3.69], described in
detail below, in which any fixed actuator positions suitable for a normal pas-
sive support can be used modally and the number of modes to be controlled
emerges naturally from the stiffness function of the mirror, the convergence
following from the Saint-Venant principle, the Fourier definition of elastic
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aberrations due to Schwesinger [3.160] [3.161] and the similar nature of op-
tical errors such as defocus, decentering coma and spherical aberration from
matching error.

Another weakness of the NASA studies was that they concentrated on er-
rors of the prime mirror alone, using only corrections by elastically bending
the mirror. This gives a problem of sensing the errors of the prime mirror
alone, which was discussed by Meinel [3.195]. He also refers to the desirabil-
ity of measurements of the Cassegrain image to determine decentering coma
and to the open-loop, laser alignment system of the MMT (which was later
abandoned). Here also, it seems a major advantage of the ESO system that
it used for error sensing the obvious natural source for all optical errors in
the total optical system, namely the image of a natural star in the field of
the Cassegrain (or final) focus, normally the offset guide star. This is then a
natural closed-loop control system, whereby all error sources are measured,
including figure errors of the secondary and the errors of its position: decen-
tering coma for lateral error and defocus for axial error. However, in 1970, the
essential technological element of modern image analysers, the CCD detector,
was not yet available.

So far, we have been concerned with monolithic primaries whose active
control implies deforming them elastically. But active optics can also be ap-
plied to segmented primaries or to co-phasing separate telescopes as in the
MMT. The most important examples of these two types, the Keck 10 m tele-
scope and the 4.4m equivalent MMT were discussed in §3.2.1 and §3.2.2
respectively. The requirement here is more complex than with monoliths as
the separate segments or telescopes can have piston (phase) error, as well as
tilt errors. The prime mirror control system of the Keck 10m telescope is
essentially a highly sophisticated (and apparently very successful) open-loop
control system (in the sense that it does not use a natural star). However,
a natural star was used in setting up the system and checking the effective
image quality from individual segments and the stacked group as well as cen-
tering errors. A complete aberration analysis and description of the set-up
and alignment procedure is given by Nelson et al. [3.196]. A continuous mon-
itoring with an image analyser was apparently not envisaged at that stage
(1992), although it seems a logical addition to exploit the system to the full,
e.g. for decentering coma and defocus errors.

Active phasing of mosaic (segmented) mirrors was proposed in the 1970s
by several authors, for example Muller and Buffington [3.197]. At a simpler,
lower quality level for a very cheap IR spectroscopic telescope (light collec-
tor), it was also pursued in France for a 4m telescope which was abandoned
in 1975 for lack of support [3.198]. The aim here was a telescope of similar size
to the 3.6 m CFHT with a budget of only about 1% of that telescope. The
prime mirror was spherical with D = 4.2m working at f/1.43 and consisting
of 36 square segments. A servo-system controlled the segments. This project
clearly proposed closed-loop active control of the tilt of the segments (phasing
in piston was uncritical for the quality aimed for) by using an optical offset
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guide star. The authors also recognised that telescope errors only required a
low servo-bandpass (10~2 to 1073 Hz). The detector for the servos was a cir-
cular aperture passing flux to a photo-multiplier for each of the 36 segments.
The quality aimed for was 10 arcsec and the servo-stacking seemed capable
of achieving this, but the individual segments were of poorer quality, so that
the effective image was more like 20-30arcsec in size. If more money had
been available to build an IR telescope on similar lines but diffraction lim-
ited at 10 um, more interest might have been generated. A short summing-up
of this project was given by Connes in 1989 [3.199]. He states: “As to in-
terest in a test-bench device on which budding active optics techniques had
been demonstrated, and could be further refined, there was none whatso-
ever”. This does indeed correctly reflect the deep conservatism at the time
of the bulk of the astronomical world towards new technology. However, no
attempt was apparently made to discuss the matter with ESO at the time,
where (at least on the technical side) thinking in the direction of a complete,
high-performance active concept for telescopes was underway. Nevertheless,
although the development was not known to the ESO engineers at the time,
this project came in many ways closest to the ESO NTT concept.

3.5.2 The principles of the ESO active optics system,
as developed for the 3.5 m NTT

The essential elements of this system were given by Wilson in 1977 [3.190]
and more explicitly in 1982 [3.200]. A complete account of the principles is
given by Wilson et al. in [3.69] under the title “Active Optics: I. A system for
optimizing the optical quality and reducing the costs of large telescopes”. This
definition is important, for the NTT has proven that it is possible to improve
markedly the effective optical quality while reducing the costs compared with
conventional telescopes.

There are 3 basic factors limiting image quality in ground-based tele-
scopes: diffraction, atmospheric seeing and telescope quality. In space, the
second factor is absent.

Apart from the fundamental limitation of diffraction (see §3.10.3 of
RTO 1), which is small for large telescopes at visible wavelengths but not
necessarily so at IR wavelengths, the practical limiting factor of ground-based
telescopes should be atmospheric turbulence (seeing). This implies that the
third factor, telescope quality, should produce an image degradation small
compared with that due to external seeing. Unfortunately, this is rarely the
case over the bulk of the life of real telescopes. Earlier, fabrication errors
set the limits. In more recent times (say since the Palomar 5m), the limits
have been increasingly set by thermal and maintenance aspects. The purpose
of active optics is to make telescope errors, from all sources, negligible com-
pared with the best external seeing. This aim can be more clearly defined now
that scientifically-based and reliable external-seeing monitors are becoming
commonly available — see Chap. 5.
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If we aim with active optics to correct all optical telescope errors in order
to make them small compared with external seeing, we must start by defining
all the sources of optical error in telescopes. Table 3.11 gives the ten possible
sources affecting imagery in ground-based telescopes, apart from diffraction
which is inevitable and continuous, together with their bandpasses. Optical
design and optical manufacture are once-for-all (dc) operations. We shall
show below, in connection with the principle of Saint-Venant, that active
optics is only concerned with the azial image quality: imagery in the field
relative to the axis is an essentially fixed, higher order function which cannot
normally be influenced by active optics. Optical design is therefore normally
of little consequence since correction of the axial image is trivial. However,
it may be disturbed by additional elements such as detector windows, above
all by chromatic effects.

Table 3.11. The ten sources of error giving degradation of image quality in ground-
based telescopes, and their corresponding bandpasses. Diffraction, which is in-
evitable and continuous, is excluded since (for a given signal wavelength) it cannot
be influenced. In space, the three errors dependent on air vanish. (From Wilson et
al. [3.69])

Source of error Bandpass (Hz)
(1) | Optical design dc (fixed)
(2) | Optical manufacture dc (fixed)
(3) | Theoretical errors of:
— Mirror supports dc — 1073 (fixed — minutes)
— Structure (focus, centering) 1073 (minutes)
(4) | Maintenance errors of the structure
and mirror supports 1076 - 107°  (weeks — days)
(5) | Thermal distortions:
- Mirrors 107 - 107*  (days — hours)
- Structure 1073 (minutes)
(6) | Mechanical distortion of mirrors
(warping) 1077 (years)
(7) | Thermal effects of ambient air
(telescope, dome and site “seeing”) | 107* — 102 (hours — 0.015s)
(8) | Mirror deformation from wind gusts | 1072 — 10' (minutes — 0.1s)
(9) | Atmospheric turbulence .
(external “seeing”) 2.1072 = 103+ (50s — < 10735)
(10) | Tracking errors 5 — 10?

The most important feature of the bandpass column in Table 3.11 is that
all the error sources are dc or of bandpass < 1072 Hz except (8), (9) and
(10) and partly (7). This is of central importance, because this is roughly the
frequency limit of normal active optics correction in closed-loop and implies
that two thirds of all the errors listed are amenable to it.
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Fig. 3.62. The bandpasses for active and adaptive optics correction (from Wilson
and Noethe [3.201])

The definition of the correction bandpass is an essential feature of any con-
trol system. Our definitions are shown in Fig. 3.62 [3.69] [3.201]. The normal
active optics bandpass A, as in the NTT, goes from dc to 1/30 Hz. The limit
1/30 Hz simply corresponds to the well-known fact that, in the presence of ex-
cellent atmospheric (external) seeing, an integration time of 30s is sufficient
to integrate out the external seeing completely, giving a round image corre-
sponding to the integrated external seeing quality, the classical definition of
“seeing”. For a frequency v > 1/30Hz (for inferior seeing at somewhat lower
frequencies), we enter into the adaptive optics bandpass C, going from 1/30 Hz
to beyond 10 Hz. In this bandpass, we are confronted with the phenomenon
of the isoplanatic angle ©g (see Chap.5), that angle over which the phase of
the error introduced by atmospheric seeing remains essentially constant. Og
is a function not only of the wavelength and the Fried parameter ro defining
the seeing, but also of the frequency v: the higher the frequency, the smaller
the isoplanatic angle. However, even at the lowest frequencies of bandpass C,
the angle @g at visible wavelengths is only one or two arcminutes at most.
This has a very important consequence for bandpass B, which we call the
extended active optics bandpass, going from 1/30 Hz to about 10 Hz. We shall
see that an essential feature of the normal active optics system is its closed-
loop nature, referring to the image of a natural star through the telescope
in its final image plane. Normally, it is not practicable to use as a reference
light from a star in the actual observation field, at the field center, because
all photons are required for the observation and a suitable star may anyway
not be present in the observation field. In practice, therefore, a star near the
edge of the telescope field is used, normally the offset guide star. Such guide
stars are almost always well outside the isoplanatic angle centered on the field
center [3.201]. In bandpass B, it follows that the wavefront error component
corresponding to the atmospheric effects in this bandpass are only valid for
the field point measured and are wrong for the field center. With a single
measurement in this bandpass, it is impossible to separate the errors due to
sources (7) and (8) and possibly (10) (each of which has no isoplanatic lim-
itation) from the normally dominant source (9). If a number p of detectors
are distributed over the field, a statistical separation is possible [3.201], but
the gain is proportional to p1/2 from normal statistics, a procedure which is
normally too inefficient, since image analyser detectors are not trivial units
and a large field area is rarely free. It follows that there is a fundamental
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problem of closed-loop detection of the errors in this bandpass B and this
makes the active correction of source (8) and the higher frequency part of (7)
very much more difficult than that of the errors with bandpass < 1072 Hz.
It is emphasized that this fundamental problem is one of detection of the
signal, not of its correction. Whether the servo-loop is capable of correcting
a known signal in this frequency band is quite another matter, depending on
the hardware involved.

We shall return to the matter of active optics correction in the bandpass
B below, in connection with the ESO VLT, for which it is particularly impor-
tant for error source (8) (wind-buffetting deformation of the primary mirror)
and the part of error source (7) (thermal effects of the ambient air) with
v > 1/30Hz. Error source (10) can also have problems of atmospheric confu-
sion, but the frequencies, directions and amplitudes may be more predictable
in this case. Correction in bandpass C is the domain of adaptive optics, dealt
with in Chap. 5.

We return now to the normal active optics bandpass A. There are five
basic reasons why correction in this bandpass should be treated as a separate
technical system from adaptive optics correction:

a) Field. In bandpass A there is no limitation of isoplanatic angle: the errors
are the same over any reasonable field.

b) Correction at or near the telescope pupil. Correction in bandpass A at
or near the telescope pupil will automatically provide correction over the
whole field. For adaptive optics, usually only one isoplanatic field can be
corrected, which is very small. This enables a small field lens and a trans-
ferred pupil to a small, low-inertia correcting element (see Chap. 5) capa-
ble of operating at the high frequencies required.

¢) Bandpass. The low bandpass A enables one to work naturally and advan-
tageously with heavy support units which would be impossible for high
frequency adaptive correction. A separate active system for bandpass A
has the huge advantage that not a single observational photon needs to be
lost due to the active system. Any adaptive system, by contrast, is bound
to have an optical throughput substantially < 1 (see Chap. 5).

d) Wavefront amplitudes required for correction. In its nature, the active sys-
tem in bandpass A will be capable of correcting, and required to correct,
amplitudes in certain modes that are neither possible nor required in the
normal adaptive system.

e) Physical origin of errors. In general, the physical origin of the errors in-
volved in bandpass A is quite different from those of bandpass C: mainly
induced by elasticity in bandpass A, a consequence of the physics of the
atmosphere in bandpass C. Even error source (7), the thermal effects of
the ambient air, has, in general, different characteristics from external see-
ing. It therefore does not follow that algorithms or correction procedures
which are optimal for bandpass A will also be optimal for bandpass C.
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The ESO active optics concept for bandpass A is essentially based on
practical experience of optical defects in telescopes which may be induced
(or corrected) either by movements of the secondary relative to the primary
(in the normal Cassegrain form) or by deforming the primary (or secondary).
In an optical train, the best surface to deform, theoretically, is that nearest
the pupil, usually the primary. Deformation is usually easier to introduce into
the support systems of primaries, but it may sometimes be more convenient
at the secondary. If the surface is not at the pupil, there is a shearing effect
of the correction over the pupil which increases linearly with angular field.
This shearing effect should be kept negligible compared with the correction
itself, the tolerances depending on the modes corrected — see below. Following
Schwesinger [3.161], the concept is based on three laws of physics:

a) The law of linearity (Hooke’s Law of elasticity)

Passive support systems have always been calculated on the basis of lin-
earity. Glass materials obey Hooke’s Law eractly right up to fracture,
metals up to the elastic limit. The dynamic range for active optics will
never be more than a tiny fraction of these limits. The linearity law al-
lows linear superposition of the effects of any sets of forces. Furthermore,
it implies that a given change of force distribution will always produce the
same change of flexure independent of the initial state of the force field,
i.e. independent of the initial shape of the mirror.

b) The law of convergence (the Principle of Saint-Venant)

We encountered this important principle in §§ 3.4.2 and 3.4.3 in connection
with Schwesinger’s support theory. The consequence is that the higher the
spatial frequency of flexure modes defined by the Fourier equations (3.50)
and (3.51), the higher the forces required to generate a given amplitude.
This is intuitively obvious as a consequence of thermodynamics and it is of
capital importance in active optics. Beyond a certain spatial frequency, a
flexure mode cannot be generated by forces that can either occur naturally
in the system or be generated actively in practice. This leads to a simple
but important axiom: if a mirror is flexible enough to develop a given
elastic error mode in the gravity field, then the same error can also be
corrected by applying active forces of the same order of magnitude as the
passive support forces. Conversely, if a higher spatial frequency mode can
never appear as an elastic error because the forces required are higher
than can occur, then it will not be correctable by active optics. This is
the case with “ripple”, an error generated by resonance effects in polishing
which have nothing to do with elasticity. Active optics can do nothing
about ripple: its amplitude must be kept low by a hard specification to
the optician for such high spatial frequency errors. The task can be made
easier by relaxing the low spatial frequency specification.
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¢) The law of orthogonality (Fourier or Zernike Law)

The term cosng in Egs. (3.50) and (3.51) implies that the different modes
n are mathematically and physically orthogonal and independent and can
be controlled independently without “cross-talk”.

On this basis, the test and correction polynomial of Table 3.12 was used,
the terms being chosen from experience and the Schwesinger formulation
originating in the Saint-Venant Principle. (This polynomial is very similar
to that given in §2.3.3.2 for the general off-line testing of telescopes). In the
general Fourier equation

W = kpmp™ cos(nd + Onm) (3.57)

W is the wavefront error, k., is the optical aberration coefficient defined in
Table 3.12, p the radius in the pupil, ¢ the azimuth angle in the pupil to an
arbitrary origin, 6,,, the phase angle of the aberration and n, m are posi-
tive integers. Terms with the same n in this polynomial are not orthogonal.
Strict orthogonality can be achieved by using Zernike polynomials (see § 3.9
of RTO I) and this is indeed a fully valid alternative. In practice, though,
it makes little or no difference since the only non-orthogonalities in the cor-
rected terms o in Table 3.12 are tilt with coma, and defocus with spherical
aberration. In a least squares solution for the coefficients, the solution can
be found with the first term alone of these pairs or with both terms. They
anyway have to be separated and the accuracy is, in practice, excellent with
the above definition. Furthermore, the image analyser used does not measure
W but the local slope of the wavefront 0W/0x, W /Jy and these derivatives
of Zernike polynomials are no longer orthogonal [3.202].

The validation of the choice of such terms is finally the practical proof
of what terms occur in the telescope. This was first tested at the set-up of

Table 3.12. Fourier expansion and terms used in the ESO active optics system for
the NTT. The seven terms marked e are corrected, the first of which is simply the
auto-guiding. (From Wilson et al. [3.69])

Fourier Equation: W = knmp™ cos(ng + 0nm)
koo constant
e k11pcos(¢ + 611) tilt (pointing or tracking error)
o kozp? defocus
o k13p° cos(¢ + 613) decentering coma (3rd order)
o koap* spherical aberration (3rd order)
o koo p® cos(2¢ + 022) astigmatism (3rd order)
® k33p® cos(3¢ + 0a3) “triangular” error
o kasp* cos(4¢ + 044) “quadratic” error
kosp® spherical aberration (5th order)
k150° cos(¢ + 015) coma (5th order)
kaap? cos(2¢ + 024) astigmatism (5th order)
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Fig. 3.63. Results of classical Hartmann tests of the conventional ESO 3.6 m tele-
scope in 1976 [3.189], illustrating the theoretical improvement after successive re-
moval of polynomial terms. The mean right-hand point of the functions gives the
Intrinsic Quality (IQ) of this telescope. (From Wilson et al. [3.69])

the conventional (passive) ESO 3.6m telescope in 1976 [3.189], from which
Fig. 3.63 is taken and which illustrates the term “Intrinsic Quality” (IQ) of a
telescope. The five graphs show the dgg quality criterion (star image diameter
containing 80 % of the geometrical energy) for various telescope attitudes:
near zenith and at ca. 45°-60° in the S, W, E and N directions. The left-
hand point gives the actual, measured quality of the telescope after careful
adjustment at set-up. The other points show the improvement that would be
achieved if the residual terms shown were successively removed. In this passive
telescope these were simply fictitious, mathematical values since there was no
means available for such correction in that telescope. The left-hand part and
the form of the 5 functions (which must, by definition, reduce monotonically
from left to right or remain flat) is highly variable, which demonstrates that
the terms involved are sensitive to the changes in telescope attitude. But the
right-hand point, within the error of measurement at the time, is invariant
and an intrinsic property of the telescope: we termed it the “Intrinsic Quality’
(IQ) of the telescope. It is that quality a telescope would have, if all the terms
that can vary during the function of the telescope and induced by the error
sources of Table 3.11 up to the bandpass limit of 1/30 Hz were corrected.
The aim of an active telescope is to achieve the intrinsic quality or a quality
very close to it. The (unachievable) IQ of the passive 3.6 m telescope was,
from Fig.3.63, dgy = 0.27 arcsec. For comparison, the active 3.5m NTT has
an (in principle, achievable) IQ of dgo = 0.125 arcsec. The IQ is a measure
of the total high spatial frequency residual errors left in the entire system,
both from residual figuring errors and from all other sources (in practice,
source (7), the thermal effects of the ambient air, as we shall see from further
analysis of the NTT results).
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Fig. 3.64. Active optics correction for the low frequency bandpass A: principle of
the ESO closed-loop control technique for optimizing image quality (from [3.69])

Figure 3.64 shows the principle of the feedback loop in the ESO closed-
loop active optics system. The image analyser either “borrows” the light from
the offset guide star for 30s while the telescope relies on absolute tracking
(the original system of the NTT) or a proportion of the light is permanently
deflected by a beamsplitter to the analyser (final system of the NTT). The im-
age analyser used in the NTT is of the Shack-Hartmann type (see §2.3.3.2)
and functions excellently. Other possibilities are discussed in Chap.2. The
raw data from the S-H image analyser, the lateral aberrations for the sub-
apertures defined by the S-H raster, are processed in the microcomputer
to derive the centroids of the S-H spots and then the coefficients k,,, of
Table 3.12 are derived by least-squares reduction. From pre-stored calibra-
tions for the different modes, signals are then sent either to the secondary M,
to correct 2 of the six terms (apart from tilt = autoguiding), namely defocus
and decentering coma, or to the primary support system to correct the other
4 terms. The essential features are the modal control and the fact that the
correction at the primary is done by force changes applied to a “soft” (astatic)
axial support system. Automatically, with this concept, the geometry of any
adequate passive support system (see §3.4.1, in particular Egs. (3.41)—(3.43))
will provide sufficient sampling over the aperture to correct the low spatial
frequency modes required. The modal correction, since the coefficients are
measured for the final image, applies to all possible sources of error affect-
ing the final image in this bandpass: whether the astigmatism measured is
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induced by an axial or lateral support, at the primary or secondary, is of
no consequence, since the total final vector will be corrected. The princi-
ple of correction would also work equally well with a “hard”, position-based
support. But this requires an extremely stiff prime mirror cell which cannot
normally be realised in a large telescope. Hence, the classical “soft” solution
was chosen in the NT'T. The soft support has no disadvantages in the normal
bandpass A; but it does have in the extended bandpass B. We shall return
to this concerning the ESO VLT.

Why is modal control so essential for a successful active optics system?
This is discussed in ref. [3.69]. Mathematically, it seems simple and elegant
to set up a square influence matrix (stiffness matrix) for the prime mirror
support by applying a standard force change to each support and measuring
the corresponding wavefront change for the same sampling points as the
supports. Then, assuming linearity from Hooke’s Law, we have the unique
solution to correct the wavefront at these sampling points

AF; = A7 - AW; (3.58)

where AF} is the column vector component of force changes at the actua-
tors, AW, the column vector component of desired wavefront changes at the
sampled (actuator) points, and Aj; the component of the stiffness matrix.
By modifying this basic algorithm, in a way used commonly in optimization
programs for optical design [3.69] [3.203], the square stiffness matrix can be
made rectangular in either sense. With this “wavefront approach”, one would
then establish the stiffness matrix in advance. The on-line correction opera-
tion would consist of an image analysis followed by matrix inversion giving
the force changes required to reduce the aberrations at the sampled points
to zero.

In spite of its simplicity and elegance which have often led to its pro-
posal, the method has serious disadvantages [3.69] and the modal approach
is superior in all respects. The essential reason why this is so, is that the
wavefront approach is blind to the physical realities behind the Schwesinger
flexure theory (see §3.4.3). The arbitrary sampling forces the full correction
of higher order modes that can only be corrected by very high forces, if at
all. The result is a highly ill-conditioned solution matrix with poor accuracy
and very high forces, normally outside a reasonable dynamic range of the
system. Another poor feature is that the wavefront sampling approach has
no learning potential: a heavy matrix inversion operation is performed ev-
ery time, but there is no indication what is the nature of the error: whether
a support error causing astigmatism, or decentering or whatever other error
source is involved. All such problems are automatically resolved by the modal
approach, whereby the precise nature of the modes is not very critical pro-
vided they reasonably correspond to the physical reality. Three of the four
most important modes occurring in telescopes are only indirectly, if at all, as-
sociated with elasticity: defocus, decentering coma and spherical aberration.
Defocus occurs above all because of thermal effects in the tube structure.
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Decentering coma is essentially due to lateral shear of the secondary (or a
corrector) relative to the primary axis (see §2.1). It produces a very pure
third order coma. Spherical aberration can occur from wrong image position
(despace — see §2.1), but the commonest source by far is matching error in
manufacture (see § 1.3.4) due to errors in null systems used for testing. This
will be mainly third order spherical aberration, but the order distribution will
depend on the nature of the null system. It does not follow that this order
distribution will be matched by natural flexure modes. On the other hand,
all errors originating from supports, leading to astigmatic or higher orders of
mirror flexure, will be best compensated by natural vibration modes. These
are discussed in detail by Noethe [3.203] and were first suggested by Creedon
and Lindgren [3.191]. In the NTT, a mixed system of modes is used: natural
modes for the fixed dc correction and the polynomial of Table 3.12 for the
on-line correction — see below.

A very important feature of the active optics system is the calibration
of required force changes. For each mode, Schwesinger calculated the force
change distribution required to produce a coefficient of 500 nm, with an ad-
equate degree of purity, i.e. whereby the higher order residuals, whose cor-
rection would require very high forces, have a negligible effect on the image
quality. Some details of these calibrations are given by Wilson et al. [3.69],
more complete information by Schwesinger [3.173]. The lowest mode is, of
course, third order astigmatism. A maximum load change of about 3% of
the mean passive load is sufficient to produce an astigmatism coefficient of
500 nm in the NTT primary. These calculations are complex but are all done
in advance, once only, the results being stored in the microcomputer. Once
the coefficients have been derived from the image analyser measurements,
the calculations of the required force changes are trivial, since they consist
solely of setting the precalibration forces in linear proportion to the measured
coefficient and then summing the force changes for all the modes by linear
superposition.

The modal procedure can formally be represented by the matrix operation
analogous to (3.58)

(AFj)pm = A7 (AWi)nm (3.59)

in which (AF'j)nm is a force change distribution which produces a nominal
change (AWi)nm to the aberration mode n, m with the necessary radial pu-
rity, i.e. that purity which allows cross-talk in radial modes with negligible
effect on the image. The force calibrations could be derived from the stiff-
ness matrix A;;, but were, in fact, derived from analytical theory. They are
derived for 0, = 0 in Eq.(3.57) and for the standard change of aberration
coefficient AkU . We will give them the symbol (AF V)nm- Then the total
force change is given by

~ Ak,
nm
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where the summation refers to the modes chosen. For the NT'T, the four
modes n, m controlled at the primary are, from Table 3.12, 04, 22, 33 and
44. The linear procedure of (3.60) is a consequence of Hooke’s Law. A similar
linear law exists for the other two modes controlled at the secondary, 02 and
13, the calibrations being obtained directly from Eq. (2.16) for defocus and
from Egs. (2.1) and (2.4) for decentering coma, which are also pre-stored in
the computer. The modal algorithm therefore permits any complex calcula-
tion to be done in advance: the on-line calculations are trivial compared with
those required for centroiding the S-H images. A more complete discussion is
given in ref. [3.69].

The use of an image analyser in the telescope field implies that field
aberrations are also measured. This does not matter since, as mentioned
above, the field aberrations of a telescope are higher order functions which are
affected to a negligible extent by the error sources of Table 3.11. It is therefore
entirely sufficient to deduct the theoretical (optical design) values of the field
aberrations from the measurement for the indicated position of the image
analyser (guide probe) in the field. Since we are only concerned with low
spatial frequency terms, this means deducting third order field astigmatism
(which, from Table 3.1 of RTO I, grows with the square of the field) for an
RC telescope such as the NTT; or, additional, third order field coma (growing
linearly with the field) for a classical Cassegrain telescope. As discussed in
§2.2.1, the effective position in the field of the “optical axis” of the telescope,
resulting from the set-up and alignment procedure, must also be taken into
account; further, the effect of telescope decenter on the field astigmatism if
the decenter exceeds the limits analysed therein.

The theoretical limits of the normal active optics bandpass A of Fig. 3.62
are dc and 1/30 Hz. Since fabrication errors represent a dc (once-off) correc-
tion process, it was decided to achieve the dc correction in the NTT with
springs, which are independent of the cos Z effect of gravity with zenith an-
gle. For a passive support, astatic levers are advantageous here, since they
automatically compensate for cos Z (see Fig. 3.50). But a dc active correction
should, by definition, stay constant, independently of Z. Figure 3.65 shows
schematically one of the 75 active supports, disposed with 3 fixed points over
a 4-ring passive support geometry, with 8, 16, 24 and 30 supports respectively
[3.69] [3.72] [3.204]. The levers are a two stage system, to save weight, with
an average force magnification of 16. An important parameter of the system,
closely linked to the cos Z effect, is the dynamic range of correction, which
was analysed in detail on the basis of manufacturing tolerances and the errors
from Table 3.11 in the light of experience [3.205]. It was expected that the
bulk of the correction would be dc. This was even more the case than had
been assumed — see below. The following correction scheme in 3 levels was
envisaged:
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Fig. 3.65. One of the 75 active supports (schematic) of the ESO 3.5 m NTT primary
axial support. The dc errors are corrected by tension springs (through the levers),
the other (variable) errors by the movable counterweights. (From Wilson et al.
[3.69])

— First level: dc correction with springs.

— Second level: Diurnal correction with the counterweights, performed at
dusk near the zenith before telescope operation.

— Third level: Correction during operation with the counterweights whenever
the altitude of the telescope has significantly changed.

The system was designed such that an image analysis and correction could
be made during the observation and without disturbing it. It was necessary to
learn how to operate the third level of correction. It was intended to automate
this level fully with an automatic correction cycle about every 10 minutes.
This matter is discussed below in the section (§ 3.5.3) on the operating results
of the NTT.

It was considered essential to test the principles and practice of correction
thoroughly on a 1 m diameter test model mirror. The results were described
by Noethe et al. [3.204]. This model mirror was scaled according to the Couder
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Law (see § 3.4.1) to give the same flexibility as the full-size NT'T primary. This
gave a thickness of 18.9mm for a full diameter of 1050 mm, an aspect ratio
of 56. The support geometry could then be taken over unchanged from the
NTT, the loads being scaled according to the weights.

The results of the manufacture of the NTT optics by Carl Zeiss, Ober-
kochen, were given in §3.2.4 above in the general description of the NTT.
Details are given in [3.71]. It must simply be repeated here that the essential
specification was the active one, namely the Intrinsic Quality for the high
spatial frequency residuals assuming full correction of the actively controlled
low spatial frequency terms. The specified IQ was dgg < 0.15 arcsec; but
Carl Zeiss surpassed this and achieved dgy = 0.125 arcsec. This referred to
the whole optical train comprising 3 mirrors for the Nasmyth focus. This
quality has even been surpassed for the Italian TNG optics (§3.2.4). With
the experience of the 1 m model mirror, the active correction of the low spatial
frequency residuals of the NTT primary, under test at Carl Zeiss, was a simple
operation. To achieve the 1Q passively, if at all possible, would have cost an
order of magnitude more than the contract price; but the active correction
was done in a matter of minutes.

Of course, matching error between the primary and secondary was not
revealed by the above tests on the primary alone. Such an error was present
and was revealed (and afterwards corrected) by the functional tests of the
telescope.

3.5.3 Operational results for the ESO 3.5m NTT
and conclusions from its performance

A complete account of the set-up procedure, active optics application and
optimization, and the results of the first test period, was given in “Active
Optics IV” by Wilson et al. [3.70]. Some of these results were briefly men-
tioned in §3.2.4 above. Details of modifications and the state of technical
completion of the NTT from the point of view of active optics in the summer
of 1992 were given in refs. [3.72] and [3.73]. Here, only a few of the essential
aspects will be reviewed.

The basic set-up and alignment [3.70] followed essentially the system used
for passive telescopes (see §2.2). This led to what was termed “Technical
First Light”, giving the first images with an eyepiece and television, but be-
fore the final adjustment (by tilt) of the prime mirror cell was performed
to achieve the basic (passive) correction of decentering coma. This was per-
formed a month later when the image analyser was available to measure the
amount and direction of the coma. The necessary tilt of the M; cell was only
+1.25mm (or 1.98 arcmin), but this small error (mechanically) caused the
huge coma coefficient of 12788 nm (= 4.52 arcsec for 100 % enclosed energy).
This gives a good measure of the high sensitivity of modern, short telescopes
to decentering coma and illustrates well how essential active centering is.
These relations are given by Eqgs. (2.1) and (2.4). The vector direction of the
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coma must be interpreted in the physical coordinates of the prime mirror,
which is not a trivial matter, but of prime importance since the machining of
the flexion bars was a major operation. In fact, about 95 % of this coma was
removed: the residual 5% was well within the dynamic range of the active
z-y correction system at the secondary.

The full determination of the coefficients of the (fixed) aberrations in
the zenith, for dc’ correction with the springs, led to no surprises except
for the spherical aberration coefficient which, when local air variations were
removed, had a value between —3500 and —4000nm. For 100 % included
energy, an image diameter at optimum focus corresponding to 1arcsec has a
coefficient with NTT geometry of 4241 nm, so the effect was well outside the
passive specification. This error could be completely removed actively (using
the natural mode which used somewhat lower forces), although it absorbed a
considerable portion of the dynamic range. In many ways, the correction of
this “matching error”, as it proved to be, was the most powerful validation of
the active concept of the NTT. For, as a passive telescope with this quality, it
would have been a failure. The alternative of a contractual replacement of the
defective primary would have been immensely expensive and time-consuming.
Subsequent analysis by Carl Zeiss revealed a systematic positional error of
the null systems used to test the primary of 1.8 mm which gives a coefficient
of about —3000 nm. The remaining aberration (which happened to have the
same negative sign) was due to extra weight of lateral support pads added
after the support design had been done. The active correction of the spherical
aberration at the primary did, therefore, remove the error at its source. Had
the error been on the secondary, correction at the primary would have caused
a small departure from the RC system, thereby introducing a field coma of
0.18 arcsec at a field radius of 10 arcmin. As it was, no field coma could be
detected in the corrected system.

After the completion of the first level (dc) correction with the springs
and a preliminary correction at the second level with counterweights of small
residuals, the telescope was in a well-adjusted state near the zenith and ready
for “Astronomical First Light”. It must be borne in mind that any telescope
at this stage can only have rudimentary tracking quality. In addition, the
field rotation facility, essential for an alt-az mounted telescope, was not yet
operating. This meant that only very short exposure times were possible, of
the order of 10s. Since this is inadequate to fully integrate normal seeing,
good results are only possible with exceptional seeing. Fortunately, the see-
ing was exceptional, better than 0.3 arcsec FWHM as it emerged. Also the
local air conditions (ventilation) were remarkably favourable. The CCD was
dismounted from the image analyser (the telescope was, therefore, actively
“blind” during the night of the first observation) and mounted directly at
the focus, giving a field 12 x 12 arcsec. The globular cluster w Centauri was
observed. These first pictures gave best star images of 0.33 arcsec FWHM.
A comparison showing the gain in resolution and depth was set-up by West
[3.206], reproduced in [3.70]. Figure 3.66 reproduces this comparison. The
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Fig. 3.66. CCD pictures obtained at “Astronomical First Light” with the ESO
3.5m NTT, compared with previous photographic records of the same field (glob-
ular cluster w Centauri). (From West [3.206])

frame at the upper left shows a considerable enlargement of a small area
of a plate taken with the ESO 1 m Schmidt telescope in 1984 under mod-
est seeing conditions (ca. 2 arcsec). The plate taken at the Cassegrain focus
of the passive 3.6 m telescope (upper right) with seeing about 1 arcsec was
considered extremely good by normal standards. The NTT raw frame (lower
left) was probably the best image ever recorded at the time and showed the
immense gains that active optics could bring, not only in resolution but also
in depth (limiting magnitude for a given integration time). The frame at the
lower right shows the further gain that can be achieved by post-detection
deconvolution techniques [3.206].

The efficiency of the NT'T proved to be so high that the correction process
(image analysis, correction, check image analysis), taking 5 min or more, was
relatively too slow for the aims of third level correction (see § 3.5.2 above). The
most rapid correction can be achieved by precalibration of errors as a func-
tion of zenith angle. This is particularly simple and effective with decentering
coma. There were difficulties with astigmatism due to friction, acting in the
axial direction, but originating in the lateral support system. This problem
was removed by a modification of the lateral support, and astigmatism is
now reproducible and can be largely calibrated. Also the force setting oper-
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ation is much simplified [3.72]. For technical reasons, defocus is the hardest
aberration to control to the necessary quality, coma the easiest. Table 3.13
summarises the conclusions regarding the achievable optical quality with the
NTT. It shows that, if the active control system is operated correctly, the low
spatial frequency aberration residuals are effectively negligible with a value
dgy ~ 0.075 arcsec. Temperature and wind sensors have now been introduced,
which should permit further optimization of the local air conditions, which
even at best, were still the dominant factor in the measures of Table 3.13. Po-
tentially, the NTT is capable of an image quality, excluding external seeing,
with dgg < 0.20 arcsec but this requires optimum operation of the total sys-
tem, above all of the building conditions. Since external seeing < 0.20 arcsec
FWHM has been recorded at Paranal, it is clear the effort is worthwhile.

Table 3.13. Optical quality potential of the NTT (excluding external seeing). This
table shows that the practical limitation is the local air (source (7) in Table 3.11),
in spite of the excellent building design. (From Wilson et al. {3.70])

Error dgo (arcsec)
Low frequency aberration residuals 0.075
Total high frequency (smoothed), 0.22
consisting of:
— High frequency from optical system 0.125
— High frequency from local air and measuring noise 0.18
Total with statistical addition 0.23

The aim was to fully automate the third level of correction with an au-
tomatic correction cycle of about 10min. If conditions are excellent, most
errors (including defocus) change very slowly and will be corrected by this
cycle. This includes the bulk of the local air effects, if local ventilation and
temperature conditions are optimal. If the local air is producing significant
high frequency error, it is the best measure of deteriorating local conditions.
The automatic nature of the correction cycle is the only way the optical main-
tenance problem of telescopes can, in practice, be solved. The nature of this
maintenance problem, which above all requires active optics, will be further
discussed in Chap. 8. Suffice it to say here that automation of the active cor-
rection essentially converts the (normal and unfavourable) analogue optical
maintenance situation into a (favourable) digital one.

The best practical measure of what had been achieved by 1992, and what
remained to be achieved, is shown by Fig. 3.67, which gives a rough practical
comparison of the total optical quality of the best telescopes at the ESO
La Silla observatory [3.73] as well as the external seeing as measured by the
seeing monitor. For the three older telescopes (3.6 m, 1.54 m Danish, 2.2 m (II)
MPIA), the values are an average over 5 years. The external seeing values
from the seeing monitor at La Silla were only available for 4 months but
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Fig. 3.67. Cumulative/integrated incidence of external seeing and image quality
of the major telescopes at the ESO observatory La Silla. External seeing and NTT
1 year (1991), the other telescopes 5 years (1987-1991). Normalized for A = 1pum
and zenith position (Z = 0). (From Wilson et al. [3.73])

they could be used to give an equivalent curve for the whole year of NTT
measurements by comparing the median (most probable) image quality of the
NTT, on the assumption that external seeing is the dominant factor limiting
its performance, which is clearly the case. The data for the telescopes are
only approximate, since they are normalized for a wavelength of A = 1um
and for the zenith (air mass = 1, Z = 0) on the assumption that the only
effect is external seeing, giving for the image size [3.207] (see also Chap. 5)

d o Mro < A™3(cos 2)73/° (3.61)

ro being the Fried parameter and Z the zenith angle. For observations at
A = 500nm and Z = 45°, the correction factors are then 0.87 and 0.81 re-
spectively for the cumulative incidences of Fig.3.67 or their reciprocals for
the image diameters. However, the departures of the telescope images from
the seeing disk are due to errors in the telescope optics and local air (dome
and local seeing), for which the correction factors do not follow Eq. (3.61) and
will normally be nearer to unity. Therefore this representation tends to com-
press slightly the real differences between the telescopes and thereby represent
the 3.6 m over-optimistically. On the other hand, the image quality in this
telescope has been significantly improved since 1987 by improvements in the
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air-conditioning system and insulation of the telescope, so in measurements
for 1991 it might be closer to the 2.2m telescope. In any event, the global
impression is certainly a reasonable approximation to the true situation, not
only at La Silla, but at observatories in general.

Table 3.14 gives the median (i.e. most probable) seeing corresponding to
the functions of Fig.3.67. This table also gives a measure of the “optical
efficiency” E, expressed as (do/d)?, where dy is the median FWHM of the
external seeing and d that of the telescopes. This simple criterion, whose
validity will be discussed in Chap. 4, is thereby normalized to 1 for a “perfect”
telescope, i.e. the external seeing value dy. As we would expect, the active
NTT was easily the best telescope. However, we were convinced that the
automation of the 10 min correction cycle together with the completion of
the thermal sensor investigation and improvements would reduce the gap
between the external seeing and NTT curves in Fig. 3.67 to half, or less, of
that value. The efficiency E with a median seeing of 0.76 arcsec in Table 3.14,
instead of the 0.82 arcsec measured, would rise from 0.73 to 0.85. Such an
efficiency, 85-90%, should be the aim of highest quality active telescopes,
even at the best sites — or, indeed, precisely at those best sites, so that the
best available seeing is exploited to the full. This exploitation will normally
imply “flexible scheduling” of the observations, so that programmes requiring
optimum seeing will be able to benefit from it.

Table 3.14. Median (most probable) image quality (FWHM) and “optical ef-
ficiency” E in five cases at La Silla corresponding to Fig.3.67. Normalized for
A = 1pm and Z = 0. (From Wilson et al. [3.73])

Telescope Perfect Telescope NTT 22m 1.54 m 3.6 m
(External Seeing)

Median seeing
FWHM (arcsec) 0.70 0.82 0.99 1.08 1.17

E = (do/d)* 1 0.73 0.50 0.42 0.36

The figures of Table 3.14 for the other telescopes deserve comment from
the aspect of active optics. From the point of view of the optical quality of the
mirrors, the 3.6 m and 2.2m (II) telescopes are of comparable quality [3.68]
[3.189], the 1.54 m somewhat inferior because its specification was less severe.
But, in practice, the 3.6 m was significantly inferior to the 2.2m because of
variable decentering coma introduced by its top-end mechanics and its inferior
dome seeing. An active optics upgrade, comprising only image analysis and
active correction of decenter and focus could immediately produce a major
improvement. Even without further correction possibilities at the primary,
the on-line image analysis would at once give detailed information on the
dome seeing problems and indicate what changes are required. A model of an
automation approach to upgrading an older telescope was the improvement
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programme of the Cerro Tololo 4m telescope, applying the NTT principles
insofar as they were applicable to a classical thick primary. Baldwin et al.
[3.208] show that a considerable improvement is possible at relatively low
cost.

The curves of Fig. 3.67 permit a further interesting comparison concerning
the matching error of the NTT, which was completely corrected actively as
indicated above. If this error had been left uncorrected, a passive error as in
the other passive telescopes, the quality of the NTT could have been about
the same as that of the 1.54m.

Latest information (November 1997) concerning the status and perspec-
tives of the active optics system of the NTT has been kindly provided by
P. Gitton through L. Noethe of ESO, Garching. P. Gitton is the optics spe-
cialist of the team formed at the beginning of 1994 by D.Baade for the
maintenance and upgrading of the NTT. This team was long overdue and
a serious decline in performance had occurred between 1991 and 1994. It is
largely due to the efforts of P. Gitton (of course, with excellent support from
colleagues) that the optical quality has been restored and further advances in
the system made within the framework of revised VLT-compatible software.

The third level of the active optics control, as defined above, is now func-
tioning routinely, still in a non-automatic mode, for all correctable aberrations
except defocus. This means that all the aberrations, apart from defocus, are
controlled to give a low spatial frequency image quality of dgo < 0.15 arcsec
using image analysis (IA) before each new observation (preset) or after each
significant change of zenith angle. Focus control is still performed with the
old-fashioned “through-focus” sequence or with the focus wedge. A precal-
ibration of focus change from a measured instrument offset has long been
intended, but has so far not been reliable enough. It is hoped to solve the
problem by logging data as a function of rotator angle and adapter temper-
ature.

Active correction based on precalibration (open loop for the third level)
is still not operating, though much of the necessary base work for it has
already been completed. An important feature has been a re-optimization
of the zenith M;-support load distribution between the springs and counter-
weights, essential for effective third level astigmatism control. Further data of
image analysis as a function of zenith angle Z is required and software imple-
mentation (and test) of defocus as a function of Serrurier truss temperature
and Z.

The automatic function of the third level of active optics is still not oper-
ating. This was envisaged in the original design and should enable automatic
active correction in parallel with the observation (i.e. without disturbing the
observation and, indeed, without the astronomer being aware of it!). For sev-
eral years, the main problem was the lack of an automatic guide star facility.
This is now solved by the availability of the HST guide star data base. How-
ever, there are still technical problems of guide star acquisition and centering.
The automation of focus control is limited by the pointing stability problems
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of the M, focus mechanics — the TNG (Galileo) telescope has a much im-
proved system. It is stated by Gitton that coma correction also introduces
pointing shift although this should not be the case with the principle of coma
correction by rotation round the My center of curvature. It may generally be
necessary to close the shutter (for the observation) when M, is being moved
to correct either defocus or coma, re-opening it when the slight pointing error
has been corrected by the software.

A bonus compared with the original design intentions of the active optics
system has been achieved with regard to additional aberrations induced by
the instruments of the NT'T. Specifically, a spherical aberration contribution
(dgo ~ 0.35 arcsec) has been identified in the EMMI spectrograph. The active
optics software has been modified to allow the addition of such contributions
to those of the IA measurements. Further measurements on the instruments
EMMI and SUSI are required to determine the contributions to all the aber-
rations.

The above résumé by Gitton confirms notable and excellent work in re-
covering and improving on the optical quality achieved in the early period of
operation of the NTT. It is to be hoped that this good work will be further
pursued and that full automation of the third level of the active optics will
be achieved, including considerable use of precalibrated correction. Full au-
tomation of defocus correction, without closing the observation shutter, will
probably require new My focus mechanics on the lines of the TNG design.
Only then will the original design goals of the NT'T opto-mechanical system
have been fully realised.

3.5.4 Extension of the active optics system to the ESO 8 m VLT

The full blank diameters (D)/thickness (t) of the NTT primary and the VLT
primaries respectively are 3.6 m/0.240 m and 8.2 m/0.175 m, giving aspect ra-
tios of 15 and 47. Originally, 200 mm thickness was envisaged for the VLT
blanks, but 175 mm was finally the maximum thickness that could be guar-
anteed in Zerodur. The Couder flexure law o D*/t? gives a flexibility nearly
51 times greater for the VLT primary. Whereas it was a subsidiary require-
ment imposed on the NTT that it should also be capable of normal image
quality in a purely passive mode (hence the aspect ratio of 15, not higher),
no such requirement was placed on the VLT which is defined as a telescope
that can only function in the active mode. :

An analysis of the basic modal correction, using a 6-ring “passive” axial
support geometry with 152 axial supports, was given by Schneermann and
Cui [3.209], at that time (1988) for a thickness ¢ = 200 mm. The passive sag
between supports gave a residual error, after subtraction of tilt and piston, of
33nm rms. Natural mode correction — see Noethe [3.203] - for the active optics
system was preferred to Zernike modes, because (as would be expected for the
elastic corrections) it gives a more favourable dynamic range. Noethe proves
two important properties of natural (or minimum energy) modes: firstly, the
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orthogonality of the functions and, secondly, that the pressure fields are pro-
portional to the deformations (Appendix A and B in [3.203]). Within the
approximations of the theory, calibrations are then essentially a scalar pro-
cess. The high flexibility of the VLT primaries means that many more modes
must be controlled. For the thickness ¢ = 200 mm, the first 20 modes, with
eigenfrequencies, are shown in Fig. 3.68. The amplitudes generated by a force
field with a given maximum force will be roughly inversely proportional to
the square of these frequencies. This is a statement of the modal convergence
resulting from the Saint-Venant Principle. Schneermann and Cui [3.209] give
the frequencies of the first 10 modes of Fig. 3.68 together with the percentage
of the mean passive load for the maximum force required to generate 500 nm
rms of wavefront aberration. These percentages go from 0.06 % for the first
(astigmatic) mode with eigenfrequency 18.4Hz (¢ = 200 mm) to 6.34 % for
the tenth mode with frequency 182 Hz, the corresponding force being 108.9N.
The dynamic range of the correction system must be laid out to cover the
correction requirements from the various error sources of Table 3.11, for the
normal active optics bandpass A of Fig. 3.62. Table 3.15 gives the distribution

The two modes
marked — with
frequencies

407 Hz (n=1) and
471 Hz (n=0)

are not induced by
normal axial forces
giving all the other
modes, but by
radial forces.

Fig. 3.68. The first 25 natural modes, with eigenfrequencies, for a VLT primary
with ¢t = 200mm (courtesy M. Schneermann, ESO)
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Table 3.15. Dynamic range of the active optics system for the VLT 8 m primary
mirrors (after Noethe [3.210])

Error source Active forces (N) | Dependence on
. ; zenith angle Z
Positive | Negative
Change to Cassegrain 413 156 constant
Figuring 120 120 constant
Lateral supports 50 50 sin Z
Axial supports 80 65 cosZ
Wind 50 50 unknown
Local air 50 50 unknown
One chamber hydraulic system 188 188 sin Z

[3.210] for the final thickness t = 175 mm. The biggest item is the conversion
from Nasmyth to Cassegrain, which, because of an appreciable axial image
shift, introduces about 20 X of spherical aberration.

The axial support hardwareconsists of a 2-stage system: a passive part
(top stage) consisting of a hydraulic whiffle-tree system [3.211] [3.212]. An
active spring-based (lower stage) applies the active corrections. Figure 3.69
shows this system schematically. The active stage, based on a spring of finite
length, is not astatic, but the extent of non-astaticity is acceptable for the
correction cycle proposed and the given flexibility of the cell. The basic active
correction cycle proposed is 40s. Since the integration time for image anal-
ysis must be 30s, this is technically about the fastest cycle possible. It will
be about 15 times faster than the 10 min cycle intended for the NTT. The
fast correction cycle has great advantages. It allows higher non-astaticity of
the active support, but above all should correct the bulk of the low spatial
frequency errors originating in the ambient air (source (7) of Table 3.11).
This should include most of the mirror seeing, though this should anyway
be low because of the thermal regime (see §3.6). Furthermore, in the VLT
more modes are controlled than in the NT'T, giving also for this reason more
control of errors from the local air.

Active optics is a linear differential correction system, so absolute setting
to a given force is not very important: what is important is accurate differ-
ential forces, which is much simpler. However, it is essential that the total
absolute force remain sufficiently constant over the correction cycle. Again,
the shorter the correction cycle, the easier this is to achieve. The requirements
for the axial support system are discussed by Noethe et al. [3.213]. Assuming
random force errors over 150 supports, the accuracy of a single force should
be 0.1 N. The minimum force step is 0.05 N. These limits are set by the first,
astigmatic mode.

Originally, a push-pull axial support was envisaged. It was decided, how-
ever, that a purely “push” system, as in the NTT, was adequate, in spite of
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Fig. 3.69. Axial support unit (schematic) for the VLT 8 m primary mirrors (from
Schneermann et al. [3.212])

the cos Z limitation near the horizon. A “push” system can apply no active
correction at Z = 90° because there is no gravity load to push against.

So far we have considered the normal active optics bandpass A of Fig. 3.62.
In the VLT, however, wind-buffetting of the primary can cause deformation
of the mirror form in the extended active optics bandpass B. The problems of
detection of these errors due to confusion with the atmosphere were explained
in §3.5.2 and given in detail in ref. [3.201]. From experiments measuring the
power spectra of wind at the NTT with a dummy mirror, Noethe [3.213]
has deduced that the maximum tolerable pressure at individual sensors at
the VLT primary for wavefront aberrations of 50 nmrms are of the order
of 1N/m?rms. Useful correction would require a bandpass up to 10Hz or
more, which cannot be achieved with the VLT axial support. 1 Hz would be
about the limit of its practical operation. The safest approach is therefore an
enclosure design which limits the pressures to 1 N/m? rms. However, this has
consequences for the natural ventilation, which, as the NT'T has proved, is
so important for good thermal conditions of the ambient air.

These conditions might be relaxed if a satisfactory method of measuring
the wind-buffetting deformation were available. This problem has been ad-
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dressed by Wilson et al. {3.214]. The possibility of detection by direct strain
measurements on the mirror blank was considered, but sub-molecular strain
values would be necessary to detect the astigmatism limits required. It was
concluded that only an optical method could give the required accuracy. By
the definition of the bandpass B, a closed-loop (natural star) method is not
appropriate in this bandpass [3.201], so an artificial source must be used.
The most promising method seems to be the so-called front detection method
based on the well-known Hindle sphere geometry (see §1.3.5.2). The appli-
cation of this geometry to wind-buffetting deformation detection is shown
in Fig. 3.70. It requires small auxiliary Hindle-type mirrors to be attached
to the primary, near the central hole or outer edge or both, which operate
in autocollimation via the secondary from a source in the image plane. The
authors [3.214] consider several other front-detection systems, some of which
may be easier to realise in practice; also back-detection systems of the sort
proposed by Tull {3.215], but these seem to be less practicable from a space
point of view. If the feasibility of one of these front-detection systems can
be confirmed, this should be a major step in removing this last weakness of
active, thin-meniscus technology. However, the support response will have to
be adapted to the bandpass requirements for wind-buffetting. A somewhat
thicker primary than ¢t = 175 mm for the VLT would ease the situation since

Sp

Ox—=*0

Fig. 3.70. Hindle sphere arrangement for detecting wind-buffetting deformation of
primaries (from Wilson et al. [3.214])
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the scaling law for deformation due to an external force or pressure goes with
t=3 (see §3.4.1). Another advantage of the scheme of Fig.3.70 is that the
effects of the local air in the path between the mirrors are also measured in
double pass.

Further experiments seemed to confirm the feasibility of this detection
system, but it has not finally been applied to the VLT. Even if it gave ac-
curate values of wind-induced astigmatism in the bandpass B, the normal
active support system, designed for bandpass A, would not be able to apply
correction at these higher temporal frequencies.

The situation in October 1997 regarding wind-buffetting prevention of
the VLT primaries, shortly before the first unit telescope was scheduled for
“First Light”, has been kindly communicated to me by L. Noethe of ESO.
The system intended is a development of thinking initiated at NOAO and
mentioned by L. Barr in connection with the Subaru project — see §3.5.5.1
below. The possibilities of sensing wind forces at the three fixed points were
considered and Barr mentioned the possibility of a hydraulic connection be-
tween the three fixed point sectors. The Gemini project extended the idea by
the possibility of a hydraulic “switching system” between 3 sectors and 6 sec-
tors. For the VLT, this concept has been developed further on the following
basis.

A system with 3 fixed points (sectors) is the natural basis for a “soft”,
active support. A constant (uniform) pressure by the wind produces identical
reaction forces at the fixed points and only the deformation modes n = 0 and
n = 3. A “tilt” (linear) pressure function over the mirror produces 3 non-
identical reaction forces and generates all deformation modes in a “filtered”
form. All other pressure distributions in elastic modes produce deformations
with identical elastic modes, a consequence of the important property men-
tioned above in this section, as though the mirror were in free space. Above
all, the most sensitive wind pressure mode with n = 2, but also the two
other significant modes with n = 0 and n = 3 (see the eigenfrequencies of
Fig. 3.68), are transmitted to the mirror. Suppose, however, that each sector
is divided into two, linked by a pipe in the hydraulic system which can be
opened or closed by a valve. If the valve is open, we have the normal 3-sector
support; if it is closed, we have 6 sectors. Such a 6-sector support is largely
a “position control” system. The modes that can be transmitted are n = ks
and n = ks + 1, where s is the number of sectors and £ = 0,1,2,... . This
can then transmit the modes

n=(0,1),(5,6,7),(11,12,13),...

Of the three most important wind-induced modes n = 2,3, 0, it follows that
the first two (above all, astigmatism) are excluded. In fact, the mode n =
3 can also be transmitted if the nodes correspond with the fixed points;
but this requires accurate azimuthal angular agreement which is statistically
improbable. Suppose at a given moment the valve is closed (6 sectors) and an
astigmatism measurement is performed over 40s. If the valve is then opened,
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this can be corrected, after which the valve is closed again. The problem with
this technique is that an astigmatism induced at high temporal frequency is
frozen in by the correction for the next 40s cycle. The optimum technique
is, therefore, to reduce the diameter of the pipe, acting as a valve, such
that the oil viscosity allows flow at frequencies lower than about 1/40 Hz,
thereby allowing normal active correction with 3 sectors; but such that it
blocks the flow at higher frequencies than about 1/40Hz, giving effectively
6 sectors. Thus, low temporal frequency wind effects are corrected by the
normal active optics, while effects of higher temporal frequency in bandpass B
are, to a considerable extent, blocked. The limitations to this higher frequency
blocking are:

— Modes n =0 and n = 1 are not blocked

— Intermediate frequencies in the range 0.1-0.5 Hz are inadequately blocked

~ The cell has a finite stiffness which, although much higher than the mirror,
allows some additional deformation under the wind pressure on the mirror
with 6 sectors

Noethe has estimated that the net efficiency of wind deformation blockage
should be ca. 50 %. While this cannot rival a complete detection and active
correction system in bandpass B (perhaps realisable with actuators at the
secondary of a telescope in which the primary corrects in bandpass A), it
nevertheless represents an elegant and valuable partial solution of the wind-
buffetting problem for large telescopes with thin meniscus primaries. Above
all, it allows a higher flushing speed for control of thermal effects, as dis-
cussed in §3.6.3.4 below, than would be acceptable with no control of wind
deformation.

3.5.5 Other active optics developments in current projects

It should be remembered that, at the end of 1992, only two telescopes were
actually functioning with an active optics system: the ESO 3.5m NTT with
its closed-loop, on-line system; and the Keck 10m telescope with open-loop
prime mirror control. However, since then, there has been much development
work with active telescope systems, some of which will be briefly reviewed
here. The nature of the active optics solution is essentially determined by
the nature of the primary: thin meniscus monolith; lightweighted monolith;
segmented mirror; very light, rigid, positional monolith. The advantages and
disadvantages of these approaches for active optics control in ground-based
telescopes are considered by Noethe [3.216]. Separate areas of active optics
development are space telescopes and radio telescopes.
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3.5.5.1 Thin meniscus projects

Further NTT-type projects. Plans existed for a number of projects in-
tended to reproduce the ESO NTT, with or without modifications or size
upgrades. The most advanced is the Italian “Galileo” (TNG) project, effec-
tively now complete (October 1997). This has some important new features,
above all concerning the mechanics of M3 and M3. However, the essential fea-
tures of the active optics system are those of the NTT. Another such project,
already clearly defined in 1992, was the 4m SOAR project (Southern Obser-
vatory for Astronomical Research) of the Universities of North Carolina and
Columbia. The quartz primary was intended to have a thickness of 200 mm
giving an aspect ratio of 20 and to work at f/2.0. These are very reasonable
extrapolations of the NTT parameters and do not require a change of the
active optics concept. A number of similar proposals have been held up or
abandoned because of funding problems.

The 2.5 m Nordic Optical Telescope (NOT). The 2.5m NOT, set up
at the excellent site of La Palma, is considered to be one of the best tele-
scopes in the world for its optical quality. The optics, made by Korhonen of
OPTEON in Finland as a passive telescope, were specified to have a quality
of dgo < 0.4arcsec. Tests [3.217] of the functional telescope confirmed that
this had been easily met with an average of dgg ~ 0.35 arcsec. However, there
were the inevitable variations of astigmatism and spherical aberration giving
values up to 0.42 arcsec at zenith and higher at large zenith angles. Since the
primary is quite thin (average AR = 16.8, thinner than the NTT), the tele-
scope is clearly well adapted to an active optics approach, although this was
not originally envisaged. The system planned as a modification was described
by Ardeberg and Andersen [3.218]. The axial supports contain pneumatic bel-
lows which can be regulated to give the required force changes. Figure 3.71
shows the improvements to be expected from existing image analyses. The
effective gain in average image diameter is about a factor of 2 for the basic
telescope quality. Coma is controlled at Ma, the other four aberrations at M.
The system is therefore identical with that of the NTT, except that defocus
is not mentioned; but that can easily be added. Precalibration of aberrations
with Z was envisaged, as in the NTT, and is certainly a good feature. The
calibrations of the force changes for the four elastically controlled aberrations
were done by FE calculations [3.219], not from analytical theory as in the
NTT.

With this system in operation, the NOT, with its excellent site and build-
ing design, has been able to equal the NTT in optical quality. This modifica-
tion to an existing passive telescope confirms the great advantage of the ESO
active optics system and algorithm in that it can be applied to any existing
passive support geometry. Even classically stiff mirrors will allow correction
of astigmatism, as the application to the 4m Cerro Tololo mirror (§3.5.3)
demonstrates.
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Fig. 3.71. 2.5m Nordic Optical Telescope (NOT): the expected improvements by
addition of the active optics control system for various zenith angles (from Ardeberg
and Andersen [3.218])

A complete active concept for manufacture and operation of a tele-
scope. In §1.2.2.4, an account was given of the stress polishing technique
used by Lemaitre and its possible combination with operational active optics
to give a unified active concept for producing and operating thin meniscus
primaries. This led to a proposal by Lemaitre and Wilson [3.136] [3.142] for
the fabrication of a thin 1.8 m prototype primary (f/1.8), potentially suitable
for the ESO VLT auxiliary telescope primaries, using a stainless steel blank
as discussed in §3.3.5.2.

The active optics concept is based on low spatial frequency tolerance
relaxation, because of subsequent correction in operation, and a very high
polishing quality of non-correctable high spatial frequencies, corresponding
to an excellent Intrinsic Quality (IQ). The combination with stress polishing
is clearly ideal because the stress polished surface is spherical, ensuring an IQ
of a quality which would be difficult to match by normal aspheric polishing.
Furthermore, the relaxation of low spatial frequency tolerances, above all of
astigmatism, is a major simplification of the stress polishing technique.

The proposal would be valid, with minor modifications, for a blank in
Zerodur, aluminium or stainless steel. However, for reasons of cost and the
fact that any subsequent warping in such a solid meniscus could easily be
corrected actively, the stainless steel option was preferred. The aspect ratio
is in the range of 30 to 45. Compared with Zerodur, the blank costs are enor-
mously reduced (about 20 KDM-compared with 180 KDM). The combination
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of active optics, stress polishing and thin stainless steel menisci appears to
be unbeatable for achieving high optical quality at a low price.

Recently, Lemaitre has extended the elastic theory for vase-shaped mirrors
(Lemaitre et al. [3.220]) and analysed in depth in a classic paper [3.221] the
cases of equal curvature and equal constraint cantilevers, giving further de-
velopments of formulae due to Euler and Clebsch [3.155]. He is thus equipped
with the necessary theory for the active production of a very wide range of
mirror forms and materials.

The Japanese 8.2m Subaru project. The 8.2m Subaru project is an
active telescope based on a thin meniscus primary and on the lines of the ESO
NTT and VLT concepts [3.91]. The 8.2m quartz primary has a thickness of
200 mm and is somewhat stiffer than the ESO VLT mirrors with 175 mm.
This is an advantage, above all in the extended active optics bandpass with
regard to wind buffetting.

The active optics aspects have been analysed and tested on model mirrors
with great care. Three papers [3.222] describe the development of the Shack-
Hartmann image analyser, an active experiment with a 0.62m glass mirror
tested holographically and a further experiment with the same mirror, tested
with the Shack-Hartmann analyser for various gravity-related inclinations.
The latter was seen as an extension of the ESO model experiment with a 1 m
test mirror with a vertical axis [3.204]. Satisfactory agreement between the
two measuring systems and with FE calculations was attained. Above all, the
third paper gave careful experimental evidence of successful active correction
also for inclined positions, as was later demonstrated in the functional NTT
[3.70] [3.72]. The active concept of the Subaru project was thereby confirmed.
264 computer controlled actuators are envisaged for the primary mirror. Fur-
ther details of the active support, including its hardware, are given by Iye
[3.223]. A notable technical feature is the high precision load cell (réelative
error < 10~4). The working principle is that it measures the frequency mod-
ulation of a small tuning fork which is subject to a strain force externally
applied. High precision actuators with a relative error < 10~* and a dynamic
range 0-60 kp are to be used. These actuators combine an active axial force
with a passive radial force and are embedded in bores in the mirror, as in
the Palomar 5m concept. The active force variation is achieved by driving a
spring, as in the ESO VLT.

Wind-buffetting of the primary is intended to be controlled, as in the
ESO VLT, by an enclosure design limiting the windspeed perpendicular to
the mirror surface to < 1.5m/s. A further possibility is to apply reaction
forces through the actuators up to a frequency of 1 Hz. Position control was
considered but abandoned except for the fixed points. Barr [3.224] states that
wind forces up to 10 m/s could be coped with to an accuracy of < 0.003 arcsec
of image degradation by an interconnected hydraulic piston support, arranged
in three sectors. He does not give the bandpass. No comment is made on the
detection problem addressed in §3.5.4.
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The Gemini 2 x 8 m project. As was indicated by Randall [3.54], the de-
cision on the nature of the primary mirror blanks was scheduled to be taken
in the autumn of 1992. The result was confirmed in September 1992, the
choice being a meniscus blank supplied by Corning. This choice was made on
the basis both of cost and technical security in the supply of the blank. The
Gemini selection board [3.225] believed that the work being carried out on
the ESO VLT and the Japanese Subaru projects, using a similar meniscus so-
lution, would lead to satisfactory solutions also in the two aspects considered
to be critical: wind-buffetting and mirror seeing.

3.5.5.2 Projects using lightweighted primaries

LBT (Columbus) 2 x 8 m and Magellan 6.5 m projects. It is now gen-
erally accepted that even stiff, lightweighted blanks of the type offered by
Angel will, in diameters such as here envisaged, flex to an extent that will
require active optics control. This was already recognised and proposed in
1983 [3.226]. The possibilities of active optics control of such mirrors were
also confirmed in connection with the Gemini studies, although doubts were
expressed concerning the dynamic range of deformation amplitude available
before high spatial frequency structure printthrough appears. The finer the
structure, the higher the danger. In general, the higher stiffness will give a
lower dynamic range of correction. This will not matter for flexure errors in
operation, since the requirements are automatically correspondingly reduced.
But the other aspect of active optics, compensation of manufacturing errors
from relaxed low spatial frequency tolerances, can be much less favourable.
The classical example is the Hubble Space Telescope where the lightweighted
primary was far too stiff to give the dynamic range for correction of the spher-
ical aberration from the matching error of the mirrors. The same would have
been true for the NTT primary if it had had a stiff lightweighted primary.

In the extended active optics bandpass B, the increased stiffness compared
with thin menisci is a definite advantage. The wind-buffetting situation is
certainly more favourable.

The thermal aspects of structured mirrors in borosilicate glass, already
favourable, should be further improved by active optics. This has been amply
confirmed by experiments in connection with the 3.5m WIYN new technology
telescope of NOAO, completed in 1994 (see Table 3.17 below, with literature
references). This telescope was an important development in that it combined
the 3.5 m BSC honeycomb blank with full thermal control and an active optics
correction system. The conclusion of Goble et al. [3.258] was that both are
necessary for a honeycomb blank of this size. The excellent results reported
for this telescope [3.259] have fully confirmed this concept.

3.5.5.3 Active optics in telescopes with segmented primaries. The
Keck 10m telescope is the standard here and its system for control was
mentioned in § 3.5.1, the aberration analysis being given in detail by Nelson
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Fig. 8.72. Keck 10m telescope: schematic of the control system arrangement
around one segment (from Meng et al. [3.227])

et al. [3.196]. The function of the prime mirror active control system is given
by Meng et al. [3.227]. The mirror figure is set from natural star observations
made during calibration. Maintaining this figure requires the recall of the
mirror relative positions set at calibration time, detecting changes and then
appropriately re-adjusting the mirror segments. Figure 3.72 shows one of
the 36 segments of the mirror with its gaps to the next segment and control
elements. Although each segment has 12 displacement sensors (2 on each of its
6 sides), they are shared by adjacent segments, so readout is 6 per segment.
Since innermost and outermost segments do not have 6 neighbours, there
are, in fact, 168 displacement sensors for the entire mirror. Repositioning the
mirror once a figure error is detected is achieved by changing the distance of
one or more attachment parts to the subcell support. Each segment sits on
a central fixed post about which it may be tilted by the action of any or all
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three actuators arranged in a triangle round the fixed post. The segment can
also be moved in piston owing to the flexibility of attachment at the fixed
post. The temperature sensors continuously monitor the temperature at each
joint. Readout is every 10 ms, actuator movement commands every 500 ms.

The evidence is that this complex system functions very well for the
total specification requirements of the telescope (dgo < 0.42arcsec of which
dgo < 0.34 arcsec for the primary mirror alone [3.23]). The limitations (§ 3.5.1)
are solely in the quality of segments (see § 3.2.1), particularly as the quality
of the secondary (see §1.3.3) is apparently extremely high (~ A/10) [3.27]
[3.28]. However, the open-loop active control system only controls the form
of the primary. Otherwise, only dc active correction is applied in closed-loop
with a natural star, at set up and calibration. If this remains the case, there
is no on-line control of decentering coma, defocus or low frequency ambient
air errors. It is to be hoped that this feature, with a real-time image analyser,
will be added, since this is missing for a full active optics system.

3.5.5.4 Mixed closed-loop and open-loop concepts. The Keck 10 m
telescope has a sophisticated open-loop control system for its segmented pri-
mary, calibrated in dc with a natural star (closed-loop) and correcting in
open-loop up to a frequency of 2 Hz.

The meniscus projects discussed in §3.5.5.1 all operate in closed-loop,
on the principles of the NTT, for the normal active optics bandpass A of
Fig. 3.62. For large, flexible meniscus primaries, the weakness is the effects of
wind-buffetting in the extended active optics bandpass B. A fully satisfactory
solution to this problem has not yet been proposed: in general (e.g. ESO
VLT and Japanese Subaru) the aim is prevention of wind-buffetting by ap-
propriate design of the enclosure. But this has dangers in restricting natural
ventilation, which could lead to increased errors from the ambient (local) air.
The optimum system would be a general active optics system covering fully
both bandpasses A and B.

Since the central problem up to now has been the detection problem of
wind-buffetting errors in closed-loop systems, the methods of open-loop de-
tection discussed in §3.5.4 (Fig.3.70) might provide the basis for a general
active optics system covering both bandpasses A and B. The active support
of a large, thin primary would then have an open-loop controlled support, ca-
pable of functioning over the modest dynamic range required for reasonable
wind-buffetting up to about 10 Hz. Below about 10~! to 10~2 Hz this would
be complemented by a normal, low frequency, closed-loop support system of
the type intended for the VLT or Subaru, which would have a much higher
dynamic range.

How such a general, combined support system would function from the
point of view of hardware remains a matter for further development.

3.5.5.5 Extremely stiff mirrors with positional active optics con-
trol. If a mirror cell unit can be made so stiff that gravity-induced defor-
mations become of the dimensions of optical tolerances, other possibilities
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are opened up. Normally, the flexure of large mirror cells is at least 3 orders
of magnitude higher than the optical tolerances. This fact has favoured the
“soft” (flotation) type of support ever since its invention by Lassell in 1842.
The possibilities of fibre composites, particularly CFRP, discussed in §3.2.4
may provide sufficient stiffness to use “hard” supports with positional con-
trol based on the stiff cell as an absolute mechanical reference with optical
stability quality. This is the optical concept of the 1.5 m Hexapod Telescope
(HPT) [3.100] [3.101]. Since inertia is low, there is even the intention of op-
eration in the lower part of the adaptive bandpass C, beyond bandpass B
[3.100]. This is the most ambitious project in active optics currently under
development. The results will be very interesting, whatever emerges from the
practical tests.

3.5.5.6 Space telescope applications. Since space has no atmosphere,
there is, by definition, no need of adaptive optics: it has no meaning in space.
But active optics is even more important in space than for ground-based
telescopes for four reasons [3.70] [3.72]:

— Because of the absence of atmospheric seeing, diffraction-limited perfor-
mance (also in the UV) is highly desirable. This can only reasonably be
achieved, from a manufacturing viewpoint, if low spatial frequency toler-
ance relaxation is available.

— The thermal regime in space is extreme. All those error sources in Table 3.11
whereby thermal effects on mechanics or optics apply, will require to be
corrected by active optics.

- Although (orbital) space is a zero gravity regime, the manufacture and
assembly are done under 1g and launch involves 5 g or more. Active optics
is, again, the answer to the errors induced by these changes.

~ The moon also counts as space. Here gravity is only one sixth of that on
earth, but not zero.

Much work has been going on for a considerable time concerning the
application of active optics to space telescopes, above all in the United States
[3.228).

The principles of the ESO active optics system, as outlined in §3.5.2, can
be taken over directly to space applications. Since there is no gravity weight,
push-pull supports are essential. This is a simplification of the principles, not
a complication, although it involves bonding the supports to the mirror. The
laws governing the effect of forces are no longer the Couder Law, arising out of
the gravitational effect, but the basic flexure laws of independent point force
(x D2/t3) or independent pressure (o< D*/t3), from Egs. (3.25) and (3.19)
respectively. The modal concept of flexure will apply in space exactly as for
ground-based telescopes. The optical relations governing the sensitivity of
the secondary to decentering coma and defocus are unaffected by the space
environment: only the specification and correction tolerances will be much
tighter.
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Much of this approach was studied in detail by MATRA Espace [3.229).
The first part deals with the study, manufacture and test of a “Shack-
Hartmann” image analyser using a CCD detector. In fact, the preferred form
does not use a Shack lenslet raster, but a screen containing an array of pin-
holes, whose diameter and spacing can be optimized. It is therefore essentially
of the type described by Bahner and Loibl — see §2.3.3.2. The authors con-
clude that this analyser can be successfully applied in space applications.
With a 20 x 20 sampling mask, this sensor was able to measure deformations
of a thin meniscus (D = 820 mm, ¢ = 5mm, i.e. AR = 164) using 111 actua-
tors to a measurement sensitivity of < 0.02 Arms. Part 2 was concerned with
a validation of the active control of the meniscus. Corrections from several
wavelengths of error down to A/10rms wavefront error were achieved. It is
pointed out that, for space applications, attention should be paid to the linear
behaviour of the actuators and solid friction effects inside them. The exper-
imental results are in good agreement with NASTRAN predictions. Friction
effects led to the need of two or three iterations to acquire the final accuracy.

This study seems to confirm completely that the active optics concept
can be applied in space. As in ground-based astronomy, the evidence is that
it will not only give the best results but will also be the cheapest way of
achieving top quality.

The initial matching error of the HST remains the best proof that active
optics is essential in space telescope optics. Furthermore, it demonstrates
that mass reduction by the use of thin flexible menisci, giving not only the
possibility of active modal control in orbit but also of large dynamic range
with corresponding tolerance relaxation in fabrication (e.g. for matching er-
ror) is a more general solution than mass reduction by stiff, lightweighted
primaries. With the modern technologies of figuring and testing described in
Chap. 1, such thin menisci can also be manufactured to the necessary high
spatial frequency quality (IQ).

3.5.5.7 Active optics in radio telescopes. Radio telescopes as such are
outside the scope of this book. However, active optics techniques in the visible
waveband may have great significance for the optimization of short wave radio
telescopes in the mm or sub-mm wavebands.

A résumé of the situation for the main reflector is given by Gallieni [3.230].
He quotes the requirement of the measuring accuracy as A/20, that of the
control positioning system as A/200, the total accuracy requirement being
A/20rms. The measurement system considered optimum is based on mi-
crowave holography [3.231]. The time needed for evaluation is given by Tarchi
and Comoretto as about 1 week, but it can be carried out without disturbing
normal operations. Gallieni considers the knowledge is available for a test
system, routinely included in radio telescopes and independent of its geom-
etry and structure, enabling the verification within 1 hour of the shape and
alignment of the optical system.
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If basic calibration is done with high accuracy by the above method of
microwave holography, the remaining problem is one of detecting differen-
tial changes from this calibrated state at a higher frequency, i.e. up to the
highest frequency flexure generated by wind. If optical mirrors are attached
to the main reflector, as discussed in §3.5.4 and ref. [3.214] and shown as
an example in Fig. 3.70, with sufficient sampling to provide information on
the significant bending modes, which will have the same elastic nature as for
optical mirrors, then an optical detector of the Shack-Hartmann type could
register the differential modal changes at any frequency required. Alterna-
tively, the optical supplementary mirrors could follow the parabolic shape of
the reflector and the S-H detector work in closed-loop on a natural star. But
this system, in contrast to the open-loop front detection methods such as that
shown in Fig. 3.70, would be limited to bandpass A by the atmosphere.

Gallieni points out that the panel nature and requirements are similar,
in principle, to those of the Keck 10m telescope primary: a similar “self-
reference”, open-loop control and test system for the main reflector is pos-
sible. Apart from its own control signals, this system could react, possibly
with an overlay control system, to the signals given by the optical detector
measuring the complete system quality, including alignment. As a two-tier
system, this is analogous to the proposal of §3.5.5.4 for large optical tele-
scopes, but in the radio case, both tiers could be open-loop systems without
use of a natural star.

3.5.6 Conclusions on the current state of development
and future potential of active optics in telescopes

By 1992, active optics was so firmly implanted in ground-based telescope
technology that it could be considered as “state of the art”. However, there
were still only two “active” telescopes already functioning, though many were
in various stages of development. These two were, firstly, the ESO 3.5m NTT,
based on a consistent scheme (Table 3.11) for low bandpass (Fig. 3.62), closed-
loop operation on a natural star, in operation since early 1989; and, secondly,
the Keck 10m telescope with its internal (open-loop in the sense that it
does not rely on a natural star) prime mirror control extending well into the
bandpass B of Fig.3.62, but without the closed-loop control of secondary
movements to correct decentering coma and focus in the normal bandpass A.

An excellent overview of active optics technology has been given by Ray
[3.232], including 105 annotated references. This is limited to ground-based
systems, including military applications. Support aspects for large mirrors
are given much emphasis. The SOFIA 2.5m IR telescope, to be carried by
an aircraft, is mentioned as a special case since it imposes special problems
by its airborne nature apart from normal low bandpass active correction.
Ray emphasizes, with the support of many references, the enormous gain
in efficiency and observing time resulting from active optics improvement of
image quality in telescopes. We shall return to this aspect in Chap.4. Ray
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also points out clearly that after much earlier resistance of the astronomical
community, which has always reacted conservatively to technical change, the
validity and advantages of active optics in large telescope systems are no
longer in doubt.

Since 1992, there has been a steady advance of active optics on a broad
front, above all with the development work associated with the largest
ground-based telescopes, notably the ESO VLT, the Japanese Subaru project
and the international Gemini project, accounts of which are given above.
On a smaller scale, the development of the 3.5m Galileo (TNG) telescope
and the “activation” of the 2.5m NOT are notable. Although the latter was
not planned as an active telescope, its relatively thin primary (see §3.5.5.1
above) and general concept were ideally suited to this conversion. Apart from
ref. [3.218], this is documented in a number of reports of the Nordic Optical
Telescope Scientific Association. Today (1997), the NOT may be considered
a fully functioning active telescope of excellent optical quality. The question
is often asked, what the minimum size for a ground-based telescope would
be, below which an active concept is not justified? My own view is that it is
still justified at 1.5 m diameter, but marginal at 1 m.

In contrast to ground-based developments, there is still not a single active
telescope in space. This is partly due to the modest apertures of space tele-
scopes compared with large ground-based instruments, but also to the deep-
rooted aversion to mechanisms which may fail in space and vitiate a whole,
costly mission. However, as discussed in §3.5.5.6, the advantages of active
optics for space telescopes are enormous and irrefutable. Furthermore, if the
mechanisms involved can be made sufficiently reliable, there is no serious
technical problem in the realisation [3.229]. Above all, with the experience
of the 2.4m HST, it seems clear that any future project of comparable or
larger size will be based on active optics control. This was the tenor of the
workshop held at Pasadena in March 1991 concerning the design principles
of a future space telescope of the order of 6 m in diameter.

3.6 Local environmental aspects of telescopes

3.6.1 Definition of “local air” and its importance

“Local air turbulence” is a term used in this book to cover all those aspects of
image deterioration provoked by the air in and around the telescope installa-
tion. It covers the error sources commonly called “mirror seeing”, “telescope
structure seeing”, “dome seeing”, and “site seeing”. By definition, there is no
isoplanatic angle limitation as with external (atmospheric) seeing. “Site see-
ing” has no clear division from the general, larger-scale effects of heat stored
in the ground and liberated at night to influence the lower layers of the gen-
eral atmosphere: but it can often be identified as a specific local influence of

nearby roads, ramps, paved areas or buildings.
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Local air effects on the image have been known for 100 years or more, but
were earlier masked by manufacturing, support or expansion-induced errors
(see Table 3.11). The general introduction of low or quasi-zero expansion
materials for mirrors was accompanied after about 1940 by the rapid and
increasingly general introduction of electronics, accompanied by major heat
sources. Ritchey’s telescopes (see Chap.5 of RTO I) had virtually no heat
sources except human beings and early electric motors. The last big refractors
at the end of the nineteenth century introduced huge buildings and domes,
but astronomers were accustomed by visual observation to working in cold
and uncomfortable conditions.

Between 1950 and about 1980 telescope optics went through a relatively
conservative consolidation phase after the technical advances of the Palomar
5 m telescope. This included the construction of massive buildings and domes,
usually including office space, workshops, etc. The inevitable heat sources,
worsened by increasing use of electronics at the telescope and instruments,
had the result that the advantage in image quality from zero expansion ma-
terials and improved manufacture was often thrown away by “dome seeing”
effects. Since the statistics of the local air effects usually (but not always) pro-
duced round images and no scientific measure of external seeing was available
on-line, it was concluded, globally, that the “seeing” was inferior. Of course,
there were a minority of astronomers and engineers who were well aware of
the “dome seeing” problem and did their utmost to improve thermal con-
ditions. Of the classical “Bowen-type” telescopes (Chap.5 and Table 5.2 of
RTO I), the 3.6m CFHT and the 3.9m AAT were probably the most suc-
cessful because of clear awareness and support of the management in these
endeavours. The ESO 3.6 m telescope was equipped in 1980 with a sophis-
ticated temperature sensing system, but this was unfortunately not used in
a systematic programme for dome seeing improvement, although there were
sporadic improvements. The global situation is reflected, together with other
technical weaknesses of passive telescopes, in Fig. 3.67. Recently (1997), the
optical quality of this same telescope has been markedly improved by a sys-
tematic programme analysing and correcting error sources.

The aim of these sophisticated buildings was laudable in that it was hoped
to achieve a micro-climate corresponding to the night situation and protect
the telescope from the sunshine and heat of the day. But the aim was often
sabotaged by the air volume involved and the internal heat sources permitted
in incorporating other functions in the building. The two essential purposes
of the enclosure were then lost sight of: not only should the telescope be
protected from heat sources during the day, but the enclosure should al-
low maximum adjustment of the telescope to the night conditions. At night,
therefore, the optimum enclosure is one giving the necessary wind-buffetting
protection with maximum ventilation: at low windspeeds, no enclosure is the
best. Compared with the delicate compromise concerning wind, the provision
of a shelter to protect the telescope from rain, snow, etc., is a relatively simple
matter. In other words, thermal control is the central problem.
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Until recently, two technical measuring devices were missing in the neces-
sary equipment for fully scientific advance in local seeing effects: a sophisti-
cated detector or image analyser and an external (atmospheric) seeing mon-
itor. The former enables one to separate effects and analyse the errors from
different local sources [3.70]; the latter is essential to separate the external
seeing and to know the extent of the total local errors (Fig.3.67). Both of
these devices are available at the ESO NTT, but even today, few installa-
tions have a seeing monitor and even fewer have an image analyser capable
of modal analysis. We shall see below, from notable work at the 3.6 m CFHT,
that excellent measures of local air errors can also be obtained with classical
telescopes without modal analysis if a suitable detector is applied in a system-
atic programme. Apart from the image sensor aspect, the thermal parametric
situation in a telescope-enclosure structure is extremely complex and requires
a sophisticated sensor installation (essentially for temperature differences and
air speeds) in order to get systematic information. Only recently have such
general systems, incorporating all requirements, become available. This is the
reason that earlier work, although valuable, could usually give only qualitative
results.

This is well illustrated by the classic paper of Lowne [3.233], who per-
formed the first quantitative investigations of “mirror seeing”. Lowne referred
to previous work [3.234] [3.235] [3.236] and concluded that there were too
many factors that could not be adequately controlled in a real telescope.
At the suggestion of R. G. Bingham, he therefore investigated mirror seeing
with a laboratory experiment in carefully controlled conditions. First of all,
qualitative observations were made with a heated mirror about 5°C warmer
than the ambient air. With a horizontal mirror (vertical axis), once thermally
stabilized with regularly rising air bubbles under otherwise extremely stable
conditions, the deterioration of the Airy diffraction pattern was minimal over
a period of 20-30 s. However, the slightest general air movement was sufficient
to upset these stable conditions, giving major image degradation due to slow
turbulent motions. A fan producing a lateral air velocity across the mirror
surface of 0.1 m/s produced no improvement. With a lateral wind-flushing
velocity raised to about 1m/s, the warmed air was stripped from the sur-
face and the Airy pattern was largely restored, although with movement in
the diffraction rings. Inclining the mirror improved the situation as warmed
air could convect off more readily. Lowne found that these effects could still
be observed with a temperature differential of only 1-2°C, values typically
measured in the 2.5m INT (see Table 5.2 of RTO I) and other telescopes.

Quantitative results were then obtained at the center of curvature of a
spherical mirror of zero-expansion substrate with 254 mm aperture and 2m
radius of curvature. The image was magnified 250 times by a microscope ob-
jective giving an effective focal length of 500m. A calibrated iris diaphragm
was then used to measure the energy passing through different diameters.
Figure 3.73 shows the results for a horizontal (vertical axis) mirror at a tem-
perature 6 °C above ambient and with three different flushing air velocities
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across the mirror. The dashed curve shows the undisturbed image (without
heating) of the mirror and is essentially the diffraction image encircled en-
ergy function given in Fig. 3.104 of RTO I. Without any flushing, the image
degradation for the horizontally disposed mirror surface, the worst case, was
about a factor of 4 in encircled energy diameter for 6 °C above ambient tem-
perature. The dramatic improvement with a 1m/s flushing air velocity is

apparent.

Lowne also demonstrated the dramatic improvement produced by inclin-
ing the mirror from the horizontal in the absence of flushing air (Fig.3.74).
If observations are weighted towards zenith distances Z ~ 10°, the slope of
the line for positive temperature differences is about tan~!1/2, i.e. a posi-
tive temperature difference of AT degrees C of the mirror produces a mirror
seeing of the order of AT/2 arcsec. Since Lowne’s work, this has been the
accepted rule-of-thumb in astronomical observatories using big telescopes.
Lowne also measured the effect of a negative AT, i.e. of a mirror colder than
the ambient air. Lowne’s results suggest that a cooler mirror is much less
deleterious, but the negative range of —2 °C was insufficient to quantify this
accurately. Since then, a factor of 3 has often been quoted as a measure of the
relative image degradation of a warm compared with a cold mirror with the

same |AT|; but later measurements (see below) suggest that this important
matter is by no means clearly settled.

Lowne showed that air flushing still functioned well with an inclined mir-
ror and performed experiments simulating a radial flushing system operating
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Fig. 3.74. Image degradation measured by d7s in arcsec induced by the heated
254 mm diameter mirror (6 °C above ambient temperature) with natural convection
at different inclinations Z from horizontal (axis vertical) (from Lowne [3.233])

outwards from the central hole. His results were very positive in reducing
the excess (positive) surface temperature, in removing warmed air in laminar
flow and in randomizing the warm air cells to a more uniform fine structure.
Lowne’s work was the first clear proof of the remarkably beneficial effects
of modest laminar air flushing and the serious consequences of lack of flushing
in the presence of a significant positive AT of the mirror (AT more than +1
to 42 °C). This was the essential basis for the NTT building concept: natural
ventilation and a prime mirror always cooler than the ambient air.

3.6.2 Recent evolution in telescope enclosures
and “local air” error measurements in functioning telescopes

As mentioned above, the concept of an expensive building with a dome enclos-
ing reflecting telescopes is relatively modern. The Melbourne 4-foot reflector
of 1869 (Fig.5.7 of RTO I) had simply a roll-off shed to protect it, observa-
tions being done with the free-standing telescope. After their introduction for
the last big refractors, the building-dome structures swelled to the opulent
designs for the Palomar 5m telescope and the succeeding telescopes of the
“Bowen-type” of 3.5-4m aperture. Figure 3.75, taken essentially from Nelson
[3.237], shows a comparison of the cross-sections of the enclosures of a num-
ber of typical telescopes in comparison with that of the Keck 10 m telescope.
The ESO NTT and VLT enclosures have been added, on the same scale,
to Nelson’s nine figures. Note that the included circle shows the aperture
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of the telescope to the same scale. The reduction in size of the enclosures
relative to the telescope aperture is striking in the more modern designs of
the 4.4m MMT, 3.5m NTT, 10m Keck and 8 m VLT. There is a corre-
sponding reduction in the volume of local air enclosed. This huge air volume,
together with the high thermal capacity of classical primaries, has been the
principal problem of the preceding Bowen-class telescopes. The dome and
mirror seeing problem of such telescopes was illustrated by the comparison
of the ESO 3.6 m telescope with the NTT and other La Silla telescopes in
Fig. 3.67. Improvements have been made recently, but dome and mirror see-
ing remain a major limiting factor of this telescope. The 3.8m AAT has
probably been more successful with its very powerful ventilation system, and
the 3.6 m CFHT the most successful of these telescopes because of the sys-
tematic analysis and improvement programmes. Comprehensive results have
been reported by Racine [3.238], certainly the most valuable and complete
investigation of local air errors yet carried out in a functioning telescope.



320 3. Modern telescope developments: segmentation and mass reduction

Earlier work by Bely [3.239] had demonstrated the importance of analysis
and control of local air seeing.

The detector for the work reported by Racine was the fast guiding imager
high-resolution CCD camera (HR Cam) used regularly for several years at
the PF of the CFHT. In 1986 thermal and wind sensors (thermistors) were
installed in and around the telescope and dome, read out every 10 minutes to
a data logger. The thermal data was, in fact, limited to two key temperature
differences,

ATm:Tm*Tt
ATd:Tt—TO s

where T, is the outside temperature (i.e. the local air outside but near the
dome), T, the surface temperature of the primary mirror and 7; the tem-
perature at the top of the Serrurier trusses, 8.5m above the primary. (For
comparison, a similar but more comprehensive temperature logging system
was installed on the ESO 3.6m telescope in 1980, together with a TV sys-
tem displaying the image profile; but, in contrast to the CFHT, the will and
interest to exploit it systematically was absent at the time). Racine gives
distributions showing the correlations between T} against T, and T, against
Tt'

The image quality was measured with the HR Cam and given as the
FWHM in arcsec. Experience showed that the fast tracking facility of the
HR Cam reduced the FWHM by a factor of about 1.3 by removing wavefront
tilt effects present in the normal slow-guiding mode. Figure 3.76 shows the
raw image quality data, a log-normal curve being fitted to the total population
in the histogram and to the shape of the distribution at FWHM > 0.60 arcsec.
The absence of values below 0.40 arcsec is explained by the limit imposed
by the quality of the optics, estimated as 0.38 £ 0.02 arcsec. The hatched
histogram is for image quality data when AT, < +0.5°C. This improves
the median value from 0.62 to 0.56 arcsec. Image quality distributions are
also given as a function of sec Z, the zenith angle, and these plots show
qualitatively that, for a given AT, mirror seeing is more critical than dome
seeing.

The separation of the effects of external seeing, optical system errors,
mirror and dome seeing is achieved by a simple model based on Kolmogorov
turbulence as given by Fried (see Chap. 5). The angular spread is then given,
in Racine’s notation, by

w [ / C? dl] " (3.62)

Thus image degradation from different turbulent layers add according to the
5/3 power law, Cr being proportional to the temperature gradient across a
layer. The air layer between two points separated by a distance ! and differing
in temperature by AT will therefore produce an angular image spread
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Fig. 3.76. Histogram, also with the log-normal fit, of image quality at the CFHT
prime focus measured on HR Cam CCD frames. The hatched histogram is for
measurements when ATy, < 40.5°C. (From Racine [3.238])
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Furthermore, in a horizontally stratified layer, such as the external atmo-
sphere producing w,, we have for the air mass dependence d! = dlysec Z, so
that

wn(Z) = wn(0)(sec Z)3/5 (3.64)

Racine assumes the isotherms for an inclined mirror remain parallel to its
surface as they rise into a vertical air cylinder and their temperature decreases
(by mixing with ambient air) with a scale height ho. By integrating Eq. (3.62)
along light rays within the cylinder of rising turbulence and averaging over
the (cylindrical) beam, Racine deduces

w3/? o AT2(1 — e~ Dot Z/ho) (3.65)

If D/ho > 1, wy, is hardly affected by Z since the turbulent cells decay
while still in the light path. If D/hy < 1, wy, decreases rapidly with Z, as
(D cot Z/hg)3/%, because only the air near the mirror surface is subject to
mirror turbulence. Taking, for D = 3.6 m, the value of hy ~ 0.5m as typical,
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following Iye et al. (to whose work we shall return below), Racine concludes
that mirror seeing will be effectively independent of Z for Z < 70°. He also
assumes the change of decentering coma (roughly proportional to sin Z) and
other errors of the telescope optics will vary little with Z. Then, in general,
the median global image spread w for the CFHT can be written

WP = W3sec Z + wilP + o3 ATE + o5° AT? (3.66)

where

wn, = median external seeing at Z = 0

woept = median angular aberration of the optics
am = coefficient of mirror seeing

ag = coeflicient of dome seeing

Using Eq. (3.66), the data were used to determine the coefficients a,, and ag.
Figure 3.77 shows the angular image spread resulting from mirror seeing.
The ridge line drawn through the data represents a plateau of FWHM =

0.56 arcsec to which a mirror seeing of w,, = amATf,i/ ® is added as a 5/3
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Fig. 3.77. Angular image spread due to miérror seeing in the CFHT. The mirror
seeing contribution occurs only at AT,, > 0 and is superposed on the constant
plateau 0.56 arcsec due to other sources. (From Racine {3.238])
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power law for AT,,, > 0°C. A least squares fit yields for the median coefficient
of mirror seeing

O, = 0.40 + 0.05 arcsec /°C%/® (3.67)

The plateau represents the other terms of Eq. (3.66) apart from that in oyy,.
This result is of great importance not only as a practical determination of oy,
in a functioning telescope but also as indicating that a colder mirror (AT < 0)
is very much less deleterious to seeing than a warmer one. Figure 3.77 suggests
the effect of the colder mirror for temperature differences down to AT =
—2.5°C is not detectable. Cautiously, Racine deduces that the effect is at
most 1/3 of that of a warmer mirror, referring to the rule-of-thumb in use.
We shall see below that this is supported by Iye et al. and compare the results
with other experiments.

Racine deduces a similar function for dome seeing (Fig. 3.78), deriving in
a similar way

g = 0.10 & 0.05 arcsec/°C®/5 (3.68)

The value for aq4 is thus 4 times smaller than oy,. Racine suggests that
the mixing length Iy between air volumes across the dome slit, which one
would expect to be of the order of the slit width (6 m), is larger than the
scale height of convection above the mirror hy by a factor of ca. 45/3 ~ 10.
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Fig. 3.78. Angular spread due to dome seeing in the CFHT, for AT, < 0.5°C.
Again, the dome seeing contribution occurs only at AT > 0 and is superimposed
on the constant plateau 0.56 arcsec due to other sources. (From Racine [8.238})
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This would be consistent with the value assumed above for hg and a slit
width of 6 m. It is important to note that, according to Fig.3.78, a AT; =
+3.5°C can still generate dome seeing of about 0.4 arcsec, even though the
coefficient a4 is smaller than a,,. Such AT, values can readily occur in the
Bowen-type telescopes, if attention is not given to heat source prevention and
reasonable ventilation. Rapidly falling external tempertures are particularly
dangerous, since there is inevitably a thermal time lag with the high mirror
and air masses. As an example, around 1980, when the dome conditions of the
ESO 3.6 m telescope were much worse than today, the effective final seeing
corresponding to Eq. (3.66) was largely determined by whether the outside
temperature was tending to fall or rise, the latter giving markedly better
seeing. At the CFHT, the biggest improvements in dome seeing have been
achieved by the refrigerated observing floor and elimination of air leaks and
heat sources above it. It is estimated that the residual solar radiation (heating
power) entering the dome during a sunny day amounts to about 30 kW. This
would raise the temperature about 5 °C if the heat were not absorbed by the
cooled floor and air chiller units in the telescope area.

Other specific sources of dome seeing have been identified at the CFHT,
notably air venting from the top louvers, radiative heat loss from the outer
skin and slit edge turbulence. Further work was under way, for example,
cooling the primary by ducted air from the dome air chillers.

The above work on the CFHT was admirable in demonstrating the
progress that can be made in removing local air errors with a classical thick
mirror and large building, if the matter is approached systematically. Another
admirable example, attacking local air errors in the framework of a general
upgrade using active optics principles, is the work of Baldwin et al. [3.208]
on the 4m Cerro Tololo telescope.

One aspect of great importance that could not be addressed in Racine’s
work on the CFHT was the effect of wind flushing, since this is not normally
available inside a classical dome unless fans are specifically built on to the
telescope structure, as Lowne suggested.

Although the above work with the CFHT has shown that good dome and
mirror seeing results can be achieved with classical telescopes and building
concepts, the modern trend is undoubtedly away from such enclosures. The
second row in Fig.3.75 shows classical enclosures which are relatively high,
the aim being to get above “ground seeing”. But the advantage of this has
never been confirmed. At the ESO La Silla observatory, both the 2.2 m MPIA
telescope and the 3.5m NTT are much lower than the 3.6 m telescope but
have appreciable superior dome seeing, although neither telescope is sited at
a marked local peak like the 3.6 m. They are, however, on the main ridge
with the prevailing wind roughly orthogonal to the ridge.

The 4.4m MMT enclosure (Fig.3.15) marked a milestone in the devel-
opment of telescope enclosures. For the first time since its introduction, the
classical “dome” construction with a slit was abandoned. (Of course, the
step towards a symmetrical building rotating with the telescope was a logical
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consequence of the alt-az mount, but this step had not been taken for the
Russian 6 m telescope or the 4.2m WHT). Essentially, opening the building
implied taking the lid off a rectangular box, giving an opening of the same
area as the telescope area itself. This has obvious advantages for convectively
removing hot air. Considerable attention was also given to temperature dif-
ferences between the ambient air and the enclosure and telescope structures
(i.e. “dome” and “telescope” seeing), including a thermogram and radiation
cooling analysis by Beckers and Williams [3.240]. The thermograms revealed
the strong radiation cooling from enclosure and telescope structure and cal-
culations gave AT = —8°C for the enclosure roof relative to the ambient
air, in reasonable agreement with the measured value of AT = —6°C. That
this can produce a dangerously unstable colder air layer compared with the
air in the telescope chamber, was first pointed out by Meinel [3.241] and is
now quantitatively confirmed by the CFHT experiments of Racine [3.238]
discussed above. At the MMT, the floor and yoke were covered with wood
and styropor insulation, while other surfaces were tested with various surface
covers: TiOg paint, Al paint, Al foil and “Maxorb”. As a result, wherever
possible, the surfaces were covered with adhesive Al foil. This is a relatively
simple solution to apply and is a procedure from which other telescopes could
certainly profit. It confirms, too, the trend away from “white” enclosures to
ones constructed of aluminium panels (at La Silla, for example, the 2.2m
MPIA and 3.5m NTT enclosures). The aim is to reduce the IR emissivity.
According to Beckers [3.242], the 10m Keck telescope was also treated to
reduce radiation cooling (above all to prevent thermal warping affecting the
pointing). In this case, a special aluminium paint was applied.

Gillingham [3.236] identified a correlation between image motion and tem-
perature excess in the AAT dome, using pairs of 5cm holes of a Hartmann
type mask. The question of such dome-induced image motion was pursued
by Forbes at the MMT (3.243]. Using microthermal sensors mounted 3m
above the floor and near the opening, Forbes also found a correlation be-
tween an increase of microthermal activity and image blur. He concluded
that, in agreement with Gillingham and Young [3.244], such microturbulence
causes image movement in a small aperture telescope and blur (speckle) in a
large aperture telescope. This is to be expected from the small air cell size of
the microturbulence.

Following Racine’s argument concerning the link between slit size in a
classical dome and the mixing length ly between air volumes across the dome
slit, i.e. Iy being of the same order as the slit width, it is clear that an opening
(slit) no smaller than the telescope chamber itself, as in the MMT, should
bring a major advantage in dome seeing compared with classical domes.

The enclosure of the 3.5m ESO NTT (Fig. 3.27) was essentially the same
concept as the MMT building, but with the important modification that the
back wall of the MMT telescope chamber was removed to allow free natural
ventilation through the NTT “building slit”. Like the MMT building, the side
walls are vertical, allowing free convection. If the louvers are opened behind
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the telescope and the windshield is down, the NTT is effectively open at the
top, front and back. We shall return below to the remarkable potentialities
of the NTT as a test bench of the dome, mirror and site seeing. Here, two
examples will be given which were recorded soon after “first light” and which
illustrate “mirror seeing” and “telescope structure seeing” (from radiation
cooling) respectively [3.70]. It must be borne in mind that, at this early stage
of its operation, no thermal sensors were available and that the building ther-
mal control was far from optimal because of technical work. In general, the
primary mirror probably had a AT, > 0, but the effects could be mitigated
by natural ventilation in a way that would be impossible in a classical dome.

The “mirror seeing” effect was observed near zenith as third order spheri-
cal aberration. Under stable air conditions (poor ventilation), axisymmetrical
modes are to be expected near the zenith and this is the lowest such mode
apart from defocus. Figure 3.79 shows the evolution over about 2 h as the wind
slowly increased to about 5ms~! and “blew away” the hot air layer. The ini-
tial coefficient of Sph3 of about —1630 nm corresponded to a dgg ~ 0.3 arcsec
or FWHM ~ 0.2 arcsec. Unfortunately AT,, was not known at that time.

Time (hours) —

1 2
T

Fig. 3.79. Mirror seeing in
the ESO 3.5m NTT during a
night in March 1989 shortly
after “first light”. The his-
togram shows the evolution of
-500 | - the first axisymmetrical nat-
ural mode. The coefficient of
—1000nm (equivalent to a
coefficient of Sph3 of about
—1630nm) was reduced over
about 2 hours to a mean level
-1000f- 1 of about —350nm by a mod-
est ventilating wind. (From
! i Wilson et al. [3.70])
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The second example, illustrating “telescope structure seeing” (possibly
in combination with convection effects from the “warm” primary) was the
observation over more than 1 hour of a very stable quadratic astigmatism
(x cosd¢) aberration, the telescope being at Z ~ 50° and pointing away
from the wind, i.e. with the wind behind the primary so that ventilation was
poor. The coefficient corresponded repeatedly to dgo ~ 0.2 arcsec and was so
stable that we sought an explanation in mechanical flexure. However, there
is no evident source of such a flexure mode due to Z ~ 50° in the NTT. The
experiment was made of observing a star at Z ~ 50° with an azimuth change
of ~ 180°, thus observing into the wind. The systematic aberration vanished
completely. Since temperature sensors were not available, we could not prove
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it, but the most plausible explanation was a radiation and conduction cooling
effect of the spiders holding M3 leading to 4 cold nodes and a cos 4¢ mode.

These examples show the power of image analysis for investigating local
air errors. We return to this below.

3.6.3 Other recent investigations by laboratory experiment
or theory: mirror seeing

3.6.3.1 Cooled, lightweighted blanks. One of the principal advantages
claimed for lightweighted, honeycomb type blanks of the sort developed by
Angel using borosilicate glass (see §3.3.4) is the low mass and accessibility
of the material to air cooling. Woolf [3.245] claimed that this provided the
best solution to the mirror seeing problem, a viewpoint that has repeatedly
been presented.

The design and demonstration of such a system of thermal control for a
honeycomb blank was given by Cheng and Angel [3.246]. The general aim is to
follow the ambient temperature while maintaining low internal temperature
gradients. Essentially, air jets at ambient temperature are directed into the
mirror structure. The aim is to limit the angular effect of support forces and
mirror seeing to < 0.1arcsec, the temperature difference to the ambient air
being then defined as AT, < +0.2°C. These two figures are in excellent
agreement with the subsequent experimental determinations of Racine (see
Eq. (3.67)) for a conventional, massive blank. The temperature gradients
should be limited to 0.1 °C. These goals must be maintained for cooling at
0.25°C/hour in a typical observatory environment. The general scheme for
such forced convective ventilation is shown in Fig.3.80. Streams of air, all
at the same ambient temperature, are directed against all the internal, edge
and back surfaces of the mirror. The cooling rate should match the convective
cooling of the front face. However, active temperature control is envisaged to
give more flexibility. The system used an exchanger and servo system to
control the temperature of the ventilating air. The test results, stated to
be valid for blanks up to 8 m diameter, were able to meet the requirements
defined above. A time constant of less than one hour for the overall response

Fig. 3.80. Lightweighted hon-
eycomb blanks of borosilicate
glass: schematic of the mir-

ror ventilation system (from
Cheng and Angel [3.246})



328 3. Modern telescope developments: segmentation and mass reduction

was readily achieved. It was concluded that such a system would remove all
problems of expansion of the BSC glass as well as mirror seeing.

Further information and confirmation was given by Cheng and Angel in
a later paper [3.120], addressed more specifically to 8 m honeycomb blanks.
The target for mirror seeing is a blur with FWHM < 0.06 arcsec. Regard-
ing Lowne’s suggestion of introducing fans to reduce convective turbulence,
Cheng and Angel doubt whether a laminar flow could be maintained over
an 8 m mirror: at least, this remains to be proved. The authors show that
their cooling system can achieve the stringent aims for an ambient cooling
rate of 0.25°C/hour, the front face temperature lag being ~ 0.2°C for a
wide range of convective wind conditions. At 0.5°C/hour, the lag increased
to 0.31-0.47 °C; but this is a rapid ambient air cooling rate which may well
produce poor conditions from other sources.

3.6.3.2 Internal cooling in meniscus mirrors. The possibilities of inter-
nal cooling of thin menisci in low expansion glass have been considered in de-
tail by Barr et al. [3.247]. From the results of the investigations by Lowne and
the work at the CFHT, Barr et al. concluded that the front surface of an 8 m
mirror should be within the range +0.1 to —0.2°C of ambient temperature.
This factor of only 2 between warmer and colder mirrors seems over-cautious
in view of the results of Iye, to be considered below, and Racine [3.238]. The
authors consider menisci of the geometry proposed for the 8 m VLT or Subaru
telescopes with a thickness about 200 mm. The elegant solution proposed is
to assemble hexagonal boules of ULE fused quartz in a sandwich construction
consisting of a front and back faceplate fused to a central element in which
linear grooves have been milled on each side. These then provide the chan-
nels for coolant. Although not experimentally demonstrated at the time, it
was considered that such a sandwich was quite feasible with state-of-the-art
quartz fusing technology. The coolant channel geometry is analysed in detail:
the geometry giving a short time constant and small instantaneous surface
temperature variation. The latter aspect is important, as it is effectively a
thermal “printthrough” effect. This has been one ground for suspicion of this
proposal in a glass material with essentially low heat conductivity. However,
Barr et al. show curves with maximum “printthrough” temperature differ-
ences well under 0.1 °C. The time constant for a 2 °C temperature difference
is shown to be about 30 minutes with internal cooling, whereas it would be
several hours for a 200 mm thick blank exchanging heat only by normal air
convection at its front and back surfaces. The estimated fluid flow (water)
required for an 8 m blank with ¢ = 200 mm containing 200 channels would
be a maximum of 143 1/min. This is for a worst case with air temperature
falling 0.6 °C/hour. The question of cooling the mirror during optical tests
in manufacture is also considered.

3.6.3.3 Meniscus mirrors in aluminium. The potential of aluminium
as a material for mirror blanks was treated in § 3.3.5.1. The most attractive
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features are its high thermal conductivity, or better, thermal diffusivity (see
Table 3.4) and its mechanical properties in handling. The high thermal diffu-
sivity makes it a most attractive candidate for active cooling, either by fluid
coolant channels at the back or by air cooling at the back. However, I am not
aware of specific studies in these directions.

3.6.3.4 Further laboratory experiments on mirror seeing. Barr et al:
[3.248] carried out experiments with a 1.8 m diameter BSC glass honeycomb
mirror using the test tower above a 4 m polishing machine. The mirror tem-
perature was controlled by a 1.8 m diameter liquid cooled “radiation plate”
close to the mirror back surface. Testing was performed with CCD camera
interferograms and detection of variations due to mirror seeing was far better
than the fixed errors in the system. Notable was a systematic Zernike polyno-
mial analysis of the test data. The authors concluded that FWHM was not a
good measure of the mirror seeing effects and that the Strehl Intensity Ratio
was more appropriate. They found insignificant image degradation for the
range AT, = £0.5°C and only small effects in the range +1°C. This seems
more generous than other authors in the positive range. Larger positive ATy,
values (up to 2°C) produced significant degradation in the Strehl ratio. It is
significant that no appreciable deterioration was produced by the cold mirror,
even with larger AT,,, until the fans were turned on, disturbing the natural
convection. For AT,, > 0, flushing produced some improvement.

A further notable experiment on mirror seeing with a 62 cm mirror was
reported by Iye [3.249]. The image analysis was performed with a Shack-
Hartmann analyser. The degradation in image quality was evaluated over
90 days and nights. Both the effect of AT}, on mirror seeing and the effect of
a flushing air flow were measured. The set-up was originally designed for an
active optics experiment. The temperature variation was that produced by
the natural diurnal cycle without active temperature control. The tempera-
ture was monitored at one point on the front surface of the mirror, 2 points
at the back of the mirror, at the support actuators and at 6 heights between
the mirror and the S-H detector at the center of curvature.

The image analysis, as in active optics, was carried out in modal form,
using 27 Zernike modes. The global criterion used was the Strehl Intensity
Ratio.

Flushing wind was achieved by a fan and flat nozzle, 70 cm wide and 2 cm
high, at 13, 33, 60 or 88cm above the mirror surface and near the edge of
the beam.

The maximum AT, relative to the air measurements was about +2°C,
produced by mirror inertia in the diurnal cycle. Between 9 and 18 hours,
the mirror was colder than the air. Both the coefficient Ast3 and the Strehl
criterion reflected precisely the period when the mirror was colder with negli-
gible changes, whereas marked degradation occurred from 18 hours to 9 hours
when the mirror was warmer. With a flushing air flow of the order of 1ms™!,
the turbulent effect when the mirror was warmer was largely removed.
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Fig. 3.81. Mirror seeing experiments showing the Strehl criteria Sra. and Sin: as
a function of AT, (from Iye et al. [3.249])

Figure 3.81 shows the effect of the diurnal cycle on the “raw” Strehl
criterion Syqq (complete function) and the function with wavefront tilt and
defocus removed S;,;, plotted for three exposure times: 3s, 10s and 30s.
The degradation is lowest for the longest exposure, as we would expect from
the integrating effect. The similarity to the result of Racine in Fig.3.77 is
so excellent that it gives one great confidence that they provide a solid basis
for conclusions on the nature and extent of mirror seeing. This agreement
is in spite of the fact that different image quality criteria were used. It is
particularly noteworthy that the measurements of Iye et al. confirm that the
degradation by a cold mirror is far less than the rule-of-thumb 1/3 value
compared with a warm mirror, particularly for the range 0 > AT > —2°C,
where the degradation of the cold mirror is not detectable. For S;,; this is
true out to —3°C.

The flushing efficiency is also demonstrated. As expected, it is much more
efficient at 13 cm height than higher up.

Figure 3.82 shows the flushing efficiency E as a function of flushing air
velocity, for exposure times of 3s. This result is remarkable in showing that,
although the stronger velocity of 1ms™! gives the best results, the result
with 0.2 ms™! is only slightly inferior. The effectiveness of a given windspeed,
however, will depend on the mirror size and the exposure time. It was noted
that, for a cold mirror with AT < —2°C, flushing slightly degrades the
quality by disturbing a convectively stable situation. This effect was also
noted by Barr et al. [3.248].

Iye et al. also analyse the convective situation, deducing the mixing length
of about 7cm as discussed above by Racine. In practice, they state that
convective bubbles will overshoot by a factor of 2 or 3 the thickness of this
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Fig. 3.82. Mirror seeing experiments: efficiency of a flushing wind (from Iye et al.
[3.249))

unstable zone, giving a convection zone thickness ~ 20 cm in this experiment.
This explains why the flushing wind is still reasonably effective at 33 cm
height, but hardly at all at 88 cm. They deduce a bubble velocity of about
2cms~! and a turnover time for a bubble of about 15s.

It should be remembered that the experiment was done in a closed lab-
oratory without active ventilation and that the light beam is conical, not
cylindrical. This latter aspect may make the flushing more efficient than in
a normal telescope. Nevertheless, the experiment fully confirms Lowne’s pro-
posals and measurements. As we shall see below, it also confirms qualitatively
what we have observed at the ESO 3.5m NTT.

The possibilities for thermal control to maintain a budget limit of
0.05 arcsec FWHM for mirror seeing from an 8 m thin meniscus blank have
been investigated by Rayboult [3.250] for the UK large telescope project,
equally relevant to the 2 x 8m Gemini project. Rayboult concludes that the
active fluid cooling technique of Barr et al. [3.247] (§3.6.3.2) would meet
the above error budget at all times on the site of Mauna Kea. However, he
considers there are technical problems in delivering the coolant and possible
problems of induced deformation of the mirror face due to the hydrostatic
head pressure differences as the telescope moves away from zenith. The al-
ternative is forced air cooling of the mirror to keep it at, or below, ambient
temperature, which may involve significant negative values of AT,,. Rayboult
mentions the condensation risk if this is too large. His assessment of the mir-
ror seeing effect of AT, is based on Lowne’s work [3.233] (§3.6.1): for a
colder mirror he assumes image degradation of 0.125 arcsec/°C (minus) and
concludes that the specification for the mirror of 0.05arcsec FWHM could
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only be met at Mauna Kea for 50% of the night. However, the subsequent
work of Racine (Fig.3.77) and Iye et al. (Fig.3.81) suggests strongly that
Rayboult’s assumption from Lowne for colder mirrors is too pessimistic.

Further work on thermal control of thin menisci to eliminate mirror seeing
has been performed for the ESO 8m VLT primaries by Cullum [3.251].

He considers first of all the passive ability of an 8m VLT primary
(t =175mm) to follow the outside ambient temperature at the proposed
Paranal site. Temperature data for the outside ambient air over 17 nights
were considered and appear representative. A figure of merit 1 as the aver-
age AT,, (mirror minus air) was formed with weighting factors 1.0 for AT > 0
and 0.33 for AT < 0. The temperature T,y of the mirror at the start of the
nights was calculated to minimize 1. The value of 3 varied from 0.09°C
on the most favourable night to 0.55°C on the least favourable. An error of
+0.5°C in T,p; has little effect on 9. Figure 3.83 shows the temperature func-
tions of the ambient air and the mirror if cooled initially to the temperatures
Topt +0.5°C and Top — 0.5 °C. Figure 3.83 (b) confirms Rayboult’s view that
passive thermal adaptation of thin menisci is not adequate: in this case, as-
suming correct achievement of Ty, by the cooling system of the ambient air
in the enclosure during the day, the maximum discrepancies with the Cullum
criterion are AT,, = —3.0°C and +1.2°C. A positive overhang is inevitable
in the latter part of any night where a rapid fall of ambient temperature is
occurring. The Cullum criterion is probably cautious in taking a weighting
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factor of 0.33 for AT, <0, in view of Racine’s and Iye’s results discussed
above. But a lower weighting factor would increase the negative initial AT
values to values of the order of —5°C, which may lead to dewpoint problems
or overburden the cooling system in the enclosure.

The establishment of Top; is a matter for the general air-conditioning
system inside the enclosure during the day and must cope with the thermal
inertia of the mirror. Cullum shows a typical cooling scenario for the mirror
and steel plates of various thicknesses (Fig. 3.84). The enclosure daytime am-
bient air is reduced over one hour to 3 °C below the final target temperature
of the mirror and 5°C below the initial mirror temperature, held 2 hours at
this temperature and then allowed to converge linearly over 1 hour to the
target temperature. The cycle to cool the mirror 2°C thus requires 3 hours.
The calculations for steel plates of various thicknesses are intended to show
the effect of the cycle on the steel telescope structure.
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Fig. 3.84. Surface cooling of the ESO 8 m VLT primary and various steel plates
with an enclosure daytime ambient air cycle 3°C below the target temperature,
assuming an air velocity of 1 ms™! on both sides of the mirror and one side for the
steel plates (from Cullum [3.251])

From Fig. 3.84 and more extreme examples, it appears feasible to achieve
Topt for the VLT primaries at Paranal within acceptable tolerances of rea-
sonable predictions, though enclosure air cycles up to 7°C below the initial
mirror temperature may be necessary. However, such temperature excursions
are large and might lead to dewing problems on metal parts. For the VLT,
a dewpoint “fuse” could be envisaged which would prevent a temperature
excursion leading to dewing. More serious is the positive temperature over-
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hang of the mirror in the second half of an unfavourable night as shown in
Fig. 3.83 (b).

To get a better adaptation of the mirror to the outside ambient air, Cul-
lum suggests an additional element in the thermal chain, namely a metal
plate built into the prime mirror cell, a few cm below it, which is cooled by
liquid through attached channels. A metal cooling plate was used by Barr et
al. [3.248] in their laboratory experiment on mirror seeing, but Cullum’s sug-
gestion to use such a device in the functioning telescope seems to provide the
definitive solution for suppressing mirror seeing from thin meniscus primaries.
Such a cooling plate was under study for the VLT, but it seemed probable
that some 90% of the back surface of the primary (i.e. 10% for supports)
could be achieved as a cooling surface. Since, in the VLT telescopes, the top
end of the tube tends to be somewhat too heavy, the additional weight of a
suitable plate is no problem at all. The ideal material seems to be aluminium
because of excellent thermal conductivity and low mass. The time constant
of such a liquid-cooled plate is therefore very low, giving far greater flexibility
of control than with the enclosure air-conditioning system. Cullum supposes
(during observation at night) a cooling plate 5°C below the outside ambient
air and calculates the thermal control possible for the VLT primary without
prediction, i.e. forced cooling takes place only when AT, > 0; if AT,, <0,
the plate is at the outside ambient temperature. Figure 3.85 shows the cooling
result for the same unfavourable outside ambient air temperature scenario as
Fig. 3.83 (b). The initial AT;, ~ —0.3°C with plate cooling, but this is un-
critical. The active cooling curve shows a maximum positive AT, ~ +0.2°C
and a maximum negative ATy, ~ —0.5°C. The passive cooling curve T,
of Fig. 3.83(b) is also shown for comparison with (AT),)mez =~ +1.2°C and
—3.0°C respectively. It is clear that, if the weighting factor of the criterion
Y for AT, < 0 were reduced to zero with active cooling, that positive values
of AT,, would be completely eliminated without producing negative values
exceeding —1°C. This technology therefore seems able to eliminate mirror
seeing completely in a flexible, technically simple and reliable way. Compared
with internal fluid cooling of the meniscus blank itself, as proposed by Barr
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et al. [3.247] but which is inevitably a complex process, the cooling of a plate
is technically trivial since deformations are of no significance. The only lim-
itation would be the dewpoint of the plate; but the temperature excursions
required are probably less than those required for the enclosure daytime am-
bient air to establish T,,; for passive cooling. With the plate, furthermore,
no accurate temperature predictions are required.

More recently (1997), Cullum has confirmed [3.252] that his proposed
active cold plate is indeed being built into the prime mirror cells of the
VLT unit telescopes. Furthermore, the same concept has been taken over for
the Gemini project, although the mirror support structure is somewhat less
favourable than in the VLT.

Cullum points out a further important and advantageous aspect of his
active cooling system. Plots of statistical data of external seeing, as recorded
by the ESO seeing monitor, reveal that the best seeing with rising night tem-
perature is markedly worse than that with falling night temperature, the best
recorded median FWHM values in this sample being about 0.50 arcsec and
0.37 arcsec respectively. This can be interpreted as the effect of a weather
change producing rising temperature, whereas falling temperature corre-
sponds to stable conditions for the “normal” case. In any event, it is precisely
nights of falling temperature which require active cooling to prevent a posi-
tive temperature overhang of the primary (Fig. 3.85). With passive cooling,
the external seeing gain is vitiated by the mirror seeing with AT > 0°C.

Further work on the matter of mirror and dome seeing for the ESO VLT
was carried out by Zago [3.253]. Zago was concerned with the enclosure venti-
lation and mirror seeing aspects in view of the primary mirror wind-buffetting
pressure limitation (assuming no correction possibilities of the primary in
the extended active optics bandpass — see §3.5.4) of 1N/m? established by
Noethe et al. [3.213]. With this limitation, he deduced a limit windspeed on
the mirror of about 1.35ms™! for Z > 35° to about 2.6 ms~! at Z = 10°. Zago
emphasized the need for correct scaling laws for mirror and dome seeing so
that model experiments such as those of Lowne, Barr et al. or Iye et al. can
be extrapolated to 8 m diameters. For the free convection case, he assumes
Kolmogorov statistics as does Racine (Eq. (3.62)) and derives the scaling law

FWHM « ATS/SLY/5 (3.69)

for the dependence on temperature difference AT, and dimensional scale
L. Natural convection may be free or turbulent but all the evidence is that
only turbulent natural convection produces mirror seeing. In the case of mizred
convection, when natural convection is disturbed by forced convection with an
independent airspeed U, Zago derives an approximate scaling law on certain
assumptions:

FWHM o AT3/2LY2y-3/5 (3.70)

He performed a laboratory experiment on a very small scale (a 4 cm mirror)
and applied the scaling law (3.69) to the results of mirror seeing produced by
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AT, > 0, the FWHM being given from (3.62) as Fl.,q in this experiment by

A
Froq = 0.987= | (3.71)
To

where r¢ is the Fried parameter. For free convection with AT, varied between
+10 and +100°C, he gives the coefficient a = F /AT,?/ 5, both for the open
mirror and when enclosed by a simple cardboard “dome”. For the larger AT,
values, this coefficient converges on a mean value about a = 0.17 arcsec/°C,
both with and without “dome”. Scaling according to (3.69) for L gives then
a ~ 0.43 arcsec/°C for a 3.5 m mirror and 0.49 arcsec/°C for an 8 m mirror, a
relatively small difference because of the weak dependence on L. This value
of a agrees well with the value a = 0.40 arcsec/°C®/® given by Racine [3.238)
— see Eq. (3.67) — for the 3.6 m CFHT primary.

Using his scaling laws, Zago also compares the results of his experiment
with those of Iye et al. [3.249], given above. Extrapolating the flushing-wind
effect to an 8 m mirror with AT,, = +1°C, he derives the function for mirror
seeing against flushing speed given in Fig. 3.86, converting Iye et al.’s data
from the Strehl criterion to FWHM. The agreement is good except in the low
flushing-speed domain < ca.1.5m/s. This is because the relative turbulence
intensity tends to increase with low speeds so that the pure convection case
with speed zero is not approached in practice and mirror seeing is worse. The
important conclusion drawn by Zago from Fig. 3.86 is that a flushing speed
of about 2ms™! is required to “blow away” mirror seeing with AT}, = +1°C
at the scale of an 8 m primary.

Regarding cooler primaries (AT, < 0), Zago concludes that the condi-
tions of free convection remained laminar over his whole negative tempera-
ture range. At the 8 m scale, this may not be the case. If the flow becomes
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Fig. 3.86. Extrapolation predictions for the flushing windspeed effect on mirror
seeing for the ESO 8 m VLT primaries and AT,, = +1°C, based on Iye et al. (from
Zago [3.253))
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turbulent, mirror seeing.can also result at negative AT, values, as was noted
by Iye et al. when flushing disturbed the laminar flow conditions. Previous
experiments had not covered a sufficiently large negative range of AT, to do
scaling predictions concerning incidence of turbulence.

Summarising for the ESO 8 m VLT, one may conclude from Zago’s work:

— Without active correction for wind-buffetting in the extended active optics
bandpass, the maximum windspeeds incident on the primary must be 1.5
to 2.5 ms™!, depending on Z.

— Preliminary investigations for the enclosure envisaged will permit maxi-
mum flushing winds of 1-2ms™1.

~ Scaling laws predict a mean mirror seeing

FWHM ~ 0.5 ATS/5

for AT,,, > 0.

— Dome seeing effects were believed by Zago to be interaction effects aggra-
vating mirror seeing rather than independent effects. Small air motions
worsen local seeing, whereas stronger laminar flushing improves it. This
conclusion agrees with both Lowne and Iye et al.

— At the 8m scale, a flushing speed > ~ 2ms™! is required to flush away
mirror seeing. However, the evidence is very approximate and 1 ms™! may
prove to give useful improvement.

— The 8m VLT primaries should have AT, < +0.2°C, the negative limit
being unclear but certainly more generous. AT,, = +0.2°C would give a
FWHM ~ 0.1 arcsec of mirror seeing.

— A large AT, range of experimental data is required to establish correct
scaling to the 8 m class for AT,, < 0.

Later, in 1995, Zago produced a major work as a doctoral thesis [3.254]
on the effects of the local atmospheric environment on observational seeing.
This is certainly one of the most (if not the most) comprehensive treatments
of the subject currently (1997) available. The chapter headings are:

— Introduction

— The image quality of a telescope
— Telescope enclosures

~ Telescope aerodynamics

— Local seeing

— Systems engineering

— Conclusions

There is also a valuable bibliography of 65 references, as well as two appen-
dices.
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3.6.4 Further work on “dome seeing” in general

3.6.4.1 The ESO 3.5m NTT as a test bench for local air seeing.
Reference was made in §3.6.2 to image analyses which revealed by their
modal nature effects due to mirror seeing (spherical aberration) and (prob-
ably) to seeing effects from the M3 spider support (quadratic astigmatism).
At that time (March 1989), no temperature or wind sensors were available.
About a dozen temperature and windspeed sensors were later installed and
(in November 1992) largely linked to the computer-monitor system. A pro-
gramme was intended which would seek systematic correlations between the
various temperature differences of mirror, telescope and dome from the ambi-
ent air, together with windspeed in the building slit (Fig. 3.27), and the image
quality error modes measured by the image analyser. There was also continu-
ous monitoring of the external (atmospheric) seeing from the seeing monitor.
The output data from the image analysis [3.70], together with the external
seeing, permits a complete separation and modal identification of local air
seeing errors up to the temporal bandpass limitation of the 30s integration
of the image analysis. Since, at normal tracking speeds, the telescope optics
errors are, with the exception of defocus, largely stable over periods of the or-
der of 30 min, variations in the low spatial frequency (controlled) aberrations
are due to local air variations and are normally a sign of inferior thermal
conditions. A sensitive indicator is the high spatial frequency rms wavefront
residual Wy ms, after removal of the controlled terms. This term contains
the fixed high spatial frequency errors of the optics (the “Intrinsic Quality”)
and the measuring noise of the system. The lowest value recorded up to 1992
was

WHF rms = 0.09 arcsecrms

a value corresponding to superb thermal conditions in the NTT and en-
closure. Values up to 0.12arcsecrms indicate good local conditions. How-
ever, WhF rms is a very sensitive and non-linear indicator of the local ther-
mal conditions in general: empirically, it has been established that a value
> 0.15 arcsec rms implies (for NTT standards) poor thermal conditions. Mea-
surements on other telescopes with the ANTARES off-line image analyser
confirm the value of this indicator. In the ESO 3.6 m telescope, for example,
“dome seeing” could at that time easily produce values of 0.35 arcsecrms or
more. Apart from the low spatial frequency modes, it remained extremely
important to seek correlations in the NT'T between Wxp rms and the tem-
perature and wind differences.

3.6.4.2 The 2.5m Nordic Optical Telescope (NOT). This is a tele-
scope for which highest quality has been a consistent aim. This requires
careful attention to the thermal environment [3.255]. The building has 4
“wall gates” which can be opened at will during observing to get adequate
air flushing, an excellent feature. The normal “passive” thermal control com-
prises the usual cooling and air-conditioning system. However, it was intended
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to “activate” the thermal control by reference to an extensive temperature
measuring system, including 172 temperature probes, repeatable to 0.1°C.
This was intended to lead to a model for optimizing the temperature of the
dome ambient air whose variation was to be modelled as closely as feasible.

3.6.4.3 The significance of a fast active optics control loop for local
seeing in general. The qualitative evidence from the NTT (§3.6.4.1) is
that good thermal conditions are associated with slowly varying low spatial
frequency terms of small amplitude. As the thermal conditions deteriorate,
both the amplitude and temporal frequency of such terms induced by local
air increase, together with a rise (much more rapid than linear) in high spatial
frequency errors. This situation corresponds qualitatively to that described by
Zago (§ 3.6.3.4) for the transition from a stable or laminar convective situation
to a turbulent one. The NTT is a test bench which enables the accurate
investigation of the errors near the optimum conditions. If thermal conditions
are good, the evidence from image analysis is very clear that an automatic
correction cycle every 10min (as envisaged for the final automation of the
NTT optics system) will correct the bulk of residual local seeing effects, as
discussed by Wilson et al. [3.73]. Only if thermal conditions are bad will this
cycle be too slow: but in this case, the thermal conditions must be improved
by better predictions of outside ambient temperature. In other words, if the
thermal control system is operated correctly with the temperature sensors,
residual local air seeing should always be largely correctable by the 10 min
automatic correction cycle.

This feature should be even more true of the ESO 8 m VLT, for which
a 40s active optics correction cycle is envisaged [3.73], 15 times faster than
for the NTT. However, more investigation will be required to quantify what
temperature differences can be allowed under what air-flushing conditions in
order to limit the local air effects to a bandpass < 1/40 Hz and to correctable
spatial frequencies.

3.6.4.4 “Dome” or “tube” seeing monitors. The scheme proposed by
Wilson et al. [3.214] (Fig. 3.70) for detecting wind-buffetting deformation of
thin meniscus primaries in the extended active optics bandpass B (Fig. 3.62)
is also a “dome” or “telescope” seeing monitor, measuring the air conditions
in double pass in a conical beam extending from the primary via the secondary
back to the Cassegrain or Nasmyth image. Such a conical beam corresponds to
the conical beam measured by Iye et al. [3.249] (§3.6.3.4) between a concave
mirror and its center of curvature. The detection system proposed in Fig. 3.70
can detect only the lowest modes since it is primarily intended for wind-
buffetting detection, for which these are fully adequate. However, within this
modal limitation and that of its conical beam path, it can detect local air
effects in both bandpasses A and B.

A specific proposal for a dome seeing monitor, together with first experi-
mental results, has been made by Iye et al. [3.256]. The technique proposed
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is termed a “differential dome seeing monitor” (DDSM), although, as the au-
thors emphasize, it really measures only that part of the “dome seeing” which
is within the telescope tube and is therefore really a “tube seeing” monitor.
However, the authors are probably right that this constitutes the major part
of the dome seeing, particularly in modern, more open types of enclosure.
But in classical hemispherical domes with a relatively narrow slit, the see-
ing induced at and around the slit may be equally or even more significant,
depending on the effectiveness of the thermal regime.

The working principle of the DDSM is shown in Fig. 3.87, as realised at
the Newton focus of the 1.88 m telescope of the Okayama Astrophysical Ob-
servatory. It should be noted that this arrangement, disposed at the Newton
focus and blocking a significant part of the telescope aperture, was intended
for an experimental set-up and would not be suitable without modifications
for use in a functioning Cassegrain telescope, whereas the system proposed
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Fig. 3.87. Principle of the differential dome seeing monitor (DDSM) set up at the
Newton focus of a 1.88m telescope (from Iye et al. [3.256])



3.6 Local environmental aspects of telescopes 341

by Wilson et al. [3.214], above, is intended for measurements in a functioning
telescope without disturbing observations. The DDSM of Iye et al. uses au-
tocollimation in double pass against the plane reflecting elements of a mask
(1) (3) placed in the incident beam. This mask also lets light pass from a
natural star. Various types of masks are considered. The first type, realised
for the experiment, consists of a plane-parallel glass plate of 400 mm diameter
which can be masked at will. The masking used had two circular transparent
windows of diameter 70mm (A and B) disposed near the edge at 90° spac-
ing. Outside the rim, two corner-cubes return the collimated light along its
incident path, thereby eliminating angular aberrations and giving reference
spots on a CCD detector. With this arrangement, three pairs of spots appear
on the CCD: ”

Cy, Cy from the corner cubes

S4, SB from the natural star by transmission through
the windows A and B

My, Mg  from the artificial pinhole source in double pass
by reflection from the plate at A and B
(4 % Fresnel reflection)

Of these, C; and C; give reference positions which should be stable within
the mechanical stability of the source-optics-detector system. The others have
movements interpreted as follows:

— The common movement of the star spot images, represented by S4 + Sg,
carries information on the common wavefront tilts in the entire optical
path (tilts from outer atmospheric turbulence, tilts due to tube and local
turbulence, tilts due to vibration or tracking errors).

— The differential movement of the star spot images, represented by S5 — Spg,
carries information on the wavefront aberrations higher than “tilt” in the
entire optical path, i.e. from the atmosphere or the local environment.

— The common movement of the mirror spot images, represented by M, +
Mp, carries information of common wavefront tilts in the telescope tube or
rotational vibrations of the mask plate.

— The differential movement of the mirror spot images, represented by M4 —
Mp, carries information on the wavefront aberrations higher than “tilt” in
the telescope tube or bending vibrations of the mask plate.

In the experiment reported, sag of the mask plate produced serious astigma-
tism in both star and mirror images, 4 times larger in the latter case because
of reflection compared with refraction, as expected. This astigmatism was
a limitation on the centroiding accuracy, but the astigmatic lines contained
some information on aberrations higher than “tilt”.

The image monitoring was done with a video-rate monitoring camera,
limiting the bandpass to 30 Hz. But this was ample to observe the essential
features of atmospheric and dome seeing from the point of view of image mo-
tion over the sampling apertures. Figure 3.88 shows results both without any
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(from Iye et al. [3.256])
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windshielding (telescope near zenith with slit pointing into the wind of wind-
speed ~ 3-4ms™!) and with the windscreens to give maximum protection
from wind.

Figure 3.88 shows that there is a major reduction in image motion from
the mirrors (M4 + Mp) when windscreening was applied. Not only was the
amplitude reduced, but also the temporal frequency, thereby reducing the
spectral power. Table 3.16 gives the standard deviations of the image motions.

Table 3.16. Standard deviation o of image motions for the images from the star,
mirrors and corner cubes in the DDSM experiment (from Iye et al. [3.256])

Windscreen Direction Star Mirror Corner cube
applied or not o (Ss) o (MB) o (C1)
(arcsec) (arcsec) (arcsec)
Yes R.A. 0.36 0.22 0.05
Yes Dec. 0.43 0.19 0.05
No R.A. 0.39 0.34 0.08
No Dec. 0.38 0.35 0.06

Iye et al. conclude that there is a significant improvement in dome seeing
by preventing disturbance of the enclosure air by external wind. However,
wind flushing may well be beneficial or essential to remove effects of internal
heat sources (such as mirror seeing). They suggest windscreening should be
applied if the latter are small compared with the former. They also suggest
that cylindrical buildings of the modern type will be better than classical
hemispherical domes because the hemispherical dome allows the wind blocked
by the windscreen to “climb up” the enclosure and disturb the slit area used
by the light beam, whereas a cylindrical building blocks this effect.

3.6.5 General conclusions on local air seeing and enclosures

Compared with elastic and manufacturing errors which dominate the solid
elements of telescope optics and which can be largely suppressed by the sys-
tematic application of modern technology, local air seeing (error source No. 7
of Table 3.11) is increasingly, apart from external (atmospheric) seeing, the
most serious source of image degradation. If care is not taken, as has often
been the case in the last 40 years with heat sources within the enclosure, local
air seeing may well be more serious than external seeing on a very good site.
Only since the work of Lowne in 1979 [3.233] has systematic, quantitative
research been done. However, the discussion above shows that rapid progress
is now being made and the understanding of the complex parametric situa-
tion is growing. However, clear analytical prescriptions are still not available.
This is not surprising if we reflect how complex the thermal behaviour of an
air mass is which may involve many thousands of cubic meters of air in a
complex interaction of a glass-metal structure, enclosure and site.
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The modern, compact, alt-az mounted telescopes have produced a revo-
lution in enclosures initiated by the MMT. The reduction of air volume is a
huge gain in itself (Fig. 3.75).

“Mirror seeing” has been intensively investigated and the work, above
all, of Racine [3.238] and Iye et al. [3.249] gives a good basis for design
of the thermal environment of large primary mirrors. Positive temperature
differentials (AT, > 0) are certainly far more deleterious than negative ones.
For small negative values 0 > AT > —1°C, the evidence is that the errors
produced are negligible. Active thermal control of the enclosure air can be
very effective for modest sizes, but the largest sizes (~ 8 m) can scarcely be
adequately controlled by this means. As Cullum [3.251] [3.252] has shown, a
fluid-cooled metal cooling plate in the mirror cell appears to be by far the
simplest and most effective thermal control technique. This technique works
adequately for glass mirrors and would be even more effective for aluminium
ones with their high heat conductivity.

The benefits of flushing air flow against mirror seeing have been well
demonstrated by the NTT [3.70] and are clearly revealed by the experiments
of Iye et al. [3.249]. However, as Zago [3.253] points out, unless a certain
minimum flushing speed is achieved, dependent on the size of the telescope,
flushing may make the mirror seeing worse, not better.

“Dome seeing” is still less well understood. As Zago indicates, there may
be a complex interaction between thermal differences in the structure and
mirror seeing convection. This viewpoint is supported by the experiments
of Iye et al. with the differential dome seeing monitor, whereby flushing air
apparently worsens the tube seeing image motion. Thermal differences in the
metal structure of telescope and building will be inevitable from radiation
cooling and should be countered, as advocated by Beckers [3.240] [3.242], by
insulation. More experiments on functioning telescopes are required and the
NTT, with its complete image analysis, external seeing monitor and thermal
and windspeed sensors, is an ideal testbench. It can then perform modal
analysis, as performed by Barr et al. [3.248], enabling a full understanding of
the nature of the thermally-induced aberrations.

The most delicate and difficult purpose of a telescope enclosure is to pro-
tect the telescope from wind. The wind loading of telescopes was considered
in a general way by Forbes and Gabor [3.257]. In the classical dome, with
its concept of a stable micro-climate, this was solely a matter of designing a
building with sufficient stability against wind forces; but, with modern en-
closures, the design has become far more complex if natural wind flushing
is desired. Above all the NTT has shown the merit of this approach, build-
ing on the experience of the MMT. The “wall gates” of the 2.5m NOT are
a similar feature in this direction. For stiff primaries, the only requirement
is to avoid wind-shake of the telescope structure, causing tracking errors.
Some modern projects (e.g. the ESO VLT) envisage a fast-tracking facility
with the secondary mirror unit. This may relax the wind-shake tolerances
of the telescope structure. For thin menisci, there remains the problem of
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wind-buffetting deformation of the primary. This was discussed in § 3.5.4 and
the detection systems proposed by Wilson et al. [3.214] may help to solve
this general problem. As mentioned in §3.6.4.4, this system can also measure
“tube seeing”. If wind-buffetting deformations of the primary can be actively
corrected in the extended active optics bandpass B (Fig. 3.62), then higher
flushing windspeeds can be allowed and the enclosure designed accordingly.
But if this is not the case, a windspeed limit will be set for avoiding wind-
buffetting deformation of the primary, as determined for the ESO VLT by
Noethe [3.213] and Zago [3.253] (see also § 3.5.4). The extent to which flush-
ing is useful will depend on the thermal control, above all of the primary.
These compromises are currently a key area of development in telescopes
with meniscus technology.

The above considerations are particularly relevant to meniscus technology.
The experimental work has also been largely performed with solid blank
primaries or experimental mirrors. For lightweighted, stiffer primaries,the
wind-buffetting problem is much more favourable, but the thermal control
of the mirror is very critical because of the BSC glass used and its associated
expansion coefficient (see §3.6.3.1). When larger lightweighted blanks are in
use for the modified MMT or for the LBT, more practical experience will be
gained.

Segmented primaries such as the 10 m Keck have an internal control sys-
tem [3.227] with relatively high bandpass (up to 2 Hz — see §3.5.5.3) and are
quite favourable against wind-buffetting. Since the effective aspect ratio of
the primary as a total meniscus of 10m and thickness 0.075m is very high,
133, as a result of the segmentation (see Fig.3.4), the glass mass involved
is particularly favourable for mirror seeing. The aim of the thermal control
system [3.26] is to establish an internal micro-climate adjusted as nearly as
possible to the outside ambient air, banish all heat producing sources to an
annex building and insulate [3.26] [3.245] the telescope structure and inside
dome walls to reduce radiation transfer.

This book is concerned with telescope optics, not telescope engineering
in general. But it is very clear that the telescope enclosure, with its local air
system, is one of the fundamental aspects of the total optical train. Thus, the
design of the enclosure must go hand in hand with the global optical concept
for achieving high image quality.

3.7 Optical data of the major ground-based
telescope projects using new technology

Table 3.17 gives the basic optical characteristics of the major large ground-
based telescope projects using new optical technology, following essentially
the same presenta