
FOR PROGRAMMERS

CHAR L ~ ... WETHERELL
-.

Computing Science Group
Dept. of Applied Science
University of California, Davis

PR ENTICE-HALL INC. Englewood Cliffs, New Jersey 07632

Digitized by Go gle Original from
UNIVERSITY OF MICHIGAN

..

thoma
Stamp

thoma
Stamp

iv CONTENTS

10 Yielding Up Its Gold
or Calculations of Investment Yield 36

11 Ye Soule of Witte
or Textual Redundancy and File Compression 39

12 A Sense of Community
or Bookkeeping for Home Use 43

13 Touring Turing
or Simulation of a Turing Machine 45

14· Games Computers Play
or A Computer Strategy for Kalah 49

15 Prime Time
or Searching for Patterns Among the Primes 59

16 Gas Pains
or A Gasoline Usage Computation 62

17 Shocking Statistics
or Highway Traffic Simulation 64

18 R.Pactin ', 'Ritin', and 'Rithmetic
or Construction of a FORMAT Scanner 67

19 Patience Is a Virtue
or Solitaire Statistics Collection 72

20 Poly Wants a Cracker
or A Symbolic Algebra Package 77

21 Perverse Inverse
or Errors Using Floating Point 82

22 Pi Are Square
or High-Precision Arithmetic Routines 85

23 Mastermind
or Optimal Strategies for a Guessing Game 95

24 A Code of Dishonor
or Mathematical Cryptanalysis 98

PROJECTS FOR COMPILER COURSES 105

25 Computer Stimulation
or Simulation of a Typical Large Computer 107

26 EC Loader
or A Linking Loader

Digitized by Google

124

Original from
UNIVERSITY OF MICHIGAN

CONTENTS v

27 Easy Does It
or A Compiler for an Algebraic Language

· 28 , Off the Beaten TRAC
or Building a TRAC Interpreter

SOLUTIONS 159

29 Map Coloring Made Easy
or A Complete Problem Solution

30 Compressed Solutions
or A Program for Text Compaction

Index

Digitized by Google

132

148

160

174

197

Original from
UNIVERSITY OF MICHIGAN

Programming is a craft, and programmers must attain a standard of craftsmanship. Much program­
ming is done in cottage shops -that is, in small shops with meager tools, much work done by hand,
and learning attained from other laborers, by chance, and often not at all. Just as guilds formed in
the Middle Ages partly to train young workers and to improve professional standards, so program­
ming is now taught in colleges and universities and far fewer programmers learn (or fail) by the
"once more unto the breach" method. But the academics have also discovered that a craft cannot
be taught well by teachers alone; the guild apprenticeships had considerable merit.

In a classic apprenticeship the candidate spent many years doing menial tasks while absorbing
fundamental techniques of the trade from more experienced workers in the shop. Gradually the
apprentice was given more technical responsibility and, after a formal test of skills, eventually
became a journeyman certified competent for all ordinary jobs in the trade. The journeyman
traveled the world and, if the muses allowed, one day presented a masterpiece to the guild and
became a craftsman of the highest rank-a master of the guild. The works of these masters, even of
the most utilitarian sort, have often come down to us as some of the greatest works of human
creativity.

Today, a novice programmer may well dispense with seven years of sweeping up card punch chips,
and simple technical knowledge can be acquired more easily from lectures and reading than from
watching over a working programmer's shoulder. But one may not dispense with some "hands on"
time spent on realistic programming tasks -time needed to connect and solidify principles and
methods-time simply for practice. No student would expect to read any number of books about
cabinetry and be able to create even a good imitation of a Chippendale. Why, then, expect to read a
programming manual or two and be able to turn out a well-formed program?

Formal training institutions for programmers-colleges, trade schools, corporate training programs
- are adding apprentice training by means of programming workshops, laboratories, and major
projects in ordinary courses. Instructors in such courses need problems to supply the busy appren­
tices. These etudes for programmers should fill the need. Each etude stands alone with its own back­
ground information, problem statement, and suggestions for solution. Most etudes allow variations
so that an instruct.or may tailor problems to local conditions.

vii

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

viii PREFACE

The variety of these compositions is large. Some etudes are done largely in the head (Chapter 9) and
others are mostly implementation effort (Chapter 12); some etudes are short (Chapter 16) and
others very long (Chapter 6); some etudes use well-known programming techniques (Chapter 5), and
others can be continually improved by better techniques (Chapter 2). Chapters 25, 26, 27, and 28
form a connected unit for use in a language and systems course. These etudes should be done by
groups of students who can also learn some of the need for software engineering (traditionally
students have not learned that working in a group is different from working alone). Chapters 5, 6,
13, 17, 19, and 25 may be good materials for a course in computer simulation. Similarly, Chapters
6, 11, 14, 19, and 20 are all drawn from artificial intelligence. Traditional problems from computer
science are well represented, of course.

Students in a laboratory course will appreciate carefully written problem descriptions. (How many
have vowed never to come near a computer again as they struggled to decipher a badly written
specification printed in faint blue mimeograph ink?) If students may choose problems freely-as
they do in the course from which the book was developed-they will also appreciate having a much
wider choice than any one instructor has the energy to provide. Of course, students working alone
to improve their skills have not previously had a collection of this magnitude available. Some
students may be able to use selected etudes as a source for methods even after they leave school.

As is usually the case, this book could not have been written without the help of many people.
George Michael first suggested the idea of teaching by problems (an idea current in many other
schools). Students in several classes were willing subjects and suggested both corrections and many
new topics. Hank Moll wrote the text format routine that was used to produce the drafts and was
always willing to change it as needed; John Beatty simultaneously wrote the programs to print the
drafts with pretty characters and illustrations. Together these two made it easy to see what the
final version would look like, a mighty aid to composition. Many other friends read, commented,
criticized, and encouraged the work. Finally, the keypunch operators at Lawrence Livermore
Laboratory never complained about poor handwriting -instead they quickly returned the finished
cards and corrected the spelling mistakes. Without all of these helpers, the work could not have
been done; with their help it has been.

Digitized by Google

Charles Wetherell

Original from
UNIVERSITY OF MICHIGAN

1

or ...

HOW TO USE THIS BOOK

The difficulty with teaching programming is that it cannot be taught. The difficulty with learning
programming is that it is so much work. A teacher can help, lecture, criticize, guide, smooth the
path. A student can take notes, memorize, read, pass tests, discuss until two in the moming.1 All
this effort will be meaningless if the student does not practice by actually writing programs, because
programming, like other skills, can be acquired only by practice. Furthermore, the practice must
be on ''real" programs and not on the simplistic material found in most programming language
manuals. Noodling away at Chopsticks will not make one another Rubinstein - no more will
noodling at APL make one a master programmer. So we provide this book of sizable problems that
are suitable as training projects for the novice programmer who wishes to become first a journey­
man and then a master.

The abilities of a programmer closely resemble those of an essayist. As with the essayist, orthog­
raphy and grammar are parts of the skill but not, as popular opinion would have it, the most im­
portant parts. Much more valuable are observation, research, analysis, and a pleasing expressiveness.
Here is a list of talents vital to programmers (and essayist.s).

The ability to read and understand a problem description and to grasp the formulator's
desires (not always easy, since both problems and proposers are often vague).

The ability to extract the difficulties and ignore irrelevancies.

The ability to recognize where theory can be applied and the discretion to apply it one­
self or to ask an expert to intercede.

The ability to break a problem into manageable and independent pieces and to under­
stand the relations among these pieces.

1 We shall call the reader a "student," but this usage need not frighten those who are not members of an academic
community. It is possible to learn to program alone; we hope to encourage readers who must struggle in solitude by
providing realistic problems to grapple with. Be warned, however, that a teacher will help immeasurably.

1

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

2 WHAT'S IT ALL ABOUT ALFIE?

The ability to judge the cost of proposed solutions in programming effort, computer
resources, and user satisfaction and to balance these costs.

The ability to build partial solutions into coherent and elegant complete solutions.

The ability to express solutions in graceful and straightforward language, natural or
artificial, that persuades both humans and computers of the solution's correctness.

Finally, the ability to disengage the ego and try an alternate approach (or even an alter­
nate problem) when a first attempt fails.

It is precisely because these abilities are so complex that they can only be learned by experience.
Etudes provide practice in specific technical skills and lead students by experience toward the gen­
eral abilities required of programmers.

Composing an etude, however, it not as easy as might be supposed. All too often the problems in
programming books are mere finger exercises. Although useful in developing flexibility in the use of
simple language structures, they seldom have the "artistic merit" that the dictionary claims better
etudes should have. And even though an etude is a "study on a single technique" (same dictionary),
a good one must be large enough so that interactions between the chosen technique and other areas
of programming can occur. All of this suggests that we draw problems from the real world. But
real-world problems are filled with niggling detail, require mounds of input, produce reams of
output, and are changed every other day because management cannot make up its mind. A student
who could learn in a production shop would emerge a more saintly person, but too many pro­
gramming trainees end up broken, bitter, and despondent. An etude must lie in the middle ground
between real practice and triviality.

In fact, many etudes emerge from two areas -games and computer science. These areas share a
number of useful characteristics. Most computer programmers are interested in both applications
(they had better be interested in computer science). Because of shared culture, most games are easy
to explain, and, of course, computing applications should be pretty well understood already. Quite
often the behavior of a game program or a compiler, say, can be rigidly defined so that correctness
is testable. Input is usually small and easy to generate; output is readily comprehensible. Both seem
to require the most complex algorithms and data structures so that no demand from an application
program is likely to shock the student later. Finally, both areas seem to lead to consideration of the
computer as a powerful abstract rational entity in its own right (a view encouraged in the field of
artificial intelligence), and we have probably been somewhat biased in our problem selection by a
lifelong interest in rational machines. There are, of course, many problems from other application
areas. The choice is limited primarily by the ease of explaining the problem situation. And to those
students who may be bothered by the frivolity of some etudes, remember that Haydn made a
symphony from a nursery rhyme.

HOW TO PLAY AN ETUDE

We assume that the novice attempting an etude has already written a few programs and knows
at least one language moderately well. No attempt will be made to teach specific programming
techniques, data structures, or languages. If a problem does require some uncommon knowledge,
there will be enough discussion to explain the difficulty, and the bibliography will point to sources
for more information. In addition, we will not specify any one programming style or discuss
structured programming. It is probable that most readers are in a course or laboratory and that
they will receive guidance from a teacher. Nevertheless, the references at the end of this chapter
include materials on programming and style for those working alone.

Each etude is divided into sections (some optional). The first section describes the real-world
situation, and the second the specific program to be written; normally the description is long-winded
and the specification quite short. Following these is a discussion of the practical difficulties that are

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

3 WHAT'S IT ALL ABOUT ALFIE?

apt to be encountered and hints for solutions. Only critical difficulties are considered. Next are
sections that discuss appropriate languages and the time that the etude should require. 2 Time esti­
mates, which are based on first-year graduate students spending one-fourth of their time on the
problem, may be too short for programmers without graduate students' noted dedication. Long
turnaround or unpredictable computer availability may also lengthen time estimates. Etudes often
end with suggestions for extended work and an annotated bibliography. A solution will generally be
more valuable to the student if it is reinforced by outside reading.

A completed etude obviously includes a clear and disciplined program written and commented in a
style appropriate to the problem and the source language. Yet more is needed. Enough test material
should be included to demonstrate the use of the program and its reaction to extreme cases and
error conditions. A short prose description of the solution methods, with special attention to
original algorithms or data structures, should be external to the program. Along with the descrip­
tion, the programmer should provide at least an informal plausibility demonstration that the pro­
gram is correct (concentrate on critical steps if time is limited). Finally, there should be an ac­
counting of both human and computer resources with attention paid to reasons for the costs and a
statement of what the programmer has learned doing the problem (which is easy to write if it
answers the question "What will I do differently next time?"). This documentation may sound
excessive, but one of the lessons to be learned is when to quit. Short problems should not be over­
whelmed with documentation. One teacher we know gives 40% of the grade for being convinced
that a program is correct (whether or not it is), 50% for the ease with which he is convinced, and
only the last 10% for superior programming. Students scoring 80% or more are doing very well. And
since part of the documentation is the result of computer runs, such a score means that both com­
puter and instructor have been impressed by the solution.

NOTES FOR TEACHERS

This book was originally written for a graduate immigration course in computer science. The course
lectures cover a broad spectrum, including programming languages and techniques, machine archi­
tecture, data structures, algorithms, and some theory. Lecturers may choose some problems as
illustrations (for example, map coloring to teach PASCAL), but generally students are on their own
when doing problems. The only requirement imposed is that total time estimates for the problems
attempted be at least as larg~ as the duration of the course. So the book places very little structure
on a coune that uses it. On the other hand, four problems were especially written for a compiler
course and provide a connected study of language implementation. Some others present several
major aspects of game playing. Still others might form a laboratory in commercial or simulation
programming. An interested instructor should be able to find problems in any area except numerical
analysis.

REFERENCES

Anonymous. Science Citation Index. Institute for Scientific Information, Philadelphia, PA. Yearly.

If you want to find out more about one of the topics that we discuss, you can use our references and
then follow the references of those works and so on down the bibliographic trail. But how do you find
material that hu been published since the works we cite? If you already have a paper on the subject,
Science Citation Index can lead you to other papers published later that cite the paper you already have.
'lbe technique is explained in each yearly issue, and your librarian can help you.

2 The languages suggested are those commonly available: FORTRAN, COBOL, ALGOL, assembly language, APL,
XPL, PL/I, BASIC, PASCAL, LISP, SNOBOL, and their variants. This does not imply that other more esoteric or
local languages are not appropriate, especially since our recommendations are biased by our own favorites. In every
cue, we encourage the use of higher-level languages and translators that provide considerable feedback a la WATFIV,
PL/C, and SPITBOL. Students might also use problems to acquire new languages (total immersion is painful but
effective).

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

4 WHAT'S IT ALL ABOUT ALFIE7

Conway, Richard, and David Gries. An Introduction to Programming, 2nd ed. Winthrop, Cambridge, MA, 1975.

Strictly speaking, Conway and Gries is an introductory programming text (and incidentally a good manual
tor PL/I). But it is also an excellent text in writing plausible programs and constructing program proofs. Be­
fore starting your first etude, you could do worse than to review the material here on program development.

Dijkstra, Edsger W. A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.

Although written independently, Dijkstra's and Wirth's books fit together nicely. A sample course might
go as follows: read Conway and Gries; try a couple or the easier problems; read Wirth; try a number or
harder problems; read Dijkstra and review solutions to earlier problems. Wirth actually gives programs and
their development tor some medium-sized problems. Dijkstra generally discusses only the critical loops or
data structures but provides much more formal justification. Dijkstra also philosophizes about programming
as an intellectual task; such thoughts may be the most important part of the book (but some experience
is needed to appreciate them).

Griswold, R. E., J. F. Poage, and I. P. Polonsky. The SNOBOL4 Programming Language, 2nd ed. Prentice-Hall,
Englewood Cliffs, NJ, 1971.

There are any number of books describing FORTRAN, COBOL, BASIC, ALGOL, assembly languages, and
PL/I. Iverson designed APL originally as an algorithmic language; you will need to find a manual to run
any particular implementation. McKeeman et al. is the defining text tor XPL. Before running LISP or
SNOBOL, you would be wise to check local conditions.

Iverson, Kenneth E. A Programming Language. Wiley, New York, 1962.

Jensen, Kathleen, and Niklaus Wirth. PASCAL User Manual and Report. Lecture Notes in Computer Science, 18,
Springer-Verlag, Berlin, 1974.

Knuth. D. E. The Art of Computer Programming/Fundamental Algorithms. Addison-Wesley, Reading, MA, 1968.

Knuth's series, if he ever finishes it, will probably be the programmer's Bible. Certainly Volume I should
answer most elementary questions about data structures and the algorithms to manipulate them. If you
do not understand how to use some structure that we suggest, ask Knuth first. We do not recommend
Knuth's programming style as a model of structure, however.

Lucas, F. L. Style. Collier, New York, 1962.

This is not a programming book at all. There will come a time, however, when you will need to write exten­
sive documentation, and this book should help. Also, many of Lucas' observations can be applied to produc­
tion of program text. Lucas concentrates on persuasion techniques, and a programmer must persuade both
humans and computers.

McCarthy, John et al. LISP 1.5 Programmer's Manual. MIT Press, Cambridge, MA, 1972.

McKeeman, W. M., J. J. Homing, and D. B. Wortman. A Compiler Generator. Prentice-Hall, Englewood Cliffs, NJ,
1970.

Wegner, Peter. · Programming Languages, Information Structures, and Machine Organization. McGraw-Hill, New
York, 1968.

If you have any questions about computer architecture, languages, data structures, and their relations,
Wegner can probably get you started on the answer. This book has an outstanding collection of "buzz.
words" and connects them together. Wegner provides a quick survey or computer science, and the bibliog­
raphy is useful.

Wirth, Niklaus. Algorithms+ Data Structures ... Programs, Prentice-Hall, Englewood Cliffs, NJ, 1976.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

2

UIF!E

or ...

CELLULAR AUTOMATA
AND COMPUTER GRAPHICS

LIFE is a multicellular communal organism that inhabits the deserts of Flatland. The desert is
organized in a square array with each square capable of holding one LIFE cell. LIFE generations
mark the passage of time, each generation bringing births and deaths to the LIFE community.

To follow the history of such a community, place LIFE cells into their initial positions in the
desert. Count the passing generations by observing these rules.

1. The immediate neighbors of a cell are those cells occupying the eight horizontally,
vertically, and diagonally adjacent cells.

2. If a LIFE cell has fewer than two immediate neighbors, it dies of loneliness. If a LIFE
cell has more than three immediate neighbors, it dies of overcrowding.

3. If an empty square has exactly three LIFE cells as immediate neighbors, a new cell is
born in the square.

4. Births and deaths all take place exactly at the change of generations. Thus a dying cell
may help birth a new one, but a newborn cell may not resurrect a dying cell, nor may one
dying cell stave off death for another by lowering the local population density.

For instance, the community □□□ becomes B in one generation, and the community BB must live
near Palm Springs because it never changes at

0
all. Figure 2-1 shows some more LIFE histories.

Statement of the Theme Write a program that simulates a LIFE community. The input should
be the initial positions of the community's cells, and the output an aerial view of the community at
each generation. An ordinary line printer can be used to plot the community's history, but such
output is unaesthetic. If you have access to hardcopy graphic output devices or to an interactive
graphics terminal, use the facilities provided to present a more appealing visual display.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

6 THE GAME OF LIFE

1

2

3

4

5

CXX:00 OCC1XJ axrJ)

•t• 6

~ ~ lffl
0 0 o'b CXX) CXX) CXX) cg 0oo0 0o a o 7 § §§ §§ § ~ 000 000

♦♦♦
CXX) CXX) CXX)

§ § §

§:)C§C§
8 CXX) 00 00 00 00 CXX>

§ § §
Figure 2-1: A LIFE Community Hiatory. Generation number,
appear at the left of each diaplay. Find generation, 9 and 10 for
yourself.

Performance Practice Although the examples do not show it, some communities grow enor­
mously from extremely meager beginnings. Others transport themselves slowly across the desert,
continually moving from old territory into new. Your program should be able to handle large
communities without a terrific cost in space or time. A naive approach will repeatedly scan a large
array to build the generations; the programming problem is to find data structures and algorithms
that are more economical. You may want to try some method that only keeps track of the occupied
squares. Since a growing or moving community can move out of the view of any flXed method for
displaying the output, you will probably want a method that shifts it.a point of view as the com­
munity changes.

Orchestration APL may be suitable because of it.a vector and matrix operations. Almost any
higher-level language with arrays can be used. This is a good problem for studying the cost of
assembly language on programming time and the payoff in inner loop efficiency. Finally, for those
with access to the hardware, a micro-coded version would be an interesting experiment; the com­
puter becomes a LIFE community.

Playing Time This problem should take one person 3 weeks.

Variations on the Theme A community may go on growing forever, continually changing it.a
position, shape, or membership. But it is more common for a community to become stable, re­
peating a few patterns in a cycle for all eternity, the length of the cycle being the community's
period. (The period of a dead and empty desert is one under this definition.) Modify your program
so that it attempt.a to recognize and report such stable communities. Can you think of any algo­
rithm, short of saving all previous generations, that would infallibly identify stable communities?

The history of a LIFE community is fascinating if viewed as a movie (one of the reasons that we
suggested an interactive graphics terminal). It is even more attractive when color is added. Each cell
can be assigned a color at birth, perhaps by virtue of it.a generation or because of the genetic back­
ground of it.a parent.a. Cyclic but moving communities (of which there are quite a number) are beau­
tiful when they march by in a coat of many sparkling colors.

Every community has a successor, but some have no predecessors. These isolated communities are
called Gardens of Eden. The only way that they can be seen is by placing them on the desert as an
initial configuration. Think of the ways to use your program to find a Garden of Eden.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

7 THE GAME OF LIFE

REFERENCES

Burks, Arthur W. (Ed.) Essays on Cellular Automata. University of Illinois Press, Urbana, IL, 1970.

Codd, E. F. Cellular Automata. Academic Press, New York, NY, 1968.

Both books are considerably more serious than Gardner's column. Codd's is a monograph on the basic
material, and Burks' is a collection of diverse papers in the general area. Starting from these two soUJCeS,
almost all the mathematical material should be accessible.

Gardner, Martin. ''Mathematical Games." Scientific American, 223, 10, pp. 120-123, October 1970, and 224,
2, pp. 112-117, February 1971.

Martin Gardner introduced LIFE In his column, and it caused such a stir that he bad to devote another
column to it immediately (at least by monthly magazine time scales). Certainly the game brought fame to
John Horton Conway, its talented and prolific inventor. Much more material about LIFE or by Conway is
scattered in more recent columns.

Wainwright, Robert T. (Ed.) Lifeline. 1280 Edcris Road, Yorktown Heights, NY 10698.

LifeUne is a quarterly journal devoted to LIFE and allied subjects. Subscriptions are available from the
editor, as are back issues. Definitely a cult magazine, it contains all manner of LIFE material and may well
be addictive.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

3

Wky is ~Ae S@eaR '3llde,

~@Iy®l
or ...

MAP COLORING
BY EXHAUSTIVE SEARCH

When a map is drawn, it is customary to color its regions to distinguish them from each other. The
rule is that two regions must be different colors if their boundaries intersect at more than a finite
number of points (normally mapmakers are not mad topologists looking for pathological examples
to contravene normal intuition). But cartographers must pay printers' bills, so the fewer colors
used, the better. In particular, cartographers who color at random may paint themselves into
comers and be forced to use more colors than strictly necessary. Some advance planning is needed.
Finding the minimum of colors necessary goes under the title of the map-coloring problem.

The computer can help find the minimum number of colors needed. It may be difficult; however,
to get the computer to look at a map; after all, most computers do not have eyes. Fortunately, the
only crucial information is a list of which regions are adjacent to each other. The sizes and shapes of
the regions are irrelevant to the coloring; only nontrivial contacts between regions matter. An
undirected graph can be used to represent only the adjacency features of a map.

An undirected graph consists of a finite set of nodes and a finite set of edges connecting the nodes.
Any two nodes are connected by at most one edge; we never allow two edges to do the same work
and, for map coloring, we never allow an edge to connect a node -to itself. Figure 3-1 is an un­
directed graph that represents the first 48 states. Computer input of a graph is fairly easy; simply
list each node. along with the nodes to which it is connected. A graph may have no nodes and hence
no edges; then it is known as the empty graph. Any node may be disconnected by having no edges
(Alaska and Hawaii would be disconnected); indeed, two sections of a graph are disconnected from
each other if there are no edges connecting them. The association between maps and undirected
graphs is so strong that we shall use both ideas interchangeably. In fact, graphs are so useful that all
programmers should have some knowledge of their simpler properties.

Statement of the Theme Write a program to color a map using the minimum possible number
of colors. The input should be a list of regions on the map, along with the adjacent regions. The
output is a list of the regions with their assigned colors and the total number of colors used. It is

8

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

9 WHY IS THE OCEAN BLUE, DADDY?

Figure 3-1: A Topological Map of the United States. No more
than four colors 1hould be neceaary.

usually simplest to use positive integers to name the colors and regions, but a pleasant extension
(and a psychologically useful debugging tool) would allow the input of more natural names. The
input should be checked for consistency; do not allow ridiculous node numbers or nodes connected
to themselves. The worst maps will be very expensive to color; so try to avoid unnecessary program
inefficiencies.

Performance Practice It is not necessary for the map described by the input to be planar. In
fact, two good limit cases are maps in which every two regions are adjacent and maps in which no
two regions are adjacent, which correspond to coloring a set of disjoint balls and for which only one
color is needed. Tests for planarity are an important subject in Computing Science, and a number
of papers have been written on the subject. You may also be interested in pursuing the Four Color
Conjecture, which states that no planar map will take more than four colors. If you manage either
to confirm or disprove it, you will have made quite a name for yourself. 1

The efficiency needed for this problem is primarily time efficiency. Certainly all possible solutions
cannot be enumerated, for even though the correct solution need not be unique, the percentage of
correct solutions is usually low and the number of possible solutions grows rapidly with the number
of regions. Instead consider a backtracking solution. Begin by picking any one region and assigning
it a color. Move to any adjacent uncolored region and try to assign a color that is compatible with
previous colorings without using any new colors. (It may happen that no region remains to be
colored, in which case you are done, or that there are no uncolored regions adjacent to any colored
ones, in which case the map is disconnected.) If at some point the new region cannot be colored,
work back down the already colored regions in the order in which they were colored, until you
find one whose color can be legally changed. Change the color of this region to one that it has not
previously had and work forward again. If this procedure backs all the way down to the first region
colored, add a new color to the stock on hand and start again.

Orchestration This problem requires no data structure more complicated than arrays and
stacks, and so almost any higher-level algebraic language with adequate control structures should

1Tbis comment now has historical interest only. Please see the references to Chapter 29 for an explanation.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

10 WHY IS THE OCEAN BLUE, DADDY?

suffice (trying the problem in FORTRAN or BASIC should expose the poverty of these languages).
On the other hand, backtracking can often be handled elegantly with a recursive formulation; so
perhaps a language with recursive procedures would be useful. LISP may provide both data struc­
ture and recursion simultaneously.

Playing Time This problem should take one person 1 week.

Variations on the Theme If a backtracking solution is used, the order in which the regions are
chosen can have a tremendous effect on the speed. It may be possible to anticipate this effect by
preordering the regions or by using some heuristic to decide the next region taken. Regions that
have many neighbors will probably be hardest to color, since they have the most constraints on
them. Similarly, a group of regions that form a reasonably separate clump or cluster should be.con­
sidered together, for if the clump cannot be colored with some number of colors, surely the whole
map cannot. The idea in both cases is that if a certain region is going to cause trouble, it should be
colored early in order to avoid wasting time by having it destroy an almost completed coloring. Of
course, completely solving this preconditioning problem is tantamount to a solution to the original
problem, but a small investment may pay big dividends. Compare some preordering strategies for
cost and effect.

REFERENCES

Bitner, James R., and Edward M. Reingold. "Backtnck Programming Techniques." CACM, 18, 11, pp.
651-656, November 1975.

This paper is a very concise tutorial on backtrack programming. But if you cannot undentand the idea
from the authon' examples, there is a long bibliography of papen with problems suitable for or solved by
backtracking.

Ore, Oystein. The Four Color Problem. Academic Press, New York, 1967.

Ore reviews the mathematics surrounding the Four Color Conjecture. It is a good way to learn a lot of
graph theory, and you may learn a way to expedite the backtrack. But do not expect to find a fast algo­
rithmic solution.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

or ...

AUTOMATIC TEXT FORMATTING

You may have been unaware of it, but one more onerous clerical chore has been lifted from the
shoulders of mankind. Computers have replaced men in the construction and placement of typo­
graphical errors. Inexpensive small computers and photographic cold-type methods now churn out
text where once linotypes produced hot lead. AB efficient as the new techniques are, some romance
is lost. What fun is it to search your Sunday New York Times for typos, the only humor in that
expanse of solemnity, when you know that computers can make mistakes hundreds of times as fast
as humans? Such is the price of progress.

Of course, the real progress has been in the use of computers as printers' devils, magic apprentices
who do the dirty work quickly and, if the programming is right, cheaply. Programmers read and use
computer manuals published with computer aid. Such manuals are often difficult to read because of
the unfortunate typefaces available on computer printers. But most people do not realize that
many magazines, newspapers, and books are also printed by computer. They look better because the
computer not only edits and arranges the texts but also drives special photographic peripheral units
that can generate press-ready copy in dozens of typefaces. Drafts of this book were written by
using such a system, and early readers often thought that they had a photocopy of an actual book
rather than what would have been simply a typescript if the drafts had been produced by typewriter
in the manual way.

There are four parts to a publishing setup. First, there must be a good file system in which partially
completed or archived text files can be stored. Normally file storage is provided by the host oper­
ating system, but we know of one case in which a card cabinet in the author's office was used for
file storage. Cards are not actually practical for high-volume operations like newspapers. Secondly,
there must be a text editor to modify and update files before final printing. Again, most operating
systems supply a text editor, but a special publication editor to provide exactly the facilities neces­
sary for handling publication text may also be necessary. The third element is the text formattor,
which sets up headlines, selects page sizes, tabulates tables, recognizes paragraphs, and so on. The
formattor handles text as words, sentences, paragraphs -that is, at the level that humans read it.
Finally, there is the compositor, which converts formatted text into its image on the output me-

11

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

12 PRINTER'S DEVIL

dium. The compositor is primarily concerned with the details of typefaces, physical sizes, output
device commands, individual characters, and similar items. Just like a linotype operator, a compos­
itor will set any gibberish in type and will be concerned only if the trash does not fit its allotted
space. Functionally, the file system. and the text editor worry about what the text means, and the
text formattor and the compositor about what the text looks like. In this etude you will learn
about text formatting. 1

A TEXT FORMA'ITOR

Manual text formatting involves several steps. The author writes a draft, and the draft is typed in
clean form. Then the author and an editor (at least for large publications) tear the draft to pieces,
and the author goes to work on a new draft. This cycle continues until both author and editor are
satisfied. Next, the draft is typed again (often with triple-line spacing) and passed to a copyeditor.
'Ihe copyeditor marks the draft with notations about typefaces, headline size and placement, page
size, italics, and anything else that affects the way that the finished text will look. These markings
are in a special code, and each mark lies in the draft right where it is to take effect. The marked
copy moves to the composing room, where it is set in type, and one-time test prints called galley
proofs are made. The galleys are returned to the editorial department to be checked for accuracy
against the final draft by a proofreader. Any small errors can be corrected in the composing room
by substituting one line of type for another. But what if the author decides that Chapter 4 is all
wrong, or the designer thinks that Bodoni Bold would have been a better type than Times Roman?
All such material must be reset at considerable cost. And it is surprising how often seeing text in
print, rather than as typescript, will change one's impression of it.

With a publication system, most of the work and many of the people can be eliminated from the
publication cycle. As before, the author must prepare a first draft. Instead of being typed, however,
the draft is entered into the computer file system. This entry, as is usual with computer data, may
be from punched cards via a card reader or directly through a computer terminal. (Most of this
manuscript was keypunched.) Also, the author takes on the role of copyeditor and adds to the first
draft initial commands to the text formattor. The formattor and compositor process this draft text
file so as to produce a rough proof of the final printed text. The rough proof is much more finished
than a typescript; it probably looks like a page proof with correct numbers, an attractive typeface,
and so on. Notice that all this activity occurs before any rewriting of the manuscript.

Then the author and editor begin the task of revision. The intellectual work is the same, but they
have considerable help in visualizing the results because the drafts are more nearly in final form.
Also, the work of editing is no longer so arduous. Insertion or deletion of a sentence does not
require a retype; rather, the change is made with a text editor, just as lines in programs are changed.
Rearrangement of large sections and recall of text temporarily discarded can usually be accom­
plished through the file system. Since the text is to be reformatted in any case, changing the copy
preparation _commands simply means changing the text file. Finally, computers can run formattors
so cheaply that all the many draft-format runs may well cost less than old-fashioned typewriting
charges. One danger, though-authors unused to the neatness of computer-generated drafts may be
reluctant to rewrite; for too many years authors have been charged against royalties for changes to
typeset copy. Reeducation is necessary if the computer is to be used correctly.1

1 The English word format is strictly a noun and means the size, shape, or general layout ot a publication. FOR­
TRAN stole the word to describe the shape and layout ot data records. There is no convenient verb to describe the
proceM mediated by a FORMAT statement, however. So now we use the verb to format, in parallel with the verb
to edit, to mean the action ot laying out text in a particular pattern or scheme. Whether to format is jargon or
English on the march is up to you.
1 The production editor for this book points out that major book publication is not as idyllic as outlined here.
Although type is set with electronic &Mistance at Prentice-Hall , most of the design, layout, and paste-up are still

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

13 PRINTER'S DEVIL

COMMANDSFORFORMATI'ING

How does a typical fonnattor work? The source file of text to be edited looks like a typescript
(although the typist need not be so careful about spacing, margins, and the like) with format
commands mixed in. Commands must begin the first character of a record and always start with
"?" to set them off from ordinary text, at least in our example. For very simple output, only a
command that sets the paper size and commands to break the text into paragraphs are needed.
Within any one paragraph, the source text may be passed to the output file in one of three modes.

Unfilled-the lines from the source text are passed to the output exactly as they appear.
This mode is most commonly used to pass tables or other pref ormatted material to the
output without change.

Filled-the lines from the source are packed as tightly as possible from left to right in
the output lines, and a new output line is not begun until the next word from the source
will not fit on the previous output line. Single spaces are left between words, and double
spaces after sentence-ending symbols like period, exclamation point, and question mark.
This is the mode that a typist normally uses, and it produces a ragged right edge. Notice
that extra spaces around words in the source are ignored in fill mode; spaces in the source
are only used to separate words.

Justified-the lines from the source are first filled to produce a complete output para­
graph. Then each line of the filled paragraph, except the last, has enough extra blanks
added between wo~s so that the last word of each line ends exactly on the right margin.
No interword gaps should have n+l blanks added until all have n blanks, and blanks
should not be added after sentence terminators until all single gaps have two blanks.
The blanks should be added to randomly selected gaps; if a pattern is used to add blanks,
there will be unsightly stripes in the output. Justified text approximates that found in
books but is not as attractive because varying character sizes are ignored.

The commands needed to process simple text are ?papersize, ?paragraph, and ?mode. The effects
can be seen in Figures 4-1 and 4-2.

?papersize height width
The ?papersize command sets the limits on each page of text; a page may have height lines
and width characters per line. Every ti.me height lines are output, the formattor must create
a new page. Text output lines will fit the entire space between columns 1 and width as
necessary. A new ?papersize command may be issued at any time, but such a command
automatically terminates the previous paragraph. The broken paragraph is finished with the
old values of height and width before the new values take effect. Changing the paper size
might also cause a new page if the new value of height is less than the old one. At the start
of each format run, height should be set to 40, and width to 72, and no ?papersize is neces­
sary if these values are satisfactory.

?mode filltype
The ?mode command sets the processing mode for text passed to the output. Argument
filltype may be one of the three strings unfilled, fill, or justify (any other value is an error).
Use of ?mode breaks the previous paragraph, which is finished by using the old value of
filltype. The initial mode is fill; if this is satisfactory, no ?mode command need be issued.

done manually. In particular, compositors charge premium rates to correct errors which have made their way into
type . Nonetheless, manual printing methods are on the retreat, and the complete victory of automation probably
awaits only an input device for handwritten text.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

14 PRINTER'S DEVIL

?paragraph indent gap

?papersize 42 40

?mode justify

Thia sample section of text will be set justified. Notice that

the way spaces are left has no effect

on the output.

Only word separation is caused by spaces.

Thus, it is a good idea to start each source text sentence on a

new line to make editing easier.

?mode fill

In the fill mode, spaces still have no effect,

but now the words are all run close up and the right margin is

raggedy.

Research suggests that the ragged right edge

may improve reading speed.

Notice also the paragraph break caused by ?mode.

?mode unfilled

This text will be taken exactly as

seen and it better not run

past column 40.

?mode justify

?paragraph 10 2

Finally, the ?paragraph command causes a gap and an

indentation which looks like normal text.

The commands buried in these lines cause no problems because

the question marks are not in column 1.

Figure 4-1: Some Raw Source Text

The ?paragraph command breaks one paragraph off and begins another. The new para­
grap_h 's first line is started indent spaces in from the left margin (indent might be zero, and
later we will see how it could be negative) and gap blank lines are left between the old para­
graph and the new. If gap, or gap and indent, are not specified, they retain their values from
their last previous settings. The initial value of indent is 3 and of gap is O; if these values are
satisfactory, there is no need to supply arguments when ?paragraph is used. Notice that if
indent is 3, the first line of the new paragraph starts in column 4.

The ?papersize, ?mode, and ?paragraph commands are not sufficient. A complete formattor will re­
quire at least the following additional commands.

?margin left right
The ?margin command causes the left and right margins of the output text to be set into
columns left and right. Naturally the left margin must be 1 or more, and the right margin

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

15 PRINTER'S DEVIL

This sample section of text will be set

justified. Notice that the way spaces are

left has no effect on the output. Only

word separation is caused by spaces. Thus,

it is a good idea to start each source

text sentence on a new line to make

editing easier.

In the fill mode, spaces still have no

effect, but now the words are all run

close up and the right margin is raegedy.

Research su1gesta that the ragged right

edge may improve reading speed. Notice

also the paragraph break caused by ?mode.

This text will be taken exactly as

seen and it better not run

past column 40.

Finally. the ?para,raph command

causes a 1ap and an indentation which

looks like normal text. The commands

buried in these lines cause no problems

because the question marlu are not in

column 1.

Figure 4-2: The Same Text Formated

must be no more than the current paper width. A ?margin command breaks the previous
paragraph. With the introduction of ?margin, it makes sense to have negative values for
argument indent of the ?paragraph command; simply outdent (a made-up but obvious word)
the first line of the paragraph toward the left edge of the paper.

?linespacing gap
The ?linespacing command causes gap-1 blank lines to be left between output lines. A gap
of 1 is thus like typewriter single spacing, of 2 like double spacing, of 3 like triple spacing,
and so on. This command breaks the previous paragraph.

?space n
The ?space command breaks the previous paragraph and inserts n times the current line­
spacing blank lines into the output. The action is similar to hitting the carriage return
n+l times on the typewriter. If a new output page is created because the blank lines more
than fill the bottom of the current page, the page is turned, but no blank lines appear at the
top of the new page. The default value of n is zero.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

16 PRINTER'S DEVIL

?blank n

?center

?page

The ?blank command works like the ?space command except that exactly n blank lines are
inserted into the output; there is no interaction with the ?linespacing argument. This action
is similar to rolling the typewriter platen n+l clicks.

The ?center command takes the next source line, strips trailing and leading blanks, and
centers the result between the left and right margins of the next output line. The previous
paragraph is not completely broken, but the line before the centered one may be short. The
centered line does follow the normal linespacing. Naturally an error occurs if the centered
text is too long to fit the current margins.

The ?page command breaks the current paragraph and, after the last line of the paragraph
has been moved to the output, causes a move to a new output page.

?testpage n
The ?testpage command breaks the previous paragraph and moves it to the output. If there
are fewer than n blank lines now on the current page, ?testpage works like ?page; otherwise
it is completely ignored. Thus ?testpage checks the space remaining on a page.

?heading depth place position
The ?heading command sets a title to be used at the top of each page, beginning after the
next page - turn in the output. The next depth lines of the source are taken exactly as is for
a heading occupying the top depth lines of each page. On the line numbered place of the
heading, the page number is filled in on the left, right, or center as argument position has
value left, right, or center. The page number is incremented each time that a page is turned
and starts with value one. The heading lines always use the margins in effect when the head­
ing was defined. A heading may be eliminated by using ?heading with a depth of zero. The
?heading command does not cause a break.

?number n

?bre~

The ?number command sets the current page number to n and does not cause a break in the
previous paragraph.

The ?break command causes a break in the previous paragraph.

?footnote depth
The ?footnote command causes the following depth lines of source text, including any
commands, to be placed at the bottom of the page in footnote position. The controlling
parameters of the formattor, margins, linespacing, and the like, are saved over the footnote
and are also used initially to provide an environment for the footnote. Enough source is
read from after the footnote to completely fill out the last source line preceding the ?foot­
note. Then the footnote is processed and fills the page from the bottom up. If there is
footnote material on the current output page already, the new material pushes the old
material up from below. If the footnote material runs up into formatted output, the page
is finished, and the rest of the footnote goes on the next page (which is why the last ordi­
nary line before the footnote is filled before footnote processing begins). Once all depth
lines are on the output, processing reverts to the ordinary text and to the original parameter
values (although the page number may have changed). Obviously ?footnote must not cause
a break, and one ?footnote is not allowed within another.

?alias fake real
The ?alias command sets the single character fake to stand for the single character real
until ?alias is issued again. As each line is passed to output, all instances of fake are changed
to instances of real. Blanks have a special use as word separators; an ?alias command can be

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

17 PRINTER'S DEVIL

used to force a blank into the output without causing a word break. An ?alias does not
break the previous paragraph, and all aliasing can be turned off by invoking ?alias with no
arguments.

A WORD ON WORDS, LETTERS, AND ARGUMENTS

To fill and justify correctly, the formattor must recognize words and sent~nces. Words are rather
easy; any nonblank string of characters terminated with a blank or an end of line is a word. Notice
that this category includes trailing punctuation as part of the preceding word. Sentences end with
full stops in English and are normally followed by a double instead of a single space, but the stop
may be inside quotes or parentheses. English also requires that colons be followed by double
spaces, so whenever a word ends with

. ? ! .) ?) !) ." ?" !" .") ?") !") :

be sure to mark a sentence end as well. There may be other possibilities that we have not men­
tioned; in English, authors are often very free with punctuation.

If your formattor will run on a time-shared system with upper- and lowercase input and terminal
output, undoubtedly the character set available to the language in which you program the formattor
will .include both upper- and lowercase. But if you are running on a card-oriented system, there will
be difficulty in reading two cases, since keypunches do not have shift keys (there had better be
some way to print both cases, or the project is not worth much). To allow keypunch input, choose
some special character like t and have it mean shift up once. Now you would keypunch

The IBM 360 computer

as

tthe titbtm 360 computer

Shift up is the explicitly marked action, because capital letters are much less common than lower­
case. Notice also that we are assuming that the keypunch provides lowercase, which is not the way
keypunching looks on the punched cards.

Arguments to commands come in two forms. Some arguments are integers and give either an
explicit value for some formattor parameter or the number of source lines to be affected by the
command. Other arguments are words or characters that are to be used in their literal senses. In
both forms, arguments are separated by blanks, and extra blanks are ignored. The ?alias command
may have a missing second argument, which is then assumed to be blank (otherwise hard to repre­
sent under these conventions). Be careful to have error messages for malformed commands.

Statement of the Theme Write a text formattor for your system that uses the commands de­
scribed above. Since formatted text is not very valuable unless it has upper- and lowercase output,
you must make use of an output device with upper and lower capability. Because such devices are
often expensive in computer charges, you may not be able to afford many test runs. Although you
naturally expect to get everything right the first time, you might provide test output in a form
similar to keypunch input. Such output could be printed on a standard line printer.

Performance Practice It is probable that you will find that your program spends most of its
time reading and writing, and little time actually moving the words into their output positions.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

18 PRINTER'S DEVIL

Furthermore, most of the processing time will probably be spent finding the blanks between words.
Keeping these facts in mind, it is clear that the central scan algorithm and the formattor's transac­
tions with the outside world should receive the bulk of your optimization. Also, the command
recognizer and all the algorithms for correct placement should be very clear. Normally input/output
is best left to standard language features, but this is a problem where special knowledge of local
system features can be exploited to good purpose. Remember that such exploitation should be
confined insofar as possible to input/output routines and should not diffuse through the whole
formattor.

The command set was chosen so that the output can be produced in one pass through the input.
No com.mand algorithm should require the input to be backed up. If algorithms need workspace, as
they will for footnotes, consider double buffering the output and using the free buffer for the
needed space. As a timing test, the formattor that produced this book took about 2 seconds of CPU
time per page and was written in a variant of TRAC (see Chapter 28). Incidentally, it seems that
most formattors take about 1 or 2 seconds to produce a finished output page regardless of the
speed of the underlying computer. The only explanation that we offer is that users perceive this
rate as reasonable, and programmers do not think it cost effective to strain for faster formatting.

Orchestration A simple version of this problem is traditional in SNOBOL courses, but we sus­
pect that most SNOBOL implementations would be too slow for practical use. On the other hand,
any language without at least some string handling will be awkward at best. Perhaps ·the best com­
promise would be an intermediate language like XPL or BLISS. Many computers have special
hardware for text operations such as finding blanks, breaking strings, and comparing strings. This
suggests that the very innermost loops should be written in assembly language to take advantage
of such features.

Playing Time One person for 4 weeks.

Variations on the Theme In this book you will see boldface, italic, Greek, underlined, and other
special characters. All were available on the output devices but not, as you might guess, on the
keypunches or the file storage media. A special convention was used for these special characters.
For instance, suppose that "et cetera" is to be set in italics. Then it would be written "&i+et
cetera&i-" producing "et cetera." The triple characters beginning with the ampersands "&" are
called font switches and, in this case, switch the italic font on and off. By regarding underlining,
superscripts, subscripts, and so on as special fonts, you can take advantage of any extra features that
your output device may have. Indeed, more than one switch may be on simultaneously, so that
the output might have underlined Greek superscripts. (You will probably want the backspace font
switch to be &xn, where n is a digit between one and nine.)

REFERENCES

Kernighan, Brian W., and Lorinda L. Cherry. "A System for Typesetting Mathematics," CACM, 18, 3, pp.
151-157, 1975.

Although this paper strictly describes only a system for setting mathematical expressions, the system is
grafted onto a general text formattor. The paper, as printed in CACM, is a photocopy of the work of the
formattor and was not reset for publication. By the way, Kernighan and Cherry are selling their system.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

19 PRINTER'S DEVIL

Kernighan, Brian W., and P. J. Plauger. Software Tools. Addison-Wesley, Reading MA, 1976.

Kernighan and Plauger discuss the set of software helpers that one would like to have before starting a
large (or perhaps any) programming project. At. in these etudes, the tools are described and then set as
projects. One of the tools used is a text formattor. They also provide some hints on Implementation. You
may want to compare features before starting this etude.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

5

or ...

TOURNAMENT DESIGN

AND EVALUATION

Almost every one has been a fan of some hometown team that was second best. At the end of the
season the championship tournament determined the town, county, state, national, world, or
universe champion. Unfortunately, the local heroes were knocked out in the first round of the
single elimination tournament by the eventual winners. The game was not too interesting; after
all, nobody was warmed up yet. And how sad it was - some lackluster team eventually had our
heroes' rightful spot; instead of a dramatic confrontation at the end of the tournament, there was
a cakewalk.

The culprit here is the single-elimination tournament. Assume that there are 2n teams for n > 0.
Then, in the first round, team 1 plays team 2, team 3 plays team 4, .. . , and team 2n-1 plays team
2n. The losers drop out, and the winners advance to the next round.

Figure 5-1 gives a picture for eight teams. If we assume that the better team will always win it.s
game (that is, there are no upset.s), the best team will clearly come out in first place. But the other
team in the championship game might really be no better than 2n-1 -1 in an absolute ranking, if it
happens that all the better teams are in the same bracket as the winner. The winner could knock out
all the good teams on the way up, while a weak team had an easy path. There are several ways to
avoid this situation. First, the teams (henceforth contestants) might be seeded so that the good
contestants (on the basis of prior performance) are spread throughout the original entries. For in­
stance, the best contestant might be in slot 1, the second best in slot 2n-l + 1, the third best in slot
2n-1 +2n-2 +1, the fourth best in slot 2n-2 +1, and so on. Assuming that the initial rankings are
reasonably accurate, the better contestants would not knock each other off in the early rounds. A
second possibility is a double-elimination tournament _in which it takes two losses to leave the
tournament. But, in fact, the complete (if impractical) solution would be a round robin tournament
in which every contestant plays every other exactly once. Once again assuming no upsets, the best
contestant will have a record of 2n-1 and 0, the second best a record of 2n-2 and 1 (losing only to
the best contestant), ... , and the worst a record of 0 and 2n-1 (losing to everybody). The diffi­
culty is that a round robin takes 2n-l (2n-1) games, whereas single elimination takes only 2n-l
games.

20

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

21 WINNING IS THE ONLY THING

Team 1
Team 1

Team8
Team 1

Team4
Team5

Team 5
(Upset)

Team 2
Team 1

Team 2
Team 7

Team3
Team 3

Team3 (Upset)
Team6

FilJure 5-1 : A Sample Single Elimination Tournament. The final
ordering as defined in the text is 1, 3, 5, 2, 8, 6, 4, 7.

There is a compromise - run a Swiss tournament. On the first round, pit the first seeded contestant
against the last , the second against the next to last, and so on. After each round, rank the contes­
tants by their records and, within each group with the same record, rank the contestants by the
average record of the opponents that they have already beaten (any unresolved ties are irrelevant).
In the next round, the highest-ranked contestant is paired with the next higher-ranked contestant
such that the two have not already met. The rest of the contestants are paired with the same policy
of trying to match nearly equal records without allowing any repeated matches. Table 5-1 shows a
possible three-round, eight-player Swiss. Harkness, an important chess tournament director, claims
that a Swiss tournament of ./N+2k rounds, where N is the number of players, will place the first
k+l players correctly (and, by symmetry, the last k+l also). Swiss tournaments are more accurate
than single eliminations, much faster than round robins, and allow every contestant to play every
round. The question is how well these tournaments work with real competitors. Assume that there
are 2n contestants, that contestant 1 is the best, contestant 2 is the next best, all the way down to
contestant 2n, who is the worst. First, run a complete round robin, recording the results of each
match. If a match pits contestant i against contestant j, for i < j, then the probability that contes­
tant i wins is

1/2 + (j-i)/2n+l

always giving the better contestant a more than even chance of winning. Rank the contestants by
their round robin records; within each group of equal records, rank by the mean winning score of
the contestants' opponents; if there are still ties, rank by the original ordering of the contestants.
The result is the round robin order, which we will assume is the "fairest" ordering and which we
will use to grade the other tournaments.

Table 6-1 An Example Swiu Tournament

Pairings Pairings Pairings Final
Round 1 Winners Round 2 Winners Round 3 Winners Rank,

1 1 1 1 1 1 1 (3-0)
8 2 3 3 (2-1)

2 2 3 3 5 2 2 (2-1)
7 5 2 4 (2-1)

3 3 8 8 4 4 5 (1-2)
6 7 (Upset) 8 6 (1-2)

8 (1-2)
4 5 6 4 6 6
5 (Upset) 4 7 7 (0-3)

Thia tournament ia not actually large enouah to show a Swiss' virtues.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

22 WINNING IS THE ONLY THING

The next step is to run Swiss and single-elimination tournaments using the same data base. When­
ever two contestants are paired in one of the tournaments, use the result saved from the round
robin match between the two. Notice that two contestants can meet only once in either tournament.
The Swiss order is the order after the final round (run n rounds), with any ties not broken by the
Swiss pairing broken by the original rankings. Start the single-elimination tournament by pairing
randomly for the fll'St round. In the single-elimination order, the winner of the final round is first,
the loser second, and, in general, the losers in round i are ranked ahead of all earlier losers and be­
hind all winners in round i and later. Within the group of losers at round i the contestants are
ranked by the order of finish of the teams that beat them.

To compare the orderings, we use a new and an old statistic. The old statistic is the rank correlation,
defined as

N

R - 1 - 6 L (xi-Yi)2 /(N3-N)
i=l

where xi is the rank in one ordering, Yi in the other, for contestant i, and N is the total number of
contestants (here 2°). The other statistic is the match count, defined as

that is, M is the maximum number of places from the top down in which the two orderings exactly
match. R measures the rough equality of the whole of the two orderings, and M the equality at the
top of the orderings.

Statement of the Theme Write a program that reads an input value n, runs each of the three
tournaments for 2° contestants, and calculates the two statistics R and M for each of the three
pairs of orderings. Using the same n, run the experiment many times and calculate means for M and
R. See if Swiss tournaments or single-elimination tournaments are more likely to replicate round
robin results.

Perfonnance Practice Except for understanding how each tournament works and programming
the matchups efficiently, ther~ is little difficulty here. Because of the size of a round robin, you
should struggle for an efficient inner loop in the round robin and efficient storage of the match
results. Of course, you will need a random number generator of good quality to decide the matches.
Also, the Swiss matching might result in trying to pair contestants who have already met. Either
prove that this situation cannot happen or modify the algorithm to avoid such occurrences while
maintaining the general policy of trying to pair contestants with similar records.

Orchestration An algebraic procedural language with good loop controls is appropriate. APL
is also a possible choice, as are other array-processing languages, if you can organize the tourna­
ments so that they take advantage of processing all the contestants in parallel.

Playing Time One person for 2 weeks.

Variations on the Theme Most of the extensions involve more elaborate analysis and compari­
sons with other tournaments. First, notice that the lower rankings of a single-elimination tournament
are fairly arbitrary. Also, the low-ranked contestants do not have much fun, since they get knocked

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

23 WINNING IS THE ONLY THING

out early. The solution is to run another single-elimination tournament among the losers at each round.
The derived order is used to rank these losers instead of the rule given above. Since these secondary
tournaments will also have losers, run even smaller-ranking tournaments and so on ad nauseam.
Notice that the tournament still runs for n rounds but that now all the contestants get into all the
rounds. If the better contestant always wins, the elaborated tournament is on the way to becoming
a complete sort algorithm.

Indeed, tournaments are sorting procedures on the contestants entered in them, albeit the com­
parison rule is probabilistic. Any sort that follows the two central rules of tournaments should be a
candidate for a tournament design. These two rules are as follows.

1. No contestant should appear in more than one match per round, and the number of
rounds should be about the logarithm of the number of contestants.

2. No two contestants should meet more than once.

Using these guides, you can evaluate both classical tournament designs like double elimination and
tournaments that you invent yourself.

Several statistical questions also spring to mind. What is the effect of partial or complete seeding on
the single elimination, and what is the effect of a random draw (that is, random initial matchups) on
the Swiss tournaments? What is the effect of a different superiority function? And since it is prob­
ably not correct simply to average our two statistics over a number of experiments in order to calcu­
late an overall statistic, what statistical operation should be used?

REFERENCES

Harkness, Kenneth. Official Chess Handbook. David McKay, New York, NY, 1967.

Harkness tells everything that you could want to know about the legalities of chess. Since the Swiss system
has made large open chess tournaments possible in the United States, be goes into great detail about bow
to run one. There are also many proposals for tie breaking and ranking of players.

Knuth, D. E. The Art of Computer Progrommint/Semirwmerical Algorithms. Addison-Wesley, Reading, MA,
1969.

Chapter 3 of the "Bible" is about random numbers, their generation, and their use. You can learn the
pitfalls of trickiness here. We suggest that you try the MacLaren-Marsaglia generator described by Knuth
in Algorithm M.

Hoel, Paul G. Introduction to Mathematical Statistics. Wiley, New York, NY, 1971.

For those who are not statisticians, the use of correlations and other statistical magic seems mysterious.
Hoel explains simple statistics without condescension and he does not mystify.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

or ...

BUSINESS MANAGEMENT

AND COMPUTER SIMULATION

It is often possible to study a real-world situation by building a simulation. Much fun and some
knowledge come from the construction process. Indeed, some people become so addicted to exploring
the model that they never go back to the real thing. Here's your chance.

MANAGEMENT,1 A GAME

You have just been appointed to the presidency of a large manufacturing concern by its expectant
board of directors. The company owns a number of factories. Each month the company buys raw
materials, processes them, and sells the finished products to a waiting public. You will have to de­
cide on inventory and production policies, whether and when to expand facilities, how to finance
expansion, and how to assume an attitude of bashful modesty when reporting your obscene profits.
Before taking on the job, you build a simulation of the whole industry so that you can try out your
business strategies in private. What follows is a description of the game that you have developed.

THE INITIAL SITUATION

The simulation moves in one-month time steps. At the beginning of the game each player (a com­
pany president) receives two standard factories, four raw material units (abbreviated RMU), two
finished inventory units (abbreviated FIU), and $10,000 in cash. The players are numbered from
1 to N, and on the first tum player 1 is the senior player. Each tum, the honor of being senior moves
to the next higher-numbered player, returning to the first player after player N [that is, the formula
for the senior player on tum T is (T mod N)+ 1]. In all cases of ties during bidding, the most senior
player (the player who will next be senior) wins.

1Management is the trademark ot the Avalon Hill Company, 4517 Harford Road, Baltimore, MD, 21214, tor its
copyrighted game of business. We bave modified the rules slightly to make the programming of this etude simpler.

24

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

25 STRIKE IT RICH

MONTHLY OPERATIONS

During each month the following transactions are performed in exactly the order specified. If a
company cannot meet a financial obligation at some point during the monthly cycle, it is declared
bankrupt immediately, its assets vanish, and it leaves the game (better have a supply of ready cash).
All payments are between individual players and a universal bank; no money ever flows between
players, thus avoiding antitrust suits. Similarly, the bank controls the source of RMUs and buys up
all FIUs.

t

1. Pay Fixed Expenses. Beginning with the senior player and proceeding to the junior
player, each player pays $300 for each RMU held in stock, $500 for each FIU held in
stock, $1000 for each standard factory owned, and $1500 for each automated factory
owned. These are fixed maintenance expenses borne by each player each tum and must
be paid even if the player takes no other action during the month.

2. Determine Market Conditions. The bank determines and informs the players of the
number of RMUs that will be available this tum and the minimum price it will accept for
them. Similarly, it announces the number of FIUs that the bank will buy and the maxi­
mum price it will pay for them. Table 6-1 shows the five levels of RMU supply and FIU
demand (note that when one is up, the other is down) and their floor and ceiling prices.
The number of players P does not count those who have gone bankrupt and so may be
less than N. The products 1.5P and 2.5P are rounded down to the nearest integer. Table
6-2 is the stochastic transition matrix that the bank uses to choose the new month's
supply and demand level given the preceding month's. Assume that the level in month
zero was 3.

3. Bid for Supplies. Each player calculates a secret bid for RMUs desired this month. A
bid must specify both the number of RMUs needed and a purchase price no lower than
the bank's minimum (a request for zero RMUs or less than the minimum price simply
drops the player from this month's bidding). All the bids are revealed simultaneously,
and the RMUs available are parceled out to the players, high bidder first. If there are not
enough RMUs to go around, the low bidders lose out; if there are ties in bid prices, the
most senior player wins. Players pay for the units as they receive them. Units left over
after bidding are not stockpiled by the bank for the next tum.

4. Produce Stock. Beginning with the senior player and proceeding to the junior player,
each player must announce how many RMUs are to be converted into FIUs in this tum,
and which factories are going to be used. The player is immediately charged for the
production. A standard factory may process one RMU a month at a cost of $2000. An
automated factory may do the same, or it may process two RMUs in a month at a cost of
$3000. Obviously the player must have the necessary RMUs to process.

5. Sell Inventory. An auction similar to that held during the purchase of RMUs is held to
sell FIUs back to the bank. Bids must be lower than the maximum price set by the bank,
and the bank buys FIUs from the lowest bidder first. Ties in bid prices are resolved in
favor of the senior player. If supply exceeds demand, higher-priced units go unsold.
Players are paid as soon as their units are purchased.

6. Pay Loan Interest. Each player pays 1 % interest on the outstanding balance of all un­
paid loans. Interest is due even on loans that will be repaid this tum.

7. Pay Outstanding Loans. Each player who has a loan falling due this tum pays it off.
Because loan repayment precedes loan allocation, players must pay off loans from their
cash on hand.

8. Take Out Loans. Any player may take out a loan now. Loans are secured by a player's
factories, with a mortgage value of $5000 for standard factories and $10,000 for auto-

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

26 STRIKE IT RICH

Table 6-1 RMU and FIU Price Levels

Level RMU, Minimum Price FIU1 Maximum Price

1 l.0P $800 3.0P $6500
2 1.5P 650 2.5P 6000
3 2.0P 500 2.0P 5500
4 2.5P 400 1.5P 6000
5 3.0P 300 l.0P 4600

mated factories. A player. may not have loans outstanding that total more than half the
the security value but may borrow freely up to this limit. The bank immediately pays
the player the loan amount, and the loan is due to be repaid in the twelfth month fol­
lowing- for instance, a loan taken in month 3 comes due in month 15. Loans may not be
repaid before they come due.

9. Order Construction. Players may order the construction of new factories. A standard
factory costs $5000 and may begin production during the fifth month following order
placement; an automated factory costs $10,000 and comes into production the seventh
month following order; a standard factory may be converted to automated processing for
$7000, coming into production the ninth month following (standard processing may
continue during conversion). Half the cost of a factory must be paid when it is ordered;
the other half comes due during this part of the turn in the month preceding first produc­
tion at the new facility. A player may not own or have on order more than six factories.

TERMINATION AND EVALUATION

The game ends after some fixed number of turns (13 or more), or after all but one of the players has
gone bankrupt. A company,s net worth can be calculated by adding up the value of its factories at
the price it would take to rebuild them, the value of RMUs at the current bank minimum price, the
value of FIUs at the current bank rnaxirolUD price, and cash on hand, and subtracting the total of
loans outstanding and construction costs yet to be paid. If more than one player is active at the end
of the game, the active players are ranked by net worth.

At any time any player can find out any other player,s net worth, cash, loan, inventory, factory, or
construction position. During auctions, players may not know one another,s secret bids, however,
once the bank has collected the bids, all bids are publicly announced and the number of units

r Table 6-2 Tranaition Probabilities
between Price Levels

Old
Level 1

1
1 -
3
1

2
4

3
1 -

12

4
1 -

12
1

5
12

Digitized by Google

New Level
2 3 4

1 1 1 - -
3 6 12
1 1 1 - - -
3 4 6
1 1 1 - - -
4 3 4
1 1 1 - - -
6 4 3
1 1 1 - -

12 6 3

5

1
12
1 -

12
1

12
1 -
4
1 -
3

Original from
UNIVERSITY OF MICHIGAN

27 STRIKE IT RICH

bought or sold by the bank from each player is public knowledge. Playen may keep any records
that they wish, but the bank will not assist them beyond supplying information required by the
game.

Statement of the Theme This problem has two part.s. The first requires you to write a program
that runs the simulation-that is, a banker program. This program must have complete control of
the game; setting prices, buying and selling inventory, running auctions, keeping the accounts, and
so on. It must query playen at the proper times and enforce compliance with all rules. In particular,
all accounts of the banker and all private information kept by playen must be protected from un­
authorized player interference by positive control of the banker. Output of the banker is a running
account of the game with periodic (monthly?) summaries or balance sheets. Since this history is
meant to be read by humans, it should be self-explanatory and aesthetically pleasing.

The second part of the problem is to write player strategy routines. Each player routine must be
capable of responding to all game requests made by the banker; that is, it must be able to bid for
inventory, make processing decisions, sell finished inventory, and so on. If you write your simula­
tion for an interactive system, one player routine should operate by passing the decisions to a
human player seated at a console. Such a routine should be able to respond to human queries about
the state of the game.

After several player routines have been written, they should be combined with the banker to form a
complete gaming system. Use this system to play several games and observe the results. Note that
several copies of the same player routine might compete against one another. (If we regard humans
as initially identical, this is what happens in a real game.) For credit, at least two nontrivial player
routines must be written.

Performance Practice This is an example of a sequenced or lock-iltep simulation in which all
events (except bankruptcies) happen in a strictly defined order that is known in advance. A loop
that cycles through the month's work seems an appropriate structure for the central processing
routine. You are unlikely to see many programming problems, either academic or applied, as
suitable for a welloiitructured implementation. Take advantage of the opportunity.

There is one catch in the statement of part one. The banker must protect all sensitive information
from tampering by an unscrupulous player routine. In other words, the banker must keep accounts
private, the bank's and the playen', ensure that auctions are really secret, and yet supply requested
information to playen. Unfortunately, doing so may be very hard, if not impossible, in many
languages. In FORTRAN, critical values may not be in common blocks because a player routine
can access a common block without permission of its creator. In a block-structured language,
critical values cannot be global to player routines for the same reason. Even if you assume that a
player routine does not violate rules of the source language by accessing off the end of an array
or dropping into assembly language, for example, complete security may be difficult to achieve.
One of the topics that your documentation should discuss is your security technique and its success.

Orchestration This problem cries out for a language with expressive control structures. There
is less need for elaborate data structures. COBOL and FORTRAN are possibilities but are apt to be
handicapped by their poverty. APL has been successfully used for similar problems, but clear
structuring will be a difficulty. You will probably not find a language with the data protection
suggested above.

Playing Time One penon for 4 weeks, two people for 3 weeks, or three people for 2 weeks. A
player strategy routine should take 2 weeks.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

28 STRIKE IT RICH

Variations on the Theme Part of the fun of writing a game simulation is playing with the strat­
egy routines. Sometimes quite simple heuristics can provide surprisingly complex behavior patterns.
It should be easy to build some learning capability into your strategy routines so that they will per­
form better and better. Try holding several training tournaments with both humans and programs
(humans can learn, too). A standard trick for teaching new strategies to intelligent programs is to
allow one copy (Alpha) of a learning strategy to learn during a series of games while holding a
second copy (Beta) to the knowledge level that it had at the beginning of the series. After the
learning series, an evaluation series is held: if Alpha wins, all versions of the strategy routine are
given Alpha's new knowledge; if Beta wins, Alpha's training is forgotten (as no improvement), and
a new learning series is started.

The game can be made more interesting by adding more rules and presumably more realism. The
additional rules are listed below; if a new rule is added, all lower numbered rules should also be
added.

1. Emergency Loans. Whenever a cash squeeze occurs during the game, a player may
apply for an emergency loan. Such a loan costs 2% a month instead of the normal 1 % and
comes due in the fourth month following during the normal loan repayment phase
(interest is paid during normal interest repayment). The total of all outstanding loans may
still not exceed half the value of a player's collateral. Emergency loans cannot be used to
rescue a player from bankruptcy once the bank has demanded payment for some obliga­
tion; the request may be made no later than the beginning of the phase in which the
payment comes due.

2. Special Situations. In a new phase before the payment of fixed expenses, the bank
announces any special situations obtaining for this tum. Figure 6-1 gives the probability
of the various special situations. The effect of the rate changes mentioned below is
cumulative; for example, an increase of 10% followed by a later decrease of 10% results
in a final net rate that is 99% of the original rate. The situations include

Strike -The affected player may choose to halt all production for 3 months starting
now or pay a 10% increase in all factory expenses (both fixed and production) until the
end of the game. A player whose production is halted may still participate in all other
phases of the game and must pay all fixed expenses.

Transportation Crisis-The affected player may not buy or sell any units this turn.

Special tax -The affected player must immediately pay a one-time tax of $500 per
factory. The tax must be paid without the aid of an emergency loan and may cause
bankruptcy.

Flood -One of the affected player's factories (standard, if possible) may not produce
this month.

.01 Player i is affected with a strike .

. 01 Player i is hit by a transportation crisis .

. 02 Player i must pay a special tax .

. 01 Player i has one factory Clooded .

. 02 Player i reaps the rewards of research and development .

. 02 Player i rinds a windfall profit .

. 91 No special situation for player i this tum.

Figure 6-1: Probabilitie• of Special Situations. Each player trie•
for a aituation each turn.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

29 STRIKE IT RICH

Research and Development- Factory production costs of the affected player imme­
diately drop 10% for the remainder of the game.

Windfall Profits -The affected player may immediately sell as many FIUs as desired at
$6500 each. The FIUs must be in stock.

3. Shutdown. In a new phase just before ordering construction, a player may ask that
any or all of the company's plants be shut down; beginning with the next month, such
plants cost only half the normal fixed expense but may not produce. In the same phase
during a later month, a shutdown factory may be ordered back into production. A
factory ordered reopened resumes paying full expenses and production in the second
month following; for instance, a factory reopening ordered in month 13 is effective in
month 15.

4. Split Bids. In all auctions a player may offer zero, one, or two bids. The total number
of units bid for by one player, whether buying or selling, may not exceed the number
that the bank has offered for bid and, in the case of FIUs, may not exceed the number
that the player has in stock. Split bids by one player are treated by the bank as if they
had come from separate players. The bids are competing against one another and other
players' bids, and both, either, or neither, may be successful. Ties are still resolved in
favor of the senior player.

REFERENCES

Anonymous, Management. Avalon Hill Co., Baltimore, MD, 1960.

Management is the most realistic of the "business" games available to the general public. There is an inge­
nious accounting fonn that controls the play in the manual version of the game.

Evans. George W., 11, Graham F. Wallace, and Georgia L. Sutherland. Simulation Using Digital Computers,
Prentice- Hall, Englewood Cliffs, NJ, 1967.

This is a fairly simple introduction to simulation techniques. It certainly makes few demands on computer
knowledge. Some examples are worked out in detail for both conflict and nonconffict situations.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

7

or ...

PUZZLE CONSTRUCTION
USING HEURISTICS

Many people find crossword puzzles too hard because they cannot figure out the clues, but they
still enjoy filling out the diagram. For such people there is a simpler puzzle, the Kriss-Kross.

Each Kriss-Kross consists of a list of words, arranged for convenience into groups by length and
alphabetically within each group, and a diagram to be filled with the words. The diagram follows
the same rule as a crossword -that is, wherever two words intersect, they must have a letter in com­
mon, but there are no numbers, since the words are already known and the problem is to find their
places. Typically, Kriss-Kross diagrams are much more open than crosswords, and the black squares
are simply left blank unless they will cause confusion. A Kriss-Kross always has a unique solution
that uses all the listed words. Figure 7-1 is an example, albeit extremely small. Note that word
length is an important clue to solution.

Statement of the Theme Write a program that takes any list of words and constructs a well­
formed Kriss-Kross diagram for the list. Proof that the diagram is well formed is presentation of a
filled-out solution. It is possible, although unlikely, that a given list of words has no legal solution
(as in crosswords, the diagram must not be disconnected). Your program should report any failure
to find a diagram and any conditions, such as a repeated word, that destroy uniqueness. For extra
credit, make a nice graphic display of your solution.

Performance Practice The quality of a Kriss-Kross diagram is proportional to its "connected­
ness"; that is, the more tightly bound the average word is to its neighbors, the more interesting the
puzzle. Connectedness might be measured in a variety of ways, including the ratio of the area of
the diagram to the area of the smallest surrounding rectangle, the average number of intersections
per word, the average number of intersections per character, or the minimum number of inter­
sections per word. A commercial program has been used to generate Kriss-Kross puzzles for publica­
tion, and the puzzles are uninteresting because they are much too long and snaky. Once your
program is running, care should be taken to improve connectedness.

30

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

31 KRISS-KROSS

Ass
Cat­
Dot-

,11yr-
Nye.:.-

-<

I .

Stf'oaf
~
Codfish
Hippopotamus

Figure 1-1: An Example Kria-Krou Puzzle

This problem is a classic for a backtracking solution. Start filling words into an interlocking diagram
until no word left on the list will fit. Backtrack, removing the last word successfully fitted, and try
to fit a new word. You will need to develop some heuristic to choose the next word to be fitted
from the list of unused words. A check for uniqueness should include a test to see that no two
words of equal length can be swapped in the diagram. Is this test all that is necessary? Is there a
more elegant one? A complete algorithmic solution maximizing connectedness would undoubtedly
have considerable theoretical interest.

Orchestration This problem is open to a variety of approaches but suggests a need for flexible
data structures to record the progress of the program, and also facilitates good string and pattern
manipulation. SNOBOL and PL/I are candidates. PASCAL has the data structures, but string
manipulation will have to be built by the programmer.

Playing Time One person for 4 weeks. One additional week for graphic output.

REFERENCES

Armbruster, Frank. Computer Crosswords, Troubadour Press, San Francisco, CA, 1974.

Thia is the book that inspired the etude. The puzzles themselves are not of the highest possible quality.
Perhaps your solution might be better.

Mazlack, Lawrence J. "Machine Selection of Elements in Crossword Puzzles: An Application of Computa­
tional Linguistics." SIAM J. Comput., 5, 1, pp. 51-72, March 1976.

Mazlack describes a program that attempts to nu a crossword puzzle diagram with words from a very large
vocabulary. The diagram and vocabulary are both given to the program, and presumably a human must
ge,ierate clues for the words inserted to make a finished puzzle. This problem is similar to that of con­
structing a Kriss-Kross diagram, and you may be able to get some ideas about an attack from Mazlack.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

8

rflkesews
or ...

AUTOMATIC CREATION
OF MAZES

Theseus had to find his way out of the Cretan maze or perish at the hands of the Minotaur. You will
be amazed at how hard it is to get into a maze in the first place.

A complete description of all possible mazes is probably beyond the scope of this book, but let us
consider simple mazes built within an m by n rectangle for positive integers m and n. The rectangle
is thought of as completely covered by a unit square grid of walls (the walls also include the edges
of the rectangle). To construct a maze from the gridded rectangle, knock out any one unit wall on
one edge of the rectangle, the entry point; any one unit wall on the opposite edge of the rectangle,
the exit point; and any number of strictly interior walls. The maze has a solution if and only if there
is a sequence of straight-line segments, not exterior to the maze, connecting the entry point to the
exit point without touching a wall. The solution is unique if any two such paths always pass
through exactly the same set of interior grid cells. Figure 8-1 is an example of a 6 by 6 maze.

Statement of the Theme Write a program that, given inputs m and n, will generate an m by
n rectangular maze (check for degenerate values of m and n). Whenever the program is called, it
should build a different maze, and each maze should have a unique solution. To make the output
interesting, every cell should be connected to the main solution path. If you have some nice graphic
device available, use it to draw your mazes; otherwise think of some notation to describe them or
use the line printer to draw the output.

Performance Practice The requirement that any two mazes be distinct, even for the same values
of m and n, is theoretically impossible to meet, for there are only a finite number of mazes of any
given size and the program might be called more times than there are mazes. But there are a very
large number of mazes of any one size, and you can make the probability very small that a maze
will be duplicated. Apparent uniqueness is achieved by using an externally observable but uncon­
trollable value to control some "random" choices within the program (usually the date and time at
which the program is called are used). The choices might include the positions of the entry and

32

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

33 THESEUS

Figure 8-1 : An Example Maze

exit points and the locations of at least some of the destroyed interior walls. During debugging it is
a wise precaution to disable this randomness so that changes in output are the result of changes in
the program.

One way to approach the problem would be to select an entry point, extend a solution path from
the entry one grid square at a time, stop the solution path when it reaches the exit edge, and then
knock down sufficient interior walls to connect all squares to the solution path. To keep the solu­
tion path from being boring, it should be allowed to make random turns as it proceeds. The pro­
gram must check that extending the path or opening up side squares does not destroy the uniqueness
of the solution. The observant reader will have noted that the definition of a unique solution does
not quite meet the case when a path dips into and back out of a dead-end side alley. The spirit is
right, but you will want to try to get the definition technically correct.

Orchestration This program can be written nicely in almost any procedural language. Use it to
compare languages on the basis of their control structures, built-in data structures, and run-time
efficiency.

Playing Time One person for 3 weeks.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

9

or ...

PROGRAMS THAT PRINT
THEIR OWN SOURCES

Philosophers regard introspection as an important mental tool. All right-minded persons should
heed the chapter title. If people can attain self-knowledge, why not programs? And what better
way than by writing an autobiography?

Statement of the Theme Write a program that prints an exact duplicate of its source. The out­
put should not include any "control" cards or other local system material-merely what you would
expect to keypunch and give to a compiler. However, your program must not read any input and it
must not rely on any system "tricks," such as knowledge that the local compiler leaves a copy of
the source program in blank COMMON. The program should produce the same output no matter
where or when it is run.

Performance Practice If you begin to despair of a solution after your thirteenth attempt has
failed, fear not. Such a program is called introspective, and a theorem exists that says that all
"sufficiently powerful" programming languages can express an introspective program. Every normal
programming language is sufficiently powerful. The solution simply requires looking at the language
in the right way; it will probably take about 30 or 40 lines at most.

Orchestration This problem can be done in any language.

Playing Time One person for 1 week.

REFERENCES

Bratley, Paul, and Jean Millo. "Computer Recreations Self-Reproducing Automata." Software -Practice and Ex­
perience, 2, pp. 397-400, 1972.

34

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

35 KNOW THYSELF

This article should be read only as a last resort, for it gives a complete solution of the problem.

Rogen. Hartley, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, NY,
1972.

Rogers' book is an excellent introduction to recunive function theory, hard but clear. Chapten 1 through 3
provide a good foundation. Sections 11.1, 11.2, and 11.4 contain results about introspection.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

10

or ...

CALCULATION OF
INVESTMENT YIELD

Financiers, speculators, bankers, even ordinary working people like the treasurer of the Teamsters'
pension fund like to know how much their investments are earning for them. If the money is in a
savings account, there is little difficulty, since banks trumpet their interest rates in all their ads.
Even if you invest in a bond that not only pays interest but that you also later sell at a profit,
simply add your profit and the interest and figure out how much a bank would have to pay to
match your earnings. The result of these calculations, if expressed as an annual percentage that will
give the known return when compounded continuously, is the investment's yield. ·

The situation is not so simple, however, if the investment is one -like a mutual fund, a stock
account, or a small business-in which there are irregular payments and withdrawals and in which
the current value changes from day to day. A mutual fund is a good example; new shares can be
bought at any time at market value; old shares may be redeemed similarly; dividends vary (and even
vanish) with fund performance but are normally plowed back into more shares; and the value of a
share changes daily as the underlying securities change value. It certainly would be nice to compare
the yield on a savings account with the rosy picture painted by an investment fund prospectus,
realizing, of course, that yield is usually proportional to risk.

Fortunately, ttiere is a formula for the calculation of yield in these circumstances. Unfortunately,
the formula is iterative rather than in closed form. Assume that A is the current value of the invest­
ment, that there are m transactions involving the investment, that transaction i was in the amount
Pi (where a negative value indicates a withdrawal) and occurred Ti years ago, and that our initial
guess at the yield is YO and has the value zero. Now let

36

cj - A - L pi exp(Yj-1 Ti)
l<;i<;m

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

37 ... YIELDING UP ITS GOLD

and

Table 10-1 A Record of a Real
Investment

Tran,action
Date Value Amount

3/11/71 $0.00 $68.26
6/ 4/71 73.75 50.00
6/ 4/71 114.82 75.00
8/ 9/71 170.66 60.00
9/ 7/71 229.41 54.00

10/ 4/71 282.97 50.00
10/ 8/71 326.02 4.31
12/ 8/71 328.11 50.00
1/ 1/72 391.65 0.00
2/ 4/72 413.42 50.00
8/ 1/72 471.35 0.00

10/ 6/72 440.83 7 .72
10/ 5/72 448.55 4.14
10/ 2/73 398.36 4.80

1/ 2/74 330.74 0.00
6/ 7 /74 360.97 -200.00

10/ 3/74 180.42 50.00
3/13/75 253.96 -200.00

Di = 1 Ti Pi exp(Y ;-1Ti)
1...;i,i;;m

for j > 0. Then the better estimate Yj of the yield is given by

As soon as

IY· - y . 11 J J-

becomes sufficiently small, the yield has been found.1 In reading Table 10-1, notice that A is the
sum of the column headed Value and the column headed Transaction Amount. If we look at row 3,
this shows A = $189.82, P1 = $68.26, P2 = $50.00, and Pa = $75.00, T1 E:!!! 205/365, T2 E:!!! 31/365,
and T3 = 0. Also notice that Y0 starts over at zero for each row of the table and that the calculation
of the yield at any date is not influenced by the yields at previous dates.

Statement of the Theme Write a program that calculates the yield on an investment. The input
consists of the records of a series of transactions, each containing a date, a transaction amount, and
the value of the investment on the date of the transaction before the transaction takes place. The
input is assumed to be in order of dates; the program should check that the ordering is not violated
and that no withdrawal exceeds the current investment value. The program should print a neat
tabulation of the transactions. Each output transaction entry should contain the date, the old
investment value, the transaction amount, the new investment value, the yield on the transaction
date, and the totals to date paid to and withdrawn from the investment. The method used to note

1 Readers familiar with calculus should be able to see that the formula is an application of Newton's method of
root finding to an equation whose free variable is the yield.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

38 . .. YIELDING UP ITS GOLD

the end of the input is up to the programmer, but a transaction amount of zero is a convenient
way of finding out the current yield. If you have no investments of your own and cannot afford
a Wall Street Journal, Table 10-1 is a record of a real if unfortunate investment.

Performance Practice There is an interesting sidelight to this problem. The transaction dates are
given in the normal day/month/year format, but the problem requires the elapsed times Ti in units
of years. Bankers and lawyers have a number of ways to calculate the time that money is out at
interest (one suspects the method depends on who owes whom). For the program, it is sufficient to
calculate the years as a real number, taking into account leap years, and assuming that all dates
are in the range 1900 to 1999 inclusive. In general, conversions between different time measures
and calenders can be fairly difficult.

Orchestration Any procedural language with real-number facilities is appropriate.

Playing Time One person for 1 week.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

11

or ...

TEXTUAL REDUNDANCY
AND FILE COMPRESSION

It is well known that most people talk too much. It is less widely known that even the pithiest
sayings could be considerably compressed. Natural languages are extremely redundant. Evn if qt a
fw ltrs r 1ft ot, u en prbly rd tbs sntnc. Languages used in computations share this feature. With
computer memory quite costly, it makes sense to remove the redundancy from text so as to avoid
storage charges.

There are several possible techniques for text compaction. The most obvious is to look for any long
string of one repeated character. The long string will be replaced by a character triple men, where m
is some special marker not otherwise used in the text, c is the repeated character, and n is the length
of the long string. The trigram saves n-3 characters, so long as ~ is no bigger than the largest number
that can be stored in one character position. This process works quite well for text having long
repeated strings, such as the long strings of blanks common in most computer programs. Unfor­
tunately, it does not work as well for other text, since most data is not as highly formatted as
programs.

A second technique relies on the fact that in many computer character sets most of the characters
are not used (in the common 256 character 8-bit sets perhaps 100 characters are used ordinarily).
The most common digrams of the text are ascertained and each is assigned one of the unused single
characters. Text is compacted by replacing, from left to right, the common digrams with their
single-character encodings. A considerable savings can be made because the most frequent 150
digrams, say, are a large proportion of natural language text. By giving up a little compaction, one
may write quite efficient encoding and decoding routines that operate on the computer representa­
tions of the characters.

But a difficulty still exists. Why should the most frequent digrams of English be the same as those
of French, or of an address file data set, or of ALGOL? And even if the same, what about trigrams,
quadrigrams, or longer sequences? Longer sequences offer greater savings even if less frequent;
in a long piece of text some particular fragment may come up much more often than normally
expected. And how were the digram frequencies ascertained in the first place?

39

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

40 YE SOULE OF WITTE

The solution to all these problems lies in a third approach to the original question. Instead of using
some preordained encoding, the actual text to be compressed, or a sample of it, can be used to
generate a code dictionary on the fly. Since each body of text will be used to generate its own
dictionary, there will be no difficulty with inappropriate abbreviations. Now we must find a way to
build such a dictionary.

The rough outline of the scheme is as follows. Begin with an empty dictionary. Start scanning the
text from left to right. Find the longest match between the head of the text and any entry in the
dictionary and increment the frequency count of the entry. If there is no match, make the first
letter of the text into an entry. Delete the head of the text just matched and start matching again.
In circumstances to be explained below, two entries are sometimes coalesced into a longer one.
When the dictionary fills up, thin it by weeding out the least common entries and then continue the
scan. When the dictionary frequencies become stable, assign codes and go back and encode the
whole text.

There are two unresolved points in the scheme suggested: how are entries coalesced and how are
entries thinned? Two entries are coalesced when a match for the first is immediately followed by a
match for the second and both have frequencies above some threshold. The new entry may be given
a somewhat larger than normal initial frequency to prevent it from being weeded immediately. Thus
if THO and SE are already in the dictionary, THOSE will be added when seen, if the original two
entries have high enough coun~. A simple strategy for weeding is to eliminate all those strings
whose coun~ are lower than the mean. Another strategy might eliminate all those strings below the
median frequency. Other similar strategies might be employed.

A DICTIONARY CONSTRUCTION ALGORITHM

This algorithm assumes that some sample of the text to be compressed is available as a dictionary
construction aid. All characters are significant to the algorithm, and if line ends, tabulates, and
similar items are important in the text, they should be contained as characters in the text stream.
At the beginning of the algorithm, the dictionary is assumed to be empty. The variable last match
initially has the null string as value, and the variable last count initially has the value zero.

1. Find the longest string match at the head of the input that matches any entry in the
dictionary. If match is null, set match to the first character of the input, add match as a
dictionary entry, and give it an initial count of one. If match is not null, increment the
count of the matching entry by one. Set count to the count of match in the dictionary.

2. If either count or last count is less than the coalescence threshold, go to step 4. A
possible coalescence threshold is the maximum size of the dictionary divided by the num­
ber of free entries remaining in the dictionary.

3. Form a new entry by catenating last match and match. Give this entry an initial count
of one because the catenated entry has been seen once. Other strategies are possible.

4. If the dictionary has fewer than two free entries in it, thin by weeding out all entries
whose frequencies are less than the median frequency. If the entry for match happens to
be deleted, set count to zero.

5. Delete match from the head of the input. If the input is exhausted, exit. Otherwise set
last match to match, last count to count, and return to step 1.

ENCODING AND DECODING

Once dictionary construction ceases, the encoding and decoding tables must be built. Form all
possible digrams beginning with a character that can never appear in the text. Delete from the

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

41 YE SOULE OF WITTE

dictionary all entries of only one or two characters (there can be no savings in compressing them).
Sort the remaining strings by frequency. Assign the coding digrams formed above to the dictionary
entries, beginning with the most frequent. If either entries or digrams run out, the encoding table is
constructed.

The text is encoded in a process that is similar to dictionary construction. At each step the longest
match possible is made between the head of the input and the dictionary entries. The matching
string is replaced by the coding digram, and the input scan is moved past the match. If no match is
found, simply copy the single character at the head of the input to the output and move the scan
one character right. Decoding simply requires the replacement of coding digrams with their dictio­
nary equivalents.

Statement of the Theme Write a program to implement the dictionary construction, encoding,
and decoding algorithms described above. Test the program on sizable fragments of natural and
programming language text. The compression rate for a given piece of text is the quotient of the
sum of the sizes of compressed text and the decoding dictionary divided by the size of the original
text. Run a small study of the effect on the compression rate of any of the following parameters:
the language to the compressed; the length of the text sample used for training; the size of the
dictionary during construction; the number of coding digrams available; or the use of a dictionary
constructed from one text used on another text from the same language.

Performance Practice This problem is interesting because its efficient solution requires the
use of some fairly sophisticated algorithms and data structures. But a successful if inefficient pro­
gram can be written with simple algorithms and structures, which can be replaced piecemeal with
neater solutions once the program is running. One example is the median calculation needed to thin
the dictionary. As a first attempt, throw out all entries with frequency less than the mean fre­
quency. The mean can be calculated easily from one running total of all the frequencies in the
dictionary. After the whole program works using the mean, the more complicated general median
routine can be used to find the deletion threshold.

Another example is the structure of the dictionary during the construction and encoding phases.
The entries can be kept in random order, in which case a potential match must be tried against
every entry. With such a structure, however, new entries can be added by appending them to the
end of the dictionary. A little more sophistication would keep the entries grouped by length; the
search could go from longest group to shortest, stopping at the first match. If each group were
sorted alphabetically, a binary instead of a linear search could be used within each group, thereby
saving time. But now additions will be more complicated because each new entry will probably re­
quire space somewhere in the middle of a group. Perhaps the most efficient structure for searching
is some kind of tree. Paths from the root to the leaves could spell out potential matches, or the
matching entries might live in the nodes a la a binary search tree. Trees will require much more
maintenance during dictionary construction than the simpler structures mentioned above.

Orchestration Because of the diverse data structures that will be required by a completed pro­
gram, the source language should have good definitional facilities. The candidates include PASCAL,
ALGOL 68, and PL/I. One approach would be to write the program once in SNOBOL, relying on
the built-in pattern matching, and then rewrite the completed program in some more efficient
language for production. If this approach is used, care must be taken to avoid SNOBOL features not
easily copied.

Playing Time One person for 3 weeks.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

42 YE SOULE OF WITTE

Variations on the Theme There are three areas of freedom in this model: the criterion for
coalescing entries, the criterion for deletion of low-frequency entries, and the scheme for encoding
the entries. Taking them in order, we begin with the criterion for coalescence. Our algorithm re­
quires that two successive entries each pass the same hyperbolic threshold before coalescence can
occur. But it is possible to have different criteria for the two entries. Two other candidates are a
constant threshold and a threshold that is a function of the mean entry frequency. Similarly, the
initial frequency of a coalesced entry might be varied, with any policy that sets high initial frequen­
cies providing a better chance for entry retention.

The policy on entry deletion during dictionary thinning can be modified in the same way. A fixed
fraction of the low-frequency entries can be weeded (using the median sets the fraction at one-half).
All the entries with frequencies less than some multiple of the mean frequency might be dropped;
or everything with frequency less than some constant could be dropped, a procedure that stops
when thinning does not empty enough of the dictionary. Combination of a coalescence and a dele­
tion policy will produce a specific retention characteristic. Some combinations retain strings that
occur densely in one section of the text and less often elsewhere; others favor strings that are
scattered evenly throughout the text. Which retention characteristic is preferred depends on the use
of the dictionary and text features.

The encoding algorithm uses digrams beginning with unused characters. But if the digrams run out
before the dictionary does, trigrams and so on can be added. Since frequencies for the entries are
known, they can be used to construct a weighted variable-length encoding. This procedure will cost
during decoding (why not during encoding?) but will provide even better compression.

REFERENCES

Mayne, A., and E. B. James. "Infonnation Compression by Factorising Common Strings." Comput. J.,
18,2,pp.157-160,1975.

This etude is basically a restatement of Mayne and James. Our version or the algorithm is cleaner than
theirs. Their paper does present some production results.

Knuth, D. E. The Art of Computer Programming, Volume 3/Sorting and Searching. Addison-Wesley,
Reading, MA, 1973.

Although reading any part of Knuth is a valuable pastime, Section 6.2 on Tree Searching should be par­
ticularly appropriate for this problem.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

12

or ...

BOOKKEEPING
FOR HOME USE

Almost every student lives in some sort of cooperative at one time or another. The organization
may only involve sharing rent or it may be as tight and formal as a fraternity. However organized,
there is always a need to keep and render accounts. All too often communes have broken apart over
the issue of money. At least the computer can provide an honest accounting even if it cannot
resolve deeper problems.

Normally accounts are settled at the end of the month, perhaps right after the biggest expenditure,
the rent, has been paid. Throughout the month members have been paying expenses individually.
Whoever went shopping paid for the groceries; whoever answered the door paid the paperboy; who­
ever drove the car bought the gas. With luck, most members will have about paid their shares,
of course, the result will never come out quite even.

And if the expenses are not shared equally, the accounting is not going to be a simple division. It is
common to find one member agreeing to pay a little more rent in order to get an extra room or
another member who eats at home on weekends paying a smaller share of the food budget. And it is
also common for a member to charge a personal purchase, such as a long-distance phone call or a
favorite beer, against the group for settlement at month's end. All this activity requires a consol­
idated bookkeeping system.

Statement of the Theme Write a program that will provide itemized accounts for a small com­
mune. The input comes in four sections. The first section should give the names of the members for
the month. The second section should give the major accounting categories for the bills, such as
groceries, rent, utilities, and garden supplies. Each category might be followed by a list of members
and share amounts. The share amounts can be either dollar amounts or percentage amounts. The
portion of a category that is not specifically allocated is split equally among the other members.
Thus if the rent were $200, member A were allocated $45, and member B 35%, each of the other
members would pay equal shares of the remaining $85.

43

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

44 A SENSE OF COMMUNITY

Each item in the third input section might be the record of a member's payment on behalf of the
commune. The item should contain the date, the member's name, the amount, the major account­
ing category, and a brief description. Similarly, section four might be a record of those items
purchased specifically for one member and should contain the same information as section three
items, with the obvious addition of the name of the member who owes for the item. All input
should be checked for consistency, with particular attention to dates, amounts, names, and
categories.

Output should also come in several sections. First, each member should receive a list, sorted by
date, of all payments and debits incurred during the month. Secondly, each member should receive
this same list organized by category and date. The list should also indicate the member's obligation
in each category and its breakdown into normal share and personal debits. Finally, each member
should receive an indication of financial status for the month. Members who owe money should be
told who is to receive it, and members who are owed money from whom to expect it. The program
should try to keep the number of these balancing transfers as low as possible.

The final output section should be a chronological listing of all commune payments and a chart
broken down by member and category of payments, debits, shares, and balancing obligations. If
this chart is cross-totaled in both directions, it can provide a check on the bookkeeping accuracy.

Performance Practice There is nothing particularly difficult about this problem. Although
efficient programs are always desirable, in this case input and output will certainly overshadow
computation. The input sections with their varying sizes are a small challenge. Similarly, checking
the input can be done with a certain elegance. Basically, this is a mundane program like most of
those actually written in industry. Provide a workmanlike solution.

Orchestration Although COBOL is a standout, almost any procedural language can be used.

Playing Time One person for 2 weeks.

Variations on the Theme A feature provided by most business-oriented programming languages
is the exact calculation and edited output of dollar amounts. Ordinary real-number calculation may
cause pennies to be dropped or added here and there; cross checks may not balance. This is a chance
to implement some simple fixed point (but not integer!) routines. If your program is in FORTRAN,
it is also a chance to figure out how to print those pesky floating dollar signs, trailing credit in­
dicators, and leading zeros. In COBOL or PL/I, there will be no difficulty.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

13

or ...

SIMULATION OF

A TURING MACHINE

Well before the first general-purpose digital computer was built, Alan Turing became interested in
the limits on the computations that a machine could perform. To convince himself that he was not
building into his hypothetical computer any complicated mechanism that would invalidate measure­
ments of the machine's powers, he stripped out almost all of the features that may seem essential
to actual computers. All that he left was a simple kind of program storage that cannot be manip­
ulated during exeucution, only one kind of instruction, and a simple tape for input and output.
But this device, the Turing machine beloved of 40 years of logic students, is capable of all the calcu­
lations of any modem digital computer. A mean problem would be the simulation of an IBM
370/155, say, on a Turing machine; this much nicer problem will turn the simulation around.

A Turing machine consists of a control unit attached to an input/output~ by a tapehead. The
tape is a long strip of cells extending to infinity on the right (that is, there is a little factory that
makes more tape to add to the right as needed) with each cell capable of holding one character.
The tapehead points to some one cell on the tape and can both read and write and move either
left or right. Execution always starts with the input written left-justified on the tape and the tape­
head reading the leftmost tape cell. Whenever the tapehead moves right onto a cell that wa.~ not
a part of the input and that has never been visited before, the cell is assumed to have a blank,
written ¥, in it.

The control unit executes the program under a set of strict rules. At each time instant the control
unit is in some state named by a positive integer and stored in the current state. Every instruction of
the program is a quintuple consisting of a state, a character, another state, another character, and a
direction to move the tape. An instruction cycle begins as the control unit compares the current
state and the tape character under the tapehead with the first two members of every instruction
quintuple. By the rules of Turing machine programming, there is at most one quintuple with any
particular state-character initial pair (and there may be none). When a match is found, the control
unit causes three things to happen. The character under the tapehead is overwritten with the fourth
member of the quintuple; the tapehead is moved one cell left, one cell right, or remains stationary,
as indicated by the fifth member; and the current state changes to the third member. The machine

45

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

46 TOURING TURING

is now ready for a new cycle. By convention, it is always started in state 1 with the tape as de­
described. The machine halts if the instruction cycle cannot find a match for the current state­
character pair or if the tapehead falls off the left end of the tape, and the value is whatever remains
on the tape after the halt. Note that a program may only have a finite number of instructions so
that only a finite number of states and characters will be meaningful to it.

An example may make this discussion clearer; here is an ancient one. We would like to write a
Turing machine program that will form the sum of two integers. The integer n will be represented
on the tape by n consecutive *'s (no *'s represents zero), the two input values will be separated by
a comma, and if the inputs represent n + m, the output should be n + m *'s left-adjusted. Thus the
initial input for 7 + 4 is

******* **** ,

and the output should be

The structure of the program is simple. First, the tapehead will move right looking for the comma
(remember that the tapehead starts at the left of the input). The comma is replaced with a* and the
tapehead continues moving right looking for the blank that bounds the input on the right. The tape­
head backs up one cell, writes a blank over the * that it finds there, and then the program quits. It
is easy to see that one * has been added in the middle and one taken away at the right to form the
sum. The actual program is given in Table 13-1.

A standard way to show the status of a Turing machine is to print a picture of all the tape that has
ever been scanned, along with the current state inserted just to the left of the cell currently scanned.
Such a display is an instantaneous description, and the following example starts the addition of 2
and 3:

1 ** *** ,

The sequence of instantaneous descriptions tracing this computation is given in Figure 13-1. Note
that the program halts in state 3 because there is no action for a blank. State 4 is activated only if
there is an error in the input; if so, the machine goes into an endless loop. Check for yourself that
the program works if either input (or both) is zero.

The example program may seem too easy. Try to modify it to multiply instead of add. Turing
machines operate much more naturally in unary than in any other radix; a program to add in
decimal will be more difficult and longer. The references contain far more material on Turing
machines and substantiate the claim that a Turing machine can do any calculation that any other

Table 13-1 A Turin1 Machine Pro,ram

Old
Old State Character New State

1 • 1
1

'
2

1 ¥ 4
2 • 2
2 '

4
2 ¥ 3
3 • 3
4 ¥ 4

Digitized by Google

New
Character Move

• Right
• Right
¥ Stay
• Right
¥ Stay
¥ Left
¥ Stay
¥ Stay

Original from
UNIVERSITY OF MICHIGAN

47 TOURING TURING

1**,***

l,***

1,*

****2**

···••2•

•••••a»i

Figure 13-1. A Sequence of ln,tantaneou, Description,

computer can do. You will find a number of minor variations in the various machine descriptions,
as well as proofs that these variations do not matter at all.

Statement of the Theme Write a general Turing machine simulator. The input is the Turing
machine program, its input tape data, and, for a reason to be explained later, its initial state. The
output is a trace of the machine's execution and the final value on the output tape. Since Turing
machines need not stop, and since there is no way to tell in advance if such will be the case (look up
the halting problem if you do not understand why), there must be some control on the amount of
output that the simulator can generate and the time that it can spend. Test the simulator on several
programs like those discussed above.

Although the program states had the positive integers for names in our description, your simulator
should allow any identifier as a state name. In the preceding example we might have used the state
names Begin, MoveRight, Finish, and Error, and an instruction quintuple might be

MoveRight \6 Finish \6 Left

Since there is no longer any unique first state, it will have to be named by the user.

Performance Practice AB in any simulator, efficiency will be a problem with this program. If
state names are used throughout the computation, the continual lookup will cost considerable time.
Indeed, the fastest way to arrange the Turing machine program is in a two-dimensional array in­
dexed by states and characters. The array entries contain the instructions to be executed with a
special entry meaning no quintuple specified. Of course, the difficulty is that you will not know
how big to make the array until after you read the input. Incidentally, the input should be checked
for consistency to ensure that two different quintuples do not start with the same state-character
pair.

The trace output should be printed after each change of state and should include all the tape up to
the rightmost nonblank or the tapehead, whichever is farther right, the tapehead position, and the
current state. The tape image should probably be printed on one line and the tapehead marker and
the state on the next .. Let aesthetics and clarity be your guide. The tape alphabet, the set of char­
acters that might occur on the tape, is simply the set of characters that occurs anywhere in items

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

48 TOURING TURING

two or four of any quintuple. You should allow any normal character available on your system.
The alphabet always includes the blank, which will be hard to represent on input and may be con­
fusing on output. One way around the input problem would be to separate the five fields of an
instruction by commas. Handling significant blanks is often a problem. Blanks are meaningful in
natural languages but usually only as word separators and not as symbols in their own right. Thus
there are no "normal" conventions for their use as symbols.

Orchestration This is another problem in which almost any source language will have both ad­
vantages and disadvantages; because of the tight inner loop, however, interpretive languages should
probably be avoided.

Playing Time One person for 1 week.

REFERENCES

Davis, Martin. Computability and Unsolvability. McGraw-Hill, New York, NY, 1958.

Davis carries out in excruciating and precise detail all the proofs that other authors "leave to the reader."
After reading through Davis, you will never again doubt any of the claims about the pow~r of the Turing
machine. Of course, you may never want to hear of a Turing machine again.

Hopcroft, John E., and Jeffrey D. tnlman. Formal Languages and Their Relation to Automata. Addison­
Wesley, Reading, MA, 1969.

Hopcroft and tnlman is the best first-year graduate text in its area. It provides all the basic results about
Turing machines and sets them in the context of other classes of automata. This book is also a valuable
reference work.

Minsky, M. L. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, NJ, 1967.

Minsky provides a fine, easygoing introduction to automata theory. This is probably the best book to start
with.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

14

or ...

A COMPUTER STRATEGY
FOR KALAH

The argument over "intelligent" behavior by computers has raged since before their actual existence.
Most people will agree that strong play in any intellectual game that does not have a complete anal­
ysis would count considerably toward intelligence. li the computer could learn as well as play,
intelligence would be even harder to deny. The gam' most often associated with computer play is
chess, but the very best programs play only mediocre games. There are other games in which greater
success is possible.

Kalah, variously known as Mancala, Wari, or Owari, is an African game of great antiquity. Little
written analysis exists, but Kalah has been played at the drop of a stone by people of many cultures
for centuries. Although it is a game of skill with no chance element, Africans gamble continuously
over Kalah. Simple equipment and rules make Kalah a natural for computer play. Current research
suggests that computers with a program like the one suggested here already play Kalah better than
any humans.

The Kalah board looks like the diagram in Figure 14-1. Each of the two players sits along one long
edge and owns the six smaller pits, along the near side and the larger right-hand pit, the Kalah. To
start the game, each small pit is filled with some number k of stones (there is a complete solution
known for k <; 3 and Africans usually play with k = 6). A player moves by picking all the stones out
of some one small pit on the player's side and sowing them into the other pits counterclockwise
around the board. The sowing begins in the pit to the right of the source pit and includes the
player's own Kalah and the opponent's small pits but not the opponent's Kalah. It is possible and
legal for the sowing to loop all the way around the board to the source pit and beyond. Figure
14-2(a) and (b) shows the before and after of such a looping move.

There are two variations on the basic move. If the last stone sown falls into one of the moving
player's own small nonempty pits and stones were played on the opponent's side during the sowing,
the stones in the final pit are used to start a go-again move, just like the original move. A player can
have an arbitrarily long chain of go-agains. If the final stone sown falls in one of the opponent's
small pits and there are either two or three stones in the pit, the stones are captured and placed in

49

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

50

0

Min's Side

6 5 4 3 2 1

000000,-,
Min's
Kalah

1 2 3 4

Max's Side

5

Max's
Kalah

6

0

Figure 14-1. A Kalah Board. The numbers in the pits denote
the numbers of stone, therein.

Min's Side

6 5 4 3 2 1

,-,000000,-
9 Min's

Kalah

1 2 3 4

Max's Side

5

Max's
Kalah

6

6

Figure 14-2(a). Before a Looping Move by Max. Max moues
from pit 6.

Min's Side

6 5 4 3 2 1

,--~000000
9 Min's

Kalah
Max's
Kalah

8

·000000
1 2 3 4 5 6

Max's Side

Figure 14-2(b). After Max's Looping Move. Max's kalah has
been sown twice.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

51 GAMESCOMPUTERSPLAY

9

Min's Side

6 5 4 3 2 1

000000,-
Min's
Kalah

Max's
Kalah

·000000~
1 2 3 4 5 6

Max's Side

6

Figure 14-3(a). A Go-Again Move from Max', Pit 6. The la,t
,tone drop, in Max•, pit 3 for another go.

Min's Side

6 5 4 3 2 1

,-,000000
9 Min's

Kalah
Max's
Kalah 8

~000000
1 2 3 4 5 6

Max's Side

Figure 14-3(b). After the Go-Again Move. The ,tone, from pit
3 have been ,own forward.

the moving player's Kalah. Whenever one pit is captured, tbe preceding pit may be captured if it
contains two or three stones as well. Theoretically, a player could completely clear out an oppo­
nent's side in one move. The game is over as soon as more than half the stones are in one player's
Kalah (notice that once a stone enters a Kalah, it can never leave). If a player who has the move has
no stones available, the game ends immediately with all the opponent's stones going into the oppo­
nent's Kalah. Figures 14-3 through 14-5 sh~w some typical moves.

The construction of a program to check legal moves is quite easy. A player can choose at most one
of six possibilities for a move. Once the starting pit is chosen, tracing the go-agains and captures is
simple. At the end of the move the check for termination requires only comparison of the moving
player's Kalah with half the total stones. Of course, this does not explain how to find the best move
from a given position.

The basic idea of the move selection is to build the tree of all possible continuations from a given
position and then select a branch with a sure win at the end. For ease of exposition and for a rea­
son that will be clear shortly, let us call the computer Max, the opponent Min, and assume that it is
the computer's turn to play somewhere in the middle of the game. Max can try to evaluate the posi­
tion by trying each of the six possible moves in turn. If any one of these moves leads to an imme­
diate win, Max should obviously make the move. But what if none of the six leads to an immediate
win? How does Max make a choice?

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

52 GAMES COMPUTERS PLAY

Min's Side

6 5 4 3 2 1

-,000000,-
8

Min's
Kalah

Max's
Kalah

000000~
1 2 3 4 5 6

Max's Side

6

Figure 14-4(a). Before a Capture by Max. Min's pit 4 is the
target of Max's pit 3.

,

8

Min's Side

6 5 4 3 2 1

000000r......--
Min's
Kalah

1 2 3 4

Max's Side

5

Max's
Kalah

6

10

Figure 14-4(b). After Max Captures Min's Pit 4. Max's kalah
grew one stone from sowing and three from the capture.

Max should calculate each of Min's responses to Max's moves. Say that one of these responses leads
to a win for Min. Then Max would be foolish to make a move that gives Min a chance at an outright
win (although sometimes Max might not be able to avoid it). In this case, Max would know what
moves not to make. But to find out what move to make, Max will need to build another level of
replies to Min's responses to Max's original moves. If Max can always find a winning reply to some
set of responses by Min, then Max should select the original move that led to the response that
leads to the winning reply (remember the house that Jack built?). If all this is unclear, try building
the moves, responses, and replies for the positions of Figure 14-6.

Yet looking ahead two levels still might not be enough. Indeed, although a Kalah game must end, 1

it is difficult to predict how far ahead one might need to look for the end. Each level of lookahead
added costs about six times as much time and space as the current level. Something must be done to
halt this growth.

1 Once in a Kalah, a stone can never leave it. Also, there are no cyclic move sequences, since every move must either
put at least one stone into a Kalah or move at least one stone nearer a Kalah. By implementing the "glitch" men­
tioned in the next paragraph, every game must end with each stone in one or the other Kalah.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

53 GAMES COMPUTERS PLAY

Min's Side

6 6 4 3 2 1

,-~000000r-
25 Min's

Kalah

1 2 3 4

Max's Side

5

Max's
Kalah

6

20

Figure 14-5(a). A Multiple Capture by Max. Min's pits 2, 3,
and 4 invite capture in a single play.

25

Min's Side

6 5 4 3 2 1

000000r-,
Min's
Kalah

Max's
Kalah

'000000
1 2 3 4 5 6

Max's Side

28

Figure l 4-5(b). Min's Pits Are Nearly Cleaned Out by Max.
Notice that Max could have captured from pit 5 instead of pit 6.

The answer is a static evaluation function that can estimate the value of a position without tree
construction. For Kalah, we use the Kalah score formed by subtracting the number of stones in
Min's Kalah from the number in Max's Kalah. If we "glitch" the rules a little bit to say that all the
stones are immediately moved into the winner's Kalah, the Kalah score will always be positive when
Max has the edge and will be as large as possible when Max has won. So now Max can select the one
move out of six that will maximize (hence Max's name) the static evaluation function. If two moves
are equally good, Max can choose randomly between them.

So now the question of a strategy for Max is answered. Or is it? If maximizing the Kalah score were
all the strategy in the game, there would not be much to it. There must be traps that Min can lay
for Max, and the way to avoid the traps is to look ahead. The static evaluation can be used to score
positions deep in the tree that are not sure wins or losses.

Assume that Max wants to look ahead d levels and let the original position be at level zero. Generate
all the six potential moves to level one. From each level one position, generate all the level two
positions by applying Min's moves. Keep on until a full tree of positions has been generated down
to level d. Occasionally six moves may not be available because one or more pits on a side is empty.
Also, a branch may terminate because one player makes a move that ends the game. Notice that all
moves at even levels are by Max and at odd levels are by Min.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

54 GAMESCOMPUTERSPLAY

,

22

Min'• Side

6 5 4 3 2 1

000000,-
Min'•
Kalah

1 2 3 4

Max's Side

5

Max's
Kalah

6

27

Figure l 4-6(a). A Po,ition with Ma:c to Move. Max move,
from pit 1.

Min's Side

6 5 4 3 2 1

,-, 000000
22 Min's

Kalah

1 2 3 4

Max's Side

5

Max's
Kalah

6

27

Figure 14-6(b). The Re,ult of a Move by Max. Min will re,pond
by moving from pit 6.

Min's Side

6 5 4 3 2 1

,-,000000,-
23 Min's

Kalah

1 2 3 4 5

Max's Side

Max's
Kalah

6

27

Figure 14-6(c). The Re,ult of a Re,porue by Min. Max will
reply by moving from pit 2.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

56 GAMES COMPUTERS PLAY

,

23

Min'• Side

6 5 4 3 2 1

000000r-.
Min'•
Kalah

Max'•
Kalah

27

·000000 ~
1 2 3 4 5 6

Max'• Side

Figure 14-6(d). The Re.ult of a Reply by Max. Thia iajust one
of about 63 such ,equences.

Now backup a score from level d to level zero by performing the following actions at each level
from d to zero. Apply the static evaluation function to each leaf at the level. Doing so gives the
leaf's score. Form a nonleaf's score by II'aximizing over the node's immediate children's scores at
even levels and minimizing at odd levels. This procedure corresponds to Max always trying to in­
crease the lead and Min always trying to decrease (or, of course, to make it more negative). When a
score has been backed all the way up to level zero, choose any of the six initial moves that achieve
that score. Note that normally all leaves will be at level d. Also, the tree can be generated by going
down all the branches f'll'St-that is, depth-fll'St rather than breadth-Cll'St as described here. Figure
14-7 shows part of an example game tree. Only one branch is worked out completely down to the
leaves. The backed-up values are correct from the information shown, and Max should choose the
move from pit 1.

What we have described is the basic mini.maxing procedure for playing two-person games. As can be
seen, to look ahead d levels in Kalah requires construction of about

positions. Because this function grows so fast, anything that saves effort is desirable. The alpha-beta
mini.maxing procedure can make it possible to look as much as twice as far ahead for the same
amount of work.

The idea is a generalization of this example. Say that at some interior node A of the tree it is Max's
move and Max has already, by depth-first search, built a complete tree B for the move from pit 1
and C for the move from pit 2. Suppose further that node B has a backed-up value of 1 and that C
has a backed-up value 2. Then node A can be assigned a provisional backed-up value (PBV) of 2.
No matter what happens, Max need not accept·a value less than 2 for any move at node A. Now
assume that Max is beginning to expand the move from pit 3 into node D. Node Dis a move for
Min. As soon as node D gets a PBV of 2 or less, there need not be any further expansion of the tree
below D. The reason is that Min is certainly not going to choose a move with a value greater than 2
if a value 2 or less is available. But Max will not be interested in node D because there is already a
chance at a value of 2. So we can stop expanding D. Figure 14-8 shows the tree.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

56 GAMES COMPUTERS PLAY

Level 0
Max's move.

Level 1
Min's move.

Level 2
Max's move.

Level 3
Min's move.

Level 4
Max's move.

Figure 14- 7. A Po,aible Game Tree. Only one complete path
to the tree bottom i8 shown. Values in circles are backed (hypo­
thetically) from below.

ALPHA-BET A MINIMAXING

To run an alpha-beta minimaxing procedure, begin a depth-first search of the game tree. Every node
has attached to it a PBV and a final value (FV). The PBV of a leaf, as well as its FV, is always the
static evaluation value. Now the PBV of an interior node is the maximum of the FV's of its suc­
cessors for a Max node and the minimum for a Min node. Every time a PBV changes, we check to
see if the expansion at the node should be stopped. (The PBV is initially minus infinity at internal
Max nodes and plus infinity at internal Min nodes.) Cutoff occurs at a Max node any time the
node's PBV rises as large as the PBV of any of the node's Min ancestors. Similarly, cutoff occurs at
a Min node when the PBV falls as small as the PBV at any one of the node's Max ancestors. When a
node is cut off, its PBV is converted to its FV. You should convince yourself that alpha-beta mini­
maxing always selects the same move as ordinary minimaxing.

Statement of the Theme Write a Kalah-playing program that uses alpha-beta mmlDlaxing.
Arrange the program so that it will play either against itself or against a human at a console. The
lookahead depth d should be variable, as should be the initial number k of stones per pit and the

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

57 GAMES COMPUTERS PLAY

Max level.

Min level.

Figure 14-8. The Partial Alpha-Beta Tree De,cribed in the
Text. A, ,oon aa D •• PBV ,ink• below 3, no more e:cpaMion need
be done on D and it, de,cendanta.

player with the first move. Output of positions and input of moves should be as pleasing as possible.
At request, the program should print out the move trees. Just to keep play interesting, the program
should choose randomly between equally good moves (as usual, this feature should be disabled
during debugging).

Performance Practice Although the description was long-winded, the Kalah program itself is
actually quite simple. The main difficulty is building a data structure to represent the game trees
and then making sure that the trees are created and destroyed in the right order. Note that you will
probably have to write your own routines to provide space for the trees and to reclaim the space.
Time efficiency will put the ultimate limit on lookahead depth; be careful in the tree generation
routines. It would probably be a good idea to make sure that the minimax procedure is relatively
separate from the rest of the program so that changes to it do not affect the whole.

Orchestration This is another problem in which the needs for powerful data structures, good
control structures, and execution efficiency seem to conflict. PASCAL is a good compromise, par­
ticularly if heavy use of its data allocation and deallocation features is avoided. The tree search
cries out for recursive procedures, but they are expensive. Instead try to use language features that
convert recursion into an iteration over the data structure.

Playing Time One person for 4 weeks.

Variations on the Theme Although the references suggest a variety of modifications to the alpha­
beta procedure, we will discuss only two here. The first tries to improve the efficiency of the alpha-beta
cutoffs. Alpha-beta minimaxing works because good moves (for either player) stop the considera­
tion of lesser moves. The sooner a good move is found, the more frequently are bad moves cut off.
So we should try to expand good moves first. In fixed ordering, the static evaluation function is
used to sort the immediate children of a node before any are evaluated. Then the node with best
score is expanded first. Since the static evaluation function is a good guide to what lookahead will

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

~ GAMESCOMPUTERSPLAY

eventually find (we hope), this procedure should improve the chance that good moves are handled
first. Be sure to take the minimum first at Min nodes.

The other extension involves changing the static evaluation function. Another commonly used score
function subtracts all the stones on Min's side -both those in pits and those in Min's Kalah - from
those on Max's side. Any simple linear function of the 14 pit values might be used. Tournaments,
as described in Chapter 5, can be used to select the best function. Remember, however, that it is
probably the depth of the lookahead that determines overall play quality.

REFERENCES

Aleph0. "Computer Recreations." Software-Practice and Experience, 1, pp. 297-300, 1971.

This paper describes the external appearance of a Kalah program and gives some history of similar pro­
grams. There is a useful bibliography.

Bell, R. C. Board and Table Games from Many Civilizations. Oxford University Press, London, 1969.

Bell gives several versions of the Mancala games in Chapter Four. The book is generally interesting for the
wide variety of game lore and cultural history that it includes.

Nilsson, Nils J. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New York, NY, 1971.

Nilsson is probably the best introduction to artificial intelligence. The discussion of minimaxing in Chapter
6 is particularly clear. The suggestions for reading are valuable.

Slagle, James R. Artificial Intelligence: The Heuristic Programming Approach. McGraw-Hill, New York,
NY, 1971.

Slagle is also a good survey of Al. Since he did some experiments on Kalah, he gives more details about
the game.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

15

or ...

SEARCHING FOR PATTERNS
AMONG THE PRIMES

Prime numbers fascinate and frustrate everyone who studies them. Their definition is so simple and
obvious; it is so easy to find a new one; multiplicative decomposition is such a natural operation.
Why, then, do primes resist attempts to order and regulate them so strongly? Do they have no order
at all or are we too blind to see it?

There is, of course, some order hidden in the primes. The Sieve of Eratosthenes shakes the primes
out of the integers. First, 2 is a prime. Now knock out every higher even integer (which must all be
divisible by 2). The next higher surviving integer, 3, must also be a prime. Knock out all its multiples,
and 5 survives. Knock out the multiples of 5, and 7 remains. Keep on this way and each integer that
falls through the sieve is prime. This orderly if slow procedure will find every prime. Furthermore,
as n goes to infinity, we know that the ratio of primes to non primes among the first n integers
approaches (loife n)/n. Unfortunately, the limit is only statistical and does not actually help in
finding primes.

In fact, all known methods to list the primes are variations of the tedious sieve. Euler invented the
formula x2 + x + 41; for values of x from zero to 39, this function turns out a prime number
each time. But no polynomial function can tum out an infinite unbroken series of primes, and
Euler's function fails for x = 40. Other functions have streaks, but none known is perfect. Patterns
do not seem to appear as researchers ponder piles of integer functions.

Patterns do appear, however, if the integers are mapped onto the plane (or into space). One way to
do the mapping is shown in Figure 15-1, where the integers are wound around the origin in a left­
handed spiral. Figure 15-2 shows the integers worked into a triangular pattern in the positive quad­
rant. If these arrangements are carried far enough, the primes can be seen to lie heavily along some
lines (mostly diagonal) and to avoid other lines entirely. Part of this effect can be explained simply.
In both arrangements the integers falling along any diagonal are given by some quadratic polyno­
mial. If the polynomial for a particular line happens to be factorable into rational linear terms, then
that line will consist of all composite numbers. So the primes must bunch more heavily on non­
factorable lines willy-nilly. Still, some nonfactorable polynomials seem to be very rich in primes,

59

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

80 PRIME TIME

8 196 195 194 8 192 8 190 189 188 187 186 185 184 183

198 145 144 143 142 141 140 8 138 8 136 135 134 133 182

8 146 8 100 99 98 0 96 95 94 93 92 91 132 8
200 147 102 66 64 63 62 0 60 0 58 57 90 8 180

201 148 8 66 0 36 36 34 33 32 0 66 0 130 8
202 8 104 0 38 0 16 15 14 0 30 65 88 129 178

203 150 105 68 39 18 0 4 0 12 0 64 87 128 177

204 8 106 69 40 0 6 0 2 0 28 0 86 8 176

206 162 8 70 8 20 0 8 9 10 27 52 86 126 175

206 153 108 0 42 21 22 0 24 25 26 51 84 125 174

207 164 8 72 0 . 44 45 46 0 48 49 50 0 124 8
208 155 110 0 74 75 76 77 78 0 80 81 82 123 172

209 156 111 112 8 114 115 116 117 118 119 120 121 122 171

210 8 158 169 160 161 162 8 164 166 166 8 168 169 170 8 212 213 214 215 216 217 218 219 220 221 222 8 224 225

Figure 15-1. Integer, Spiraled Counterclockwiae

and there is no known reason why they should stay rich while the density of primes among all
integen decreases slowly to zero. Stated another way, although factorability of polynomials ex­
plains some prime clumping, certain polynomials exist that are richer than simple statistical analysis
suggests.

Statement of the Theme Write a program that maps the integers into the plane in some regular
pattern and plots where the primes occur. Derive the functions describing the straight lines in your
plot and print out those that are exceptionally rich, along with the richness ratio. Make sure that
your primality test routines are efficient so that you have time to check the pattern very far out
into the integers.

Orchestration This problem is best done in an algebraic language. You must be able to control
efficiency of the primality test.

Playing Time One person for 2 weeks.

REFERENCES

Gardner, Martin. "Mathematical Games." Scientific American, pp. 120-126, March 1964.

Gau~, Carl Friedrich. Disquisitiones Arithmeticae. Yale University Press, New Haven, CT, 1965.

There are hundreds of books on number theory. Strangely, one of the first is still one of the best. It is an
inexpensive paperback as well: why not go with the master?

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

61 PRIME TIME

210

190 209

171

153

136

120

105

91

78

66

55

45

36

28

21

15

10

6

189 208

170 188 207

152 169 187 206

135 8 168 186 205

119 134 150 185 204

104 118 133 166 184 203

90

77

65

54

44

35

27

20

14

9

117 132 148 165 183 202

102 116 8 147 164 182 201

76 88 8 115 130 146~200

64 75 87 100 114 129 145 162 180

63 74 86 99 8 128 144 161 198

52 62 85 98 112 8 143 160 178 8
34 42 51 72 84 97 111 126 142 159 177 196

26 33 0 50 60 96 110 125 141 158 176 195

8124 25 32 40 49 82 95 140 175 194

18 39 48 58 69 81 94 108 123 139 156 174

8 12 30 38 57 68 80 93 8 122 138 156 173 192

4 0 22 G 46 56 00 92 106 121 8 154 112§

Figure 15-2. Integers in a Triangle

Stein, M. L., S. M. tnam, and M. B. Wells. "A Visual Display of Some Properties of the Distribution of
Primes," American Mathematical Monthly, pp. 516-520, May 1964.

Gardner wrote up the results of Stein, tnam, and Wells in a more popular format, but both papers are easy
to read. Not much else has been reported on this topic so it is probably just a fancy of tnam's. Still, the
idea makes pretty pictures, it's a good way to bum extra computer time, and there might be something
in it.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

16

or ...

A GASOLINE USAGE
COMPUTATION

The day of the 304 gallon of gas is gone. The day of the 404 gallon of gas is gone. The day of the
504 gallon of gas is gone. The 604 day is here. Soon there may be no gas at all. Consequently, an
analysis of personal gasoline expenses is in order.

Many people keep logs of their gasoline purchases. Normally this data might include the date, the
mileage indicated on the odometer, the brand of gas, the price per gallon, the number of gallons
purchased, and the total cost. The price per gallon, the gallons purchased, and the total cost are all
related; this relation will be slightly inexact because of small roundoff errors, but it can still be used
to test input validity. Using a computer, you can calculate some other statistics. The derived quan­
tities of interest include the average cost per gallon, the average miles per gallon, the average number
of miles traveled per day, the average cost per mile, and the average amount of time that a gallon of
gas stays in the tank. It would also be nice to have the same information arranged by brand to see if
there are any differences among brands. Table 16-1 is a real gasoline log.

For the purposes of this problem, assume that each log entry refills the tank completely. The first
entry establishes a base line for dates and mileages but cannot itself be used as data. Afterward each
entry gives mileage and costs for the last tankful, showing the amount of gas replaced and the num­
ber of miles traveled. It would also be interesting to print running averages over the latest short time
period to see 1.f any short-term changes have occurred.

Statement of the Theme From data in a gasoline usage log, print a variety of control statis­
tics giving the driver knowledge of car costs. Input data for each transaction should include the date,
the brand, the odometer reading, the price per gallon, the gallons bought, and the total cost. Output
should echo the input and also include the miles on the tank, the miles per gallon, the cost per mile,
the cost per gallon, the cost per day, and the days per gallon. All these quantities should be calcu­
lated per fill, on average over a short term, and on average since the beginning of the data. In addi­
tion, collect the data for the brands and print out the averages for each brand. Do not limit the
number of possible brands.

62

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

63 GAS PAINS

Table 16-1 Some Entries from an Actual Log

Date Brand Miles i / Gal. Gallons Cost

03/27/74 Texaco 24,370 69.9 13.6 $8.00
04/06/74 Texaco 24,434 59.9 5.5 $3.30
04/11/74 Texaco 24,596 59.9 8.2 $4 .88
04/ 23/74 Mobil 24,862 58.8 12.9 $7.60
05/13/74 Mobil 25,067 61.9 13.9 $8.60
06/11/74 Arco 25,239 62.9 12.5 $7 .86
07 /12/74 Texaco 25,436 63.3 14.2 $8.90
07 /19/74 Chevron 25,713 58.8 12.4 $7 .27
07 / 28/74 Mobil 26,136 60.9 14.1 $8.60
08/07 /74 Arco 26,384 60.4 13.1 $8.00
08/08/74 Chevron 26,712 59.9 13.3 $7.90
08/16/74 Arco 26,997 60.9 13.6 $8.30
08/22/74 Mobil 27,068 60.9 4 .0 $2.46
08/22/74 Shell 27 ,362 61.6 11.8 $7.26
08/23/74 Shell 27,606 63.4 10.3 $6.64
08/25/74 Ericson 27,913 60.9 13.6 $8.29
08/26/74 American 28,163 60.9 10.8 $6.66
08/26/74 American 28,487 57.9 14.0 $8.10
08/27 /74 DX 28,771 63.9 12.2 $6.60
08/28/74 Conoco 29,114 69.9 14.8 $8.90
08/28/74 Texaco 29,337 58.9 10.2 $6.00
08/28/74 Phillips 29,661 60.9 13.9 $8.36
08/29/74 Chevron 29,912 66.9 10.8 $7.10
08/29/74 Shell 30,147 65.9 10.3 $6.70
08/30/74 Texaco 30,317 60.9 7 .6 $4.60
08/31/74 Exxon 30,643 66.9 13.3 $7.60
09/06/74 Shell 30,878 59.9 13.2 $7.90
09/10/74 Shell 31,182 59.9 13.0 $7.80
09/14/74 Exxon 31,467 57.9 13.1 $7 .60
09/18/74 Arco 31,711 57.9 10.1 $6.86
09/24/74 Arco 31,984 57.9 12.5 $7.25
09/27 /74 Arco 32,226 67.9 9.9 $6.70
10/01/74 Arco 32,466 57 .9 9.8 $5.66

Performance Practice This program has no great difficulties. As with several other problems,
there is some room for ingenuity in printing dollar amounts. The requirement that the number of
brands not be limited implies a requirement that they not be named in advance. As a result, a simple
growing table of brands and their associated data will be necessary.

Orchestration Once again COBOL is an obvious candidate; this is exactly the type of task that
the language was designed for. If you can find a report-generation language with sufficient power,
here is a chance to learn how to use it. Otherwise use any procedural algebraic language.

Playing Time One person for 1 week.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

17

or ...

HIGHWAY TRAFFIC
SIMULATION

One early effect of the energy crisis was the nationwide lowering of the highway speed limit. Most
motorists resent this limit when on the long haul. Of course, we now know that the lower limit saves
thousands of lives and millions of dollars annually. Most drivers, however, do not realize that in the
congested conditions on the urban highways surrounding big cities the lower limit may actually save
time. To state the paradox more clearly, if everybody drives more slowly, everybody gets home
sooner.

Think back to some time when you were driving down the freeway, clipping right along about 5
miles above the limit even though the highway was busy, and then suddenly everyone slowed to a
crawl and you had to stand on the brakes. Next came a quarter, a half, even a full mile of stop-and­
go traffic. Finally, the pack broke up and you could come back to speed. But there was no cause to
be seen. What happened to the traffic flow?

The reason for the stoppage lies in the theory of fluids. Cars traveling down a highway behave much
like particles of a fluid running in a pipe. If the density is high enough and the velocity fast enough,
any momentary stoppage of flow will set up a shock wave. The shock wave is an area of very high
density; cars (or particles) approaching it slow drastically as they enter the shock area and then
speed up as they pass the relatively well-defined shock front into a region of much lesser density.
The shock wave will persist for a long time, slowly moving against the flow of traffic and slowly
dissipating. We might point out that dissipation occurs because the density in the shock area goes
down and can be hastened if drivers will brake gently when they notice a slowdown some distance
ahead.

It would be interesting to do experiments on the highway at rush hour, but undoubtedly more than
one commuter would object. A more convenient experiment can be done on the ·computer. Con­
sider a straight section of highway one lane wide and 5 miles long with no passing allowed. Cars
enter at one end of the highway, travel down it, and exit without any further effect at the other
end. While on the highway, cars try to move at constant speed, although not all at the same speed.
To study shock waves, we will randomly introduce slowdowns into the traffic steam.

64

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

66 SHOCKING STATISTICS

To run the experiment, we need a generator for cars and one for shock starters. At the beginning of
each experiment the highway is empty. Start a car generator that inserts cars onto the highway,
choosing a speed and an interval until the next car is started. A car entering the highway may have
any speed between 50 and 60 miles an hour, chosen from a uniform random distribution, and the
next car will be delayed between 4 and 6 seconds, again uniformly distributed, before it can enter.
The nearest that two cars can get together is one car length for each 10 miles per hour that the
leading car is traveling; a car length is 10 feet. When the trailing car gets within three times the
prohibited distance, it begins to lose one mile per hour per second to match speeds. If the lead car

.begins to slow drastically, the trailing car waits 0.2 second and then brakes at a rate of 15 mph/sec.
The result may cause a tailend collision that will end the experiment.

The actual experiment consists of filling the road with cars, introducing an artificial slowdown, and
observing the result. Start with the road empty, inject cars as described above, and continue to do
so until cars have been leaving the far end for 2 (simulated) minutes. While still injecting cars, select
the car that next passes the 4-mile point and brake it as quickly as possible 0, 10, 20, 30, 40, or 50
miles per hour, let it hold its new speed for 100 yards, and then accelerate it back to its original
speed at a rate of 5 mph/sec (cars always try to maintain the speed at which they entered the high­
way). From the time that the crisis car begins slowing, run the experiment for another 5 minutes
and count the cars exiting the highway during this 5-minute period to get the observed experimental
value. Cars following the crisis car may also use the 5 mph/sec acceleration when the highway clears
in front of them. Run the experiment several times for each crisis slowdown. If there is a tailend
accident, all cars behind the accident will automatically stop and be unable to exit. There may be
more tailenders behind the crisis.

Statement of the Theme Write a program to do the highway shock-wave experiment. The only
input is the number of times to run the experiment for each reduction in speed. Output is basically
the average number of cars to exit the highway after each crisis speed reduction. But for debugging
and for better understanding of the physical behavior of the system, more output is desirable. In
particular, "snapshots" of the road at various times will probably convey considerably more in­
tuitive insight than any set of statistics. If you have a good graphic device, either interactive or film
producing, a series of snapshots becomes a movie of the road.

Performance Practice The most difficult problem here is keeping track of all the cars on the
road. 1 You might cycle every hundredth to tenth of a simulated second, adjusting the position of
each car as appropriate each cycle. As long as the cycle interval is short enough, no significant
errors will creep in and the program can be organized nicely as a series of nested loops. But in a
lockstep simulation there can be too many cycles. In this case, there will be about 12 minutes of
simulated time, about 90 cars on the road at any one time, and, even with a long cycle interval
of a tenth of a second, about 7200 cycles or 650,000 individual looks at cars. There is an obvious
problem if the program spends much time adjusting any one car. By varying the cycle interval
according to traffic conditions, you may ameliorate the difficulty.

The alternative is to adjust the cars' positions only when a critical event occurs. That is, a list is
maintained of all events that can be foreseen to happen in the near future, such as a new car entering
the highway, a car exiting, a car overtaking another, 2 minutes since the first car left, and tin1e for
the crisis car to speed up again. The event list is always kept so that the next event to occur is at the
front of the list (the whole list need not be sorted-priority queues and heaps might both have this
property). The basic cycle picks the next event off the front of the list, adjusts all car positions on

1 A subsidiary difficulty is that all the units are in English customary notation. This usage is intentional and your
output should be in the same units. It could be worse - we might measure speed in f/f, that is, furlongs per fortnight.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

66 SHOCKING STATISTICS

the basis of the new time, notes any events that must be scheduled, enters them on the list, and re­
orders the list to get the nearest event to the front. The advantage of the critical event simulation is
that there may be long stretches - 4 or 5 seconds - when everything is rolling along smoothly. The
time saved in useless cycles can be applied to the more complicated event list handler.

Orchestration Natural candidates for this problem include the simulation languages such as
Simscript and Simula. Of course, if they are not available, an ordinary procedural language is
appropriate. No matter which method is chosen, it will probably help to have good data structures
to hold the car data and the queue of events.

Playing Time One person for 3 weeks; add a week for making a movie.

Variations on the Theme Strictly speaking, this problem does not study the situation described
in the first few paragraphs. Instead of seeing what happens to the shock wave at different average
traffic speeds, the experiment looks at different shock intensities. Run the whole thing again with
the range of initial speeds between 40 and 50 mph or 60 and 70 mph. Try a normal instead of a
uniform distribution for some of the variables. Vary the braking and acceleration functions. In
other words, do a study on all the parameters of the situation instead of only the one that we chose.

REFERENCES

Herman, Robert, and Keith Gardels. "Vehicular Traffic F1ow." Scientific American, pp. 35-43, December
1963.

Herman and Gardels describe several physical experiments on traffic Oow and the development of a mathe­
matical theory. Of course, they used the Holland Tunnel in New York City, a resource beyond most of us.
If you are interested in tracing down work since 1963 on traffic flow, here is your chance to find out how
to use Science Citation Index and other bibliographic aids to bring an old article up to date.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

18

D, ,,::-1;~, 'D~' ' d 'D:nb~ n'
P\efil\:llfl P\l~Ifl @Pl\9 f\.l~f~tr¥1e~I@

' '
or ...

CONSTRUCTION OF
A FORMAT SCANNER

You have probably written at least one program that generated reams of neatly arranged output.
Rank upon serried rank of numbers marched off the printer, officered by squads of tidy titles. No­
body ever looked at more than three of the numbers, but it was so easy that it seemed a shame not
to print them all. After all, somebody might want to know the exact tax rate for worker 1793
at work location 907 during September five years ago.

The reason that you could print such a mass of data without dying from the effort was that some­
thing like the FORTRAN format statement helped you by converting all those internal nasty
binary numbers to nice-looking character strings. In fact, the same thing happened on input. All
the data came on neatly punched cards, and you never even thought about how it was changed so
that the CPU could do its little arithmetical tricks. Perhaps you should have thought a little more
about your input/output. A data-dependent program can easily spend a quarter to a half of its
computation time in 1/0 service routines, and most of that may be spent interpreting formats and
converting data. So that you will never again take data conversion lightly, this problem makes you a
library utility programmer.

We have chosen FORTRAN formats to study because they are simple, efficient, and the grand­
daddy of most other format schemes. Whenever a FORTRAN 1/0 operation is directed to a human­
readable device, a format statement mediates the process. The essential elements of an 1/0 operation
are a variable list, a format, and an 1/0 stream. Data items are transferred to or from variables in the
variable list from or to the 1/0 stream, depending on whether the operation is input or output. As
each item is transferred, enough of the format is interpreted to define the coding of the data item
on the 1/0 stream. The format does not control how much data will be moved, but it does control
the details of the movement.

WHAT IS A FORMAT?

A format is a string of characters describing the transformations to be performed on the data. Be­
cause it is interpreted each time that it is used, a format could be regarded as a little program. A
general format has the form

67

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

68 REAOIN', 'RITIN', AND 'RITHMETIC

(y f 1 s1 f 2 s2 · · · f'l s'1 z)

where n may be zero and

y and z are each a possibly null string of slashes.

each f i is either a single format code or a general format optionally preceded by a natural
number.1

each si is a field separator-that is, commas, slashes, a mixture of the two, or null as
appropriate.

Blanks are ignored throughout a format except in one special case noted below, and all numbers are
represented as decimal strings.

Now assume that an 1/0 operation has been invoked. The 1/0 stream is set at the beginning of the
next record. 2 A scan pointer is set to the beginning parenthesis of the format and then scans for­
ward to the first code requiring a variable from the variable list or the right end of the format. This
process allows an output statement to write just a data line without transferring any variable data.
The format interpreter will have some internal memory (usually implemented as a stack) that will
be cleared and that we shall refer to occasionally when we mention that the interpreter "remem­
bers" something. The basic format cycle is simple. The next variable on the list is passed to the
interpreter. The scan pointer moves down the format, looking for a format code that will cause data
transmission. During the rightward scan codes may be encountered that modify the 1/0 stream or
set parameters in the interpreter; the actions described by these codes are performed without
stopping the scan. Some codes are allowed repetition counts, and the associated action is performed
until the count is exhausted. The same code may be used for several variables on the list, which
means that the interpreter must be able to remember the decremented count from cycle to cycle. If
the right parenthesis ending the format is scanned, scanning returns to the nearest unenclosed left
parenthesis without a repetition count and, failing the existence of one, to the initial left paren­
thesis. The three fundamental errors that can occur are running off the end of the input stream,
encountering the right end of the format twice in a row without transmitting any data, and not
matching the data type of the format code, the variable, and the actual data on the 1/0 stream (this
last part for input only). On output, termination of the 1/0 operation causes the last partial record
to be written.

Now for the format codes themselves. About the only useful grouping that we can make is between
self-terminating codes and non-self-terminating codes, which must be followed by a comma, slash,
or parenthesis. The interpretor maintains a running scale factor, initially set at zero, which may be
modified by scale factor designators. The individual codes are

tl_ A left parenthesis, optionally preceded by a repetition count r, indicates the beginning
of a format group delimited by a following right parenthesis (parentheses within a format
must be balanced). The entire group is repeated as indicated by the repetition count. A
missing count is assumed to be one.

L The comma terminates codes that need separation from the following code. They have
no other effect and redundant commas may be used.

L The slash serves to terminate non-self-terminating codes and also terminates the

1 Remember that a natural number is an integer greater than zero.
2 The 1/0 stream is divided into records, but these records may be of various lengths. Any given physical device may
set limits on record length. The 1/0 4itream is usumed to be set at the end of an imaginary zeroth record before the
first 1/0 operation on the stream. For output, records are created as necessary.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

69 REAOIN', 'RITIN', ANO 'RITHMETIC

current record on the 1/0 stream. If the last code performed before the operation ends is
a slash, there is no record termination because of the end of the operation. Multiple
slashes cause records to be skipped on input or empty records to be created on output.

nX On input, n characters are skipped in the 1/0 stream; on output, n blanks are in­
serted into the stream. This code is self-terminating and does not transmit data.

nHh1h2· · ·h0 On input, the next n characters from the 1/0 stream replace then char­
acters h1~· · ·hn in the format. On output, then characters h1~· · ·hn are moved to the
1/0 stream. Blanks may be included in the hi; this is the only case when blanks are sig­
nificant in a format. This code is self-terminating and does not transmit data to or from a
variable.

rAw Let g be the number of characters that can be stored in the variable used by this
format cycle. On input, if w > g, the rightmost g of the next w characters on the 1/0
stream are moved to the variable; otherwise the w input characters will appear on the left
of the variable, padded with g-w blanks on the right. On output, if w > g, then w-g
blanks, followed by the g characters of the variable, will be placed in the 1/0 stream;
otherwise the leftmost w characters of the variable are moved to the stream. The repeti­
tion count r is optional and this code is non-self-terminating.

rLw On input, the next field of w characters must be blanks, followed by a Tor F,
followed by any arbitrary characters, providing a value of true or false, respectively. On
output, w-1 blanks, followed by a T or an F, are placed into the 1/0 stream. The repeti­
tion count r is optional and the code is non-self-terminating.

rlw On input, a string consisting of leading blanks, an optional sign, and intermixed
blanks and digits is converted to an internal integer. The field is w characters long, and
blanks after the sign are treated as zeros. On output, the field is w characters long and
consists of blanks followed by a minus sign if necessary and by the digits of the con­
verted integer right-adjusted. The repetition count r is optional and the code is non­
self-terminating.

sprFw.d On input, floating point conversion always reads from a field of w characters.
If the input data consist of all digits and blanks, or if the only sign character appears to
the left of character w-d+l (counting from 1), the input value is the real that is created
by placing a decimal point between positions w-d and w-d+ 1 of the field. If the input
string has a decimal point, it overrides the implied point. If the input string has the form
of an integer or real followed by a second signed integer or the character "E" followed by
an optionally signed integer, this second integer is taken to be an exponent and the real
value is to be multiplied by ten raised to that exponent. When the "E" form of the
exponent appears alone, the real number part is assumed to have value one. If no expo­
nent appears in the input string, the number read in is also multiplied by ten to the
current scale factor before it is given as value to the input variable. On output, a floating
point number is written as x1 · · ·Xn,Yi · • 'Yd with a leading minus sign if necessary and the
value rounded to d fractional places. There will always be a decimal point in the output
field; so w > d+l for all output F codes. Once again, the data is right-justified in its out­
put field. Both the scale factor designator sP and the repetition count r are optional. The
new setting s (which may be any signed integer) continues until another scale factor
designator is encountered. The code is non-self-terminating.

sPrEw.d On input, the E format operates exactly the same as the F code. The basic
form of an output field is O.y1• • ·y~zt · -Zm, where there may be a minus sign preceding
the initial zero or following the E as necessary and where m is large enough so that the
maximum exponent and a minus can be accommodated even if they are not necessary.
If the current setting of the scale factor is q, the real part of the basic form is multiplied
by l()Q and the exponent decremented by q. For q > 0, there will be q digits to the left

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

70 REAOIN', 'RITIN', ANO 'RITHMETIC

of the decimal and max(d-q+l,0) to the right; for q < 0, there will be a single zero to the
left and d+q digits to the right. As with the F code, both the scale factor designator sP
and the repetition count r are optional and the code is non-self-terminating.

sPrGw .d Input and interpretation of sP and r are the same as for the F code. The output
under the G code takes the form of either an F code or an E code, depending on the
magnitude of the output value. If M is the output value and 1()k-l ..;;; M < lok
for 0 ~ k ~ d, then output uses the code F(w-4).(d-k), 4X; otherwise the code Ew.d is
used. Note that the scale factor setting has no effect if the F mode is chosen. This code is
non-self-terminating.

Statement of the Theme Write a format package for your computer. Generally such a package
has a number of entry points available to the ultimate user (a compiler-generated object program as
a rule) even though there will also be a number of internal routines that the user must be prevented
from accessing. The user entries should include initialization with parameters specifying input or
output, the 1/0 unit, and the format, entries presenting each type of variable (real, integer, logical,
or any of them used for alphameric data), and a termination entry. The internal form for data can
either be that of the local host computer or the form described for the EC-1 computer in Chapter
25. Test the package sufficiently to show that rounding rules and end cases are working correctly
and that errors are reported accurately.

Performance Practice Achieving a consistent understanding of the behavior of real numbers on
the host machine is the most difficult part of this problem. Alphameric, integer, and logical data can
all be converted rather easily, and format scanning and buffer housekeeping require only fairly
simple techniques. You will probably find, however, that implementation of just the right rounding
rule will require considerable thought and possibly some experimentation. Be sure to test with
values just slightly above and below powers of ten, just below lo-<i, and so on. And do not be led
into the construction of proliferating special cases to handle flaws in earlier work; retrench and try
a different approach instead. One of our saddest programming defeats was a format package that
grew like Topsy to over 3000 lines of assembly code. How embarrassing to have it replaced by a
cleaner, more powerful routine of less than 1000 lines written by someone else! And how happy
we were to get rid of that monstrosity forever!

Orchestration This is one of the problems for which we can recommend assembly language.
Format packages need good efficiency, and they are programs in which execution time is rather
widely spread instead of being concentrated heavily in a few tight loops (the pattern for most
programs is for 10% of the code to account for about 90% of the execution time). Also, higher­
level languages hide the specific data manipulations necessary in a format package. If you have an
implementation language like BLISS or PL/360 (or possibly XPL), it is the most likely candidate,
since it will have the good machine control of assembly language without assembly language's bad
features.

Playing Time One person for 5 weeks.

Variations on the Theme There are numerous possibilities for extension of formats. New codes
can be added. For example,

'x· · ·x' Exactly the same effect as nHx· · ·x. Single internal apostrophes are represented
by doubled apostrophes.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

71 READIN', 'RITIN', AND 'RITHMETIC

Bw, Ow, Zw Input and output in binary, octal, and hexadecimal, respectively. Internal
values are regarded as right-adjusted bit patterns when using these codes.

Tn Move immediately to. column n of the current record. This movement may cause
rereading or rewriting of data on the 1/0 stream.

Alternatively, the very precise field-width requirements may be weakened. Thus E.d on output
would imply that the format package should choose an appropriate value for w, and I alone on
input would imply that the next integer should be terminated by a blank, comma, or end of record
rather than by a field width. Almost every FORTRAN system has some similar extensions that you
might add.

REFERENCES

Anonymous. USA Standard FORTRAN. United States of America Standards Institute, New York, 1966.

The format codes that we describe are slightly different from those in the Standard. We feel that the
Standard does not reftect industry practice in this area, although we would be happy to see an implementa­
tion of Standard specifications instead of those above (the work is about equal). Reading the Standard is
an experience in itself, one that the dedicated FORTRAN programmer should undergo. It makes one
wonder exactly what language all those compilers translate, for it certainly is not FORTRAN.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

19

or ...

SOLITAIRE
STATISTICS COLLECTION

Every programmer blocks at one time or another. For no apparent reason, the current program
simply will not let itself be written. Each new attempt quickly becomes a trash pile of spoiled
coding sheets. The solution is to leave the problem alone for awhile. If the boss complains, explain
that you are relaxing your mind in the interest of greater productivity. Then go to a movie. Or play
handball until you drop. Find a complaisan.t member of the opposite sex and discuss The Critique
of Pure Reason. Lose some money at the track. Or get out your deck of cards and prepare to waste
3 hours trying to win your favorite solitaire (in England, prepare to lose your patience).

Solitaires come in two forms. The first has a set of rules for laying out the cards and additional rules
for playing the cards; working out the solitaire is a mechanical ritual and the player is an over­
looking automaton. Such games will lead you to a deeper understanding of the emotional state of a
computer while it executes one of your programs, but they lack creative tension. So the second
form of solitaire allows some decision making on the part of the player. Rather than watching
Nature's patterns form, the player vies against Nature, represented by a shuffled deck of cards.
These games usually have some artificial winning conditions, but there is little information on what
results best play might achieve. With a computer's help we can find real standards against which the
player can compare scores. Instead of playing solitaire, programming it may clear the block.

RULES FOR ONE SOLITAIRE GAME

Begin by thoroughly shuffling one ordinary deck of cards. Now deal the cards into a tableau as
follows. There is a row of seven piles with, respectively, zero, one, two, ... , six cards face down
and the top card face up from left to right in the middle of the tableau. These packets account
for 28 of the cards. Then the last 24 cards are laid out in descending overlapped columns of four on
the six rightmost packets. All the cards in a column are face up, and they are overlapped so that the
card at the base of a column is on top of the card next up the column, which is, in turn, on top of
the next, and so on up to the cards on top of the packets that started the columns. The overlapping
should be done so that the rank (or denomination) and suit of each face-up card are clearly visible.

72

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

73 PATIENCE IS A VIRTUE

CtE50□
One card race down

Three cards race down

D
I I

Figure 19-1. The Solitaire Tableau. All carcu are face up except
tho,e in the packet, below column, two through ,even.

Finally, space should be reserved at the top of the tableau for four scoring piles, one for each suit.
Figure 19-1 is a picture of a complete initial tableau.

A play consists of lifting any face-up card and those overlapping it (that is, those lower down the
column) and placing the partial column overlapping the base card of a different column. This
movement can take place only if the top card is in the same suit and one rank lower than the card
newly covered (in this game, aces rank low-that is, as ones-and kings rank high). Figure 19-2
shows a sample move. If a play exposes the top face-down card of a packet, finish the play by
turning over the exposed card. A play may also completely empty a column; then any exposed king,
along with its lower overlapping cards, may be moved into the hole on any subsequent play. When
an ace is the bottom card of a column, it is moved to the top of the tableau to start a scoring pile
for its suit. After the scoring pile for a suit is begun, new cards of the suit may be scored as they
appear at the bottom of some column, so long as the cards are scored in strictly ascending rank
order. Notice that once a card is in scoring position at the base of a column, there is no reason to
avoid scoring it, since it will eventually be scored anyway and until then it only blocks plays on the
column.

0
0
0

i •
i • ,._. ~. ♦

Z• • ••• • •t

000 000

0
0
0

i •
i• • : • •
• •t

00 0

Figure 19-2. A Po .. ible Play Moving One Column to Another.
The card, from the 3 of club, down are moved to overlap the 4
of club,. Other column, are not ,hown.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

74 PATIENCE IS A VIRTUE

Play continues until no further plays are possible and no cards remain in position to score. The
game score is the total number of cards in the scoring piles. In learning this game, we were told that
the game was regularly played in Las Vegas (also known as Lost Wages). A deck of cards could be
purchased at $1 per card (plus $3 tax) from a casino and the casino would pay $5 for each card
scored. Thus the player who scored 11 cards (or $55 worth) would break even, and each additional
card scored represented player profit. It seems unlikely that casinos actually did offer these terms,
but we suspect that they would have made an outstanding profit had they done so. In fact, how
many cards can be expected in the scoring piles? Exactly how obscene would the casinos' profits
have been?

ANALYSIS OF THE SOLITAIRE

Each possible original layout gives rise to exactly one optimal result, although several sequences of
play may achieve it. Presumably there is some very complicated probabilistic function that calcu­
lates the expected value of this optimal result. But even if that function were written out, it would
undoubtedly have so many terms that calculation of its values would be extremely onerous. Instead,
why not play a large number of games and calculate the interesting statistics from the sample results
thus obtained? This idea of a simulation finding a value theoretically directly calculable has ap­
peared in other chapters precisely because, as here, changing the computer into a model of an inter­
esting real process is so valuable. What are the necessary steps for solitaire?

First, there must be routines to deal the cards, to check for the existence of plays in a position, to
make a move, to tum over a card from the top of a packet, to score a card - in short, to play the
solitaire legally. Using these routines, the result of any given sequence of plays can be checked. On
them, we superimpose a search strategy to look for the optimal result. Deal the cards into an initial
tableau. From each position as the game progresses the search strategy performs the following steps.

Note how many potential plays there are in the position. There are at most seven at
any time.

If there are no available plays, this sequence is over and its score can be recorded. Reset
the position by popping the top position off the position stack and go back to the top of
the loop. If the position stack is empty, the search is over.

If there is exactly one available play, make it and return to the first search step.

If there is more than one possible play, order them (the ordering method is irrelevant).
Record the position, the ordered list of moves, and the fact that the first move has been
made on the position stack. Make the first move and return to the first step. Notice that
when a position is unstacked, there is an implicit assumption in step one that determining
available moves will always require looking first for a partially completed move list.

The search strategy performs a depth-first search of all possible move sequences, storing positions
waiting for investigation on a stack. By making all possible sequences of decisions, the search
strategy ensures that an (it may not be unique) optimal sequence is found.

One of the frustrating aspects of this solitaire is the number of times that it is laid out with no plays
available at all. Laying out the tableau is merely a complicated way to shuffle. In spite of the
good chance of early termination, we still must expect the position tree to grow very large. But
the tree actually is a graph because positions may easily repeat after different move sequences.
When a position has been investigated once, there is no need to search it again. The value of a game
does not depend on the order of the moves or on the particular sequence leading to the optimal
result. If each position is saved as it is processed, later positions can be compared against earlier ones

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

75 PATIENCE IS A VIRTUE

to save duplicate processing. Only the cards, not the possible moves, need be saved. Of course, there
is the problem of looking up the saved positions.

Statement of the Theme Write a program to find the mean and standard deviation of the op­
timal score of the solitaire game described. Make sure that enough cases are sampled to provide
good statistical accuracy. If you can, also calculate the mean number of plays and the mean number
of decision points on the way to the optimal result. The only input should be the number of games
to be played. Output could be simply the statistics required, but probably a great amount of other
data is available. In particular, details of the storage allocation for positions may prove revealing.

Performance. Practice The organization of the cards within a position and the storage of past
positions will be the crucial determinants of efficiency. While a position is active or in the stack, the
status of all the packets, of the columns descending from them, and of the scoring piles must be
known. Stacked positions need to maintain a list of plays yet to be studied. To speed up searches
for legal plays, a vector should give the status of all cards - that is, invisible, already scored, visible
in the middle of a column (which column?), or visible at the bottom of a column (again, which
column?). Or perhaps you can think of another data structure that will allow quick decisions about
possible plays. In any case, when a position is saved some information may be thrown away as al­
ready having been investigated, thus saving space.

Two specific techniques will be necessary. First, how does a computer shuffle a deck of cards? Here
is a procedure suggested by Knuth. Let rand52 be a random number function that returns integers
uniformly distributed between 1 and 52. Put the cards in an array card of 52 elements; it does not
matter how the cards are arranged initially. Now for each i between 1 and 52, exchange card[i] and
card[rand52], calling rand52 anew each time. One shuffle will be enough, using this technique.

Second, how is an old position to be found? This is a classic search problem with a growing data
base. The obvious solution seems to be a hash table that uses the whole position as a search key.
Since comparison of two entire positions for equality is likely to be expensive, this is a problem for
which a virtual hash code seems appropriate. The storage space for old positions may overflow, and
you should be prepared to clean it out from time to time. The best way seems to be to keep a count
of the number of times that each position is referenced and to throw out those used least often.
Alternatively, or perhaps as a double check, keep a list of all old positions, and each time that a
position is referenced, move it to the head of the list. Wheri the time comes to destroy some posi­
tions, those at the end of the list are candidates, since they have been referenced the longest time
ago. The method of old position disposal will influence your choice of search strategy and vice
versa. Notice that destroying an old position does not alter the correctness of the analysis, but it
may slow it down.

Orchestration This is a problem with a need for easily manipulable data structures of a mod­
erate complexity. Efficiency dictates that control of allocation and deallocation should not be given
to the system; so SNOBOL is probably out. ALGOL W, PASCAL, PL/I, LISP, even COBOL, are all
candidates. Control structure is not such an issue here. You will be convinced of the value of pro­
grammer-defined data structures if you try this problem once in a language like those mentioned
above and again in a language like FORTRAN or XPL, in which complicated structures must be
built from parallel arrays.

Playing Time One person for 3 weeks.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

78 PATIENCE IS A VIRTUE

Variations on the Theme The most obvious extension is to apply this analysis technique to
other types of solitaire. As long as there is no shuffling during play, the idea should carry over with­
out difficulty. There must be hundreds of solitaires, and to our knowledge none has had any serious
analysis. This problem could also be used to study the effect of varying the storage space and
destruction criterion for old positions on the total number of positions studied during analysis. In
other words, instead of using search techniques to help you learn about solitaire, use solitaire as a
source of data to study search techniques.

REFERENCES

Gibson, Walter B. How to Play Winning Solitaire, Frederick Fell, New York, NY, 1964.

This is the only book we have ever seen on this method of play at solitaire.

Knuth, D. E. The Art of Computer Programming, Volume 3/Sorting and Searching. Addison-Wesley,
Reading, MA, 1973.

Knuth's books keep appearing as references. This time Chapter 6 of Volume 3 will tell you all that you
want to know about searching-in particular, searching by bashed techniques. or course, perusal of the
whole chapter might suggest some even better method.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

20

or ...

A SYMBOLIC ALGEBRA PACKAGE

A major difficulty with most programming languages is that the programmer must break all his
equations into pieces for calculation. If a derivative is needed, the programmer must write out the
original function, drag out a calculus book, apply the rules therein, and then write down the re­
sultant derivative. At least for polynomials, many operations can be done symbolically if the
polynomials are represented in a reasonable way. Some programs might vanish completely if poly­
nomials could be directly manipulated in the computer.

The objects to be manipulated are the rational polynomials. We can define these polynomials
recursively.

Let c be any constant drawn from the real numbers. Then c is a rational polynomial.

Let x be any variable. Then x is a rational polynomial.

Let p and q be any rational polynomials. The p+q, p-q, -p, pq, p/q, and (p) are all ra­
tional polynomials. Whenever polynomials are divided, they are simplified so that at most
one division sign remains, using rules familiar to high school algebra students.

Let p be any rational polynomial and c any integer constant. Then pC is a rational polyno­
mial. When c is negative, form the polynomial 1/plcl and simplify the division as above.

Only those objects described by a finite number of applications of the preceding rules are
rational polynomials.

Beyond the descriptions, we need to describe what a polynomial might look like on input and
output and how to call for operations.

On input, polynomials will be similar to expressions in standard programming languages. A constant
can be any string of decimal digits with a decimal point; if the decimal point is missing, the constant
is automatically an integer. Constants do not need signs, except as exponents, because of the
polynomial formation rules. A variable looks like an identifier and may be any string of upper- and

n

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

78 POLY WANT A CRACKER

lowercase alphabetic characters. Because of the limitations of computer character sets, multiplica­
tion will be represented by * and exponentiation by t. Thus the polynomial

2xy + (x2+y2)3

could be written 2*X*Y + (Xt2+Yt2)t3.

Some other names, particularly functions, will also be identifiers built from alphabetics.

To go with the polynomials, there must be some manipulatory commands so that a user can get
answers that are not available from a conventional programming language. For this reason, we will
need to name polynomials with identifiers. The most fundamental operation is

Set f top; This command causes the polynomial name f to be given the value polynomial p. It is a
symbolic operation and does not cause evaluation of p. Once an identifier f has been used as
a polynomial name, it may not appear in any later operation as a variable; you should plan
to keep a table of names, values, and usages during interpretation. The polynomial p might
be a polynomial name; in this case, the value currently assigned to p is given to f. All com­
mands will be terminated by semicolons. Examples of this command are

Set P to z*xt 2+3.5;

Set fpt to P;

Most of the other commands perform some operation on their operands and then leave the results
as value for some polynomial name.

Set f to the sum of p and q; Form the algebraic sum of p and q and store the resultant value with
name f. In all these commands the input can be free form and lines can flow across record
boundaries; only the semicolon is important for ending commands. Operands might be
polynomial names, in which case the values assigned to the names are used in the operations.

Set f to the difference p minus q; Form the algebraic difference of p minus q and store the resul­
tant value with name f.

Set f to the product of p and q; Form the algebraic product of p and q and store the resultant value
with name f.

Set f to the quotient of p divided by q; Form the algebraic quotient of p divided by q and store the
resultant value with name f. This command does not require that the division algorithm for
polynomials be employed, since a rational polynomial may include one symbolic division
sign. Extra division signs may be eliminated by using high school algebra.

Set f to the c power of p; The polynomial pis raised to the c power and the resultant value is
stored With name f. The power c must be an integer or a polynomial name for a constant;
if c is negative, the value is 1 /p cl.

Set f to p with q substituted for x; For each instance of variable x in polynomial p, substitute
polynomial q and store the resultant value with name f. Notice that the substitution
may reintroduce variable x into f but that such reintroduction does not imply recursive
substitution.

Set f to the derivative of p with respect to x; Calculate the derivative dp/dx and store the resultant
value inf. Of course, x must be a variable or a polynomial name whose value is a single
variable.

Print p; Print the polynomial pin a neat format.

End; End the command string.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

79 POLY WANT A CRACKER

The print command suggests another difficulty that must be faced by all algebraic manipulation
programs. During calculation polynomials are apt to become quite complicated. However, humans
expect to read them in a fairly simple form. Rational polynomials are normally written as simple
fractions with both numerator and denominator sums of terms involving only multiplication and
exponentiation. Within each term all the constants are multiplied together and the result used as a
leading coefficient, the variables are ordered (alphabetically is common), and exponents are mod­
ified so that each variable occurs only once. If the leading constant turns out negative, the term is
subtracted from, rather than added to, the previous term. If the coefficient turns out to have ab­
solute value zero or one, the term or the coefficient should be dropped as appropriate. Similarly,
an exponent of zero should cause the associated variable to be dropped. When an exponent is
negative, the term itself is actually a fraction and the denominator should be eliminated by using
standard algebraic rules for the summation of proper fractions. Finally, like terms (that is, those
with exactly the same pattern of exponents and variables) should be combined with appropriate
modifications of the coefficients.

All these simplifications might be done by maintaining the polynomials in some canonical internal
form. In this case, the form would be chosen so that all polynomials are always ready to print;
after each operation the result might be reorganized into standard format. Alternatively, the print
operation can reformat an internal polynomial only when necessary, but this process may require an
arbitrarily large amount of work for a print. No matter which method is chosen, algebraic simplifi­
cation suggests that a distinction should be kept between integer and real constants so that the
vagaries of computer arithmetic will not preclude recognition of values of zero and one. Notice that
it is customary to suppress exponents of one. Figure 20-1 shows a short program with its output.

Statement of the Theme Write a general polynomial manipulation program with the capabilities
outlined above. The input should be a free form list of commands and the output a list of neatly
formatted polynomials. Variables and constants, as well as command words, should not be broken
across records, but commands and polynomials may well be. The definition of "neat" output is
perhaps a little vague, but here is a chance to demonstrate your capability to provide users with
what they cannot describe themselves. Be prepared to prove that the polynomial manipulation
routines are turning out the correct answers. An important feature of a symbolic manipulator is its
ability to do integer arithmetic correctly; make sure that yours has this feature.

Set f to (xt2+yt2)t2 + 3*x*y ;
Set g to (x+y)t3 - 4;
Seth to the product off and g;
Set aaa to f with 2 substituted for y;
Set bbb to the quotient of aaa and h;
Print g;
Print bbb;
End· ,

The output is

xt3 + 3*xt2*y + 3*x*yt2 + yt3 - 4

(xt4 + 8*xt2 + 6*x + 16)/(xt7 + 3*xt6*y + 5*xt5*yt2 + 7*xt4*yt3
- 4*xt 4*y - 4*xt 4 + 7*xt3*yt 4 + 9*xt 3*yt2 + 5*xt2*yt5 + 9*xt2*yt3
-8*xt2*yt2 + 3*x*yt6 + 3*x*yt4 - 12*x*y + yt7 - 4*yt4)

Figure 20- 1. A Sample Program and Its Output

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

80 POLY WANT A CRACKER

Performance Practice Reading the commands and polynomials will require some simple com­
piler techniques, particularly a lexical analyzer to recognize the symbols and a syntactic analyzer to
construct internal representations. References for other chapters will provide the knowledge needed.
During execution you will need to maintain a growing table of names and values, and once again the
technique is easy. The most difficult feature of the implementation is the choice of representation
for the polynomials themselves. Surely they will be in some sort of tree or list structure, but what
sort exactly?

One form would be a standard arithmetic tree with variables and constants at the leaves and oper­
ators at the internal nodes. Such a form would be particularly appropriate for substitution and
algebraic operations, but it might be messy for printing. An alternate would be a tree with numer­
ator and denominator as topmost branches, terms at the next level, factors at the next. Such a tree
might be easy to print and hard to manipulate. Whichever is chosen, remember to copy structures
when making substitutions; otherwise a later change to the inserted polynomial will also change
the polynomial into which it was inserted.

Orchestration This is another problem that calls for lists or trees and recursive procedures to
process them. LISP was invented for such problems, and many other list-processing languages would
be equally appropriate. SNOBOL is perhaps slightly weaker in data manipulation internally, but its
superior input analysis and output preparation also make it a strong candidate. In fact, any language
like PASCAL or PL/I with some string manipulation capability, defined data structures, and re­
cursive procedures should be adequate.

Playing Time One person for 3 weeks.

Variations on the Theme A number of algebraic manipulation systems are in common use.
Typically, they grow from a base of functions like those described above. The growth may come in
three areas: addition of more data types, addition of new operations, and addition of heuristic
procedures that attempt calculations that may not have a well-formed result. New data types and
new operations are related. For instance, we might add the trigonometric, exponential, and loga­
rithmic functions to our repertoire of rational polynomials. If so, the exponentiation operation
must be changed to allow the use of any operand as exponent, and a logarithm-generation operation
specifying base and argument will be needed. Notice that when new data types and operations are
added, there must be a check to guarantee that the space of all functions that can be generated
under all possible sequences of operations is closed in the sense that there is no generated function
that could not, in principle, be written in a Set statement.

Several important mathematical operations have no guaranteed method by which symbolic results
may be calculated. Most important among them is integration. Although every rational polynomial
has an indefinite integral, the simple example of 1/x [whose indefinite integral is loKe(x)] shows
that we do not have to look far for a function that breaks out of the closed space of rational poly­
nomials. If, as suggested above, logarithms and exponentials are added to the available functions,
the larger function space exacerbates the problem. Even the use of definite integrals will not solve
it, since the operation may not result in a constant if the integrand contains variables other than
that integrated over or if the limits of integration are not constants. Symbolic integrators were
among the first programs written to display "intelligent" behavior; if you double or triple the time
spent on this problem, you may be able to build a rudimentary integrator.

The addition of extra base functions will introduce another problem. A standard print format does
not exist for the more complicated functions that can now be constructed. Furthermore, the

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

81 POLY WANT A CRACKER

application of simplification laws is much more a matter of judgment. Because far more algebraic
laws are available - trigonometric identities, laws relating exponentials and logarithms, laws about
constants-the program could spend much of its time simplifying internal expressions. Simplifica­
tion to aid human understanding of results is an area of considerable subtlety and importance; a
successful implementation is a credit to the programmer's judgment.

REFERENCES

Moses, Joel. "Algebraic Simplification: A Guide for the Perplexed," CACM, 14, 8, pp. 527-537, 1971.

Moses, Joel. "Symbolic Integration: The Stonny Decade," CACM, 14, 8, pp. 548-560, 1971.

This entire issue of CACM is devoted to symbolic algebra and its uses. The two Moses papers are good
surveys, but the others will prove interesting as well. Bibliographies here should provide a tine trall for
searching out any topics in this whole area.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

21

or ...

ERRORS USING
FLOATING POINT

High school algebra often teaches techniques that took centuries for the very greatest mathemati­
cians to discover. Among these techniques are solution methods for sets of linear equations and,
implicitly, methods for inverting square matrices. Once the budding algebraist learns the algorithms,
there seems little question that they will always work; the doubter is convinced by following a few
examples through the machinery. What a shock when the same young mathematician writes a pro­
gram using the simple and guaranteed algorithm and the program fails completely. How could a
matrix inverter invented by Gauss, prince of mathematicians, fail?

First, let us review the basic ideas. A matrix is a square array of real numbers, n ~ 1 elements on a
side. The product C of matrix A multiplied on the right by matrix B, written C = AB, is given by

-..
½j = L ~kBitj,

k=l

where it is understood that A, B, and C are n by n matrices. Multiplication is noncommutative, since
it is possible to find matrices such that AB ::i= BA. The inverse of matrix A is the matrix A-1 such that

AA-1 = A·1 A = I
•

where I is the identity matrix defined by Iii = I and Iij = 0 for i -:I= j. Most matrices have an inverse,
but some do not. Unfortunately, the easiest way to find these singular matrices is to try and calcu­
late the inverse and fail.

How is the inverse calculated? The following algorithm is due to Gauss.

82

First, set X to I. During the process A will gradually be turned into I and the initial
value of I in X will gradually turn into the correct inverse A-1 .

For each column of A, working from column 1 on the left to column n on the right, do
the steps below. At each stage let the column currently being processed be j.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

83 PERVERSE INVERSE

Let M = max;._ Kn IAij I. M is the element in column j below row j-1, which has the largest
absolute value. If M is zero, A is singular and there is no need to go on. Otherwise ex­
change row j and the row in which M occurs in both A and X. Finally, divide every
element of the new row j in both A and X by the new ~j·

Now for every row i, i =I= j, do all the subtractions

and

Aik - ~k - ~Ak•

~k - ~k - ~rik•

The effect of all this element-by-element subtraction is to subtract ~j times row j from
row i in both A and X. After this step is done for each j, all elements below and above ~j
will be zero and ~j itself will be one. Also, in the A matrix there need not be any subtrac­
tions left of column j because all the members of row j to the left of ~j are zero.

Any algebraist will be happy to prove that this algorithm always works perfectly and that when it
stops, if A is not singular, then X = A·1. You could hardly ask for an algorithm more suited to a
structured implementation. But, just for the fun of it, why not do a little test? The Hilbert matrix
of order n H" is defined by

H~ = 1/(i +j-1), IJ 1 ~ i ~ n, 1 ~ j ~ n.

Calculate the inverse of H" for n = 1, 2, ... ,20, 25, 30, 35, 40, 45, 50. As you are undoubtedly
aware, the answers will not be quite correct because of small errors in computer arithmetic, but
they should be very close to the exact inverses. The measure of the error is the left residual matrix
L = (H" f 1 H"- I and the right residual matrix R = H"(H" f 1 - I, both of whom should be all zero
but probably will not be.

Of course, if the elements of L and R were all 10-20, say, there would be no problem. For all prac­
tical purposes, 10-20 is zero if the elements of the original matrix average about 1/50 or larger. But
there is a precise way of measuring the size of the residuals L and R. Let the row norm of matrix A
be defined by

n

IAlr = maxl<i..;n L IAijl·
j = 1

Add to your program that calculates the Hilbert matrix inverses a routine to print a table of ILlr and
IRlr for each inverse. After you have checked your program for errors, would you please explain
why the residuals are so big? Are you sure that the program is right?

Your program is correct; computer arithmetic errors are doing the damage. The Hilbert matrices
look innocuous, but they are designed to show the effect of a cumulative error on a long series of
related computations. You may think that the trouble comes because your computer does not store
enough digits with each real number internally. Most computers offer double-precision arithmetic.
If you change to double precision in the algorithm, you may be able to ameliorate the problem,
but you certainly will not fix it. This whole etude is a study in the effect that limited precision
arithmetic has on algorithms that are guaranteed perfect for mathematician's "real" numbers.
Applied mathematicians and numerical analysts in programming laboratories spend much of their
time modifying theoretical algorithms to work on real computers.'
1 In fact, searching for the maximum element M of a column in step 3 of the inversion algorithm is one such modifi­
cation. M is called the pivot element, the operation is pivoting, and actually only a nonzero M is necessary. The
maximum element is used merely to hold down arithmetic errors in the computer. In fact, when inverting a Hilbert
matrix , the pivot element should always be "1i; and if the algorithm pivots a row on an element lower down the
column, errors in the calculation are already very large.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

84 PERVERSEINVERSE

Statement of the Theme Implement the matrix inversion algorithm and test it on the Hilbert
matrices of the orders mentioned above. Print a table or plot a graph of ILlr and IRlr versus the
order of n of H0 • If your language offers a choice of precision for real numbers, rerun the inversions
by using a greater precision to see if the error table or graph shows any improvement. (A wise
programmer will arrange the code so that precision can be changed by modifying a few declara­
tions.) Also keep track ·of how often rows are actually interchanged during pivoting as a record of
how badly the algorithm has deviated from theory.

Performance Practice This is a straightforward algorithm implementation. The only difficulty
should be checking that the program actually reflects the theoretical definitions and algorithm. Do
not optimize the algorithm in any way; you are studying how bad things can be if the mathemati­
cian's advice is followed without meeting the cardinal assumption of precise arithmetic.

Orchestration Any algebraic language will be appropriate. FORTRAN was designed for matrix
problems. Compare it to a more modem language by coding this etude in both.

Playing Time One person for 1 week.

Variations on the Theme If this problem is much extended, it becomes the core of a semester
course in numerical analysis. But you might find out more about the behavior of the errors if you
calculated ILi and IRI by using other norms beside the row nonn. The column norm is

n

IAlc = maxl<;j<;n I IAijl
i=1

and the~ norm, the L2 nonn, and the Loo nonn are

and

IAl1 = L l~jl,
ij

IAl2 = sqrt(L A~i),
ij

IAloo = max, ·IA··I -,,J IJ

respectively. Add these norms to your error analysis tables. Do any of them show any significant
difference from the others in the shape or rough magnitude of the error curves?

REFERENCES

Conte, S. D., and Carl deBoor. Elementary Numerical Analysis, 2nd ed. McGraw-Hill, New York, NY, 1972.

Stewart, G. W. Introduction to Matrix Computations. Academic Press, New York, NY, 1973.

Conte and deBoor wrote an excellent introductory numerical analysis text, used in many schools. Certainly
it contains more information about numerical analysis than any normal person would like to know. But it
you insist on finding out more about this matrix problem, Stewart describes the theory and practice ot
linear algebra.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

22

or ...

HIGH PRECISION
ARITHMETIC ROUTINES

Mathematics, often regarded as a cold science, has its human stories. One of the saddest is that of
William Shanks, who in the nineteenth century set himself the task of calculating 1r very precisely.
Over several years Shanks worked away and in 1873 published 1r to 707 decimal places, with a
correction to several digits published later. Perhaps it is just as well that Shanks died in 1882,
because in 1946 the calculation was shown to be wrong, starting at the 528th decimal place. Shanks
had actually progressed no further than the previous computations.

The check of Shanks' value was probably done with mechanical assistance, but apparently the first
use of a computer to help in the calculation of 1r had to wait until 1949 and the ENIAC. Even then,
the project was monumental. George W. Reitwiesner reports "Since the possibility of official time
was too remote for consideration, permission was obtained to execute these projects during two
summer holiday week ends when the ENIAC would otherwise stand idle." The actual calculations -
not the programming! -took 70 hours and produced slightly more than 2000 digits. The computer
had to be attended at all times because its limitations required repeated punching and reading of
intermediate results. Those first programmers are as far behind us as Shanks was behind them.

How would one go about calculating 11? First, we need an expression that can be evaluated. The
series

1r /4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - · · ·

is easy enough to understand but converges terribly slowly. Much better is the series for arctangent

arctan(x) = x - x3/3 + x5/5 - x7 /7 + · · ·, lxl <;; 1.

We combine this with the summation formula for tangent

tan(a+b) = (tan(a)+tan(b))/(1-tan(a)tan(b))

86

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

86 Pl ARE SQUARE

Now choose a and b so that tan(a+b) = 1 = tan(n'/4). [For example, let a = arctan(l/2) and b =
arctan(l/3) and remember that tan(arctan(x)) = x for -11 /2 < x < 11 /2.] Then

arctan(tan(a+b)) = a+b = arctan(l) = 11/4

and we can use the series above to find a and b. The actual sums commonly used are

"/4 - 4arctanG) - arctan (2~9 ~
rr /4 - 8arctan(_!_ \ - 4arctan(_!_) - arctan(2-\,

10/ 515 239)

and 11 /4 = 3arctan(
1
) + arctan(_!_) + arctan /_

1
\.

4 20 \1985)
So now we set off to sum these series by computer, and we know that a simple iterative loop is all
that is necessary for a sum-except for one problem. Computers have limited precision, and the
whole point of this exercise is to find many, many digits of rr, far beyond ordinary precision. The
obvious first answer is to simulate hand arithmetic in the calculation. Store one decimal digit per
entry in very long integer arrays, and it is easy to see how addition, subtraction, and multiplication
routines might be written. Hand division is a touch harder but still possible. The difficulty is the
time that these routines take. There is seldom reason to notice, but hand methods take time propor­
tional to n2 to multiply or divide n digit numbers. In contemplating operations on numbers that are
thousands of digits long, such costs become prohibitive. Fortunately, better algorithms exist.

HOW TO MULTIPLY QUICKLY

The Toom-Cook algorithm for fast multiplication, described by Knuth, depends on four basic
ideas. 1 First, let us assume that we know how to do some operation on inputs of size n in time
T(n). If we can split the operation up into r parts, each of which takes fewer than T(n)/r steps, then
we can improve the total time by the split, always assuming that the extra housekeeping does not
eat up the savings. In addition, if the r parts each consist of reapplying the algorithm to inputs of
length n/r and the split can be worked on each of the parts, then we can continue splitting right
down to inputs so short that their output calculation is trivial and costs only some small constant
time. This strategy of divide and conquer usually gains a speedup in the original algorithm's time of
at least a division of a logarithm; for example, in multiplication we can go from n2 by the classical
method ton t+7/J4log2n time, which is a considerable speedup for large n (remember that there are
leading proportionality constants for both cost functions).

The other three ideas all concern numbers and the manipulation of polynomials. First, notice that if
number U is n bits long and has the bit representation, where n is a multiple of (r+l),

then it can also be written

where each Ui is a block of n/(r+l) bits from the original representation of U.

1 We have resisted the temptation to remark that if you want to know how to multiply quickly, you should ask
a rabbit.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

87 Pl ARE SQUARE

In fact, U = W(2°/(r+l)), where the polynomial 1/(x) is

Second, we observe that if U and V are n bit integers represented in this polynomial format, then
their product W is

and if we could only find the coefficients of ~x), it would be relatively easy to calculate W from ,, ­
by using only shifts, adds, and n/r bit multiplications. Third, and fortunately, '1'(x) is a polyno­
mial of degree 2r, and it can be interpolated from its values at 0, 1, 2, · · · , 2r-l, 2r. These values are
simply <U (0)?'"(0), 11(1)?'.(1), · · · , 1'(2r)o/(2r). Moreover, all this polynomial evaluation and interpo­
lation can be done by using n/r bit multiplications. It seems that the stage may be set for some
divide and conquer.

Because the Toom-Cook algorithm is complicated, we shall not explain it all here; you can see
Knuth for that. But some basic ideas and notation are necessary. There must also be a representa­
tion for longer numbers, and we shall write [p, u) to mean the number u with p bits. Probably
(p, u] will have some sort of list or string representation internally. Besides the main algorithm, we
will need routines to add and subtract long numbers (just use the standard hand method, working
from right to left), to multiply a long number by a small number, to divide a long number by a
small number, to shift a long number by adding zeros at the right, and to break a long number
[p, u] into the shorter long numbers (p/(r+l), ur1, [p/(r+l), t1r,.1], · · · , [p/(r+l), u0) as described
above. In addition to the routines that directly manipulate numbers, the algorithm uses four stacks
for intermediate storage of partial results and several temporary variables: so several stack manipula~
tion routines, as well as routines to acquire and release storage for long numbers, are needed. House­
keeping may be quite a chore.

THE TOOM-COOK ALGORITHM FOR FAST MULTIPLICATION

The input is two n-bit long positive numbers [n, u] and [n, v]; the output is their product [2n, uv].
There will be four stacks U, V, W, and C, which hold long numbers during the calculation, and a
fifth stack, which will hold control codes of operations temporarily in abeyance (there are only
three such codes, and small integers could be used for them). The arrays q and r of integers are
indexed from O to 10; storage must be provided for these two arrays and a few other temporary
variables mentioned in the algorithm.

1. (Start up the algorithm.) Set all the stacks empty. Set K to 1, set q0 and q 1 to 16,
set r0 and r1 to 4, set Q to 4, and set R to 2.

2. (Build size tables.) While K < 10 and qk_1+qk-.;; n, do the following calculations.

Set K to K+l; set Q to Q+R; if (R+l)2 -.;; Q, set R to R+l; set qk to 2Q; and set rK to 2R.

If the loop terminates because K = 10, stop with an error message that n bits is too many
and the q and r arrays have overflowed. Otherwise set k to K. Push [qK+Qic_1, v] and
then (qK+qK_1, u) onto stack C (this step will probably require padding [n, u] and
[n, v] on the left with zeros). Push control code stop onto the control stack.

3. (Main outer loop.) While the control stack is nonempty, do steps 4 through 18. If
the control stack is empty when returning to this step, terminate with an error message;
the control stack must have at least one item in it now.

4. (Inner loop to break down u and v.) While k > 1, do steps 5 through 8.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

88 Pl ARE SQUARE

5. (Set parameters for breakdown). Set k to k-1, set s to qk, set t to rk, and set p to
qk_l+qk.

6. (Breakup top of stack C.) Regard the long number [qk +qk + 1 , u] on top of stack C as
really t+l numbers, each s bits long. Break [qk+qk+l' u] up, working from left to right,
into the long numbers [s, Ut1, [s, Ut-l], · · · , [s, U1], [s, U0]. These t+l numbers are the
coefficients of a t-<iegree polynomial that is to be evaluated at the points 0, 1, · · · , 2t-l,
2t, using Homer's rule. Now calculate [p, Xi], for i = 0, 1, · · · , 2t-1, 2t by evaluating

and immediately push (p, Xd into the U stack. The multiplications can be done by using
the multiply long by short routine, and no intermediate or final value will require more
than p bits. Pop (qk+qk_1, u] off stack C.

7. (Continue breakup.) Do exactly the same series of operations as step 6 on the num­
ber [m, v] now on top of stack C to form (p, Y0], · · • , [p, Y2t1 and push them onto
stack V in the order that they are formed. Do not forget to pop C.

8. (Refill stack C.) For 2t times, alternately pop stacks V and U and push the values
popped onto stack C. The effect is to interweave the values calculated in steps 6 and 7
and store them back into stack C. After this weave the top section of stack C, reading
upward, should be

with this last value on top. Now push one interpolate code and 2t save codes onto the
control stack and return to step 4.

9. (Prepare to interpolate.) Set k to 0. Pop stack C twice into ordinary variables u and v.
Both u and v will be 32 bits long. Using a multiply routine other than this one, calculate
(64, w] = (64, uv]. The multiplication can be done by hardware or in a subroutine, as
you see fit.

10. (Interpolate if necessary.) Pop the control stack into variable A. If A is equal to
interpolate, do steps 11 through 16; otherwise go on to step 17.

11. (Setup interpolation.) Push [m, w] onto stack W (this may be the value from step 9
or from step 16). Set s to qk, set t to rk, and set p to qk-l +qk. Now the top section of
stack W, reading upward, is to be regarded as

with this last value on top.

12. (Outer loop dividing Zs.) For i = 1,2, · · · , 2t, do step 13.

13. (Inner loop dividing Zs.) For j = 2t, 2t-1, · · · i+l, i,

set [2p, Zj] to ([2p, Zj] - [2p, Zj_1])/i.

The difference will always be positive and the division will always be exact - that is, with
no remainder.

14. (Outer loop multiplying Zs.) For i = 2t-1, 2t-2, · · · , 2, 1, do step 15.

15. (Inner loop multiplying Zs.) For j = i. i+l, · · · , 2t-2, 2t-l,

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

89 Pl ARE SQUARE

Each difference will be positive and all results will fit in 2p bits.

16. (Form new wand loop again.) Set the polynomial

into [2(qk+qk+ 1), w]. This step can be done by using only shifts and long-number addi­
tion. Notice that this is the same variable [m, w] as is used in step 9. Pop [2p, ~t1, · · · ,
[2p, ZoJ from the W stack. Set k to k+l and return to step 10.

17. (Check termination.) If A has value stop, the result of the algorithm is [m, w], just
calculated in step 9 or 16. Exit if so.

18. (Save a value.) The value of A must be save (if not, terminate with an error). Set
k to k+l and push [qk+qk_1, w] onto stack W. This is the same w just calculated in step
9 or 16. Now return to step 3.

NOT~ ON THE TOOM-COOK ALGORITHM

We provide little motivation or explanation for this algorithm; some trust is required. Actually, the
reason for the lack is that the explanation is extremely long and mathematical and we simply do not
have the space. The presentation relies heavily on Knuth; if you want to know more, you should
follow up Knuth. However, we do have some notes that may help your understanding.

1. (The structure of the algorithm.) The major difference between our version and
Knuth's is the structure of the loops. Figure 22-1 gives a high-level view of the Toom­
Cook algorithm.

2. (Table of sizes.) The arrays calculated in step 2 have the values shown in Table 22-1,
where the values in the column headed nk are the largest number of bits that the algo­
rithm will handle when K = k. Obviously, the limit of 10 on K is not a very serious one.
It could be raised if desired.

3. (Stack depths in the first loop.) In steps 5 through 8, the maximum depth of the U
and V stacks is 2(rK_1+1). The C stack may grow to a depth of 1; r.:-l (ri+l).

4. (Stack depths in the second loop.) The W stack may achieve a total depth of

Table 22-1 A Table of q, r, and n

k q,,

0 16
1 16
2 64
3 256
4 1024
5 8192
6 65536
7 1048676
8 16777216
9 268435456

10 8589934592

Digitized by Google

r,,
4
4
4
4
8
8

16
16
16
32
32

32
80

320
1280
9216

73728
1114112

17825792
285212672

8858370038

Original from
UNIVERSITY OF MICHIGAN

90 Pl ARE SQUARE

belin
long integer [n, u], [n, v];
integer K, Q, R, q[0:10), r[0:10);
long integer stack C, U, V, W;
control stack code;
integer k, p, s, t, i, j;
long integer X, Y, Z, w;
control A;
Step l;
Step 2.
while code not empty do

while k> 1 do -
Step 5; Step 6; Step 7; Step 8;

end;
Step 9;
.2Q.2 code into A; while A• interpolate do

Step 11;
for i • 1 to 2t do Step 13;
for i • 2t-l down to 1 do Step 15;
Step 16;

end;
if A • •top then return [m, w];
if A• save then Step 18; else abort;

end; • of main loop. • -
end; • of Toom-Cook algorithm. •

Figure 22-1. A Control Sketch of the Toom-Cook Algorithm

~r;~ 2r .. The control stack could reach the depth ~r.:-~ 2~j+l. The top section of stack
W is uSEkl as an array in steps 14, 16, and 16. This array will have at most 2rk-l +2 entries
in it.

5. (Input sizes.) For any number of bit.s n in the range ni-l +l <n <ni, the Toom-Cook
algorithm takes the same calculation time. That is, the cost of the algorithm is "lumpy"
with respect to the size of the input. Thus it makes sense when doing long calculations
to pick a number of bits near the high end of one of the ranges for n. Remember also
that it takes about three and a third bit.s to represent one decimal digit.

6. (How to multiply two 32-bit numbers.) Step 9 requires the multiplication of two 32-
bit numbers to form a 64-bit product where both factors are always positive. Many
computers have the hardware to form such a product, but the result is not available to
higher-level languages; other computers do not even have the hardware, of course. So
a subroutine must be written to do this . multiplication, and since it is the basis of the
algorithm's cost, the subroutine should be efficient. Probably breaking the numbers up
into pieces and simulating hand multiplication will be good enough. However, if we want
to form the product uv, we write u as u1216+u0 and v as v1216+v0 and the product is

(232+2l6)uiv1 +2l6(u1-Uo)(vo-v1)+(216+ 1)uovo.

This can be done entirely with 16-bit subtracts and multiplies and some shifts and adds.
Notice that one multiply has been saved.

WHAT ABOUT DIVISION?

When the series are calculated, there are some high-precision divisions to go with the multiplications.
Fortunately, division can be done almost as fast as multiplication by making use of the multiplica­
tion algorithm. The technique is to guess a reciprocal to the divisor, correct it so that the reciprocal

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

91 Pl ARE SQUARE

is accurate, and then multiply by the dividend to find the quotient. The refinement of the recip­
rocal is by N~wton's method.

The input is [m, u] and [n, v], where we assume that u ;;a. v (although this assumption is not essen­
tial) and that the nth bit of v is a 1 (that is, that v has no leading zeros). The greater the size dif­
ference between u and v, the more accurate the quotient; the difference can be accentuated by
multiplying u by a power of 2. Notice that the division algorithm will repeatedly call the multiply
algorithm. The first few of these multiplications could be taken care of by ordinary short multiplies.
Also, all the multiplies and divides by powers of 2 are actually left and right shifts.

1. (Choose the reciprocal size.) Choose the smallest j such that si > max(m, 2n). Set
k to 2i-1.

2. (Normalize v.) Set [k, v] to 2k-n[n, v]. This step shifts v left to occupy k bits with the
leftmost bit a 1. Set [2, a] to [2, 2).

3. (Compute successive approximations to 1/v.) For i = 1 to j-1 by steps of 1, do Step 4.

4. (Compute a 2Lbit approximation.) Set [2i•l, d] to

23•2i[2i-l+l, a] - [2i-l+l, a]2([k, v]/2k-2i)

The division in the parentheses (really a right shift) should be done before the multiply;
the idea is to throw away bits of v not needed in this approximation so as to speed up the
multiply. Although it seems as if there might be more than 2i+l bits in the result d, there
never will be. Now set [24-1, a] to [2i+l, d]/22L1.

5. (Improve the fmal estimate.) Set [3k, d] to

22k[k+l, a] - [k+l, a] 2 ·[k, v]

Now set [k+l, a] to

([3k, d] +22k-2)/22k-1

6. (Final division.) Output

([k+l, a]• (m, u) +2k+n-2)/~+n-1.

HOW TO USE THE ALGORITHMS

The actual computation of 1r requires evaluation of one of the equations listed early in the etude,
using the arctangent series given. In fact, for safety, two of the formulas should be used and the
final results compared bit for bit. The value of 1r is given by the common prefix of the two results.

Yet there still remains the problem that the algorithms given here work only for integers; how are
the obviously fractional values of the series to be formed? Assume that we want to calculate 1r to,
say, a thousand bits of accuracy. Then what we actually calculate is 210001r by multiplying all the
numerators by 21000. This procedure will also serve the purpose of making dividends much larger
than divisors (as suggested above) and of providing a stop to the calculation when the quotients
become zero.

Now let us choose a series (not necessarily the best) for evaluation, say

1 1
1r = 16arctan (-) - 4arctan (-).

5 239

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

92 Pl ARE SQUARE

Actually, we will evaluate 21<nlzr, and so we want to evaluate 2100>. 16arctan(l/5). The fmt term of
this series is 2100>•16/5; we will call it a1 (notice that it is added into the sum.) Now to form term
ai+l from term ai, divide ai by 5·5·(2i-1). If ai was added into the sum, subtract ai+l; if ai was
subtracted, add ai+ 1 . Calculate the terms of 2100>. 4arctan(l/239) in parallel and stop as soon as· any
quotient in either series is zero. The result will be about a thousand bits of 11. Of course, output will
require conversion to decimal.

Statement of the Theme Build routines for the multiply and divide algorithms described above
and for all the support services that they require. Use these routines to calculate 11 to high precision
by using one of the series described. Be careful not to intertwine the arithmetic routines too closely
with the 11 calculation; a library of high-precision routines may be useful for other problems. It
should be possible to compute to higher precision by providing more storage for results without
modifying the code. Output should include statistics on the use of each routine, on the number of
times each step is executed in the two central algorithms, and on the use of storage. Such collection
will cost very little in the overall problem.

Performance Practice This is a long and difficult etude, not least because the two central algo­
rithms must be taken with a certain amount of trust. As is quite common with real problems, how­
ever, the central issue is actually the selection of a data structure rather than the construction of
code. How are long integers to be represented? The notation [m, u] suggests a structure. Each long
integer should be a pair of a length and a value. The length part is easy to implement, but the value
is obviously of variable length and will be hard to store directly. So we make the value be a pointer
into a very long vector of bits, and each pair is now of fixed size. However, our vector is unlikely to
be so long that we can afford to use each section of it only once. Storage reclamation routines to
recover bits no longer in use will thus be necessary. In fact, what we have just described is a con­
ventional string allocation scheme.

To summarize, we need the following service routines besides the multiply and divide algorithms.

Supply Storage. Given as input a length, this routine returns a pointer into the vector of
bits that can be used as a value. Starting at bit value, there are length bits that will not be
used for anything else.

Return Storage. The pair length and value are inputs to this routine, and the associated
storage in the bit vector is returned for reuse. This routine should be called whenever an
item changes length.

Reclaim Storage. This routine must run through the storage in use and try to combine the
unused sections of the bit vector into long sections. Normally this routine will be called
because a request to supply storage cannot find a long enough string of consecutive bits.
Because short problems may be done without this facility, it should be coded last. There
are a number of possible ways to keep track of unused storage.

Shift. The input to this routine is a long integer and a shift amount; the output should be
a long integer shifted left or right the appropriate amount. This operation corresponds to
multiplication or division by a power of 2.

Add. The input to this routine is a pair of long integers, and the output should be their
long integer sum, one bit longer than the longer input. Such additions can be done just
as they are by hand, working from right to left.

Subtract. This routine is parallel to the addition routine and returns the difference of two
long integers.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

93 Pl ARE SQUARE

Zero Suppression. The input to this routine is a long integer, and the output is a shorter
long integer with all the leading zeros suppressed but with the same value. If the input
happens to be exactly zero, the output should be (1, OJ.
Short Multiply. The inputs are two long integers of exactly 32 bits, and the output
should be their 64-bit product. The multiplication may be done in any convenient way.

Long/Short Multiply. The inputs are a long integer and an ordinary integer of value 64 or
less, and the output should be their long integer product. This operation can be done
from right to left, as it might be by hand.

Long/Short Division. The inputs are a long integer and an ordinary integer of value 64 or
less, and the output should be the long quotient of the long integer divided by the short
integer. This operation can be done from left to right, much as it might be done by hand.

Convert. The input to this routine is a long integer, and the output is the value of the
integer written in decimal on some output device. Some more elaborate specifications for
this routine might be developed as output needs grow more complicated.

Orchestration PASCAL comes immediately to mind as an implementation language because of
the good data structures and control facilities. But PASCAL lacks the ability to convert easily be­
tween internal bit representations and programmer's bit representations. Lower-level languages like
BLISS and XPL provide closer access to the computer at some loss in expressiveness and safety.
PL/I combines higher-level protectiveness with access to representations at the machine level, but
the cost is usually execution time and, for this etude, time spent trying to understand some of
PL/l's more esoteric features. An implementation in TRAC looks interesting because the string
storage problem is automatically resolved.

Playing Time One person for 5 weeks or two people for 3 weeks.

Variations on the Theme Once high-precision arithmetic routines are available, many inter-
esting problems arise. One is the exact evaluation of e. The series for e is the particularly simple

-
e = I 1ti!

i=O

where O! = 1. Any calculus student can think of many more series and constants.

REFERENCES

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison­
Wesley, Reading, MA, 1974. Section 8.2, pp. 279-286.

Our multiplication algorithm is drawn from Knuth and the division algorithm from Aho, Hopcroft, and
lnlman; we have revised both for our needs. Both books provide considerable background and analysis
of the algorithms, including cost estimates. There are also alternate algorithms for multiplication based on
the Fast Fourier transform.

Brent, R. P. "A FORTRAN Multiple-Precision Arithmetic Package," Department of Computer Science,
Carnegie-Mellon University, May 1976.

Brent discusses a package of subroutines for high-precision arithmetic written in portable machine-indepen-

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

94 Pl ARE SQUARE

dent FORTRAN. The bibliography will lead you to other work in this area. The package does not use the
Toom-Cook algorithm and Brent explains why.

Brent, R. P. " Fast Multiple-precision Evaluation of Elementary Functions," Stanford University, Technical
Report STAN-CS-75-515, August 1975.

Thomas describes the calculus necessary for these calculations and similar ones; the descriptions are simple
and classical. Reitwiesner and Shanks and Wrench are two of the papers in the sequence of ff calculations.
Both provide some historical review and both use the approach suggested in Thomas. Brent develops some
entirely new techniques for the calculation of sin, cos, log, arctan, and so on, all based on the elliptic
integrals. These algorithms run much faster than the series that we describe. Brent is still a technical report
but will probably be published in a journal by the time that this book is published.

Knuth, D. E. The Art of Programming/Seminumerical Algorithms. Addison-Wesley, Reading, MA, 1969.
Section 4 .3.3 , pp. 258-280.

Reitwiesner, George W. "An ENIAC Determination of 1r and e to More than 2000 Decimal Places," Mathe­
matical Tables and Aids to Computation, 4, pp. 11-15, 1950.

Shanks, D. , and J. W. Wrench. "Calculation of ff to 100,000 Decimals," Mathematics of Computation , 16,
pp. 76-99, 1962.

Thomas, G. B., Jr. Calculus and Analytic Geometry, 3rd ed. Addison-Wesley, Reading, MA, 1960. Section
16.3-3, pp. 809-812.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

23

or ...

OPTIMAL STRATEGIES
FOR A GUESSING GAME

Games have themes and motifs just like music. Often the best games, new and old, succeed because
they artistically recombine a few of the age-old principles of game design. As in music, a new face of
an old idea can be more appealing than a mishmash of half-baked idees nouveaux. In the mid-1970s
the game Mastermind rose to popularity in England and it bids fair to become a classic. You and
your computer will enjoy playing.

Mastermind's rules are extremely simple. One player, the setter, writes down a secret combination
of any four digits in the range 1 to 6 (repeats are allowed) called the code. The second player, the
analyst, tries to uncover the code by a judicious sequence of guesses called probes. A probe, like a
code, is any pattern of four digits in the range 1 to 6. The analyst gives the probe to the setter, and
the setter must reply by saying how many digits of the probe match the code in both position and
number and how many other digits match but are in the wrong place. For example, a probe of 1123
versus a code of 4221 will receive the answer that one digit matches in the right place and one other
matches but is in the wrong place. The round goes on until the analyst uncovers the code by giving a
probe that exactly matches the code. The players exchange roles and play another round. The
winner is the analyst who discovers the other's code in fewer probes. Although luck plays a part, the
player who consistently draws correct conclusions from inductive data should have the better
record. As a matter of practical policy, you should try to draw negative inferences about what the
code could not possibly be from the answers to your probes; psychological tests show that most
people find this very difficult. Table 23-1 shows one complete round.

A program that takes the role of setter would be easy to write, and there is a certain fun in sharp­
ening one's wits against puzzles set by the machine. But it would be more interesting if the computer
would play the role of analyst as well so that complete games with a winner can be scored. Bob
Cooley of Lawrence Livermore Laboratory and D. E. Knuth have developed similar strategies to
make the computer a compleat Mastermind player. For both strategies, the idea of a solution pool is
central. The initial solution pool P0 consists of all possible codes (and thus has 64 members); after
the ith probe Gi, the pool Pi consists of all those members of pool Pi-l which have not been elim-

96

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

96 MASTERMIND

Table 23-1 An Example Mastermind Game

The code is 4651.

Probe 1 is 2346. 0 exact matches. 2 matched numbers.
Probe 2 is 4516. 1 exact match. 3 matched numbers.
Probe 3 is 6461. 1 exact match . 3 matched numbers.
Probe 4 is 4165. 1 exact match. 3 matched numbers.
Probe 5 is 4616. 2 exact matches. 2 matched numbers.

Probe 6 is 4661. 4 exact matches. Game over.

inated by response Ri. Or, in other words, pool Pi is the set of all combinations that might still be
the code, and the goal of the analyst is to reduce some pool to a single element.

Strategy one by Cooley is slightly simpler. Let probe G1 be any pattern with one repeated digit­
for example, 4311, 6552, 1335-chosen at random. Make the probe and from response Ri form
pool P1. Now probe Gi+l is formed from pool Pr i > 1, by comparing each combination C of Pi
against probe Gi in tum. The combination C that is least like Gi is chosen, where likeness is mea­
sured first by the number of exact digit matches and for equal numbers of exact matches, by the
number of matching but misplaced digits. Thus of the three combinations 2641, 2356, and 1345,
1345 is most like 2345 and 2641 is least like. If there is a tie for dissimilarity, one of the candi­
dates may be chosen at random. As soon as a response of four exact matches is made, the round is
over and, of course, from a pool of one element the next probe should always be that element.
Experiments show that the size of the pools shrinks by about a factor of 4 after each probe and
that no more than 6 probes are ever needed.

The second strategy is due to Donald Knuth and he claims that it is optimal in the sense that it
minimizes the largest number of guesses needed to find the code; no code takes more than five
probes. The principle of the algorithm depends on the observation that we would like pool Pi to
be as small as possible. Thus we choose probe Gi to minimize IPil over all possible responses Ri.
Any combination C is a candidate for probe Gi. Test each possible combination C against old pool
Pi-1 and let Sc, <0,0> be the number of members of Pi-1 that would give a response of zero e~act
matches and zero color only matches, let Sc <0 1 > be the number of members that would give a
response of zero and one, and so on through Sc < 4 0 > for an exact hit of four exact matches.

t t

Now let

Sc = max< i,j> Sc,<i,j>

and choose for probe Gi the combination C that minimizes Sc (if there is more than one such C,
choose one that is a member of Pi-1 if possible; otherwise choose randomly). You may have noticed
that you could use this algorithm to analyze Mastermind in advance so that no testing of combina­
tions during the game is necessary. Knuth does such an analysis to show that xxyy, for x * y, is an
optimal first probe using this strategy. A test for your program is whether it comes up with xxyy as
a starting probe.

Statement of the Theme Write a program that will play complete games of Mastermind. Imple­
ment an analysis strategy so the computer can guess as well as set codes. Along with the play rou­
tines, your program might keep performance records on players. The local Mastermind ace might
want to travel to England for the next championships. As with all game programs that may interact
with relatively unsophisticated users, input should be simple, and output should be both clear and
visually appealing.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

'17 MASTERMIND

Performance Practice The only serious problem in this etude is efficiency in programming the
analysis algorithms-efficiency in both space and time. In particular, the second strategy requires a
long inner loop. Notice that the combinations are integers written in base 6 (using digits 1 through 6
instead of O through 5). The language that you choose will probably have an influence on the repre­
sentation used, but try to build an efficient inner loop to decode combinations.

Orchestration Almost any procedural language with reasonable data structures should do. This
program is largely an exercise in well-structured code.

Playing Time One person for 2 weeks.

Variations on the Theme The most obvious extension is to modify the number of digits from
which the code can be formed or the number of positions in the code. A super version of Master­
mind allows 5 position codes drawn from a vocabulary of 1 to 8. If either parameter is made too
large, processing time may become exorbitant, but neither algorithm has any feature that depends
on the numbers 6 and 4 crucially. The program could easily read the size of the vocabulary and the
length of the code as input and modify its analysis routines accordingly.

REFERENCES

Aleph0 "Computer Recreations," Software-Practice and Experience, 1, pp. 201-204, 1971.

Anonymous. Mastermind. Invicta Plastics, Ltd. Oadby, Leicester, England.

The original game. It bears a strong resemblance to some traditional games and its simplicity has swept
England.

Knuth, D. E. "The Computer as Master Mind." Unpublished, 1976.

Knuth claims his strategy can be shown to be optimal in the way we suggest above by an exhaustive case
analysis. But is it still optimal if the vocabulary size and code length are changed? And what strategy is
optimal if the goal is to reduce the expected number of probes rather than the maximum number?

Tanenbaum, Andrew S. "Computer Recreations: A Heuristic for Playing Jotto," Software-Practice and
Experience, 3,pp.397-399,1973.

Both articles discuss games similar to Mastermind. In each case, actual programs are described and some
computer strategies suggested. A tournament among heuristics might be exciting.

Wells, David. "Mastermind." Games and Puzzles, 23, pp. 10-11, March/April 1974.

Games and Puzzles is an outstanding English magazine devoted to games, puzzles, and intellectual diversions
of all sorts. It is not mathematical in tone; rather it devotes itself to historical, thematic, aesthetic, and
strategic analysis of any pastime (well, almost any) that takes up no more than a tabletop. New and old
games are continually reviewed. More than a few deep algorithmic problems are suggested by the puzzles.
All in all, an excellent buy for the confirmed time-waster.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

24

or ...

MATHEMATICAL
CRYPTANALYSIS

Imagine the following situation. Because of your truly exceptional technical knowledge and pro­
gramming skill, you have risen to become the project leader of a large group building a superb and
still secret Easy compiler for the EC-1 computer (see Chapters 27 and 25). On your way out of the
office at about one in the morning (project leaders must set a good example), you notice a piece of
scrap paper stuck in the door (reproduced in Figure 24-1). At first you think it is a core dump and
are about to throw it away. Then you look again and see that the characters are arranged in groups
of five-a very strange grouping for the EC-1. What can this be?

Back in your office you sit down to consider the problem. The paper is linen with a faint odor of
musk about it; the writing is feminine with a Gallic flair. Now that you think about it, the new
programmer Miss Hari is perhaps a touch· exotic. She speaks with a French accent, she wears black
cocktail dresses with a string of black pearls to emphasize her neckline, she fills a room with a
musky sensuality when she enters, and she claims that her last job was with a McDonald's regional

98

AZEXQ KOAIL CHKPA TBTZU DZKRK KZTZX BYZUO BCCCV ARVTZ HLYHH TROPE
OAZKI CHZTX BQEYG MMZTO QRDXX TPHHA EETOU OSIZT HFYHB EHGVU KJROP
ERWSE LXJOL JJXGU OLAHY DSZHO OYXKJ YDLEK GOATR CDKRH JYOPH OMHZT
NNQNJ QCOVO KYTOZ RGLXE OMYTT TRYSN QNVBY KPPTL UKHRP YJZJG VQZZE
XQPOH JCEPF ICJVC LEGWJ YOPHO HMZTE RJHVO COVZP TBHPU OAPSK BFTHS
DCHYZ APSRS SDKVU ROART VVPLF GYCCC VARVP RAOOO BVSJX JORSE IZUDY
VUKLB PMEGO DNQNJ ERGUG YLROP EONJX TPHMA EWCFN GLPSH PQZZX OQXJZ
ZTBCW RFTAB PCADK ATRSU DLICO CQOYI RYEYD VJSON SIEVS JLAFR ASOOK
YHTIK YXAOL JCDGV EZBYI ZVOYI LLZYM LVSJD SHLIG AXCZP TBAPR BTACC
JYHZN ZYSYT ZBYZP BHBVC QCCRY HUNER BTI'ZR OARHJ YCHYN KAUYM AQNJC

ZTGYA XPIPE OKVBC SCTZE UKMRP ZBCKD SMBJS JEZGY PKYSK

Figure 24-1. My,teriou, Me11t10ge Found in Computer Center.
The accidental creation of Engliah word, like TROPE probably
doe, not signify anything. But notice the repetition, of ROPE,
MMZ, other ,hort group,, and especially CCCV ARV.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

99 A CODE OF DISHONOR

ABCDEFGHIJKLMNOPQRSTUVWXYZ
EXACRBTIONDFGWVYZHJKLMPQUS

DECRYPTION CAN BE TIRESOME STOP
CRAGUYKOVW AEtl XR KOHRJVGR JKVY

Figure 24-2. Simple Substitution with a Mixed Alphabet.
Notice that period is represented by STOP.

processing center in Keokuk. There's something fishy here -wait - could it be? - Miss Harl is a spy
for the famous French computer firm Ee Bay Em. And this message? - code giving away secrets of
your innovative new compiler. You decide that it must be translated before Miss Harl can be con­
fronted, but there is the problem of decrypting the message. Maybe the computer can help.

FUNDAMENTALS OF A CIPHER

The computer can certainly help or else the National Security Agency has wasted a lot . of tax
money on equipment. First, we need to learn something about secret messages. The data found is
probably a substitution cipher in which letters of the original message are replaced by other letters,
following some encryption rule. The message to be enciphered is the plaintext and the result is the
ciphertext. The job at hand is to recover the plaintext and the encryption rule (although the latter is
necessary only if additional messages using the same cipher may occur). We shall assume that the
plaintext is in English. Separation of ciphertext into five character groups presumably hides the
ordinary word structure of English, a valuable clue to decryption. 1

The simplest general class of substitution ciphers uses a mixed alphabet -for example, a permuta­
tion of the ordinary alphabet-to build an encryption rule. Figure 24-2 shows a complete plaintext
alphabet, a mixed alphabet, and an encryption of a short message where each plaintext letter is re­
placed by the corresponding letter from the mixed alphabet. 2 As anyone who solves Sunday news­
paper puzzles knows, such simple mono.alphabetic substitutions are absurdly easy to crack; a
ciphered message of 30 to 40 characters is often long enough for decryption. Nevertheless, a little
more ingenuity will make the system considerably more secure.

Figure 24-3 shows a Vigenere square built from the mixed alphabet of Figure 24-2. The plaintext
alphabet is written across the top and down the left edge of the square. In the first row of the
square lies the mixed alphabet. In the second row lies the mixed alphabet rotated left one character;
notice that the original first character has migrated all the way to the right end. The square turns
the single mixed alphabet into 26 separate mixed alphabets, each named by the plaintext letter to
its left. Now Figure 24-4 shows how the keyword LISP is used to encipher a sentence by using the
square. The keyword is written repeatedly under the plaintext, and each letter of the plaintext is
enciphered by using the alphabet named by the key letter standing under the plain letter. This

1 Cryptology has some words that are commonly misused by laymen. A cipher disguises a message by shuffting or
replacing individual letters; a code replaces words or phrases rather than single letters. Persons privy to the cipher or
code encipher or encode their messages and the recipients decipher or decode the messages. Persons trying to learn
the secrets decrypt the messages; the difference between the verbs should suggest the difference between knowing a
secret and attempting to ferret it out. Someone who uses secret writing is a cryptographer, and someone who tries to
read another's secrets is a cryptanalyst. The entire study constitutes the field of cryptology.
21n the following discussion plaintext will be written in capitals as PLAINTEXT, ciphertext will be written in italics
as ciphertext, and any mixed alphabets or keywords (to be defined later) will have a wavy underline written as
keyword.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

100 A CODE OF DISHONOR

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A EXACRBTIONDFGWVYZHJKLHPQUS
B XACRBTIONDFGWVYZHJKLMPQUSE
C ACRBTIONDFGWVYZHJKLHPQUSEX
D CRBTIONDFGWVYZHJKLHPQUSEXA
E RBTIONDFGWVYZHJKLHPQUSEXAC
F BTIONDFGWVYZHJKLHPQUSEXACR
G TIONDFGWVYZHJKLHPQUSEXACRB
H IONDFGWVYZHJKLHPQUSEXACRBT
I ONDFGWVYZHJKLHPQUSEXACRBTI
J NDFGWVYZHJKLHPQUSEXACRBTIO
K DFGWVYZHJKLHPQUSEXACRBTION
L FGWVYZHJKLHPQUSEXACRBTIOND
M GWVYZHJKLMPQUSEXACRBTIONDF
N WVYZHJKLMPQUSEXACRBTIONDFG
0 VYZHJKLHPQUSEXACRBTIONDFGW
P YZHJKUIPQUSEXACRBTIONDFGWV
Q ZHJKLMPQUSEXACRBTIONDFGWVY
R HJKLHPQUSEXACRBTIONDFGWVYZ
S JKLHPQUSEXACRBTIONDFGWVYZH
T KLMPQUSEXACRBTIONDFGWVYZHJ
U LHPQUSEXACRBTIONDFGWVYZHJK
V HPOUSEXACRBTIONDFGWVYZHJKL
W POUSEXACRBTIONDFGWVYZHJKLH
X OUSEXACRBTIONDFGWVYZHJKLHP
Y USEXACRBTIONDFGWVYZHJKLHPO
Z SEXACRBTIONDFGWVYZHJKLMPOU

Figure 24-3. A Vigenere Square Built on the Mixed Alphabet
of Figure 24-2.

scheme seems to defeat simple frequency counting as a solution technique because the same plain­
text letter will be enciphered different ways, depending on the key letter it falls above. Also, by
deciding in advance on a list of keywords and some pattern for changing them, sender and receiver
can improve their security because no two messages need have the same keyword, thereby further
defying frequency analysis. But all is not black for the cryptographer.

HOW TO BREAK A CRYPTOGRAM

We shall assume that Miss Hari's cryptogram was written by using a Vigenere square, if only because
Vigenere was also French. If the assumption is wrong, the solution methods will indicate it. Now if
the message were a simple cipher, we could solve it by counting the frequency of each ciphertext
letter, dividing each frequency by the length of the message, and comparing the resulting probabil­
ity with that for plaintext English given in Figure 24-5. For a message as long as this one, the
probability distributions will be almost identical when written in decreasing probability order, and

DECRYPTION CAN BE TIRESOME STOP
LISPLISPLI SPL IS PLISPLIS PLIS
VGLTNQFQSM LYU NP OKSPISLP IRPI

or
VCLTN QFOSH LYUNP OKSPI SLPIR PI

Figure 24-4. An Encryption U1ing the Vigenere Square. Notice
the repetition of Pl at a diltance of four. Notice allo that the
second repetition at a diltance of three ii 1puriou,. Language
statiltics ,how up even in 1hort examples.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

101 A CODE OF DISHONOR

E .12016 M .02783
T .09546 p .02482
A .07666 F .02275
0 .07440 G .02027
I .07371 B .01837
N .06755 y .01523
R .06745 w .01224
s .06208 X .00880
H .04191 V .00859
L .04089 K .00486
D .03788 Q .00343
C .03664 z .00306
u .03374 J .00125

Figure 24-5. Probabilitie, of Letter, in Engli,h Text. The
probabilitie, were calculated from letter frequencie, in thi,
book. There was no attempt to con-ect for the few character,
u,ed in printing control item, or the repeated headline,. Pictures
and caption, were not counted.

so each plaintext letter will have its ciphertext alias revealed. But the Vigenere square defeats such
a simple attack. We must determine not only the mixed alphabet but also the keyword; since each
works to disguise the other, it is hard to see where to begin.

The correct starting point is to find the length of the keyword. In the example of Figure 24-4,
notice that the first, fifth, ninth, ... , plaintext letters are all enciphered by using ciphertext alpha­
bet A. If we look at only ciphertext letters in every fourth position, we should get a frequency
distribution similar to English because these positions were ciphered by using only one mixed
alphabet and are thus a simple substitution. Similarly, every fourth ciphertext letter starting in
position two, three, or four should also give an Englishlike distribution. In fact, it is possible to
measure exactly how Englishlike a frequency distribution is. Form the sum

26

IC - L fi(fi-1)
i=l N(N-1)

where f i is the frequency of the ith letter and N is the total number of letters seen. If all the letters
in the sample were enciphered by one alphabet, this index of coincidence should have a value above
.055 and probably below .075 (the theoretical value is .ossr,-

So our algorithm for guessing the length of the keyword is as follows.

Step 1. For an i between 1 and 20, assume that the length of the keyword is i and do
steps 2 through 4. We make 20 the upper limit for convenience only; a longer keyword is
certainly possible.

Step 2. For each j between 1 and i, do step 3. These two steps will build i different ICs.

Step 3. Build a frequency distribution by using the letters in positions j, i+j, 2i+j, · · · -in
every ith position starting in position j. Calculate ICj, using the frequency distribution
and the formula given above. Be sure to use only the number of letters in the sample and
not the length of the whole message as a value for N.

Step 4. If all the ICl' IC2, • • • , ICi are greater than .055, then i is a probable multiple of
the length of the keyword. If only one ICj is less than .055, then i is a possible multiple
of the keyword length.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

102 A CODE OF DISHONOR

There is a second check on the length of the keyword. Consider two spots in the ciphertext where
the same two cipher letters are repeated in exactly the same order, for instance, RO in positions 52
and 108 in Figure 24-1. Such a repetition could happen in two different ways: there could be any
two letters of plaintext in each spot that were accidentally enciphered by different parts of the
keyword into the same ciphertext or there could be a repetition in the plaintext that happened to
fall over a repetition in the keyword and thus was enciphered twice the same way. In the second
case, the distance between the beginnings of the two repetitions must be a multiple of the keyword
length. Unfortunately, we have no way of knowing if this repetition happened in the first or second
way, and, in fact, chance repetitions of ciphertext pairs are quite probable. But if a sequence of
three or more ciphertext letters is repeated, the probability that the repetition is an accident and
not an artifact of the repeating key is quite low (practically zero if the repetitive sequence has
length four or more). So another way to guess the keyword length is to find all sequence repetitions
of length three or more in the ciphertext and measure the distances between the repetitions. Any
number that divides 90% or more of such distances is an excellent candidate for the keyword
length. Between this and the IC test, the length should be fairly obvious.

Assume that we have discovered a keyword length of k. Then we can break the original ciphertext
into k groups G1 , G2, • · · , Gk, where group Gi begins at position i, for 1 < i < k, and consists of
every kth letter thereafter. Each of these k groups has been enciphered by only one Vigenere
alphabet and is thus a monoalphabetic substitution. It remains to discover the plain equivalent of
each cipher letter for each group. But here we have some help. If we knew the cipher alphabet for
any one group, we would also know that we could find the cipher alphabet for any other group by
rotating the known alphabet some distance. On the other hand, it would be easier to recover the
plaintext equivalents if the frequency distributions for the various groups could be combined into
one glorious distribution because the more data used to build a distribution, the more secure the
statistical conclusions drawn from it. To do the combination, we will need to know the relative
rotations between the alphabets used for each group.

The relative rotations are discovered by a variation of the index of coincidence. For each group
~' build a frequency distribution and arrange it in alphabetical order of ciphertext letters. Table
24-1 shows the distributions for the message of Figure 24-1, assuming that k = 7. Now if fi <r is the
frequency of letter <r in alphabet i, we define '

where we assume that if /j+r is greater than 26, we rotate back around to the front of the alphabet.
The larger Ri,j r is, the greater the chance that the alphabet for group j is r places down the Vigenere
square from the alphabet for group i. After calculating all the values of Ri j r (it is not necessary
ever to have j < i for reasons of symmetry), pick out the i and j that' give the largest value
of R~j,r Probably group j is shifted r places with respect to group i.

Now form a new supergroup Gij from groups Gi and Gj by setting the frequency fij,a to fi,a+fj,a+r·
Throw Gi and Gj out of consideration, replace them with Gij, and repeat the process described in
these last two paragraphs. After k-1 repetitions, the relative shifts of all the k alphabets are known.
Also, the composite frequency distribution has been found. To find the plaintext equivalents of the
ciphertext letters, reorder the ciphertext letters by frequency. The ciphertext letters should now be
in the same order as the plaintext English letters of Figure 24-5. Reconstruction of the Vigenere
square is easy, the message can now be deciphered, and the keyword can be recovered by trying all
26 patterns of letters of length k that have the spacings dictated by the alphabet rotations. It is
possible that some of the low-frequency letters are misplaced, but visual inspection should correct
that situation. You should reconstruct the keyword and mixed alphabet because it is common for

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

103 A CODE OF DISHONOR

Table 24-1 Frequency Distributions for Fi,ure 24-1 if k = 7

Gl G2 G3 G, Gr, G6 G,

A 11 A 7 A 0 A 3 A 1 A 8 A 1
B 4 B 6 B 10 B 0 B 1 B 2 B 2
C 1 C 2 C 7 C 14 C 0 C 3 C 0
D 1 D 3 D 1 D 1 D 5 D 0 D 6
E 1 E 3 E 9 E 2 E 6 E 5 E 1
F 0 F 0 F 0 F 1 F 1 F 6 F 3
G 0 G 0 G 6 G 0 G 10 G 2 G 7
H 4 H 1 H 2 H 3 H 0 H 6 H 6
I 1 I 6 I 0 I 4 I 0 I 0 I 2
J 0 J 17 J 1 J 6 J 1 J 4 J 4
K 6 K 1 K 3 K 7 K 3 K 6 K 0
L 9 L 2 L 3 L 2 L 6 L 0 L 0
M 10 M 3 M 0 M 1 M 8 M 0 M 6
N 5 N 1 N 0 N 1 N 2 N 3 N 1
0 1 0 0 0 1 0 12 0 8 0 0 0 17
p 2 p 6 p 1 p 2 p 13 p 3 p 6
Q 0 Q 0 Q 4 Q 3 Q 3 Q 4 Q 8
R 2 R 0 R 9 R 5 R 0 R 9 R 8
s 1 s 4 s 9 s 0 s 5 s 6 s 0
T 9 T 9 T 2 T 10 T 1 T 0 T 6
u 0 u 0 u 6 u 0 u 0 u 8 u 1
V 3 V 11 V 2 V 0 V 2 V 6 V 0
w 2 w 0 w 1 w 0 w 2 w 0 w 0
X 0 X 7 X 2 X 5 X 6 X 0 X 0
y 10 y 2 y 6 y 10 y 1 y 10 y 4
z 10 z 3 z 9 z 2 z 8 z 2 z 7

The value of R120 ia 364 and the value of R 3 6 12 ia 315. To calculate Ra 8 12, the fre·
quencies for A ihrough N of group Ga were mutt\plied by those of L through•z of group
0 6 and those of O through Z from group Ga by those of A through K of group 0 6 .

both to have some psychological connection with the subject of the message; recovery provides
additional assurance that the solution is correct. By the way, what did Miss Harl say?

Statement of the Theme Write a program that takes as input a cipher message assumed to
writt.en by a Vigenere scheme and that prints a decryption of the message. The program should also
print the Vigenere square and the keyword that it finds during the solution process. Under control
of some special input, intermediate results, such as all the possible keyword lengths, the individual
alphabet frequency distributions, and the values of IC, should be printed for inspection. These
results will be useful during debugging and to the cryptographer when a computer-proposed solu­
tion is not quite correct. Neatness in output presentation is important so that the cryptographer's
intuition will not be damaged by noxious computer artifacts.

Performance Practice The algorithms here are certainly easy to understand and implement, but
they have the odd property that they do not give absolute answers. For instance, the length of the
keyword is only "probable," and the decision to choose one candidate length over another must
be made on the weight of the evidence. Similarly, the algorithmic determination of the plain equiv­
alents of low-frequency ciphertext letters must be reviewed to see if legal English words appear
from the ciphered message. By adding more statistical knowledge to the program, a better basis for
the algorithmic decisions would be available, but the decisions would still require human validation.
In addition to coding the algorithms, you will have to supply an implementation of the idea that
enough evidence has been collected to justify the program in reaching a conclusion. One way, and

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

104 A CODE OF DISHONOR

a good one, to provide this judgment function is to write the program on a conversational system
that will allow the program and the user to discuss the merits of each decision before it is reached.
Generally such a "discussion" consists of the program presenting the facts that support a possible
decision and the user either ratifying or vetoing the decision before computation proceeds.

Although the algorithms are imprecise, and imprecision usually makes programmers uncomfortable,
this program is easy to test. The first part of the project probably should be an encryption program
that will take as input a piece of English text and that, selecting a mixed alphabet and keyword by
some random means, outputs a Vigenere square, and prints the encrypted text in the standard
five-character format. Blanks and punctuation should be stripped from the input automatically.
As an option, the mixed alphabet and keyword should be possible inputs so that particular features
of the decrypter can be tested repeatedly. Remember that a test message should be at least 30 or 40
times as long as the keyword for good statistical behavior of the algqrithms.

Orchestration This problem is made for a language like SNOBOL, which combines character
manipulation with some simple arithmetic capability. More algebraic languages like PL/I, PASCAL,
and XPL, which allow reasonable manipulation of characters, will also be good candidates. Whatever
language is chosen, try to avoid representing characters by integers; do not let the requirements of
computer representation dictate an obscure solution.

Playing Time One person for 2 weeks.

REFERENCES

Gaines, Helen Fouche. Cryptanalysis. Dover, New York, NY, 1956.

This is the elementary book that most amateur cryptanalyst& probably see first. The Dover edition is an
inexpensive paperback, and the book provides detailed solution methods for reasonably complicated
ciphers. It was originally written quite sometime ago; so none of the mathematical methods of Sinkov are
discussed, but classical techniques are well described. There are some helpful tables.

Gardner, Martin, "Mathematical Games." Scientific American, August, 1977, pp. 120-124.

Gardner reports a newly discovered, practically unbreakable cipher. This cipher method uses properties of
very large prime numbers and requires a computer for operations. If you do the project in Chapter 22, you
will have the tools for a perfectly secure communications method.

Kahn, David. The Code Breakers. Macmillan, New York, NY, 1967.

Kahn wrote the definitive work on cryptography. Although some interesting material about World War II
has surfaced since 1967, this voluminous book contains all the history and most of the methods that any
amateur would want to know. The bibliography ls excellent. Be careful of the paperback edition; it has
been "condensed," whatever that means.

Sinkov, Abraham. Elementary Cryptanalysis-A Mathematical Approach. Random House, New York, NY,
1968.

An extremely simple book on cryptanalysis, it does provide some mathematical foundation. Presumably
NSA has much more advanced techniques than those discussed here; naturally, however, they're not telling.
All of our discussion was derived from Sinkov's materials.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

The next four etudes join together to provide a complete compiler course. Any student who worked
through all four would have a good grasp of both practical and theoretical problems of translator
construction. If the etudes are done in the order presented, each accep~ as input the output of the
next in line. For example, the computer simulator and loader can be used to test the compiler.
Individual students should probably not tackle the compiler or loader; the TRAC interpreter or the
computer simulation might be done by one person. All four projects could be done in three quarters
or two semesters with proper guidance.

106

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

25

or ...

SIMULATION OF A TYPICAL
LARGE COMPUTER

If you are reading this, you almost certainly have a computer handy. It probably seems a little silly
to write a program that does exactly what your computer can already do (if you own the right
computer). But are you sure you know precisely what your computer can do? And will the other
users allow you to usurp the machine long enough to explore all its idiosyncracies? Bill McKeeman
says that you should never start a big project, such as a compiler or operating system, that depends
on the computer structure without first writing a simulator. As usual, the way to learn about a topic
is to teach someone else (a computer?!?) about it.

The Educational Computer, Model 1, is not a real computer; but, following a time-honored custom,
it steals features from several popular machines. EC-1 is simpler than many hardware computers,
but this aspect allows more attention to be paid to the structure. The description may not be as
complete and detailed as might be found in a computer manual; such completeness would require
more space than we have available. You will have to use what you know of other computers to fill
the gaps. Throughout, numeric items will be represented in hexadecimal notation (base 16) because
it fits nicely on the machine.

MEMORY AND REGISTERS

Each EC-1 is supplied with 216 8-bit characters of memory, addressed from O to 216-1. Each
memory position can hold any one of the 256 characters from the ASCII character set reproduced
in Figure 26-1. Each block of four contiguous characters beginning with a character whose address
is evenly divisible by four is a word. Words participate in a number of operations, and the character
boundary immediately to the left of a word is a word boundary.

Computations are done in a set of 16 word-size general-purpose registers numbered from O to 15.
These registers lie over the first 64 characters of memory, and any reference to a character address
in the range O to 63 references the corresponding character in the register block instead. Some
instructions require a register designator to be treated as a character address, which is done by

107

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

108 COMPUTER STIMULATION

0 1 2 3 4 5 6 7 8 9 AB CD E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NUL ~ l:i jj j:, j:J ~ ~ ~ St LF ~ NL CR ~

l, ~ J::i l:i ~ J:i j:, ~ ~ ~ ~ J::i FS ~ ~

I " # $ % & • () * + ' - .

0 1 2 3 4 5 6 7 8 9 . . < = > . '

@ A B C D E F G H I J K L M N

p Q R s T u V w X y z [\ 1 "
a b C d e (g h I j k I m n

p q r s t u V w X y z l I l -
l:2 ~ ~ ~ ~ l:, J:, ~ .l3 .l:i ~ ~ 2:1 l:2 ~

j:i l:2 ~ ~ j:i ~ l:, j:i jj ~ j:s ~ l:2 ~ j:i

jj l:J j:i ~ j:i J::i ~ l:J :l:i l2 j:J ~ ~ J::i j:i

l:2 l:J j:J ~ l:i jj .l1 ..tJ ~ ~ ~ l:l j:i j:J .l1

J:i l::i .l:J l:J l:1 jj ~ ~ l:i l:i l2 l:i jj J:i l:J

j:J l::J l2 li .l:, J:l l:i l:l Jj l:J jj j, j:j l:J ~

J:i jj .l:J ~ l:J l::J ~ ~ ~ .!:I l:J ~ ~ J:i ~

l:J ~ jj ~ ~ j::J ~ ~ ~ ~ .l:J .l:3 ~ .l::J l:2

Figure 25-1. The ASCII Character Set. Characters marked
l:i are not used on the EC-1 . Character NUL ia to be ignored;
NL ends a record; LF causes a line feed ; CR causes a ca"iage
return; FS causes a page eject.

"'
~

I

?

0

-

0

-

.J2

j:i

jj

j,

~

~

~

j::J

multiplying the designator by four. We note here that bits in a word, character, or what have you
will always be numbered from zero on the left.

Two other registers are available. The Instruction Location Counter (ILC) always point.& to the next
instruction to be executed in normal sequence. The Condition Code Register (CCR) is four bit.s
wide. The CCR is generally set as a side effect of instruction execution and may be tested by branch
instructions. The four bits are named, from left to right, the overflow bit, the greater than bit, the
less than bit, and the equals bit. When the CCR is set by an instruction, it is first cleared entirely to
zero and then affected bits are set to one. An overflow causes only the overflow bit to be set.
Testing the CCR does not affect its value.

HARDWARE DATA TYPES

Characters have been mentioned above. They are sometimes regarded as positive 8-bit integers.
Words may contain 32-bit two's complement integer values. Bit O of a word is the sign position and
is zero for positive values and one for negative values (this is a function of two's complement nota­
tion). When shorter signed integers, such as the immediate operands discussed below, are combined
with words, the shorter value has its sign bit propagated leftward to fill the missing bits.

Real numbers also occupy a word. Bit O is the sign bit, bits 1 through 7 constitute the exponent,
and bits 8 through 31 the fraction. In a positive real number, the sign bit is zero, the exponent field

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

109 COMPUTER STIMULATION

I Char Ou, I Char 116 I Char 216 I Char 316 I Register 0

Char 416 J Char 6161 Char 616 I Char 716 I Register 1

0
0
0

I Char 3C16 I Char 3016 I Char 3E16 I Char 3F 161 Register F 16 = 1510

Char 4016 Char 4116 Char 4216 Char 4316 Word 1016

Word Boundaries Possible Instruction Boundaries

Char FFFC16 Char FFFD16 Char FFFE16 Char FFFF l6 Word 3FFF 16

Figure 25-2. Layout of Main Memory. Notice that regiaters
are addreBBable 08 memory.

contains an excess 4016 exponent of 16, and the fraction contains a 24-bit normalized hexadecimal
fraction with an assumed hexadecimal point on its left. 1 Normalization of the hexadecimal fraction
requires that at least the leftmost hexadecimal digit be nonzero if any are. If the fraction becomes
zero, the entire number is set to zero. Any final result of a real arithmetic operation that cannot be
expressed because of limits on exponents causes a real format exception. Negative real numbers are
the two's complements of the corresponding positive values. Special short real values are used in real
immediate instructions and have their rightmost three fraction digits dropped.

INSTRUCTION FORMATS

Instructions occur in short two-character format and long four-character format. All instructions
must begin on even-character boundaries; failure of the ILC to contain an even address at the begin­
ning of an instruction execution cycle causes an illegal instruction address exception. The first char­
acter of every instruction contains the indirect bit in bit O and the operation code (the opcode) in
bits 1 through 7. Not all opcodes are meaningful and not all instructions make use of the indirect
bit. An illegal opcode causes an unimplemented instruction exception. In most instructions, bits 8
through 11 designate either a general register or a 4-bit literal value used as a mask, and bits 12
through 15 designate a second general register.

Basically, there are four kinds of instructions: register-to-register (the two-character instructions),
register-and-storage, immediate, and character. Each class has its own characteristic interpretation
and addressing algorithm detailed here.

1. Register-to-register. In all register-to-register instructions, bits 12 through 15 designate
a register used as one operand of the instruction. If the indirect bit is on, the operand is
located at the address given by bits 16 through 31 of the register designated by bits 12
through 15 of the instruction. The value in bits 8 through 11 may designate either a
register or a mask. Instructions CCS and MCS do not make use of the indirect bit.

2. Register-and-Storage. Register-and-storage instructions usually use bits 8 through 11
to designate a register or form a 4-bit mask to be used as one operand. The rest of the
instruction is used to form an effective address with this algorithm:

1 Excess 4016 notation means that the true exponent is found by subtracting 4016 from the recorded exponent.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

110 COMPUTER STIMULATION

If the indirect bit is O and the index register designator (bits 12 through 15) is 0,
the effective address is given by the address field (bits 16 through 31) of the
instruction.

If the indirect bit is zero and the index· register designator is nonzero, the address field
is extended to the left with zeros and added (two's complement, of course) to the
value in the index register. Bits 16 through 31 of the result form the affected address.
The value in the index register is not changed.

If the indirect bit is nonzero and the index register designator is zero, the address field
names a two-character indirect field in memory. The contents of the indirect field
form the effective address. If the indirect field does not begin on an even-character
boundary, an indirect address exception occurs.

If both the indirect bit and the index register designator are nonzero, the indirect
field is added to the index register value and the rightmost 16 bits of the sum form
the effective address. An indirect address exception may occur.

3. Immediate. All immediate instructions use bits 8 through 11 to designate a target
register and bits 12 through 31 to hold an immediate operand. The immediate operand
may be a 20-bit two's complement integer, a 20-bit logical vector, or a short-format real
number. The indirect bit is ignored by immediate instructions.

4. Character. Character instructions operate the same way as register-and-storage
instructions.

0 7
Bit positions in a character.

I S I Magnitude I ~0-1----------------g-r

Format of a full word integer.

I SI Exponent I Fraction I ""0~1L.....,;;;;.;.;;,o;..;;.;.;;.;_~,i,..8 ____ ____;_ _______ 3....,11

Format of a full word real number.

I s I Magnitude
0 1 19
Format of an immediate integer.

I SI Exponent I Fraction
0 1 78 19
Format of an immediate real number.

j I ! Op-code j R1 j R2 J
0 1 78 1112 1

Format of a short instruction.

I I I Op-code I R1J R2 I Addr~
0 1 78 1 12 1516 31

Format of a long instruction.

! I ! Op-code ! R1 ! Immediate Operand
31 0 1 78 1112

Format of an immediate instruction.

Figure 25-3. Format for Hardware Data Items

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

111 - COMPUTER STIMULATION

INSTRUCTION DESCRIPTIONS

In this section we describe each of the instructions. The first line of a description is a short sum-
•

mary, giving the instruction name, its format (RR, RS, IM, CH), its opcode in hexadecimal, its
assembly language format,2 and the possible condition code bits affected. A word description
follows the summary. The code for the CCR effect is O, L, G, E, and None (indicating that the CCR
is unaffected).

Load Register RR 0016 LR,Rl R2 GLE
The register Rl is loaded with the word at the effective address. The load value is compared
with zero and the G, L, or E bit of the CCR set as appropriate.3 If the effective address does
not fall on a word boundary, a word-addressing exception occurs.

Load RS 2016 L,Rl A,R2 GLE
This instruction operates in the same way as the Load Register instruction except that the
effective address is calculated by using the register-and-storage addressing algorithm.

Load Immediate IM 4016 Ll,Rl I GLE
This instruction operates like the Load Register instruction except that the loaded value is
the immediate operand I with its sign bit extended left 12 bits. No exceptions can occur.

Load Character CH 6016 LC,Rl A,R2 GE
Register Rl is cleared to zero, and the character at the effective address is loaded into bits
24 through 31. The loaded value is compared to zero and either the G or E bit of the CCR
set.

Load Negative Register RR 0116 LNR,Rl R2 OGLE
The register Rl is loaded with the two's complement of the word at the effective address.
The loaded result is compared to zero to set the CCR. If overflow occurs, only the O bit of
the CCR is set. A word-addressing exception may occur.

Load Negative RS 2116 LN,Rl A,R2 OGLE
This instruction operates in the same way as Load Negative Register except that the effec­
tive address is calculated by the register-and-storage addressing algorithm.

Load Negative Immediate IM 4116 LNI,Rl I GLE
The value loaded into register Rl is the 32-bit two's complement of the 20-bit two's com­
plement value I. Overflow cannot occur. The CCR is set by comparing the loaded value with
zero.

Load Negative Character CH 6116 LNC,Rl A,R2 LE
The character at the effective address is extended leftward 24 bits with zeros and the re­
sulting word complemented and loaded into register Rl. Overflow cannot occur. The loaded
value is compared with zero to set the CCR.

Store Register RR 0216 STR,Rl R2 GLE
The value in Rl is stored in the word at the effective address. The stored value is compared
to zero to set the CCR. A word-adrlressing exception may occur.

Store RS 2216 ST,Rl A,R2 GLE
This instruction operates in the same way as the Store Register instruction with the effective
address calculated by the register-and-storage addressing algorithm.

2 In assembly language, the indirect bit is set by writing an asterisk before the address field, as in

LN,Rl *A,R2
31n a comparison to set the CCR, the final result is assumed to hold if the first operand mentioned is on the left of
the relation and the second on the right. That is, if the result is less than, it means that the first operand is less than
the second. ·

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

112 COMPUTER STIMULATION

Store Character CH 6216 STC,Rl A,R2 GE
Bit.s 24 through 31 are stored in the character at the effective address. The stored value is
compared to zero to set the CCR.

Swap Register RR 0316 SWAPR,Rl R2 GLE
The word in register Rl is exchanged with the word at the effective address. The CCR is
set by comparing the value moved into register Rl with zero. A word-addressing exception
may occur.

Swap RS 2316 SWAP,Rl A,R2 GLE
This instruction operates in the same way as the Swap Register instruction with the effec­
tive address calculated by the register-and-storage algorithm.

Swap Character CH 6316 SWAPC,Rl A,R2 GE
Bit.s 24 through 31 are exchanged with the character at the effective address. The CCR is
set by comparing the character loaded into the register with zero. Bit.s O through 23 of
register Rl are not affected.

And Register RR 0416 ANDR,Rl R2 GLE
The logical and of the word in Rl and the word at the effective address is formed and
loaded into register Rl. Bit G of the CCR is set if the final value in Rl is all ones, bit L
is set if the result if mixed zeros and ones, and bit Eis set if the result is all zeros. A word­
addressing exception may occur.

And RS 2416 AND,Rl A,R2 GLE
This instruction operates like the And Register except that the register-and-storage ad­
dressing algorithm is used to calculate the effective address.

And Immediate IM 4416 ANDl,Rl I LE
The logical and of the word in register Rl and the 20-bit immediate value I extended on the
left with 12 zero bits is stored in RI. The CCR is set in the same way as the And Register
instruction.

And Character CH 6416 ANDC,Rl A,R2 GLE
The character at the effective address is anded with bit.s 24 through 31 of register Rl and
the result is replaced in bit.s 24 through 31 of Rl. Bits O through 23 of Rl are not affected.
The CCR is set in the same way as the And Register instruction.

Or Register RR 0516 ORR,Rl R2 GLE
This instruction operates in the same way as the And Register with logical or replacing
logical and.

Or RS 2516 OR,Rl A,R2 GLE
This instruction operates in the same way as And with logical or replacing logical and.

Or Immediate IM 4516 ORI,Rl I GLE
This instruction operates in the same way as And Immediate with logical and replaced by
logical or.

Or Character CH 6516 ORC,Rl A,R2 GLE
This instruction operates in the same way as And Character with logical and replaced by
logical or.

Exclusive Or Register RR 0616 XORR,Rl R2 GLE
This instruction operates in the same way as And Register with logical and replaced by
logical exclusive or.

Exclusive Or RS 2616 XOR,Rl A,R2 GLE
This instruction operates in the same way as And with logical and replaced by logical
exclusive or.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

113 COMPUTER STIMULATION

Exclusive Or Immediate IM 4616 XORl,Rl I GLE
This instruction operates in the same way as And Immediate with logical and replaced by
logical exclusive or.

Exclusive Or Character CH 6616 XORC,Rl A,R2 GLE
This instruction operates in the same as And Character with logical and replaced by logical
exclusive or.

Not Register RR 0716 NOTR,Rl R2 GLE
This instruction operates in the same way as And Register with logical and replaced by
logical complement of the second operand, the original value in register Rl being ignored.

Not RS 2716 NOT,Rl A,R2 GLE
This instruction operates in the same way as And with logical and replaced by logical com­
plement of the second operand, the original value in register Rl being ignored.

Not Immediate IM 4 716 NOTl,Rl I GLE
This instruction operates in the same way as And Immediate with logical and replaced by
logical complement of the extended immediate value, the original value in register Rl being
ignored.

Not Character CH 6716 NOTC,Rl A,R2 GLE
This instruction operates in the same way as And Character with logical and replaced by
logical complement of the second operand, the original value of bits 24 through 31 of
register Rl being ignored.

Branch Conditions Set Register RR 0816 BCSR,Ml R2 None
If the logical and of the contents of the CCR and the 4-bit logical mask Ml is nonzero,
the contents of the ILC are replaced by the effective address.

Branch Conditions Set RS 2816 BCS,Ml A,R2 None
This instruction operates in the same way as Branch Conditions Set Register with the effec­
tive address calculated by the register-and-storage addressing algorithm.

Branch Conditions Reset Register RR 0916 BCRR,Ml R2 None
If the logical and of the contents of the CCR and the 4-bit logical mask Ml is zero, the con­
tents of the ILC are replaced by the effective address.

Branch Condition Reset RS 2916 BCR,Ml A,R2 None
This instruction operates in the same way as Branch Conditions Reset Register with the
effective address calculated by the register-and-storage addressing algorithm.

Branch and Link Register RR 0A16 BALR,Rl R2 None
The current contents of the ILC are loaded into register Rl and the effective address is
loaded into the ILC. If the indirect bit is not on, the effective address is register designator
R2 multiplied by 4.

Branch and Link RS 2A16 BAL,Rl A,R2 None
The current contents of the ILC are stored in register Rl and the ILC is loaded with the
effective address of the instruction.

Save Condition Register RR 0Bl6 SACR,Ml R2 None
If the logical and of the CCR and the 4-bit mask field Ml is nonzero, a word of all one bits
is stored in the effective address; otherwise a word of all zeros is stored. A word-addressing
exception may occur.

Save Condition RS 2B16 SAC,Ml A,R2 None
This instruction operates in the same way as the Store Conditions Register instruc­
tion with the effective address calculated by the register-and-storage addressing
algorithm.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

114 COMPUTER STIMULATION

Save Condition Character CH 6B16 SACC,Ml A,R2 None
If the logical and of the CCR and the 4 bit mask field Ml is nonzero, a character of all one
bits is stored at the effective address; otherwise a character of all zero bits is stored.

Compare Register RR OC16 CR,Rl R2 GLE
The results of an algebraic comparison between the contents of register Rl and the word at
the effective address are used to set the G, L, or E bits of the CCR as appropriate. A word­
addressing exception may occur.

Compare RS 2C16 C,Rl A,R2 GLE
This instruction operates the same way as Compare Register except that the effective ad­
dress is calculated by the register-and-storage addressing algorithm.

Compare Immediate IM 4C16 CI,Rl, I GLE
The 32-bit value in register Rl is compared algebraically with the 32-bit value constructed
by propagating the immediate operand's sign bit leftward 12 bits, and the result is used to
set the G, L, or E bit of the CCR as appropriate.

Compare Character CH 6C16 CC,Rl A,R2 GLE
Bits 24 through 31 of register Rl are compared as an 8-bit positive integer with the char­
acter at the effective address, and the result is used to set the G, L, or E bit of the CCR as
appropriate.

Compare Character String RR OE16 CCS,Ml R2 GLE ·
Register designator R2 names a register pair R2 and (R2+1) mod 16 (the second register
will be called R2+1 throughout). The pair R2 and R2+1 should contain a string descriptor
doubleword, with a character address Al in bits 16 through 31 of register R2, a length Lin
bits O through 15 of register R2+1, and a character address A2 in bits 16 through 31 of
register R2+1. To begin execution, Al, A2, and Lare moved to internal registers, the CCR is
set to zero, and the E bit of the CCR is set to one. A loop is started.

First, if Lis zero, bits O through 15 of both registers are set to zero, bits 16 to 31 of R2
are set to the internal value of Al, bits 16 through 31 of R2+1 are set to the internal
value of A2, and the instruction terminates.

Second, the character of Al is compared as an 8-bit integer to the character at A2 and the
result used to set the appropriate bits of the CCR.

Third, if the E bit of the CCR is not one, bits O through 15 of register R2 are set to
zero, bits 16 throu~'l 31 of R2 to the internal value of Al, bits O through 15 of R2+1
to the internal value of L, bits 16 through 31 of R2+1 to the internal value of A2, and
the instruction terminates.

Finally, Lis decremented by 1, Al is incremented by the mask Ml interpreted as a 4-bit
two's complement integer, and A2 is incremented by 1, and the loop returns to the
first step. .

Move Character String RR OF 16 MCS,Ml R2 None
Registers R2 and (R2+1) mod 16 contain a string descriptor doubleword as described in
Compare Character String. The L, Al, and A2 fields are loaded into internal registers. A
loop is begun.

First, if Lis zero, bits O through 15 of registers R2 and R2+1 are set to zero, bits 16
through 31 of R2 to Al, bits 16 through 31 of R2+1 to A2, and the instruction terminates.

Second, the character at location Al is stored at character location A2.

Third, Lis decremented by 1 and A2 is incremented by 1.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

115 COMPUTER STIMULATION

Finally, Al is incremented by the mask Ml interpreted as a 4-bit two's complement
integer and the loop returns to its first step.

Supervisor Call RS 2E16 SVC,Rl A,R2 None
Program execution is interrupted and a call made to a controlling supervisor program.

Execute RS 2F 16 EX,Rl A,R2 None
The instruction at the effective address is executed. The effects of the subject instruction
become the effects of the Execute instruction. If the effective address is not even, an
execute address exception occurs. Execute instructions may be nested to any depth. Note
that the ILC is changed only if explicitly modified by the subject instruction.

Load Address RS 4E16 LA,Rl A,R2 None
Register Rl is loaded with the instruction's effective address.

Load Multiple RS 6E16 LM,Rl A,R2 None
Registers Rl through R2 are loaded from consecutive words in memory, beginning at the
effective address (the effective address is calculated by assuming that the index register
designator is zero). If R2 is less than Rl, registers Rl through 15 and O through R2 are
loaded. A word-addressing exception may occur.

Store Multiple RS 6F 16 STM,Rl A,R2 None
Registers Rl through R2 are stored into consecutive words of memory, beginning at the
effective address (the effective address is calculated by assuming the index register desig­
nator is zero). If R2 is less than Rl, registers Rl through 15 and O through R2 are stored.
A word-addressing exception may occur.

Add Register RR 1016 AR,Rl R2 OGLE
The word in Rl is added to the word at the effective address and the result is placed in Rl.
The sum is compared to zero to set the CCR. If overflow occurs, only the O bit of the CCR
is set. A word-addressing exception may occur.

Add RS 3016 A,Rl A,R2 OGLE
This instruction operates in the same way as Add Register with the effective address calcu­
lated by the register-and-storage addressing algorithm.

Add Immediate IM 5016 AI,Rl I OGLE
The 20-bit two's complement immediate operand I is added to the value in register Rl and
the sum stored in Rl. The sum is compared to zero to set the CCR. If overflow occurs, only
the O bit of the CCR is set.

Add Character CH 7016 AC,Rl A,R2 OGLE
The character at the effective address is extended 24 bits to the left with zeros and added to
the value in register Rl with the result loaded into Rl. The sum is compared to zero to set
the CCR. If overflow occurs, only the O bit of the CCR is set.

Subtract Register RR 1116 SR,Rl R2 OGLE
The word at the effective address (the subtrahend) is subtracted from the value in register
Rl (the minuend) and the difference is stored in Rl. The difference is compared to zero to
set the CCR. If overflow occurs, only the O bit of the CCR is set. A word-addressing excep­
tion may occur.

Subtract RS 3116 S,Rl A,R2 OGLE
This instruction operates the same way as Subtract Register with the effective address
calculated by the register-and-storage addressing algorithm.

Subtract Immediate IM 5116 SI,Rl I OGLE
The 20-bit two's complement integer immediate operand I (the subtrahend) is subtracted
from the value in register Rl (the minuend) and the result stored in register Rl . The dif-

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

116 COMPUTER STIMULATION

ference is compared to zero to set the CCR. If overflow occurs, only the O bit of the CCR
is set.

Subtract Character CH 7116 SC,Rl A,R2 OGLE
The character at the effective address (the subtrahend), treated as a positive integer by
extension 24 bits leftward with zeros, is subtracted from the value in register Rl (the
minuend) and the result stored in Rl. The difference is compared to zero to set the CCR.
If overflow occurs, only the O bit of the CCR is set.

Reverse Subtract Register RR 1216 RSR,Rl R2 OGLE
This instruction operates the same way as the Subtract Register instruction except that the
roles of the minuend and the subtrahend are reversed.4

Reverse Subtract RS 3216 RS,Rl A,R2 OGLE
This instruction operates the same way as Subtract except that the roles of the minuend
and the subtrahend are reversed.

Reverse Subtract Immediate IM 5216 RSl,Rl I OGLE
This instruction operates the same way as Subtract Immediate except that the roles of the
minuend and the subtrahend are reversed.

Reverse Subtract Character CH 7216 RSC,Rl A,R2 OGLE
This instruction operates the same way as the Subtract Character with the roles of the
minuend and the subtrahend reversed.

Multiply Register RR 1316 MR,Rl R2 OGLE
The value in register Rl and the word at the effective address are multiplied and the low­
order 32 bits of the product are stored in register Rl. The result in register Rl is compared
to zero to set the CCR. If overflow occurs, only the O bit of the CCR is set. A word­
addressing exception may occur.

Multiply RS 3316 M,Rl A,R2 OGLE
This instruction operates the same way as Multiply Register except that the effective ad­
dress is calculated by the register-and-storage addressing algorithm.

Multiply Immediate IM 5316 MI,Rl I OGLE
The low 32 bits of the product of the value in register Rl and the 20-bit immediate value I
are stored in register Rl. The product in register Rl is compared to zero to set the CCR. If
overflow occurs, only the O bit of the CCR is set.

Multiply Character CH 7316 MC,Rl A,R2 OGLE
The low 32 bits of the product of the value in register Rl and the positive 8-bit integer
in the character at the effective address are stored in register Rl. The value in register Rl
is compared to zero to set the CCR. If overflow occurs, only the O bit of the CCR is set.

Divide Register RR 1416 DR,Rl R2 OGLE
The value in register Rl (the dividend) is divided by the word at the effective address (the
divisor) and .the quotient is stored in register Rl. The quotient is selected so that the re­
mainder is nonnegative. The quotient is compared to zero to set the CCR. If overflow
occurs, only the O bit of the CCR is set. A word-addressing exception may occur. If
the divisor is zero, the zero divisor exception occurs and register Rl is unchanged.

Divide RS 3416 D,Rl A,R2 OGLE
This instruction operates the same way as Divide Register except that the effective address
is calculated with the register-and-storage addressing algorithm.

Divide Immediate IM 5416 Dl,Rl I OGLE
The value in register Rl (the dividend) is divided by the 20-bit two's complement integer

4 In all the reversed instructions, although the roles of the two operand values are interchanged, the result is still
stored in the same place.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

117 COMPUTER STIMULATION

immediate value I (the divisor) and the quotient is stored in register Rl. The quotient is
selected so that the remainder is nonnegative. The quotient is compared to zero to set the
CCR. If overflow occurs, only the O bit of the CCR is set. If the divisor is zero, the zero
divisor exception occurs and the register Rl is unchanged.

Divide Character CH 7416 DC,Rl A,R2 GLE
The value in register Rl (the dividend) is divided by the positive 8-bit integer at the effec­
tive address (the divisor) and the quotient is stored in register Rl. The quotient is selected
so that the remainder is nonnegative. The quotient is compared to zero to set the CCR. If
the divisor is zero, the zero divisor exception occurs and register Rl is unchanged. Overflow
is not possible.

Reverse Divide Register RR 1516 RDR,Rl R2 OGLE
This instruction operates the same way as Divide Register except that the roles of the
dividend and divisor are reversed.

Reverse Divide RS 3516 RD,Rl A,R2 OGLE
This instruction operates the same way as Divide except that the roles of the dividend and
the divisor are reversed.

Reverse Divide Immediate IM 5516 RDI,Rl I GLE
This instruction operates the same way as Divide Immediate except that the roles of the
dividend and the divisor are reversed. Overflow is not possible.

Reverse Divide Character CH 7516 RDC,Rl A,R2 GLE
This instruction operates the same way as Divide Character except that the roles of the
dividend and the divisor are reversed.

Remainder Register RR 1616 REMR,Rl R2 GE
The value in register Rl (the dividend) is divided by the word at the effective address (the
divisor) and the nonnegative remainder is stored in register Rl. The remainder is com-
pared to zero to set the CCR. A word-addressing exception may occur. If the divisor is zero,
the zero divisor exception occurs and register Rl is unchanged.

Remainder RS 3616 REM,Rl A,R2 GE
This instruction operates the same way as Remainder Register except that the effective
address is calculated by the register-and-storage addressing algorithm.

Remainder Immediate IM 5616 REMI,Rl I GE
The value in register Rl (the dividend) is divided by the 20-bit two's complement value I
(the divisor) and the nonnegative remainder is stored in register Rl. The remainder is com­
pared to zero to set the CCR. If the divisor is zero, the zero divisor exception occurs and
register Rl is unchanged.

Remainder Character CH 7616 REMC,Rl A,R2 GE
The value in register Rl (the dividend) is divided by the 8-bit positive integer (the divisor)
at the effective address and the nonnegative remainder is stored in register Rl. The re­
mainder is compared to zero to set the CCR. If the divisor is zero, the zero divisor exception
occurs and register Rl is unchanged.

Reverse Remainder Register RR 0716 RREMR,Rl R2 GE
This instruction operates the same way as Remainder Register except that the roles of
dividend and divisor are reversed.

Reverse Remainder RS 3716 RREM,Rl A,R2 GE

,

This instruction operates the same way as Remainder except that the roles of dividend and
divisor are reversed.

Reverse Remainder Immediate IM 5716 RREMl,Rl I GE
This instruction is the same as Remainder Immediate except that the roles of dividend and
divisor are reversed.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

118 COMPUTER STIMULATION

Reverse Remainder Character CH 7716 RREMC,Rl A,R2 GE
This instruction is the same as Remainder Character except that the roles of dividend and
divisor are reversed.

Real Add Register RR 1816 F AR,Rl R2 GLE
The value in register Rl is added to the real number at the effective address and the sum is
stored in register Rl. The sum is compared to zero to set the CCR. Both word-addressing
and real-format exceptions may occur. 5

Real Add RS 3816 FA,Rl A,R2 GLE
This instruction is the same as Real Add Register except that the effective address is calcu­
lated by the register-and-storage addressing algorithm.

Real Add Immediate IM 5816 FAI,Rl I GLE
The sum of the value in register Rl and the real short format immediate operand I is stored
in register Rl. A real format exception may occur.

Real Subtract Register RR 1916 FSR,Rl R2 GLE
The real number at the effective address (the subtrahend) is subtracted from the value in the
register Rl (the minuend) and the difference is stored in register Rl. The difference is com­
pared to zero to set the CCR. Both word-addressing and real format exceptions may occur.

Real Subtract RS 3916 FS,Rl A,R2 GLE
This instruction is the same as Real Subtract Register except that the effective address is
calculated by. the register-and-storage addressing algorithm.

Real Subtract Immediate IM 5916 FSI,RI I GLE
The short format real immediate operand I (the subtrahend) is subtracted from the value in
register Rl (the minuend) and the difference is stored in register Rl. The difference is com­
pared to zero to set the CCR. A real-format exception can occur.

Reverse Real Subtract Register RR 1A16 RFSR,Rl R2 GLE
This instruction is the same as Real Subtract Register with the roles of the minuend and
subtrahend reversed.

Reverse Real Subtract RS 3A16 RFS,Rl A,R2 GLE
This instruction is the same as Real Subtract with the roles of the minuend and subtrahend
reversed.

Reverse Real Subtract Immediate IM 5A16 RFSI,Rl I GLE
This instruction is the same as Real Subtract Immediate with the roles of the minuend and
the subtrahend reversed.

Real Multiply Register RR 1B16 FMR,Rl, R2 GLE
The value in register Rl and the real number at the effective address are multiplied and the
product is stored in register Rl. The product is compared to zero to set the CCR. Both
word-addressing and real format exceptions may occur.

Real Multiply RS 3B16 FM,Rl A,R2 GLE
This instruction is the same as Real Multiply Register except that the effective address is
calculated by the register-and-storage addressing routine.

Real Multiply Immediate IM 5B16 FMl,Rl I GLE
The value in register Rl is multiplied by the real short format immediate value I and the
product is stored in register Rl. The product is compared to zero to set the CCR. A real
format exception may occur.

5 The mnemonics for the real arithmetic instructions are prefixed with the letter "F" because the historical name for
real-number implementations is "ftoating point." This name also gives rise to the the FLOATR, FLOAT, and
FLOATI mnemonic opcodes.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

119 COMPUTER STIMULATION

Real Divide Register RR 1C16 FDR,Rl R2 GLE
The value in register Rl (the dividend) is divided by the real number at the effective address
(the divisor) and the quotient is stored in register Rl. The quotient is compared with zero
to set the CCR. Word-addressing, real format, and zero divisor exceptions may occur.

Real Divide RS 3C16 FD,Rl A,R2 GLE
This instruction is the same as Real Divide Register except that the effective address is calcu­
lated by the register-and-storage addressing algorithm.

Real Divide Immediate IM 5C16 FDl,Rl I GLE
The value in register Rl (the dividend) is divided by the real short format immediate value I
(the divisor) and the result stored in register Rl. The quotient is compared to zero to set the
CCR. Both real format and zero divisor exceptions may occur.

Reverse Real Divide Register RR 1D16 RFDR,Rl R2 GLE
This instruction is the same as Real Divide Register with the roles of dividend and divisor
reversed.

Reverse Real Divide RS 3D16 RFD,Rl A,R2 GLE
This instruction is the same as Real Divide with the roles of dividend and divisor reversed.

Reverse Real Divide Immediate IM 5D16 RFDl,Rl I GLE
This instruction is the same as Real Divide Immediate with the roles of dividend and divisor
reversed.

Convert To Real Register RR 1E16 FLOATR,Rl R2 GLE
The 32-bit two's complement integer at the effective address is converted to a real number
and stored in register Rl. The real result is compared to zero to set the CCR. A word­
addressing exception may occur.

Convert To Real RS 3E16 FLOAT,Rl A,R2 GLE
This instruction is the same as Convert To Real Register except that the effective address
is calculated by the register-and-storage addressing algorithm.

Convert To Real Immediate IM 5E16 FLOATI,Rl I GLE
The 20-bit two's complement integer immediate operand I is converted to real format and
stored in register Rl. The result is compared to zero to set the CCR.

Convert To Integer Register RR lF 16 FIXR,Rl R2 OGLE
The integer portion of the real number at the effective address is converted to a 32-bit two's
complement integer and stored in register Rl. If overflow occurs, the result is zero and the
0 bit of the CCR is set. The result is compared to zero to set the other bits of the CCR. A
word-addressing exception may occur. 6

Convert To Integer RS 3F 16 FIX,Rl A,R2 OGLE
This instruction is the same as Convert To Integer Register except that the effective address
is calculated by the register-and-storage addressing algorithm.

Convert to Integer Immediate IM 5F16 FIXl,Rl I OGLE
The real short format immediate operand I is converted to a 32-bit two's complement
integer and the result stored in register Rl. If overflow occurs, the result is zero and the 0
bit of the CCR is set. The result is compared to zero to set the other CCR bits.

Real Floor RS 7816 FLOOR,Rl A,R2 GLE
The real format integer not greater algebraically than the real number at the effective
address is stored in register Rl. The result is compared to zero to set the CCR. A word­
addressing exception can occur.

6Tbese instructions are named FIXR, FIX, and FIXI because integer implementations have been called "fixed
Point" historically.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

120 COMPUTER STIMULATION

Real Ceiling RS 7916 CEIL,Rl A,R2 GLE
The real format integer not smaller algebraically than the real number at the effective
address is stored in register Rl. The result is compared to zero to set the CCR. A word­
addressing exception may occur.

Minimum RS 7 A16 MIN ,Rl A,R2 LE
The values in register Rl and in the word at the effective address are compared and the
minimum stored in register Rl. The CCR is set by comparing the original register Rl value
with the final one. A word-addressing exception may occur.

Maximum RS 7B16 MAX,Rl A,R2 GE
This instruction is the same as Minimum except that the maximum replaces the minimum.

Shift Logical RS 7C16 SHIFTL,Rl A,R2 OGLE
The effective address is treated as a 16-bit two's complement integer called the shift count.
The value in register Rl is shifted leftward by the amount of the shift count if positive and
rightward if negative, the shift distance measured in bits. Bits shifted off either end of the
register are lost. If a 1 bit is lost, the O bit of the CCR is set. The result is compared to zero
to set the other CCR bits. 7

Shift Circular RS 7D16 SHIFTC,Rl A,R2 GLE
This instruction works the same way as Shift Logical except that bits shifted off one end of
the register fill vacated positions on the other. Overflow is not possible.

Shift Arithmetic RS 7E16 SHIFTA,Rl A,R2 OGLE
This instruction works like Shift Logical on left shifts and propagates bit O rightward on
right shifts. Overflow occurs only on left shifts when a bit shifted into the sign bit differs
from one shifted out.

Shift Real RS 7F 16 SHIFTR,Rl A,R2 GLE
The effective address is interpreted as a 16-bit two's complement shift count. The fraction
part of the absolute value of the real number in register Rl is shifted left or right in 4-bit
units logically, vacated 4-bit positions being filled with hexadecimal zeros. If the resulting
fraction is zero, so is the result. Otherwise the shift count is subtracted from the exponent
and the resulting value stored with the original sign in register Rl. Overflow cannot occur,
but a real format exception may. The result is compared to zero to set the CCR.

EXCEPTIONS AND SUPERVISOR CALLS

The input/output structure on modern computers is at least as complicated as the CPU. To avoid
doubling the size of the problem, we assume that a supervisor monitors the progress of every user
program. The supervisor can be invoked directly by the Supervisor Call instruction and indirectly
by an exceptional occurrence. The Supervisor Call instruction uses its various fields to code the
function desired and to supply parameters. The following constitute a bare minimum of functions
with the Rl register designator selecting the function.

Rl = 0 Exit the running program and clean up after it.

Rl = 1 Read an integer from the input stream and store it at the effective address of the
SVC (the address must name a word).

Rl = 2 Read a real number and store it at the effective address.

Rl = 3 Read a character and store it at the effective address.

7 A shift count with absolute value greater than 32 causes the same effect as some count with absolute value 32 or
less. The smaller count can replace the larger when any shift instruction is executed.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

121 COMPUTER STIMULATION

Table 25-1 A S11mmary of Opention Codea

0 1 2 3 4 6 6 7

0 LR AR L A LI AI LC AC
1 LNR SR LN s LNI SI LNC SC
2 STR RSR ST RS RSI STC RSC
3 SWAPR MR SWAP M MI SWAPC MC
4 ANDR DR AND D ANDI DI ANDC DC
5 ORR RDR OR RD ORI RDI ORC RDC
6 XORR REMR XOR REM XORI REMI XORC REMC
7 NOTR RREMR NOT RREM NOTI RREMI NOTC RREMC
8 BCSR FAR BCS FA FAI FLOOR
9 BCRR FSR BCR FS FSI CEIL
A BALR RFSR BAL RFS RFSI MIN
B SACR FMR SAC FM FMI SACC MAX
C CR FDR C FD CI FDI cc SHIFTL
D RFDR RFD RFDI SHIFTC
E ccs FLOATR FLOAT LA FLOATI LM SHIFTA
F MCS FIXR EX FIX FIXI STM SHIFTR

Row titles give low 4 bits of operation code; column titles give the high 3 bits.

Rl = 4 Cause the input stream to space ahead to a new record.

Rl = 5 Write the word at the effective address as an integer on the output stream.

Rl = 6 Write the word at the effective address on the output stream as a real number.

Rl = 7 Write the character at the effective address to the output stream.

Rl = 8 Write an end of record on the output stream.

Rl = 9 and R2 = 0 End tracing instruction execution.

Rl = 9 and R2 = 1 Begin tracing instruction execution. Print a running record of each
instruction executed.

Rl = A The effective address of the SVC must be a word address. The low halfword
gives the low address and the high halfword the high address of a section of memory to
dump. The dump should display memory between the limits in both hexadecimal and
character-string format. You may find it useful to display instruction mnemonics also.
The dump routine should notice and not print duplicated lines.

·Rt = F This supervisor call will never be assigned for system use and can be used for any
purpose by the simulator.

It is assumed that integers and real numbers on the input/output streams are terminated by blanks.

Exceptions occur when errors arise during the course of instruction execution. The program is inter­
rupted and the supervisor notified of the cause of the exception and the location of the offending
instruction. A summary of exceptions follows.

lliegal Instruction Address. At the start of an instruction execution cycle, the ILC does
not contain an even value.

Unimplemented Instruction. There is no operation defined for this operation code.

Indirect Address. The indirect address is not even.

Word Addressing. The address of a purported word operand to an instruction is not
divisible by four.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

122 COMPUTER STIMULATION

Real Format. The result of some real-valued operation cannot be expressed within the
format for normalized real numbers.

Execute Address. The effective address of an Execute instruction is not even.

Zero Divisor. The divisor in a division or remainder operation is zero.

Wraparound Instruction. A four-character instruction begins at FFFE.

The response of the supervisor to an exception is left to the implementor but should include a
report to the user of the occurrence.

ABSOLUTE LOAD FILES

The absolute load file describes the contents of EC-1 memory prior to execution. Normally such
files are produced by the EC Loader from relocatable load language, and in a practical system the
files would be in some binary format to save space; for this problem we describe a format that can
be keypunched to aid your debugging. The records of the physical file are each 80 external char­
acters long, and the legal characters are the digits, the letters A, B, C, D, E, F, N, and blank. Most of
the time these external characters will be strung together to form hexadecimal numbers. Notice that
it takes two external characters to form one two-digit hexadecimal number that, in turn, specifies
the data necessary to fill one EC-1 internal character position.8

Each record except the last has a standard format. Character 1 is a checksum of all the other hexa­
decimal digits formed by adding and ignoring the carryout. Characters 2 through 4 are a hexadecimal
sequence number and the first record is sequenced 000; out-of-sequence records should be flagged
as nonfatal errors. After this prefix, the rest of the record consists of count-address-data triples. The
count field is one digit long and tells how many character positions in memory are to be filled by
the following data. The address field is four digits long and gives the hexadecimal start address for
the data in EC-1 memory. Finally, the data field contains two digits for each memory character to
be filled, and each digit pair is read as a hexadecimal integer specifying eight bits of data to enter
memory. There may be several such triples on one record, but no triple may cross a record bound­
ary. The first blank occurring in a count field terminates the useful data on a record, and the rest of
the record may be used for comments if desired. The last record has the characters END in char­
acters 1 through 3 and a four-digit hexadecimal program start address in characters 4 through 7.
As an example, the record

El 0241A2301020304207FF1BEC

has a checksum of E, is sequenced 102, and puts the (rather meaningless) four characters 01020304
of data at 1A23 and the two characters lBEC at 07FF. Notice that it takes eight hexadecimal digits
to specify four characters of internal memory.

Statement of the Theme Write a simulator for the EC-1 computer. Input for the simulator
should be an absolute load file and the input stream for the simulated program. The basic output
should be the output stream from the program. In addition to the simulator, write at least two
programs for the EC-1 to test the simulator's correctness. Of course, you will have to hand-assemble
these programs into absolute load file format.

Besides the basic output, your simulator should be able to trace and dump the simulated program.

8 Tbis multiple use of the word "character" will crop up again in the discussion of the EC Loader. Try to keep clear
the distinction between character positions in memory and characters on input and output tiles. An internal char­
acter can always hold enough data to represent one external character, but an external character may not code
enough data to fill one internal character position.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

123 COMPUTER STIMULATION

The trace should show the instruction broken down, the effective address calculation, and the
operands and results in both their natural and hexadecimal formats. A dump should include the
memory printed (perhaps under option control) in hexadecimal, instruction mnemonics, integer,
real, and character formats. Repetitious groups of data should be printed only once with a note of
the repetition. Control of the trace and dump may go directly to the simulator, perhaps via a con­
sole, or may be driven by supervisor calls during execution.

Performance Practice Computer simulators are basically simple if they follow the ordinary
instruction location-decoding-execution cycle. There is an obvious 128-way branch once the opera­
tion code has been found. These 128 separate instruction implementation routines can make use of
a variety of common subroutines to pursue their individual tasks, the subroutines including effective
address calculation, CCR setting, exception checking, result storage, and the like. A clear layout will
help in the demonstration of correctness. However, efficiency in the instruction cycle is also quite
important; otherwise time costs can be prohibitive. These two needs must be balanced. Other por­
tions of the simulator need not be quite as efficient, for they will presumably be executed much
less often.

Several groups who have done this project in the past report that construction of a simple assembler
to generate test cases is time well spent. If the EC Loader is also one of your projects, careful con­
struction of the assembler will allow you to use it to test the loader as well.

Orchestration Here again is a program where clarity and efficiency trade off. Consider using
a higher-level language in which crucial routines can be replaced by assembly language after de­
bugging. Because conventional subroutine linkages can be expensive, this is a chance to experiment
with languages that allow small patches of assembly language to be inserted in-line. Some FOR­
TRANs, some ALGOLs, and XPL, among others, have this feature.

Playing Time Six weeks for one person; 3 weeks for two or three people. If more than one
person participates, each is responsible for one EC-1 program.

Variations on the Theme The most obvious extension is to keep a profile of the execution of
the simulated program. How often is each instruction executed? How often is each internal sub­
routine used? What is the pattern of memory references? Of register references? And so on ad
libitum. This information can be extremely difficult to find on a real computer but is usually a
powerful aid in understanding a complex happening.

REFERENCES

Bell, C. Gordon, and Allen Newell. Computer Structures: Readings and Examples. McGraw-Hill, New York,
NY, 1971.

Bell and Newell discuss general principles of machine architecture and illustrate with about 30 examples.
Considerable space is given to the development of a notation for machine description. Many examples are
drawn from the (heavily edited) papers of the original machine designers.

IBM Corporation. IBM System/360 Principles of Operation. IBM System Reference Library, GA22-6821-8,
November 1970.

Xerox Data Systems. Xerox Sigma 7 Computer Reference Manual. Order #90 09 501, 1971.

The EC-1 is quite similar to both the Sigma 7 and the 360. It may be a help to compare these machines
with the EC-1. Other editions of these manuals will do as well as the ones mentioned.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

26

or ...

A LINKING LOADER

Loaders are the stepchildren of most systems. Users do not like them because they are simply
another unnecessary delay on the way to The Answer. Compiler writers do not like them because
they are parts of the system (what do you mean they're not?). System programmers do not like
them because they are just another utility. Perhaps only the business manager likes the loader be­
cause so much time (and money) is spent executing it. But you will find writing a loader for the
Educational Computer, Model 1, a rewarding problem.

EC Loader is a fairly standard relocating loader designed for use with the Easy language (Chapter
27) and the EC-1 computer (Chapter 25). EC Loader concentrates on interpreting relocatable load
language, handling a fairly elaborate symbol table, and detecting load-time errors. Easy language
programs may include separately compiled program segments, and EC Loader supports type checking
among segments and library searching to build complete programs. Other relocatable load language
features make forward branch generation simple so that compilers can be one pass instead of two.
Many commercial loaders provide even more elaborate services, but such services usually require
input/output complexity that is inappropriate for an etude. You will probably not appreciate EC
Loader completely (either its good or bad points) unless you build a compiler or read up on loaders
in the references.

GENERAL PLAN OF THE LOADER

Inputs to EC Loader are a program file and a library file, each of which may consist of several
modules. If it is easy on your system, either program or library might consist of more than one file.
Every module in the program must be loaded first, and modules in the library file are loaded only if
they satisfy a primary reference. By the end of the load exactly one start address must have beep
defined or there is a fatal load e1ror. Output is an absolute load file as described in Chapter 25. EC
Loader maintains both an absolute load counter (ALC) and a relocatable load counter (RLC).
The ALC starts at address 4016 at the beginning of the load. Each time that a new module begins,
the ALC is set to beyond the module high-water mark to the next work boundary and the RLC is

124

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

126 EC LOADER

reset to zero.1 After the last module is loaded, the ALC is moved up to a word boundary beyond
the module high-water mark for one final time and used to define the value of the absolute external
symbol HighestLocation.

The relocatable load language consists of a series of load commands, each eight bits long. Com­
mands are coded with a variable-length encoding so that some parameters can be buried in the
commands themselves. Other parameters may be variable length, and expressions used in command
can be arbitrarily complex. All names must be declared before use; once declared, they are refer­
enced by number rather than name to save space in the load module. Since modules are to be
generated by the one-pass Easy compiler, they do not have sizes declared; EC loader must maintain
a ~-water marker so that the size of a module can be found. External names defined within the
current module must be declared before any other load specification. After each module is finished,
local symbols must be eliminated from the symbol table, global symbols retained, and update work
done on the load map. Special symbols used only on the map can be defined for diagnostic purposes.
EC Loader can also check types for external procedures and their arguments.

PHYSICAL RECORD LAYOUT

Records of a load module are variable-length strings of external characters; these characters are
either hexadecimal digits that group together to form integer values or characters drawn from the
EC-1 ASCII set that represent themselves in names. 2 The first six characters of a record always con­
cern the physical structure of the record and are always in the same format. Character 1 is 1 on the
last record of a module and O on all other records. Characters 2 through 4 contain a three-digit
hexadecimal sequence number beginning with 000 on the first record of a module. Out-of-sequence
records are a nonfatal error. The module sequence number wraps around to 000 when there are
1000 records in the module. Characters 5 and 6 give the length of the record in hexadecimal; this
length includes the first six characters and thus falls between 07 and FF. The useful data on the
record lies in a second section following the fixed prefix and consists of a series of logical load items.
Logical load items may be broken freely over physical-record boundaries.

A logical load item begins with two hexadecimal digits giving the load operation and continues
with more parameters as necessary. Parameters that occur as numbers are always represented by a
string of hexadecimal digits as long as necessary to supply the number. Names begin with a two­
hexadecimal-digit-count field and then continue with the actual characters of the name, as many
as are required by the count. Thus 692C04Fool is a Declare External Primary (operation 69) with
a short symbol number 2C and the four-character name Fool. If a parameter is an expression, it
will include its own operations and may be arbitrarily long. Notice that it takes two external hexa­
decimal digits to fill one internal memory character with data.

LOAD ITEM DESCRIPTIONS

Each separate load item is defined by an 8-bit operation code that appears in bit format as the
second entry on the title line of the descriptive paragraph. Parameters follow the operation code if
they exist. The names of the parameters give a general indication of their use. It is not always
possible to say how long a parameter will be. Variable-length parameters will always have lengths

1 In general, if A is the address of the beginning of the current load module, the relation

ALC - A• RLC

will always hold. That is, the ALC and the RLC always move in tandem.
2To undentand the distinction between internal and external characters, reread the section on the absolute load file
in Chapter 25.

Digitized by Google Original from

UNIVERSITY OF MICHIGAN

126 EC LOADER

or explicit stopping operations attached to them. Some parameters will be buried in the operation
code.

DATA LOAD 11'EMS

Load Absolute 0000cccc Data
The count field cccc has one added to it to give the number of internal characters of data to
be loaded. The rest of the item consists of the numeric data to be loaded without relocation
at the current ALC. The ALC and the RLC are advanced past the loaded data.

Load Word with Relocation 00010000 Data
The load counters are advanced to an even-character boundary if they are not on one, the
8-digit load data item is loaded into the next four characters, its low two characters are
relocated by the start of the module, and the load counters are advanced.

Load Expression 0001 l0ww Expression
The width parameter ww has one added to it and that many character positions are loaded
from the argument expression. The expression is calculated in 32 bits and the low portion is
used as necessary. Load counters are advanced past the loaded data.

Load Relative to Symbol 000101 Ol Symbol Data
The location counters are advanced to the next even boundary if they are not on one .. The
eight digits of data are loaded. The low two characters of the data in memory are relocated
by adding the value of the symbol whose number is the first argument. The symbol number
occupies two digits if l is 0 and four digits if l is 1. Relocation must be by a relocatable
symbol, but the symbol value need not be defined yet.

LOAD TIME EXPRESSIONS

Expressions to be evaluated at load time are calculated in a 32-bit-wide accumulator that is always
tagged with a type (either absolute or relative). The string of load items defining a load expression
may be arbitrarily long and always ends with an Expression End operator. Only symbols whose
values are already defined may be used in an expression and only the type combinations in Table
26-1 are legal. The last combination is legal only if both items are from the current module. The
accumulator is usually initialized with an absolute zero.

Arithmetic Operation 001 0lsot Operand
If the o bit is zero, the operation is an add; otherwise it is a subtract. If the s bit is zero, the
operand is a constant and the t bit determines if the constant is absolute (t=0) or relative
(t=l); otherwise the operand is a symbol number. The l bit determines if the operand takes
two (l=0) or four (l= 1) digits. The called-for operation is performed and the accumulator
type and value set as appropriate.

Table 26-1 Legal Accumulator Combinations

Accumulator Type Operator

Absolute +
Absolute +
Relative +
Absolute
Relative
Relative

Digitized by Google

Operand Type Re,ult Type

Absolute Absolute
Relative Relative
Absolute Relative
Absolute Absolute
Absolute Relative
Relative Absolute

Original from
UNIVERSITY OF MICHIGAN

127 EC LOADER

Set Accumulator to RLC 00110000 None
The current value of the accumulator is ignored and the accumulator is set to the current
value of the RLC as a relative value.

End Expression 00110001 None
The current expression ends and the value in the accumulator is its value.

DEFINED SYMBOLS

Symbols generally must be declared before use, and declaration associates an internal loader symbol
number with the name. Symbol numbers can be used only once within any one module. Definitions
may occur throughout the module. Symbol names may be any length from O to 255 characters. A
symbol name consists of a two-digit length field followed by the characters in the name. At the end
of the module all but external and map symbols must be removed from the loader's symbol table.

Define External Symbol 0l0lt000 Number Expression
The external symbol whose number is given by the first argument is given the value of the
second argument. The symbol number is two digits long if I is O and four digits long other­
wise. The symbol is absolute if bit t is O and is relative otherwise. The types of the defining
expression, of the symbol already declared in the table, and given by parameter t must all be
the same. Any references to the symbol should be filled in at the time of definition.

Define Map Symbol 0 1 00t00 1 Name Expression
The argument expression is evaluated and assigned to the argument name for later output on
the map. The type of the symbol is absolute if tc:0 and relative otherwise.

Define Forward Reference 010lt01h Number Expression
The forward reference whose number is given by the first argument is defined by the argu­
ment expression. The length of the reference number is two digits if l=0 and four digits
otherwise. The symbol is absolute if t=0 and relative otherwise. If h=0, then the forward
reference is held in the symbol table; otherwise the reference is deleted after definition.

Declare External Reference 0lllt00p Number Name
The symbol with the argument name is declared with the symbol number given by argu­
ment number as a reference to an external symbol in another module. If l=0, the symbol
number is two digits long; otherwise it is four. The type is absolute if t=0 and relative
otherwise. If p=0, the reference is primary and must be searched for and satisfied; otherwise
the reference is secondary and need be satisfied only if the symbol is defined for another
reason.

Declare Forward Reference 011lt010 Number
A forward reference with symbol number given by the argument is declared. If t=0, the
number length is two digits; otherwise it is four. The symbol is absolute if t-0 and relative
otherwise.

Declare External Name 011lt011 Number Name
The symbol with name given by the second argument and number given by the first argu­
ment is declared as an external symbol that will be defined in this module. External declara­
tions must be the first items in the module. The symbol number is two digits long if l=0 and
four otherwise. The type is absolute if t=0 and relative otherwise.

Define Procedure Types 01110100 Number Count Type1 · · · TypeCount
The symbol whose number is the first argument is given a chain of types whose length
is given by the two-character second argument. The symbol number is two digits long if
l=0 and four otherwise. Each type is one character long. The symbol must have been de-

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

128 EC LOADER

clared as an external name to be defined in this section. This command and the next can be
used by the Easy compiler to check that external procedures have the correct number and
types of arguments. The compiler must establish a coding of possible argument types into
integers that holds over all compilations.

Check Procedure Types 01110101 Number Count Typel · · · TypeCount
The arguments to this function are the same as those to Define Procedure Types except that
the symbol must be an external reference from the current module. The types mentioned
here are compared with those of the referenced symbol, and if the match is not exact,
a fatal load error is announced.

MISCELLANEOUS OPERATIONS

Set Start Address 10010000 Expression
The argument expression, which must be relative, is used to set the start address for the
load. This operation must occur exactly once in a load. There is a fatal load error otherwise.
The start address should be noted on the map by using some made-up name.

Set to Even 10100000
Move both location counters to the next even address if they are not at one.

Set to Word 10110000
Move both location counters to the next higher word address if they are not at one.

Set Location Counters 11000000 Expression
Set both location counters to the value of the expression, which must be relative and greater
than or equal to zero. Remember that ALC-start = RLC.

Pad 11010000
Ignore this operation. This operation may occur in expressions.

End Module 11111111
End the current module. If this command does not occur on a physical record with a 1 in
character 1, report a fatal load error.

AN EXAMPLE PROGRAM

To clarify some of these ideas, we present a sample program in EC-1 assembly language and its load
module as generated by a hypothetical assembler. The program itself is unimportant, but many
loader features are demonstrated. The assignment of name numbers to names would probably be
more consistent if done by a real assembler. Load code is shown without its physical-record controls
and boundaries and with comments tying it to the assembly language .

•
•
•
•
•
•

•

This pro1ram tests the Pylha1orean relation on the values stored al
X, Y. and Z. The external procedure Square is used lo calculate
the square or a value and is entered one word past its head. The
symbol Good goes on the map only .

DEF Pythagoras
REF Square
MAP Good

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

129 EC LOADER

•
Add FAR,2 1

BCRR,0 •15
Pythagoras L,1

BAL, 15
LR,2

X
Square+4
1

Good

True
False
X
y

z

L, 1 y

BAL,15 Square+4
BAL,15 Add
L, 1 Z

BAL,15 Square+4
FSR, 1 2
BCS,1 Good
SVC,7
SVC,0
SVC,7
BCRR,0
DSC
DSC
DSF
DSF
DSF

False
0
True
•14
'T'
'F'
3 .
4 .

5.

Add register 1 lo register 2 and
return via register 15.
Square X.
Into register 1.
Save it in register 2.
Do the same for Y
and add it in
lo the sum.
Now square z. subtract
the running sum. and lest
for zero.

Print ' F' and quit.

Print 'T' and exit via

register 14.
Define a character constant .

'

Define a real constant.

END Pythagoras

Now the load language. All numbers are hexadecimal.

8B 01

88 02

03 1821890F

48 01

30
31
7A 0201

15 0201

14 02

01 0021
7A 0202
15 0202
1-4 02

0BPylha1oras

06Square

0lX

20100000

2AF00004

20100000
0AF00004

The external name Pylhaaoras must be declared
first.
Routine Square is a primary reference which must
be loaded.
The FAR and the BCRR can be loaded without any
relocation since they are absolute instructions.
The value or Pythagoras is defined by the
following expression.

The symbol Xis a forward reference and for
variety's sake we give it a four digit symbol
number.
This L operation needs lo be relocated by X when
X is defined.
Similarly. the BAL needs relocation by Square.
Nole that the offset need not be zero.
The LR is two characters or absolute data.
Symbol Y is handled like X.
So is the second load.
Another BAL lo Square.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

130 EC LOADER

10 OAFOOOOO

7A 0203
15 0203
14 02
01 1912
7A 0204
15 0204
7A 0205
15 0205
03 2EOOOOOO
49 04Good
30
31
5A 0204
30
31
7A 0206
15 0206
01 890E
5A 0206

30
31
00 54
5A 0205
30
31
00 46
BO

5A 0201
30
31
03 41300000
BO
5A 0202
30
31
03 41400000
BO
5A 0203
30
31
03 41500000
90
25 01
31
FF

20100000
OAF00004

28100000

2E700000

2E700000

The BAL to Add can be done with a normal
relocation and it is just happenstance that the
orrset is zero.
Declare Z.
Load the L operation.
The final call to Square+4.
FSR can be loaded absolutely.
Declare the label Good.
Load the branch on zero.
Form a declaration for False.
A SVC to write False.
The exit SVC is absolute.
Remember that Good is a map symbol.
The expression is just the relocation counter.

Forward reference 0204 is also defined as Good.

True is the last forward reference necessary.
The SVC to print True.
The final branch is absolute.
The definitions for these last forward
references should be all just loads of the RLC.

And the data can be loaded absolutely.

Each of the floating constants requires a word
boundary.

The hexadecimal for floating 3.

The program start address is Pythagoras.
Its symbol number is 01.

End the module.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

131 EC LOADER

Statement of the Theme Build EC Loader. The input should be a series of relocatable object
files and the output both an absolute load file and a load map. Be sure to flag load errors. The map
should appear sorted both by name and by address. Symbols on the map should include external
symbols and references and defined map symbols. Indicate also the extent of each module.

Performance Practice Most loaders spend their time in two ways: doing input/output and
manipulating the symbol table. Because there is a great deal of data to read and write, there is a
lower limit on input/output time. In any case, the emphasis here is not on techniques to improve
input/output, and a higher-level language probably will not help much. But the symbol table opera­
tions can be improved by careful thought. Arrange your loader so that new symbol table routines
can be switched in and out easily. Write a simple table handler, debug the whole loader, and then
try to improve symbol manipulation.

Past experience indicates that you should begin work on your test programs early. Turning assembly
language into load modules is harder than it looks. You may want to use the assembler for EC-1
that was suggested as a debugging tool in Chapter 25. Try to exercise every operation at least once.

Orchestration Use a high-level procedural language. There is some bit picking, but it is not over-
whelming in terms of language choice. Remember that variable-length records must be read.

Playing Time Six weeks for one person; 3 weeks for two or three people. Each person partic-
ipating must write one relocatable-object test deck.

REFERENCES

Barron, D. W. Assemblers and Loaders. Macdonald, London, 1969.

Presser, Leon, and John R. White. "Linkers and Loaders." Comput. Surveys, 4, 3, pp. 149-167, 1972.

Barron is a simple introduction to assembly and loading. The loader described is similar to ours, and imple­
mentation details are given. Presser and White describe the system used on the IBM 360. The 360 does not
have the need for relocation that other systems do; the concentration is on linking.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

27

or ...

A COMPILER FOR AN
ALGEBRAIC LANGUAGE

A compiler is always a large program. To write one from scratch, even in a pedagogical environment,
is a major undertaking. Although Easy is designed to reduce the pain while providing as much en­
lightenment as possible, this still is the hardest problem in the book. Do not tackle it unless you
(and some helpful friends) have plenty of time and energy.

THE EASY LANGUAGE

Easy is a general-purpose, procedural, algebraic programming language. Its roots lie in ALGOL,
ALGOL 68, and PASCAL. Like them, it is designed to be compiled, loaded, and executed on a
reasonably conventional computer (the EC-1 described in Chapter 25 is a good example). The
syntax is described by a context-free grammar suitable for parsing by LR(l) techniques. The seman­
tics are similar to the languages described above, and we will let an informal description suffice,
trusting to the reader's skill to fill any gaps. In the text below, logically connected portions of the
grammar are described with the associated semantics.

COMPILATIONS

(compilation) : := (program segment)
I (compilation) (program segment)

(program segment) : := (main program)
I (external procedure)

A (compilation) is a string of self-contained (program segment) s; each segment is either a
(main program> or an (external procedure). All the segments of a (compilation) will be associated
together by the loader, but it is not necessary that all segments needed to complete a load be com­
piled together. A load must contain exactly one (main program).

132

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

133 EASY DOES IT

PROGRAMS

(main program> : := (program head) (program body) (program end)
(program head) : := PROGRAM <identifier) :
(program body) : := (segment body)
(program end) : := END PROGRAM <identifier> ;

Each (main program) is named and the closing name must match the opening. The (program body)
is, in common with most of the other grouping statements, a (segment body) and may contain all
of the normal features of a program. We might as well note here that reserved words, identifiers,
and constants must not be broken over record boundaries and must be separated one from another
by blanks, operators, comments, or record ends.

EXTERNAL PROCEDURES

<external procedure) : := (external subprogram)
I (external function)

(external subprogram) : := (external subprogram head) :
(external subprogram body)
(external subprogram end)

(external function) : := (external function head) :
(external function body>
(external function end)

<external subprogram head) : :• EXTERNAL PROCEDURE
<external procedure name)

(external function head) : := EXTERNAL FUNCTION
(external procedure name)
(external type)

(external procedure name) : := (identifier)
I (identifier) (external parameter list)

(external parameter list) : := (external parameter head>)
(external parameter head) : := ((external parameter)

I (external parameter head) ,
(external parameter)

(external parameter) : := (identifier) (external type)
I (identifier) <external type) NAME

(external type) : := (basic type)
(external subprogram body) : := (segment body)
(external function body) : := (segment body)
<external subprogram end) : := END EXTERNAL PROCEDURE (identifier) ;
<external function end> : := END EXTERNAL FUNCTION (identifier) ;

The (external procedure)'s offer the ability to compile separate modules and link them together
at load time. Only one (external procedure) of a given name can occur in any one load. The
(external parameter)'s and the return values of (external function)'s can only be of one of the
(basic type)'s. The (formal parameter)'s are call by value unless tagged by the reserved word NAME,
in which case they are call by name. Each (external subprogram) has an implicit (return statment)
before the (external subprogram end), but (external function)'s must exit via an explicit
<return statement) with a returned value; thus it is a semantic error, sometimes detectable during
compilation, to exit an (external function> through its end. There is no connection between the

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

134 EASY DOES IT

variables within an (external procedure} and any variables in a calling procedure except through the
argument passage mechanism. However, when segments are linked together (probably by a re­
locating loader like that of Chapter 26), the linking mechanism will check that parameter, argu­
ment, function, and return types match.

Several of the important differences between Easy and current languages show up in the description
of (external procedure}'s. Any commercial language would provide a method for sharing declara­
tions of all sorts between (program segment}'s. Such sharing adds considerable complexity without
commensurate educational rewards and the same holds for more general argument types for
(external procedure) 's. On the other hand, commercial languages often do not allow call by name
on grounds of expense, whereas we feel that the student who masters the call by name parameter
passage mechanism will be untroubled by any other. Easy is wordier than similar languages be­
cause recent research shows that well-distributed redundancies are a big help in correcting syntax
errors. Similarly, the Easy programmer must explicitly distinguish between subroutine and function
declarations. Although the compiler could deduce the difference, the language forces the pro­
grammer to state clearly the intention of the coding. 1 Finally, Easy allows the compiler and loader
to check all type matching, following the dictum that the run-time system should do as little as
possible.

SEGMENTS

(segment body} : := (type definition part} (variable declaration part}
(procedure definition part}
(executable statement part)

(type definition part} : :=
I (type definition part} (type definition}

(variable declaration part) : :=
I (variable declaration part}

(variable declaration}
(procedure definition part} : :=

I (procedure definition part}
(procedure definition>

(executable statement part} : := (executable statement}
I (executable statement part>

<executable statement}

A (segment body} consists of at least one (executable statement} optionally preceded, in order, by
(type definition> 's, (variable declaration} 's, and (procedure definition> 's. The scope of any name is
the entire remaining body of the segment and may be used in the following definitions and declara­
tions. No name may be declared or defined more than once in a (segment body}, and as in ALGOL,
a name may be redefined or redeclared in an inner (segment body}.

TYPES

(type definition} : := TYPE (identifier} IS (type} ;
(type} : := (basic type} ·

1 One of the chief difficulties in proving programs correct is extracting what the program is intended to do from
what the programmer wrote as imperative commands. Since the notion of correctne~ depends on matching intent to
performance, any help in recovering intent is valuable. The Easy distinction between functions and subroutines is a
small step in this direction. Also note that good programming practice suggests that no procedure should be used
both as function and as subroutine and that Easy simply enforces the rule.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

135 6ASY DOES IT

(arrayed type)
(structured type)
(type identifier)

<basic type) : := INTEGER
I REAL
I BOOLEAN
I STRING

(arrayed type) : := ARRAY (bounds) OF (type)
(bounds) : : = [(bounds expression)]

I [(bounds expression) : (bounds expression)]
<bounds expression) : := (expression)
<structured type) : := STRUCTURE (field list) END STRUCTURE
(field list) : : = (field)

I (field list) , <field)
(field) : := FIELD (identifier) IS (type)
(type identifier) : := <identifier)

A (type definition) abbreviates a (type) with a single (identifier) and the abbreviation can be used
in the future where a (type) could be. The types include the built-in (basic type) 's, array building
(arrayed type)'s, structure building (structured type)'s, and abbreviated (type identifier)'s. The
INTEGER and REAL (basic type)'s may use the hardware integer and real types and follow all
the normal rules. The BOOLEAN (basic type) consists only of the two constants TRUE and FALSE.
Items typed STRING are arbitrarily long strings of characters where "arbitrary" may be implemen­
tation dependent but should always be at least several thousand.

Arrays are single dimensional but may be of arbitrary (type) so that arrays of arrays of arrays
of · · · may be declared. If no explicit lower bound for an array is given, the lower bound is one.
The (bound expression> 's may be arbitrarily complicated as long as they are reducible to integers.
They may only contain variables declared in surrounding (segment body)'s (not in the current
(segment body)) or in the formal parameters of a surrounding procedure. The upper bound of a pair
must be no less than the lower bound. The compiler should check where possible, but, in general,
this will require a run-time check. Different instances of the same (arrayed type) are not regarded as
the same (type) for the purposes of compile-time type checking. However, an (arrayed type) may be
named with a (type identifier) to allow such type reuse.

A (structured type) is similar to a record in PASCAL. The field <identifier)'s are used as selectors
for items of the field (type) 's. Because of the recursive definition, structures may have substructures.
A particular (identifier) can name only one (field) in a (structured type) but can be reused as a
variable name or the name of a field in another (even subordinate) (structured type).

DECLARATIONS

(variable declaration) : := DECLARE (declared names) (type) ;
(declared names) : := (identifier)

I (declared names list))
(declared names list) : := ((identifier)

I (declared names list) , (identifier)

A (variable declaration) gives to the (identifier)'s in its (declared names) its (type). The (identifier)'s
are not initialized. A name (except for a field selector) can have at most one definition or declara­
tion in a (segment body).

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

136 EASY DOES IT

INTERNAL PROCEDURES

(procedure definition) : := <subprogram definition)
I (function definition)
I (external subprogram definition)
I (external function definition)

{subprogram definition) : := {subprogram head) : <subprogram body)
(subprogram end)

(function definition) : := {function head) : {function body) {function end)
(external subprogram definition) : := {external subprogram head) ;
(external function definition) : := (external function head) ;
{subprogram head) : := PROCEDURE (procedure name)
<function head) : := FUNCTION (procedure name) {type)
{subprogram body) : := {segment body)
{function body) : := {segment body)
{subprogram end> : := END PROCEDURE <identifier) ;
{function end) : := END FUNCTION <identifier) ;
{procedure name) : := (identifier)

I {identifier) <internal parameter list)
<internal parameter list) : := <internal parameter head))
<internal parameter head) : := ((internal parameter)

I {internal parameter head) , <internal parameter)
{internal parameter) : := <identifier) {type)

I (identifier) {type) NAME

There may be only one procedure of a given name defined immediately in any one {segment body).
An {external subprogram) or {external function> definition supplies only the heading because an
{external procedure) in the same or a different {compilation) will supply the body. The local defini­
tion and the eventually supplied procedure must match exactly in procedure name, order, type,
and mode of formal parameters, and this correspondence will be checked by the loader. Remember
that parameters to an {external procedure) must be of a {basic type).

The definition of local procedures is similar. The {internal parameter)'s may be of any (type), as
may be the return value of a function. A subprogram has an implicit <return statement) before its
end, but a function must be exited by an explicit {return statement> with a value. The parameters
are normally call by value but are call by name if marked with NAME. The procedures themselves
are like ALGOL procedures and are fully recursive. A {procedure name) may not be used before it is
declared.

EXECUTABLE STATEMENTS

{executable statement) : := (assignment statement)
I {call statement)
I <return statement)
I {exit statement)
I {conditional statement)
I {compound statement)
I <iteration statement)
I <selection statement)
I <repeat statement)
I (repent statement>

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

137 EASY DOES IT

<input statement)
(output statement)
<null statement)

Because the ALGOL 68 forms of the conditional and iteration statements are used, there is no
need to have several separate syntactic classes of statements. Statements are all terminated with
semicolons.

ASSIGNMENTS

(assignment statement) : := SET (target list) (expression) ;
(target list) : := (target)

I (target list) (target)
(target) : := (variable) <replace)
<replace) : := :=

In an (assignment statement>, the (type) of all the (target)'s and of the assigned (expression> must be
the same. The (target)'s are evaluated from left to right to find the storage locations and only then
is the expression evaluated to calculate the stored value. Structures and arrays may be assigned if
(type)'s are identical. The use of the keyword SET is an example of Easy's wordiness. This partic­
ular redundancy aids correction when other keywords are misspelled (a common user error).

PROCEDURE CALLS

(call statement) : := CALL (procedure reference) ;
(procedure reference) : := (procedure identifier)

I (procedure identifier) (actual argument list)
(procedure identifier) : := (identifier)
(actual argument list) : := (actual argument head))
(actual argument head) : := ((expression)

I (actual argument head) , (expression)

Only defined procedures that include the (call statement> in the range of their names may be called.
The actual arguments must correspond exactly in number, order, and type with the procedure's
formal parameters. After the (return statement) enclosed in the called procedure is executed, con­
trol passes to the statement following the call. The keyword CALL is used for the same reason as
SET in the (assigned statement).

RETURNS

<return statement) : := RETURN ;

I RETURN (expression) ;

A <return statement> may occur only in a procedure and causes return of control to the caUing
statement. There is an implicit (return statement) at the end of subprograms. Subprogram returns
must be without value and function returns must be with a value of the same type as the function.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

138 EASY DOES IT

EXITS

(exit statement) : := EXIT ;

This statement causes a tidy exit from the entire program and a return to the supervisor. It must be
the last statement executed-not written-in a (program).

CONDITIONALS

(conditional statement) : := <simple conditional statement)
I OabeD (simple conditional statement)

(simple conditional statement) : := (conditional clause) (true branch> FI ;
I (conditional clause) (true branch)

(false branch) FI ;
(conditional clause) : := IF (expression)
(true branch) : := THEN (conditional body)
(false branch) : := (else) (conditional body)
(else> : := ELSE
(conditional body) : := <segment body)

A (conditional statement> selects and executes its (true branch> or its (false branch>, depending on
whether the (expression>, which must be Boolean, is true or false. Each branch is a (segment body)
and may contain all needful definitions, declarations, and statements without any further brack­
eting. Control passes to the statement following the conditional after execution of the selected
branch.

COMPOUNDS

(compound statement) : := (simple compound)
I OabeD (simple compound)

(simple compound) : := (compound head) (compound body) (compound end)
(compound head) : := BEGIN
(compound body) : := (segment body)
(compound end> : := END ;

I END <identifier) ;

There is little need for a (compound statement) in Easy because of the rest of syntax. However, it
is useful with REPEAT and REPENT statements. Declarations and definitions begin (optionally) a
compound. If a trailing (identifier) is included, there must be a (labeD and the (identifier) must
match the <labeD.

ITERATIONS

<iteration statement) : := (simple iteration statement)
I Gabel) <simple iteration statement)

(simple iteration statement) : := (iteration head) (iteration body>
(iteration end)

<iteration head) : := (for) (iteration target) (control) DO
(iteration body) : := (segment body)

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

139 EASY DOES IT

<iteration end> : := END FOR ;
I END FOR (identifier) ;

<for) : := FOR
<iteration target) : := (variable) <replace)
(control) : := (step controD

I (step controD (while controD
(step controD : := <initial value) (step)

I (initial value) 0imit)
I (initial value) (step) (limit)

(initial value) : := (expression)
<step) : := BY (expression)
(limit) : := TO (expression>
<while controD : := WHILE (expression)

The easiest way to explain the effect of the (iteration statement) is to write a small piece of "meta­
Easy" that will replace the (iteration statement). This "definition" as given in Figure 27-1 should be
applied to the (iteration statement) to find its effect. The "definition" does imply recalculation of
the (target>, (limit>, and (step> at each iteration. The predicate "exists" is a meta-Easy way to ask
about the exact options used in a particular (iteration statement). If the closing <identifier) is used,
it must match the (necessarily existent) (label>.

Pedagogy overwhelms practice once again in the definition of Easy (iteration statement) 's. The
dynamic redefinition of control values is inherited from ALGOL; most other languages avoid it
because of the cost. But if you can implement dynamic definition, you will have learned more
than enough to build simpler static iterations. The stepping iteration and the while iteration are
combined in one statement to make Easy a smaller language; a practical language might separate
them. Be careful to reevaluate the (iteration target> on each cycle; if it is a formal parameter or an
array element, reevaluation may select a different specific variable during each iteration.

SELECTION

<selection statement) : := (simple selection)
I (label) (simple selection)

<simple selection) : := (selection head) (selection body) (selection end)
<selection head) : := SELECT (expression) OF
(selection body) : := (case list)

I (case list) (escape case)
<selection end> : : = END SELECT ;

I END SELECT (identifier> ;
(case list) : := (case)

I (case list) (case)
<case> : := (case head) (case body)
(case head) : := CASE (selector) :
(selector) : := (selector head>)
<selector head) : : = ((expression)

I (selector head) , (expression)
(escape case) : := (escape head) (case body)
<escape head)::= OTHERWISE:
(case body) : := (segment body)

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

140 EASY DOES IT

SET <iteration target) :- (initial value);
top: IF (while control) exista

THEN SET stoploop :• NOT (while control);
ELSE SET stoploop :• FALSE; FI;

IF stop loop THEN GOTO end; FI;
IF (limit) exista & ((iteration target)> Gimit))

THEN GOTO end; FI;
(iteration body)
IF <step) exista

THEN SET stepvalue :• <step);
ELSE SET stepvalue :• 1; FI;

SET (iteration target) := (iteration target)+ stepvalue;
GOTO top;

end: · · ·

Figure 27-1. Meta-E08y to Define the (iteration ,tatement)
to Find It, Effect. The "definition" does imply recalculation of
the (target).

A (selection statement) operates as follows.

The (expression} in the (selection head) is evaluated.

The (case) 's in the (case list) are processed from first to last.

For each (case), the (expression)'s in the (selector) are evaluated one by one from left
to right. As each (expression} is evaluated, its value is compared with the value of the
original (expression} in the (selection head). If the two are equal, the corresponding
(case body) is executed and control then passes out of the (selection statement> to the
next (statement) in sequence without any further activity.

If no (case) is selected and if there is an (escape case>, then the (case body> of the
(escape case> is executed and control passes out of the <selection statement>. Otherwise
the (selection statement) has no effect beyond side effects of the various expression
evaluations.

The types of all (expression>'s used to select a (case) must be the same. If an (identifier) is used in
the (selection end), it must match the (necessarily existent) (label> on the (selection statement>.

REPEAT AND REPENT

<repeat statement) : : = REPEAT (identifier) ;
(repent statement) .: := REPENT (identifier) ;

A <repeat statement) causes a transfer of control back to the beginning of the enclosing statement
body labeled with (identifier). All intervening surrounding segment bodies and the statements of
which they are a part are terminated as if they had been exited normally from the bottom, and all
associated storage is destroyed. The (label> transferred to must be in the same procedure as the
(repeat statement). If there is no such surrounding labeled statement, the (repeat statement> is
semantically in error. The (repent statement) has the same semantics with the exception that control
passes to the point immediately following the surrounding labeled statement rather than to the head
of that statement. Notice that a (repeat statement> causes reexecution of the statement to whose
head control was transferred.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

141 EASY DOES IT

INPUT AND OUTPUT

(input statement) : := INPUT (input list) ;
(input list) : := (variable)

I <input list) , (variable)
(output statement) : := OUTPUT (output list) ;
(output list) : := (expression)

I (output list) , (expression)

The (input statement) causes transmission of data items from the input stream to the (variable)'s
in the (input list). Input items may be of only the basic types, and they must match in type the
corresponding variable. An input item has the same appearance as a constant of the same type.
Items on the input stream must be separated by blanks or new record characters.

The (output statement) similarly causes transmission of its (output list) (expression)'s to the output
stream. The (expression>'s must be of the basic types, and the exact format on the output stream is
up to the implementor as long as the values can be read back in again. Each (output statement)
writes a new record character on completion.

NULLS AND LABELS

<null statement) : := ;
Gabel) : := (identifier) :

The (null statement) causes no action. A (labeD is an (identifier), is declared by use, and may not be
declared or defined except as a field selector in the same (segment body>.

EXPRESSIONS

(expression) : := (expression one)
I (expression) I (expression one)
I (expression) XOR (expression one)

(expression one) : := (expression two)
I (expression one) & (expression two)

(expression two) : : = (expression three)
I NOT (expression three)

(expression three) : := (expression four)
I (expression three) (relation> (expression four)

(expression four) : : = (expression five)
I (expression four) II (expression five)

(expression five) : := (expression six)
I (expression five) (adding operator) (expression six)
I (adding operator) (expression six)

(expression six) : := (expression seven)
I (expression six) (multiplying operator)

(expression seven)
<expression seven) : := FLOOR ((expression))

I LENGTH ((expression))
I SUBSTR ((expression) , (expression) ,

(expression))

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

142 EASY DOES IT

CHARACTER ((expression))
NUMBER ((expression))
FLOAT ((expression))
FIX ((expression))
(expression eight)

(expression eight) : := (variable)
I (constant)
I (function reference)
I ((expression))

Expressions operate in a fairly standard way. The operators I, XOR (exclusive or),&, and NOT all
must have Boolean operands. The equality and inequality (relation)'s may hold between any two
items of the same type. Strings may be compared to strings with any of the (relation)'s. Two strings
are equal if and only if they are exactly the same, and string A is less than string B if a prefix of A
is equal to a prefix of B and there are no more characters in A or the next character of A is less than
the next character of B in the collating sequence. Any two integers or reals may be compared by
using any (relation>; integers are implicitly converted to real if compared to reals. The result of any
comparison is always of Boolean type.

Only integers and reals may be combined by using (adding operator)'s and (multiplying operator)'s.
If an integer is combined with a real, the integer is converted to real prior to the operation. Real
numbers may not be used in the MOD operation; in a divide or MOD operation involving only
integers the quotient is always chosen so that the remainder is nonnegative. The operands of the
catenation operator 11 are normally strings and the value is a string; reals, integers, and Booleans are
converted to their output string form before the operation.

The FLOOR function takes a real as argument and returns as value the real both integral and not
more than the argument. The LENGTH function takes a string as argument and returns its length
as an integer. The first argument of the SUBSTR function is a string, and the value is a substring
whose first character (counting from zero) is named by the second integer argument and whose
length is given by the third integer argument. The CHARACTER function takes as argument an
integer and returns a single character string whose character is indexed by the argument in the
collating sequence. The NUMBER function returns as integer value the index in the collating se­
quence of the first character of the argument string. The FLOAT function converts its integer
argument to a real value, and the FIX function converts its real argument to an integer value.
SUBSTR, FIX, and CHARACTER may cause run-time errors.

VARIABLES

(variable) : := (identifier)
I (variable) . (identifier)
I (variable) [(expression)]

A (variable) is a simple (identifier), a (variable) with a field selector, or a (variable) with an array
subscript. Of course, all (variable)'s must be declared. An (identifier) is a terminal syntactic item. It
must begin with an upper- or lowercase alphabetic and may continue with an arbitrary number of
alphabetics and decimal digits. Reserved words may not be used as (identifier> 's, and both reserved
words and (identifier) 's must be separated from other nonoperator lexical items by at least one
blank, comment, or new line character. No lexical item may be broken across a record boundary.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

143 EASY DOES IT

CONSTANTS

(constant) : := (integer constant)
I <real constant)
I (boolean constant)
I (string constant)

(boolean constant) : := TRUE
I FALSE

An (integer constant> is an unbroken string of decimal digits and must be separated from other non­
operator lexical items by at least one blank, comment, or new line character. A <real constant) is an
unbroken string of decimal digits, followed immediately by a period, followed optionally by
another decimal string. Otherwise (real constant)'s follow the same rules as (integer constant)'s.
A (string constant) is a double quote " , followed by an arbitrary string of characters not in­
cluding a double quote, and terminated by a double quote. Double quotes may be included in
(string constant>'s by adding pairs; for example, 1111 "" is the string of exactly one double quote.
Otherwise (string constant)'s operate like (identifier)'s. In particular, new line characters may not
appear in strings.

FUNCTION CALLS

(function reference) : := (function identifier) ()
I (function identifier) (actual argument list)

(function identifier) : := (identifier)

A (function identifier) is an ordinary (identifier) that occurs in some function definition. Functions
with no arguments are called with the fl.I'st form of the (function reference).

LEXICAL ITEMS

<relation) : := <
I >
I -
I < =
I > =
I < >

(adding operator) : := +
I -

<multiplying operator) : := *
I /
IMOD

Operators also include :, ;, (,), ,, [,] , &, I, II, and :=, and do not include XOR, NOT, and MOD
for separation purposes. Comments begin with /*, continue with any string not including * /, end
with*/, and may appear wherever a separator blank may appear. Comments act as separators.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

144 EASY DOES IT

AN EXAMPLE PROGRAM

The following program illustrates some Easy features. It would be extremely difficult to pack every
possible usage into a few lines, but PROGRAM Eratosthenes should give some flavor of the lan­
guage. It might also be used as a test program for compilers, since its output is so obvious and yet it
does a nontrivial computation. Perhaps the only real trickiness (stolen from ALGOL) is the use of
the loop controls to do all the calculations of interest inside FUNCTION integersqrt. Here is the
program.

PROGRAM Eratosthenes: .
/• This example EASY program reads an input integer lopnum and then

uses the Sieve of Eratosthenes (see Chapter 15) lo build
a table of all the primes between land lopnum and lo print lhal
table.

DECLARE lopnum INTEGER;

FUNCTION abs(x REAL) REAL:

/• This function returns the real absolute value of its real
argument.

IF x < 0 THEN RETURN -x; ELSE RETURN x; Fl;

END FUNCTION abs;

FUNCTION inlegersqrt(a INTEGER) INTEGER:

j• This function lakes an integer as argument and returns as value
the floor of the square root of the argument.
The FOR loop which calculates the square root is simply
Newton's approximation. The last FOR loop makes sure
that the integer value calculated is really the floor of
the square root of a. Notice the rather tricky use
of the iteration and the null subject statements.

SELECT TRUE OF
CASE (a< O): OUTPUT "a< 0 in FUNCTION inlegersqrl . "; EXIT;
CASE (a = 0) : RETURN O ;
CASE (a > 0):

DECLARE (x, ra) REAL;
DECLARE epsilon REAL;
DECLARE sqrt INTEGER;
SET ra := FLOAT(a);
SET epsilon := O.OOOOOOt•ra;

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

145 EASY DOES IT

FOR x := ra/2. BY (ra/x-x)/2. WHILE abs(ra-x•x) > epsilon
DO; END FOR;

FOR sqrt := FIX(x)-1 BY 1 WHJLE (sqrl+t)•(sqrt+l) <= a
DO; END FOR;

RETURN sqrt;
END SELECT;

END FUNCTION integersqrt;

INPUT lopnum;
IF lopnum > 0 THEN

DECLARE sieve ARRAY(l:lopnum] OF BOOLEAN;
DECLARE (i. limit. count) INTEGER;
FOR i := 1 TO lopnum DO SET sleve(i] := TRUE; END FOR;
SET limit := inte1ersqrl(lopnum)+l; j• Avoid repealing square root •j
FOR l : = 2 TO I i mi l DO

IF sieve(l] THEN
DECLARE j INTEGER;
FOR j := 2•1 BY i TO topnum DO SET sieve(j] := FALSE; END FOR;

FI ;
END FOR;
SET count := O:
FOR i := l TO lopnum DO

IF sieve(i] THEN
SET count :=count+ l;
OUTPUT "Prime[" 11 count 1 1 "] - " 11 i:

FI ;
END FOR;

ELSE
OUTPUT "Input va I ue " I I topnum I I " non-positive.";

FI ;
EXIT;

END PROGRAM Eratosthenes:

THE EXECUTION ENVIRONMENT

Easy will require a fairly elaborate run-time support system. Because of the recursive procedures,
an activation stack will be needed. Because of the strings, a heap is necessary. Because of the input/
output statements, some contact with the supervisor will be required. For big implementations,
these functions would probably be found in a library of run-time routines. Such routines, however,
entail more work than is necessary for this project. You may want to provide these services through
supervisor calls to a monitor routine that can be written in your favorite language.

Statement of the Theme Write a compiler for Easy that will generate relocatable object code
for the EC-1 computer or some other computer (see Chapter 25). Test your compiler by writing
some Easy programs, compiling them, loading them with the EC Loader (see Chapter 26), and
ruMing them on the EC-1. Be sure that the compiler accepts all syntactically and lexically correct

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

146 EASY DOES IT

programs and detects all incorrect ones (semantic errors may terminate compilation of otherwise
valid programs). Error handlers need not correct errors or continue compilation, but they should be
precise about the causes and locations of errors. Listing output can be primitive, since there will be
other details to worry about. Document carefully the order in which you did the work and what
troubles you had.

Performance Practice This is the largest project in the book. Completion will require you to
take advantage of all the help that you can get. Generally projects are designed so that you build
the whole program from the ground up, but in this case you should use all available compiler con­
struction tools. In particular, syntactic analysis routines driven by grammar descriptions are now
quite common and can save considerable time. You should program in a higher-level language (re­
member that efficiency is not a goal), and one with built-in strings can speed the program develop­
ment considerably.

Specific compiler construction techniques are described in the books listed in the bibliography.
Although we will not try to duplicate that material here, we can suggest an order of implementa­
tion: first the lexical analyzer, then-the syntactic analyzer, and, finally, the semantic synthesizer
and code-generation routines. Doing the problem this way will allow you to test as you go instead
of hoping that, when you are all done, everything will work right.

It is quite probable that you will not complete this project. So you should consider the order in
which you are going to implement the various language features. If you choose the right ordering,
the finished product will be a subset of the complete Easy language. Begin with the implementation
of single (program segment)'s. Within them, try to implement (expression)'s, the basic statement,
internal procedures, and declarations of variables with (basic type)'s. The (iteration statement> will
probably be the hardest to generate code for and should be done last. At an early stage you should
write code-generator routines to output relocatable object code so that these routines can be used
easily later.

The run-time environment for Easy will certainly include a stack discipline for allocating storage to
procedures. When the other statements are well underway, begin to work on structured data types.
The run-time allocation for strings will need a heap that will probably share space with the stack.
These run-time allocation mechanisms will require you to change your supervisor on the EC-1, and
early versions should not include any garbage collection to reclaim returned heap space. Parallel to
this effort, you can be working on compilation of separate segments. Remember to insert run-time
debugging code into the object modules right from the beginning.

Orchestration Do the compiler in some higher-level procedural language. XPL was designed for
compiler construction. SNOBOL is not allowed, since compilers are much too easy to implement in
SNOBOL and you will not learn enough.

Playing Time Two, three, or four people for 10 weeks. Each participant is independently
responsible for one Easy program for test purposes.

REFERENCES

Gries, David. Compiler Construction for Digital Computers. Wiley, New York, NY, 1971.

Gries is the outstanding book on compiler implementation. All the techniq~es are here f~r simple compil~rs
and pointers are available for the hard ones. There is not enough emphasts on table-dnven LR(k) parsing

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

147 EASY DOES IT

techniques, but that situation is easily remedied by the other references. If you know which language you
want to compile, Gries will show you how to do it.

McKeeman, W. M., J. J. Homing, and D. B. Wortman. A Compiler Generator. Prentice-Hall, Englewood
Cliffs, NJ, 1970.

This book describes the XPL language and its use in compiler construction. The XPL compiler, written in
XPL, serves as an example of the technique. Early printings use the SMSP table-driven parsing technique,
which is now obsolete, but later printings have a good discussion of LR(k) parsing. Unfortunately, the pub­
lished listing of the compiler does not have a modification for LR(k), and the SLR(k) table generator of
DeRemer is not included. This book is also the manual for XPL.

Nicholls, John E. The Structure and Design of Programming Languages. Addison-Wesley, Reading, MA,
1975.

Pratt, Terrence W. Programming Languages Design and Implementation. Prentice Hall, Englewood Cliffs,
NJ, 1975.

Nicholls and Pratt are both books to be read before a language is designed or a compiler is implemented.
Instead of discussing particular compiler techniques, they study the effects of language structures on the
programmer, the run-time system, the eventual program user, and the compiler implementor. There is
considerable weighing of alternate solutions to common problems in programming language design.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

28

or ...

BUILDING A
TRAC INTERPRETER

There are few programming languages that a beginner can implement singlehandedly in just a few
weeks, but TRAC1 is one of them. Calvin Mooers wanted to design a programming language that
would be simple, elegant, powerful, and interactive. He managed to make from the old idea of the
macro a language that met these goals, that could also be useful in batch mode, and that was ex­
tremely easy to implement (the first processor took a weekend to write). In fact, this book was
edited and typeset in manuscript using a dialect of TRAC.

THE TRAC LANGUAGE

Consider yourself seated in front of an interactive console through which the TRAC processor is
running. You run your programs by typing them, over line boundaries if necessary, and finishing
each one with a special terminating metacharacter (initially the apostrophe '). As soon as the
processor sees the metacharacter, it interprets your program and returns the result by typing it on
the console. You may now type another program, thereby restarting the cycle. The programs them­
selves may be arbitrary character strings, but certain special substrings invoke built-in TRAC func­
tions. Functions can be used for fairly standard arithmetic and character manipulation and can also
store and recall results of other functions so that vast pyramids of values can be built.

A function invocation has either of the forms #(· · ·) or ##(· · ·), where the interior can itself be
any arbitrary string. The body of the function is separated by commas into arguments (no commas
means one argument) that are evaluated from left to right in the same way as the program. The first
argument is assumed to be the name of a built-in function, and the value is computed by supplying
the arguments to the function. If the function was the single sharp #(· · ·) form, the value is
rescanned; otherwise the value is passed over without rescanning. The form (· · ·), where the
interior string is parenthesis-balanced, protects the interior string from evaluation. The processor

1 TRAC is the registered trademark or the Rockford Research Institute, Cambridge, MA.

148

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

149 OFF THE BEATEN TRAC

simply strips the outer parentheses and passes by the interior. If ml is the multiply function and ad
the addition function, then the input string

((3+4))*9 - #(ml,#(ad,3,4),9)'

will evaluate to

(3+4)*9 = 63

Note that an extra pair of parentheses is needed to prevent the internal pair around 3+4 from being
stripped.

The actual operation of the processor is controlled by a precise procedure called the TRAC algo­
rithm. Interior to the processor are three structures: the active string, the neutral string, and the
scan pointer. A convenient visualization is to think of the neutral string on the left, the scan pointer
in the middle, and the active string on the right. The scan pointer always points at the left of the
active string, looking at the first character. Normally characters move from active to neutral string,
where they are accumulated until there are enough to form all the arguments of some function.
Then the function is evaluated and the result put back in the active or neutral string according to
the function type.

THE TRAC ALGORITHM

The algorithm consists of 10 numbered steps. When the processor is executed, it begins by going to
step 1. Throughout the algorithm there are mentions of marking the neutral string in various ways.
Think of these markers as flags attached to the affected characters (of course, the markers will
probably be implemented by pointers). In any real implementation there is some special "break"
key to interrupt the endless cycle dictated by the algorithm.

1. Clear the processor by emptying the neutral string, deleting the contents of the
active string, if any, filling the active string with the string #(ps,#(rs)), and setting the
scan pointer to the first character of the active string. 2 Go on to the next step.

2. Examine the character under the scan pointer. If there is none -that is, if the active
string is the null string - return to step 1.

3. If the character under the scan pointer is a tabulate, a line feed, a record end, or a
carriage return, delete it, advance the scan pointer, and return to step 2.

4. If the character under the scan pointer is a left parenthesis, delete it and scan forward
until the matching right parenthesis is found. After all of the intervening characters have
been moved without change to the neutral string, the right parenthesis deleted, and the
scan pointer moved to the character following the right parenthesis, return to step 2.
If the matching right parenthesis cannot be found, go back to step 1.

6. If the character under the scan pointer is a comma, delete it, mark the rightmost
character of the neutral string as the end of one argument and the next character as the
beginning of a new argument, advance the scan pointer, and return to step 2.

6. If the character under the scan pointer is a sharp sign and the next succeeding char­
acter is a left parenthesis, an active function is beginning. Delete the sharp sign and the
left parenthesis, advance the scan pointer beyond them, mark the rightmost character of

2 Mooen now uses the idling string #(,ps, (CR-LF))#(,ps,#<.n)), where CR is the carriage return and LF is the linefeed.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

150 OFF THE BEATEN TRAC

the neutral string as the beginning of both an argument and an active function, and return
to step 2.

7. If the character under the scan pointer is a sharp sign and the next two succeeding
characters are another sharp sign and a left parenthesis, a neutral function is beginning.
Delete the triple ## (, advance the scan pointer beyond them, mark the rightmost char­
acter of the neutral string as the beginning of both an argument and a neutral function,
and return to step 2.

8. If the character under the scan pointer is a sharp sign that did not meet thi! condi­
tions of step 6 or 7, move it to the right end of the neutral string, advance the scan
pointer, and return to step 2.

9. If the character under the scan pointer is a right parenthesis, a function is ending.
Delete the right parenthesis, advance the scan pointer, and mark the rightmost character
of the neutral string as the end of an argument and the end of a function. Now the
neutral string from the rightmost begin function marker to the just inserted end function
marker constitutes a TRAC function invocation. (If there is no begin function marker in
the neutral string, return to step 1.) Take the function arguments (all those marked since
the beginning of the functiQn) and all the function and argument markers out of the
neutral string. (Because of the way the markers are placed, all begin markers are actually
on the character immediately preceding the item marked.) The first argument is assumed
to be the name of a TRAC built-in function. Evaluate the function with the given argu­
ments: extra arguments are ignored and missing ones are automatically supplied as the
null string. The function value is catenated to the right of the neutral string if the func­
tion was marked as neutral and to the left of the active string if marked active; in the
latter case, the scan pointer is reset to the leftmost character of the new active string.
If the first argument is not the name of any built-in function, simply provide a null string
as function value. Return to step 2.

10. If the character under the scan pointer did not meet any of the conditions of steps
3 through 9, attach it to the right of the neutral string, delete it from the active string,
advance the scan pointer, and return to step 2.

THE TRAC FUNCTIONS

The TRAC functions are listed here in their active forms, but each can be called in neutral mode as
well. The value of a function is always a string; any function, particularly those whose most impor­
tant activity is a side effect, might return the null string. In addition to the structures already men­
tioned, the processor can store strings in an area called forms storage. Each form has three parts:
a form name, which may be any string whatsoever; a form body, which may also be any string; and
a form pointer, which initially points just in front of the first character of the form body. The form
pointer always poirits just before the body, just after it, or between two characters; that is, it always
points into a gap between characters. Form bodies may include ordinal segment markers intermixed
with their characters. Each such marker has some positive integer associated with it, and these
integers need not be distinct. The function descriptions have been slightly sanitized from those
originally given by Mooers.

#(rs) "Read String" (One argument) The value of this function is the input character stream up
to but not including the next metacharacter. This string does include any carriage returns,
line feeds, record ends, or tabulates that the system would normally pass to a program. The
metacharacter is always discarded and, in a record-oriented system, so is everything follow­
ing the metacharacter on the same record.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

151 OFFTHEBEATENTRAC

#(re) "Read Character" (One argument) The next input character is returned as value regardless
of what it may be. Any character, including the metacharacter, may be read this way.

#(ps,X) "Print String" (Two arguments) The second argument Xis printed on the output device.
The function value is the null string.

#(cm,X) "Change Metacharacter" (Two arguments) This null-valued function changes the meta­
character to the first character of the string X. If X is null, no change is made. The meta­
character is initially the apostrophe.

#(ds,N,B) "Define String" (Three arguments) This null-valued function creates a form with name
N and body B and with its form pointer just before the first character of B. If there is a
form with name N already, its previous body and form pointer are lost.

#(ss,N,Pl,P2, · · ·) "Segment String" (At least three arguments) This null-valued function creates
ordinal segment markers in the form N. The nonnull arguments Pl, P2, . . . , are processed
in tum from left to right (null arguments are ignored). Argument Pi is processed in the fol­
lowing way. The body of form N is scanned from left to right for the first substring exactly
equal to Pi. The matching substring must not contain any already-existing segment markers.
If it does not, the substring is taken out of the form body and an ordinal segment marker
numbered i replaces it. The matching process begins again at the character following the
marker. The form pointer is replaced at the left end of the form when the segmentation
is finished. A form may be segmented more than once.

#(cl,N,Al,A2, · · ·) "Call String" (Two or more arguments) The value of this function is the
body of the form N with its segment markers filled in. All those segment markers numbered 1
are filled with argument Al, those numbered 2 with A2, and so on. As many arguments to
cl are needed as the highest-numbered segment marker in form N. Remember that excess
arguments are ignored and missing ones are supplied with the null string.

#(cs,N,Z) "Call Segment" (Three arguments) The value of this function is the substring of the
form N from the current location of the form pointer to the next segment marker to the
right (for the purposes of this function, the end of the body is counted as a marker). The
marker is not part of the value, and the form pointer is left just before the character imme­
diately to the right of the marker. If the form pointer is already at the right end of the
body, the function value is argument Z returned in active mode regardless of the function
mode.

#(cc,N,Z) "Call Character" (Three arguments) The value of this function is the character imme­
diately following the form pointer in the form N. The form pointer is advanced just beyond
the selected character. Segment markers are always ignored by the form pointer, since they
are not characters. If the form pointer is already at the right end of the string, the function
value is argument Z returned in active mode regardless of the mode of the function call.

#(cn,N,D,Z) "Call N Characters" (Four arguments) The value of this function is a substring of
form N. Starting at the form pointer and reading right or left, depending on whether D is
positive or negative, the value is IDI characters of the form body in the chosen direction. 3

The characters of the value are in the same order as they were in the body; that is, the string
is not reversed if Dis negative. Segment markers are, of course, ignored. The form pointer
is moved to point between the selected substring and the first unread character in the appro­
priate direction. (If D is zero, the value is null and the pointer does not move.) If the form
pointer should move off either end of the form, the function value is argument Z returned
in active mode regardless of the mode of the function call.

#(in,N,X,Z) "Initial Match" (Four arguments) The form N is searched rightward from the form
pointer for a substring containing no segment markers and exactly matching argument X.

3The interpretation of a string as a number will be discussed later.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

152 OFF THE BEATEN TRAC

If such a match is found, the value of the function is the substring of the form from the
original pointer location to the character immediately preceding the match (segment markers
are dropped from the value) and the form pointer is moved just before the character imme­
diately following the matching substring. If no match is found, the argument Z is returned
as value in active mode regardless of the mode of the function call, and the form pointer is
stationary.

#(cr,N) "Call Restore" (Two arguments) This null-valued function returns the form pointer of
form N to its initial position just before the first character of the form.

#(dd,N 1.N2. · · ·) "Delete Definition" (Two or more arguments) This null-valued function deletes
the forms named Nl, N2, ... , from forms storage.

#(da) "Delete All" (One argument) This null-valued function deletes all the forms from forms
storage.

TRAC performs arithmetic on strings of decimal characters. The arithmetic value of a string is given
by the longest suffix of the string that can be described exactly as all decimal digits preceded by at
most one plus or minus sign. Thus the value of 3 is three; of a-4 is negative four; of ++++200 is two
hundred; and of the null string and of abc the null string. The null string acts as zero in arithmetic
operations. Arithmetic is arbitrary precision - there is no catering to the limits of any underlying
hardware. The result of an arithmetic operation is itself at least such a decimal string with no
leading zeros or plus signs for positive results and with zero represented as 0.

#(ad,A,B) "Add" (Three arguments) The value of this function is the sum of the arithmetic
values of arguments A and B with the nonnumeric prefix of A prefixed to the result. The
prefix of B is lost.

#(su,A,B) "Subtract" (Three arguments) The value of this function is the result of subtracting
the arithmetic value of argument B from that of argument A. The nonnumeric prefix of A is
prefixed to the resultant decimal string, and the prefix of B is lost.

#(ml,A,B) "Multiply" (Three arguments) The value of this function is the result of multiplying
the arithmetic values of arguments A and B and prefixing that result with the nonnumeric
prefix of A. The prefix of B is lost.

#(dv,A,B,Z) "Divide" (Four Argument.a) The value of this function is the numeric value of argu­
ment A divided by the numeric value of argument B, and the result is prefixed with the
nonnumeric prefix of A. The prefix of B is lost. The division operation is done in integer
mode, and only the integral portion of the quotient is retained. The value of the remainder
is always nonnegative. If the value of Bis zero, the function value is the argument Zin
active mode regardless of the mode of the function call.

TRAC Boolean values operate in the same way as arithmetic values. The Boolean value of a string
is the longest suffix of the string that consists entirely of zeros and ones -in other words, a binary
string. Thus the Boolean value of abc0100 is 0100; of 1234567890 is 0; of 43210 is 10; and of abc
is null by convention.

#(bu,A,B) "Boolean Union" (Three arguments) The value of this function is the bitwise Boolean
union of the Boolean values of the arguments A and B. If the two Boolean values are not the
same length, the shorter is extended to the left with zeros to equalize the lengths. Any non­
Boolean prefixes of the arguments are lost.

#(bi,A,B) "Boolean Intersection" (Three arguments) The value of this function is the Boolean
intersection taken bitwise of the Boolean values of its arguments A and B. If the arguments
are of unequal length, the longer is truncated from the left to equalize the lengths. Any non­
Boolean prefixes of the arguments are lost.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

1~ OFFTHEBEATENTRAC

#(bc,A) "Boolean Complement" (Two arguments) The value of this function is the bitwise
Boolean complement of the Boolean value of its argument A and is the same length as that
value. The non-Boolean prefix of the argument is lost.

#(bs,S,A) "Boolean Shift" (Three arguments) The value of this function is the Boolean shift of
the Boolean value of argument A. The number of positions to shift is given by the arith­
metic value of argument S. If the value is positive, the shift is to the left; if the value is
negative, the shift is to the right. The function value is the same length as the Boolean value
of A, and vacated positions are filled with zeros. The non-Boolean prefix of A is lost.

#(br,S,A) "Boolean Rotate" (Three arguments) The value of this function is the Boolean end­
around rotation of the Boolean value of the argument A. The number of positions to rotate
is given by the arithmetic value of argument S and is to the left if that value is positive and
to the right if negative. Rotation does not change the length of the Boolean value. The non­
Boolean prefix of A is lost.

#(eq,A,B, T,F) "Equality" (Five arguments) The value of this function is the argument T if the
argument A is exactly equal, as a string, to the argument B, and is the argument F other­
wise. Notice that T and F may be any strings whatever.

#(gr,A,B, T,F) "Greater" (Five arguments) The value of this string is the argument T if the arith­
metic value of argument A is greater than the arithmetic value of argument B, and is argu­
ment F otherwise.

#(sb,A,Fl,F2, · · ·) "Store Block" (Three or more arguments) This function stores the forms
named by arguments Fl, F2, ... on some external storage medium. When all the forms have
been stored, they are erased from forms storage and a new form with name A is created
whose body is the "address" in external storage of the stored block of forms. If a form
named A exists already, its old value is lost. The "address" of the block must be a string,
and the forms on external storage must be accessible through any form having that string as
body. The function value is null.

#(fb,A) "Fetch Block" (Two arguments) This null-valued function retrieves from external storage
the block of forms whose "address" is the body of the form named A. The forms are brought
back to forms storage, and if some of the forms are already in forms storage, their values are
overwritten. The external block of forms remains accessible.

#(eb,A) "Erase Block" (Two arguments) This null-valued function releases the external storage
holding the block of forms stored at the "address" given by the body of the form A so that
the block is no longer accessible and deletes the form A.

#(ln,S) "List Names" (Two arguments) The value of this function is a list of all the form names
currently resident in forms storage. The form names are separated by the string S.

#(pf.N) "Print Form" (Two arguments) This null-valued function prints the body of form N
with the form pointer and segment markers shown. Mooers suggests printing the
form pointer as <t> and a segment marker as (i). Thus, the value of pf might be some­
thing like aB(2)cdE<l >f<t><l>hiJ, showing one instance of marker 2 and two instances
of marker 1.

#(tn) "Trace On" (One argument) This null-valued function causes the processor to begin tracing
the evaluation of functions. Each time a function is ready for evaluation, all its arguments
are printed on the output device. If the processor is running on an interactive system, a
pause is inserted after each argument list is printed. If the user types exactly a null line,
the processor continues by evaluating the function; any other input causes a transfer to
step 1 of the TRAC algorithm.

#(tn "Trace Off" (One Argument) This null-valued function turns off the trace feature; if trace
was not on, the function has no effect.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

154 OFF THE BEATEN TRAC

EXAMPLES

The following examples should give some flavor of the TRAC language. However, be wary of
assuming that all the features of some function are illustrated by a particular example.

#(ds,AA,Cat)'
#(ds,BB,(#(c~AA)))'
#(ps.(#(c~ bb))) •
#(ps,##(c~BB))'
#(ps, #(cl,BB)) •

The first line of this series of programs (notice that each line ends with an apostrophe, the
metacharacter) causes a form with name AA and body Cat to be stored and a null line to
be printed. The second line similarly creates a form with body #(cl,AA) and name BB
and prints a null line. Now comes the interesting part. The ps function on the third line
prints #(cl.BB) because the inner function is protected by parentheses, that on the fourth
prints #(cl.AA) because the inner function is neutral, and that on the fifth line prints Cat.

#(dd, #(In.(,)))•

This program will do exactly the same thing as an invocation of #(da). The arguments to
dd are form names, and ln generates a list of all form names neatly separated by commas.

#(ds, Factorial, (#(eq ,X, 1, 1, (#(ml,X, #(cl.Factorial,#(su,X, 1))))))) •
#(ss,Factorial, X) •
#(cl, Factorial, 5) •

These three lines define a factorial function in the standard recursive way, segment the
string on the argument X, and then calculate the value of 5! Each of the sets of protective
parentheses is necessary, the outer pair to protect the eq from evaluation during form crea­
tion and the inner to avoid doing the multiply if the test is true. Try deleting either pair or
changing the eq to a neutral function.

#(cl,Factorial,5
#(ds,Factorial, (
#(eq,X,1,
1,
(#(ml,X, #(c~Factorial, #(su,X, 1)))))))
#(ss,Factorial,X)) •

This example has the same effect as the last one; a factorial function is defined and 5! is
calculated. But it takes advantage of the fact that the arguments of a function are evaluated
before the function itself to bury the definition and segmentation of Factorial inside the call
of Factorial. Notice that no comma is required after the argument 5 in the call of Factorial
because ds always returns the null string as value.

Statement of the Theme Write a TRAC processor for your local system. The processor must
implement the TRAC algorithm and built-in functions as described here. If your system has any
sort of permanent file storage, use it for the external forms storage blocks. Blocks stored during
one run of the processor should be accessible during later runs. It would be wise to include many
internal debugging aids in your processor.

Performance Practice Each system has its own conventions about character sets and end-of-line
devices. In the algorithm there is a step that deletes unprotected carriage returns, line feeds, and
tabulation characters from scanned material. This feature allows input material to be typed without

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

166 OFF THE BEATEN TRAC

worrying that line breaks occasioned by line-length limits of physical devices will be incorporated
into program material willy-nilly. But it also implies that such characters must be explicitly repre­
sented in the input stream so that programs that wish to format their output may do so. For exam­
ple, if CR-LF stands for the carriage return-line feed sequence, the input OneCr-LFTwo will print
OneTwo on one line, but the input One(Cr-LF)Two will print One on one line and Two on the next.
Make sure that your processor can handle such situations correctly.

A rather cavalier attitude was taken during the algorithm description toward the marking and re­
covery of arguments and functions in the neutral string. In fact, it is important to maintain an exact
record of functions and arguments, as well as the order in which they occur. The easiest way to do
so is with a stack. The stack is entirely internal to the processor and is reset to empty every time
the algorithm goes through step 1. Each time a new function beginning is marked by the algorithm,
a new function block is stacked. A function block has a fixed base section that includes, at a min­
imum, the stack location of the next lower function block, the mode of the function, the location
in the neutral string of the first character of the function, the number of arguments begun and
completed for the function, and the start location in the neutral string of the beginning of the argu­
ment currently being scanned. Above the fixed section there is an entry for each finished argument
with the beginning and end of the argument. Some of this information may be implicit in other
items. The most common implementation errors involve mishandling null strings and losing track of
information about functions low in the stack while manipulating ones higher up.

Similarly, greater care is necessary with forms storage than was indicated in the preceding discus­
sion. Since both name and body are strings, it makes sense to store them together in some sort of
string storage. Also needed is storage for the form pointer and the segment markers, plus a way to
look up forms. The easiest way to handle this situation is to allocate a large forms space and store
the forms as a linked list. Each form will have a fixed head section that will store a pointer to the
next form, the form pointer, the starting location and length of the form name, and the start and
length of the body. The name and body can be stored immediately following the body, and a
segment marker can be some character pair surrounding an integer (making sure that there is some
other way to represent the marker pair as legitimate characters). Form lookup can be done by
running down the list of forms and form deletion by unchaining the form and moving the sur­
rounding forms to close up the hole. Alternative techniques for forms storage exist, each with its
own advantages and disadvantages.

There is a difficulty with storage allocation for the processor. Each of the neutral string, active
string, argument stack, and forms storage might need more storage than can be predicted in advance.
If fixed allocations are made to these areas, any one of them might run out of space while the
others still had enough to spare. A standard technique to solve this problem is available. Consider
first the neutral and active strings. Because the neutral string occurs naturally to the left of the
active string, allocate one area to both of them with the neutral string growing from the left end to
the right and the active string from the right leftward. In this way, there can be no storage overflow
until both the neutral and active string combined use up all the storage allocated to the pair. The
argument stack and forms storage can be paired in the same way, and one of the interpair gaps can
be used to hold temporarily strings that are being copied from one place to another.

A further refinement may be added. Allocate the storage for the run-time structures in one big area
in the following order from left to right: the neutral string growing rightward; a free-space gap;
the active string growing leftward; without any gap the argument stack growing rightward; a free­
space gap; and forms storage growing leftward. Now if the active-neutral strings pair run out of
space while the argument stack and forms storage have some left, move the active string and argu­
ment stack rigidly to the right some distance, thus donating space from the right free gap to the
left. Obviously, the same trick will work going the other way so that the processor will not be out
of space until there is really no space to be had.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

156 OFF THE BEATEN TRAC

Throughout the discussion of storage allocation it has been assumed that we could obtain a large,
amorphous chunk of memory that could store characters, pointers, integers, logical flags, and so on
at will. In at least some languages, such as PASCAL and ALGOL, doing so is difficult if not impos­
sible. Of course, in assembly language all memory is amorphous, but the design freedom is usually
paid for in mistakes in referencing memory. This tradeoff between convenience and security is
common and will have to be faced when you choose the language for your implementation.

Your processor should be instrumented so that it observes, records, and reports such items as the
number of times each algorithm step is executed, the number of times each built-in function is
called, the maximum length of each internal storage area, the number of times storage is repacked
because of overflow, and the number of times each internal routine is called. This instrumentation
can serve three purposes. First, it can serve as a debugging aid. If there is some a priori relationship
among counts that is not holding or if some counts are suspiciously out of line, a probable error has
been spotted. Second, the counts can guide improvement in those routines that are costing the
most time and tuning of those parameters that control space. Finally, suitably annotated and ex­
plained, the counts can guide a TRAC user in correct and efficient use of the processor. Instru­
mentation counts should probably be presented to the user at the end of each run.

Orchestration Here is another problem with which to study the influence of language on pro­
gramming. If you choose a higher-level language like PASCAL with its many built-in safeguards,
you will find most of the processor absurdly easy to code, but you will probably pay for this ease
in efficiency and trouble in arranging storage allocation. Alternatively, if you choose assembly
language, you may well find that your program is efficient in both space and time but that it is
long-winded and hard to debug and that you will have to build many routines that other languages
would provide for you. An intermediate-level language-XPL, BLISS, or FORTRAN-can combine
the advantages (and probably disadvantages) of the other two approaches. Or perhaps some parts of
the program should be written in one language and the rest in another. In any case, your documen­
tation should discuss the reasons for your language choice and your reflections in hindsight.

Playing Time This problem should take one person 7 weeks, two people 4 weeks, or three
people 3 weeks.

Variations on the Theme One obvious extension is to allow a function whose first argument
is a form name to be a call on that form -that is, #(XYZ, · · · , · · · · · ·) is converted into
#(cl,XYZ, · · · , · · · · · ·). If, by convention, undefined forms are assumed to have null strings for
bodies, this situation automatically takes care of the case of the null value for undefined functions.
And if the forms are searched before the built-in functions, the user can then overlay a built-in
function with a customized one.

The other obvious way to extend TRAC is to allow more built-in functions. We will suggest two sets
of them. The first will add some amenities to the string- and character-handling functions. The
second set will broaden the input/output capabilities.

STRING AND CHARACTER HANDLING

#(qm) "Query Metacharacter" (One argument) The value of this function is the one character
string consisting of the current metacharacter.

#(sl,A) "String Length" (Two arguments) The value of this function is the length of the string A
expressed as a decimal string. The length of the null string is zero.

#(cd, C) "Character to Decimal" (Two arguments) The value of this function is a decimal string

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

157 OFF THE BEATEN TRAC

giving the position in the local implementation's character set of the first character of the
argument C. If C is null, so is the value.

#(dc,D) "Decimal to Character" (Two arguments) The value of this function is the single char­
acter string whose index in the local implementation's character set is given by the arith­
metic value of argument D. If argument D does not index any character, the function value
is null.

#(sr,N) "Segment Range" (Two arguments) The value of this function is a decimal string giving
the ordinal number of the highest-numbered segment marker of the form named by argu­
ment N. If form N does not exist or if it has no segment gaps, the function value is zero.

#(cr,Rl,R2, V) "Change Radix" (Four arguments) The value of this function is calculated by
finding the arithmetic value of argument Vin radix Rl and rewriting it in radix R2. The
possible digits for the potential radices are, in ascending order, 0, 1, ...• 9, A, B, ...• Z.
Thus binary uses O and 1, decimal O through 9, and hexadecimal O through F. The arith­
metic value of a string in a given radix is the longest suffix of that string that optionally
begins with + or - and otherwise consists entirely of legal digits from the radix. This rule is
the same as the one for TRAC decimal values. The arguments Rl and R2 name radices by
giving the largest legal digit in the radix (for example, decimal is 9, binary 1, and hexadec­
imal F). If either Rl or R2 is not a single character in the range 1 through z. the function
value is null.

INPUT/OUTPUT

#(hi) "Halt" (One argument) This null-valued function causes an immediate exit from the TRAC
processor.

#(ai,F,Z) "Assign Input" (Three arguments) This null-valued function assigns the input device to
the file named by argument F and sets the input file pointer to point to the first line of the
file. If the file cannot be assigned, the function value is the argument Zin active mode
regardless of the function call mode. Each succeeding call to rs causes the device to read up
to the next metacharacter and to advance the input file pointer. If argument Fis null, con­
trol is returned to the default input file (the console in an interactive system).

#(ao,F) "Assign Output" (Two arguments) This null-valued function assigns the output device
to the file named F and, if such a file does not exist, creates it. If argument F is null, it re­
turns the output device to the default device (the console in interactive systems).

#(sp,N) "Set Pointer" (Two arguments) This null-valued function sets the input ftle pointer on
the record that follows N-1 metacharacters. If this does not describe a record in the file or
if the file is the console, the function has no effect.

#(rp) "Read Pointer" (One argument) This function returns as value a decimal string giving the
current value of the input file pointer. If the input device is attached to the console, the
value is null.

#(rs,Z) "Read String" (Two arguments) This function modifies the earlier rs function so that if
no input is available from the current input file, the value is the argument Z in active mode
regardless of the mode of the function call.

REFERENCES

Brown, P. J.Macro Processing and Techniques for Portable Software. Wiley, New York, NY, 1975.

Mooers, Calvin N. "Computer Software and Copyright," Computing Surveys, 7, 1, pp. 45-72, 1975.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

158 OFF THE BEATEN TRAC

Although not strictly about TRAC, this article's concerns were engendered, at least in part, by fears for
TRAC's purity. Mooers states, if not the law, at least a clear position on the issues of protection for
programs.

Mooers, Calvin N. "How Some Fundamental Problems are Treated in the Design of the TRAC Language.,,
In Symbol Manipulation Languages and Techniques, edited by D. G. Bobrow. North-Holland Publishing
Co., Amsterdam, pp. 178-190, 1968.

In this paper Mooers discusses some of the design decisions for TRAC. There is a comparison of TRAC with
some other languages with similar purposes, notably LISP. After you have learned some of the fundamen­
tals of TRAC, this paper may give you a bit of philosophy to leaven the knowledee.

- "TRAC, A Procedure-Describing Language for the Reactive Typewriter." CACM, 9, 3, pp. 215-219,
1966.

Nelson, Theodor H. Computer Lib or Dream Machines. Hugo's Book Service, Chicago, IL, 1974.

A Whole Earth Catalog of computer lore. This is a fascinating miscellany. It even has two titles, depending
on whether you start reading from the front or the back. Nelson thinks TRAC is the wave of the future and
provides a nice primer.

Strachey, C. "A General Purpose Macrogenerator." Comput. J., 8, 3, pp. 225-241, 1966.

Mooers' paper describes the TRAC language in its reference fonn. The problem description is largely a
paraphrase with some obvious improvements made to the built-in functions. Strachey's paper describes a
very similar language that substitutes a more powerful definition facility for the built-in functions and con­
tains a listing of a model processor. The two papers were written independently and are a striking example
of historical imperative.

Wegner, Peter. Programming Languages, Information Structures, and Machine Organization. McGraw-Hill,
New York, NY, 1968.

Both Brown and Wegner discuss TRAC and set it in the context of other macroprocessora and computer
science generally.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

The solutions presented here are complete programs, but they do not attempt to show everything
that a student must supply. We discuss the craft of programming as applied to these specific prob­
lems, particularly some fine practical points that are often ignored in textbooks. Students would
provide more external documentation, more output, and more demonstration of correctness. Also
notice that our choice of languages does not necessarily constitute endorsement.

159

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

29

or ...

A COMPLETE PROBLEM SOLUTION

In this chapter we present a complete program for the map-coloring problem of Chapter 3. Any
reader who has tried will appreciate how difficult it is to write up a program without making the
algorithms seem easy. Once a solution to a puzzle is known, the reader's natural reaction is "I could
have thought of that" and not "Oh, how clever." And, of course, programs are a type of puzzle
solution. What is always missing from a writeup is the sense of exploration, the history of false
starts and backtracks, the stupid mistakes that hid the obvious path. And if we try to supply all the
development here, you will be alternately bored to tears and hysterical about our ignorance. So this
will be a relatively straight walk from problem to solution with only a few glances at the side paths
that we might have taken.1

The problem as stated is to color an arbitrary finite map or undirected graph with a minimum number
of colors such that no two adjacent regions or nodes are the same color. Although it is not necessary
to decide exact input and output formats or internal data representation now, we should figure out
what properties of a graph will be needed by any program. Surely we must know how many nodes
the graph has, we must be able to name each node in some orderly way, we must be able to color a
node and then query that color later, we must be able to decide if two nodes are adjacent, and we
must be able to generate a large number of different colors. The easiest way to provide all these
facilities is to assume that the nodes are named with the integers 1, 2, ... , up to n, where there are
n nodes, and that the colors are similarly named with the positive integers (certainly a large number
of colors will be available this way). It will be wise to postpone discussing exactly how adjacency
should be tested.

Coloring might be approached in two ways: we could assume that each node already has a distinct
color and try to eliminate some colors, or we could assume that no node is colored and try to add as
few colors as possible. Either way we encounter a bad theoretical result (or perhaps lack of a
result): nobody knows how to color a map without, in the worst case, enumerating all possible
colorings with the minimal number of colors. Most experts believe that there is no faster way to
1 To reinforce the analogy between writing and programming, we will admit that this chapter had more than a few
false starts itself.

160

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

161 MAP COLORING MADE EASY

color maps than by searching all possibilities. In different words, no matter how clever your map­
coloring program is and no matter how fast it is on average, there will be worst-case maps of n nodes
requiring k colors that will take your program about nk units of time to color. It is possible that
someone may become lucky and find an algorithm without this horrendously expensive worst-case
behavior, but theoreticians think it improbable. So we should try a simple, fast program rather than
a supercomplicated one that is unlikely to do any better. 2

The proposed solution relies on the observation that if a subgraph cannot be colored with k colors,
then surely the whole graph cannot be colored with k colors. Each step of the algorithm tries to add
one more node to the already colored subgraph. If that addition is not successful, the currently
colored subgraph is recolored every possible way by using the same colors. If the new node still can­
not be added, the number of colors is increased by one because a subgraph has been found that
cannot be successfully colored. In the algorithm description we will assume that there is a vector
color that contains the color currently assigned to each node. A logical function connect tells if
node i is connected to node j.

ALGORITHM FOR GRAPH COLORING

1. (Initialization.) Assume that the graph has totalnodes nodes, that topcolor contains
the number of the highest color yet assigned, and that zero means no color has yet been
assigned to a node. For each node n, set color[n] to zero (that is, set all nodes uncolored).
Set topcolor to zero and currentnode to one.

2. (Main loop.) While currentnode is less than or equal to totalnodes, do steps 3 through
7. This step runs the loop until all the nodes have been colored. Each time a loop itera­
tion begins, all the nodes from 1 to currentnode-1 have a legal coloring with topcolor
colors.

3. (Prepare one node.) Increment color[currentnode] by one. Set the Boolean variable
looptlag to the value of the relation color[currentnode] < topcolor. Now the node under
consideration has a nonzero color, and it is necessary to test the compatibility of current­
node with its neighbors. Notice that a node being added for the first time will always have
color zero. Adding one to zero will give the node a legitimate color. While looptlag is
true, do steps 4 and 5.

4. (Test colors of adjacent nodes.) Set loopftag to false and set i to one. While i is less
than currentnode, do step 5.

5. (Check each neighbor's color.) If node i is connected to node currentnode [that is,
if connect(i, current) is true) and if color[i] is the same as color[currentnode], then
currentnode is colored illegally. In this case, set i to currentnode to terminate the loop
begun in step 4, increment color[currentnode] by one to try the next color in sequence,
and set loopftag to the value of color[currentnode] < topcolor. Otherwise simply incre­
ment i by one to test the next neighbor. Notice that the assignment to looptlag overrides
the assignment in step 4, but that it may still leave loopftag with a false value. Also, if the
loop begun in step 4 terminates normally (that is, without the forced assignment of
currentnode to i), then the loop begun in step 3 will also be exited. It is important that

2 This program illustrates the importance of theoretical computer science to practicing programmers. Many other
common combinatorial problems, most notably the traveling salesman problem, share this extremely expensive
wont-case behavior with map coloring. But quite often a small change in a problem makes some very efficient solu­
tion possible. A working programmer need not know all the problems and solutions, but he must recognize the bud
problems and go to the literature or an expert for answers. Incidentally, if an optimal, minima~ maxima~ or exact
solution is not necessary, then heuristics that provide good approximate solutions quickly ue worth trying and exist
for many problems.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

162 MAP COLORING MADE EASY

only nodes with numbers strictly less than currentnode be used in the legality check be­
cause higher nodes have not yet been colored.

6. (Go ahead or backtrack?) If currentnode has been colored correctly, we want to move
on to the next node; otherwise we must back up. So if color[currentnode] > topcolor,
set color[currentnode] to zero and decrement currentnode by one; otherwise increment
currentnode by one. Notice that the color of a node with number higher than current­
node is always zero, and when we back up to an already colored node, we continue
advancing its color from where we last left off.

7. (Add a color if necessary.) If currentnode is zero, increment topcolor by one and set
currentnode to one. If we have backed all the way down, the number of colors must be
increased.

It is easy to see that this algorithm must terminate. At the very least it will stop when every node
has a separate color. It should also be reasonably clear that all the nodes from one to currentnode-1
are colored correctly each time that the main loop starts. Slightly less obvious is the fact that
topcolor will be increased only if there is no way to color some initial subgraph with the current
value of topcolor. Experiments on some small graphs should help, however. Notice that the algo­
rithm works correctly for the graph of zero nodes, for graphs with completely disconnected nodes,
and for graphs with all nodes connected.

AN ACTUAL IMPLEMENTATION

We use FORTRAN for our implementation. Certainly FORTRAN is a very poor language with weak
data definition and control structure facilities. However, we choose it precisely to show that a well­
structured, clear program can be written even in an awkward language. Ideally, every program could
be written in one of the newer, more expressive languages; in practice, most programmers will need
to work in archaic languages from time to time and must not succumb to the temptation to pro­
gram badly because of bad tools.

The logical function connect can be represented in FORTRAN as a two-dimensional logical array
in which the entry indexed by I and J is true if and only if node i is connected to node j. The first
item in the input will be a record with the number of nodes in the graph to be colored. From then
on sets of records will be read, each set describing the connections for one node. The first record of
a set will contain a node number and the number of neighbors that the node has; the remaining
records will be a listing of the neighbors in any order. Input will end with a node number of zero.
Nodes may be described in any order, and the description of a single node may be broken into
several sections. When node i is connected to node j, node j will be connected automatically to node
i. The only errors will be node numbers out of range and attempts to connect a node to itself. Now
we reproduce the actual program.

1 C
2 C A PROGRAM TO COLOR GRAPHS.
3 C
4 C
5 C AUTHOR -- CHARLES WETHERELL,
6 C LAST DATE MODIFIED -- 14 JULY
7 C
8 C THIS PROGRAM COLORS ARBITRARY

Digitized by Google

12 JULY 1976.
1976.

FINITE UNDIRECTED GRAPHS

Original from
UNIVERSITY OF MICHIGAN

163

9 C WITH A MINUMUM NUMBER OF COLORS. THE METHOD USED IS
10 C STANDARD BACKTRACKING WITH NO HEURISTICS. THE GRAPH IS
11 C REPRESENTED BY A LOGICAL ADJACENCY MATRIX. BECAUSE OF THE
12 C POLYNOMIAL COMPLETENESS OF GRAPH COLORING, SOME WORST CASES
13 C MAY TAKE TIME EXPONENTIAL IN THE NUMBER OF INPUT NODES.
14 C DISCUSSION OF THE PROBLEM AND ITS SOLUTION CAN BE FOUND IN
15 C
16 C

17 C
18 C

WETHERELL, C. ETUDES FOR PROGRAMMERS. PRENTICE-HALL,
ENGLEWOOD CLIFFS, NJ. 1978.

19 C WHICH ALSO CONTAINS A LARGER BIBLIOGRAPHY.
20 C
21 C
22 C THE ALGORITHM IS IMPLEMENTED AS ONE LARGE PROGRAM AND ALL
23 C THE VARIABLES LISTED IN THIS GLOSSARY ARE GLOBAL TO THE
24 C WHOLE PROGRAM. THE FIRST SECTION IS VARIABLES USED WITH THE
25 C GRAPH AND IN THE COLORING ALGORITHM.
26 C
27 C MAXNOD -- THE MAXIMUM NUMBER OF NODES ALLOWED IN A GRAPH.
28 C FORTRAN WILL NOT ALLOW US TO USE THIS AS AN ARRAY
29 C BOUND, BUT IT CAN BE USED TO CHECK THE LEGITIMACY
30 C OF INPUT DATA.
31 C TOTNOD -- THE NUMBER OF NODES IN THE GRAPH TO BE COLORED.
32 C CONNCT -- THE LOGICAL NODE ADJACENCY MATRIX.
33 C COLOR -- A VECTOR INDEXED BY NODES GIVING THE COLOR OF EACH
34 C NODE.
35 C TOPCLR -- THE NUMBER OF COLORS IN USE AT ANY TIME.
36 C CURNOD -- THE NODE CURRENTLY NEEDING A COLOR.
37 C LOPFLG -- A LOGICAL FLAG USED TO CONTROL AN INNER LOOP OF
38 C THE ALGORITHM.
39 C NODCNT -- A LOOP COUNTER FOR THE OUTER LOOP.
40 C CLRCNT -- A LOOP COUNTER FOR THE MIDDLE LOOP.
41 C TSTCNT -- A LOOP COUNTER FOR THE INNER LOOP.
42 C
43 C THESE VARIABLES ARE USED TO READ THE INPUT AND TO PRINT THE
44 C INPUT ECHO AND THE OUTPUT.
45 C
46 C MASNOD - THE NODE ABOUT TO HAVE ITS CONNECTIONS READ.
47 C NUMNBR -- THE NUMBER OF NEIGHBORS MASNOD HAS.
48 C NGHBOR -- A VECTOR OF NEIGHBORS FOR MASNOD.
49 C LINE - A HOLD AREA FOR A ROW OF INTEGERS TO BE PRINTED.
50 C TEXT - A HOLD AREA FOR A ROW OF CHARACTERS TO BE PRINTED.
51 C HYPHEN -- THE CHARACTER-.
52 C BLANK - THE CHARACTER BLANK.
63 C STAR - THE CHARACTER • .
54 C
55 C GENERAL USE VARIABLES.
56 C

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

164

57 C
58 C
59 C
60 C
61 C
62 C
63 C
64 C
65 C
66 C
67
68
69
70
71
72
73
74
75 C
76
77
78
79
80
81
82 C
83

RDUNIT -- THE UNIT NUMBER FOR THE INPUT FILE.
WRUNIT -- THE UNIT NUMBER FOR THE OUTPUT FILE.
l,J,K -- GENERAL USE INDEX VARIABLES.

FORTRAN REQUIRES DATA STATEMENTS AFTER DECLARATIONS.
THE COMPILER USED FOR THIS PROGRAM REQUIRES CHARACTER
STRING CONSTANTS TO BE SET OFF WITH APOSTROPHES INSTEAD OF
THE NORMAL HOLLERITH NOTATION.

INTEGER MAXNOD
INTEGER TOTNOD
LOGICAL CONNCT(70,
INTEGER COLOR(70)
INTEGER TOPCLR
INTEGER CURNOD
LOGICAL LOPFLG

70) /

INTEGER NODCNT, CLRCNT, TSTCNT

INTEGER MASNOD
INTEGER NUMNBR
INTEGER NGHBOR(70)
INTEGER LINE(70)
INTEGER TEXT(70)
INTEGER HYPHEN, BLANK, STAR

INTEGER RDUNIT, WRUNIT
84 INTEGER I, J, K
85 C
86 C
87 DATA MAXNOD/70/
88 DATA HYPHEN/'-'/, BLANK/' ' /, STAR/ ' • ' /
89 DATA RDUNIT/1/, WRUNIT/2/
90 C
91 C

92 C
93 C
94 C
95 C
96 C
97
98
99 C

100 C
10 l C

102 C
103 C
104 C

THE FORTRAN IN WHICH THIS PROGRAM WAS WRITTEN REQUIRES
DYNAMIC ATTACHMENT OF DATA FILES TO LOGICAL 1/0 UNITS USING
THE SYSTEM SUBROUTINE ASSIGN. AFTER THIS IS DONE, ALL 1/0 IS
LIKE STANDARD FORTRAN.

CALL ASSIGN('GRAPHDATA ', RDUNIT)
CALL ASSIGN('COLORGRAPH ', WRUNIT)

NOW THE ADJACENCY MATRIX IS CLEARED TO ALL FALSE AND THE
ACTUAL NUMBER OF NODES IS READ. IF THE NUMBER OF NODES IS
ILLEGAL, THE PROGRAM STOPS IMMEDIATELY.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

185

105
106
107
108 10
109 20
110
11 l
112
113
114 30
115
116 C
117 C
118 C
119 C
120 C
121 C
122 C
123 C
124 C
125 C
126 C
127 40
128
129
130
131
132
133 50
134
135
136
137 60
138
139
140
141
142
143
144 65
145
146
147
148 70
149
150
151 80

DO 20 I= 1, MAXNOD
DO 10 J = l, MAXNOD

CONNCT(I, J) = .FALSE.
CONTINUE

CONTINUE
READ (RDUNIT, 1000) TOTNOD
IF (TOTNOD .GE. 0 .AND. TOTNOD .LE. MAXNOD) GOTO 30

WRITE (WRUNIT, 2000) TOTNOD
STOP 1

CONTINUE
WRITE (WRUNIT, 2010) TOTNOD

EACH NEW SET OF CONNECTION DATA HAS A HEADER RECORD WITH A
NODE NUMBER AND THE NUMBER OF NEIGHBORS. THE HEADER IS
FOLLOWED BY RECORDS CONTAINING THE NEIGHBORS. lNPUT STOPS
WHEN A NODE NUMBER lS ZERO. ANY ERROR EXCEPT CONNECTlNG A
NODE TO lTSELF lS FATAL BECAUSE THE NUMBER OF NElGHBORS MAY
BE CONFUSED AND CAUSE A HEADER TO BE MlSSED.
PLEASE NOTE THE lNSERTlON JUST BEFORE LABEL 65 TO TEST
FOR CONNECTlNG NODES OUT OF RANGE. THlS ERROR lS NOT FATAL.

CONTlNUE
READ (RDUNIT, 1010) MASNOD, NUMNBR
lF (MASNOD .EQ . 0) GOTO 90
lF (MASNOD .GE. 1 .AND. MASNOD .LE. TOTNOD) GOTO 50

WRITE (WRUNIT, 2020) MASNOD
STOP 2

CONTlNUE
lF (NUMNBR .GE. 1 .AND. NUMNBR .LE. TOTNOD) GOTO 60

WRlTE (WRUNIT, 2030) NUMNBR
STOP 3

CONTlNUE
READ (RDUNlT, 1020) (NGHBOR(I), I - 1, NUMNBR)
DO 80 l = l, NUMNBR

J = NGHBOR(l)
IF (J .GE. l .OR. J .LE. TOTNOD) GOTO 65

WRITE (WRUNIT, 2035) J, MASNOD
GOTO 80

CONTlNUE
lF (MASNOD .NE. J) GOTO 70

WRlTE (WRUNlT, 2040) MASNOD
GOTO 80

CONTlNUE
CONNCT(MASNOD, J) - .TRUE.
CONNCT(J, MASNOD) - .TRUE.

CONTINUE
152 GOTO 40

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

186

153 C
154 C
155 C THE ECHO OUTPUT IS A PICTURE OF THE ADJACENCY MATRIX. SINCE
156 C FORTRAN PERFORCE PRINTS TOR F FOR LOGICAL VALUES AND SINCE
157 C MATRICES WITH SOLID CHARACTERS ARE HARD TO READ, WE TURN
158 C EACH ROW OF THE MATRIX INTO A ROW OF •'S FOR TRUE AND BLANKS
159 C FOR FALSE. THERE IS ALSO SOME MANIPULATION DONE HERE TO GET
160 C NICE HEADINGS. NONE OF THE PRINTOUT WILL BE VERY PRETTY IF
161 C THERE ARE MORE NODES THAN CAN FIT ACROSS A PAGE. ADVANCED
162 C TECHNIQUES FOR PRINTING LARGE MATRICES COULD BE USED HERE.
163 C
164 90
165
166
167 100
168
169
170
171 110
172
173
174
175
176
177 120
178

CONTINUE
DO 100 I= 1, TOTNOD

LINE(I) = MOD(l, 10)
CONTINUE
WRITE (WRUNIT, 2050} (LINE((), l - 1, TOTNOD)
DO 110 l = 1, TOTNOD

TEXT(()= HYPHEN
CONTINUE
WRITE (WRUNIT, 2060) (TEXT(l), I - 1, TOTNOD)
DO 130 I= 1, TOTNOD

DO 120 J = 1, TOTNOD
TEXT(J) = BLANK
IF (CONNCT(I,J)) TEXT(J) = STAR

CONTINUE
WRITE (WRUNIT, 2070) I, (TEXT(J), J - l, TOTNOD)

179 130 CONTINUE
180 C
181 c,
182 C
183 C
184 C
185 C

NOW THAT THE DATA HAS BEEN READ AND ECHOED, WE CAN PROCEED
WITH THE ALGORITHM. THE FIRST STEP IS INITIALIZATION OF ALL
VARIABLES INCLUDING LOOP COUNTERS.

186 DO 140 I= 1, TOTNOD
187 COLOR([)= 0
188 140 CONTINUE
189 TOPCLR = 0
190 CURNOD = l
191 NODCNT = 0
192 CLRCNT = 0
193 TSTCNT = 0
194 C
195 C
196 C
197 C
198 C
199 C
200 C

WE WILL NOT COMMENT THE MAIN LOOP EXTENSIVELY SINCE IT IS AN
EXACT TRANSLITERATION OF THE ALGORITHM IN THE PROBLEM
DESCRIPTION. ALSO, SUCH COMMENTARY BREAKS THE FLOW OF THE
CODING AND LOOKS TERRIBLE WRITTEN ALL IN CAPITALS. NOTICE
THAT SEVERAL LOGICAL TESTS ARE INVERTED BECAUSE OF THE WAY

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

167

201 C
202 C
203 C
204 C
205 C
206 C
207 C
208 C ·
209 C
210 C
211 C
212 C
213 150
214
215 160
216
217
218
219 170
220
221 180
222
223
224
225 190
226
227 200
228
229
230
231
232
233 2 10
234
235
236
237
238 220
239
240 230
241
242
243
244
245 240
246
247 250
248

1

FORTRAN IF STATEMENTS WORK AND THAT INDENTATION OF
CONDITIONALS IS A RATHER DIFFICULT AFFAIR. THE FOLLOWING
TABLE OF STEP NUMBERS AND LABELS MAY HELP TO COORDINATE
CODE WITH ALGORITHM.

STEP 2 LABEL 150
STEP 3 LABEL 160
STEP 4 LABEL 180
STEP 5 LABEL 200
STEP 6 LABEL 230
STEP 7 LABEL 250

CONTINUE
IF (CURNOD .GT . TOTNOD) GOTO 260

CONTINUE
NODCNT = NODCNT + 1
COLOR(CURNOD) = COLOR(CURNOD) + 1
LOPFLG = COLOR(CURNOD) .LE. TOPCLR
CONTINUE
IF (.NOT. LOPFLG) GOTO 230

CONTINUE
CLRCNT = CLRCNT + 1
LOPFLG = .FALSE .
I = 1
CONTINUE
IF (I .GE. CURNOD) GOTO 220

CONTINUE
TSTCNT = TSTCNT + 1
IF (CONNCT(CURNOD, I) . AND.

COLOR(CURNOD) .EQ . COLOR(!)) GOTO 210
I = I + 1
GOTO 190

CONTINUE
I= CURNOD
COLOR(CURNOD) = COLOR(CURNOD) + 1
LOPFLG = COLOR(CURNOD) .LE. TOPCLR
GOTO 190

CONTINUE
GOTO 170

CONTINUE
IF (COLOR(CURNOD) .LE. TOPCLR) GOTO 240

COLOR(CURNOD) = 0
CURNOD = CURNOD - 1
GOTO 250

CONTINUE
CURNOD = CURNOD + 1

CONTINUE
IF {CURNOD .GE. 1) GOTO 150

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

168

249
250
251
252 C
253 C
254 C
255 C
256 C
257 C
258 C

TOPCLR = TOPCLR + 1
CURNOD = 1
GOTO 150

NOW THE GRAPH IS COLORED AND ALL THAT REMAINS IS TO PRINT
THE RESULTS. WE PRINT FOR EACH COLOR A LIST OF NODES WHICH
ARE PAINTED THAT COLOR. THERE IS ONCE AGAIN A LITTLE
MANIPULATION TO BUILD THE OUTPUT LINES.

259 260 CONTINUE
260 WRITE (WRUNIT, 2080) TOPCLR
261 I = 1
262 270 CONTINUE
263 IF (I .GT. TOPCLR) GOTO 290
264
265
266
267
268
269 280
270

J = 0

DO 280 K = 1, TOTNOD
IF (COLOR(K) .NE. I) GOTO 280

J = J + 1
LlNE(J) = K

CONTINUE
WR I TE (WRUN 1 T , 2090) I , (L I NE (K) , K - 1 , J)

271 I= I+ l
272 GOTO 270
273 290 CONTINUE
274 WRITE (WRUNIT, 2100) NODCNT, CLRCNT, TSTCNT
275 STOP
276 C
277 C
278 C
279 C
280 1000
281 1010
282 1020
283 C
284 C
285 C
286 C
287 2000
288 2010
289 2020
290 2030
291 2035
292 2040
293 2050
294
295 2060
296 2070

INPUT FORMATS.

FORMAT(I4)
FORMAT(2I4)
FORMAT(2014)

OUTPUT FORMATS .

FORMAT(l5, 32H IS NOT A LEGAL NUMBER OF NODES.)
FORMAT(24H THE NUMBER OF NODES IS 14)
FORMAT(l5, 27H IS AN ILLEGAL NODE NUMBER.)
FORMAT(l5, 30H IS AN ILLEGAL NElGHBOR COUNT.)
FORMAT(l5, 25H IS ILLEGAL CONNECTED TO 14)
FORMAT(6H NODE 14, 27H MAY NOT BE SELF-CONNECTED.)
FORMAT(/18H ADJACENCY MATRIX://

1 6X, 12611)
FORMAT(6X, 126A 1)
FORMAT(l5, lHI 126Al)

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

169 MAP COLORING MADE EASY

297 2080 FORMAT(//32H THE NUMBER OF COLORS NEEDED IS 13//)
298 2090 FORMAT(7H COLOR 13, 8H NODES (1015))
299 2100 FORMAT(24H THE OUTER LOOP COUNT= 18/
300 l 24H THE MIDDLE LOOP COUNT= 18/
301 2 24H THE INNER LOOP COUNT= 18)
302 END

The sample data are taken from the map of Chapter 3. The states are numbered from top to bottom
in columns from left to right. On the right of each header card is the name of the associated state;
the FORMAT statement is unconcerned about anything beyond the eighth character. The data are
split into two columns to save printing space here but otherwise appears exactly as they would go
into the program.

49
l 2 WASHINGTON
2 5
2 4 OREGON
l 3 4 5
3 3 CALIFORNIA
2 4 7
4 5 NEVADA
2 3 5 6 7
5 6 IDAHO
l 2 4 6 8 9
6 5 UTAH
4 5 7 9 10
7 4 ARIZONA
3 4 6 l l
8 4 MONTANA
5 9 12 13
9 6 WYOMING
5 6 8 10 13 14

10 6 COLORADO
6 9 l l 14 15 16

11 4 NEW MEXICO
7 10 16 17

12 3 NORTH DAKOTA
8 13 18

13 6 SOUTH DAKOTA
8 9 12 14 18 19

14 6 NEBRASKA
9 10 13 15 19 20

15 4 KANSAS
10 14 16 20
16 6 OKLAHOMA

Digitized by Google

24 28
26 4
21 22
27 4
26 31
28 3
23 25
29 5
25 28
30 6
20 25
31 8
20 21
32 5
27 31
33 2
27 32
34 6
29 35
35 5
29 30
36 6
30 31
37 4
31 32
38 2
32 37
39 5
34 40
40 3
34 39
41 3

29 30
MISSISSIPPI

27 31
ALABAMA

32 33
MICHIGAN

29
OHIO

30 34 35
KENTUCKY

29 31 35 36
TENNESSEE

26 27 30 32 36 37
GEORGIA

33 37 38
FLORIDA

PENNSYLVANIA
39 40 41 42

WEST VIRGINIA
34 36 42

VIRGINIA
35 37 42 43

NORTH CAROLINA
36 38

SOUTH CAROL I NA

NEW YORK
44 45 46

NEW JERSEY
41

DELAWARE

Original from
UNIVERSITY OF MICHIGAN

170 MAP COLORING MADE EASY

10 1 1 15 17 20 21 34 40 42
17 4 TEXAS 42 5 MARYLAND
1 1 16 21 22 34 35 36 41 43
18 4 MINNESOTA 43 2 WASHINGTON DC
12 13 19 23 36 42
19 6 IOWA 44 3 VERMONT
13 14 18 20 23 24 39 45 48
20 8 MISSOURI 45 5 MASSACHUSETTS
14 15 16 19 21 24 30 31 39 44 46 48 49
21 6 ARKANSAS 46 3 CONNECTICUT
16 17 20 22 26 31 39 45 49
22 3 LOUISIANA 47 l MAINE
17 21 26 48
23 4 WISCONSIN 48 3 NEW HAMPSHIRE
18 19 24 28 44 45 47
24 4 ILLINOIS 49 2 RHODE ISLAND
19 20 23 25 45 46
25 4 INDIANA 0

The program output looks best when printed on long output paper and hung on the wall; the aspect
ratio of the printing here destroys some of the symmetry. Notice how printing the solution hori­
zontally saves considerable space without losing any information. We were originally tempted to
print node numbers and colors vertically, which would have been slightly easier but not nearly as
tidy. The actual output is shown on the page at right.

NOTES ON THE PROGRAM

Lines 1-19. The head of a program serves the same purpose as the abstract of a technical
paper. No matter how big or small the program, roughly the same information as is given
here should be supplied somewhere very near the top. In particular, the program must
point to any parallel external documents.

Lines 22-26. If this program were larger, there would be more material on algorithmic
questions before the data definitions. As it is, the all-important glossary precedes the
program text. Since modules should never be more than several pages long, we prefer the
narrative glossary in which variables are introduced in a combined order of function,
importance, and appearance. Obviously, the amount of explanation in the glossary de­
pends on the other comments, but no variable should be left out. We try to make use of
six-character names for mnemonic purposes; it is a hard fight against one of FORTRAN's
silliest rules.

Lines 62-89. All variables are declared even though FORTRAN does not always require
declarations - better be safe than sorry and better to ensure that the program reader
knows our intentions exactly. The comments on lines 62-65 explain why we are diverging
from standards: the compiler made us do it; and if the program is run elsewhere, the
appropriate change is pinpointed. The 1/0 uses variable unit numbers so that if the pro­
gram is moved to another system with different unit-assignment conventions, only one
change will be necessary to make the 1/0 work.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

171

THE NUMBER OF NODES IS 49

ADJACENCY MATRIX:

1234567890123456789012345678901234567890123456789 ----------------------------------1 • •
2 • •••
3 • • •
4 •••••
5 ••••••
6 •••••
7 •• • •
8 • • ••
9 ••••••

10 • • • •••
11 • • ••
12 • • •
13
14
15
16
17
18
19
20
21
22
23
241
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

••
••
•
••
•

• • ••
• • • •
• • •
• • • •
• ••

•• •
•• • •
••• • •

•• • •
• •
••
••

••

•
••

•
••
•

•
• •
•

• •
•
•

•
•

•
•

••
•
•

THE NUMBER OF COLORS NEEDED IS

COLOR 1 NODES 1 3 6
28 30 34 37 43 44

COLOR 2 NODES 2 7 9
35 39 41 48 49

COLOR 3 NODES 4 10 13
40 45

COLOR 4 NODES 5 16 31
THE OUTER LOOP COUNT - 157
THE MIDDLE LOOP COUNT= 254
THE INNER LOOP COUNT= 2661

•

••
•

•••
•
•••

•
• •
• •
• •
• •
•

•
••
••
••
•

4

8

• •
• •
• •
••

•
• •
• •
• •
•

•
•
•
•••

•

1 1
46 47

12 15

20 22

42

••••
•
••

• •••
• •
• •
• •
•

• • •
• • • ••
• • •

•
•• •
••

14 18

17 19

23 29

21 24 27

25 26 32

33 36 38

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

172 MAP COLORING MADE EASY

Lines 92-98. Throughout the program one paragraph of English comment is followed by
one paragraph of FORTRAN coding. Be careful not to comment so often that the flow of
the coding is obscured. Of course, there is no justification for too few comments. This
program has 145 comment lines and 157 statement lines. By the way, every comment was
written before the attached code.

Lines 105-109. A label should never appear on anything but a CONTINUE or FORMAT
statement. FORTRAN requires many labels, and debugging often causes them to move;
do not invite disaster by labeling substantive statements that may be moved inadver­
tently. Similarly, end only one DO-loop at a time.

Lines 110-115. Checking of input is simultaneously one of the dullest and most impor­
tant program duties. Never trust anybody's data, even your own. Notice the inversion
of the sense of the logical test in the IF statement. Such inversions are common in
FORTRAN. It is hard to find a consistent scheme of indentation for conditional state­
ments because of the lack of an else, but the several examples here provide some models.

Lines 139-151. Label 65 shows the value of labels that run upward in order, increasing by
a large, regular step size. The input check just before label 65 was added because of an
error encountered while preparing data. With ordered labels there was no difficulty
inserting the added code. Notice also the use of variable J, required because standard
FORTRAN will not allow subscripted variables to appear as subscripts. Only by following
all the rules, even the distasteful ones, do we guarantee transportability and correctness.
Most compilers would not require the temporary use of J, but it is best to be prepared for
those that might.

Lines 155-162. Comments must explain why the code does what it does; generally the
coding itself is sufficient indication of how things are done.

Lines 196-211. It would be redundant to repeat in the program all the algorithm develop­
ment from the outside materials; the bibliographic citation will guide the program reader.
But there had better be good outside materials, and it is usually a good idea to write them
before the program is started.

Lines 238-239. This free-floating GOTO may seem a little odd. It exists so that the struc­
ture of the coding exactly parallels the structure of the algorithm. Efficiency nuts may
complain that line 226 could simply have GOTO 220 replaced with GOTO 170, saving
two lines of code and a microsecond or two during each loop. True enough, but at what
cost in understanding? How many computer microseconds does it take to pay for 5
minutes of programmer time?

Lines 277-301. FORMATs are collected together at the bottom of the program to avoid
cluttering the main flow. Each class of 1/0, each separate file, unit, or usage, has its own
sequence of labels. These labels are kept separate from one another and from ordinary
program labels. Notice that Hollerith data are transmitt.ed by using old-fashioned nH
formats because standard FORTRAN requires the silly counts even though most com­
pilers do not.

FINAL COMMENTS

So concludes our discussion of map coloring. We might note that original algorithm development
took about 5 hours, writing the program took about 8, keying it in to a time-sharing system took
about 3 hours, and testing/debugging took about 2 hours. Much of the testing time was spent
verifying the correspondence of input and output. Two typing errors and two misplaced labels were
discovered either by the compiler or by ridiculous output on the first run. The extra input check

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

173 MAP COLORING MADE EASY

was discovered during test data preparation. There was one logic flaw in the algorithm, and it was
uncovered by the first substantial set of data.

This problem also illustrates the importance of documentation for future guidance. The algorithm
described here was actually developed about 6 months before the chapter was written. A formal
proof of correctness was also made, and the class of programmers that saw the algorithm and proof
agreed unanimously that both were exactly right. But before this chapter could be written, burglars
stole the only copy of the algorithm and proof (although we have no idea what they wanted with
them). So we had to spend about 5 hours recovering the original reasoning and still made a logical
error. May the burglars' computer have perpetual parity errors.

REFERENCES

Appel, K., and W. Haken. "Every Planar Map is Four Colorable." Bulletin of the American Mathematical
Society, 82, 5, pp. 711-712, September 1976.

Knuth, D. E. "Estimating the Efficiency of Backtrack Programs." Mathematics of Computation, 29, 129,
pp. 121-136, 1976.

Although the map-coloring algorithm has a worst-case computation time exponential in the size of the
input graph, its average execution is typically quite short. However, analytic derivation of the average
would probably be beyond our capabilities. Knuth describes a method for estimating the speed of a back­
track program. The estimation may be done by hand after running some test cases, and Knuth illustrates
the method with examples.

Steen, Lynn Arthur. "Solution of the Four Color Problems." Mathematics Magazine, 49, 4, pp. 219-272,
September 1976.

One more Ph.D. gone glimmering. Appel and Haken have announced a proof that the Four Color Conjec­
ture ls true. At the time of this writing, the proof is circulating in manuscript, and several eminent com­
binatoric specialists think that it is probably valid. By the time this book is published, the paper should be
in the mathematics journals. Steen describes the proof method and its mathematical importance. A com­
puter was used extensively to develop the proof and to check the 1936 cases in the final version.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

30

or ...

A PROGRAM
FOR TEXT COMPACTION

Chapter 11 presents an interesting algorithm for the compression of textual data. If you were a
programmer working in a library or for a newspaper, say, you might expect your supervisor to
plunk Chapter 11 down on your desk and ask you to have a shot at adding the algorithm to your
local system. At first the project is appealing because it seems probable that the algorithm might
provide considerable storage savings. But then doubts arise.

How complicated are the algorithms necessary to do the dictionary matching, how com­
plex the data structures? How much time will they take?

The algorithm depends on parameter settings. How should the parameters be chosen?

How sensitive is the algorithm's compression rate to changes in the text to be compressed?

The algorithm trades processing time for storage space. What is an appropriate exchange
rate?

Assuming that the first attempt at a program is clear and correct but not very efficient,
how can the program be revised to improve efficiency? Can the original design include
the possibility of revision without a major rewrite?

Finally, how much programmer time is it reasonable to spend on this project before
deciding that it has been done well enough?

These questions should also occur to your supervisor, along with the problem of whether you were
the right programmer for the task. You cannot, however, allow yourself to be paralyzed by doubt.
Attack by ignoring (although not forgetting) some difficulties while concentrating on those that
seem tractable. In our solution we will attempt a design that begins with simple data structures and
algorithms; and after the program runs correctly, we will try to improve it by adding sophistication.
Parameters may well affect behavior, and we will try to make them easily changeable; but in our
first version we will simply guess at possible values. In order to study the effect of changing the
program, its input, or its parameters, we will build the program without relying on any larger system
so that its cost will not be hidden by outside expenses. In practice, though, text compression would

174

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

175 COMPRESSED SOLUTIONS

always be part of some larger problem involving large quantities of text. Fatigue and boredom will
set limits to our work, not diminishing returns.

HOW TO SHARPEN A PENCIL

Every author has methods for preparing to write. Some sober up; a few drink; some wake at 4 AM;
some rise at noon; some need silence; some need gaiety; some make do with a sharp pencil and a
legal pad. Programmers are authors, too, and need to find comfortable methods and settings.
Before we begin solving the compression problem, we would like to suggest some ways to make the
process of programming more pleasant and fruitful. These methods work for us; at least try them
before going back to your own ways.

Programs must be readable, and a primary component of readability is consistency.
Consistency gives rise to recognizable style, since repeated functions will be given similar
encodings. To improve your programming consistency, try to ensure that the physical
environment is the same each time that you program. Almost all our programs - and most
of this book -have been written in a decrepit old green platform rocker fitted with an
improvised writing board of plastic sheeting and plywood. The chair is in the living room,
where there is easy access to classical music on the stereo and to iced tea in the refrig­
erator. It's true that coding cannot go on when guests are present; yet home is so much
quieter than any office that we do a great deal more work. You may prefer some other
environment; search until you find one that is really comfortable and then figure out how
to reproduce the comfort whenever you code.

Many programmers work by sketching a few lines of code on the back of an old envelope
and then rushing off to enter the fragment into a terminal to give it a whirl. The rest of
their time is spent patching pieces on here and there, and the final result looks as if Dr.
Frankenstein had rushed in to do emergency surgery on Humpty Dumpty. In fact,
another important part of readability is discipline; one way to achieve discipline is to use
coding sheets. The free spirits mentioned above often sneer at programmers who work by
filling in little boxes, but coding sheets have a strong stabilizing effect on style and make
it much easier to develop and use a consistent indentation scheme. Code written on sheets
can also be keypunched. The drudgery relief is pleasant enough, but, more important,
keypunchers read and verify coding. Thus many clerical errors never enter the machine­
readable source, and one more person looks at the program, which is never a bad thing.

Now for an iconoclasm: try writing your programs in ink. Most programming instructors
will tell you that you should never be afraid to admit a mistake (true enough) - that the
eraser may be your most powerful tool. Unfortunately, the eraser may be too powerful.
If eliminating mistakes becomes easy, you may not think carefully enough before com­
mitting one. When you write in ink, the cost of errors is higher, especially since key­
punchers probably will not accept a smudged, overwritten sheet. Bad errors will force
you to recopy a whole page. With luck you will slow down your writing and think more
deeply about each line; time invested during writing will pay dividends during testing and
debugging. Even if you have a text editor that encourages or enforces a good program­
ming style, you should try these last two suggestions. Coding must be thought about
carefully, and our experience is that the electric fields around computer terminals tend to
short-circuit thought.

Instead of using a flowchart, try writing comments first. Each time that you begin a new
routine, write a long comment describing the routine's purpose and construction as
lucidly as possible. Treat writing the comment as a major programming task. Once fin­
ished, set it to one side as reference and translate it into the programming language that
you are using. Unless the language is very prolix - for example, assembly language -

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

176 COMPRESSED SOLUTIONS

the translation should not be much longer than the comment and may be shorter. By
writing the comment on separate sheets (of coding paper, presumably), the comment may
be treated as specification and will not need to be rewritten merely because the code that
translates it turns out to be wrong. Of course, if you revise your view of the routine, you
will probably need to rewrite both comment and code.

Do not turn any of your program into machine-readable form until you have written all
the code. Once written, however, immediately run the compiler and eliminate all clerical
errors, all misspelled identifiers, misplaced semicolons, and such. You are shooting for a
clean listing, preferably with a complete cross-reference table. This "clean" listing is not
error free, of course; it's merely free of those particularly simple-minded errors that a
compiler can detect. Now sit down with the program and go over it as if someone else
were trying to sell it to you. Check every statement; trace every loop; look for variables
that are unused or misused; try to simplify the control flow; even correct the punctuation
in the comments. The reason for doing so on the listing rather than the coding sheets is
that many errors stand out more clearly when against a background of neatly printed
program. This is also the time to adjust the program layout to be as visually attractive as
possible. If you have so many changes marked on the listing that you cannot see the
program clearly, make the changes, print a new listing, and start over. Paper is cheap
compared to the cost of a missed bug.

Obviously, these suggestions are not appropriate for all programs and all situations. Many pro­
gramming systems provide batteries of tools to aid in the program-development process. To ignore
these tools would be foolish and wasteful. They are particularly useful for building one-shot pro­
grams and for keeping track of large projects. Yet we cannot warn too strongly against letting the
computer come between you and your solution. The computer's siren song "Let me do your
thinking" has lured many a programmer to defeat.

PROBLEM ANALYSIS

Because the two major algorithms (dictionary construction and text encoding) have already been
designed, we must consider how to surround them with supporting code. First, notice that both
algorithms walk down the input text from left to right and are interested only in matching the next
few characters of the input against the dictionary. This means that the same input routine can be
used for both construction and encoding and that we do not have to worry about the details of
input access as long as the input routine always provides characters to match or an end-of-file
indication. Second, both algorithms must look up strings in the dictionary, but neither is sensitive
to the lookup method. So once again the algorithms may share a common service routine, and there
is no need to specify the details yet. Third, the encoding algorithm requires at least one character
not otherwise used in the input text as a coding control character. Instead of selecting an arbitrary
character before the text is read, we can have the input routine keep track of all the characters seen
in the input and use any not seen for encoding purposes. The dictionary building procedure, coded
in XPL, is shown on the right-hand page.1

Some commentary is in order. The procedure is written in XPL, a language sufficiently similar to
both PASCAL and PL/I that it is readily understandable (an illustration of the fact that reading a
specific language is usually quite easy). XPL 's virtues for this problem include strings as a built-in
data type and good control structures; its drawbacks include single-dimensional vectors with fixed
bounds as the only structured data type. The unusual features appearing here are the string con-

1 The line numbers on these procedures are those from the complete program as printed on pages 179-189.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

177 COMPRESSED SOLUTIONS

298 BUILD.DICTIONARY: PROCEDURE:
299
300 /• DICTIONARY CONSTRUCTION CONTINUES UNTIL THE INPUT ROUTINE
301 FAILS TO RETURN ANY DATA. THE TEST FOR A NULL STRING IS
302 SIMPLE IF WE CHECK THE LENGTH AGAINST ZERO. THE
303 DICTIONARY.SEARCH ROUTINE RETURNS -1 IF NO MATCH IS FOUND AND
304 THEN THE FIRST CHARACTER OF THE INPUT IS FORCED AS THE MATCH
305 AND INTO THE DICTIONARY. NOTICE THAT THE ACTUAL STRING
306 MATCHED IS PICKED UP FROM THE DICTIONARY ENTRY. COALESCENCE
307 TAKES PLACE AS NECESSARY, THE MATCH IS REMEMBERED, AND THE
308 INPUT PREPARED FOR ANOTHER CYCLE.
309 •j

DECLARE CHARACTER,
FIXED,

310
311
312
313
314
315
316

(MATCH, LAST.MATCH)
(COUNT, ,LAST . COUNT)
INDEX FIXED,
THRESHOLD FIXED;

/• THE ENTRY LOCATION •j
j• COALESCENCE THRESHOLD •j

LAST.MATCH - , , . - .
317 LAST.COUNT= 0;
318
319 DO WHILE TRUE;
320 CALL FILL. INPUT.BUFFER:
321 IF LENGTH(lNPUT.BUFFER) = 0 THEN RETURN;
322 INDEX= SEARCH.DlCTIONARY(INPUT.BUFFER);
323 IF lNDEX = -1
324 THEN lNDEX = BUlLD.ENTRY(SUBSTR(INPUT.BUFFER,0,1));
325 MATCH= DICTIONARY.STRING(INDEX);
326 COUNT, DlCTIONARY.COUNT(lNDEX) = DICTlONARY.COUNT(lNDEX) + l;
327 THRESHOLD= COALESCENCE.THRESHOLD;
328 IF COUNT >= THRESHOLD & LAST.COUNT>= THRESHOLD THEN
329 DICTIONARY.COUNT(BUILD.ENTRY(LAST.MATCH I IMATCH))=FlRST.COUNT;
330 LAST.MATCH= MATCH;
331 LAST.COUNT= COUNT;
332 [NPUT.BUFFER = SUBSTR(lNPUT.BUFFER, LENGTH(MATCH));
333 END;
334
335 END BUlLD.DlCTIONARY;

catenation operator 11 and the SUBSTR function used to select a substring of an existing string. 2

The input routine FILL.INPUT.BUFFER fills the input buffer if it is empty and returns the null

2 If V is a string variable or expression, then SUBSTR(V, S, L) is the substring of V that begins at character S
(counting the first character of the string as the zero position) and running for L characters. If argument Lis omitted,
the whole suffix of V starting at position S is returned. LENGTH returns as value the number of characters in its
string argument. Line 332 of BUILD.DICTIONARY uses SUBSTR and LENGTH together to truncate the matched
string from the head of INPUT.BUFFER.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

178 COMPRESSED SOLUTIONS

string if the input file is exhausted. BUILD.DICTIONARY returns when there is no more input.
Notice that testing for a length of zero is the same as testing if a string is null and is preferred here
because LENGTH is an efficient operation in XPL. Now let's see the input procedure.

132 FILL. INPUT.BUFFER: PROCEDURE;
133
134 /• IF INPUT.BUFFER IS EMPTY, THEN THIS ROUTlNE TRIES TO READ A
135 LINE FROM THE SOURCE.FILE. THE LINE READ GOES INTO
136 INPUT .BUFFER WITH A NULL LINE THE SIGNAL FOR END OF FILE. IF
137 FLAG PRINT.SOURCE IS ON, THEN THE INPUT IS ECHOED. IF FLAG
138 CHECK.CHARACTERS IS ON, THE INPUT IS SCANNED FOR CHARACTER
139 USAGE.
140 •/
141
142 DECLARE I FIXED;
143
144 IF LENGTH(INPUT.BUFFER) > 0 THEN RETURN;
145 INPUT.BUFFER= INPUT(SOURCE.FILE);
146 IF PRINT.SOURCE THEN PRINT INPUT .BUFFER;
147 IF CHECK.CHARACTERS THEN
148 DO I= 0 TO LENGTH(INPUT.BUFFER)-1;
149 CHARACTER.USED(BYTE(INPUT.BUFFER.I)) - TRUE;
150 END;
151
152 END FILL. INPUT .BUFFER;

Input and output use built-in functions and always read and print strings. PRINT is actually a macro
disguising the output function (see line 58 of the program). FILL.INPUT.BUFFER echoes the input
if desired and also keeps a record of every character seen. The function BYTE, when used in an
expression, converts a character selected from a string into an integer so that the character can be
used arithmetically; here the characters are used to index Boolean vector CHARACTER. USED,
a record of all the characters seen. BYTE is also used in BUILD.ENCODING.TABLE to turn inte­
gers back into characters; thus BYTE serves the same functions as both ORD and CHR in PASCAL.

Our first attempt at a data structure for the dictionary will be a simple, unordered table to be
searched linearly. Such a structure will be trivial to debug but will probably be painfully inefficient;
once we have everything working, we can try to speed up the searches. Each dictionary entry will
have four fields: the actual string; the entry's frequency during dictionary construction; the code
assigned to the entry; and a usage count for the entry during compression. These fields are held in
four parallel vectors declared on lines 66-73 of the main program (now we begin to feel XPL's
weakness in data structures). The first legitimate entry is always at index O and the last at index
DICTIONARY.TOP; the maximum size of the dictionary is given by macro DICTIONARY.SIZE.
Search requires only a pass completely through every entry in the dictionary; new entries can be
added to the end of the table. Entry deletion squeezes low-frequency entries out by copying high­
frequency entries over them; you should convince yourself that no data are lost in the loop of lines
261-270. Here is the whole program with the dictionary manipulation routines in lines 195-296.
Notice how the parameters affecting compression have been moved out into their own subroutines
on lines 154-193 so that they can be found and changed easily. We choose convenience over effi­
ciency here; in a working version, the parameter routines would be eliminated and the chosen func­
tions copied right where they are to be used.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

179

1 /• "->$F LARGE FREE STRING SPACE
2 A TEXT COMPRESSION PROGRAM.
3

4 AUTHOR -- CHARLES WETHERELL 18 AUGUST 1976.
5 LAST DATE MODIFIED -- 25 AUGUST 1976.
6
7 THIS PROGRAM COMPRESSES TEXT FILES USING THE MAYNE-JAMES DICTIONARY
8 CONSTRUCTION ALGORITHM. INPUT IS AN ARBITRARY TEXT FILE AND OUTPUT
9 IS THE COMPRESSED FILE ALONG WITH AN ENCODING DICTIONARY. SOME

10 STATISTICS ON PROGRAM EFFICIENCY AND COMPRESSION RATE ARE KEPT.
11 TWO PASSES BY THE SOURCE FILE ARE NECESSARY. ON THE FIRST PASS THE
12 DICTIONARY IS BUILT AND A RECORD OF ALL CHARACTERS SEEN IS KEPT.
13 BETWEEN PASSES THE CHARACTER RECORD IS USED TO ADD ENCODINGS TO THE
14 DICTIONARY ENTRIES. DURING THE SECOND PASS, LONG HIGH FREQUENCY
15 STRINGS ARE REPLACED BY SHORTER ENCODING STRINGS AS THE COMPRESSED
16 FILE IS WRITTEN. FURTHER INFORMATION ABOUT THE TECHNIQUE CAN BE
17 FOUND IN CHAPTER 11 OF
18
19 WETHERELL, C.S. ETUDES FOR PROGRAMMERS. PRENTICE-HALL,
20
21

ENGLEWOOD CLIFFS, NJ. 1978.

22 IN THIS VERSION OF THE ALGORITHM, ENDS OF INPUT LINES STOP STRING
23 MATCHES DURING DICTIONARY CONSTRUCTION AND TEXT ENCODING; THE
24 CARRIAGE RETURN IS NOT TREATED LIK~ A CHARACTER. ONLY CHARACTERS
25 WHOSE INTERNAL REPRESENTATIONS LIE IN THE RANGE 1 TO 127 WILL BE
26 CONSIDERED FOR ENCODING PAIRS SO THAT THE PAIRS WILL HAVE
27 REASONABLE PRINT REPRESENTATIONS. IN A FULL WORKING IMPLEMENTATION
28 ALL 256 AVAILABLE CHARACTERS WOULD BE USED FOR ENCODING.
29
30 THE DICTIONARY SEARCH, ENTRY, AND CLEANUP ROUTINES ARE WRITTEN
31 SO THAT THEY MAY BE CHANGED QUITE EASILY.
32 THE ALGORITHMS CAN BE MODIFIED BY REPLACING THE BODIES OF PROCEDURES
33 SEARCH.DICTIONARY, CLEAN.DICTIONARY, AND BUILD.ENTRY, ALONG WITH
34 MAKING ANY NECESSARY CHANGES TO PREPARE.THE.PROGRAM. THE VARIOUS
35 THRESHOLDS PARAMETERS ARE ALL CALCULATED BY FUNCTIONS AND CAN BE
36 BE MODIFED BY CHANGING THE FUNCTION DEFINITIONS.
37 IF THERE IS A DATA STRUCTURE ADDED FOR SEARCHING, MAKE SURE THAT
38 BUILD.ENCODING.TABLE LEAVES THE STRUCTURE IN GOOD SHAPE AFTER CODES
39 ARE ADDED AND ENTRIES OF LENGTH TWO AND LESS ARE DELETED.
40
41 THIS VERSION USES SIMPLE LINEAR SEARCH, A HYPERBOLIC THRESHOLD
42 FOR COALESCENCE, A MEAN THRESHOLD FOR DELETION, AND AN INITIAL
43 COUNT OF ONE FOR COALESCED ENTRIES.
44 •;
45
46 /• SOME MACROS TO IMPROVE XPL AS A LANGUAGE.
47

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

180

48 DECLARE LOGICAL LITERALLY 'BIT(l)',
49 TRUE LITERALLY ' l',
50 FALSE LITERALLY '0',
51
52
53

NOT LITERALLY ' N ' , /• TO lMPROVE PRINTING•/
COMPUTE.TlME LITERALLY 'COREWORD("lE312")•2'; /• THE CLOCK•/

54 /• DECLARATIONS FOR 1/0 UNITS
55
56 DECLARE SOURCE.FILE LITERALLY '1',
57
58
59

ECHO.FILE LlTERALLY '2',
PRlNT LlTERALLY 'OUTPUT(ECHO.FILE)

60 f• DECLARATIONS FOR THE lNPUT ROUTINE
61
62 DECLARE lNPUT.BUFFER CHARACTER,

_, . - .

63 (PRlNT.SOURCE, CHECK.CHARACTERS) LOGlCAL,
64 CHARACTER.USED("FF") LOGlCAL; /• I.E. 256 DIFFERENT ENTRlES•/
65
66 f• DECLARATIONS FOR THE DlCTlONARY
67
68 DECLARE DlCTlONARY.SlZE LITERALLY ' 100 ' ,
69 DlCTlONARY.STRING(DICTIONARY.SIZE) CHARACTER,
70 DICTIONARY.COUNT(DICTIONARY.SIZE) FIXED,
71 DICTIONARY.CODE(DICTIONARY.SIZE) CHARACTER,
72 DICTIONARY.USAGE(DICTIONARY.SIZE) FIXED,
73 DICTIONARY.TOP FIXED;
74
75 /• CONTROL FOR ENCODING PRINT .
76
77 DECLARE PRINT.ENCODING LOGI CAL;
78
79 /• DECLARATlONS FOR ENCODI NG STATI STICS•/
80
81 DECLARE SEARCH.COMPARES FIXED,
82 BUlLD.COMPARES FIXED,
83 COMPRESS.COMPARES FIXED;
84
85 DECLARE TIME.CHECK(lO) FlXED;
86
87 DECLARE (INPUT . LENGTH, OUTPUT. LENGTH) FlXED;
88
89 [.FORMAT: PROCEDURE(NUMBER, WIDTH) CHARACTER;
90

91 /• FUNCTION I.FORMAT CONVERTS ITS ARGUMENT NUMBER INTO A STRING
92 AND THEN PADS THE STRING ON THE LEFT TO BRING THE LENGTH UP
93 TO WIDTH CHARACTERS. ALL OF THIS IS JUST THE FORTRAN
94 INTEGER FORMAT.
95 •;

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

181

96
97 DECLARE NUMBER FIXED,
98 WIDTH FIXED;
99

100
101
102

DECLARE STRING CHARACTER,
BLANKS CHARACTER INITIAL('

103 STRING= NUMBER;
104 IF LENGTH(STRING) < WIDTH

,) ;

105 THEN STRING= SUBSTR(BLANKS,O,WIDTH-LENGTH(STRING)) I I STRING;
106 RETURN STRING;
107
108 END I.FORMAT;
109
110 PREPARE.THE.PROGRAM: PROCEDURE:
l 11
112 /• ONLY SIMPLE CLEARING OF THE DICTIONARY, THE CHARACTER RECORD,
113 THE STAT[STICS, AND A FEW SCALARS IS REQUIRED.
114 •/
115
116 DECLARE I FIXED:
117
118
119
120

DO I= 0 TO DICTIONARY.SIZE;
DICTIONARY.STRING(l), DICTIONARY.CODE(()
DICTIONARY.COUNT((), DICTIONARY.USAGE(I)

121 END:
122 DICTIONARY.TOP= -1:
123

- , , . - .
- O· - .

124 DO I= 0 TO "FF"; CHARACTER.USED([)= FALSE; END;
125 INPUT.BUFFER=' ' ;
126
127 SEARCH.COMPARES= O;
128 INPUT.LENGTH, OUTPUT.LENGTH= 0;
129
130 END PREPARE.THE.PROGRAM;
131
132 FILL . INPUT.BUFFER: PROCEDURE;
133
134 /• IF INPUT.BUFFER IS EMPTY, THEN THIS ROUTINE TRIES TO READ A
135 LINE FROM THE SOURCE.FILE. THE LINE READ GOES INTO
136 INPUT.BUFFER WITH A NULL LINE THE SIGNAL FOR END OF FILE. IF
137 FLAG PRINT . SOURCE IS ON, THEN THE INPUT IS ECHOED. IF FLAG
138 CHECK.CHARACTERS IS ON, THE INPUT IS SCANNED FOR CHARACTER
139 USAGE.
140 •;
141
142 DECLARE I FIXED;
143

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

182

144 lF LENGTH(lNPUT.BUFFER) > 0 THEN RETURN;
145 lNPUT.BUFFER = lNPUT(SOURCE.FILE);
146 lF PRlNT.SOURCE THEN PRlNT lNPUT.BUFFER;
147
148
149
150
151

IF CHECK.CHARACTERS THEN
DO I= 0 TO LENGTH(INPUT.BUFFER)-1;

CHARACTER.USED(BYTE(lNPUT.BUFFER,l)) -
END;

152 END FlLL.lNPUT.BUFFER;
153
154 COALESCENCE.THRESHOLD: PROCEDURE FlXED;
155

TRUE;

156 /• TH[S PROCEDURE CALCULATES THE THRESHOLD FOR COALESC[NG
157 TWO DlCTlONARY ENTRlES lNTO ONE. HERE, THE REQU[REMENT [S
158 THAT THE ENTRlES HAVE FREQUENClES GREATER THAN THE REClPROCAL
159 OF THE RATlO OF SPACE REMAlNlNG lN THE DlCTlONARY.
160 •/
161
162 RETURN DlCTlONARY.SlZE/(DlCTlONARY.SlZE-DlCTlONARY.TOP+l) + 1;
163
164 END COALESCENCE.THRESHOLD;
165
166 DELETlON.THRESHOLD: PROCEDURE FlXED;
167
168 f• TH[S FUNCTlON RETURNS THE THRESHOLD NECESSARY FOR AN ENTRY
169 TO BE RETAlNED lN THE DlCTlONARY AT CLEANUP TlME.
170 [N THIS VERSION, THE FREQUENCY MUST BE GREATER THAN THE
171 ROUNDED UP MEAN FREQUENCY .
172 •;
173
174 DECLARE SUM FIXED,
175 I FIXED;
176
177 SUM= O;
178 DO I= 0 TO DICTIONARY.TOP;
179 SUM= SUM+ DICTlONARY.COUNT(I);
180 END;
181 RETURN SUM/(DlCTIONARY.TOP+l) + 1;
182
183 ~ND DELETION.THRESHOLD;
184
185 FIRST.COUNT : PROCEDURE FIXED;
186
187 /• THI S FUNCT[ON RETURNS THE COUNT GIVEN A COALESCED ENTRY WHEN
188 lT IS FIRST ENTERED IN THE DICTIONARY.
189 •;
190
191 RETURN l; f• CURRENTLY GI VE A COUNT OF 1. •f

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

183

192
193 END FIRST.COUNT;
194
195 SEARCH.D(CTIONARY: PROCEDURE(TEST.STRING) FIXED;
196
197 f• THIS FUNCTION SEARCHES THE DICTIONARY FOR THE LONGEST MATCH
198 WITH THE HEAD OF THE ARGUMENT TEST.STRING. IF NO MATCH IS
199 FOUND. THE ROUTINE RETURNS -1 AS VALUE; IF A MATCH IS FOUND.
200 THE INDEX OF THE MATCH IS RETURNED AS VALUE.
201
202 THIS ROUTINE PERFORMS A SIMPLE LINEAR SEARCH OF THE DICTIONARY
203 FROM THE ZEROTH ENTRY TO THE ENTRY DICTIONARY.TOP. IF AN
204 ENTRY'S LENGTH IS LONGER THAN THE LONGEST CURRENT MATCH AND
205 STILL NO LONGER THAN THE ARGUMENT, THEN THE ENTRY IS MATCHED
206 AGAINST THE ARGUMENT. EQUALITY WILL CAUSE THE MATCH TO BE
207 UPDATED. NOTICE THAT BY STARTING THE INDEX AT -1, THE RETURN
208 VALUE WILL BE PROPER EVEN IF NO MATCH IS FOUND.
209 •;
210
211 DECLARE TEST.STRING CHARACTER;
212
213 DECLARE INDEX FIXED,
214 (MATCH.LENGTH. ARC.LENGTH, ENTRY.LENGTH) FIXED.
215 I FIXED:
216
2 1 7 [NDEX = -1 :
218 MATCH.LENGTH= 0;
219 ARC.LENGTH= LENGTH(TEST.STRlNG):
220
221 DO I= 0 TO DlCTlONARY.TOP;
222 ENTRY.LENGTH= LENGTH(D[CTIONARY.STRING(I));
223 IF ENTRY.LENGTH > MATCH.LENGTH
224
225
226
227
228
229

& ENTRY.LENGTH<= ARC.LENGTH THEN
IF DICTIONARY.STRING(()

= SUBSTR(TEST.STRING,O,ENTRY.LENGTH) THEN
DO;

INDEX = I;
MATCH. LENGTH - ENTRY . LENGTH;

230 END;
231 END:
232 SEARCH.COMPARES - SEARCH.COMPARES+ DICTIONARY.TOP+ 1;
233 RETURN INDEX;
234
235 END SEARCH.DICTIONARY;
236
237 CLEAN.DICTIONARY: PROCEDURE;
238

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

184

239 /• CLEAN.DICTIONARY ELIMINATES AT LEAST ONE LOW FREQUENCY ENTRY
240 FROM THE DICTIONARY AND RESTORES THE SMALLER DICTIONARY TO
241 THE FORMAT IT HAD BEFORE CLEANING.
242 THE WHILE LOOP SURROUNDING THE BODY OF THE PROCEDURE GUARANTEES
243 THAT AT LEAST ONE ENTRY IS DELETED FROM THE DICTIONARY BEFORE
244 RETURN. IF THE INITIAL THRESHOLD IS NOT HIGH ENOUGH TO DELETE
245 AN ENTRY, THE THRESHOLD IS INCREMENTED UNTIL SOMETHING IS
246 DELETED.
247
248 THE DICTIONARY IS JUST A LINEAR TABLE WITH NO STRUCTURE SO
249 ENTRIES CAN BE DELETED BY PUSHING THE RETAINED ENTRIES TOWARD
250 THE ZERO END OF THE TABLE OVERWRITING THE REMOVED ENTRIES.
251 •;
252
253 DECLARE I FIXED,
254 THRESHOLD FIXED,
255 OLD.TOP FIXED,
256 NEW.TOP FIXED:
257
258 OLD.TOP= DICTIONARY.TOP:
259 THRESHOLD= DELETION.THRESHOLD:
260 DO WHILE OLD.TOP= DICTlONARY.TOP;
261 NEW.TOP= -1:
262 DO l = 0 TO DlCTlONARY.TOP;
263 lF DICTlONARY.COUNT(l) >= THRESHOLD THEN
264 DO:
265 NEW. TOP = NEW. TOP + 1 ;
266 DlCTlONARY.STRING(NEW.TOP) = DlCTlONARY.STRlNG(l);
267 DlCTIONARY.COUNT(NEW.TOP) = DICTlONARY.COUNT(l);
268 END:
269 END:
270 DlCTlONARY.TOP = NEW.TOP;
271 THRESHOLD = THRESHOLD + 1;
272 END;
273
274 END CLEAN.DlCTlONARY;
275
276 BUlLD.ENTRY: PROCEDURE(ENTRY.STRING) FlXED;
277
278 /• BUlLD.ENTRY ADDS ENTRY.STRlNG TO THE DICTlONARY WlTH A COUNT
279 OF ZERO AND RETURNS AS VALUE THE lNDEX OF THE NEW ENTRY.
280
281 BECAUSE THE DlCTIONARY IS SEARCHED LINEARLY, THE NEW ENTRY
282 CAN SIMPLY BE ADDED AT THE END. THE ONLY REQUIREMENT IS THAT
283 THE DICTIONARY MAY NEED TO BE CLEANED BEFORE THE NEW ENTRY
284 CAN BE ADDED.
285 •;
286

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

186

287 DECLARE ENTRY.STRING CHARACTER;
288
289 IF OICTIONARY.TOP+2 >= DICTIONARY.SIZE
290 THEN CALL CLEAN.DICTIONARY;
291 DICTIONARY.TOP= DICTIONARY.TOP+ l;
292 OICTIONARY.STRING(OICTIONARY.TOP) = ENTRY.STRING;
293 OICTIONARY.COUNT(DICTIONARY.TOP) = O;
294 RETURN DICTIONARY.TOP;
295
296 ENO BUILD.ENTRY;
297
298 BUILD.DICTIONARY: PROCEDURE;
299
300 f• DlCTlONARY CONSTRUCTION CONTlNUES UNTIL THE INPUT ROUTINE
301 FAlLS TO RETURN ANY DATA. THE TEST FOR A NULL STRING IS
302 SlMPLE IF WE CHECK THE LENGTH AGA[NST ZERO. THE
303 DICTIONARY.SEARCH ROUTlNE RETURNS -1 IF NO MATCH IS FOUND AND
304 THEN THE FIRST CHARACTER OF THE INPUT [S FORCED AS THE MATCH
305 AND lNTO THE DICTlONARY. NOTlCE THAT THE ACTUAL STRING
306 MATCHED IS PICKED UP FROM THE DICTIONARY ENTRY. COALESCENCE
307 TAKES PLACE AS NECESSARY, THE MATCH IS REMEMBERED, AND THE
308 INPUT PREPARED FOR ANOTHER CYCLE.
309 •/
310

DECLARE CHARACTER,
FIXED,

311
312
313
314
315

(MATCH, LAST.MATCH)
(COUNT, LAST.COUNT)
INDEX FIXED,
THRESHOLD FIXED;

/• THE ENTRY LOCATION •/
/• COALESCENCE THRESHOLD•/

316 LAST.MATCH='';
317 LAST.COUNT= O;
318
319 DO WHILE TRUE;
320 CALL FILL.INPUT.BUFFER;
321 IF LENGTH(INPUT.BUFFER) = 0 THEN RETURN;
322 INDEX= SEARCH.DICTIONARY(INPUT.BUFFER);
323 IF INDEX= -1
324 THEN lNDEX = BUILD.ENTRY(SUBSTR(lNPUT.BUFFER,0,1));
325 MATCH= DlCTIONARY.STRING(lNDEX);
326 COUNT, DlCTlONARY.COUNT(lNDEX) = DlCTlONARY.COUNT(INDEX) + l;

327 THRESHOLD= COALESCENCE.THRESHOLD;
328 lF COUNT>= THRESHOLD & LAST.COUNT>= THRESHOLD THEN
329 DlCTIONARY.COUNT(BUlLD.ENTRY(LAST.MATCH I IMATCH))=FlRST.COUNT;
330 LAST.MATCH= MATCH;
331 LAST.COUNT= COUNT;
332 lNPUT.BUFFER = SUBSTR(INPUT.BUFFER, LENGTH(MATCH).);
333 END;
334

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

186

335 END BUILD.DICTIONARY;
336
337 BUILD.ENCODING.TABLE: PROCEDURE;
338
339 /• CODE CONSTRUCTION HAS TWO STEPS. IN THE FIRST, EVERY
340 DICTIONARY ENTRY OF LENGTH TWO OR ONE IS THROWN OUT BECAUSE
341 THERE IS NO POINT IN REPLACING SUCH STRINGS WITH A TWO
342 CHARACTER CODE. SECOND, CODES ARE ASSIGNED USING CHARACTERS
343 UNSEEN IN THE TEXT AS STARTERS. WHEN SUCH PAIRS RUN OUT,
344 NO MORE CODES ARE ASSIGNED EVEN IF THERE ARE MORE ENTRIES IN
345 THE DICTIONARY.
346
347 NOTICE THE LINES BELOW WHICH CONSTRUCT THE DICTIONARY CODE.
348 THE APPARENTLY SENSELESS CATENATION OF TWO BLANKS BUILDS A
349 COMPLETELY NEW STRING INTO WHICH THE CODE CHARACTERS CAN BE
350 INSERTED. THIS (SA BAD GLlTCH lN XPL AND YOU PROBABLY WON'T .
351 UNDERSTAND lT UNLESS YOU PROGRAM lN XPL FOR SOME TlME.
352 •/
353
354 DECLARE ((, J) FlXED,
355 TOP FlXED:
356
357 TOP = -1:
358 DO l = 0 TO OlCTlONARY.TOP;
359 lF LENGTH(DlCT(ONARY.STRlNG(l)) > 2 THEN
360 DO;
36 l TOP = TOP + l ;
362 DICTlONARY.STRlNG(TOP) = DICTlONARY.STRING(l);
363 DlCTlONARY.COUNT(TOP) = DlCTlONARY.COUNT(l);
364 END;
365 END;
366 DlCTlONARY.TOP = TOP:
367
368 TOP = -1:
369 DO l = 1 TO "7F": /• LOOP OVER ELIGIBLE START CHARACTERS•/
370 lF NOT CHARACTER.USED([) THEN
371 DO J = l TO "7F": /• LOOP OVER SECOND CHARACTERS •/
372 IF TOP= DlCTlONARY.TOP THEN RETURN;
373 TOP = TOP + 1 :
374 DlCTIONARY.CODE(TOP) =' ' I I ' ';
375 BYTE(DICTIONARY.CODE(TOP),O) - I;
376 BYTE(DICTIONARY.CODE(TOP),l) = J;
377 END;
378 END:
379 DICTlONARY.TOP = TOP;
380
381 END BUILD.ENCODING.TABLE;
382

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

187

383 COMPRESS.TEXT: PROCEDURE;
384
385 /• ENCODCNG WORKS ALMOST THE SAME WAY AS DCCTCONARY CONSTRUCT(ON.
386 HERE. THOUGH. THE (NPUT STREAM CS CONVERTED TO OUTPUT LCNES
387 AS THE ENCOD(NGS ARE FOUND. THE LOOP RUNS FOR AS LONG AS
388 THERE IS CNPUT.
389 •/
390
391 DECLARE OUTPUT.BUFFER CHARACTER.
392 CNDEX FlXED;
393
394
395
396
397
398
399

CNPUT.BUFFER = '';
PRCNT , , .

t

PRCNT '••• THE COMPRESSED TEXT
PRCNT '';
CALL FCLL.CNPUT.BUFFER;
DO WHCLE LENGTH(CNPUT.BUFFER)

... , .
t

> O;
400 CNPUT.LENGTH = CNPUT.LENGTH + LENGTH(CNPUT.BUFFER);
401 OUTPUT.BUFFER='';
402 DO WH(LE LENGTH(CNPUT.BUFFER) > O;
403 CNDEX = SEARCH.DCCT(ONARY(CNPUT.BUFFER);
404 CF CNDEX > -1 THEN
405 DO;
406 OUTPUT.BUFFER= OUTPUT.BUFFER
407 I I DlCTCONARY.CODE(lNDEX);
408 D(CTCONARY.USAGE(CNDEX) = D(CTIONARY.USAGE(INDEX) + l;
409 INPUT.BUFFER= SUBSTR(INPUT.BUFFER.
410 LENGTH(DCCTIONARY.STRCNG(INDEX)));
411 END;
412 ELSE
413 DO;
414 OUTPUT.BUFFER= OUTPUT.BUFFER
415 I I SUBSTR(INPUT.BUFFER.O.l);
416 INPUT.BUFFER= SUBSTR(INPUT.BUFFER.l):
417 END;
418 END;
419 OUTPUT.LENGTH= OUTPUT.LENGTH+ LENGTH(OUTPUT.BUFFER):
420 CF PRCNT.ENCODING THEN PRCNT OUTPUT.BUFFER:
421 CALL FILL.CNPUT.BUFFER;
422 END:
423
424 END COMPRESS.TEXT:
425
426 PRINT.SUMMARY.STATISTICS: PROCEDURE;
427

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

188

428 j • SUMMARY STATISTICS INCLUDE A SECOND PRINTING OF THE SEARCH
429 STATISTICS, THE DICTIONARY ITSELF, AND THE COMPRESSION RATE.
430 IN A WORKING VERSION, BOTH THE COMPRESSED TEXT AND THE
431 DICTIONARY WOULD HAVE ALSO BEEN PRINTED ON SEPARATE FILES FOR
432 RE-EXPANSION LATER. NOTICE THE COMPLICATION TO PRINT A RATIO
433 AS A DECIMAL IN A LANGUAGE WITHOUT FLOATING POINT NUMBERS.
434 •/
435
436 DECLARE I FIXED,
437
438
439 PRINT , , .

•

RATIO CHARACTER;

440 PRINT'••• COMPRESSION STATISTICS••• ' ;
441 PRINT ' ';
442 PRINT ' CODE FREQUENCY USAGE STRING ' ;
443 DO I= 0 TO DICTIONARY.TOP;
444 PRINT' ' I I DICTIONARY .CODE([) I I ' '
445 I I 1.FORMAT(D[CTIONARY.COUNT(I), 9) I I ' '
446 I I I.FORMAT(DICT[ONARY.USAGE([), 9)
447 11 ' I ' I I DICTIONARY.STRING([) 11 ' I ';
448 END;

PRINT , , .
' 449

450 PRINT' CHARACTERS IN INPUT=' I I INPUT.LENGTH;
451 PRINT' CHARACTERS IN OUTPUT= ' I I OUTPUT.LENGTH;
452 RATIO= (lOOO•OUTPUT.LENGTH)/INPUT.LENGTH + 1000;
453 PRINT' COMPRESSION RATE=. ' I I SUBSTR(RAT[0,1);
454 PRINT' COMPARES DURING DICTIONARY CONSTRUCTION='
455 I I BU I LO. COMPARES;
456 PRINT' COMPARES DURING COMPRESSION='
457 I I COMPRESS. COMP ARES;
458 PRINT'••• TIME CHECKS IN MILLESECONDS •••';
459 PRINT ' TIME TO PREPARE='
460 I I TIME.CHECK(O) - TIME.CHECK(l);
461 PRINT ' TIME TO BUILD DICTIONARY='
462 11 TIME.CHECK(l) - TIME.CHECK(2);
463 PRINT' ENCODING TABLE TlME = '
464 I I TIME.CHECK(2) - TlME.CHECK(3);
465 PRINT ' COMPRESS[ON T[ME = '
466 I I TIME.CHECK(3) - TIME .CHECK(4);
467
468 END PRINT.SUMMARY.STATISTICS;
469
470 j• THE MAIN ROUTINE MUST ASSIGN THE I/0 UNITS TO FILES, INITIALIZE
471 NEEDED VARIABLES, CALL THE DICTIONARY CONSTRUCTION ALGORlTHM, BUILD
472 THE ENCODING TABLE, AND THEN ENCODE THE OUTPUT. MOST OF TH[S WORK
473 IS DONE IN CALLED PROCEDURES.
474 •/
475

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

189 COMPRESSED SOLUTIONS

476 TlME.CHECK(O) = COMPUTE.TlME;
477 CALL ASSlGN('TEXT', SOURCE.FlLE, "(1) 1000 0110");
478 CALL ASS[GN('COMPRESS', ECHO.FlLE, "(l) 0010 1010");
479 PRlNT '••• BEGlN THE TEXT COMPRESSlON. •••';
480 PRlNT '';
481
482 CALL PREPARE.THE.PROGRAM;
483 PRlNT.SOURCE = TRUE; CHECK.CHARACTERS= TRUE;
484 TlME.CHECK(l) = COMPUTE.TlME;
485 CALL BUlLD.DlCTlONARY;
486 BUlLD.COMPARES = SEARCH.COMPARES;
487 TlME.CHECK(2) = COMPUTE.TlME;
488 CALL BUlLD.ENCODING.TABLE;
489
490 CALL ASS[GN('TEXT', SOURCE.FlLE, "(l) 1000 0110"): /• A REWlND •j
491 SEARCH.COMPARES= 0;
492 PRlNT.SOURCE, CHECK.CHARACTERS - FALSE;
493 PRlNT.ENCODlNG = TRUE;
494 TlME.CHECK(3) = COMPUTE.TlME;
495 CALL COMPRESS.TEXT;
496 COMPRESS.COMPARES= SEARCH.COMPARES;
497
498 TlME.CHECK(4) = COMPUTE.TlME;
499 CALL PRlNT.SUMMARY.STATlSTlCS;
500
501 EOF EOF EOF EOF EOF EOF

RESULTS

We ran the program on a short prefix of itself used as data; the results are printed below with line
numbers for reference. Lines 67-71 show the encoding dictionary; with such a short text file it is
no wonder the dictionary is short. Compression is only 0.973, partly because text lines in the host
system are not padded out with those blanks so beloved by most compression routines. Still some
interesting compression takes place, as witness line 62. Notice that compression "D F" was not used
because another compression ate up the "D" first. Here are the results.

1 ••• BEGlN THE TEXT COMPRESSlON .
2

•••
3 /• N$F LARGE FREE STRING SPACE
4 A TEXT COMPRESS[ON PROGRAM.
5
6
7
8
9

10
1 l
12
13
14

AUTHOR -- CHARLES WETHERELL 18 AUGUST 1976.
LAST DATE MODIFIED -- 25 AUGUST 1976.

THlS PROGRAM COMPRESSES TEXT FILES USING THE MAYNE-JAMES DICTIONARY
CONSTRUCTlON ALGORITHM. INPUT IS AN ARBITRARY TEXT FILE AND OUTPUT
IS THE COMPRESSED FILE ALONG WITH AN ENCODING DICTIONARY. SOME
STATISTICS ON PROGRAM EFFICIENCY AND COMPRESSION RATE ARE KEPT.
TWO PASSES BY THE SOURCE FILE ARE NECESSARY. ON THE FIRST PASS THE
DICTIONARY IS BUILT AND A RECORD OF ALL CHARACTERS SEEN IS KEPT.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

190 COMPRESSED SOLUTIONS

15 BETWEEN PASSES THE CHARACTER RECORD IS USED TO ADO ENCODINGS TO THE
16 DICTIONARY ENTRIES. DURING THE SECOND PASS, LONG HIGH FREQUENCY
17 STRINGS ARE REPLACED BY SHORTER ENCODING STRINGS AS THE COMPRESSED
18 FILE IS WRITTEN. FURTHER INFORMATION ABOUT THE TECHNIQUE CAN BE
19 FOUND IN CHAPTER 11 OF
20
21 WETHERELL, C.S. ETUDES FOR PROGRAMMERS. PRENTICE-HALL,
22 ENGLEWOOD CLIFFS, NJ. 1978.
23
24 IN THIS VERSION OF THE ALGORITHM, ENDS OF INPUT LINES STOP STRING
25 MATCHES DURING DICTIONARY CONSTRUCTION AND TEXT ENCODING; THE
26 CARRIAGE RETURN IS NOT TREATED LIKE A CHARACTER. ONLY CHARACTERS
27 WHOSE INTERNAL REPRESENTATIONS LIE IN THE RANGE 1 TO 127 WILL BE
28 CONSIDERED FOR ENCODING PAIRS SO THAT THE PAIRS WILL HAVE
29 REASONABLE PRINT REPRESENTATIONS . IN A FULL WORKING IMPLEMENTATION
30 ALL 256 AVAILABLE CHARACTERS WOULD BE USED FOR ENCODING.
31
32
33 ••• THE COMPRESSED TEXT•••
34
35 /• N$F LARGE FREE STRING SPACE
36 !IA TEXT COMPRESSION PROGRAM.
37
38 IIAUTHOR -- CHARLES WETHERELL 18 AUGUST 1976.
39 IILAST DATE MODIFl1$-- 25.AUGUST 1976.
40
41 IITHIS PROGRAM COMPRESSES TEXT FILES USING THE MAYNE-JAMES DICTIONARY
42 IICONSTRUCTION ALGORITHM. INPUT IS AN ARBITRARY TEXT FILE AND OUTPUT
43 II IS THE COMPRESSl$FILE ALONG WITH AN ENCODING DICTIONARY. SOME
44 !!STATISTICS ON PROGRAM EFFICIENCY AND COMPRESSION RATE ARE KEPT.
45 IITWO PASSES BY THE SOURCE FILE ARE NECESSARY . ON THE FIRST PASS THE
46 IIOICTIONARY IS BUILT AND A RECORD OF ALL CHARACTEI .SEEN IS KEPT.
47 IIBETWEEN PASSES THE CHARACTER RECORD IS US l$TO ADD ENCODINGS TO THE
48 IIDICTIONARY ENTRIES. DURI NG THE SECOND PASS, LONG HIGH FREQUENCY
49 I I STRINGS ARE REPLACl$BY SHORTER ENCODING STRINGS AS THE COMPRESSED
50 IIFILE IS WRITTEN. FURTHER INFORMATION ABOUT THE TECHNIQUE CAN BE
51 I !FOUND IN CHAPTER 11 OF
52
53 WETHERELL, C.S. ETUDES FOR PROGRAMMERS. PRENTICE-HALL,
54 I I I I I I ENGLEWOOD CLIFFS, NJ. 1978.
55
56 IIIN THIS VERSION OF THE ALGORITHM, ENDS OF INPUT LINES STOP STRING
57 !!MATCHES DURING DICTIONARY CONSTRUCTION AND TEXT ENCODING; THE
58 !!CARRIAGE RETURN IS NOT TREAT1$LIKE A CHARACTER . ONLY CHARACTERS
59 IIWHOSE INTERNA L REPRESENTATIONS LIE IN THE RANGE 1 TO 127 WILL BE
60 IICONSIDER1$FOR ENCODING PAIi .SO THAT THE PAIi.WiLL HAVE
61 !!REASONABLE PRINT REPRESENTATIONS. IN A FULL WORKING IMPLEMENTATION
62 IIALL 256 AVAILABLE CHARACTEI.WOULD Bl #Sl$FOR ENCODING.
63
64
65
66
67
68
69
70
71
72

••• COMPRESSION

CODE FREQUENCY
I I 25
I . 1

: t 1
1

la l

STATISTICS•••

USAGE STRING
26 I I

4 IRS I
1 IE UI
7 iED I
0 ID F l

73 CHARACTERS IN INPUT= 1424
74 CHARACTERS IN OUTPUT= 1386
75 COMPRESSION RATE= .973
76 COMPARES DURING DICTIONARY CONSTRUCTION - 80740
77 COMPARES DURING COMPRESSION= 6740
78 ••• TIME CHECKS IN MILLESECONDS •••
79 TIME TO PREPARE= 108
80 TIME TO BUILD DICTIONARY= 9492
81 ENCODING TABLE TIME= 34
82 COMPRESSION TIME= 1372

AN ATTEMPTED IMPROVEMENT

As predicted above, linear dictionary search is not too efficient; when the whole program source
was compressed, the program ran 127 seconds on a moderately fast computer, terrible for a 500-line
file. Notice that each time that the dictionary is searched, the input must be matched against every

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

191 COMPRESSED SOLUTIONS

dictionary entry to ensure that the longest match is found. If the dictionary entries were kept in
order from longest to shortest, the search could stop as soon as a match was found because the
match would perforce be the longest possible. The search procedure would not need to change
otherwise, and deletion of low-frequency strings would not disturb the longest-to-shortest ordering.
But insertion of a new entry requires that all shorter entries be moved one slot farther up the table.
To know where to make the insertion, we add the vector LENGTH.VECTOR whose ith component
points to the dictionary entry where strings of length i (if there are any) or shorter (if there are
none of length i) begin. If there are no strings of length i or shorter, LENGTH. VEC'TOR(I) has value
DICTIONARY.TOP+l. The routines below keep the new data structure correct. To make a new
version of the compression program, we insert the following code in the obvious places in the
program above. Notice how the comments for the modified routines are written so that the changed
code can be inserted easily.

l /• DECLARATIONS FOR LENGTH POINTER VECTOR•/
2

3 DECLARE LENGTH.VECTOR(255) FIXED;
4

5 /• ADDITION TO PREPARE.THE.PROGRAM TO INITIALIZE LENGTHS. •/
6
7

8
9

10

DO I= 0 TO 255;
LENGTH.VECTOR([)

END;
- O· - .

11 SEARCH.DlCTIONARY: PROCEDURE(TEST.STRING) FIXED;
12
13 /• THlS FUNCTION SEARCHES THE DlCTIONARY FOR THE LONGEST MATCH
14 WITH THE HEAD OF THE ARGUMENT TEST.STRING. IF NO MATCH [S
15 FOUND, THE ROUTINE RETURNS -1 AS VALUE; IF A MATCH [S FOUND,
16 THE INDEX OF THE MATCH IS RETURNED AS VALUE.
17

18 THE SEARCH FOR A MATCH AGAINST TEST . STRING BEGINS AT THE
19 FIRST ENTRY FOR THE LENGTH OF TEST.STRING AND WORKS DOWN
20 THROUGH THE SHORTER STRINGS. BECAUSE ARGUMENTS ARE CALL BY
21 VALUE , TEST . STRING MAY BE MODIFIED AT WILL. THE LOOP DOWN
22 OVER STRING LENGTHS MUST BE A WHILE LOOP BECAUSE THERE ARE NO
23 DOWNWARD STEPPING ITERATION LOOPS IN XPL.
24 • ;
25
26 DECLARE TEST. STRING CHARACTER;
27
28 DECLARE (L, I) F IXED;
29
30 L = LENGTH(TEST.STRING);
31 DO WHILE L > 0;
32 TEST . STRING= SUBSTR(TEST.STRING, 0, L);
33 DO I= LENGTH.VECTOR(L) TO LENGTH.VECTOR(L-1)-1;
34 SEARCH.COMPARES = SEARCH.COMPARES+ l;
35 IF DI CTIONARY .STRING(I)= TEST. STRING THEN RETURN I;
36 END;

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

192

37 L = L - 1;
38 END;
39 RETURN -1 ;

40
41 END SEARCH.DICTIONARY;
42
43 CLEAN.DICTIONARY: PROCEDURE;
44
45 /• CLEAN.DICTIONARY ELIMINATES AT LEAST ONE LOW FREQUENCY ENTRY
46 FROM THE DICTIONARY AND RESTORES THE SMALLER DICTIONARY TO
47 THE FORMAT IT HAD BEFORE CLEANING.
48 THE WHILE LOOP SURROUNDING THE BODY OF THE PROCEDURE GUARANTEES
49 THAT AT LEAST ONE ENTRY IS DELETED FROM THE DICTIONARY BEFORE
50 RETURN. IF THE INITIAL THRESHOLD IS NOT HIGH ENOUGH TO DELETE
51 AN ENTRY, THE THRESHOLD IS INCREMENTED UNTIL SOMETHING IS
52 DELETED.
53
54 ONE PASS ELIMINATES ALL ENTRIES WITH LOW FREQUENCY BY SQUEEZING
55 THE DICTIONARY TOWARDS THE ZERO END. NOTICE THAT THIS
56 SQUEEZE DOES NOT DISORDER ENTRIES BY LENGTH, BUT IT DOES
57 INVALIDATE LENGTH.VECTOR. LENGTH.VECTOR IS RESET BY A SECOND
58 PASS THROUGH THE SHORTENED DICTIONARY
59 •/
60
61 DECLARE (I, J) FIXED,
62 OLD.LENGTH FIXED,
63 THRESHOLD FIXED,
64
65
66

OLD.TOP FIXED,
NEW.TOP FIXED;

67 OLD.TOP= DICTIONARY.TOP;
68 THRESHOLD= DELETION.THRESHOLD;
69 DO WHILE OLD.TOP= DICTIONARY.TOP;
70 NEW.TOP= -1;
71 DO I= 0 TO DICTIONARY.TOP;
72 IF DICTIONARY.COUNT([) >= THRESHO LD THEN
73 DO;
74 NEW .TOP= NEW.TOP+ 1;

75 DICTIONARY.STRING(NEW.TOP) = DICTIONARY.STRING([);
76 DICTIONARY.COUNT(NEW.TOP) = DICTIONARY.COUNT(I);
77 END;
78 END;
79 DICTIONARY.TOP= NEW.TOP;
80 OLD.LENGTH= 256;
81 DO I= 0 TO DICTIONARY.TOP;
82 IF LENGTH(DICTIONARY.STRING(I)) < OLD.LENGTH THEN
83 DO;

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

193

84 DO J = LENGTH(DlCTlONARY.STRING(l)) TO OLD.LENGTH-1;
85 LENGTH.VECTOR(J) = l;
86 END;
87 OLD.LENGTH= LENGTH(DlCTIONARY.STRlNG([));
88 END;
89 END;
90 DO l = 0 TO OLD.LENGTH-1;
91 LENGTH.VECTOR([)= DlCTlONARY.TOP + 1;
92 END;
93 THRESHOLD= THRESHOLD+ 1;
94 END;
95
96 END CLEAN.DlCT[ONARY;
97
98 BUlLD.ENTRY: PROCEDURE(ENTRY.STRlNG) FlXED;
99

100 /• BUlLD.ENTRY ADDS ENTRY.STRlNG TO THE DICTIONARY WITH A COUNT
101 OF ZERO AND RETURNS AS VALUE THE INDEX OF THE NEW ENTRY.
102
103 IF LIS THE LENGTH OF ENTRY.STRING, THEN ALL OF THE ENTRIES
104 BEGINNING WITH THE FIRST OF LENGTH L-1 AND RUNNING DOWN
105 THROUGH LENGTH 1 SHOULD BE MOVED ONE SLOT UP THE TABLE. THE
106 VACATED HOLE IS JUST RIGHT FOR ENTRY.STRING. ALL
107 LENGTH.VECTOR VALUES FOR L-1 TOO MUST BE INCREMENTED.
108 •1
109
110 DECLARE ENTRY.STRlNG CHARACTER;
1 1 1
112 DEC LARE (L , I) F I XED ;
113
114 IF DICTIONARY.TOP+2 >= DICTIONARY.SIZE
115 THEN CALL CLEAN.DICTIONARY;
116 L = LENGTH(ENTRY.STRING):
117 I= DICTIONARY.TOP;
118 DO WHILE I >= LENGTH.VECTOR(L-1);
119 DICTIONARY.STRlNG(l+l) = DlCTlONARY.STRlNG(I);
120 DICTIONARY.COUNT(l+l) = DICTIONARY.COUNT(I);
121 I= I - 1;
122 END;
123 DICTlONARY.TOP = DlCTlONARY.TOP + 1;
124 DICTlONARY.STRlNG(LENGTH.VECTOR(L-1)) = ENTRY.STR[NG;
125 DlCTlONARY.COUNT(LENGTH.VECTOR(L-1)) = 0;
126 DO I= 0 TO L-1;
127 LENGTH.VECTOR(()= LENGTH.VECTOR(I)+ 1;
128 END;
129 RETURN LENGTH.VECTOR(L-1) - 1;
130
131 END BUlLD.ENTRY;

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

132
133 /• ADDITION TO BUILD.ENCODING.TABLE WHICH RESETS THE LENGTH VECTOR
134 SO THAT THERE WILL NOT APPEAR TO BE ANY STRINGS OF LENGTHS
135 2, 1, ORO WHEN SEARCH.DICTIONARY RUNS DURING COMPRESSION.
136 OF COURSE, ALL SUCH STRINGS HAVE BEEN ELIMINATED FROM THE
137 DICTIONARY DURING THE CONSTRUCTION OF THE TWO CHARACTER CODES.
138 •;
139
140 DO I= 0 TO 2;
141 LENGTH. VECTOR(!) - DICTIONARY.TOP+ l;
142 END;

We can expect that there should be fewer comparisons using length-first search during dictionary
construction and that more time may be spent with the more elaborate entry insertion procedure.
Table 30-1 shows that both dictionary construction time and encoding time are worse with the
length-first search even though fewer comparisons are made. Notice, however, that in the original
program a comparison may require only an inexpensive comparison of string lengths, whereas und~r
length-first search all comparisons require expensive string comparison operations. Something more
elaborate will have to be done to improve efficiency. On the other hand, this change illustrates an
important debugging principle. If you replace a program structure with a functionally equivalent
one, there should be no change in the relationship between input and output. The dictionary
organization must not affect the actual compression process; only the parameters of compression
should modify dictionary output. Thus we can check our changes to the dictionary routines by
making sure that the output using simple linear search and that using length-first search are exactly
the same (barring timing statistics). This is also a negative check on the correctness of the other
parts of the program; if a bug existed in any other procedure, it might well interact with the dic­
tionary routines. Since the output stays constant when a correct length-first search is added, prob­
ably (but not certainly) no bug elsewhere was interacting with the dictionary.

THE CHOICE OF PARAMETERS

Four parameters control dictionary construction: the size of the dictionary, the threshold for entry
coalescence, the initial count given a coalesced entry, and the threshold for entry deletion. Our
choices may have been a little eccentric. The dictionary size is given by macro DICTIONARY.SIZE

194

Table 30-1 Comparison of Two Dictionary Algorithms

File lLln File lLen File 2Lin File 2Len

Input characters 16920 16920 17714 17714
Output characters 8616 8616 16439 16439
Compression rate .603 .603 .928 .928
Dictionary time 62864 ma. 56432 ms. 92882 ms. 54870 ms.
Encoding time 19082 ma. 55966 ms. 23624 ms. 35374 ms.
Search compares 463049 271803 816480 489126
Encoding compares 122912 116046 151770 130307

File 1 is a typical industrial data file, and File 2 is the source of the linear search
program. Compression of the source program is poor because of the compression
parameters chosen. The file name subscripts indicate linear or length-first dictionary
searching.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

196 COMPRESSED SOLUTIONS

Table 30-2 A Small Study of Compression Parameten

COA•S
COA=5 COA=-5 DEL=-5 DEL•5

Normal COA- 5 DEL• 5 CNT""5 DEL• 5 CNT• 5 CNT• 5 CNT•5

Data for File 1
Input size 16920 16920 16920 16920 16920 16920 16920 16920
Output size 8516 8080 7669 8164 7271 7701 7367 7003
Compression rate .603 .478 .453 .482 .430 .465 .435 .414
Dictionary entries 16 29 32 26 41 31 41 56
Dictionary size 250 288 371 319 426 475 686 738
Dictionary + output 8756 8368 8030 8473 7696 8176 7943 7741
Overall compression .517 .496 .475 .501 .456 .483 .469 .468
Dictionary time 66432 62916 63732 64916 69842 66128 114360 92498
Compression time 66968 64984 60496 60016 62536 49536 52224 47716

Data for File 2
Input size 17714 17714 17714 17714 17714 17714 17714 17714
Output size 16439 17696 14038 16439 14200 16567 14993 13358
Compression rate .928 .998 .792 .928 .801 .936 .846 .754
Dictionary entries 10 2 20 9 24 7 17 36
Dictionary size 66 11 140 63 170 38 101 214
Dictionary+ output 16604 17706 14178 16602 14370 16605 15904 13572
Overall compression .932 1.000 .800 .932 .811 .937 .898 .766
Dictionary time 92882 65582 69532 64444 68766 69206 227614 199830
Compression time 23624 41310 37774 37662 41814 33888 39940 42416

The notation COA=6 (DEL-6, CNT•6) means that the coalescence threshold (deletion threshold, initial
count) has been set to 6 for that column of data. The rows labeled Dictionary Size give the minimum
number of characters needed to record the dictionary entries and their encodinp. Overall compression is
derived by summing the output file size and the dictionary size and dividing by the input file size. Times
are in milliseconds.

set here to 100 (remember that XPL vectors start at zero) and the initial count is set to one by
function FIRST.COUNT. Entries are coalesced if both have frequencies greater than or equal to

DICTION~R Y .SIZE/(DICTIONARY.SIZE-DICTIONARY. TOP+ 1)+ 1

that is, if both have frequencies greater than the reciprocal of the space remaining. The idea (which
did not work too well) is that it should be harder to enter a coalesced string when the dictionary is
nearly full; because of its form, we call it a hyperbolic coalescence threshold. Entries are deleted if
their frequency is not at least as large as the mean frequency; this was intended to be an approxima­
tion to a median threshold.

To discover how eccentric these choices actually were, we tried varying each one except dictionary
size to a fixed value of five. Table 30-2 shows the result for both our files. From the table it appears
that both the coalescence and the deletion threshold were ill-advised. It is possible that the hyper­
bolic coalescence does not let enough combined entries into the table and that the mean deletion
threshold is a poor approximation to the median and throws too many entries out. This is only a
tiny study and we should look at more data. Yet until the program becomes more efficient, we can­
not stand the boredom.

FINAL COMMENTS

This chapter is not quite what an A project would be. The program itself could stand a little more
work, particularly on the comments. More than a few are muddy and unhelpful. We printed the
program thus half done so that you could see what your half-done programs look like to others.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

196 COMPRESSED SOLUTIONS

Go back and read the program again with the question "How could I make this line (comment,
procedure) crystal clear?" in your mind. After you have finished being snide about the skills of
others, be objective and see if you can use the answers on some of your own programs.

A complete project would also include some demonstration of the correctness of the algorithms,
more output, and at least some suggestions on improving the dictionary efficiency. The coding
took us about eight hours and debugging about four. Of the four debugging hours, two were spent
on the standard clerical errors and in improving the design of output messages. The two other
debugging hours were spent adding the '+l' to line 91 of the change file. That one subtle little
mistake caused much difficulty and changed the behavior of length-first search completely. The
error was finally uncovered when we explained the whole program to another programmer. Fol­
lowing the principle of the unjaundiced eyeball, he did not share our preconceptions about the
program and immediately found the bug. We also spent about an hour adding and adjusting the
timing variables (timing is not well documented in our local system), and we spent about four
hours playing with the parameters.

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

a 102
A 36, 82, 88
A•l 82
ALC 124
¥ (blank) 45
B 82
C 82, 87
C· 36
ckcS 75
CCR 108
CH 111
color 161
connect 161
count 40
CR 149
cunentnode 161
d 53
D· 37
e

1
93

E 111
t' 68
ft 101
fi,p 102
FIU 24
FV 56
G 111
Gt 95,102
Gij 102

H0 83
HighestLocation 125
i 36

197

Notation and Abbreviations

I 82
i 75
IC 101
ILC 108
IM 111
interpolate 88
k 21, 49, 87, 102
L 83, 111
wt count 40
last match 40
LF 149
loopflag 161
M 22, 83
match 40
Max 51
Min 51
N 21, 24, 101
0 111
1r 85
P 25
pi 36,96
PBV 55
q 87
Q 87
r 86, 87
R 22, 83, 87
Rt 96
Ri,j,r 102
rand52 76
RLC 124

RMU 24
RR 111
RS 111
rJ 68
Sc 96
Sc,<ij> 96
save 88
stop 87
T 24
Ti 36
topcolor 161
u 86
U 86
11 81
V 87
"r 87
W 87
,,,- 87
Xj 22
X 82, 88
y 68
Yi 22,88
Yi 36
z 68
IAl1 84
IAl2 84
IAlc 84
IAloo 84
IAlr 83
(p, u) 87

Digitized by Go gle Original from
UNIVERSITY OF MICHIGAN

...

198 INDEX

A

absolute expression 126
absolute load counter 124
absolute load file 122, 124
absolute symbol 127
accounting 43
active function 150
active string 149
address field 110
adjacent region 8, 160
Aho,A. V. 93
Alepho 58, 97
ALGOL 3, 4, 123, 132, 134, 136,

139,144,156
ALGOL 68 41, 132, 137
ALGOL W 75
alpha-beta minimaxing procedure

55
analyst 95
APL 3, 4, 6, 22, 27
Appel, K. 173
arctan(x) 85
Armbruster, Frank 31
ASCII character set 107, 125
assembly language 3, 6, 18, 70,

123,156
automated factory 25
Avalon Hill Co. 24

B

backtracking 10, 31, 173
bankruptcy 25
Barron, D. W. 131
BASIC 3, 4, 10
Bell, C. Gordon 123
Bell, R. C. 58
binary search 41
Bitner, James R. 10
BLISS 18, 70, 93, 156
Bobrow, D. G. 158
bracket 20
Bratley, Paul 34
breadth-first search 55
break in text 13
Brent, R. P. 93, 94
Brown, P. J. 157
Burks, Arthur W. 7

C

capture 49
carriage return 108, 149, 154
character 45
character instruction 109
checksum 122
Cherry, Lorinda L. 18

cipher 99
ciphertext 99
coalescence threshold 40, 195
COBOL 3, 4, 27, 44, 63, 75
Codd,E. F. 7
code 95, 99
column norm 84
combinatorial problems 161
compositor 11
compression rate 41, 194
computer movie 6, 65
Condition Code Register 108
constant 77
Conte, S. D. 84
contestant 20
control unit 45
Conway, John Horton 7
Conway, Richard 4
Cooley, Bob 95
count-address-data triples 122
critical event simulation 66
crossword puzzle 31
cryptanalyst 99
cryptographer 99
cryptology 99
current state 45
current value 36
cutoff 56

D

data item 67
Davis, Martin 48
deBoor, Carl 84
decipher 99
decode 99
decrypt 99
definite integral 80
deletion threshold 41, 194
denomination 72
depth-first search 55, 74
digram 39
Dijkstra, Edsger W. 4
disconnected graph 8
disconnected node 8
divide and conquer 86
dividend 116
divisor 116
double-elimination tournament 20
double precision 83
draw 23

E

Easy 99, 124, 132
EC Loader 124, 134, 145
EC-1 70, 98, 107, 124, 132, 145
edge 8

Educational Computer, Model
EC-1 107

effective address 109
elliptic integral 94
empty graph 8
encipher 99
encode 99
encryption rule 99
ENIAC 85
entry point 32
equals bit 108
Euler, Leonhard 59
Evans, George W., II 29
event list 65
exception 121
excess 40

16
exponent 109

execute address exception 115,
122

exit point 32
exponent 108
external name 127
external reference 127
external symbol 127

F

Fast Fourier Transform 93
file system 11
final value 56
finished inventory unit 24
fixed ordering 57
fixed point 119
floating point 118
font switch 18
form 150
form body 150
form name 150
form pointer 150
format 67
format group 68
FORMAT statement 67
forms space 155
forms storage 150
FORTRAN 3, 10, 27, 44, 67, 71,

75,84, 123,156,162
forward reference 127
Four Color Conjecture 10, 173
fraction 108
function block 155

G

Gaines, Helen Fouche 104
galley proofs 12
game score 74
Games and Puzzles 97
Gardels, Keith 66
Garden of Eden 6

Digitized by Google Original from
UNIVERSITY OF MICHIGAN

199 INDEX

Gardner, Martin 7, 60, 104
Gauss, Carl Friedrich 60, 82
general-purpose register 107
generator 65
Gibson, Walter B. 76
glossary 170
go-again move 49
greater than bit 108
Gries, David 4, 146
Griswold, R. E. 4

H

Haken,W. 173
halting problem 4 7
Harkness, Kenneth 21, 23
hash table 75
heap 65, 145, 146
Herman, Robert 66
hexadecimal notation 107
high-water mark 124, 125
Hilbert matrix 83
Hoel, Paul G. 23
Hopcroft, John E. 48, 93
Homer's rule 88
Horning, J. J . 4, 14 7
hyperbolic coalescence threshold

42,195

I

1/0 operation 67
1/0 stream 67
IBM Corporation 123
identity matrix 82
idling string 149
illegal instruction address exception

109,121
immediate instruction 109
immediate neighbor 5
immediate operand 110
indefinite integral 80
index of coincidence 101
index register designator 110
indirect address exception 110,

121
indirect bit 109
indirect field 110
input/output tape 45
instantaneous description 46
Instruction Location Counter 108
instrumentation 123, 156
introspective program 34
inverse matrix 82
Iverson, Kenneth E. 4

J

James, E. B. 4 2
Jensen, Kathleen 4

K

Kahn, David 104
Kalah 49
Kalah score 53
Kernighan, Brian W. 18, 19
keyword 99
Knuth, D. E. 4, 23, 42, 75, 76,

87,94,95, 97, 173
Kriss-Kross puzzle 30

L

L1 norm 84
Li norm 84

I...,., norm 84
leaf 55
left residual matrix 83
less than bit 108
library file 124
LIFE 5
line feed 108, 149, 154
LISP 3, 4, 10, 75, 80
load commands 125
load map 125
loader 124
lock-step simulation 27, 65
loneliness 5
LR(k) grammars 132, 147
Lucas, F. L. 4

M

Mac Laren-Marsaglia random
number generator 23

macro language 148
Management 24
Mancala 49
map-coloring problem 8, 160
map symbol 127
Mastermind 95
match count 22
matrix 82
Mayne, A. 42
maze 32
Mazlack, Lawrence J. 31
McCarthy, John 4
McKeeman, W. M. 4, 107, 147
metacharacter 148
Millo, Jean 34
minimaxing procedure 55
Minsky, M. L. 48
minuend 115
mixed alphabet 99
monoalphabetic substitution 99
Mooers, Calvin N. 148, 157, 158
Moses, Joel 81

Digitized by Google

N

natural number 68
Nelson, Theodor H. 158
neutral function 150
neutral string 149
Newell, Allen 123
Newton's method 37, 91
Nicholls, John E. 14 7
Nilsson, Nils J . 58
node 8
non-self-terminating code 68
normalization of real numbers

109

0

opcode 109
operation code 109
ordinal segment marker 150
Ore, Oystein 10
outdent 15
overcrowding 5
overflow bit 108
Owari 49

p

PASCAL 3, 4, 31, 41, 57, 75, 80,
93,104,132,135,156,176

patience 72
period 6
pits 49
pivot element 83
pivoting 83
PL/360 70
PL/C 3
PL/I 3, 4, 31, 41, 44 , 75, 80,

93,104,176
plaintext 99
planarity · 9
Plauger,P. J. 19
play 73
player !>trategy routine 27
Poage, J. F. 4
Polonsky, J. P. ·4
polynomial name 78
position stack 74
position tree 74
Pratt, Terrence W. 147
Presser, Leon 131
primary reference 127
prime numbers 59
priority queue 65
probe 95
product matrix 82
program file 124
protected string 148

Original from
UNIVERSITY OF MICHIGAN

200 INDEX

provisional backed-up value 55

Q

quintuple 45
quotient 116

R

ragged right margin 13
random number generator 23, 65,

75
rank 72
rank correlation 22
rational polynomial 77
raw material unit 24
real fonnat exception 109, 122
real numbers 108
recovery of plaintext 99
recursive function theory 35
register designator 110
register-and-storage instruction

109
register-to-register instruction,

109
Reingold, Edward M. 10
Reitwiesner, George W. 85, 94
relative expression 126
relative symbol 127
relocatable load counter 124
relocatable load language 125
relocating loader 124
repetition count 68
report generation language 63
right residual matrix 83
Rogers, Hartley, Jr. 35
round robin order 21
round robin tournament 20
row norm 83
run-time routines 145

s

scale factor 68
scale factor designator 68 ·
scan pointer 149
Science Citation Index 3, 66
scoring piles 7 3
search key 75
search strategy 7 4
secondary reference 127
seeding 20
segment marker 150
self-tenninating code 68
senior player 24
sentence 17
sequenced simulation 27

setter 95
Shanks, D. 94
Shanks, William 85
shift count 120
shock front 64
shock wave 64
Sieve of Eratosthenes 59, 144
sign position 108
simulator 107
Simscript 66
Simula 66
single-elimination order 22
single-elimination tournament 20
singular matrix 82
Sinkov, Abraham 104
Slagle, James R. 58
SNOBOL 3, 4, 18, 31; 41, 75, 80,

104,146
solitaire 72
solution pool 95
source file 13
SPITBOL 3
stable community 6
standard factory 24
start address 122, 128
state 45
static evaluation function 53
Steen, Lynn Arthur 173
Stein, M. L. 61
Stewart, G. W. 84
stones 49
storage reclamation 92
Strachey, C. 158
string allocation 92
string descriptor doubleword 114
structured programming 2
substitution cipher 99
subtrahend 115

•

suit 72
supervisor 120
Sutherland, Georgia L. 29
Swiss order 22
Swiss tournament 21
symbol number 127

T

tableau 72
Tanenbaum, Andrew S. 97
tape alphabet 4 7
tapehead 45
text editor 11
text formatter 11
Thomas, G. B., Jr. 94
Toom-Cook multiplication

algorithm 87
TRAC 18, 93, 148
TRAC algorithm 149
transaction 36

traveling salesman problem 161
tree 51
trigram 39
Turing machine 45
Turing, Alan 45
two's complement notation 108

u
Ulam, S. M. 61
Ullman, Jeffrey D. 48, 93
undirected graph 8
unimplemented instruction

exception 109, 121
unjaundiced eyeball principle 196

V

variable 67, 77
variable-length encoding 42, 125
variable list 67
Vigenere square 99
virtual hash code 75

w

Wainwright, Robert T. 7
Wallace, Graham F. 29
Wari 49
WATFIV 3
Wegner, Peter 4, 158
weighted variable-length

encoding 42
Wells, David 97
Wells, M. B. 61
White, John R. 131
Wirth, Niklaus 4
word 17, 107
word-addressing exception 111,

121
word boundary 107
Wortman. D. B. 4, 14 7'
wraparound instruction exception,

122
Wrench, J . W. 94

X

Xerox Data Systems 123
XPL 3, 4, 18, 70, 75, 93, 104,

123,146,156,176

y

yield 36

z
zero divisor exception 116, 122

Original from
UNIVERSITY OF MICHIGAN

	Title page
	Table of contents
	Preface
	1. What's It All About, Alfie? Or How to Use This Book
	2. The Game of Life, or Cellular Automata and Computer Graphics
	3. Why is the Ocean Blue, Daddy, or Map Coloring by Exhaustive Search
	4. Printer's Devil, or Automatic Text Formatting
	5. Winning is the Only Thing, or Tournament Design and Evaluation
	6. Strike it Rich, or Business Management and Computer Simulation
	7. Kriss-Kross, or Puzzle construction Using Heuristics
	8. Theseus, or Automatic Creation of Mazes
	9. Know Thyself, or Programs that Print Their Own Sources
	10. Yielding Up Its Gold, or Calculation of Investment Yield
	11. Ye Soule of Witte, or Textual Redundancy and File Compression
	12. A Sense of Community, or Bookkeeping for Home Use
	13. Touring Turing, or Simulation of a Turing Machine
	14. Games Computers Play, or A Computer Strategy for Kalah
	15. Prime Time, or Searching for Patterns Among the Primes
	16. Gas Pains, or A Gasoline Usage Computation
	17. Shocking Statistics, or Highway Traffic Simulation
	18. Readin', Ritin' and 'Rithmatic, or Construction of a Format Scanner
	19. Patience is a Virtue, or Solataire Statistics Collection
	20. Polly Wants a Cracker, or A Symbolic Algebra Package
	21. Perverse Inverse, or Errors using Floating Point
	22. Pi Are Square, or High Precision Arithmetic Routines
	23. Mastermind, or Optimal Strategies for a Guessing Game
	24. A Code of Dishonor, or Mathematical Cryptanalysis
	Projects for Compiler Courses
	25. Computer Stimulation, or Simulation of a Typical Large Computer
	26. EC Loader, or A Linking Loader
	27. Easy Does It, or A Compiler for an Algebraic Language
	28. Off the Beaten TRAC, or Building a TRAC Interpreter

	Solutions
	29. Map Coloring Made Easy, or A Complete Problem Solution
	30. Compressed Solutions, or A Program for Text Compaction

	Index

