


OBSERVATIONAL ASTRONOMY

Astronomy is fundamentally an observational science, and as such it is important
for astronomers and astrophysicists to understand how their data are collected and
analyzed. This book is a comprehensive review of current observational techniques
and instruments.

Featuring instruments such as Spitzer, Herschel, Fermi, ALMA, Super-
Kamiokande, SNO, IceCube, the Auger Observatory, LIGO, and LISA, the
book discusses the capabilities and limitations of different types of instruments.
It explores the sources and types of noise and provides statistical tools necessary for
interpreting observational data. Due to the increasingly important role of statistical
analysis, the techniques of Bayesian analysis are discussed, along with sampling
techniques and model comparison.

With topics ranging from fundamental subjects such as optics, photometry,
and spectroscopy, to neutrinos, cosmic rays, and gravitational waves, this book
is essential for graduate students in astronomy and astrophysics.

E D M U N D C . S U T T O N is Associate Professor in the Astronomy Department
at the University of Illinois. His research has been primarily in infrared and
submillimeter astronomy with an emphasis on instrumentation.
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Preface

This book is based on a required course for graduate students in Astronomy which
I taught for a number of years at the University of Illinois. The premise of the
course is that both theoretical astronomers and observers should have a basic under-
standing of the techniques of observational astronomy. The emphasis is on the
underlying physics of the methods of detection and analytical tools (statistical and
otherwise) that astronomers find useful. The great variety of current instruments
and the rapid introduction of new instruments preclude an in-depth treatment of
the peculiarities and idiosyncrasies of many instruments. But every instrument has
its own idiosyncrasies and its own ways of corrupting the data and deceiving the
observer. The topics in this book, I believe, cover the minimum which is required
of anyone attempting to understand or interpret observational astronomy data.

Throughout the book equations are given in mks (SI) units so that it is easy to
relate the discussion to practical quantities such as volts and watts. This is true
even in the chapter on gravitational waves, a subject for which many texts and
references use geometrized units (c = 1, G = 1). I prefer to keep c and G around
rather than having to figure out where to put them when I need to calculate power.
I also like being able to check equations using dimensional analysis. In the text
other units are freely worked in. Among astronomers, the gauss remains firmly
fixed as the unit of magnetic flux density. And astronomers frequently use other
cgs units. For example, cross sections are always in cm2. And of course there is a
plethora of astronomical units such as pc, AU(!), and M�. An appendix is provided
with physical constants in both mks and cgs units and with a list of other units used
and their equivalents in mks and cgs units.

The reader will note that the chapters on neutrinos, cosmic rays, and gravita-
tional waves are of a different nature than other parts of the book. These fields
are sufficiently specialized that it is difficult to separate purely observational issues
from the underlying science, Therefore, in these chapters I freely go back and forth
between design and scientific goals.

xxi



xxii Preface

In addition to the color plates, there are color versions of a large number of other
figures. The complete set of color figures may be accessed and/or downloaded
through this book’s website: www.cambridge.org/9781107010468.

I am well aware of other topics that I could have included in this book. In partic-
ular, I regret not being able to include a thorough discussion of adaptive optics and
not covering topics in astroparticle physics.

The outlook for possible future instruments has changed markedly since much of
this text was written, largely due to budgetary constraints. A funding increment for
DUSEL (Chapter 14) by the National Science Foundation was recently rejected by
the US National Science Board. The fate of DUSEL currently rests with its remain-
ing US sponsor, the Department of Energy. WFIRST (Chapter 5) remains a high
priority project for NASA. If ESA assigns a similarly high priority to its Euclid
mission, a merger of these projects is likely to be considered. The US commit-
ments to IXO (Chapter 11) and LISA (Chapter 16) are very much in doubt. These
international collaborations are expected to continue, but reduced financial support
could lead to delays and reductions in scope. In any event, these instrument con-
cepts are the current state of the art. Astronomers constantly need to readjust their
plans in light of financial realities. If better ways can be found to pursue some of
these scientific objectives, now is certainly the time for them.
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Astrophysical information

In observational astronomy we study the processes by which Earth-bound
astronomers obtain and interpret information about distant parts of the universe.
Theoretical descriptions of the natural world and observational/experimental data
are complementary, and their interplay is a fundamental feature of scientific
inquiry. For progress in astronomy we need extensive, sensitive, and accurate
observations. But such data do not come for free. They are not just lying around
for anybody to pick up. Work is required. An observer who simply accepts data at
face value is likely to encounter problems.

In studying the observational process it will be helpful to adopt the following
point of view. There is something we will call information which is present in an
astronomical source. This information leaves the source, perhaps in the form of
electromagnetic radiation. As it travels from the source to the observer it passes
through intervening regions, often being modified in the process. The information
then reaches the detection system. This final stage inevitably involves significant
modification of the information. Noise is added, much information is lost, and other
changes occur. From this final state the astronomer attempts to infer characteristics
of the original source.

1.1 Electromagnetic radiation

The most important carrier of astronomical information is electromagnetic radi-
ation. The electromagnetic spectrum is commonly broken down into various
wavelength bands, as indicated in Table 1.1. Each band may be roughly described
by both a characteristic photon energy hν and a characteristic temperature hν/k.
Each band carries a different set of information, since radiation at different wave-
lengths is produced (and modified) by different physical processes. And in each
band the information is carried in a variety of forms (spectral, temporal, spatial,
polarization, intensity).

1



2 Astrophysical information

Table 1.1. Characteristic photon
energies and temperatures

Band Etyp (hν) Ttyp (hν/k)

gamma ray 105 eV 109 K
x-ray 103 eV 107 K
ultraviolet 10 eV 105 K
visible 1 eV 104 K
infrared 0.1 eV 103 K
microwave 10−3 eV 10 K
radio 10−6 eV 0.01 K

The wide range of wavelengths implies, among other things, that a wide variety
of detection mechanisms must be employed. We will focus on the basic methods
of detection and then provide some detail about differences between the bands.
We will also discuss limitations to sensitivity and spatial resolution and how these
vary between bands. Similarly, each wavelength band will have its own charac-
teristics associated with each type of analysis. Here again we will focus on the
fundamentals of the various types of analysis (spectroscopy, high speed photom-
etry, imaging, polarimetry, photometry), providing some detail about how these
types of analysis vary between the different bands.

1.2 Other carriers of information

In addition to electromagnetic radiation we have information carried to us via
neutrinos, cosmic rays, and gravitational waves. These will be discussed in
Chapters 14, 15, and 16, respectively. The study of material such as meteorites,
lunar rocks, and interplanetary dust particles, although important, is somewhat spe-
cialized and will not be discussed here. The possible future detection of exotic
particles such as dark matter will also not be discussed.

Neutrinos have been detected both from the Sun (at characteristic energies of
∼105 eV) and from supernovae (∼107 eV). They contain information in their flux,
in their arrival times (in the case of supernovae), and in their spectra. The lower
than expected flux of neutrinos from the solar core was a longstanding problem in
astrophysics, now considered to be resolved. The discovery of neutrinos from SN
1987A provided important confirmation of our picture of core-collapse supernovae.
Studies of neutrino energy spectra have been difficult due to the fact that detectors
are typically sensitive to neutrinos of particular energies determined by the type of
interaction material used (gallium, chlorine, etc.).

Cosmic rays consist of energetic electrons, protons, and heavy nuclei (out to Pb
and beyond), reaching Earth from distant astrophysical sources. The lower energy
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particles may be detected directly from balloons and satellites. The higher energy
particles range up to about 1020 eV. These create extensive air showers in Earth’s
atmosphere which can be detected with ground arrays sensitive to fluorescence
from atmospheric nitrogen. Studies of the relative abundances of cosmic ray parti-
cles and their energy spectra reveal information about cosmic composition and the
energetics of the generating sources (e.g. pulsars).

Gravitational waves from astrophysically interesting events are predicted with
strains of

δL / L � 10−23. (1.1)

Current instruments such as LIGO and Virgo are approaching this level in the
100 Hz range.

1.3 Intervening regions

We speak of astronomy as an observational (not an experimental) science, imply-
ing that generally we do not have control over the conditions of our experiment
and cannot directly probe or manipulate the object of interest. A corollary fact
is that there exist intervening regions which can affect the flow of information
from an astronomical source to the observer. These intervening regions include
the intergalactic, interstellar, and interplanetary mediums and Earth’s atmosphere.
The effects of such regions on the flow of information are understood only in
part. The intergalactic, interstellar, and interplanetary mediums are themselves
astronomical entities about which we have limited observational information. And
although we have abundant information about global properties of Earth’s atmo-
sphere, we generally lack sufficient detail down to the smallest relevant spatial
scales (centimeters) and time scales (milliseconds).

There are situations in astrophysics in which the intervening region is itself the
object of interest. Examples include galactic H I (21 cm) absorption, quasar (Ly α)
absorption line systems, gravitational lensing and micro-lensing studies, and the
Sunyaev–Zel’dovich effect. In these cases some knowledge about the background
sources of radiation is required in order to study the effects produced by the inter-
vening regions. For simplicity we will concentrate here on the more common case,
in which one wishes to study a distant object and the intervening regions have the
ability to modify the flow of radiation from the object to the observer.

1.3.1 Intergalactic/interstellar medium

The interstellar (and intergalactic) medium (ISM/IGM) contains gas and dust. Dust
particles absorb and scatter light. If the size, shape, and composition of the dust
grains were known, their effect on electromagnetic radiation could, in principle,
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be calculated (Mie, 1908; van de Hulst, 1957). But these properties are not readily
determined and must be inferred from global characteristics such as the wavelength
dependent coefficients of absorption and scattering, which may be different for
different lines of sight through the Galaxy. The combined effect of scattering and
absorption is referred to as extinction. The average value of extinction due to dust
in the plane of the Galaxy is

〈AV〉/D ≈ 2 mag kpc−1. (1.2)

Interstellar extinction is dependent on wavelength. Since extinction is stronger
in the blue portion of the visible spectrum, starlight is reddened as it passes
through the ISM. A typical value for the reddening in the plane of the Galaxy
(the differential extinction between the B and V photometric bands) is

〈EB−V〉/D ≈ 0.6 mag kpc−1. (1.3)

Interstellar reddening is likely to be highly dependent on the nature of the dust
particles and thus variable from one region to another.

Atomic (neutral) gas in the ISM/IGM can produce various interstellar absorption
lines. There is strong absorption shortwards of the Lyman limit (91 nm) due to
neutral hydrogen (H I).

The ionized ISM/IGM (plasma) gives rise to effects such as pulsar dispersion,
Faraday rotation, and radio scintillation. Pulsar dispersion is parameterized by the
dispersion measure,

DM =
∫ L

0
ne dl, (1.4)

which is typically of order 10–100 parsec cm−3 for lines of sight towards nearby
pulsars. Relative to a signal at sufficiently high frequency, a lower frequency ν will
be delayed by a time

	t = e2

2πmec

1

ν2
DM. (1.5)

Faraday rotation is parameterized by the rotation measure,

RM =
∫ L

0
ne H‖ dl, (1.6)

with the convention that RM and H‖ are positive for magnetic fields pointing
towards us. Typical values of the galactic magnetic field are of order a few µG.
In traversing a region of rotation measure RM, a linearly polarized wave will have
its plane of polarization rotated by an angle
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	θ = e3

2πm2
ec2

1

ν2
RM, (1.7)

counterclockwise as viewed by us for positive RM.
Cosmic ray particles are also influenced by the medium they pass through. The

lower energy cosmic rays follow magnetic field lines, making it impossible to
determine their point of origin. The higher energy cosmic rays interact with the
photons of the microwave background radiation. Since they lose energy in these
interactions, the highest energy cosmic rays that we see must have originated within
about 50 Mpc of Earth.

1.3.2 Interplanetary medium

There also exists an interplanetary medium consisting of gas and dust, which can
produce effects similar to the interstellar medium. The interplanetary medium is
concentrated in the plane of the solar system. The zodiacal dust is evident by its
scattering and absorption and, since it is warm, also by its thermal emission in the
infrared. The plasma in the solar corona and solar wind influence the propagation
of radio waves (Thompson et al., 2001). Such effects vary with the 11-year solar
activity cycle and on shorter time scales as well.

1.3.3 Earth’s atmosphere

The Earth’s atmosphere produces a multitude of effects, most of which interfere
strongly with the free propagation of astronomical signals. Molecules and atoms
in the atmosphere absorb radiation across almost the entire electromagnetic spec-
trum except in the visible and radio bands. Atmospheric dust produces scattering
of visible light, the amount of which is very much dependent on such things as vol-
canic activity and wind patterns (e.g. dust from the Sahara). And of course there is
variable cloud cover. The upper atmosphere emits radiation by a process known as
airglow. The ionosphere cuts off the propagation of long wavelength radio waves.
As with most ionospheric phenomena, this cutoff is dependent on the solar activity
cycle. And finally, turbulence in the atmosphere gives rise to the effects known as
seeing and scintillation.

Radio and microwave absorption

The radio, microwave, millimeter, and submillimeter wave bands extend out to
frequencies of several hundreds of GHz, as shown in Figure 1.1. The atmospheric
spectrum in this region contains many discrete rotational lines of molecules such
as oxygen (O2), water vapor (H2O), and to a lesser extent ozone (O3) and other
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Figure 1.1 Atmospheric transmission from 10 to 1000 GHz for an elevation of
5108 m (Llano de Chajnantor) and precipitable water vapor content of 0.5, 1.0,
and 2.0 mm. Except for the blended 60 GHz band of O2 and isolated oxygen
lines at 119, 368, 425, 487, 715, 774, and 834 GHz (Tretyakov et al., 2005), the
majority of strong lines are due to water vapor absorption. Courtesy of Atacama
Pathfinder Experiment (APEX).

trace constituents. At the shorter wavelengths the water vapor lines blend into a
quasi-continuous absorption.

The oxygen lines are magnetic dipole transitions and arise throughout the tro-
posphere. The tropospheric pressure distribution is determined by hydrostatic
equilibrium and is roughly exponential,

P(z) = P0 e−z/H, (1.8)

with a scale height

H = kT

〈μ〉mHg
, (1.9)

which is of order 7 km for a typical temperature of T = 250 K and a mean molecular
weight 〈μ〉 = 29. Most molecular species follow this exponential distribution.

Water vapor, on the other hand, is not well mixed. The saturation vapor pressure
of water vapor is a strong function of temperature. In the troposphere, temperature
drops with altitude, and colder air has a strongly reduced water vapor content. The
distribution of water vapor is quasi-exponential, with a reduced scale height of

HH2O ≈ 2–3 km. (1.10)

The profiles of tropospheric absorption lines are determined by pressure broad-
ening. Therefore, most atmospheric line profiles are approximately Lorentzian in
shape with very broad wings. Since the water vapor is preferentially present in the
lower layers of the atmosphere, water vapor line widths are typically broader than
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Figure 1.2 Detail of atmospheric transmission from 480 to 500 GHz for 0.01 mm
precipitable water vapor, showing the presence of weak, narrow ozone lines. The
lower curve (red in electronic edition) corresponds to an altitude of 5108 m. At an
aircraft altitude of 12.5 km (upper, blue curve), the effect of pressure broadening
is much less and atmospheric transmission can approach 98% near 492 GHz.
Courtesy of Atacama Pathfinder Experiment (APEX).

those of other atmospheric constituents. By the same token, lines formed at high
altitudes, such as those of ozone, are narrow, as shown in Figure 1.2. Water lines
get considerably narrower wings when observed at high altitudes.

Lorentzian line shape

The quantum mechanical problem of the line shape for absorption or emission by
an atom undergoing random collisions (Gross, 1955) is somewhat subtle. But for
our present purposes we will treat it as analogous to a classical simple harmonic
dipole oscillator with radiative damping, which exponentially decays (for t � 0),

x(t) = x0 e−�t/2 cos 2πν0t. (1.11)

The (−i) Fourier transform of x(t) is

x̂(ν) = x0

2i

(
1

2πν − 2πν0 − i�/2
+ 1

2πν + 2πν0 − i�/2)

)
, (1.12)

the second term of which can be generally neglected. The total radiated power is
given by the Larmor formula. In mks units

P = 1

4πε0

2

3

q2ẍ2

c3
. (1.13)
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According to Rayleigh’s theorem the intensity profile I(ν) is proportional to∣∣x̂(ν)∣∣2, so the radiated power is distributed in frequency according to the
Lorentzian profile

φ(ν) ≈ 1

4

�

(2πν − 2πν0)2 + (�/2)2
, (1.14)

which for � 	 ν0 can be normalized for unit area as

φ(ν) ≈ 1

π

γ

(ν − ν0)2 + γ 2
. (1.15)

The HWHM line width γ is proportional to the rate of collisions.

Infrared absorption and background

The infrared spectrum is dominated by absorption from CO2 and H2O. Water vapor
is a particular problem because the water molecule is an asymmetric top with a
permanent dipole moment. These and other molecular lines leave the atmosphere
totally opaque at many infrared wavelengths. Between the absorption bands there
are a few discrete windows which are sufficiently transparent to allow ground-
based observations. The best of these windows are centered near 1.2, 2.2, 3.4, 5.0,
10, and 20 µm. However, even in these bands ground-based observations are faced
with strong atmospheric thermal background emission, especially near 5, 10, and
20 µm (near the peak of a blackbody spectrum for room temperature).

There is therefore a strong incentive for space-based observations throughout the
infrared, but especially for those portions of the spectrum with significant atmo-
spheric opacity. An extensive infrared satellite survey was conducted by the IRAS
satellite, which measured long wavelength fluxes (12, 25, 60, 100 µm), albeit with
low spatial resolution. More recent work was done by ISO, a satellite launched by
the European Space Agency (ESA). The most important current infrared satellites
are Spitzer (SIRTF) and Herschel (FIRST), which have both imaging and spectro-
scopic capabilities. SOFIA, an airborne telescope built jointly by Germany and the
USA is also about to start producing data.

Low frequency EM wave propagation

Consider a free electron plasma of density N in a field 
E0 e−i2πνt. Neglecting
collisions, the equation of motion for an electron displacement is

m
d2
x
dt2

= e 
E0 e−iωt. (1.16)
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Solving for the electron velocity and current density, we get


v = d
x
dt

= − e

imω

E0 e−iωt, (1.17)


J = Ne
v = − Ne2

imω

E0 e−iωt. (1.18)

Since the conductivity of a material is defined by 
J = σ 
E, the conductivity of the
electron plasma is

σ = i
Ne2

mω
. (1.19)

Waves in a conducting medium propagate according to the damped wave
equation

∇2
E − εμ
∂2
E
∂t2

− σμ
∂ 
E
∂t

= 0. (1.20)

Adopting a trial solution of 
E = 
E0 ei(k̃z−ωt), we can get

k̃2 = ω2

c2

(
ε

ε0
+ i

σ

ε0ω

)
(1.21)

≈ ω2

c2

(
1 − ω2

p

ω2

)
, (1.22)

where ω2
p = Ne2/mε0. For ω < ωp, the wavenumber k̃ is imaginary, so waves are

exponentially attenuated, not propagated. In the ionosphere electron densities are
of order 106 cm−3, so frequencies below about 10 MHz are not propagated. The
exact cutoff frequency varies with the day/night cycle and with solar activity.

Airglow

An additional factor to consider at visible and near-visible wavelengths is air-
glow, a form of fluorescent recombination which occurs in the upper atmosphere
(∼100 km). In the visible, strong airglow lines of O I occur at 558 and 630 nm, O2

at 762 nm, etc. The intensity of telluric airglow is measured in units of rayleighs,

1 rayleigh = 106/4π photons cm−2 s−1 sr−1 (1.23)

= 1.58 × 10−11/λ nm W cm−2 sr−1. (1.24)

Rayleigh scattering

Atmospheric scattering (resonant, Rayleigh) is also a significant source of sky
background in the ultraviolet, visible, and near-infrared. Consider a bound electron
with a driving field. The equation of motion is
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ẍ + �ẋ + ω2
0x = e

m
E0 cosωt, (1.25)

which, for a trial solution

x = x0 eiωt, (1.26)

gives an amplitude displaying a resonant response where

x0 = − e

m
E0

1

ω2 − ω2
0 − iω0�

. (1.27)

Calculating the radiated power by the Larmor formula gives

P = 1

4πε0

2

3

q2

c3
ω4 |x0|2 . (1.28)

We get the interaction cross section by normalizing by the incident Poynting flux,

σ(ω) = σT
ω4

(ω2 − ω2
0)

2 + (ω0�)2
, (1.29)

σT = 2

3

q4

m2c4

1

4πε2
0

. (1.30)

At low frequencies this displays the ω4 Rayleigh scattering and at high frequencies
the constant Thomson cross section σT, with the resonant fluorescence peak in
between, as shown in Figure 1.3.

Atmospheric turbulence

Atmospheric density inhomogeneities produce regions of different refractive
indices which introduce wavefront corrugations, as shown in Figure 1.4. Seeing

Figure 1.3 Scattering from bound electrons.
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Figure 1.4 Dense pockets of air produce wavefront delays, leading to seeing and
scintillation.

refers to a change in apparent stellar position or an increase in image size due to
wavefront slope. Scintillation refers to intensity (brightness) fluctuations due to
the focussing effects of curved wavefronts (this is weak focussing, therefore the
fluctuations are apparent only after several kilometers).

If there exists random turbulence, an idealized theory in three spatial dimen-
sions predicts that fluctuations over a wide range of spatial scales will follow the
Kolmogorov spectrum, in which large scale sizes dominate. For turbulent mix-
ing of air at different initial temperatures (densities), one can predict the following
structure functions1 for temperature,

DT(
r ) = 〈[T(
r0 +
r )− T(
r0)]2〉 = C2
Tr2/3, (1.31)

and for the index of refraction,

Dn(
r ) = 〈[n(
r0 +
r )− n(
r0)]2〉 = C2
nr2/3, (1.32)

where empirically the magnitudes of the fluctuations are of order

CT ≈ 10−2 K cm−1/3, (1.33)

and

Cn ≈ 10−8 cm−1/3, (1.34)

1 Some aspects of the theory of random processes are covered in Chapter 7. Here the structure function is
introduced to allow us to consider what are known as random processes with stationary first increments,
which in this case are locally homogeneous, isotropic random fields.
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since ∂n/∂T ≈ 10−6 K−1. After a plane wave propagates through such an atmo-
sphere, the accumulated wavefront phase errors are given by the structure function
(Tatarskii, 1971)

DS(ρ) = 〈[φ( 
ρ0 + 
ρ)− φ( 
ρ0)]2〉 (1.35)

= 2.91

(
2π

λ

)2

ρ5/3
∫ L

0
C2

n(z) dz. (1.36)

It is convenient to discuss the scale size over which the wavefront is largely
coherent. By convention, set DS ≈ 1 rad2 and then solve for a characteristic
separation,

ρ = r0 ∝ λ6/5, (1.37)

a value which is known as the Fried parameter, a measure of the amount of turbu-
lence. A typical value at 500 nm would be r0 ≈ 10 cm. Since the diffraction limit
is proportional to λ/D, this implies that one can achieve better resolution (smaller
image sizes) at long wavelengths (image size ∝ λ−1/5).

Exercises

1.1 Assume that the pressure of Earth’s atmosphere falls off exponentially,

P(z) = P0 e−z/H, (1.38)

with P0 = 1013 mb = 101.3 kPa (sea level) and a scale height H = 7 km.
Ignoring temperature changes, this implies the atmospheric density also
falls off exponentially. Assume that the ratio of water vapor density to air
density (the “mixing ratio”) also obeys an exponential law (a rather crude
approximation to real life),

r(z) = ρH2O

ρair
= 10−2 e−z/H′

, (1.39)

where H′ = 2 km.

a. Show that the density of water vapor also falls off exponentially and
calculate its scale height.

b. Calculate the amount of water vapor present in a vertical column of air
above a point at sea level (z = 0). Such a quantity is usually expressed in
terms of the thickness of a layer of liquid water with an equivalent number
of water molecules,

w = 1

ρliquid

∫ ∞

0
ρvapor(z) dz. (1.40)

c. Do a reality check. Is your answer reasonable?
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1.2 Go to www.apex-telescope.org/sites/chajnantor/atmosphere/transpwv/ and
create a plot of the atmospheric transmission between 100 and 200 GHz for
a precipitable water vapor content of 1 mm (a magnified version of part of
Figure 1.1). Most atmospheric absorption lines have near-Lorentzian shapes,

φ(ν, ν0) = 	ν/2π

(ν − ν0)2 + (	ν/2)2
. (1.41)

a. For the water vapor line at 183 GHz, estimate the FWHM line width
parameter 	ν.

b. The line width is related to the mean time between collisions by the
formula τ = 1/(π	ν). What is the mean collisional time?

c. Compare with the mean collisional time estimated from kinetic theory
assuming a mean atmospheric pressure of 400 mb (at the characteris-
tic height of water vapor) and a collisional cross section (for collisions
between H2O and N2) of 3 × 10−19 m−2.

d. Comment on the line at 119 GHz.
e. Make a magnified plot of the 160–170 GHz region. The line at 166 GHz

is due to ozone. Estimate the height of the ozone layer.
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Photometry

2.1 Specific intensity (brightness)

In studying radiometry and photometry we will make use of a fundamental quantity
known as the specific intensity (or brightness). This may not correspond with the
way you use the word brightness in everyday speech. We will define the specific
intensity as the rate of energy transport, along a particular direction, per unit area,
per unit solid angle, per unit frequency. We will always use the word brightness as
synonymous with specific intensity.

Consider a propagation direction k̂, a differential solid angle d� around k̂, and
a differential surface element dA normal to k̂, as shown in Figure 2.1. The energy
crossing dA within d� of k̂, within a frequency band of width dν around ν, in a
time dt is

dE = Iν dA dt d� dν. (2.1)

This equation, in effect, defines the specific intensity Iν , which has units of
J s−1m−2 sr−1Hz−1 (W m−2 sr−1Hz−1). The specific intensity is sometimes also
called the spectral radiance. It is also closely related to the quantity in (non-
astrophysical) visible photometry known as the luminance, which has units of
lumen m−2 sr−1 (candle m−2).

2.2 Étendue

Jacquinot emphasized the importance of a quantity in optics named étendue.
This term has no satisfactory English translation, but it is sometimes rendered
as “throughput” or “area–solid angle product”. Consider a bundle of rays pass-
ing through the areas dA1 and dA2, where dA1 and dA2 are separated by a distance
L, and where dA1 and dA2 are normal to the mean ray. For each point on dA1,
the solid angle subtended by dA2 is d�1 = dA2/L2 and similarly d�2 = dA1/L2,
therefore

14
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Figure 2.1 Geometry defining the specific intensity.

Figure 2.2 Conservation of étendue.

Figure 2.3 Larger object with smaller solid angle versus smaller image with larger
solid angle.

d�1 dA1 = d�2 dA2. (2.2)

Thus étendue (the product of dA and d�) is a conserved quantity, as illustrated in
Figure 2.2. When one is dealing with regions with different indices of refraction n1

and n2, the correct expression is actually

n2
1 d�1 dA1 = n2

2 d�2 dA2. (2.3)

Étendue in this sense is a conserved quantity in a perfect optical system, giving the
well-known result that, for an imaging system, a smaller image size corresponds
to a larger solid angle, as illustrated in Figure 2.3. In an imperfect optical system,
étendue will increase.
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Since étendue is conserved, if energy is conserved (no loss due to absorption),
then brightness is also conserved. Strictly speaking these conservation laws require
three qualifications: (1) that we are comparing regions of the same index of refrac-
tion (n1 = n2), (2) that there are no losses (absorptive, reflective), and (3) that
we restrict ourselves to a narrow “elementary beam” (that is, this breaks down for
imperfect optics, where aberrations are present).

2.3 Moments of the specific intensity

Applying the method of moments to the specific intensity yields three quantities of
interest. The zeroth order moment is the mean intensity Jν , defined by

Jν = 1

4π

∫
Iν(θ) d�, (2.4)

which has units of W m−2 Hz−1. As we will see, the mean intensity is related
to the energy density of radiation. The first order moment is the monochromatic
flux (spectral flux density or spectral irradiance), denoted Fν or Sν . Consider a
differential surface area dA at arbitrary orientation, as shown in Figure 2.4. The
energy flow from the direction θ (within small d�) is

dFν = Iν(θ) cos θ d�. (2.5)

In other words, the projected area is the actual area reduced by a factor of cos θ .
Taking contributions from all directions,

Fν =
∫

Iν(θ) cos θ d�. (2.6)

The astrophysical unit of flux is the jansky, 1 Jy = 1 f.u. = 10−26 W m−2 Hz−1.
An isotropic field has no net flux (Iν(θ) = constant, Fν = 0). Also of interest
sometimes is the second order moment, the momentum flux pν (pressure),

Figure 2.4 Flux through an aperture dA is reduced by the cosine of the angle
between the unit wavevector and the unit normal.
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Figure 2.5 Radiation energy density is related to mean intensity.

pν = 1

c

∫
Iν(θ) cos2θ d�. (2.7)

2.4 Energy density

The energy density in a radiation field is related to the zeroth moment of the spe-
cific intensity, the mean intensity. As illustrated in Figure 2.5, the energy passing
through dA (per unit time, per unit solid angle) in a direction θ is that present in a
cylinder of length c dt.

dE = uν(θ) dA c dt d� dν. (2.8)

By definition

dE = Iν(θ) dA dt d� dν. (2.9)

Therefore the energy density per unit solid angle is

uν(θ) = Iν(θ)/c (2.10)

and the total energy density is

uν =
∫

uν(θ) d� (2.11)

= 1

c

∫
Iν(θ) d� (2.12)

= 4π

c
Jν. (2.13)

If and only if the radiation field is isotropic, we can write uν = 4π Iν/c.

2.5 Flux from a surface of uniform brightness

From close up, the surface of a spherical object such as a star looks flat. So, what
is the radiation field from such an object? Consider an infinite flat surface, as in
Figure 2.6.
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Figure 2.6 Integrated flux radiated by an infinite surface of uniform brightness.

Fν =
∫

Iν cos θ d� (2.14)

=
∫ ∫

Iν cos θ sin θ dθ dφ (2.15)

= 2π Iν

∫ π/2

0
sin θ d sin θ (2.16)

= 2π Iν

∫ 1

0
x dx (2.17)

= π Iν. (2.18)

This can be understood as an integral over � = 2π where 〈cos θ〉 = 1/2.
What will happen as one moves away from the surface of the star and the cur-

vature of the surface becomes apparent? At large distances we should expect the
result

Fν = �S Iν, (2.19)

where �S is the solid angle subtended by the source.

2.6 Blackbody radiation

Blackbody radiation describes the properties of radiation inside a cavity or radi-
ation emitted by a perfect absorber of temperature T. Consider a cubical cavity
with sides of length L with periodic boundary conditions. The boundary condi-
tions require that along each axis an integral number of wavelengths fit inside the
length L. In other words, λx = L/nx, where nx is some integer. So the components
of the wavevector 
k in Cartesian coordinates are

kx = 2π nx

L
, ky = 2π ny

L
, kz = 2π nz

L
. (2.20)
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The total wavenumber is then given by

k2 =
(

2π

L

)2

(n2
x + n2

y + n2
z), (2.21)

where nx, ny, and nz are all integers. These are the only allowed values of 
k which
satisfy the boundary conditions. We refer to each such case as a mode.

Think of each mode as occupying a unit cell in a 3-dimensional space described
by nx, ny, and nz. If we now rescale along each axis by 2π /L, in a space described
by kx, ky, and kz (k-space), each mode occupies a volume (2π/L)3. In terms of
frequency, and accounting for the existence of two independent polarizations, the
number of allowed modes between frequencies ν and ν + dν is given by

dNν = 2

(
L

2π

)3

d3k. (2.22)

The differential volume d3k describes a thin spherical shell in k-space whose inner
boundary corresponds to the frequency ν and whose outer boundary corresponds
to ν + dν. This can be rewritten as

dNν = 2

(
L

2π

)3

k2 dk d� (2.23)

= 2L3

c3
ν2 dν d�, (2.24)

since k = 2πν/c. Integrated over directions we get
∫

d� = 4π and letting the
volume of the cube be V = L3,

dNν

V
= 8π

c3
ν2 dν. (2.25)

Now we have to think quantum mechanically. Each of these modes represents
a harmonic oscillator which can take on discrete amounts of energy which are
multiples of hν. The number of these energy packets (photons) in a given mode,
the occupation number of the mode, is 1/(ehν/kT − 1) . So the average energy per
mode is hν/(ehν/kT −1). Combining this with the density of modes gives an overall
energy density of

uν = dEν
V

= 8π

c3

hν3 dν

ehν/kT − 1
. (2.26)

Since the radiation inside the cavity is isotropic, the specific intensity in frequency
units is

Iν = c

4π
uν = 2hν3

c2

1

ehν/kT − 1
, (2.27)



20 Photometry

which is known as the Planck function and often written Bν(T). In wavelength units
this is

Iλ = 2hc2

λ5

1

ehc/λkT − 1
. (2.28)

At the surface of a blackbody (either an infinite surface or very close)

Fν = 2π

c2

hν3

ehν/kT − 1
, (2.29)

which is the radiated flux density. Integrating to get the flux

F =
∫ ∞

0
Fν dν = 2π

c2
h

(
kT

h

)4 ∫ ∞

0

x3dx

ex − 1
= 2π

c2
h

(
kT

h

)4
π4

15
= σT4, (2.30)

a familiar result, the Stefan–Boltzmann law. The Stefan–Boltzmann constant
(be careful of differing conventions on this definition) is

σ = 2π5k4

15c2h3
. (2.31)

2.7 Atmospheric extinction (calibration)

Atmospheric extinction is present at all wavelengths. In the visible it is due primar-
ily to Rayleigh scattering and aerosols. In the radio and infrared it is primarily due
to water vapor. In each case the optical depth is proportional to the air mass, which
for a plane-parallel atmosphere (small zenith angle) gives

τ(ν) ≈ τ0(ν) sec z. (2.32)

Essentially, at the zenith one is looking through a certain amount of atmosphere,
which we call one air mass. And at non-zero zenith angle one is looking through
a depth of atmosphere which is increased by sec z, as shown in Figure 2.7. The
intensity reaching the ground is exponentially dependent on the optical depth,

I(z) = I0 e−τ = I0 e−τ0sec z. (2.33)

This provides a method for calibrating the atmospheric extinction. If one assumes
that the extinction is stable, one can measure the received intensity at a variety of
zenith angles. Then, by plotting log I versus sec z (air mass), the slope of the plot
gives τ0 and the intercept, which is essentially an extrapolation to zero air mass,
gives the incident intensity I0. This is known as Bouguer’s method and is illustrated
in Figure 2.7. In practice, atmospheric extinction is both time and site dependent,
so one must measure frequently.

At microwave frequencies one does something similar using atmospheric emis-
sion (if the atmosphere absorbs, it also radiates). Assume the radiated emission to
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Figure 2.7 (Left) Path length through Earth’s atmosphere, and hence opacity,
increases as the secant of the zenith angle. (Right) Bouguer’s method of deriving
intensity corrected for atmospheric extinction by extrapolating from the physi-
cally accessible region (sec z > 1) to sec z = 0. The slope of the plot gives the
zenith opacity.

be blackbody radiation. At these frequencies the Planck function can be simplified
since hν 	 kTB.

Iν = Bν(TB) ≈ 2
ν2

c2
kTB. (2.34)

In this way (at low frequencies) one can measure Iν in temperature units, and we
refer to the intensity in terms of its brightness temperature. Assume the radiating
air molecules are at some uniform temperature Tatm. By alternately observing the
sky emission and an ambient temperature source at temperature Tamb, one finds
that the measured continuum power

Psky(z) ∝ Tatm(1 − e−τ ), (2.35)

Pamb ∝ Tamb. (2.36)

Now if Tamb ≈ Tatm, then

Pamb − Psky(z) ∝ Tamb − Tatm(1 − e−τ ) ≈ Tatm e−τ . (2.37)

So by observing Pamb −Psky(z) at a variety of zenith angles and plotting log(Pamb −
Psky(z)) versus sec z, one can generate a graph like that shown in Figure 2.8. This
is sometimes called the sky-dip or tipper method. The slope of the plot again gives
τ0, in this case without observing any astronomical source. Water vapor, the dom-
inant source of opacity, can vary rapidly. So again, this method must be repeated
frequently.
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Figure 2.8 Sky-dip method for calculating zenith opacity from the slope of a
semi-log plot.

Figure 2.9 Radiation entering sidelobes of a radio telescope.

2.8 Absolute calibration

Uncalibrated data are worthless. Too many beginning astronomers, unfortunately,
spend inadequate time and attention on calibration. The issue of calibration is very
band and instrument specific. So there is little that we can say in general other than
that absolute calibration is difficult in all wavelength ranges. A few examples will
need to suffice for now.

Radio telescopes have strong sidelobes, due to diffraction. Some of these
sidelobes pick up emission from nearby objects on the ground. Others receive
power from the sky, but very far from the direction of interest. Some possible situ-
ations are shown in Figure 2.9. We want to know the sensitivity for on-axis sources
(in the “main lobe”). But the sensitivity (antenna) pattern varies with distance from
the telescope, until the far field is reached at a distance R � D2/λ, which can
be many kilometers. Therefore proper radio calibration requires the use of astro-
nomical sources! Planets can be useful calibration sources, but what intensities are
expected? Planetary surfaces (e.g. Mars) can be quasi-blackbody emitters, but one
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needs to know the surface emissivity, which is frequency dependent. Surface tem-
perature also varies (the subsolar point is hotter). For gaseous planets, the height of
the absorbing (emitting) layer varies with frequency, therefore so does TB.

Near the other end of the electromagnetic spectrum, consider calibration of
an x-ray telescope. As we will see, Wolter telescopes will have some geometri-
cal collecting area, but the effective collecting area will vary rapidly with energy
due to K-shell absorption edges of the high-Z materials used as mirror coatings.
Solid state detectors will have energy dependent efficiencies. There will be vary-
ing charged-particle backgrounds from cosmic rays and Earth’s radiation belts
to contend with. The detector may also be sensitive to ultraviolet radiation leak-
age. And detectors can deteriorate from any pre-flight calibration after prolonged
exposure to radiation over multi-year mission lifetimes. Calibrations of x-ray sys-
tems to some degree may be checked by observations of white dwarfs with known
characteristics.

2.9 Photometric magnitudes

The Johnson and Morgan (1953) system for visible photometry designated the
spectral bands U(ltraviolet), B(lue), and V(isual). Later additions included R(ed),
I(infrared), and longer wavelength infrared bands J, H, K, L, and M (Johnson,
1966; Bessell & Brett, 1988). Magnitudes are defined by

mU,B,V,... = −2.5 log

(
Fλ
Fλ0

)
= −2.5 log

(
Fν
Fν0

)
. (2.38)

For each of the different wavelength bands a bandpass function is specified (often
simplified to a central wavelength and a width) along with different zero points
(specified by different values of Fλ0 and Fν0 ). We ignore here any flux variations
across the bandpass. There have been various implementations of the “Johnson”
system with different central wavelengths, bandwidths, and zero points. The true
bandpasses are also affected by air-mass dependent atmospheric absorption, partic-
ularly the short wavelength end of the U band and most of the infrared bands. Some
sample filter shapes are shown in Figure 2.10. Specifications for the Johnson–
Cousins–Glass system are described in Table 2.1. The various zero points are
chosen according to the Vega system, such that the colors U−B, B−V, . . . are zero
for main sequence A0 stars (T = 10 800 K). That is, so that stars of this temperature
will have the same magnitude in all spectral bands. Hotter stars will be brighter in
the short wavelength bands and cooler stars will be fainter in the short wavelength
bands. There is also, among many others, the narrower band Strömgren–Crawford
system (Strömgren, 1966) with band designations u(ltraviolet), v(iolet), b(lue),
y(ellow), and β. The β band covers the Hβ line and has both a narrow and a wide
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Figure 2.10 Filter response of some of the standard photometric systems (Jansen,
2006).

bandwidth version. The letter designations do not match those of the Johnson sys-
tem; they even occur in different order! Other systems have been designed so that
equal magnitudes correspond to equal flux densities Fν (e.g. Oke, 1964).

The Sloan Digital Sky Survey (SDSS), a large compilation of stellar and galac-
tic photometry, uses a different, narrower set of photometric bands, described in
Table 2.2 and shown in Figure 2.10. The filters cover 300 nm to 1 µm with minimal
overlap, enabling the determination of so-called photometric redshifts, based on
the composite spectral energy distribution of a galaxy, rather than the redshift of a
paticular spectral line from an individual star. The bands are named u(ltraviolet),
g(reen), r(ed), i(nfrared), and z (for redshift).
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Table 2.1. Johnson–Cousins–Glass
photometric system

Banda λ0 Fλ0 Fν0

(W m−2 µm−1) (Jy)

U 366 nm 4.18 × 10−8 1790
B 438 6.32 × 10−8 4063
V 545 3.63 × 10−8 3636
R 641 2.18 × 10−8 3064
I 798 1.13 × 10−8 2416
J 1.22 µm 3.15 × 10−9 1589
H 1.63 1.14 × 10−9 1021
K 2.19 3.96 × 10−10 640
L 3.45 7.08 × 10−11 285
M 4.75 2.04 × 10−11 158

a Data from Bessell et al. (1998) except for band
M, which is from Bessell & Brett (1988).

Table 2.2. SDSS bands

Band λ0
a 	λa

0 Fν0
b

(nm) (nm) (Jy)

u 352 48 3631
g 480 100 3631
r 625 96 3631
i 767 106 3631
z 911 123 3631

a Without telluric extinction.
b SDSS magnitudes are on a

so-called asinh system, which
does not correspond exactly with
Equation 2.38, although the
differences are small for all but
the faintest objects.

Exercises

2.1 How many square degrees are there in a steradian? You may feel this is obvi-
ous, but please do an integral, for example to calculate the number of square
degrees in 4π sr.

2.2 Calculate the étendue (m2 degrees2) of
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a. the Palomar 200 inch telescope prime focus Large Format Camera
(www.astro.caltech.edu/palomar/200inch/instruments.html);

b. the 48 inch Palomar Schmidt telescope (the Samuel Oschin telescope)
(www.astro.caltech.edu/palomar/sot.html);

c. the 2.5 m Sloan Digital Sky Survey camera (www.sdss.org/);
d. the 10 meter Keck I telescope (assume an 8 arcmin × 8 arcmin field of

view);
e. the 8.4 meter LSST, allowing for a rather large central blockage of 5.1

meters, and assuming a 1.75 degree radius field of view.

2.3 A sphere of radius 0.1 meters radiates as a blackbody at a temperature of
300 K. It is viewed by a detector system 1000 m away. The entrance aperture
of the detector is 1 cm in radius.1

a. Calculate the specific intensity Iν at wavelengths of 1 µm and 10 µm.
b. Calculate the flux density Fν at the entrance aperture for each wavelength.
c. Assuming 50% detection efficiency and bandwidths of 1% (δλ = 0.01 λ),

calculate the power received by the detector at each wavelength.
d. Calculate the corresponding number of photons per second for each

wavelength.

2.4 Consider an idealized bandpass filter centered at a wavelength λ0 with a
bandwidth 	λ. It has perfect transmission in the range

λ0 − 	λ

2
< λ < λ0 + 	λ

2
(2.39)

and zero transmission outside this range. Through this filter you view a
blackbody source in the Rayleigh–Jeans limit. A naive estimate of the sig-
nal passed by the filter would be a power proportional to Iλ0	λ. This would
be wrong since the specific intensity varies across the passband. Show that
the fractional error introduced is of order

5

6

(
	λ

λ0

)2

. (2.40)

How big is this error if 	λ/λ0 = 0.2 ?2

2.5 Calculate the flux density Fν at a distance r from the center of a sphere of
uniform brightness Bν . The radius of the sphere is R (r ≥ R). Comment on
two aspects of your result: the functional dependence on r, and the value of
Fν at the surface of the sphere (r = R).

2.6 Consider an H II region which is optically thin from radio out to visible
frequencies. Suppose further that its thermal bremsstrahlung spectrum has

1 Adapted from Rieke (2002).
2 Adapted from Rieke (2002).
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a constant specific intensity, Iν , over this frequency range. If it has a flux den-
sity of 10 mJy at radio frequencies, calculate its visible magnitude, mV. Note
that

mV = −2.5 log

[
Fλ
Fλ0

]
, (2.41)

where

Fλ0 = 3.63 × 10−8 W m−2 µm−1 (2.42)

for the V photometric band (λ0 = 0.545 µm).3

3 Adapted from Lèna et al. (1998).
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Positional astronomy

3.1 Fundamental reference system

The official system used for positional astronomy was introduced in 1976 by the
International Astronomical Union (IAU). The changes made at that time included
full consistency with the SI system of units (Le Système International d’Unités)
and new experimental values for the fundamental constants (e.g. GM�). It became
a fully relativistic system, and a new standard (reference) epoch J2000.0 was intro-
duced. This system was first implemented in The Astronomical Almanac for 1984
(and detailed in the “Supplement” in that volume, pp. S5–S38). In 1991 the treat-
ment of space-time coordinates was further revised. An exhaustive description
of the entire system is given in the Explanatory Supplement to the Astronomical
Almanac (Seidelmann, 2006). Outdated and deprecated concepts include the epoch
B1950.0, Besselian day numbers, E-terms of aberration, GMT, and ephemeris
time (ET).

Further refinement was required after the astrometry mission Hipparcos pro-
vided significantly improved measurements of stellar positions. In this chapter we
will focus first on those aspects of positional astronomy required for general uses
such as “Where do I point my telescope?” Later we will introduce some aspects
of precision astrometry. The most demanding applications require a relativistic
treatment which goes well beyond what we are able to cover here.

3.2 Time systems

3.2.1 Atomic time

The fundamental system of time is international atomic time, TAI (Temps Atom-
ique International). It is based on a worldwide weighted average of numerous
atomic clocks, most of which are cesium clocks. Cesium clocks utilize a hyperfine
transition (F = 4→3) of the 2S1/2 ground state of 133Cs, as shown in Figure 3.1.

28
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Figure 3.1 In a classical cesium clock a beam of 133Cs atoms is emitted from
an oven. The atoms pass through a magnet which selects those in the F = 3
hyperfine state. As the beam passes through a resonant cavity, some undergo a
transition to F = 4. There are two microwave interaction regions, the separation
between which (and the speed of the atoms) determines the resolution (Ramsey,
1949). A second magnet selects F = 4 atoms, which are then counted. This signal
is used to control the frequency of the microwave oscillator.

The second is defined as 9 192 631 770 periods of this transition. The time system
defined by this is considerably more stable than Earth’s rotation. Individual cesium
clocks have frequency stability of order 1.5–3 ×10−14 per day.1 An ensemble of
cesium clocks is even more stable. We will not discuss here the required synchro-
nization of these clocks beyond noting that clocks at different altitudes (at different
depths in Earth’s gravitational potential well) will necessarily experience time pass-
ing at different rates. TAI is now referenced to the passage of time at Earth’s geoid
(mean sea level).

To be useful, atomic time must be made available (broadcast) worldwide. Sec-
ondary standards are then able to keep time locally, with occasional adjustment.
Quartz oscillators are most commonly used to provide inexpensive, reasonably sta-
ble secondary standards. The time standard in most general use is Coordinated
Universal Time, UTC (Temps Universel Coordonné). UTC transpires at the same
rate as TAI, but is discontinuous due to the introduction of leap seconds (see
below). UTC is broadcast in the USA in a variety of forms including both short-
wave (WWV: 2.5, 5.0, 10.0, and 15.0 MHz) and longwave (WWVB: 60 kHz)
radio. Other frequency bands are used elsewhere in the world. Varying propaga-
tion delays limit the accuracy of these methods to about 1 ms. The “atomic clocks”
that consumers can buy are simply clocks equipped with radio receivers for syn-
chronization. Accuracy down to the level of about 10 ns is available via the Global
Positioning System (GPS). A convenient form of time transfer is the Internet, using
NTP (Network Time Protocol), which can provide an accuracy of 1–50 ms. The site

1 Recent improvements in laser-cooled atomic fountain clocks provide even better stability.
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www.time.gov claims an accuracy of only 0.4 s. Finally, the CDMA cellular tele-
phone system maintains an internal synchronization at the level of 10 µs, although
an end-user may only obtain an accuracy of order 1 ms.

3.2.2 Astronomical time scales

Since Earth’s rotation is irregular, it is necessary to define the linkage between
atomic time and astronomical time systems. UTC is a time scale which evolves at
the same rate as TAI, but is offset from it by an integral number of empirical leap
seconds,

UTC = TAI −	AT. (3.1)

Presently 	AT = 34 s (it was last updated on December 31, 2008). The
times at which such leap seconds have been introduced may be viewed at
ftp://maia.usno.navy.mil/ser7/tai-utc.dat. Although UTC includes the introduction
of leap seconds, GPS time remains locked to TAI, at a fixed offset of 14 s.

The actual rotation of the Earth is described by Universal Time (UT1), which
obviously will not behave as simply as UTC.

UT1 = UTC +	UT1, (3.2)

where 	UT1 and therefore UT1 are determined, retroactively, from observations.
Information on 	UT1 is available from ftp://maia.usno.navy.mil/ser7/ser7.dat.
Predictions of 	UT1 accurate to ∼0.1 s are available in some broadcasts.

For some purposes it is necessary to consider general relativistic effects using
space-time coordinates for the solar system barycenter or for the geocenter.
We begin with terrestrial time (TT), which has a simple relationship to TAI,

TT = TAI + 32.184 s. (3.3)

Geocentric coordinate time (TCG), which is for a reference frame not in Earth’s
gravitational potential, differs from TT by a constant rate

TCG ≈ TT + 7 × 10−10 × time, (3.4)

where “time” is the elapsed time in seconds since 1997 Jan 01 0h. Barycentric coor-
dinate time (TCB), similarly, is for a reference frame moving with the barycenter of
the solar system but not affected by the Sun’s gravitational potential. Its calculation
requires a 4-vector transformation,

TCB = TCG + relativistic corrections. (3.5)

Use of the dynamical times TDT and TDB, introduced in 1976, has been
deprecated since 1991.
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Figure 3.2 The concept of sidereal time as illustrated by a view from the north
celestial pole. Directions east and west are shown for an observer on the daytime
side of Earth. As Earth orbits the Sun, each day the Earth must rotate through
more than 360◦ to bring the Sun back to the meridian.

3.2.3 Sidereal time

A time scale based on the apparent motions of the stars across the sky needs to
differ in rate from a solar time scale, as illustrated in Figure 3.2. In one year the
Earth rotates on its axis ∼366.25 times. But since during that year Earth also goes
through one revolution around the Sun, there are only ∼365.25 times cycles of day
and night. The Sun crosses the meridian only ∼365.25 times in one year. Let the
term “mean sidereal day” refer to one mean rotation of Earth. In that sense the
sidereal day is both simpler and more fundamental than the solar day, which addi-
tionally depends on Earth’s revolution around the Sun. A sidereal day is shorter, by
about 4 minutes, than a solar day,

sidereal day

solar day
≈ year/366.25

year/365.25
≈ 0.99727. (3.6)

A mean sidereal day is approximately 23h56m04s of solar time. Or viewed another
way, the Sun moves from west to east through the field of stars at an average
rate of ∼4 minutes per day. Formal definitions will follow, but for now think of
Greenwich sidereal time, both mean (GMST) and apparent (GAST) as quantities
which are tabulated in The Astronomical Almanac for various values of UT (e.g.
GAST or GMST on 2009 Jan 1, 0h UT). The difference, known as the “equation of
the equinoxes” (a terrible name) is also tabulated,

GAST = GMST + equation of equinoxes. (3.7)

The difference between these two definitions of sidereal time relates to the nutation
of the Earth.

3.2.4 Solar time

Earth moves around the Sun at a non-uniform rate due to the ellipticity of Earth’s
orbit. So the Sun appears to move through the sky at different rates at different
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times during the year. For this reason, it has been convenient to develop a fictitious
mean solar position, which differs from the position of the true Sun. This difference
is described by the equation of time (another terrible name), which can also be
obtained from The Astronomical Almanac. It is represented in graphical from by
the analema (www.analema.com).

3.3 Spherical astronomy

3.3.1 Spherical coordinates (in general)

Astronomers use a number of different spherical coordinate systems. Define a
spherical coordinate system as shown in Figure 3.3, where θ is a polar angle down
from the z-axis and φ is an azimuthal angle measured in the xy-plane starting
from the x-axis and increasing towards the y-axis. The relationship between the
Cartesian and spherical systems is given by

z = r cos θ, (3.8)

x = r sin θ cosφ, (3.9)

y = r sin θ sinφ. (3.10)

In general, a spherical coordinate system can be defined by the choice of the polar
axis (θ = 0) and the zero point of azimuth (φ = 0). In some cases astronomers like
to use the angle 90◦ − θ instead of θ and sometimes −φ instead of φ.

It is often easier to manipulate (x, y, z) than (θ ,φ). Yet we like to use spherical
coordinates since for many purposes (e.g. pointing a telescope), we are interested
only in the projection onto the celestial sphere, so we can ignore r. In that case,
we can retain the advantages of the Cartesian system by using directional cosines.
To do so we set r = 1 (use the unit sphere) and express directions in terms of the
cosines of three angles, essentially the projections onto the Cartesian axes. These

Figure 3.3 Conversion between Cartesian coordinates and spherical coordinates
with the pole along the z-axis and azimuth measured from the x-axis.
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Figure 3.4 Latitude and longitude on Earth.

three directional cosines cannot be independent since the sum of their squares must
equal unity. With r = 1, only two degrees of freedom remain.

3.3.2 Latitude and longitude

On Earth, by convention latitude (φ) is measured north or south (+ or −) from the
equator, and longitude (λ) is measured east from the Greenwich meridian, as shown
in Figure 3.4. Locations west of Greenwich have negative longitudes. Both latitude
and longitude may be expressed in degrees, but astronomers often find it useful to
express longitudes and related quantities in hours, where 1 hour is 15◦ (24 hours is
360◦). Note that this is not an inertial coordinate system; it rotates with Earth.

3.3.3 Equatorial coordinates

Equatorial coordinates are similar to the latitude/longitude system, but on the celes-
tial sphere. Declination (δ) is measured north or south (+ or −) from the celestial
equator, as shown in Figure 3.5. Right ascension (α) is measured east from the
vernal equinox (�, to be defined below). This roughly approximates an inertial
system.

Since the Earth rotates, a rotating version of this coordinate system is also useful.
The hour angle (h) is the angular distance measured (along the equator) west (!)
from the local meridian to the hour angle circle of the source. Local apparent
sidereal time is defined as the hour angle of the true vernal equinox (α = 0).

h = LAST − αapparent, (3.11)

LAST = GAST + λ, (3.12)

LMST = GMST + λ. (3.13)
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Figure 3.5 Fixed (left) and rotating (right) equatorial coordinate systems.

Figure 3.6 Equatorial coordinates showing meridians (dotted; red in electronic
version) which rotate with the Earth and lines of constant right ascension (dashed;
blue) which remain fixed.

Equivalently, sidereal time is the right ascension of stars which are transiting
(h = 0). For a given location both sidereal time and hour angle are time-like quan-
tities; they increase as time passes. These relationships are shown in Figure 3.6.

3.3.4 Horizon coordinate system (alt/az)

The horizon and the direction of the zenith depend on one’s location on Earth’s
surface, as shown in Figure 3.7. Altitude (a) is an angle measured up from the
horizon, towards the zenith (also called elevation). Zenith distance (z) is measured
down from the zenith:
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Figure 3.7 (Left) Location of an observer on Earth’s surface at latitude φ. (Right)
That observer’s horizon coordinate system.

z = 90◦ − a. (3.14)

The azimuth (A) is measured from north clockwise (towards east) in the plane of
the horizon (the definition of A is not fully standardized).

3.3.5 Conversion formulae (alt/az ↔ ha/dec)

It is fairly easy to convert between the rotating equatorial (hour angle/declination)
system and the horizon (altitude/azimuth) coordinate system. The only additional
piece of information needed is the observer’s latitude φ.

cos a sin A = − cos δ sin h, (3.15)

cos a cos A = sin δ cosφ − cos δ cos h sinφ, (3.16)

sin a = sin δ sinφ + cos δ cos h cosφ, (3.17)

cos δ cos h = sin a cosφ − cos a cos A sinφ, (3.18)

sin δ = sin a sinφ + cos a cos A cosφ. (3.19)

The right ascension α can be calculated from the hour angle h and the local
sidereal time. A way to obtain these conversion formulae is discussed below. Simi-
lar formulae may be obtained for conversion between any two spherical coordinate
systems.

3.3.6 Ecliptic coordinates

The ecliptic is the apparent path of the Sun (the plane of Earth’s orbit). It is inclined
23.5◦ to the celestial equator. The vernal equinox (�) is the intersection of the
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Figure 3.8 (Left) Relationship between equatorial and ecliptic coordinate sys-
tems. (Right) Definitions of ecliptic coordinates.

Figure 3.9 Definition of galactic coordinate system.

equator and the ecliptic (the point at which the Sun crosses the equator, going from
south to north). Ecliptic latitude (β) is measured + and − from the ecliptic. Ecliptic
longitude (λ) is measured east along the ecliptic from �, as shown in Figure 3.8.
The effects of zodiacal dust will be most pronounced at small ecliptic latitudes.

3.3.7 Galactic coordinates

Galactic latitude (bI I ) is measured + and − from the galactic plane and galactic
longitude (lI I ) is measured east along the plane from the nominal center of the
Galaxy, as shown in Figure 3.9. Of course the Galaxy does not have a well-defined
plane. The definitions of what constitutes the “plane” and the “center” are both
adopted by convention. The convention has changed from an earlier system (bI ,
lI ) and could conceivably change again. The galactic plane is inclined 62.6◦ to
the celestial equator. The relationship between galactic and equatorial coordinates
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is shown in Figure 3.10. Interstellar extinction is high at small galactic latitudes.
Observing near the galactic poles minimizes interstellar extinction, making such
regions particularly attractive for extragalactic astronomy.

3.3.8 Spherical trigonometry

It is possible to conduct spherical trigonometry by carefully defining the con-
cepts of angle and length for figures on the surface of a sphere. The “length” of
a spherical arc (great circle) �AB is the angle �AOB, where O is the origin of the
sphere. The “angle” between two spherical arcs (great circles) is the dihedral angle
A between the planes AOC and AOB. These concepts are shown in Figure 3.11.
A spherical triangle is formed by three great circle arcs �AB, �BC, and �CA. Let “a”
denote the length of the arc opposite to A (i.e. the arc length BC), etc.

Spherical trigonometry does not follow the laws of plane trigonometry (in the
spherical triangle shown, A + B + C>180◦). The mathematics for spherical
trigonometry is rather cumbersome, but may be derived from two equations:

cos a = cos b cos c + sin b sin c cos A, (3.20)

sin A

sin a
= sin B

sin b
= sin C

sin c
. (3.21)

For this reason, and as discussed in the following section, there is little need now
to use spherical trigonometry directly.

3.3.9 Rotation matrices

With computers it is often more convenient to express positions in rectangular coor-
dinates and perform matrix multiplications. In the xy-plane, a rotation through an
angle φ is given by ∣∣∣∣ x′

y′

∣∣∣∣ =
∣∣∣∣ cosφ sinφ

−sinφ cosφ

∣∣∣∣
∣∣∣∣ x

y

∣∣∣∣ , (3.22)

as shown in Figure 3.12. In three dimensions,

Rz(φ) =
∣∣∣∣∣∣

cosφ sinφ 0
−sinφ cosφ 0

0 0 1

∣∣∣∣∣∣ (3.23)

represents a right-hand rotation by an angle φ around the z-axis. A general
3-dimensional rotation is constructed by a series of rotations about the cardinal
axes. This generates a product of rotation matrices, which may be multiplied to
produce a single 3 × 3 matrix. The conversion formulae between equatorial and
horizon coordinate systems are generated by such a rotation.
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Figure 3.11 Spherical trigonometry illustrated by points A, B, and C on the
surface of a sphere centered on the origin, O.

Figure 3.12 Rotation around the z-axis by an angle φ, illustrating the projected
components in the primed system of a point at coordinates (0, y) in the unprimed
system.

3.4 Epoch

Epoch refers to an instant in time, e.g. 2009 March 31 (0h UT). Notice that by
convention an epoch is given with the most significant part (years) first, followed
in descending order by months, days, hours, minutes, and seconds. Another way to
specify an epoch is by the Julian date, a system reckoned from the year 4713 BC
(no connection with Julius Caesar or the “Julian” calendar). A Julian day begins at
noon UT,

JD = 2454921.5 for 2009 March 31 (0h UT). (3.24)

The current “standard epoch” is J2000.0 (Julian),

J2000.0 = JD 2451545.0 = 2000 Jan 1.5. (3.25)
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The previous “standard epoch” was B1950.0 (Besselian),

B1950.0 = JD 2433282.423 = 1950 Jan 0.923. (3.26)

Another significant epoch is the proper motion epoch J1991.25 for the Hipparcos
catalog. The Julian year is exactly 365.25 days long. The Besselian year is
365.242 198 781 days, which was the length of a tropical year at B1900.0. A trop-
ical year is the time for the “mean Sun” to move from equinox to equinox. This is
inconvenient for two reasons: the length of the year is irrational, and it is no longer
accurate (it does not correspond to the current length of the tropical year). An epoch
is used to specify an astronomical event or the positions of astronomical objects at
a specific time. For example, we will use the concept of epoch in discussing stellar
proper motions. An epoch is also used to specify the orientation of a coordinate
system. The Earth’s axis precesses and nutates, affecting both the equator and the
equinox. Positions for the epoch J2000.0 refer to the coordinate system defined by
the mean equator and equinox for J2000.0. This will be our standard equator and
equinox.

3.5 Changes in equatorial coordinates

3.5.1 Proper motion

The solar velocity with respect to the local standard of rest (LSR), an average of
nearby stars, is ∼15 km s−1. The local stellar velocity dispersion is ∼50 km s−1.
The differential galactic rotation is � 25 km s−1 kpc−1. The combination of these
effects produces “proper motion.” At a distance of 100 pc

μ(typ) ≈ 0.1′′ yr−1. (3.27)

Barnard’s star, a nearby star (1.8 pc) famous for its high proper motion, has

μ(max) = 10.31′′ yr−1. (3.28)

Values for proper motion are often included in star catalogs, and may be used as
follows:

α = α0 + (t − t0)
μα

100
, (3.29)

δ = δ0 + (t − t0)
μδ

100
, (3.30)

where t is in years and μ is in arcsec/century. Strictly speaking, proper motion is
not a linear effect. Once a proper motion has become as large as a few degrees,
higher order terms must be considered.
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Figure 3.13 The Sun, Moon, and planets, lying on or near the ecliptic, apply a
torque 
τ on Earth due to Earth’s equatorial bulge. Due to Earth’s angular momen-
tum 
L, this results in a precession 
� (left), which pulls the north celestial pole
(NCP) out of the plane of the figure and causes it to circle the north ecliptic pole
(NEP) (right). Near the vernal equinox the equator drops, and the vernal equinox
shifts along the ecliptic by an annual amount χ , equivalent to a shift of m along
the equator and n perpendicular to the equator (bottom).

3.5.2 Precession

The differential gravitational pull of the Sun, Moon, and planets on Earth’s equa-
torial bulge produces a torque 
τ on the Earth, as shown in Figure 3.13. This
torque attempts to bring the equator in line with the ecliptic. The Earth has angular
momentum 
L and therefore precesses at a rate 
�, where the quantities are related by


τ = d
L
dt

= 
�× 
L. (3.31)

General precession is a steady state motion with a 26 000 year period. It is not quite
the same as the precession taught in physics classes, because the torque on the Earth
is not steady. Precession produces a steady shift of the equator and the equinox.
For 2009.5, the total rate of precession along the ecliptic is χ = 50.2902′′ yr−1.
At the position of the vernal equinox, this may be decomposed into a precession in
declination of n = 20.0412′′ yr−1 and one in right ascension of m = 46.1243′′ yr−1.
Keep in mind that this is a shift in the coordinate system.

3.5.3 Nutation

The torques produced by the Moon, Sun, and planets are variable. The result-
ing quasi-periodic motions are referred to as nutation, with periods ranging from
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4.7 days to 18.6 years and amplitudes up to ±17′′. Again the terminology does not
quite match that introduced in physics classes. Here nutation refers to the results
of the variability of the torque. In elementary physics it is often applied to motions
resulting from the sudden imposition of a steady torque.

3.5.4 Parallax

An apparent (geocentric) position depends on the position of the Earth (more
accurately, the Earth–Moon barycenter) in its orbit around the Sun, as shown in
Figure 3.14. The resulting annual parallax is larger for nearby objects:

tan� = a

D
, (3.32)

�(αCen) = 0.′′760. (3.33)

A parsec is the distance to an object which exhibits 1 arcsec of annual parallax, so
the ratio of the length of the parsec to the AU is the same as the number of arcsec
in a radian:

1 pc = 360 × 3600

2 π
≈ 2.06 × 105 × 1 AU. (3.34)

For objects within the solar system, parallax can be quite large. In such cases
one also needs to consider diurnal parallax by taking into account the observer’s
position on Earth’s surface and Earth’s 24 hour rotation.

3.5.5 Aberration of starlight

A moving observer sees a shift in apparent position due to special relativity. This
effect is present for any type of observation (e.g. a radio interferometer), but may

Figure 3.14 Parallax � for a star at distance D.
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Figure 3.15 Aberration of starlight illustrated by the difference between a station-
ary and a moving observer with a zenith tube (left and center), and the general case
for a line of sight not orthogonal to the direction of motion (right).

be most easily conceptualized using a zenith tube, as illustrated in Figure 3.15.
A stationary observer points the tube straight up to see a star directly overhead.
A moving observer must tip the tube forward, since the light takes a finite time to
travel the length of the tube, during which time the bottom of the tube has moved.
In the general case,

tan	θ = v sin θ

c + v cos θ
, (3.35)

	θ ≈ v

c
sin θ. (3.36)

Earth’s mean orbital velocity of 29.8 km s−1 gives a maximum annual aberration
of 	θ ≈ ±20′′. On the equator, the velocity due to Earth’s spin is 0.46 km s−1,
giving a maximum diurnal aberration of 	θ ≈ ±0.′′32.

3.5.6 Reduction of celestial coordinates (overview)

In planning or analyzing the coordinates of an observation, one generally starts
with UTC or with local civil time for a particular time zone, which one can readily
correct to UTC. If one is in the USA, keep in mind that daylight savings time is
kept in many locations from the second Sunday in March to the first Sunday in
November. Knowing UTC, one can then look up either GMST or GAST. Mean
sidereal time is the hour angle of the mean equinox. Apparent sidereal time is the
hour angle of the true equinox. Local sidereal time, either mean or apparent (LMST
or LAST), can then be calculated using the longitude of the observation point.

In planning an observation of a particular source, one might take its coordi-
nates from some catalog. This catalog will have some epoch for the object’s proper
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motion, which may or may not be the same as the epoch of the coordinate system
used. A first step would be to take the difference between current epoch and the
catalog epoch and apply a correction for proper motion.

At this point one will have what is known as a mean position for the coordinate
system used in the catalog, which is usually referred to as the catalog equator and
equinox. This is a heliocentric position. One then applies precession, in either a
single step or two steps. If two steps are used, one first obtains a mean position for
the mean equator and equinox of year, such as 2009.5, and then a mean position
for the mean equator and equinox of date, such as 2009 Mar 31 0h UT. Applying
nutation then gives what is known as the true position for the true equator and
equinox of date. These are still heliocentric positions. The effects of aberration and
parallax account for Earth’s position in the solar system. Applying these terms one
obtains what is know as the true position, which is a geocentric position. If one
makes further correction for the observatory’s displacement from the geocenter,
one obtains what are called topocentric coordinates.

3.5.7 Gravitational deflection of light

According to general relativity, light rays passing in the vicinity of a large mass
such as the Sun will have their paths bent, due to the curvature of space-time.
At the limb of the Sun, for Einstein’s version of general relativity,

	θ(limb) = 1.′′749 (3.37)

as shown in Figure 3.16. At an angular distance of 10◦ from the Sun

	θ(10◦) = 0.′′047, (3.38)

and at an angular distance of 90◦ from the Sun

	θ(90◦) = 0.′′004. (3.39)

This is rather important (a big effect) in radio astronomy, since it is relatively
easy to obtain high positional precision in interferometric measurements and it
is practical to observe objects in directions rather close to the Sun.

Figure 3.16 Gravitational deflection of light at the limb of the Sun.
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3.5.8 Refraction

Refraction refers to the change in direction of propagation due to Earth’s atmo-
sphere. For a plane-parallel atmosphere with many thin layers with indices of
refraction ni, as shown in Figure 3.17, Snell’s law gives

n0 sin θ0 = n1 sin θ1 = n2 sin θ2 = . . . = sin θ, (3.40)

where θ is the angle of incidence (zenith angle) of the ray above the atmosphere
and θi are the angles of propagation in the various layers. If θ0 is the observed
angle, at the ground, and we express θ as θ0 plus a small correction 	θ ,

n0 sin θ0 = sin θ (3.41)

≈ sin(θ0 +	θ) (3.42)

≈ sin θ0 +	θ cos θ0, (3.43)

	θ = (n0 − 1) tan θ0. (3.44)

Taking into account the curvature of the atmosphere adds a third order term,

	θ = A tan θ0 + B tan3θ0. (3.45)

The magnitude of refraction (n0 − 1) depends on frequency, atmospheric pres-
sure, temperature, and water vapor content. Since the index of refraction of air is
higher at the blue end of the visible spectrum, blue light is refracted more than red
light:

n0 − 1(optical) ≈ 0.000 293 ≈ 60′′. (3.46)

Figure 3.17 Refraction in a plane-parallel atmosphere with layers of indices {ni}.
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In the radio portion of the spectrum, the index is very dependent on water vapor
content:

n0 − 1(<100 GHz) ≈ 65–75′′. (3.47)

Refraction affects altitude only (not azimuth). Decomposing its effect into celestial
coordinates,

	α = ±R sec δ sin q, (3.48)

where the + sign refers to 12h < h < 24h and the − sign refers to 0h < h < 12h.

	δ = ±R cos q (3.49)

with the + sign for φ < 0 and the − sign for φ > 0, and where sin q =
cosφ sin h/sin z. More details on appropriate values of the refraction constant are
available in Allen (2001) for optical wavelengths and Thompson et al. (2001) at
radio wavelengths.

3.5.9 Parallactic angle

Under some circumstances, the orientation of an instrument will rotate with respect
to the equatorial coordinate system as a telescope tracks an object across the sky.
An example is a radio telescope with an altitude/azimuth mount. Since most radio
receivers are polarization sensitive, this is particularly important when observing
polarized radiation. The amount of rotation is referred to as the parallactic angle,
q. Its value was given above,

sin q = cosφ sin h

sin z
. (3.50)

3.6 Astrometry

Accurate measurements of stellar positions are of fundamental importance to
studies of, for example, (1) the distance scale (parallax), (2) galactic structure,
(3) stellar dynamics (binary stars), and (4) general relativity. Broadly defined,
astrometry is taken to mean the measurement of five quantities: two positional
coordinates, two proper motions, and parallax.

3.6.1 Historical techniques

Narrow field astrometry is conceptually straightforward. For example, one takes
a photographic plate (nowadays a CCD image) and measures relative positions.
There are plenty of complications (telescope aberrations, spatial stability of
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Figure 3.18 Wide field astrometric errors build up as the square root of the
number of narrow field images.

photographic emulsion, etc.), but it is possible to obtain positional accuracies of
order 0.01′′ over small fields (∼10′). This is true even in the presence of image
blurring due to seeing, since one can measure the centroid of a stellar image to a
small fraction of the seeing disk.

A more substantial problem is to obtain accurate relative positions of stars in
very different parts of the sky (wide field astrometry). You cannot do this accu-
rately using a series of overlapping narrow fields due to the accumulation of errors.
Random errors increase as

√
N and systematic errors as N, where N is the number

of fields observed, as shown in Figure 3.18.
A meridian circle (transit telescope) uses the timing of a stellar transit to deter-

mine right ascension. A mechanical dial readout is used to determine declination.
The accuracy is approximately 0.1′′, but it is susceptible to systematic errors such
as axis misalignment, refraction, etc.

A photographic zenith tube (PZT) uses reflection of light off of the surface of
a bath of mercury to determine the local vertical. As with the meridian circle, the
time of transit determines the right ascension. However, this technique is restricted
to stars with declination approximately equal to the latitude. A full astrometric
system requires PZTs at a variety of latitudes.

The astrolabe is similar to the PZT in its use of a mercury bath to determine the
local vertical. However, optics are arranged so that the observer sees stars which are
at exactly 60◦ elevation. With an astrolabe a large fraction of the sky is observable
from one site in one night.

Radio interferometry (VLBI) has revolutionized astrometry by bringing pre-
cisions of order 0.001 arcsec to wide field astrometry. There is the additional
advantage that radio interferometers can see distant quasars, which form a good
inertial reference frame (a frame tied to nearby stars is not necessarily inertial).
The problem is that most normal stars are poor emitters of radio waves and so
cannot be observed directly.
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3.6.2 Hipparcos

The ESA satellite Hipparcos (Perryman et al., 1997) was designed to measure
positions, proper motions, and parallaxes of 118 000 stars to an accuracy of
0.002 arcsec. As a byproduct it produced accurate space-based photometry of these
stars and astrometric data on an additional 2.5 × 106 stars at the level of 0.06′′.

The optics of the satellite combined the light from two fields of view sepa-
rated on the sky by 58◦. The focal plane of the telescope contained an occulting
(modulating) grid followed by an image-dissector tube detector. Positional infor-
mation was therefore encoded in the phase of the modulation of the stellar flux.
As the satellite spun and the spin axis slowly changed, eventually all pairs of fields
separated by 58◦ would be compared. Extensive computer analysis was used to
recover the relative stellar positions. The system sensitivity was sufficient to make
the astrometric survey complete for stars down to mV ≈ 9. Some stars as faint
as 12.4m were measured. Characteristics of the data are enumerated in Table 3.1.
This precision was sufficient to demonstrate that previous reference systems such
as the FK5 were not inertial and had significant zonal errors (inconsistency of
different declination zones). The precision of Hipparcos required the definition
of a new reference system, the International Celestial Reference System (ICRS).
Through linked observations of extragalactic sources, the ICRS is nearly an inertial
system.

Positional uncertainties increase with the time elapsed since the mean epoch
of the observations. At the present epoch such uncertainties are dominated by the
uncertainty in the proper motions. A new satellite mission is needed to reduce the
error in proper motion. The GAIA (Global Astrometric Interferometer for Astro-
physics) mission of the ESA is scheduled to be launched in 2011 into an orbit
around the L2 Lagrangian point of the Earth–Sun system. Its focal plane will
be covered by CCDs with of order 109 pixels, significantly more than the 120
megapixels of the SDSS. GAIA is expected to produce astrometric data and multi-
color photometry of roughly 109 stars with an accuracy of order 2–20 microarcsec
(µas) for stars brighter than 15m. GAIA will also contain a spectrometer to measure
radial velocities.

Table 3.1. Hipparcos precision

mean epoch J1991.25
median error in position 0.0007′′
median error in parallax 0.00097′′
median proper motion error 0.0008′′per year
deviation from inertial ±0.00025′′per year
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Exercises

3.1 Derive the formulae for transformation between alt/az and declination/hour
angle coordinate systems using the method of rotation matrices. First, set up
a right-hand coordinate system î, ĵ, k̂ with k̂ towards the zenith and î and ĵ in
the horizontal plane, as shown in Figure 3.19.∣∣∣∣∣∣

x
y
z

∣∣∣∣∣∣ =
∣∣∣∣∣∣

− cos a sin A
− cos a cos A

sin a

∣∣∣∣∣∣ . (3.51)

a. Set up a similar coordinate system î′, ĵ′, k̂′ such that î = î′ and k̂′ is towards
the north celestial pole. Express a 3-dimensional vector in the primed
coordinate system in terms of δ and h.∣∣∣∣∣∣

x′

y′

z′

∣∣∣∣∣∣ = ? (3.52)

b. Describe the 3 × 3 rotation matrix which represents a rotation about the
î = î′ axis, transforming (x, y, z) into (x′, y′, z′).

c. Carry out the matrix multiplication to derive three trigonometric relation-
ships between a, A, h, δ, and φ.

d. Compare with the set of five relationships given in Section 3.3.5. Where
might the other two formulae come from?

3.2 The Positions and Proper Motions (PPM) Star Catalogue for the Epoch
J2000.0 (Röser & Bastian, 1991) lists a star (designated #153068) as having
a position

Figure 3.19 Altitude/azimuth coordinate system.



50 Positional astronomy

α0(J2000.0) = 7h39m18.s113, (3.53)

δ0(J2000.0) = +5◦13′30.′′06 (3.54)

and a proper motion of

μα = −0.0475 s yr−1, (3.55)

μδ = −1.023′′ yr−1. (3.56)

a. Calculate the correction for proper motion between J2000.0 and J2009.5.
b. Using the formulae at the top of page B54 of The Astronomical Almanac

(2009), precess the J2000.0 coordinates to mean positions for the epoch
J2009.5. Begin by calculating the time difference between the two epochs
in Julian centuries,

T = (J2009.5 − J2000.0)/100 (3.57)

= (JD2455014.875 − JD2451545.0)/36525. (3.58)

Then calculate the precession constants M and N as directed in the middle
of the page (including terms up to T3 is sufficient). Then go to the formulae
near the top of the page. Do not be confused by the references to αm and
δm (the coordinates for the mean epoch). “Mean” in this case refers to the
mean of J2000.0 and J2009.5 (J2004.75). Since J2000.0 and J2009.5 are
close together you can omit the calculation of αm and δm and use α0 and
δ0 instead. Finally, include your proper motion correction from part a.

3.3 The city of Urbana, Illinois, is located at a latitude of 40◦06′20.′′2 north and
a longitude of 5h52m53.s9 (88◦13′28.′′5) west. Urbana is in the Central time
zone, six time zones west of Greenwich. So it is necessary to add 6 hours to
CST (Central Standard Time) to convert to coordinated universal time (UTC
= CST + 6h). Ignore 	UT1 (assume UT1 = UTC).

a. What is the local mean sidereal time (LMST) in Urbana on 2009 Mar 7
21h CST? Give your answer to the nearest 0.1 s.

b. What is the hour angle of Procyon (the star whose coordinates you pre-
cessed, above) at the above time? Use the mean J2009.5 coordinates you
derived: α = 7h39m47.s93, δ = 5◦12′00.′′4. Give your answer to the near-
est minute of time (for higher precision, one would need to precess the
coordinates back to Mar 7). Is Procyon east or west of the meridian?

3.4 Derive formulae for general precession, valid for time scales much smaller
than the precessional period.

a. Make a diagram of the celestial sphere and a right-handed rectangular
coordinate system, with the north celestial pole along k̂ and the vernal
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equinox along î. Show the equator and the ecliptic. Sketch the motion of
the north celestial pole through its entire 25 800 year precessional period.

b. Calculate the angle through which the pole moves in one year. In what
direction does it move? The rate of motion of the pole is generally referred
to as the annual precession in declination.

c. What happens to the vernal equinox? Calculate the rate of motion of the
vernal equinox. This is generally referred to as the annual precession in
right ascension.

d. Using successive multiplications by rotation matrices to describe these
two shifts in the coordinate systems, derive the relationship between pre-
cessed and unprecessed coordinates. Compare with the formulae at the top
of page B54 of the Almanac. (It may seem more natural to you to use three
rotations: transformation to ecliptic coordinates, rotation around the eclip-
tic pole, and then transformation back to equatorial coordinates. Feel free
to do so if you like. The rotation matrix you derive would then be exact,
although it should reduce to the same result for small precession angles.)
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Fourier transforms

Fourier transforms constitute an important class of data analysis tools, which also
underlie much of what we will be doing in optics and statistics. So we will take
some time in introducing them and the various theorems associated with them.
We will look carefully at Rayleigh’s theorem, the properties of convolutions, the
Wiener–Khinchin (autocorrelation) theorem, and Shannon’s sampling theorem.
We will also discuss Fourier transforms in more than one dimension and related
integral transforms such as the Hankel transform. The classic reference work in
this field is Bracewell (2000). We will adhere to Bracewell’s conventions regard-
ing the placement of factors of 2π (with the factor of 2π in the Fourier kernel),
which we consider to give the most straightforward versions of the theorems and
the Fourier transform pairs.

4.1 Fourier series

Consider an arbitrary function f(x) defined on the interval (−0.5, 0.5). It can be
represented by the series expansion

f(x) = a0

2
+

∞∑
n=1

(an cos 2πnx + bn sin 2πnx) , (4.1)

where the coefficients an and bn may be found by multiplying the function by the
appropriate sine or cosine and integrating:

an = 2
∫ 1/2

−1/2
f(x) cos 2πnx dx, (4.2)

bn = 2
∫ 1/2

−1/2
f(x) sin 2πnx dx. (4.3)

52
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The set of basis functions {cos 2πnx, sin 2πnx} are orthogonal:∫ 1/2

−1/2
cos 2πnx sin 2πmx dx = 0, (4.4)

∫ 1/2

−1/2
cos 2πnx cos 2πmx dx = 1

2
δnm, (4.5)

∫ 1/2

−1/2
sin 2πnx sin 2πmx dx = 1

2
δnm (n �= 0), (4.6)

where the Kronecker delta function is defined as

δnm =
{

1 n = m
0 n �= m.

(4.7)

This may be generalized to other intervals such as (−L/2, L/2):

f(x) = a0

2
+

∞∑
n=1

(
an cos

2πnx

L
+ bn sin

2πnx

L

)
, (4.8)

an = 2

L

∫ L/2

−L/2
f(x) cos

2πnx

L
dx, (4.9)

bn = 2

L

∫ L/2

−L/2
f(x) sin

2πnx

L
dx. (4.10)

And this may also be expressed in complex form,

f(x) =
∞∑

n=−∞
ãn ei2πnx/L, (4.11)

ãn = 1

L

∫ L/2

−L/2
f(x) e−i2πnx/L dx, (4.12)

which introduces the concept of negative frequencies. A cosine function will be
viewed as composed of both positive and negative frequency components. We use
the tilde to indicate a complex quantity, which would be the case for real functions
f(x). Later the distinction becomes irrelevant. Many functions we deal with are
potentially complex, so we will omit the tilde.

Fourier series possess many simple properties. For example, if f(x) is an even
function such that f(x) = f(−x), then only cosine terms are present (bn = 0). If
f(x) is an odd function such that f(−x) = −f(x), then only sine terms are present
(an = 0). Consider a square wave of period L = 2π , as in Figure 4.1, defined by

f(x) =
{

1 0 < x < π

−1 −π < x < 0.
(4.13)
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Figure 4.1 Approximating a square wave as a finite Fourier series with n = 1
(solid black), n = 3 (short dashes; red in electronic version), and n = 5 (long
dashes; blue).

The Fourier coefficients of f(x) are

an = 0, (4.14)

bn = 1

π

∫ π

−π
f(x) sin nx dx (4.15)

= 2

π

∫ π

0
sin nx dx (4.16)

=
{

0 even n
4
πn odd n.

(4.17)

So the original function is a sum of odd sine terms,

f(x) = 4

π

(
sin x + sin 3x

3
+ sin 5x

5
+ · · ·

)
. (4.18)

4.2 Fourier integrals

By increasing the length of the interval L to infinity we can write

f(x) =
∫ ∞

−∞
F(s) ei2πsx ds, (4.19)

F(s) =
∫ ∞

−∞
f(x) e−i2πsx dx. (4.20)

This form with 2π in the kernel is the notation we will use, and we will consider
the −i transform to be the forward transform (sometimes also F or ⇀ or f̃) and
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Table 4.1. Symmetry properties of Fourier transform pairs

f(x) F(s)

Real and even Real and even
Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Complex and even Complex and even
Complex and odd Complex and odd
Real and asymmetrical Complex and Hermitian
Imaginary and asymmetrical Complex and anti-Hermitian
Real even plus imaginary odd Real
Real odd plus imaginary even Imaginary
Even Even
Odd Odd

the +i transform to be the inverse transform (sometimes F−1 or ↽). We will also
often use lower case letters to represent functions and upper case to indicate their
forward Fourier transforms (as above). Fourier transform pairs possess symme-
try properties, which are presented in Table 4.1, from Bracewell (2000). Fourier
transforms also obey simple rules for scalar multiplication, F af(x) = a Ff(x), and
additivity, F(f(x)+ g(x)) = Ff(x) + Fg(x). More complicated rules involving
Fourier transforms are discussed in the following sections.

4.2.1 Relationship to the Dirac delta (impulse) function

Consider a Fourier transform followed by an inverse transform,

f(x) =
∫ ∞

−∞
ds ei2πsx

∫ ∞

−∞
f(x′) e−i2πsx′

dx′ (4.21)

=
∫ ∞

−∞
dx′ f(x′)

[∫ ∞

−∞
ei2πs(x−x′) ds

]
. (4.22)

The quantity in brackets must vanish except at x = x′, in order for this to be true for
any function f. A conventional definition of the Dirac delta function is δ(x) = 0 for
x �= 0 and yet the delta function integrates to unity,∫ ∞

−∞
δ(x) dx = 1. (4.23)

The integral representation of the Dirac delta function is

δ(x) =
∫ ∞

−∞
ei2πsx ds. (4.24)
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4.2.2 Parseval’s theorem (Rayleigh’s theorem)

This theorem defines the concept of a power spectrum. In the time domain,∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
dt f(t) f∗(t) (4.25)

=
∫ ∞

−∞
dt
∫ ∞

−∞
F(ν) ei2πνt dν

∫ ∞

−∞
F∗(ν ′) e−i2πν′t dν ′ (4.26)

=
∫ ∞

−∞
dν F(ν)

∫ ∞

−∞
dν ′ F∗(ν ′)

∫ ∞

−∞
ei2π(ν−ν′)t dt (4.27)

=
∫ ∞

−∞
dν F(ν)

∫ ∞

−∞
dν ′ F∗(ν ′) δ(ν − ν ′) (4.28)

=
∫ ∞

−∞
dν F(ν) F∗(ν). (4.29)

So ultimately, ∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
|F(ν)|2 dν. (4.30)

Let’s revisit the problem of an exponentially decaying oscillator. Consider a
function f(t) which is zero for t < 0 and equals e−�t/2 sin 2πν0t for t ≥ 0, as
shown in Figure 4.2. Its Fourier transform is

F(ν) =
∫ ∞

−∞
f(t) e−i2πνt dt (4.31)

=
∫ ∞

0
e−�t/2 e−i2πνt sin 2πν0t dt (4.32)

=
∫ ∞

0
e−�t/2 e−i2πνt 1

2i
(ei2πν0t − e−i2πν0t) dt (4.33)

= 1

2

(
1

2πν + 2πν0 − i�/2
− 1

2πν − 2πν0 − i�/2

)
. (4.34)

Figure 4.2 An exponentially decaying wave and its power spectrum.
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Considering for now only positive frequencies, near ν0, and with small amounts
of damping (� 	 2πν0),

F(ν) ≈ −1

2

1

2πν − 2πν0 − i�/2
, (4.35)

|F(ν)|2 ≈ 1

4

1

(2πν − 2πν0)2 + (�/2)2
, (4.36)

which is a Lorentzian profile. The negative frequencies provide the same relative
spectral content. Normalizing so that

∫∞
−∞ φ(ν)dν = 1,

φ(ν) = 1

π

�/4π

(ν − ν0)2 + (�/4π)2
. (4.37)

For an electric field f(t), the power is proportional to |f(t)|2, and through Parseval’s
theorem, to |F(ω)|2. This leads to the concept of frequency content or spectral
power density.

4.2.3 Properties of Fourier transforms

Some crucial properties of Fourier transforms are presented in Table 4.2
(Bracewell, 2000). The addition property was mentioned earlier. Similarity says
that a narrow function in the time domain corresponds to a broad function in the
spectral domain, and vice versa. Notice that an additional scaling in amplitude is
required with the similarity property. Translation in either the time or frequency
domain corresponds to a phase winding (a modulation) in the opposite domain.
And differentiation contains a boost of any high frequency components and a
reduction of low frequency components.

Table 4.2. Properties of Fourier transforms

Addition f(x) + g(x) � F(s) + G(s)

Similarity f(ax) � 1
|a| F
( s

a

)
1
|b| f
( x

b

)
� F(bs)

Translation f(x−a) � e−i2πas F(s)
f(x) ei2πax � F(s − a)

Derivative df(x)
dx � i2π s F(s)
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4.2.4 Convolution

The convolution of two functions f1(x) and f2(x) is defined as

g(x) =
∫ ∞

−∞
f1(u) f2(x − u) du (4.38)

and written as

g(x) = f1 ∗ f2. (4.39)

Convolutions have the properties of commutativity, associativity, and distributivity:

f ∗ g = g ∗ f, (4.40)

f ∗ (g ∗ h) = (f ∗ g) ∗ h, (4.41)

f ∗ (g + h) = f ∗ g + f ∗ h. (4.42)

One of the most important properties of convolutions is that the Fourier transform
of a convolution of two functions equals the product of their individual Fourier
transforms. And the Fourier transform of a product of functions is the convolution
of their Fourier transforms.

f1(x) ∗ f2(x) � F1(s) F2(s), (4.43)

f1(x) f2(x) � F1(s) ∗ F2(s). (4.44)

4.2.5 Autocorrelation (Wiener–Khinchin theorem)

The cross correlation of two functions f1(x) and f2(x) is defined as

g(x) =
∫ ∞

−∞
f∗1(u) f2(x + u) du =

∫ ∞

−∞
f∗1(u − x) f2(u) du. (4.45)

Although equivalent, we prefer the first of these definitions, as it emphasizes
that the difference between convolution and cross correlation is essentially a sign
change (and a complex conjugation, for complex functions). We will indicate cross
correlations symbolically as

g(x) = f1 � f2. (4.46)

Cross correlations are not commutative. The behavior of cross correlations under
Fourier transforms is shown below, as well as the special case of autocorrelations,
which will be particularly important. Written this way, we can say that the Fourier
transform of an autocorrelation is equal to the power spectrum, a result known as
the Wiener–Khinchin theorem.

f1(x) � f2(x) � F∗
1(s) F2(s), (4.47)

f(x) � f(x) � |F(s)|2 . (4.48)
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An important property of autocorrelation functions is that they peak at s = 0, known
as zero-lag.

4.2.6 Common functions and Fourier transform pairs

We introduce in Table 4.3 (Bracewell, 2000) a menagerie of common functions
that will prove useful, along with their names and common symbols. In Table 4.4
we list some common Fourier transform pairs. Note that these pairs are only appli-
cable for the conventions we have adopted (our definitions of forward and reverse
transforms).

Table 4.3. Symbols for common functions

boxcar, top hat, or rectangle �(x) =

{
1 |x | < 1

2

0 |x | > 1
2

triangle �(x) =

{
1 − |x | |x | < 1
0 |x | > 1

Heaviside step function H(x) =

{
1 x > 0
0 x < 0

even impulse pair I I(x) = 1
2 δ(x + 1

2 )+ 1
2 δ(x − 1

2 )

odd impulse pair I I(x) = 1
2 δ(x + 1

2 )− 1
2 δ(x − 1

2 )

comb (or shah) X(x) =
∞∑

n=−∞
δ(x − n)

sinc sinc(x) =
sinπx

πx

Table 4.4. Fourier
transform pairs

e−πx2 � e−πs2

1 � δ(s)

�(x) � sinc(s)

�(x) � sinc2(s)

cos πx � I I(s)

sin πx � i I I(s)

X(x) � X(s)

H(x) � 1
2 δ(s)− i

2πs



60 Fourier transforms

4.2.7 Aliasing and Shannon’s sampling theorem

One of the most common methods of taking data is to measure (sample) some
continuous function f(t) at regular intervals	t. However, this results in unavoidable
confusion as to what frequency components are present. For example, if	t = 1 ms
and we measure +1, −1, +1, −1, . . . , is the frequency 500 Hz or 1500 Hz (see
Figure 4.3)?

Shannon’s theorem says that if F(ν) is known a priori to be limited to a finite
bandwidth such that F(ν) = 0 for all frequencies |ν| ≥ νmax, then the samples fully
specify f(t) as long as the sampling is done at least as fast as what is known as the
Nyquist rate. The Nyquist rate, which is a property of the band-limited signal, is
defined as 2νmax, so one needs to sample at a rate

νs > 2νmax, (4.49)

requiring the spacing between the samples to be

	t <
1

2νmax
. (4.50)

Somewhat confusingly, the frequency νs/2 is called the Nyquist frequency even
though it is half of the frequency at which one samples.

The following discussion is along the lines of that given by Thompson et al.
(2001). The sampled function g(t) is a product of the original f(t) and the shah
function,

g(t) = f(t)X
(

t

	t

)
, (4.51)

where the scaling to an interval of width 	t gives

1

	t
X
(

t

	t

)
=

∞∑
n=−∞

δ(t − n	t). (4.52)

Figure 4.3 Aliasing: samples at 1 ms intervals (dots; red in electronic version)
cannot distinguish between signals at 500 Hz (black), 1500 Hz (short dashes;
blue), or 2500 Hz (long dashes; green).
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Taking the Fourier transform of g(t) and applying the convolution theorem,

G(ν) = F(ν) ∗ X(ν	t) (4.53)

where

X(ν	t) = 1

	t

∞∑
m=−∞

δ(ν − m

	t
). (4.54)

This convolution with the shah function causes a replication of the spectrum F(ν)
at intervals 	ν = (	t)−1, as shown in Figure 4.4. If (	t)−1 < 2νmax, the replicas
overlap and information is lost. This corruption of portions of the spectrum by
overlapping replicas is known as aliasing. If (	t)−1 > 2νmax, there is no loss of
information. To recover f(t), one must further multiply with a boxcar function to
remove the replicas,

G(ν) � (ν	t) = F(ν). (4.55)

Figure 4.4 In the time domain a function f(t) is sampled at intervals 	t by mul-
tiplying it with the sampling function X(t/	t). In the frequency domain this
corresponds to a convolution of the Fourier transform with a replication function
X(ν	t). If the signal is band limited and the samples are frequent enough, it is
possible to recover the original Fourier transform (short dashes; red in electronic
version) by multiplying by a boxcar (long dashes; blue) and from that recover the
original signal. Adapted from Thompson et al. (2001).
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Take the inverse Fourier transform of this to recover f(t) as a convolution of the
sampled data with the sinc function,

f(t) = g(t) ∗ 1

	t
sinc

(
t

	t

)
, (4.56)

where

sinc

(
t

	t

)
= sinπ t/	t

π t/	t
. (4.57)

The sinc function essentially provides a formula for interpolating between the sam-
ples. If the conditions of the sampling theorem are satisfied, this interpolation is not
an estimate or a guess, it is exact. In the real world, the conditions of the theorem
can only be satisfied approximately, so the interpolation will only be approximately
correct (although often very close to being exact). Finally, remember the definition
of the sinc function, sinc x = sinπx/(πx) �= sin x/x !

4.3 Higher-dimensional Fourier transforms

For functions in two dimensions,

f(
x) =
∫ ∫ ∞

−∞
F(
s) ei2π
s·
x d2
s, (4.58)

F(
s) =
∫ ∫ ∞

−∞
f(
x) e−i2π
s·
x d2
x. (4.59)

If the function is factorable, f(
x) = fx(x)fy(y), then one can simply perform
a pair of 1-dimensional transforms. Otherwise, one can refer to tabulations of
2-dimensional Fourier transform pairs. The Fourier transform of a 2-dimensional
Gaussian is still a Gaussian. The Fourier transform of a constant is still a delta
function.

4.3.1 Hankel (Fourier–Bessel) transforms

If there is rotational symmetry about the origin in two dimensions, then we have
a function of only the radial coordinate r = √x2 + y2 and f(
x) = f(r). Its Fourier

transform is also a function of only the radial coordinate q =
√

s2
x + s2

y and

F(
s) = F(q).
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F(
s) = F(q) =
∫ ∫ ∞

−∞
f(r) e−i2π
s·
x dx dy (4.60)

=
∫ ∞

0

∫ 2π

0
f(r) e−i2πqr cos(θ−φ) r dr dθ (4.61)

=
∫ ∞

0
f(r)

[∫ 2π

0
e−i2πqr cos θ dθ

]
r dr (4.62)

= 2π
∫ ∞

0
f(r) J0(2πqr) r dr. (4.63)

Note the Bessel function kernel in this transform. The inverse transform is given by

f(r) = 2π
∫ ∞

0
F(q) J0(2πqr) q dq. (4.64)

For us, the most important example of a Hankel transform will be the Airy pattern.
For rotational symmetry in n dimensions,

F(q) = 2π

qn/2−1

∫ ∞

0
f(r) Jn/2−1(2πqr) rn/2 dr, (4.65)

where q and r are understood to be n-dimensional radial coordinates. From this we
can see that the 3-dimensional spherically symmetric Fourier transform is

F(q) = 2π

q1/2

∫ ∞

0
f(r) J1/2(2πqr) r3/2 dr, (4.66)

which, using Bessel function identities, can also be written as

F(q) = 4π
∫ ∞

0
f(r) sinc(2qr) r2 dr. (4.67)

Exercises

4.1 We derived the Fourier series representation for the square wave

f(x) =
{ +1 0 < x < π

−1 −π < x < 0,
(4.68)

f(x) = 4

π

(
sin x + sin 3x

3
+ sin 5x

5
+ · · ·

)
. (4.69)

For any fixed point x in the interior of the interval 0 < x < π , the nth partial
sum, fn(x), will converge on +1 if one considers sufficiently large n,

fn(x) = 4

π

(
sin x + sin 3x

3
+ sin 5x

5
+ · · · + sin nx

n

)
. (4.70)
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Figure 4.5 Illustration of Gibbs’ phenomenon.

However, for any value of n, the partial sum fn(x) will overshoot the value +1
in the manner shown in Figure 4.5. This is known as Gibbs’ phenomenon.

a. Find the value of x corresponding to the first maximum in fn(x).
b. Calculate a series expression for δn, the amount of overshoot.
c. Evaluate your expression for δn for n = 1, 3, and 5. Your results should

converge towards the value 0.179.

4.2 The boxcar function�(x) (also known as the top-hat or rectangle function) is
defined by

�(x) =
⎧⎨
⎩

0 x < −1/2
1 −1/2 < x < 1/2
0 x > 1/2

. (4.71)

The triangle function �(x) is defined by

�(x) =
⎧⎨
⎩

0 x < −1
1 − |x | −1 < x < 1

0 x > 1
. (4.72)

Use these definitions and the Fourier transform
sin x

x
� π�(πs) (4.73)

to prove that (
sin x

x

)2

� π�(πs). (4.74)

4.3 The Heaviside unit step function H(x) is defined to be

H(x) =
{

1 x > 0
0 x < 0

. (4.75)

a. By direct evaluation of the convolution, show that

H(x) ∗ [exH(x)
] = (ex − 1)H(x). (4.76)
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b. Show that convolution with the Heaviside unit step function is equivalent
to integration in the following sense:

H(x) ∗ f(x) =
∫ x

−∞
f(x′)dx′. (4.77)

4.4 Using the convolution theorem, give a fully simplified expression for

e−ax2 ∗ e−bx2
, (4.78)

where ∗ is the symbol for convolution.1

4.5 A sinusoidal signal at a frequency of 30 Hz is connected to the input of a
broadband amplifier which introduces noise at all frequencies up to a cutoff
frequency of 1000 Hz. The output is sampled at a rate of 200 Hz. State all
noise frequencies which are aliased onto the 30 Hz signal frequency. Remem-
ber that a real signal (or noise component) of frequency ν may be represented
as a sum of complex signals at frequencies ±ν. (Hint: remember to think of
both positive and negative frequencies, and consider the “replication” action
of sampling.)

4.6 Show that the two forms given for the 3-dimensional Hankel transform are
equivalent.

1 Adapted from Lèna et al. (1998).
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Detection systems

5.1 Interaction of radiation and matter

In order to study electromagnetic radiation, it is necessary for the radiation to inter-
act in some fashion with some physical “detector.” If we think of the radiation in
terms of photons, there are three types of interactions available to us: the photo-
electric effect, Compton scattering, and pair production. Variations on these effects
form the basis of photon detectors. Electromagnetic radiation can also be thought
of in terms of waves, and in some situations the wave picture is more appropri-
ate for understanding the detection process. Wave detectors could either measure
the electromagnetic field directly or measure the power transfer from electromag-
netic energy into thermal energy. There is no strict dividing line between these
views since electromagnetic radiation always retains both particle and wave char-
acteristics. But roughly speaking, the particle viewpoint is more useful at high
frequencies, where the photons are energetic, and the wave viewpoint is more use-
ful at lower frequencies. One characteristic which helps determine which viewpoint
may be more useful is 〈n〉, the average photon occupation number of the modes of
the radiation field.

5.2 Photoelectric effect

For an isolated atom, there is a threshold energy for removing a bound electron, the
ionization potential, which varies depending on what shell the electron occupies.
The shells are designated K, L, M. . . , depending on the principal quantum number
(n = 1, 2, 3, . . .). For hydrogen, the ionization potential from n = 1 corresponds
to an ultraviolet photon (the Lyman limit at 91.2 nm or 13.6 eV). But for heavier
elements the K-shell ionization shifts rapidly into the x-ray regime

EK ∝ Z2. (5.1)

66
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Figure 5.1 X-ray total attenuation cross section for Xe, which is dominated by
photoelectric absorption at these energies. Compton scattering becomes dominant
above about 400 keV. Based on the NIST XCOM database.

See Figure 5.1 for the ionization cross section of Xe. The cross section peaks just
above threshold for each shell, but then drops rapidly (∼ν−3) at higher energy due
to the difficulty in transferring the excess photon momentum to the nucleus. For
n > 1 there is subshell structure (2s, 2p1/2, 2p3/2, . . .). The photoelectric effect is
important in the design of x-ray proportional counters.

When other atoms are present, as in molecules and solids, the electronic energy
levels will be very different, as will the photoelectric cross sections. For solids in
vacuum, the thresholds can be ∼1 eV and depend on the crystalline structure and
the nature of the surface. The ionization potential in this case is usually called the
work function. Photon absorption efficiencies approach 100% in the visible and
ultraviolet, but the overall device efficiencies are limited by the electron escape
probabilities. In a semiconductor a photon can be thought of as “ionizing” an
atom, producing a “free” electron which remains in the conduction band of the
lattice. Thresholds are of order 0.1–1 eV for intrinsic semiconductors and of order
to 0.01–0.1 eV for extrinsic semiconductors. The latter photon energies correspond
to infrared photons. Photochemistry is somewhat similar in that photons produce
localized ionization or electronic excitation.

5.3 Compton scattering

In Compton scattering a photon scatters off of a free (or bound) electron, yielding
a scattered photon with a new, lower frequency and a new direction, as shown in
Figure 5.2. For an unbound electron initially at rest,
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Figure 5.2 A photon of energy hν scatters off an electron, after which it has a
smaller energy hν′ and travels at an angle θ with respect to its initial direction.
The electron travels at an angle φ with respect to the initial photon direction.

ν ′ = ν

[
1 + hν

mec2
(1 − cos θ)

]−1

, (5.2)

λ′ = λ+ h

mec
(1 − cos θ) , (5.3)

where h/ (mec) has units of length and equals 0.0024 nm. Low energy photons
lose little energy; high energy photons (gamma rays) lose much of their energy.
The wavelength increases by of order 0.0024 nm, independent of wavelength. The
Compton cross section for free electrons is given by the integrated Klein–Nishina
formula,

σC = σT
3

4

{
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
ln(1 + 2α)

]

+ 1

2α
ln(1 + 2α)− 1 + 3α

(1 + 2α)2

}
, (5.4)

where α = hν/(mec2) and the Thomson cross section is

σT = 8π

3

(
e2

4πε0mec2

)2

= 6.65 × 10−25 cm2. (5.5)

For hν 	 mec2 (α 	 1) the Compton cross section approaches the Thomson cross
section, as shown in Figure 5.3, and for hν � mec2

σC ≈ σT
3

8

mec2

hν
ln

2hν

mec2
. (5.6)

The Compton scattering cross section is largest at small energy and decreases
monotonically with energy. At low energies there are many scattering events, but
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Figure 5.3 (Left) Compton scattering cross section for free electrons, represent-
ing the number of scatterings per electron s−1 divided by the number of incident
photons cm−2 s−1. (Right) Compton absorption cross section, representing the
energy absorbed per electron s−1 divided by the incident energy cm−2 s−1.

very little energy is lost. So the energy absorption cross section is small in Compton
scattering at low energy (because little energy is transferred to the electron). The
energy absorption cross section rises to a peak for photon energies around 1 MeV,
and declines at higher energy (because there are few scattering events).

5.4 Pair production

Photons with energies in excess of 2mec2 are able to produce electron-positron
pairs. An interaction with a nucleus is needed to balance momentum. The pair
production cross section rises, starting at 1.022 MeV, and reaches an approxi-
mately constant value at high photon energy (in the gamma ray region of the
spectrum) as shown in Figure 5.4. Cross sections scale with the square of the atomic
number,

σP ≈ α Z2 σT, (5.7)

where here α is the fine structure constant and σT again is the Thomson cross
section. For lead and tungsten at high energies the pair production cross section is
of order 3 × 10−23 cm2 per atom.
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Figure 5.4 Pair production cross section in lead; shape is similar for other
chemical elements. Based on the NIST XCOM database.

5.5 Electromagnetic wave interactions

In principle, at low enough frequencies (quasi-statically) one could measure the
electric field strength directly. In practice, for frequencies from 10 MHz to 1 THz
(107–1012 Hz), detection systems consist of antennas (which couple the free space
electromagnetic wave into some type of waveguide or circuit), plus amplifiers
(sometimes), plus some type of non-linear device. A non-linear device has a non-
linear relationship between applied voltage and current. If the device response is
proportional to the voltage squared, then it is linearly proportional to the wave
intensity. Such a device may be used for detection (direct measurement of the
power) or mixing (frequency translation).

Such a system will exhibit purely classical behavior as long as the photon
energy (hν) is much smaller than e δV (where δV is the voltage width of the non-
linearity). For semiconductors δV ≈ 0.1 V, so this is always a classical process for
radio frequencies. Quantum effects are visible only with superconducting devices
(δV 	 1 mV) and then only at the highest frequencies (�1011 Hz).

5.6 Optical and ultraviolet detectors

5.6.1 Photomultipliers

Photomultipliers today are of critical importance in high energy astrophysics, as
we will see. But they retain one characteristic important for some types of optical
work, namely a rapid response time (�1 ns). It is relatively easy to understand their
method of operation, so we will begin here.

A photomultiplier tube has a transparent vacuum window to admit optical
and ultraviolet radiation, as illustrated in Figure 5.5. The radiation then strikes a
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Figure 5.5 Schematic view of a photomultiplier with a photon (red line in elec-
tronic version) entering the tube through a thin vacuum window (dotted). The
photocathode then releases a photoelectron (blue) which is accelerated towards
a dynode where it produces secondary electrons (green). The cascade continues
and produces a measurable current pulse at the anode. Actual electron trajectories
depend on the placement and shape of the electrodes and on space charge effects.
Optimal electron trajectories contribute to high efficiency and short response time,
therefore magnetic shielding is typically required (Hamamatsu Photonics, 2006).

photocathode surface which has a potential energy barrier (work function) of a few
eV. A photon of sufficient energy can overcome this barrier and liberate one elec-
tron from such a surface. An electron will not necessarily be emitted; the photon
energy may be shared between several electrons and ultimately dissipated as heat.
Typical commercial photocathodes have quantum efficiencies up to 25% at visible
wavelengths, and a variety of spectral responses are available. Quantum efficiencies
can be much higher at ultraviolet wavelengths.

A photomultiplier operates by multiplying the number of electrons through a
cascade process. If the photocathode emits an electron, the electron is accelerated
through a potential drop of order 100–200 volts. This primary photoelectron, now
energetic, then strikes a second surface (dynode) from which it is able to liberate
several secondary electrons. The average number of secondary electrons, g, may
be about 4. This number will be subject to statistical fluctuations. But g should
be large enough so that the probability of zero secondary electrons (which would
terminate the cascade) is small. These secondary electrons are accelerated through
a similar potential drop, and this process repeats through some number of stages,
n. The total gain G = gn, which might be of order 410 ≈ 106. Because of statistical
fluctuations, the final number of electrons in the cascade may range from 5×105 to
1.5 × 106. One generally sets some minimum threshold for the number of cascade
electrons so that incidents in which an electron is spontaneously emitted by one
of the dynodes may be ruled out. Other than in relation to this threshold, the final
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number of electrons is ignored in this pulse counting mode. If one only counts
pulses, a photomultiplier has good linearity, limited primarily by pulse overlaps
(pulse widths are typically 10 ns) at high counting rates.

The signal properties are governed by Poisson statistics of the incoming photons.
In a time T, let n̄ be the average number of photons, in which case the uncertainty
in n is σn = √

n̄. For a quantum efficiency η,

n̄′ = η n̄, (5.8)

σn′ = √ηn̄ =
√

n̄′. (5.9)

The nature of Poisson statistics will be discussed later. But for now note that
the statistics of the detected photons are also Poissonian, like those of the initial
radiation field. We refer to this as photon noise.

Additional noise results from a dark current due to, among other things,
thermionic emission (thermally emitted electrons) with a current density

j = 4πe mek2

h3
T2 e−W/kT (5.10)

where W is the work function. This current is significant at room temperature
(∼nA at the first dynode), but may be reduced by cooling. The average value of
the dark current (or the average number of dark pulses) may simply be subtracted.
But fluctuations in the dark current can be a significant source of noise. A larger
work function will decrease the dark current, but at a cost to the response at the
red end of the spectrum. Since the dark current will be proportional to the area
of the photocathode, the size should be kept as small as possible while remaining
consistent with constraints imposed by the optical system.

5.6.2 Other electron multiplication devices

Another type of electron multiplication device is the microchannel plate, in which
electrons travel through long narrow holes in a dielectric, with their numbers mul-
tiplying with every collision with the walls of the channel. The rate of collisions
can be increased by having the holes curved or by having stacks with holes slanted
in alternating directions (a so-called Z-stack). A high voltage is applied across
the plate in order to accelerate the electrons between collisions. Typical gains
are of order 106, similar to photomultipliers. But in addition, the microchannel
plate preserves spatial information, making it useful as an imaging device. In one
configuration, the microchannel plate is preceded by a thin semi-transparent pho-
tocathode on which an optical image is focussed. The photoelectrons are ejected
from the back side of the photocathode (the side in vacuum, facing the microchan-
nel plate). After the multichannel plate one could place a phosphorescent anode,
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Figure 5.6 A Multi-Anode Microchannel Array (Timothy, 1983).

which converts each electron in the cascade into multiple photons at the wavelength
characteristic of the phosphor. There are some difficulties with this approach since
the photons are emitted into a large solid angle.

An alternative is to follow the microchannel plate with an anode consisting
of crossed sets of multiple parallel “wires” (MAMA: Multi-Anode Microchan-
nel Array), an example of which is shown in Figure 5.6. The centroid of the
electrodes in the two anode planes which receive the most current determines
the spatial location of the current pulse, and the corresponding spot where the
photon hits the photocathode. A MAMA is an example of a photon-counting
camera. An image is built up by recording the time of arrival and location of
individual photons. The Hubble Space Telescope’s STIS (Space Telescope Imag-
ing Spectrograph) contains two MAMA detectors for ultraviolet wavelengths plus
a CCD camera for visible wavelengths. STIS was repaired in 2009 during Ser-
vicing Mission 4 (SM4). The Hubble ACS (Advanced Camera for Surveys) has
an ultraviolet detector called the SBC (Solar Blind Channel), which is also a
MAMA. The ACS was also repaired during SM4. The new COS (Cosmic Origins
Spectrometer), installed during SM4, uses a MAMA for its near-ultraviolet chan-
nel and a microchannel plate with double-delay line anodes for its far-ultraviolet
channel.
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5.6.3 Solid state detectors

A unit cell of crystalline silicon is a face-centered cubic structure, like diamond.
Each silicon atom has four nearest neighbors in a tetrahedral configuration. It can
be thought of as being bound to each of those neighbors by a single covalent bond
containing two electrons, one contributed by each of the atoms. Although each
atom really has four nearest neighbors in three dimensions, it is often useful to rep-
resent it in two dimensions with a picture in which the silicon atoms form a regular
square grid. The limitations of this picture are that this is not a 2-dimensional slice
out of a 3-dimensional structure, and it does not accurately represent the atomic
arrangement beyond that of nearest neighbors. Nearest neighbors of any partic-
ular atom are not simultaneously nearest neighbors of another atom, although the
2-dimensional picture suggests that they would be. Highly purified silicon is known
as an intrinsic semiconductor and is a poor conductor of electricity since the elec-
trons are tied up in valence bonds. However, if one of those bonds is broken by
absorption of a photon or by thermal excitation, then an electron is raised in energy
into the conduction band, leaving behind a hole, as in Figure 5.7. Both the elec-
tron and hole are mobile charge carriers, although they may have very different
mobilities.

An extrinsic semiconductor is formed if one of the silicon atoms is replaced
by an impurity atom with a different number of valence electrons. For example,
arsenic atoms have five valence electrons. So when an arsenic atom is placed in a
silicon crystal, there is an extra electron not tied up in the valence bonding, which
therefore is a free carrier. This is known as n-type doping, since it provides excess
negative charge carriers. Boron has three valence electrons, so a boron impurity
leaves a hole as a free carrier. This is p-type doping since the hole carries positive
charge.

Figure 5.7 (Left) Intrinsic silicon with valence electrons (blue in electronic ver-
sion) and a thermally activated conduction band electron (red) and hole (green
circle). (Center) Extrinsic n-doped silicon with an arsenic atom donating a free
electron (red). (Right) Extrinsic p-doped silicon with a boron atom contributing a
hole (green circle).
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Figure 5.8 (Left) If p-type and n-type silicon are brought together, holes will dif-
fuse across the junction from the p-type material and electrons will diffuse from
the n-type material. An equilibrium will be reached in which holes are the major-
ity carrier on the p side and electrons the majority carrier on the n side. The region
around the junction will be relatively depleted of free carriers. A gradient in the
potential φ will be established due to the fixed lattice charges left behind. (Right)
The equivalent circuit of a pn junction contains a capacitance associated with the
depletion region. Reverse bias establishes a stored charge on the capacitance.

Silicon is an elemental semiconductor from group IV of the periodic table. It is
also possible to make compound semiconductors, for example, binary III-V com-
pounds such as GaAs and InSb. It is also possible to make II-VI semiconductors as
well as ternary and higher compounds (for example, HgCdTe).

Consider what would happen if a piece of p-type silicon and a piece of n-type
silicon were joined together, as in Figure 5.8. At the boundary initially there would
be a high concentration of free electrons on the n side but none on the p side.
So some of these electrons would diffuse across the boundary into the p side.
There would likewise be a high concentration of holes on the p side, and some
of these would diffuse across the boundary to the n side. The donor and accep-
tor atoms would be left behind with static positive and negative charges, which
would set up an electrostatic field. After enough carriers had diffused across, this
field would prevent further diffusion. The region around the boundary would be
depleted of the majority charge carriers (electrons on the n side and holes on the
p side) and is appropriately called the depletion region. By applying reverse bias
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(positive voltage to the n side and negative voltage to the p side) one can increase
the size of the depletion region.

Silicon diode detectors

By applying reverse bias to a pn junction, one is effectively storing charge on the
equivalent of a parallel plate capacitor (the depletion region is an insulator and
the p and n regions are conductors). There may also be stray capacitance present.
Imagine then disconnecting the bias. If photons are absorbed, let’s say, within the
depletion region, electron-hole pairs are produced. The electrostatic field within
the depletion region will sweep the electrons to the n side and the holes to the p
side, decreasing the amount of stored charge. After some time one could reapply
the bias, restoring the original charge, and the current flow would reveal how many
photons had been absorbed in the depletion region.

The sensitivity of this technique is limited by thermodynamic fluctuations.
In thermodynamic equilibrium at a temperature T, the uncertainty in the stored
charge (the charge fluctuations at fixed voltage) is given by

(	Q)2 = kT C. (5.11)

This is known as kTC noise. For a temperature of 150 K and a capacitance of 1 pF,

	Q ≈ 280 e−, (5.12)

which is relatively high if one wants to detect individual photons. In order to be
limited by photon statistics rather than kTC noise, one would need of order 105

photons (
√

105 ≈ 300). There is also dark noise from thermally activated leakage
currents (which depend exponentially on temperature).

Charge-coupled devices

Instead of a pn junction, consider starting with a substrate of p-type silicon, on the
surface of which an insulating oxide (SiO2) is grown, as in Figure 5.9. Then deposit
small, thin (semi-transparent) metallic electrodes on top of the oxide. Each elec-
trode defines an MOS (metal-oxide-semiconductor) capacitor. Positive bias applied
to the electrodes creates depletion regions (depleted of holes, the majority carriers
in p-type silicon) which serve as storage regions for electrons (the minority car-
riers). A charge-coupled device (CCD) consists of a 2-dimensional array of such
pixels.

The detection characteristics of CCD arrays depend on the method of illumina-
tion and certain physical characteristics of the manufacturing. In all cases photons
enter the semiconductor and are absorbed in or near the depletion region. If the
absorption occurs inside the depletion region, the electron is drawn towards the
positively charged electrode and trapped by the oxide. The hole is expelled from
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Figure 5.9 A metal-oxide-semiconductor (MOS) device. Positive voltage applied
to the metal creates a depletion region (dashed line) by repelling the holes in p-
type silicon. Electrons are drawn towards the metallization and trapped by the
oxide layer.

the depletion region. If the absorption occurs outside the depletion region, it is nec-
essary for the electron to diffuse to the boundary of the depletion region before the
electron recombines (which would reduce the detection efficiency). Some CCDs
are front illuminated: the radiation passes through the semi-transparent electrode.
These are typically thick CCDs which have enhanced response in the red portion
of the spectrum since the thick device is able to contain several optical absorption
lengths, even at long wavelengths where the absorption length is typically longest.
Quantum efficiencies are typically of order 70%. Thinned CCDs have been etched
away from the underside, the back, and are typically back illuminated. They have
poorer red response because the thickness of the remaining material is only of the
same order as the absorption length in the red. But they have better blue response
and higher peak quantum efficiencies, typically nearly 90%.

The method of signal readout gives CCDs their name. CCDs are essentially shift
registers, which preserve the integrity of the trapped charge bundles with charge-
transfer efficiencies of order ηCT ≈ 0.999 99 per shift as the packets are shifted
across the device in a “bucket brigade” technique to a readout amplifier. The read-
out generally takes place after the exposure and can be in the form of, for example,
sequential readout of the final column of the CCD followed by a single step of all
rows over by one column to repopulate the final column, as shown in Figure 5.10.
This is iterated until the entire device is read out. An alternative technique is used
in the Sloan Digital Sky Survey in which the telescope is stationary and the stars
drift across the focal plane and the CCD (drift scan) in synchronism with the rate
of charge packet shift across the CCD.

Advantages of CCD detectors for astronomy include high quantum efficiency,
good linearity, low readout noise (∼3 e− RMS), and large numbers of pixels
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Figure 5.10 Three methods of reading out CCD chips: (Left) Post-integration
readout beginning with rightmost column (blue in electronic version) followed by
column shifts (red), repeated until entire chip has been read out. (Center) Charge
packets are shifted along chip (red) at the same rate as the stellar field (green).
(Right) Entire field of view is shifted (red) into readout registers behind an opaque
screen. Field can be read out while another integration proceeds.

(the Sloan CCD camera has a total of 120 megapixels, enough to do simultaneous
multicolor photometry over wide fields). Electron storage capacity can be of order
105–106 electrons per pixel, which gives a large, but limited dynamic range. Image
defects can be caused by cosmic ray hits and by spillover from overfull packets
due to bright sources. One does not typically use CCDs for high speed photometry
since the readout takes time.

Careful data reduction techniques for CCDs include measurement of dark frames
(which need to be subtracted) and “flat fields” (images under uniform illumination)
by which the images are divided to obtain gain-corrected images.

The above discussion is somewhat oversimplified. There are varieties of semi-
conductor manufacturing processes and varieties of readout techniques for CCDs.
A user needs to have a detailed understanding of the characteristics of the actual
instrument being used. CCDs are discussed in greater detail by Rieke (2002),
Jansen (2006), and many others.

Many Hubble Space Telescope instruments have used CCDs. As mentioned
above, these include the STIS (Space Telescope Imaging Spectrograph), the ACS
(Advanced Camera for Surveys), and the ultraviolet–visible channel of WFC3
(Wide Field Camera 3). Both STIS and ACS were repaired during Servicing
Mission 4, and WFC3 was installed at that time (along with COS).

5.7 Infrared astronomy

Our view of the universe in the infrared is very different than that at visible wave-
lengths. Interplanetary and interstellar extinction drop very rapidly as one moves
from the visible to the infrared, meaning that the infrared is better suited for
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viewing along lines of sight in the galactic plane and for viewing deeply embedded
objects. One example of the latter is IRC +10216, an evolved star heavily obscured
by surrounding dust. It has a greater flux at 5 µm than any other source outside the
solar system, M(5.0 µm) ≈ −5m, yet it is difficult to observe at visible wavelengths
except with a large telescope and a sensitive detector (V (550 nm) ≈ +18m).
Another example is the ability to image stars in orbit around the galactic center
(Ghez et al., 1998; Genzel & Karas, 2007). Also important is the ability to use
the infrared to observe star forming regions such as those in Orion and Taurus.
There are also some unique atomic and molecular lines visible in the infrared,
such as those of shocked molecular hydrogen (H2). In the mid-infrared around
10 µm and beyond, an observer is faced with the problem of strong competing ther-
mal emission from everything ranging from the telescope to the zodaical dust and
warm interstellar dust. Ground-based infrared observers face atmospheric absorp-
tion bands of CO2, O3, and H2O, which make the atmosphere opaque through large
portions of the infrared.

Thermal emission from the telescope is an additional challenge. Each tele-
scope mirror may have an emissivity ε ≈ 1–2%, making it important to minimize
the number of telescope mirrors in order to minimize thermal background, as in
Figure 5.11. This usually means a Cassegrain telescope, with only two mirrors.
The secondary mirror should be small compared to the primary, since thermal
radiation will enter the beam in direct proportion to the ratio of areas of the pri-
mary and secondary mirrors. Effectively, only the annular portion of the beam
(as determined by the hole in the primary) will see the “cold” sky. The remain-
der of the beam will see some portion of the “warm” surrounding environment
unless that portion of the beam is blocked with a cold aperture stop at an exit
pupil within the cryogenic detector system. One also wants to have a slightly

Figure 5.11 Three possible sources of thermal background entering the beam of
an infrared Cassegrain telescope.
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undersized secondary mirror (or equivalently, an oversized primary) to minimize
emission entering the beam from supporting structure at the edges of the mir-
ror. However, doing so will limit the field of view of the telescope. Thermal
background is a particular problem since it will vary due to small temperature
changes, variations in atmospheric emissivity, etc. Such effects can be minimized
by use of a chopping secondary mirror and synchronous detection. These variations
tend to have 1/f spectral character (more slow variations than rapid variations),
implying that imposing as rapid a modulation as possible will be most effec-
tive. Most of these problems can be minimized by using cooled telescopes in
space. In the recent past there was the NICMOS (Near Infrared Camera and
Multi-Object Spectrometer) instrument on the Hubble Space Telescope. Current
dedicated infrared space telescopes include Spitzer (formerly known as SIRTF)
and Herschel.

5.7.1 Infrared photoconductors

In the infrared one often uses semiconductors as photoconductive devices. In an
intrinsic photoconductor, an absorbed photon can excite an electron into the con-
duction band and leave a hole in the valence band, as in Figure 5.12. For infrared
astronomy the most important intrinsic photoconductor is probably InSb, which
has a bandgap of ∼0.2 eV, well matched to the energies of infrared photons with
wavelengths of 6 µm or less. In contrast, extrinsic photoconductors have impurity
levels whose energies can be selected by appropriate choice of dopants. Photons of
rather smaller energies (longer wavelengths) are able to excite free carriers in such
systems. For infrared astronomy important examples of extrinsic photoconductors
include Si:As (silicon doped with arsenic) and, for long wavelength applications,
Ge:Ga. In some cases stress is applied to the semiconductor to extend the response
to longer wavelengths.

Figure 5.12 Energy level diagrams for intrinsic (left) and extrinsic (right)
photoconductors.
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Figure 5.13 Photoconductive gain G′ > 1 corresponds to carriers making more
than one trip through the circuit before recombining.

Assume that one has a photoconductor with quantum efficiency η ≈ 50%. If the
applied power is P, corresponding to a photon rate of P/hν photons per second, a
current will flow which is equal to

I = η
P e G′

hν
, (5.13)

as shown in Figure 5.13, where G′ is a quantity known as the photoconductive gain
(the number of trips the carriers make through the circuit before recombining). One
can speak of the responsivity, S, as the ratio of current to applied power,

S = η
e

hν
G′. (5.14)

If the average lifetime of a carrier is τ and carriers are accelerated to an average
velocity v,

G′ = v τ

L
(5.15)

= μE τ

L
(5.16)

= V0 μτ

L2
. (5.17)

The mobility μ, defined as the ratio of velocity to applied electric field E, is a
property of the semiconductor. The electric field is the applied voltage V0 divided
by the length L of the semiconductor. Such detectors are cooled to prevent thermal
generation of carriers, to reduce Johnson noise, and to optimize the mobility, μ.

The noise-equivalent-power (NEP) of a photoconductor is that signal power
which gives a signal to noise ratio S/N = 1 for a 1 Hz bandwidth (i.e. a 1 second
integration). In an ideal system this would be limited by the statistical fluctuations



82 Detection systems

in the background radiation (BLIP – background limited infrared photodetec-
tor). For a background power PB, the number of background photons detected in
time T is

N = PB
1

hν
ηT. (5.18)

Poisson statistics says the uncertainty in N is
√

N,

σN = √
N = (PBηT/hν)1/2 . (5.19)

But from the definition of NEP,

σN = NEP
1

hν
ηT. (5.20)

Equating these we get

NEP =
(

PB hν

η T

)1/2

(5.21)

=
(

2PB hν

η
fc

)1/2

, (5.22)

where the bandwidth is 2fc = 1/T. In practice, an ideal photoconductor will have√
2 more noise, since fluctuations of equal magnitude are produced by the statistics

of the generation and recombination of free carriers, known as G-R noise.

NEP = 2

(
PB hν

η
fc

)1/2

(watts). (5.23)

Although the above has dimensions of power, it is common to refer to the NEP as

NEP = 2

(
PB hν

η

)1/2

(W/
√

Hz). (5.24)

The philosophy of blocked impurity band (BIB) detectors is to physically sepa-
rate the functions of photon absorption and photoconduction and to optimize these
regions separately. There is a heavily doped infrared-absorbing layer (typically
Si:As), but this layer necessarily has high conductivity. The “blocking” layer is of
high purity and consequently low conductivity. This allows the device to operate
with high impedance, minimizing thermally generated current and Johnson noise.
These devices also exhibit charge multiplication through an electron cascade effect.

5.7.2 NICMOS

The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) was
installed on the HST during the 1997 service mission of the space shuttle Discov-
ery (STS 82). It contained three separate near-infrared (0.8–2.5 µm) cameras with
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256×256 HgCdTe detector arrays. The cameras had different magnification scales.
Each was able to operate in an imaging mode (with various filter bandwidths). Two
cameras were also capable of imaging polarimetry, and one was capable of low
resolution “slitless” grism spectroscopy (see Chapter 10). After installation, focus
problems were discovered, which were thought to be due to a physical distortion of
the cryostat. This distortion also created a reduced lifetime for the cryogen, which
was officially exhausted on January 3, 1999. Operation of NICMOS was restored
during servicing mission SM3B March 1–12, 2002, by the crew of the space shut-
tle Columbia (STS 109), who installed a closed-cycle cooling system. That was the
last successful mission of space shuttle Columbia. Beginning in September 2008
NICMOS experienced numerous “safing” anomalies which prevented cryogenic
operation. At the time this is written NICMOS is not available for use, and it is not
clear whether further attempts will be made to revive it. Some of its capabilities are
covered by the WFC3 Near-InfraRed (NIR) channel, which covers 0.85–1.7 µm
with a 1024 × 1024 HgCdTe array.

5.7.3 Bolometers

Bolometers are thermal detectors. They measure the physical temperature rise 	T
of an absorber subject to a radiation field of intensity Iν . Assume that the bolometer
surface is black, ε = 1, so that the incident power, P = Iν A � 	ν, is completely
absorbed. The bolometer, which has some heat capacity C, is connected to a heat
sink by some thermal conductance G, as shown in Figure 5.14. The heat flow from
the bolometer into the heat sink is described by the differential equation

C
d

dt
(	T) = Iν A�	ν − G	T. (5.25)

Figure 5.14 (Left) Thermal circuit for a bolometer receiving radiation through an
étendue of A�. The heat capacity of the bolometer is C. It is connected to a heat
bath at temperature T0 by a thermal conductance G. (Center) Circuit for biassing
the bolometer RB with a high impedance load resistor RL. (Right) A composite
bolometer with a substrate suspended by four wires, and attached to the bolometer
itself, which has two wires.
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For a radiation field applied at time t = 0, the solution of this equation is

	T = Iν A�	ν

G

(
1 − e−t/τ

)
, (5.26)

where the time constant τ = C/G. For high sensitivity one would like a small heat
conductance, G. However, this implies a long time constant. So one would also
like a small heat capacity to keep τ reasonable (∼10–100 ms). Note the conflicting
requirements of large area and small heat capacity.

The temperature rise is sensed by the change in resistance of a semiconductor:

	V ≈ V0RL	RB

(RB + RL)
2 ≈ V0

RBα	T

RL
, (5.27)

where α is the temperature coefficient of the bolometer response (	RB =
RB α	T) and the load resistance is much larger than the bolometer resistance
(RL � RB). Both RB and α are large for semiconductors. Noise analysis is given
in Rieke (2002).

A composite bolometer consists of a large area bismuth film on a crystalline
substrate. Bismuth films are very black, and a large area can be provided to absorb
radiation. But the film and substrate have a small heat capacity. A small germanium
bolometer is provided to record the temperature change while adding minimal heat
capacity. The thermal conductance is provided by wires used to suspend the device
in the vacuum dewar plus the electrical leads to the germanium bolometer.

5.7.4 Spitzer

The Spitzer Space Telescope (formerly known as the Space InfraRed Telescope
Facility, SIRTF) was launched in 2003 into a heliocentric, Earth-trailing orbit.
Its primary mission lifetime was determined by the cryogen supply, which was
exhausted in 2009. Some limited observing capability remains. The telescope is
a lightweight Ritchey–Chrétien design made of beryllium with a 0.85 m diameter
primary mirror. There were three instruments aboard.

The InfraRed Array Camera (IRAC) observes simultaneously at 3.6, 4.5, 5.8,
and 8.0 µm with 256 × 256 pixel arrays. The 3.6 µm channel is paired with the
5.8 µm channel and the 4.5 µm channel with the 8.0 µm channel. Each pair
observes a separate field of view and requires a single dichroic beamsplitter. The
short wavelength detectors are InSb, whereas the longer wavelength detectors are
Si:As. In both cases the detector chips are “bump-bonded” to a separate sili-
con readout layer. The Si:As detectors are the only parts of Spitzer that remain
operational after the exhaustion of the cryogen.
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The InfraRed Spectrograph (IRS) has capability for both low and high resolution
spectroscopy from less than 10 µm to about 40 µm using both Si:As and Si:Sb
detectors. The high resolution systems were echelle designs.

The Multiband Imaging Photometer (MIPS) contained a 128 × 128 pixel
Si:As BIB array for 24 µm, a 32 × 32 pixel Ge:Ga array for 70 µm, and a 2 × 20
pixel stressed Ge:Ga array for 160 µm. The 70 µm channel was also capable of
low resolution spectroscopy.

5.7.5 Herschel

The Herschel Space Observatory was launched in 2009 by the ESA along with
the Planck spacecraft. Both spacecraft went into orbit around the Earth–Sun L2

Lagrangian point. Herschel was originally named FIRST (Far Infrared and Sub-
millimetre Telescope). It contains a 3.5 meter diameter cooled telescope and three
scientific instruments.

The Heterodyne Instrument for the Far Infrared (HIFI) covers much of the
wavelength range between 157 µm and 625 µm in a total of seven bands, with
diffraction-limited angular resolution of 12′′ − 41′′. The nature of radio-frequency
technology, including heterodyne detection and acousto-optical and autocorrelator
backend spectrometers, is discussed in Chapter 12.

The Photodetector Array Camera and Spectrometer (PACS) contains two
bolometer arrays capable of simultaneous imaging of the same field in bands
longward and shortward of 130 µm with arrays of 32 × 16 pixels and 64 × 32
pixels, respectively. It also contains an imaging spectrometer which may be used
to observe a 5 × 5 pixel field with resolving power of order 1000–5000 covering
both the 55–105 µm and the 105–210 µm bands simultaneously. The spectrometer
employs both stressed and unstressed Ge:Ga photoconductors.

The Spectral and Photometric Imaging REceiver (SPIRE) contains both a three
band imaging photometer and an imaging Fourier transform spectrometer. The
basic nature of Fourier transform spectroscopy is discussed in Chapter 10. The
SPIRE photometer and spectrometer both make use of hexagonally packed spi-
derweb bolometer arrays. Spiderweb bolometers are also a feature of the Planck
HFI instrument, discussed below in Chapter 12. SPIRE’s wavelength coverage of
about 200–700 µm is at longer wavelengths than covered by PACS.

5.7.6 WFIRST

The WFIRST (Wide Field InfraRed Survey Telescope) was rated first among large
space projects by the 2010 US National Research Council decadal review of astron-
omy and astrophysics. Its main scientific goals are the search for exoplanets and
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dark energy. The telescope will be of modest aperture (about 1.5 meters), but it will
have a large field of view supporting multiple 2048 × 2048 HgCdTe arrays with a
total of more than 100 megapixels.

Exercises

5.1 Prove that the integrated Klein–Nishina formula reduces to the Thomson
cross section in the limit α → 0.

5.2 A photomultiplier is typically used in a pulse counting mode. Each anode
current pulse has a finite temporal width t0 (typically of order 10 ns). Assume
that when a photon is detected it renders the tube dead (insensitive to further
photon arrivals) for a time t0, after which the tube automatically turns back
on. Assume this is the only loss of efficiency and neglect noise.

a. Calculate an expression for the efficiency as a function of photon arrival
rate.

b. Verify your expression gives a reasonable result for small photon flux.
c. Verify your expression gives a reasonable result for large photon flux.
d. Some types of counting circuits will work somewhat differently. Assume

instead that there must be a gap of at least t0 between photon arrival times
in order for another photon to be counted. That is, assume that a rapid
series of photon arrivals is able to keep the tube dead. From your knowl-
edge of Poisson statistics, make an informed guess as to the efficiency as
a function of photon arrival rate under this scenario.

5.3 An infrared bolometer consists of a detector of heat capacity C connected to
a heat sink (thermal reservoir) at a temperature of 2.2 K. The thermal con-
ductance of the connection is G = 10−6 W K−1. Ignore any Joule heating
produced by electrical current flowing through the detector.

a. What must the heat capacity be in order for the device to have a reasonable
thermal time constant (τ = 0.01 s)?

b. The change in temperature produces a change in resistance of the sens-
ing element and ultimately a change in the output voltage of the device.
Let this rate of change be dV/dT = 0.25 V K−1. What is the overall
responsivity of the bolometer (how many volts per watt)?

c. The above is true for slowly varying signals. How will this change if the
infrared signal varies sinusoidally at a frequency of 10 Hz? (Hint: We dis-
cuss the effects of an electrical RC filter in Chapter 7. This is simply the
equivalent thermal circuit.)
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Orthodox statistics

In this chapter we focus on some aspects of orthodox (frequentist) statistics. Many
of these topics in statistics are well covered by Lyons (1991) and Bevington &
Robinson (2003) in greater detail than we do here. The chapter following this will
deal with the nature of noise processes. Other topics in statistics are deferred to
Chapter 13.

6.1 Probability distributions

Both discrete and continuous random variables may be described by probability
distributions. Consider, first, a random variable x with a discrete set of possible
values {xi}. Any possible outcome xi has an associated probability pi. The laws of
probability require that ∑

i

pi = 1. (6.1)

If the {xi} are real valued, one can define a cumulative or integral probability dis-
tribution, which we designate using P(x), as the sum of the probabilities of all
outcomes {xi} with xi < x,

P(x) =
xi<x∑

i

pi. (6.2)

The derivative of this function is the probability density, which we differentiate
from the cumulative probability by using lower case,

p(x) = dP(x)

dx
. (6.3)

When we discuss probabilities, we will mostly be using this probability density.
For a discrete random variable, p(x) consists of a set of delta functions,

87
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Figure 6.1 Probability density p(x) and cumulative probability P(x) for the
numbers of “heads” achieved after two flips of a coin.

p(x) =
∑

i

pi δ (x − xi) . (6.4)

For example, if we flip two coins and for each “heads” record a score of 1, the
possible total scores are 0, 1, and 2, with

p0 = 0.25, (6.5)

p1 = 0.50, (6.6)

p2 = 0.25, (6.7)

as shown in Figure 6.1. We can extend this concept to a continuous real variable
x by defining p(x) as the derivative of P(x), as above. The quantity p(x) dx cor-
responds to the probability of having an event within some interval dx around x,
hence the term “probability density.” There are three special probability distribu-
tions which will be important to us.

6.1.1 Binomial distribution

Consider a series of coin flips, as shown in Figure 6.2, where n is the number of flips
and k is the number of times the coin comes up heads. The binomial coefficient,
sometimes referred to as “the number of combinations of n things taken k at a
time,” gives the number of possible outcomes with k heads, and is written as(

n
k

)
= n!

k! (n − k)! . (6.8)

If the coin is fair (has a 50/50 chance of coming up heads), there is a total of 2n

possible outcomes which are equally likely. The probability of obtaining k heads
is then

pk =
(

n
k

)
1

2n
. (6.9)
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Figure 6.2 The binomial distribution, illustrated by three successive flips of a
coin.

More generally, one might encounter a coin which is not weighted 50/50. If f
is the probability of obtaining “heads” in each coin flip, then after n flips the
probability of k heads is

pk =
(

n
k

)
fk (1 − f)n−k. (6.10)

The term coin, of course, can mean any random event with only two possible
outcomes.

6.1.2 Poisson distribution

One may extend the concept of probability to multiple, discrete outcomes by taking
a limiting case of the binomial distribution. The Poisson distribution corresponds
to the binomial distribution in the limit n → ∞, while f → 0 in such a way that
their product is a constant, nf = a. First, calculate

lim
n→∞

(
n
k

)
= 1

k! lim
n→∞

n!
(n − k)! = 1

k! nk, (6.11)

where the last step is true since n � k. Similarly,

lim
n→∞ (1 − f)(n−k) = lim

n→∞ (1 − f)n = lim
f→0

(1 − f)a/f = e−a. (6.12)

To understand the last equality above, do a binomial series expansion of (1 − f)a/f

and compare it with the series expansion of e−a. Putting it all together, the
probability of obtaining a specific outcome k is
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Figure 6.3 The Poisson distributions for a = 1, 1.5, and 2.

Figure 6.4 Subdivide the time interval from 0 to t into narrow bins of width 	t
so that no two pulses occur in the same bin.

pk = lim
n→∞

(
n
k

)
fk (1 − f)n−k (6.13)

= 1

k! nk fk e−a (6.14)

= ak e−a

k! . (6.15)

Examples are shown in Figure 6.3. In terms of the probability density,

p(x) = e−a
∞∑

k=0

ak

k! δ(x − k). (6.16)

This situation is applicable to counting statistics. If radioactive decays occur at
an average rate r, then after a time t, on average one expects to see a = rt events.
But one may see more or fewer events. What is the probability of seeing exactly k
events? Subdivide the time interval t into n bins of width	t, as shown in Figure 6.4.
Take the limit n = t /	t → ∞ so that at most one event will occur in a time	t with
a probability f = 	t r as f → 0. The average number of events in the time interval
from 0 to t is a = nf = tr. The probability of k events is pk = ake−a/k!. The
cumulative probability distribution function for the Poisson case is related to the
incomplete gamma function (Press et al., 2007).
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6.1.3 Gaussian (normal) distribution

The normal or Gaussian distribution is another limiting case of the binomial dis-
tribution. Take the limit n → ∞ with f finite, so that nf → ∞. The probability
distribution will peak near k = nf, therefore also k → ∞. Expand n! using Stirling’s
formula

n! ≈ √
2πn
(n

e

)n
(

1 + 1

12n
+ 1

288n2
+ · · ·

)
. (6.17)

Expand k! and (n − k)! similarly. Then

pk =
(

n
k

)
fk (1 − f)n−k ≈ 1√

2πn

(
k

n

)−k− 1
2
(

n − k

n

)−n+k− 1
2

fk (1 − f)n−k

(6.18)

= 1√
2πn

exp

[
−(k+ 1

2)ln
k

n
− (n − k+ 1

2) ln
n − k

n
+ k ln f + (n − k) ln (1 − f)

]
.

(6.19)

Looking at small deviations ξ around nf, let k = nf + ξ where ξ 	 nf. Then

pk ≈ 1√
2πn

1√
f(1 − f)

exp

[
−1

2

ξ 2

nf(1 − f)

]
. (6.20)

If we make the notational substitution σ 2 = nf(1 − f) and pass from the discrete to
the continuous case, we get

p(ξ) = 1√
2π σ

e−ξ2/2σ 2
. (6.21)

Gaussians may have any mean value, so we shift the Gaussian to have a mean value
of μ and get the conventional form of the Gaussian distribution,

p(x) = 1√
2π σ

e−(x−μ)2/2σ 2
. (6.22)

Our notational choices were well made, since σ may be seen to be the standard
deviation of this distribution. The cumulative probability of the normal distribution
may be written in terms of the error function,

P(x) =
∫ x

−∞
p(k) dk (6.23)

= 1

2

[
1 + erf

(
x − μ√

2 σ

)]
, (6.24)

where we are using the convention that the error function is defined as

erf(x) = 2√
π

∫ x

0
e−t2dt. (6.25)
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Figure 6.5 The Gaussian (normal) distribution for x̄ = 3, σ = 1.

The Gaussian distribution, or something close to it, is often encountered in
experimental situations. An example is shown in Figure 6.5.

6.2 Moments of a probability distribution

Assume initially that we know the distribution p(x). Applying the method of
moments, the mean of the distribution is

μ = 〈x〉 =
∫ ∞

−∞
x p(x) dx. (6.26)

The variance is

σ 2 =
∫ ∞

−∞
(x − μ)2 p(x) dx = 〈x2〉 − 〈x〉2, (6.27)

where σ is the standard deviation. The next higher central moment (i.e. with the
mean subtracted) is related to the skew and the next is related to the kurtosis. Skew
and kurtosis are often not robust indicators. The subject of robust estimation is dis-
cussed below in Section 6.8. The normal distribution is a two parameter distribution
with a mean μ and a standard deviation σ , which are independent. The Poisson dis-
tribution is a one parameter distribution with a meanμ = a, and a standard deviation
σx =

√
a.

One can also apply the method of moments to a set of measurements. It is
important to distinguish between the moments of the distribution, if known, and
the moments of a data set.

6.3 Characteristic (moment-generating) function

In this section we will deviate from our conventions for the Fourier transform by
omitting the factor of 2π from the kernel and by using the +i transform as the
forward transform. Taking the Fourier transform of the probability density,
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φ(k) =
∫ ∞

−∞
p(x) eikx dx (6.28)

=
∫ ∞

−∞
p(x)

[
1 + ikx − 1

2!k
2x2 − i

3!k
3x3 + · · ·

]
dx (6.29)

= 1 + ik〈x〉 + (ik)2

2! 〈x2〉 + (ik)3

3! 〈x3〉 + · · ·. (6.30)

In other words, this characteristic function φ(k) generates the moments of the dis-
tribution, which is why it is also known as the moment-generating function. For a
normal distribution,

φ(k) =
∫ ∞

−∞
1√

2π σ
e−(x−μ)2/2σ 2

eikx dx (6.31)

= eikμ e−k2σ 2/2. (6.32)

Since the Fourier transform of a Gaussian is a Gaussian, the moment-generating
function for the normal distribution is a Gaussian, multiplied by a complex phase
factor due to the displacement of the mean from zero.

Let’s look at some of the properties of this characteristic function. Let x have
a probability density p(x), and let y have probability density q(y). Consider z =
f(x,y). The first two moments of z are

〈z〉 =
∫ ∫ ∞

−∞
f(x, y) p(x) dx q(y) dy, (6.33)

〈z2〉 =
∫ ∫ ∞

−∞
[f(x, y)]2 p(x) dx q(y) dy, (6.34)

and the characteristic function of z is

φz(k) =
∫ ∫ ∞

−∞
eik f(x,y) p(x) dx q(y) dy. (6.35)

Take as an example the function f(x, y) = x + y,

φz(k) =
∫ ∫ ∞

−∞
eik(x+y) p(x) dx q(y) dy (6.36)

=
∫ ∞

−∞
eikx p(x) dx

∫ ∞

−∞
eiky q(y) dy (6.37)

= φx(k) φy(k). (6.38)

The characteristic function of the sum of two independent random variables is the
product of their individual characteristic functions.
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6.4 Central limit theorem

The central limit theorem is largely attributable to Pierre-Simon Laplace. Con-
sider a random variable x with a probability density p(x), mean μx, variance σ 2

x ,
and unspecified higher moments. Subtracting the mean, we have the characteristic
function

φx−μx(k) =
∫

eik(x−μx) p(x) dx (6.39)

= 1 − 1

2
k2 σx

2 + O(k3). (6.40)

By considering φx−μx we now have a function with zero mean (a power series
expansion with no term proportional to k), a known second moment, and arbitrary
higher moments. Now take n measurements of x and form the average,

a = 1

n
(x1 + x2 + · · · + xn) . (6.41)

What is the probability distribution of this average a, or of a − μx? From the
previous result for f(x, y) = x + y, generalize to

�a−μx(k) =
[
φx−μx

(
k

n

)]n

(6.42)

=
[

1 − 1

2

k2σ 2
x

n2
+ O

(
k3

n3

)]n

, (6.43)

and in the limit n → ∞,

�a−μx(k) = e−k2σ 2
x /2n, (6.44)

p(a) =
√

n√
2πσx

e−n(a−μx)
2/2σ 2

x . (6.45)

This is a normal distribution with mean μa = μx and a standard deviation σa =
σx/

√
n, no matter what the shape of the initial distribution p(x). An example of a

difficult initial distribution is shown in Figure 6.6. In other words, whenever you
add or average a large number of measurements, the sum or average of the measure-
ments approaches a normal (Gaussian) distribution. The width of the distribution
narrows: the variance is reduced by a factor of n and the standard deviation is
reduced by

√
n. This result, known as the central limit theorem, is valuable because

we often choose to average or add results. And it explains why averaging is good;
it gives a better estimate of the quantity we are trying to measure.

It is interesting to note that a Gaussian distribution is least informative in the
information theoretic sense. Lacking additional information about the noise, a
Gaussian is the best (least prejudiced) thing to assume.
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Figure 6.6 Qualitative convergence of a two-peaked distribution (thick black)
towards a Gaussian after averaging two (dashed), three (dotted), and four (thin
solid line; red in electronic version) draws.

But there are many situations in which the central limit theorem does not apply.
For one thing, it works for random errors but not systematic errors. Systematic
errors in general will not be representable by simple probability distributions.
Consider, for example, the case of an incorrect scale factor, which no amount of
averaging will correct. Even for random errors we need to be careful. Sometimes
people misunderstand the central limit theorem and think that that it says something
like “all random errors have Gaussian distributions.” This is false. For one thing,
the physical process producing the distribution may not be Gaussian. And mathe-
matical operations other than addition do not make a distribution more Gaussian.
The theorem does not apply to taking powers (xn), multiplication of random vari-
ables (x times y), exponentiation (ex), or any of a multitude of other operations.
In fact, squaring takes Gaussian distributions and makes them non-Gaussian, as we
will see in the next chapter. So understand carefully what the central limit theorem
says. It has great value, but is not all encompassing.

6.5 Experimental data

An example of the central limit theorem as it applies to an actual data set is shown
in Figure 6.7. Rainfall is the result of a complex set of physical phenomena involv-
ing, among other things, solar heating, cooling, humidity, wind, air turbulence, and
the presence or absence of nucleation centers. No one can predict from first prin-
ciples the probability distribution of whether or not it will rain, and if so, how
much rain there will be. But let us assume that, on any given day, rainfall is gov-
erned by some underlying probability distribution. The observed statistics of daily
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Figure 6.7 Rainfall statistics for Urbana, Illinois. (Left) For the year 1993, 74%
of the days had less than 0.1 inches of rain. Six days had 1.5 inches or more of
rain, which together added up to 15.32 inches of rain, 26% of the yearly rainfall.
An outlier, a single day with 5.32 inches of rain, accounted for 10% of the yearly
rainfall. (Right) Monthly rainfall statistics for 25 years (1984–2008). A qualitative
fit using a truncated Gaussian is shown with a dashed line.

rainfall, in this example, follow a very lopsided distribution. But when averaged
down to monthly rainfall statistics, the distribution is much smoother and more
compact.

More generally, consider a random variable x described by some probability
density p(x) with unknown moments μ and σ . Unlike our earlier discussion, this is
the more common case. If you knew the answer, why would you need to measure it?
Measure n samples x1, x2, . . . , xn. We will explain later what maximum likelihood
means. But for now, we state that the best (maximum likelihood) estimate of μ is

x̄ = 1

n

∑
n

xi, (6.46)

which we call the sample mean. The best unbiassed estimate (which we will also
define later) of the variance σ 2 is

s2 = 1

n − 1

∑
n

(xi − x̄)2 , (6.47)

known as the sample variance. Although unbiassed, this is in fact not a maximum
likelihood estimate. A maximum likelihood estimate would have a factor of 1/n
in front. Although unbiassed and maximum likelihood both sound like desirable
properties, one often cannot have both at the same time. Finally, note that if p(x) is
normal, then as we have just seen, p(x̄) is also normal.



6.6 Chi-squared (χ2) distribution 97

6.6 Chi-squared (χ2) distribution

Assume a variable x is described by a probability distribution p(x) with known
moments μ and σ . We make n measurements of x. Define a quantity known as
chi-squared,

χ2 =
n∑

i=1

(
xi − μ

σ

)2

, (6.48)

which is useful, among other things, for seeing how well a data set is described by
a normal distribution. If we assume p(x) is a normal distribution, we can calculate
the probability density of various values of χ2 (χ2 > 0),

pn
(
χ2
) = 1

2n/2�(n/2)

(
χ2
) n

2 −1
e−χ2/2. (6.49)

The expectation value of χ2 is the mean of the χ2 distribution,〈
χ2
〉 = n, (6.50)

which makes sense since each deviation from μ should be of order σ . Note that this
is the mean, which is not equal to either the mode or the median of the distribution.
One can define the reduced χ2,

χ2
ν = χ2

ν
, (6.51)

where if m parameters are determined from the data, then we refer to ν = n − m as
the number of degrees of freedom. For example, m = 2 if the mean and the standard
deviation are derived from the data instead of being assumed a priori. Then〈

χ2
〉 = ν, (6.52)〈

χ2
ν

〉 = 1. (6.53)

The chi-squared distribution is broad, with a variance

σ 2(χ2) = 2ν. (6.54)

The tail of the cumulative probability distribution of χ2 is given by

P
(
χ2
ν > χ2

0

) =
∫ ∞

χ2
0

pν
(
χ2
)

dχ2. (6.55)

A brief tabulation of this function is given in Table 6.1, with more extensive
tabulations given in standard texts such as Bevington & Robinson (2003). As can be
seen, the range of likely values of χ2

ν decreases with increasing ν. The cumulative
probability P

(
χ2
ν > 1

)
depends on ν but is in the range 30–50%. The cumulative
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Table 6.1. Values of χ2
ν for which the probability of χ2

ν exceeding that value is
equal to the probability at the top of each column. These values depend on ν, the
number of degrees of freedom.

ν P = 0.99 0.95 0.90 0.50 0.10 0.05 0.01 0.001

1 0.0002 0.004 0.016 0.455 2.706 3.841 6.635 10.827
2 0.010 0.052 0.105 0.693 2.303 2.996 4.605 6.908
3 0.038 0.117 0.195 0.789 2.084 2.605 3.780 5.423
4 0.074 0.178 0.266 0.839 1.945 2.372 3.319 4.617
5 0.111 0.229 0.322 0.870 1.847 2.214 3.017 4.102
6 0.145 0.273 0.367 0.891 1.774 2.099 2.802 3.743
7 0.177 0.310 0.405 0.907 1.717 2.010 2.639 3.475
8 0.206 0.342 0.436 0.918 1.670 1.938 2.511 3.266
9 0.232 0.369 0.463 0.927 1.632 1.880 2.407 3.097

10 0.256 0.394 0.487 0.934 1.599 1.831 2.321 2.959
20 0.413 0.543 0.622 0.967 1.421 1.571 1.878 2.266
30 0.498 0.616 0.687 0.978 1.342 1.459 1.696 1.990
40 0.554 0.663 0.726 0.983 1.295 1.394 1.592 1.835
50 0.594 0.695 0.754 0.987 1.263 1.350 1.523 1.733

100 0.701 0.779 0.824 0.993 1.185 1.243 1.358 1.494

probability P
(
χ2
ν > 2

)
� 1% for ν > 15. If the value of χ2 is too improbable

then something is wrong, either with our data, our estimates of the errors, or the
assumption that the error distribution is normal.

The adoption of the reduced chi-squared does not remove all dependence on
the number of degrees of freedom ν. So other texts such as Lyons (1991) and
Abramowitz & Stegun (1970) avoid the use of χ2

ν entirely and leave everything in
terms of χ2. Although this has some cost in terms of the required dynamic range
of the table, it is appealing for its simplicity and is the form we prefer. This version
of the cumulative probability distribution of chi-squared is given in Table 6.2.

Chi-squared is often used not just for determining the mean and standard devi-
ation of a set of numbers, but for fitting a function to a set of data. Consider the
independent variable {xi} to be error free and the dependent variable {yi} to have
uncertainties {σi}. In this case f(x) is a parameterized functional fit to the data, and
the definition of chi-squared is

χ2 =
n∑

i=1

(
f(xi)− yi

σi

)2

. (6.56)

The functional parameters are calculated by minimizing χ2 (Lyons, 1991). Unrea-
sonable values of χ2 may indicate an inappropriate choice of fitting function.
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Table 6.2. Values of χ2 for which the probability of χ2 exceeding that value is
equal to the probability at the top of each column. These values depend on ν, the
number of degrees of freedom.

ν P = 0.99 0.95 0.90 0.50 0.10 0.05 0.01 0.001

1 0.0002 0.004 0.016 0.455 2.706 3.841 6.635 10.828
2 0.020 0.103 0.211 1.386 4.605 5.991 9.210 13.816
3 0.115 0.352 0.584 2.366 6.251 7.815 11.345 16.266
4 0.297 0.711 1.064 3.357 7.779 9.488 13.277 18.467
5 0.554 1.145 1.610 4.351 9.236 11.071 15.086 20.515
6 0.872 1.635 2.204 5.348 10.645 12.592 16.812 22.458
7 1.239 2.167 2.833 6.346 12.017 14.067 18.475 24.322
8 1.646 2.733 3.490 7.344 13.362 15.507 20.090 26.125
9 2.088 3.325 4.168 8.343 14.684 16.919 21.666 27.877

10 2.558 3.940 4.865 9.342 15.987 18.307 23.209 29.588
20 8.260 10.851 12.443 19.337 28.412 31.410 37.566 45.315
30 14.954 18.493 20.599 29.336 40.256 43.773 50.892 59.703
40 22.164 26.509 29.051 39.336 51.805 55.759 63.691 73.402
50 29.707 34.764 37.689 49.335 63.167 67.505 76.154 86.661

100 70.065 77.930 82.358 99.334 118.498 124.342 135.807 149.449

6.7 Student’s t-distribution

Suppose that we were told that {xi} were drawn from a Gaussian distribution and
we were presented with the data set {2, 3, 4}. Using formulae from Section 6.5 we
would estimate the mean of the distribution by the sample mean, x̄ = 3, and esti-
mate the variance σ 2 by the sample variance, s2 = 1. Suppose we were now asked
“What is the probability that the underlying mean of the distribution μ > 4 ?”
It would be tempting to evaluate the tail of a Gaussian distribution such as

∫ ∞

4

1√
2π s

e−(x−3)2/2s2
dx = 1

2

[
1 − erf

(
x − 3√

2 s

)]
= 0.159. (6.57)

Being told that this was incorrect, it might then occur to us that we should use a
narrower Gaussian since the uncertainty in the mean is less than s by

√
n. We would

get a probability of 0.042, which would still be incorrect. The basic problem is that
s is only an estimate of σ . This situation calls for the use of Student’s t-distribution
rather than the Gaussian distribution. Define

t = x̄ − μ

s/
√

n
. (6.58)
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Table 6.3. Fractional value in a one-sided tail of Student’s
t-distribution

ν t = 0.5 1.0 1.5 2.0 2.5 3.0

1 0.352 0.250 0.187 0.148 0.121 0.102
2 0.333 0.211 0.136 0.092 0.065 0.048
3 0.326 0.196 0.115 0.070 0.044 0.029
4 0.322 0.187 0.104 0.058 0.033 0.020
5 0.319 0.182 0.097 0.051 0.027 0.015
10 0.314 0.170 0.082 0.037 0.016 0.007
20 0.311 0.165 0.075 0.030 0.011 0.004
Gaussian 0.309 0.159 0.067 0.023 0.006 0.001

This quantity t is distributed according to Student’s t-distribution

p(t,ν) = �
(
ν+1

2

)
√
νπ �

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

, (6.59)

where ν = n−1 is the number of degrees of freedom. A coarse tabulation of Stu-
dent’s t is given in Table 6.3. So to answer the sample question posed above, the
probability is 0.113. Student’s t-distribution approaches a Gaussian distribution as
ν → ∞. One important feature of the t-distribution is that for small numbers of
degrees of freedom it falls off much less rapidly than a Gaussian, as illustrated in
Figure 6.8. There are additional uses of the t-distribution, discussed in standard
statistics textbooks.

6.8 Robust estimation

We mentioned that the sample mean x̄ was the best estimator of the central moment
μ of a distribution. It is best in a maximum likelihood sense (see Chapter 13) if one
assumes that the probability distribution is Gaussian. This can be derived by finding
the value of x̄ for which χ2 is minimized. However, x̄ is clearly not best if one
requires immunity to the effects of large fluctuations, such as shown in Figure 6.9.
For example, the median of a data set is more robust than the mean. It is less subject
to change when a large fluctuation occurs.

The field of robust statistics deals with estimators that are more immune to fluc-
tuations. It is particularly useful when there are errors which are not Gaussian
distributed, often known as outliers. What is desired is a penalty function which
realistically reflects the probability of outlying events. In the least-squares case the
penalty function was quadratic. Each data point contributed a penalty in χ2 pro-
portional to the square of the deviation of that point from the mean. We would



6.8 Robust estimation 101

Figure 6.8 Probability density function for Student’s t-distribution with ν = 1
(red in electronic version), 2 (blue), and for the Gaussian distribution (black). Also
illustrated by the shaded area is the meaning of a one-sided tail to a distribution.

Figure 6.9 An outlier can greatly affect the average of a data set. The median is a
more robust estimator than the mean.

like a penalty function which grows more gradually, if at all, beyond a certain
point. Ideally the penalty function should be −log(ρ(x)), where ρ(x) is the true
probability density. Possible empirical choices include

∑
i

∣∣∣∣xi − x̄

σi

∣∣∣∣ , (6.60)

∑
i

log

(
1 + 1

2

(
xi − x̄

σi

)2
)
, (6.61)

or almost any convex function. However, the minimization problem is consider-
ably more complex in these cases and must be handled numerically. An example
reflecting a typical astronomical situation is shown in Figure 6.10. The “outlying”
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Figure 6.10 An outlier can greatly affect a least-squares fit, such as the straight
line fit shown here with and without the outlier.

point strongly constrains the least-squares fit, and that fit is clearly wrong. Robust
estimation gives a more reasonable result.

6.9 Propagation of errors

Let us consider how errors propagate when we apply mathematical operations.
We will not consider the detailed shapes of the distributions, but only their
moments: their means and especially their variances. Consider random variables u,
v, . . ., which have some probability distributions with means ū, v̄, . . . and variances
σ 2

u , σ 2
v , . . . Now consider a quantity x which is a function of these variables,

x = f(u, v, . . .). (6.62)

Roughly speaking, for small errors,

x̄ = f(ū, v̄, . . . ). (6.63)

Variations in the individual values ui, vi, . . . give rise to deviations of xi from its
mean value by

xi − x̄ ≈ (ui − ū)
∂x

∂u
+ (vi − v̄)

∂x

∂v
+ · · ·. (6.64)
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The variance in x is given by

σ 2
x = lim

n→∞
1

n

n∑
i=1

(xi − x̄)2 (6.65)

= lim
n→∞

1

n

n∑
i=1

(ui − ū)2
(
∂x

∂u

)2

+(vi − v̄)2
(
∂x

∂v

)2

+2(ui − ū)(vi − v̄)
∂x

∂u

∂x

∂v
+···.
(6.66)

Defining the variances σ 2
u and σ 2

v in the usual way,

σ 2
u = lim

n→∞
1

n

n∑
i=1

(ui − ū)2 , (6.67)

σ 2
v = lim

n→∞
1

n

n∑
i=1

(vi − v̄)2 . (6.68)

We also define a quantity known as the covariance σ 2
uv,

σ 2
uv = lim

n→∞
1

n

n∑
i=1

[(ui − ū) (vi − v̄)] . (6.69)

Putting these together we get

σ 2
x ≈ σ 2

u

(
∂x

∂u

)2

+ σ 2
v

(
∂x

∂v

)2

+ 2σ 2
uv

(
∂x

∂u

)(
∂x

∂v

)
. (6.70)

If, in addition, u and v are uncorrelated, which means that σ 2
uv = 0, then

σ 2
x = σ 2

u

(
∂x

∂u

)2

+ σ 2
v

(
∂x

∂v

)2

. (6.71)

If u and v are inherently correlated, or are calculated from other variables in a
way which makes them correlated, then one must either measure or calculate the
covariance and use the full formula for σ 2

x .
Here are a few specific examples. If we form a linear combination of the vari-

ables u and v, then we need to sum the variances, appropriately weighted by the
constants a and b,

x = au + bv, σ 2
x = a2σ 2

u + b2σ 2
v . (6.72)

If we multiply or divide random variables, then we sum the fractional variances,

x = auv,
σ 2

x

x2
= σ 2

u

u2
+ σ 2

v

v2
, (6.73)

x = a
u

v
,

σ 2
x

x2
= σ 2

u

u2
+ σ 2

v

v2
. (6.74)
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If we take a random variable and raise it to some power, then the fractional error is
increased by that power,

x = aub,
σx

x
= b

σu

u
. (6.75)

And if we exponentiate,

x = aebu,
σx

x
= bσu. (6.76)

Exercises

6.1 Derive Equation 6.20 from Equation 6.19. Be careful to keep all terms of
order ξ 2.

6.2 Assume uncertainties in measured parallax follow a Gaussian distribution.
Use the small angle approximation for parallax, �(arcsec) = 1/D(pc).

a. Star A has a measured parallax of 10 ± 1 mas (milliarcsecond). What is
its distance and the uncertainties in the distance?

b. Star B has a measured parallax of 1 ± 1 mas. What is its distance and the
uncertainties in the distance?

c. Star C has a measured parallax of −1 ± 1 mas. What is its distance
and the uncertainty in the distance? Note that while a negative parallax
is unphysical, a measured parallax (including errors) may be negative.

6.3 Calculate the expectation value of χ2 by integrating Equation 6.49.
6.4 You are suspicious that the errors in your data are not Gaussian. A Gaussian

probability distribution is defined by

p(x) = 1√
2πσ

e−(x−μ)2/2σ 2
. (6.77)

a. From the characteristic function φ(k), show that when μ = 0 there are
only even moments to the distribution.

b. Still for the case μ = 0, show how the fourth moment 〈x4〉 is related to
the second moment 〈x2〉.

This is one test you might apply to check for Gaussianity.
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Stochastic processes and noise

7.1 Stochastic process

Consider a real variable x whose value is time dependent and also random, x(ξ ,t),
where ξ is some particular realization of x(t). A stochastic process refers to the
set of possible outcomes x(ξ ,t). Do not assume that for any particular value of ξ
the process necessarily looks “random” or “noise like.” It is possible that ξ = 1
corresponds to a sine wave, ξ = 2 corresponds to a square wave, etc. The random-
ness corresponds to the selection of a particular outcome, not to its time evolution.
We cannot in general assign probabilities pξ to each particular outcome because
there may be an infinite number of such outcomes, each with infinitesimal proba-
bility. We also cannot assign a probability density in the sense p(ξ) dξ because in
general the ξ are not ordered, or even orderable.

Instead, for a fixed moment in time t, we can define the statistical properties of
x by the usual probability density, p(x, t). This enables us to speak of expectation
values of x, such as the ensemble mean (the mean over the ensemble {ξ}),

η(t) = E {x(t)} =
∫ ∞

−∞
x(ξ , t) p(x, t) dx, (7.1)

and the ensemble variance,

σ 2(t) = E
{
[x(t)]2}− {E[x(t)]}2 (7.2)

=
∫ ∞

−∞
[x(ξ, t)]2 p(x, t) dx − [η(t)]2 . (7.3)

In addition, the fact that x is time dependent makes it useful to consider how its
values at two different times are related. We define the autocorrelation of x as the
expectation value

105
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R(t1, t2) = E {x(t1)x(t2)} (7.4)

=
∫ ∫ ∞

−∞
x1 x2 p(x1, x2, t1, t2) dx1 dx2, (7.5)

and the autocovariance

C(t1, t2) = E {[x(t1)− η(t1)] [x(t2)− η(t2)]} (7.6)

=
∫ ∫ ∞

−∞
(x1 − η1)(x2 − η2) p(x1, x2, t1, t2) dx1 dx2 (7.7)

= R(t1, t2)− η(t1)η(t2). (7.8)

Note that

σ 2(t) = C(t, t) = R(t, t)− η(t)2. (7.9)

7.1.1 Stationary process

A stationary process is one in which p(x, t) is independent of time, in which case
its moments, such as η(t), are also independent of time. This is roughly equivalent
to saying that the autocorrelation R(t1, t2) depends only on the time difference τ =
t2 − t1,

R(t1, t2) = R(τ ). (7.10)

The autocorrelation of a real stationary process is an even function, R(−τ ) = R(τ ),
and R(0) corresponds to the average power of the process. If a process is stationary,
one can speak of its time average

〈x〉 = lim
T→∞

1

T

∫ T/2

−T/2
x(t) dt. (7.11)

We will limit ourselves to considering only stationary processes.1 Under some
conditions the ergodic hypothesis applies, that is, time and ensemble averages are
equivalent, 〈x〉 = η.

7.2 Spectral density of a Poisson random process

In a Poisson random process, such as shot noise, one has discrete events occur-
ring at random times. Assume that we have a stationary Poisson process. The
autocorrelation function depends only on the time difference,

R(t1, t2) = R(τ ). (7.12)

1 Except for the brief description already given in Chapter 1.
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For τ > 0, events separated by τ are statistically independent, and therefore their
autocorrelation cannot depend on τ and must equal some constant c1:

R(τ ) = c1. (7.13)

For τ = 0, each event correlates perfectly with itself, which can be described by a
delta function times some constant c2, so that

R(τ ) = c1 + c2 δ(τ ). (7.14)

Both c1 and c2 depend only on the average counting rate r, in much the same way as
x̄ and σx (the mean number of counts seen after a time T and the standard deviation
in that number) depended only on r. The only question is how c1 and c2 depend
on r. Visualize this by considering time bins of width 	t where an event produces
a signal of height 1/	t (a rectangular pulse of unit area), as in Figure 7.1. The
autocorrelation function can then be reduced to a summation. For an event rate r,

R =
∫ ∫

x1 x2 p(x1, x2, t1, t2) dx1dx2. (7.15)

For τ > 0,

R =
∑∑

(	t)−1(	t)−1(r	t)2 = r2. (7.16)

And for τ = 0,

R =
∑∑

(	t)−1(	t)−1(r	t) = r(	t)−1. (7.17)

In the limit 	t → 0, this reduces to

R(τ ) = r2 + r δ(τ ). (7.18)

For additional detail see Helstrom (1991) and Papoulis (1991).
By the Wiener–Khinchin theorem, the power spectral density is the Fourier

transform of R(τ ). Since the Fourier transform of a constant is a delta function
and vice versa,

S(ν) = r2 δ(ν)+ r. (7.19)

Figure 7.1 Autocorrelation of a Poisson random process, to be taken in the limit
	t → 0.
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The spectrum of a Poisson random process (shot noise) is white (flat) except at ν =
0. The result is more complex if the events are not instantaneous but spread out in
time (such as current pulses from a photomultiplier tube).

7.3 Spectral density of a Gaussian random process

A noise process x(t) is called a Gaussian random process (GRP) if the probability
density p(x(t)) and all joint (multivariate) distributions p(x1(t1), x2(t2)), p(x1(t1),
x2(t2), x3(t3)), . . . are Gaussian. A physical realization of such a process may be a
very rapid succession of overlapping Poisson impulses, each of very small ampli-
tude (Helstrom, 1991; Papoulis, 1991). By the central limit theorem, the sum of
these impulses will follow a Gaussian distribution. Assume such a process is sta-
tionary and that η(t) = 0. It turns out that the entire process is then specified by the
autocorrelation function (Mathews & Walker, 1970),

R(t1, t2) = E {x(t1) x(t2)} , (7.20)

and for a stationary process,

R(τ ) = E {x(t) x(t + τ)} . (7.21)

The power spectral density (PSD) is the Fourier transform of this autocorrelation
function (ACF),

S(ν) = F R(τ ). (7.22)

Since Gaussian random processes can have a variety of ACFs, they can also have a
variety of PSDs. Based on the model above, in which a Gaussian process is formed
from rapid Poisson impulses, one might expect a white PSD. However, we can filter
a Gaussian process so as to change its PSD while retaining its Gaussian statistics.
In summary, a Gaussian distribution is specified by its mean and its variance. A
Gaussian random process is specified by its mean and its autocorrelation function,
R. If η = 0,

σ 2
x = R(0). (7.23)

If η �= 0,

σ 2
x = C(0) = R(0)− η2. (7.24)

A Gaussian random process may have any PSD. In contrast, remember that a
Poisson random process has a white PSD and is specified by its counting rate r.



7.4 The transformation y = x2 109

7.4 The transformation y = x2

Assume the random variable x is real valued and normally distributed with zero
mean and variance σ 2

x ,

px(x) = 1

σx

√
2π

e−x2/2σ 2
x . (7.25)

Now take the function y = x2. There obviously is zero probability of observing
y < 0. For y > 0, consider Figure 7.2, indicating the relationship between the
width of an interval dx and the width of the corresponding interval dy,

dy

dx
= 2 x = 2

√
y. (7.26)

Allowing for positive and negative values of x,

py(y) dy = 2 px(x) dx. (7.27)

The probability density for y (y > 0) is then given by

py(y) = 1√
y

px(x) = 1

σx
√

2πy
e−y/2σ 2

x , (7.28)

which is distinctly non-Gaussian, with moments

〈y〉 = σ 2
x , (7.29)

σ 2
y = 2 σ 4

x . (7.30)

Figure 7.2 (Left) For the function y = x2, intervals x ± dx (red in electronic
version) are mapped into an interval y ± dy (blue). (Right) A Gaussian probability
distribution px(x) with σx = 1 (red) and the corresponding probability distribution
py(y) (blue).
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If we are dealing with a Gaussian process, these results can be combined with
results from earlier in this chapter to give

Ry(0) = 3 R2
x(0). (7.31)

With a little more work it can be shown that

Ry(τ ) = R2
x(0)+ 2 R2

x(τ ). (7.32)

7.5 Filtering

A filtering of some process x(t) is defined by its convolution with some filter
function h(t), where to insure causality, h(t) = 0 for t < 0.

y(t) = x(t) ∗ h(t) (7.33)

=
∫ ∞

−∞
x(t − θ) h(θ) dθ. (7.34)

By the convolution theorem,

ỹ(s) = x̃(s) h̃(s). (7.35)

In terms of power, H(s) = |h̃(s)|2, the absolute square of the transfer function h̃(s),
describes how the power spectrum of the signal is modified, as shown in Figure 7.3.
But the power transfer function H(s) is not a complete description since it does not
include any phase information. For a complete description of the filtering process
we require h̃(s) or h(t).

7.5.1 Low pass filtering

Consider a process x(t) which has a mean η and an autocorrelation function Rx(t).
After observing for a time T, estimate the mean by

xT = 1

T

∫ T

0
x(t) dt = 1

T

∫ ∞

−∞
x(t) �

(
1

2
− t

T

)
dt (7.36)

Figure 7.3 (a) Unfiltered power spectrum |x̃(s)|2. (b) Filter passband |h̃(s)|2.
(c) Filtered power spectrum |ỹ(s)|2.
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= 1

T
x(t) ∗�

(
t

T

)∣∣∣∣
t=T/2

. (7.37)

The displacement of the boxcar by T/2 is trivial and we will ignore it. The
uncertainty (variance) in xT is given by

σ 2
xT

= 1

T

∫ ∞

−∞

[
Rx(τ )− η2

]
�
( τ

T

)
dτ. (7.38)

The derivation of this result will be left for the exercises at the end of this chapter.
It is clear that the variance drops as 1/T, as expected, but to evaluate the integral
further we would need more information about the nature of the process.

So now let x have η = 0 and a white spectrum (Sx(f) = constant), and let x be
filtered by an ideal low pass filter, as in Figure 7.4,

ỹ(f) = x̃(f) h̃(f), (7.39)

h̃(f) = �

(
f

2fc

)
. (7.40)

If we estimate the mean, as before,

yT = 1

T

∫ T

0
y(t) dt. (7.41)

The variance in yT is given by

σ 2
yT

= 1

T

∫ ∞

−∞
Sy(f) |sinc(Tf)|2 T df. (7.42)

The proof of this will also be left for the exercises at the end of the chapter. So for
T � 1/fc,

σ 2
yT

≈ 1

T
Sy(0) = 1

T
Sx(0). (7.43)

And because σ 2
y = Ry(0) = ∫ Sy(f) df = 2fcSx(0),

σ 2
yT

= σ 2
y

2fcT
. (7.44)

Figure 7.4 Ideal low pass filter.
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7.6 Estimation in the presence of Gaussian noise

Consider a fixed signal xS and random noise xN(t),

x(t) = xS + xN(t). (7.45)

Assume that xN(t) has zero mean and an autocorrelation function R(τ ). If R(τ ) is
strongly peaked at τ = 0, then S(ν) can be approximately constant out to some
frequency fc. After some time T,

x̄ = 1

T

∫ T

0
x(t) dt → xS, (7.46)

and it will have a variance

σ 2
x̄ = R(0)

2 fc T
. (7.47)

Note that the noise decreases as 1/
√

T. Since the noise is assumed to be Gaussian
and we know x̄ and σ 2

x , we know the entire distribution (all the moments).

7.7 Photon noise

We have seen that blackbody radiation can be described by an energy density

uν = 8π

c3

hν3

ehν/kT − 1
(7.48)

and a specific intensity

Iν = 2hν3

c2

1

ehν/kT − 1
. (7.49)

If we restrict ourselves to an étendue of A� = λ2 and a single polarization,
equivalent to considering a single mode, we get a mean power of

P̄(ν) = hν
1

ehν/kT − 1
, (7.50)

which is just the energy per photon times the photon occupation number.
From thermodynamic considerations it can be shown that the fluctuations in the
power are

〈 [P(ν)− P̄(ν)
]2 〉 = kT2 dP̄(ν)

dT
(7.51)

= kT2 P̄(ν) ehν/kT hν

kT2

1

ehν/kT − 1
(7.52)

= P̄(ν) hν

[
1 + 1

ehν/kT − 1

]
. (7.53)
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In the field of engineering one would usually write this as

〈 [P(ν)− P̄(ν)
]2 〉 = P̄(ν) hν

[
1

2
+ 1

2
coth

hν

2kT

]
. (7.54)

In the limit hν � kT we have photon noise. The photons are independent and obey
Poisson statistics, with fluctuations proportional to the square root of the number
of photons,

〈	P2〉 = P̄hν (7.55)

〈	n2〉 = 〈n〉. (7.56)

In the limit hν 	 kT we have thermal noise. There are many photons per mode,
their arrival times are correlated (they are bosons,2 so they are bunched), and the
fluctuations are larger:

〈	P2〉 = P̄kT = P̄2 (7.57)

〈	n2〉 = 〈n〉2. (7.58)

An expression which correctly links these two limits is

〈	n2〉 = 〈n〉 (1 + 〈n〉) . (7.59)

7.8 Thermal noise

The blackbody power spectral density (power per mode) of thermal noise is
approximately white at low frequencies, hν 	 kT,

P(ν) ≈ kT. (7.60)

If this is rolled off with a low pass filter such as

H(ν) = �

(
ν

2νc

)
, (7.61)

as in Figure 7.5, the resulting variance is

σ 2 = kT 2νc. (7.62)

In real life, the coefficient is dependent on the exact shape of the filter cutoff. For
an RC filter, where νc = 1/(2πRC),

H(ν) = 1

1 + (ν/νc)2
, (7.63)

σ 2 = kTπνc, (7.64)

2 For Fermi–Dirac statistics, this would be replaced by 1/(eE/kT + 1).
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Figure 7.5 Thermal noise passed by a low pass filter.

Figure 7.6 Johnson noise of a resistor R at temperature T and the Thévenin and
Norton equivalent circuits.

with an autocorrelation function

R(τ ) = kTπνc e−2πνc|τ |. (7.65)

A special case is Johnson noise (the open circuit voltage noise of a resistor),
shown in Figure 7.6. The real resistor at temperature T may be represented by the
Thévenin equivalent circuit containing an ideal (noiseless) resistor in series with a
noise voltage source of amplitude V. Consider connecting this equivalent circuit,
via a transmission line of impedance R and electrical length L, to a load resistor
of resistance R, also at temperature T (Nyquist, 1928). The voltage source sees an
impedance 2R, resulting in a current of V/(2R). The impedance matched circuit can
be thought of as containing two modes, in each of which there is a traveling wave
carrying power kT 	ν in opposite directions. (If L > c/	ν there are more modes
and more energy on the transmission line, but it is delivered at the same rate.)
Equating the power dissipated in the original resistor with the power delivered,
we get

〈V2〉 = 4kT R	ν. (7.66)

Using instead the Norton equivalent circuit containing a noise current source we
would get

〈I2〉 = 4kT	ν/R. (7.67)
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Exercises

7.1 Consider a time-dependent variable x(t) which consists of some fixed signal
plus some stationary random noise,

x(t) = s + n(t). (7.68)

Assume that 〈n(t)〉 = 0. Define the running mean yT(t) as the average of x(t)
over the preceding T seconds,

yT(t) = 1

T

∫ t

t−T
x(θ) dθ. (7.69)

a. Formulate this running mean as a convolution and show that this consti-
tutes a linear filtering of x(t) in the sense of Equation 7.33.

b. Calculate the transfer function h̃(f) and its bandwidth 	f,

	f =
∫ ∞

−∞
|h̃(f)|2df. (7.70)

This running mean is subtly different than the time averaging we did in
Section 7.5.1.3

7.2 White noise is filtered by a narrow bandpass filter centered at frequency ν0

with width 	ν (	ν 	 ν0). Its power transfer function is given by

H(ν) = 1

2

[
e−(ν−ν0)

2/2(	ν)2 + e−(ν+ν0)
2/2(	ν)2

]
. (7.71)

Calculate and sketch the autocorrelation function R(τ ) after the filtering.
7.3 Synchronous detection is a technique by which modulation of known fre-

quency and phase is imposed on a weak signal, sometimes by a mechanical
“chopper wheel” which alternately passes and blocks incoming radiation. The
signal out of the detector is given by

x0(t) = s(t)F(t)+ n(t), (7.72)

where s(t) is the incident signal, F(t) is the imposed modulation, and the noise
n(t) is assumed to be intrinsic to the detector (and therefore unmodulated).
The detector output is passed through a prefilter

x1(t) = x0(t) ∗ h(t), (7.73)

where |h̃(f)|2 is a narrow bandwidth filter centered at the modulation fre-
quency f0 with a width 	f0. The filtered output is then demodulated by the
operation

x2(t) = x1(t) cos(2πf0t + φ′) (7.74)

3 Adapted from Lèna et al. (1998).
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and low pass filtered by taking a running mean

x3(t) = x2(t) ∗ 1

T
�(t/T). (7.75)

The integration time T is typically chosen to be much greater than the recipro-
cal of the prefilter bandwidth (T � 1/	f0). The effect of this signal processing
is to largely recover the original signal while removing those components
of the noise with frequencies or phases different than that of the imposed
modulation.

a. Consider first just the noise n(t). If n(t) has a white spectrum with
power density SN, what are the effects of the various stages of the signal
processing? Determine the variance of x3 in terms of SN.

b. If F(t) is strictly periodic, but not necessarily sinusoidal, what is the most
general form of F̃(f)?

c. Assuming the signal s(t) is just a constant s, what are the effects of the
various stages of the processing? What is the optimum value of φ′? Cal-
culate the loss of signal for square wave modulation and co-sinusoidal
demodulation.4

7.4 Consider a stationary Gaussian random process x(t) with zero mean,
described by an autocorrelation function (before filtering) of Rx(τ ). This
process is filtered by a simple RC filter with a power transfer function of

H(ν) = 1

1 + (2πRCν)2
. (7.76)

Find the autocorrelation function after filtering, R(τ ), in terms of Rx(τ ) and
H̃(ν). You will need the Fourier transform pair

e−|x| � 2

1 + (2πs)2
. (7.77)

Your answer should be in the form of an integral containing Rx.5

7.5 Derive the result in Equation 7.38.
7.6 Derive the result in Equation 7.42.

4 Adapted from Lèna et al. (1998).
5 Adapted from Lèna et al. (1998).
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Optics

We begin our treatment of optics by first considering geometrical optics. In the
limit of small wavelengths, geometrical optics describes the direction in which light
travels through space as it encounters materials with different indices of refraction.
Initially the refractive index will simply be assumed to be a property of a material
which describes the speed at which light propagates in that material. That will
be sufficient to allow us to treat the theory of aberrations and to look into some
basic aspects of telescope design. Next we will look at the physical origins of the
refractive index and at the Fresnel coefficients, which are important in a number
of contexts including the design of various spectroscopic devices. Then we will
consider physical optics, the behavior of light in the regime of finite wavelengths
where diffractive effects become important. This will include a look at the Airy
pattern. Finally we will introduce the concepts of the point spread function and the
modulation transfer function and use them to consider some general properties of
imaging.

8.1 Geometrical optics

The properties of light propagation can often usefully be described by geomet-
rical optics, an approximation which is valid in the limit of small wavelengths.
The wavelength λ is assumed to be small compared with all relevant length scales,
including the dimensions of any physical objects present. The media of propaga-
tion are described by various values of the refractive index n, which in general is
wavelength dependent. In this approximation it is possible to visualize the indi-
vidual paths followed by narrow pencils of light, a process known as ray tracing.
These rays are considered to have small cross sectional area A and small diver-
gence � and therefore small étendue. Ray tracing depends on two basic laws: the
law of reflection and Snell’s law.

117
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Figure 8.1 The law of reflection in geometrical optics from the ray viewpoint
(left) and the wavefront viewpoint (right).

The law of reflection describes the behavior of a ray of light which encounters an
interface between different media, as shown in Figure 8.1. The angles of incidence
(θi) and reflection (θr) are defined with respect to the normal to the surface. To deter-
mine the relationship between these angles, it is easiest to consider a wavefront
picture. To do so we need only two properties: (1) that the direction of propaga-
tion is perpendicular to the wavefront and (2) that the velocity of propagation (the
phase velocity) is c/n. Incoming plane-parallel light in a medium of refractive index
n encounters some interface, and at least part of that light is reflected. Considering a
finite section of the wavefront bounded by two limiting rays, a particular wavefront
first encounters the interface at time t1. The remainder of that section of wavefront
continues until it all has reached the surface, at time t2. That last portion of the
wave travels an extra distance

Li = c

n
(t2 − t1), (8.1)

and by geometrical construction

sin θi = Li

L
. (8.2)

Similarly for the outgoing wave,

Lr = c

n
(t2 − t1), (8.3)

sin θr = Lr

L
. (8.4)

Combining these results we readily see that

θi = θr, (8.5)

dependent only on geometry and the constancy of the speed of propagation.
Snell’s law, the law of refraction, considers the situation in which some portion

of the light propagates from a medium of index ni into a medium of index nt, as
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Figure 8.2 Snell’s law from the ray viewpoint (left) and the wavefront viewpoint
(right).

shown in Figure 8.2. In each material the velocity of propagation is c/n. As before,
converting to a wavefront picture we get

Li = c

ni
(t2 − t1) = L sin θi, (8.6)

Lt = c

nt
(t2 − t1) = L sin θt, (8.7)

from which it is easy to see that

ni sin θi = nt sin θt. (8.8)

Both of these results are independent of how much power is reflected or trans-
mitted in each case. The possible existence of a transmitted wave does not affect the
law of reflection, and the existence of a reflected wave does not affect Snell’s law.

8.1.1 Paraxial optics (a first order theory)

Paraxial optics refers to cases in which rays encounter interfaces at small angles of
incidence (near the optical axis). Figure 8.3 illustrates the case of a single refractive
interface, with the angles exaggerated for clarity. We mostly follow the notation of
Schroeder (2000) except for differences in sign conventions. The situation shown
is similar to the case of a lens, although a lens has a second refractive interface.
Consider rays emerging from the point P in a medium of index n, hitting a spherical
refracting surface of radius R, and being bent towards P′ in a medium of index n′.
The dashed line is drawn from the center of curvature out through the surface and
therefore is normal to the surface. Snell’s law gives

n sin θ = n′ sin θ ′, (8.9)
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Figure 8.3 Paraxial optics illustrated for a single refracting surface.

which for small angles is

n θ ≈ n′ θ ′, (8.10)

since sin θ ≈ θ . Now by geometrical construction,

θ = 180◦ − (90◦ − u)− (90◦ − φ) = u + φ, (8.11)

θ ′ = (90◦ − u′)− (90◦ − φ) = −u′ + φ. (8.12)

Plugging into the small-angle version of Snell’s law, we get

n(u + φ) ≈ n′(−u′ + φ). (8.13)

Reexpressing the angles in terms of distances,

φ = sin−1 y

R
≈ y

R
, (8.14)

u = tan−1 y

S +	
≈ y

S +	
= y

S + R − R cosφ
≈ y

S
, (8.15)

u′ = tan−1 y

S′ −	
≈ y

S′ −	
= y

S′ − R + R cosφ
≈ y

S′ . (8.16)

Putting it all together,

n
(y

S
+ y

R

)
≈ n′
(
− y

S′ + y

R

)
, (8.17)

n

S
+ n′

S′ = n′ − n

R
, (8.18)

which holds independent of y. The important conclusion is that all paraxial rays
leaving the point P (i.e. at small angles with respect to the optical axis) will be
focussed onto P′. P and P′ are referred to as conjugate points.

The paraxial theory does not apply just to refractive optics (Snell’s law).
Consider the case of reflective optics, as in Figure 8.4.
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Figure 8.4 Paraxial optics illustrated for a reflecting surface.

θ = θ ′, (8.19)

θ = (90◦ − u)− (90◦ − φ) = φ − u, (8.20)

θ ′ = (90◦ − φ)− (90◦ − u′) = u′ − φ, (8.21)

2φ = u + u′. (8.22)

As before, expressing the angles in terms of distances,

φ = sin−1 y

R
≈ y

R
, (8.23)

u = tan−1 y

S −	
≈ y

S −	
= y

S − R + R cosφ
≈ y

S
, (8.24)

u′ = tan−1 y

S′ −	
≈ y

S′ −	
= y

S′ − R + R cosφ
≈ y

S′ . (8.25)

Combining these results we get

2
y

R
= y

S
+ y

S′ , (8.26)

2

R
= 1

S
+ 1

S′ . (8.27)

So in this case also, all rays leaving point P will be focussed onto P′, as long as the
angles are small.

Within the context of this paraxial theory there are various quantities often useful
in optical design. The power of a refractive surface is defined by

P = n′ − n

R
, (8.28)

where the power is positive for the situation illustrated in Figure 8.3: a surface
which is convex to the left with n′ > n. The power can be made negative either
by reversing the sense of curvature (to concave to the left) or by making n′ < n
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(but not both). For a reflective surface which is concave to the left, as in Figure 8.4,
the power is

P = 2n

R
. (8.29)

The power is closely related to the focal length. For the refractive case with s = ∞
and s′ = f′,

P = n′

f′
, (8.30)

and for the refractive case with s′ = ∞ and s = f,

P = n

f
. (8.31)

For the reflective case,

P = n

f
. (8.32)

The transverse (lateral) magnification, illustrated in Figure 8.5, is defined by

m = h′

h
= −S′ − R

S + R
= −S′

S

1 − R/S′

1 + R/S
, (8.33)

which for the refractive case gives

m = −n S′

n′ S
, (8.34)

and for the reflective case gives

m = −S′

S
. (8.35)

Figure 8.5 Transverse and angular magnification.
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Figure 8.6 Thin and thick lenses.

Similarly, the angular magnification1 for the refractive case is

M = tan u′

tan u
≈ S

S′ = n

n′ m
, (8.36)

and for the reflective case is

M = 1

m
. (8.37)

Note that lateral magnification is accompanied by angular demagnification and vice
versa. The Lagrange invariant

H = n h u = n′ h′ u′ (8.38)

is closely related to the conservation of étendue. For a “thin” lens, the object
and image distances are measured from the center of the lens, as illustrated in
Figure 8.6.

P = 1

f
= (n − 1)

(
1

R1
− 1

R2

)
(8.39)

= 1

S
+ 1

S′ . (8.40)

1 Along with Born & Wolf (1999) we use the term angular magnification as synonymous with convergence
ratio, illustrated in Figure 8.5. Others (e.g. Hecht, 2002) use the term as synonymous with magnifying power.
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For a “thick” lens, the power is somewhat less than the sum of the powers of the
two surfaces, if both surfaces have positive powers. Object and image distances
are now measured from the principal planes of the lens.

P = 1

f
= P1 + P2 − d

n
P1 P2 (8.41)

= (n − 1)

[
1

R1
− 1

R2
+ (n − 1)d

nR1R2

]
. (8.42)

For astronomical telescopes the object distance, S, is large so S′ = f, and a
quantity of interest is the angular measure, � = h/S, the angle subtended by the
object. The inverse of the effective focal length is therefore a scaling factor between
angular measure (on the sky) and linear measure (in the focal plane)

1

f
= �

|h′| . (8.43)

For historical reasons this is known as the plate scale, typically given in units of
arcsec mm−1.

8.1.2 Seidel aberrations (a third order theory)

In the paraxial approximation we assumed sin x ≈ tan x ≈ x, which is the lowest
order term in the full series expansions:

sin x = x − x3

3! + x5

5! − · · ·, (8.44)

tan x = x + x3

3! + x5

5! + · · ·. (8.45)

As we consider rays farther off axis, these higher order terms become important
(first x3, then x5, . . .). We will consider here only terms of order x3, which give
rise to the five Seidel (primary) aberrations. Note that these are monochromatic
aberrations; they are present even in the absence of any wavelength variation of the
refractive index.

Spherical aberration

According to Fermat’s principle, a parabolic mirror gives perfect (stigmatic) imag-
ing for an object at infinity. A spherical mirror, therefore, does not do so. This is
essentially because the focal length varies with distance from the optical axis, as
illustrated in Figure 8.7. A sphere is more strongly curved than a parabola, there-
fore rays farther from the optical axis will have shorter focal lengths. Rays which
fall at the edges (margins) of an optical element are called marginal rays. For a
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Figure 8.7 Spherical aberration for a mirror, illustrating the marginal rays coming
to a focus before the paraxial rays. TSA is the amount of transverse spherical
aberration.

spherical mirror the marginal rays come to a focus faster than the paraxial rays.
Similar behavior is seen for lenses with spherical surfaces. In spherical aberration
the size of the illuminated region is large in the paraxial focal plane because the
marginal rays are out of focus. Likewise the illuminated region is large in the
marginal focal plane because the paraxial rays are out of focus. There is an optimal
distance at which the spot size is smallest. This smallest possible spot is known as
the circle of least confusion.

Knowing the radii of curvature, indices of refraction, object distance, and loca-
tions of any limiting apertures, it is possible to quantify the amount of spherical
aberration present. One measure is the transverse spherical aberration (TSA), the
displacement of a transverse ray in the paraxial focal plane. Another is the size of
the circle of least confusion, illustrated in Figure 8.8. For the case of a spherical
mirror and an object at infinity (collimated light), the diameter of the circle of least
confusion, in angular units, is

φCLC = 1

128f 3
, (8.46)

where f is the focal ratio f = f/D and D is the diameter of the mirror. To convert
φCLC from angular units to physical (length) units in the focal plane, multiply by
the focal length f. Clearly spherical aberration is most significant for fast optics
(small f ).
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Figure 8.8 Spherical aberration for a lens, illustrating the circle of least confusion.

Figure 8.9 Coma produced by rays off axis by an angle θ . The tangential plane is
illustrated, and TC is the amount of tangential coma.

Coma

Consider a parabolic mirror in collimated light, a case in which no spherical aber-
ration is present. If the rays hit the mirror at an angle θ with respect to the optical
axis, as shown in Figure 8.9, the aberration known as coma will be produced. Rays
hitting different parts of the mirror will cross different portions of the focal plane.
In the focal plane, the paraxial focus will be displaced off axis. But the marginal
foci will be even farther off axis. The asymmetric image produced will have a
shape vaguely like that of a comet (whence the name) or an ice cream cone. Coma
is important in imaging because it is often fairly easy to remove spherical aberra-
tion, usually leaving coma as the largest remaining aberration. Coma is particularly
nasty since the degree of image smearing varies across the field of view, depending
on the distance from the optical axis.

Note the mapping of rays striking various points on the mirror into various loca-
tions in the focal plane, as shown in Figure 8.10. Rays striking the top and bottom
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Figure 8.10 Coma in the tangential plane (red in electronic version) and the
sagittal plane (blue).

of the mirror (in the plane of incidence) both converge onto the point farthest off
axis (the point marked “1”). Rays striking the sides of the mirror (out of the plane
of incidence) will come to a point (marked “3”) in between the previous point and
the paraxial focal point. Rays striking other locations on the periphery of the mir-
ror (e.g. “2” and “4”) will be displaced off of the axis of symmetry of the comatic
image. One circuit around the mirror corresponds to two circuits in the focal plane.

Coma can be quantified by the size of the tangential coma (TC) or sagittal
coma (SC),

TC = 3 SC. (8.47)

In angular units the magnitude of the blurring is proportional to θ and 1/f 2,

φTC ∝ 1

f 2
θ. (8.48)

The coefficient of proportionality depends on the exact configuration.

Astigmatism

For larger θ (farther off axis), the focal lengths are different for rays in the same
plane as the optical axis (the tangential plane) than for the perpendicular plane (the
sagittal plane) as shown in Figure 8.11. Therefore a point source produces line
images in the tangential and sagittal focal planes (Figure 8.12). For an extended
on-axis object, radial features are imaged sharply in the sagittal focal plane and
circumferential features are imaged sharply in the tangential focal plane (so don’t
focus a telescope while looking at a planet). In angular units the amount of
astigmatism is proportional to θ2 and 1/f :
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Figure 8.11 Astigmatism gives rise to different focal lengths for the tangential
and sagittal rays.

Figure 8.12 Astigmatism produces line foci in the tangential (red in electronic
version) and sagittal (blue) planes.

φTAS ∝ 1

f
θ2, (8.49)

where TAS refers to the half lengths of the line images at the focal planes S and T.
The focal separation of the two line images is proportional to fθ2.

Distortion

The aberration known as distortion produces stigmatic (point-like) images, but with
displaced positions in the focal plane (variations in the transverse magnification),
as shown in Figure 8.13. You may have noticed this with photocopy machines;
if you enlarge portions of an image and then try to line them up, it usually will
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Figure 8.13 Pincushion and barrel distortion.

not work. Under distortion, straight lines are not imaged into straight lines. Dis-
tance relationships (e.g. spacings) are not preserved. This is particularly troubling
in astrometric applications. The magnitude of the distortion is proportional to θ3.

Curvature of field

The last of the Seidel aberrations also produces stigmatic images. But in this case,
the foci for different values of θ are located on a curved surface, which is to say
that the displacement in the focus is proportional to θ2. If no astigmatism is present,
the focal surface is known as the Petzval surface and this aberration is known as
Petzval field curvature. If astigmatism is present, there are separate surfaces for the
sagittal and tangential foci. The sagittal focal surface is located one third of the
way from the Petzval surface to the tangential surface.

As shown in Figure 8.14, for a single mirror the magnitude of the field curvature
depends on the radius of curvature of the mirror. In the days of glass photographic
plates, the plates were bent (!) before being placed on the telescope. One cannot
bend CCD chips. One can, however, tile the focus of a telescope with an array of
CCDs in such a way as to approximate a spherical focal surface.

8.1.3 Higher order terms

To some extent, optical design is a tradeoff among the Seidel aberrations.
An improvement in one term is often accompanied by deterioration in other terms.
But even when a good combination of Seidel aberrations has been achieved, there
exist fifth and higher order terms which may be significant, especially for fast
optical systems. Numerical optimization using ray tracing is then generally more
practical than an analytical approach.



130 Optics

Figure 8.14 Petzval field curvature.

Figure 8.15 Classical Cassegrain telescope.

8.1.4 Telescope design

A classical Cassegrain telescope consists of a parabolic primary mirror and a
hyperbolic secondary mirror, as shown in Figure 8.15. Its features include compact-
ness, a long effective focal length, and easy access to the focal region. A classical
Cassegrain telescope has zero spherical aberration, and its performance therefore
is limited by coma. In angular units its first three Seidel coefficients are given by

φTSA = 0, (8.50)

φTC = 1

16f 2
θ, (8.51)

φTAS ∼ 1

2f
θ2. (8.52)

Fermat’s principle leads to the choice of conic sections as the ideal shapes for
stigmatic imaging. A paraboloidal reflector images a point at infinity to a point at a
finite distance. An ellipsoidal mirror images a point at finite distance onto another
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such point. And a hyperboloid images a point at a finite distance into a virtual focus
behind the mirror.

In the classical Cassegrain design, the primary mirror was parabolic in order
to ensure that the prime focus was free of spherical aberration. However, if the
telescope is used only in Cassegrain configuration this focus is unused (and inac-
cessible). The only necessary requirement is that the Cassegrain focus be free of
spherical aberration. Therefore the primary mirror is allowed to introduce spheri-
cal aberration, as long as that aberration is cancelled by the secondary mirror.2 This
introduces an extra degree of freedom, which may be used to cancel another aber-
ration. In the Ritchey–Chrétien design the shape of the primary mirror is changed
(so it is no longer parabolic) and the shape of the secondary mirror is also changed
(it is a different hyperbola). This eliminates coma while retaining zero spherical
aberration, a situation known as the aplanatic condition. The cost of eliminat-
ing coma, in optical terms, is about a 10% increase in the amount of astigmatism
over the classical Cassegrain design. The Ritchey–Chrétien design was used in
designing the HST.3 Both the primary and secondary mirrors are hyperboloids.
The disadvantage of this design is that these aspheric surfaces are difficult and
expensive to make. For such telescopes the usable field of view is limited by
astigmatism.

The above designs illustrate the use of aspherical surfaces to eliminate vari-
ous types of aberrations. This is an outgrowth of work begun in 1905 by Karl
Schwarzschild. In modern terms the generalized Schwarzschild theorem can be
stated as:

For a telescope system containing n aspheric elements in any geometry with reasonable
separation, it is possible to correct n Seidel conditions (Wilson & Delabre, 1995).

The 8.4 meter Large Synoptic Survey Telescope (LSST) was rated first among
large ground-based projects by the 2010 US National Research Council decadal
review of astronomy and astrophysics. The LSST uses three large aspheric mirrors
to control aberrations across a wide field of view. Cleverly, they have managed to
do this with only two pieces of glass. The outer, annular portion of the largest glass
blank is ground to the desired figure for the primary mirror, while the inner 5 meter
portion (5 meters in diameter) is ground to a different figure for the tertiary mirror.
The LSST will have about 50 times the étendue of the Sloan Digital Sky Survey
telescope. See Wilson (1996) and Schroeder (2000) for details of some three- and
four-mirror telescope designs.

An older approach to wide field imaging is the Schmidt telescope, illustrated in
Figure 8.16. A spherical reflector, with an aperture stop at the center of curvature,

2 Expressed as departures from ideal spherical wavefronts, the aberration effects of successive optical surfaces
are additive.

3 However, an error in manufacturing gave the HST significant spherical aberration.
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Figure 8.16 (Left) Schmidt telescope. Center of curvature of the mirror is marked
by the plus sign, and the axis of symmetry of the corrector plate by the dot-dashed
line. (Right) Kepler spacecraft. Credit: NASA.

has no off-axis aberrations (no coma, no astigmatism), but lots of spherical aber-
ration. This spherical aberration can be cancelled with a thin, aspherical corrector
plate. Since the corrector plate has an axis of symmetry, it introduces some off-axis
aberrations. Fields of view of several square degrees are possible. A disadvantage
is that chromatic aberrations are introduced in the corrector plate. The aperture of a
Schmidt telescope is determined by the size of the corrector plate; the mirror must
be significantly oversized.

The Kepler spacecraft is an important current example of a Schmidt telescope.
Its mission is to search for transits of Earth-sized planets around solar type stars.
The telescope has a 0.95 meter aperture (a 1.4 meter diameter primary mirror) and
a field of view of 105 square degrees. The camera is an array of 42 CCDs each
with 2200 × 1024 pixels (95 megapixels in all). A planet is considered confirmed
when a transit repeats, in other words, when the period is determined. As of this
writing, Kepler has 15 confirmed planets and 1235 candidates. The smallest planet
confirmed so far by Kepler (Kepler-10b) has a radius of 1.416 Earth radii, and the
least massive (Kepler-11f) has a mass of 2.3 Earth masses. As the mission proceeds
through its scheduled 3.5 year lifetime (possibly longer), planets with longer orbital
periods will be confirmed.

8.1.5 Other aspects of telescope design

Telescope mirrors deform under their own weight. As a simple analogous case of
mechanical deformation, consider a simply supported uniform rectangular beam
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(supported at both ends). In this textbook problem, the gravitational deflection at
the center is given by

δ = 5

32

1

E
gρ

L4

t2
, (8.53)

where E is Young’s modulus, g is the acceleration of gravity, ρ is the density, L
is the length, and t is the thickness. The numerical coefficient will vary due to
the circular geometry, and can be much smaller depending on the location of the
support points, but the functional dependences on E, L, and t are quite general. For
an edge-supported disk of diameter D and thickness t,

δ = 0.050
1

E
gρ

D4

t2
. (8.54)

For glass, characteristic values are E = 8 × 1010 Pa = 8 × 1010 N m−2 and
ρ = 2500–4500 kg m−3. Taking D = 8.4 m and t = 0.92 m, values characteris-
tic of the LSST primary mirror, one can see that gravitational deformation of a
solid piece of glass would be impossibly large (tens of micrometers). For this rea-
son the LSST primary mirror, and that of many other large telescopes, is made of
a honeycomb structure,4 reducing the mass and the resulting gravitational defor-
mation. The Hubble Space Telescope primary mirror, even though not subject to
gravitational deformation while in orbit, was fabricated in a similar manner with a
honeycomb core fused between 25 mm thick front and back glass plates.

Thermal properties are also important. The thermal conductance of glass
characteristically is K = 0.8 W m−1 K−1. Specific heats are in the range
Cp = 400–800 J kg−1 K−1. For heating and cooling the relevant ratio is K C−1

p ρ−1,
which is of order 4 × 10−7 m2 s−1, meaning that glass several centimeters in
thickness can have a thermal time constant of many hours. Some form of active
thermal control such as forced air circulation is common in large telescope designs.
Of greatest importance is preventing any distortion due to non-uniform expansion.
Fortunately, glass ceramics such as Zerodur, Cervit, and other ultra-low-expansion
(ULE) glasses have been developed with expansion coefficients of �3×10−8 K−1.

8.1.6 Gravitational lensing

Massive objects affect the direction of propagation of light in their vicinity. In the
weak field limit, the space around such objects can be thought of as having an
effective index of refraction

n = 1 − 2φ(
r )
c2

, (8.55)

4 The first use of a large, reduced-weight, ribbed primary was for the 200 inch Hale telescope.
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Figure 8.17 Drude–Lorentz model of the refractive index, treating each electron
as a mass on a spring.

where φ is the Newtonian potential. A massive galaxy cluster can act in this way,
forming images from the light from background galaxies. Since neither the lens
potential nor the true brightness distribution of the distant galaxy are known a
priori, the analysis of data from such a system is a difficult inverse problem.

8.2 Dispersion

So far we have treated the refractive index as simply an empirical parameter
describing the propagation velocity of light in matter. Now we will turn to the
physical origin of this parameter and what it tells us about the optical properties of
refractive materials. Then we will look at the Fresnel coefficients, which describe
the intensities of reflected and refracted waves at boundaries between regions of
different refractive indices.

8.2.1 Origin of the refractive index

We will derive a microscopic theory of dispersion, that is, a description of the
wavelength dependent (dispersive) nature of the refractive index based on a model
at the atomic level. We will use the Drude–Lorentz model, which, although a rather
naive, semi-classical picture of the atomic physics, contains all the features neces-
sary to explain the essential properties of the refractive index. The Drude–Lorentz
model, as shown in Figure 8.17, considers the motion of bound electrons in mat-
ter, subject to a driving force eEm, a harmonic restoring force, and damping. The
subscript m in Em indicates that we are referring to the microscopic value of the
electric field, that is, its value at an individual atomic site instead of its bulk value.
The electronic displacement, x, is described by the differential equation

e Em − mω2
0 x − m γ

dx

dt
= m

d2x

dt2
, (8.56)

which can be rewritten as

d2x

dt2
+ γ

dx

dt
+ ω2

0 x = e

m
Em. (8.57)
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We assume a time-dependent microscopic field Em = Ẽm e−iωt and seek solutions
of the form x(t) = x̃ e−iωt. Plugging in this trial solution we get

− ω2 x̃ − iωγ x̃ + ω2
0 x̃ = e

m
Ẽm, (8.58)

x̃ = e/m

ω2
0 − ω2 − iωγ

Ẽm. (8.59)

That is, we find a solution which describes simple harmonic motion with peak
amplitude at ω = ω0 and a resonance width determined by the parameter γ .

To determine the complex index of refraction, we first define the polarization

P = N e 
x. By applying local field theory (not shown) we can get the microscopic
field 
Em in terms of the applied field 
E:


Em ≈ 
E + 
P
3ε0

. (8.60)

Combining this with our solution for the electron displacement we can eliminate

Em. By relating the polarization to the susceptibility χ (
P = χ 
E) and by relating
the susceptibility to the index of refraction (n2 = 1 + χ/ε0), we get

n2 − 1

n2 + 2
≈ Ne2

3ε0m

1

ω2
0 − ω2 − iωγ

. (8.61)

At this point we need to allow for the fact that not all electrons in the material
are bound in the same fashion. Semi-classically we can consider multiple resonant
frequencies ω0i, each with an associated damping term γi. A certain fraction of the
electrons, fi, is attributed to each resonance. Therefore,

n2 − 1

n2 + 2
≈ ω2

p

3

∑
i

fi

ω2
0i − ω2 − iωγi

, (8.62)

where ω2
p = Ne2/(ε0m) and

∑
fi = 1. This equation can then be solved for

the complex index of refraction. Figure 8.18 shows an example of the real and
imaginary parts of the complex index of refraction, which in turn is related to the
complex wavenumber k̃ = ωñ/c.

8.2.2 Fresnel coefficients

Previously when we considered a wave striking a planar dielectric boundary, we
considered only the angles of the reflected and transmitted waves. Now we will
consider the intensities of reflected and transmitted waves at dielectric interfaces.
First consider the case of normal incidence, as in Figure 8.19. It is easiest to treat
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Figure 8.18 Dispersion relation, with γ = 0.3ω0. Note the presence of nor-
mal dispersion (Re n increasing with ω), a region of anomalous dispersion (Re
n decreasing with ω) near resonance, and the offset in Re n−1 well below and
well above resonance.

Figure 8.19 Reflected and transmitted waves for a dielectric interface at normal
incidence.

this as an electromagnetic boundary value problem. At normal incidence both 
E
and 
H are parallel to the surface:


E1,‖ = 
E2,‖, (8.63)


H1,‖ = 
H2,‖. (8.64)

Decomposing the total electric and magnetic fields into incident, transmitted, and
reflected waves, the first boundary condition gives

Ei + Er = Et. (8.65)

For the second boundary condition, take the Maxwell equation 
∇ × 
E = −∂ 
B/∂t
applied to a plane wave to relate 
H to 
E:
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ω 
B = 
k × 
E, (8.66)


H = 1

μ0

1

ω

k × 
E. (8.67)

And since |k|/ω = n/c,

| 
H| = 1

μ0

n

c
|
E|. (8.68)

For the reflected wave there is an implied sign reversal in order to keep 
E × 
B in
the direction of 
k. Thus the magnetic boundary condition gives

n1

c
(Ei − Er) = n2

c
Et. (8.69)

Combining the two boundary conditions we get for the amplitudes of the reflected
and transmitted waves,

Er

Ei
= n1 − n2

n1 + n2
, (8.70)

Et

Ei
= 2n1

n1 + n2
. (8.71)

This result is closely related to that obtained for impedance changes in waveguides
and coaxial cables.

For non-normal incidence we need to consider two polarization cases. S-
polarization is where 
E is perpendicular to the plane of incidence, as in Figure 8.20.
It turns out to be sufficient to consider boundary conditions only on components
tangential to the surface,

Ei + Er = Et, (8.72)

Figure 8.20 S-polarization.
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since the E-field is entirely tangential. And for the H-field,

Hi cos θi − Hr cos θr = Ht cos θt, (8.73)

n1(cos θi Ei − cos θr Er) = n2 cos θt Et. (8.74)

Setting θi = θr and combining equations we get the amplitude transmission and
reflection coefficients:

rs =
(

Er

Ei

)
⊥

= n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
, (8.75)

ts =
(

Et

Ei

)
⊥

= 2 n1 cos θi

n1 cos θi + n2 cos θt
. (8.76)

For 
E parallel to the plane of incidence (the case of P-polarization, not shown),

rp =
(

Er

Ei

)
‖

= n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
, (8.77)

tp =
(

Et

Ei

)
‖

= 2 n1 cos θi

n2 cos θi + n1 cos θt
. (8.78)

Be careful! The differences between these and the formulae for S-polarization are
subtle but important. Using Snell’s law we can rewrite the entire set as

rs = sin(θt − θi)

sin(θt + θi)
, (8.79)

ts = 2 cos θi sin θt

sin(θt + θi)
, (8.80)

rp = tan(θi − θt)

tan(θt + θi)
, (8.81)

tp = 2 cos θi sin θt

sin(θt + θi) cos(θi − θt)
. (8.82)

In this form the reflection coefficients have been written just in terms of angles. The
previous forms contained redundant information in that both angles and indices of
refraction were used. Note also that these formulae have the desirable property of
rs → rp, and ts → tp in the limit θi → 0.

8.3 Physical optics

Geometrical optics was useful in the regime where the wavelength was small com-
pared to any other length scales present. But more generally we need to consider
the situation where the wavelength is significant, which is the regime of physical
optics.
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8.3.1 Vector and scalar diffraction

Optics is, after all, the study of certain aspects of electromagnetic theory. So let us
ask what happens when an electromagnetic wave encounters obstacles. The physics
of the situation is determined by the vector wave equations,

∇2
E − ε μ
∂2
E
∂t2

= 0, (8.83)

∇2 
B − ε μ
∂2 
B
∂t2

= 0, (8.84)

which we must solve subject to appropriate boundary conditions. In effect, we
have six second-order partial differential equations (one each for Ex, Ey, Ez, Bx,
By, and Bz). Furthermore, these equations are coupled, via Maxwell’s equations.
So this is certainly a formidable problem! Numerical techniques are effective in
solving these equations under certain circumstances. But for all practical purposes,
exact analytical solutions are difficult to obtain without some further simplifying
assumptions.5

Perhaps we can solve a simpler problem. Can we describe a wave by a scalar
function ψ(
r ) e−iωt which satisfies the scalar wave equation? If so, we are assert-
ing that all polarizations are treated the same, which in detail is certainly false.
Nevertheless, this approach captures a surprisingly large share of the physics of
diffraction except at very small scales (aperture sizes of order λ or smaller).

8.3.2 Kirchhoff diffraction theory

First we will derive a formula known as Kirchhoff’s integral. Green’s theorem
states that ∫

V

(
ψ∇2φ − φ∇2ψ

)
dV = −

∫
S

(
ψ 
∇φ − φ 
∇ψ

)
· n̂ dA, (8.85)

where we adopt the convention that the normal n̂ is pointing inward (into the
volume V). Choose φ(
r ) = eikr/r, which is a solution of the wave equation,

∇2φ + k2φ = 0. (8.86)

Let ψ(
r ) be some unknown solution of the same wave equation,

∇2ψ + k2ψ = 0. (8.87)

5 More rigorous treatment of some diffraction problems is given in standard works such as Jackson (1998) and
Born & Wolf (1999).
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Figure 8.21 Application of Green’s theorem to Kirchhoff diffraction.

Since both φ and ψ satisfy the wave equation, the volume integral in Green’s
theorem vanishes. Therefore, the surface integral must also vanish,

−
∫

S

(
ψ 
∇φ − φ 
∇ψ

)
· n̂ dA = 0. (8.88)

Now let the surface consist of two parts, an outer surface S1 and an inner surface
S2 excluding the singularity at the origin, as shown in Figure 8.21.∫

S2

(
ψ 
∇φ − φ 
∇ψ

)
· n̂2 dA =

∫
S2

[
ψ

(
ik

r
− 1

r2

)
eikr r̂ − eikr

r

∇ψ
]

· n̂2 r2 d�.

(8.89)
In the limit r → 0,∫

S2

(
ψ 
∇φ − φ 
∇ψ

)
· n̂2 dA = −

∫
S2

ψ d� (8.90)

= −4π ψ(P). (8.91)

This must equal the negative of the integral over S1,

ψ(P) = 1

4π

∫
S1

[
ψ 
∇ eikr

r
− eikr

r

∇ψ
]

· n̂ dA. (8.92)

Thus the value of a scalar function ψ at some point in the interior is related to the
values of ψ and 
∇ψ on a bounding surface. This is the Kirchhoff integral.

Consider a typical problem in diffraction theory, that of an opaque screen with
holes. Apply Kirchhoff’s integral to the surface S = σ + σ ′ + σ ′′, as shown in
Figure 8.22. We will take each of the three parts in turn. On σ , assume that ψ and

∇ψ are the same as the values would be for the incident wave if no screen were
present. This is probably reasonable, except near the edges of the hole where the
screen may have some effect. On σ ′, assume ψ = 0 and 
∇ψ = 0. This also is
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Figure 8.22 Kirchhoff diffraction for an opaque screen with a hole.

reasonable if we are talking about an “opaque” screen, again not near the edge.
For σ ′′ we will play a bit of a trick. Since light travels at a finite speed, pick R
sufficiently large that the wave could not have arrived yet (so ψ = 0 and 
∇ψ = 0).
The contributions to Kirchhoff’s integral from σ ′ and σ ′′ vanish, so all that remains
is the integral over σ . If we are considering an incident plane wave normal to the
screen, then

ψ = ψ0, (8.93)


∇ψ = ikψ0 n̂. (8.94)

ψ(P) = 1

4π

∫
σ

[
ψ0

(
ik

r
− 1

r2

)
eikr r̂ − eikr

r
ikψ0 n̂

]
· n̂ dA (8.95)

≈ 1

4π

∫
σ

ψ0
ik

r
eikr(r̂ · n̂ − 1) dA (8.96)

for r � λ. Therefore

ψ(P) = −i
ψ0

2λ

∫
σ

eikr

r
(1 + cos θ) dA (8.97)

≈ −i
ψ0

λ

∫
σ

eikr

r
dA (8.98)

for small θ .
The result of the Kirchhoff diffraction theory is equivalent to saying that

each point on a primary wavefront may be viewed as a source of secondary
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Figure 8.23 Huygens–Fresnel principle. Note the flatness of the
wavefront to the right of the aperture, except near the top and
bottom.

Figure 8.24 Geometry of the Poisson spot.

spherical waves. This is the Huygens–Fresnel principle, illustrated in Figure 8.23.
When these waves are superimposed in amplitude and phase, they give the wave
amplitude at some later point. For the case of a hole in a screen, the points in
the opening contribute as sources of secondary waves while the radiation from
points outside the opening does not contribute. The Huygens–Fresnel principle is
not proven – in fact, it is clearly wrong at some level since it ignores polarization
(the vectorial nature of light). But the Kirchhoff diffraction theory justifies it as a
useful approximation.

The Poisson spot

Diffraction theory can produce some amazing results. Consider an opaque circular
disk, and consider points on the symmetry axis of the disk, as in Figure 8.24. The
Kirchhoff formula, appropriately modified for a finite source distance, is
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ψ(P) = −i
ψ0

λ

∫
σ

ei2kR

R2
cos θ dA (8.99)

= −i
ψ0

λ

∫ 2π

0
dφ′
∫ ∞

a
ρ ′ dρ ′ ei2kR

R2
cos θ, (8.100)

where the extra factor of 1/R is related to the definition of ψ0 for a spherical wave.
Now cos θ = z/R and R2 = ρ ′2 + z2, implying that R dR = ρ ′ dρ ′.

ψ(P) = −i
2π ψ0

λ
z
∫ ∞
√

z2+a2

ei2kR

R2
dR. (8.101)

Integrate by parts to get

ψ(P) = −ikψ0 z

[
1

i2k

ei2kR

R2

∣∣∣∣
∞
√

z2+a2

+ 1

ik

∫ ∞
√

z2+a2

ei2kR

R3
dR

]
. (8.102)

The second term may be neglected with respect to the integral as a whole (the prior
equation). So we can write that

ψ(P) ≈ ψ0z

2

ei2k
√

z2+a2

z2 + a2
, (8.103)

for R � λ. One concludes that there is significant intensity on axis, as shown
in Figure 8.25, even though P is well inside the geometrical shadow. This is the
result of constructive interference of diffracted waves. The fact that it is called
the Poisson spot is ironic since Poisson made this calculation in order to debunk
Fresnel’s theory by demonstrating that it gave such an “absurd” result.

8.3.3 Fresnel and Fraunhofer approximations

In Kirchhoff diffraction theory we used r to denote the distance between our point
of interest, P, and an arbitrary point in the aperture, σ . Here we will switch notation

Figure 8.25 Intensity distribution along the axis for the Poisson spot.
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Figure 8.26 Geometry for the Fresnel approximation.

and call that distance R, as in Figure 8.26, letting r denote the distance to the center
of the aperture. We will use primed Cartesian coordinates to describe locations in
the aperture plane and unprimed coordinates for the point P. Consider points far
enough from the screen that R ≈ r.

ψ(P) = −i
ψ0

λ

∫
σ

eikR

R
dA (8.104)

≈ −iψ0
1

rλ

∫
σ

eikR dA. (8.105)

The exponential has an oscillatory part which we cannot take outside the integral.

R =
√
(x − x′)2 + (y − y′)2 + z2 (8.106)

≈ z

[
1 + 1

2

(x − x′)2

z2
+ 1

2

(y − y′)2

z2

]
. (8.107)

This is the Fresnel approximation, valid in the near field. If we further neglect the
x′2 and y′2 terms (k(x′2 + y′2)/2z 	 1), we get

R ≈ z

(
1 + 1

2

x2 + y2

z2

)
− xx′ + yy′

z
. (8.108)

This is the Fraunhofer approximation, which gives the far field diffraction pattern,

eikR ≈ e
ikz

(
1+ 1

2
x2+y2

z2

)
e−ik(xx′+yy′)/z, (8.109)

ψ(P) ≈ −iψ0
1

rλ
e

ikz

(
1+ 1

2
x2+y2

z2

) ∫
σ

e−ik(xx′+yy′)/z dx′ dy′. (8.110)

Note the similarity of this aperture integral to a 2-dimensional Fourier transform!
It looks like a Fourier transform of unity, but it is restricted to the aperture region.
If we define an aperture function to be 1 everywhere inside the aperture and zero
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Figure 8.27 Cylindrical coordinates for calculating diffraction from a circular
aperture of radius a.

everywhere else, then the far field pattern is the Fourier transform of this aperture
function.

Circular apertures and the Airy pattern

A situation commonly encountered is diffraction by a circular aperture, as in
Figure 8.27. Letting C be an appropriate collection of constants, the Fraunhofer
theory gives the following result for a circular aperture of radius a,

ψ(P) = C
∫ a

0
ρ ′ dρ ′

∫ 2π

0
dφ′ e−ik(xx′+yy′)/z (8.111)

= C
∫ a

0
ρ ′ dρ ′

∫ 2π

0
dφ′ e−ikρρ′(cosφ cosφ′+sinφ sinφ′)/z (8.112)

= C
∫ a

0
ρ ′ dρ ′

∫ 2π

0
dφ′ e−ikρρ′ cosφ′/z. (8.113)

In the last step we have chosen to set φ = 0, since by symmetry all choices are
equivalent. These integrals are related to the Bessel functions J0 and J1.

J0(x) = J0(−x) = 1

2π

∫ 2π

0
eix cosφ dφ, (8.114)

x J1(x) =
∫

x J0(x) dx. (8.115)

Therefore,

ψ(P) = 2πC
∫ a

0
J0

(
kρρ ′

z

)
ρ ′ dρ ′ (8.116)

= 2πC

(
z

kρ

)2 ∫ kρa/z

0
J0(x) x dx (8.117)

= 2πC

(
z

kρ

)2 kρa

z
J1

(
kρa

z

)
(8.118)
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Figure 8.28 The Airy pattern, for diffraction from a circular aperture of radius a.

= 2πC a2 J1(kρa/z)

kρa/z
. (8.119)

The intensity is the square of ψ ,

I(P) = π2C2a4

[
2J1(kρa/z)

kρa/z

]2

, (8.120)

which is the Airy pattern, shown in Figure 8.28. The first null of J1 occurs at
x = 3.83, so the angular radius of the central bright spot is

θ = ρnull

z
= 1

ka

(
kρa

z

)
null

= 1

ka
3.83 = 3.83λ

2πa
= 1.22

λ

2a
. (8.121)

This angular size is a measure of the spatial resolution of the imaging system. The
Airy pattern result will be somewhat modified for many astronomical telescopes
due to blockage at the center of the aperture (e.g. Cassegrain telescopes).

Diffraction by a straight edge

The problem of Fresnel diffraction by a straight edge, shown in Figure 8.29, is of
some relevance in astronomy, so we will treat that next. Here the aperture extends
to infinity, so we cannot use the Fraunhofer approximation. Strictly speaking we
should not use the Fresnel approximation either.

R = ∣∣
r −
r′∣∣ ≈ z

[
1 + 1

2

(x − x′)2

z2
+ 1

2

(y − y′)2

z2

]
. (8.122)
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Figure 8.29 Diffraction by a straight edge.

However, it turns out that neglecting terms of order (x′/z)4, (y′/z)4, and higher
does not affect the results (Born & Wolf, 1999). Therefore,

ψ(P) = −i
ψ0

λ

∫
σ

eikR

R
(8.123)

= −i
ψ0eikz

λz

∫
σ

exp

[
i

k

2z

{
(x − x′)2 + (y − y′)2

}]
dx′ dy′. (8.124)

From translational symmetry, the result cannot depend on y, and its integral over y′

will give some constant.

ψ(P) = C
∫ ∞

0
exp

[
i

k

2z
(x − x′)2

]
dx′ (8.125)

= C

√
πz

k

∫ u0

−∞
eiπu2/2 du, (8.126)

where we made the change of variables u = (x − x′)
√

k/πz. Far from the edge
(u0 → ∞), ψ must approach ψ0.

ψ0 = C

√
πz

k

∫ ∞

−∞
eiπu2/2 du = C

√
πz

k
(1 + i). (8.127)

So, in general,

ψ(P) = ψ0

1 + i

∫ u0

−∞
eiπu2/2 du, (8.128)

I(P) = I0

2

∣∣∣∣
∫ u0

−∞
eiπu2/2 du

∣∣∣∣
2

. (8.129)

Now express the intensity in terms of sine and cosine components,

I(P) = I0

2

∣∣∣∣
∫ u0

−∞
cos

πu2

2
du + i

∫ u0

−∞
sin

πu2

2
du

∣∣∣∣
2

(8.130)
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Figure 8.30 The Cornu spiral: a plot of the Fresnel integrals S(u) and C(u).

= I0

2

[∫ u0

−∞
cos

πu2

2
du

]2

+ I0

2

[∫ u0

−∞
sin

πu2

2
du

]2

. (8.131)

These are related to special functions known as the Fresnel integrals,

C(u) =
∫ u

0
cos

πu2

2
du, (8.132)

S(u) =
∫ u

0
sin

πu2

2
du. (8.133)

These functions are graphically represented by the Cornu spiral in Figure 8.30. The
light intensity is proportional to the square of the length from the lower left spiral
center to the point in question:

I(P) = I0

2

{[
C(u0)− C(−∞)

]2 + [S(u0)− S(−∞)
]2}

. (8.134)

As one moves through the geometrical shadow towards the edge, the intensity
increases monotonically, as shown in Figure 8.31, reaching a value of I0/4 at
the edge. Past the geometrical edge the intensity oscillates, eventually settling
down on I0.

This straight edge problem is relevant to lunar occulations. The lunar limb acts
as a “knife edge” cutting across a distant source, allowing measurement of source
size, structure, and position. The first maximum in the light from a distant star



8.3 Physical optics 149

Figure 8.31 Diffraction pattern for a point source of unit flux density as it emerges
from the geometrical shadow of a straight edge.

occulted by the Moon occurs at u = 1.22 (where the geometrical edge is at u = 0).
Therefore the resolution (at 500 nm) is given by

θ = x

z
= 1.22

√
π

kz
= 1.22

√
λ

2z
= 3.1 × 10−8 rad = 0.0064′′. (8.135)

However, the lunar limb moves at a rate of �0.6′′ s−1, so one needs a fast detector
and good signal to noise! Also one needs a narrow filter since different colors have
different fringe spacings. This technique has also been used at radio wavelengths
(e.g. to determine the size of the source 3C273).

8.3.4 Diffraction with aberrations

So far we have treated aberrations and diffraction separately: aberrations in the
limit λ → 0 and diffraction for “ideal” optical systems. When both are present,
they interact and the patterns get very complex. Examples are given in Born &
Wolf (1999) in the form of both images and isophotes.

Let σ denote the RMS wavefront distortion in the pupil plane. When the
wavefront errors are small, the effects of the aberrations can be calculated. The
maximum intensity of the image, relative to the pure diffraction case, is decreased
by an amount

I

I0
= e−(2πσ/λ)2 ≈ 1 −

(
2π

λ

)2

σ 2, (8.136)
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a quantity known as the Strehl intensity ratio. Wilson (1996) discusses the tolerable
amounts of various aberrations, that is, the maximum allowed RMS error consistent
with a Strehl ratio of 0.8 or better.

8.4 Imaging

A quantity in widespread use in optics is the point spread function (PSF). Given
some input intensity distribution (the object), an optical system will produce some
output intensity distribution (the image). A point-like object will not produce a
point-like image; there will be some blurring due to diffraction, aberrations, etc.
This transformation (blurring) is described by the PSF,

Ii(X,Y) =
∫ ∫

PSF(x, y; X,Y) Io(x, y) dx dy (8.137)

(Figure 8.32), where we have also assumed that the various points on the object
radiate incoherently. For a point-like object,

Io(x, y) = C δ(x − x0) δ(y − y0), (8.138)

Ii(X,Y) = C PSF(x0, y0; X,Y). (8.139)

Strictly speaking, Io and Ii are flux densities.
The Airy pattern is an example of a PSF. In general, the PSF will vary with

position (e.g. in the presence of coma). However, if the object is small enough, the
PSF may be considered approximately constant (the isoplanatic condition), except
for displacement in the image plane. For unit magnification we can write

PSF(x, y; X,Y) = PSF(X − x,Y − y), (8.140)

Ii(X,Y) =
∫ ∫

PSF(X − x,Y − y) Io(x, y) dx dy, (8.141)

which is a 2-dimensional convolution.

Figure 8.32 The point spread function relates the intensity distribution of the
object being observed to the intensity distribution of the image.



8.4 Imaging 151

Figure 8.33 The modulation transfer function measures the change in contrast
of various spatial frequencies. Low frequencies will retain most of their contrast.
High frequencies will suffer loss of contrast.

For many applications it is more convenient to deal with the Fourier transform
of the PSF, a complex quantity known as the optical transfer function (OTF). For a
symmetric (i.e. even) PSF, the OTF is purely real, in which case it is known as the
modulation transfer function (MTF). The MTF may be visualized by considering
an object with a sinusoidal intensity variation at some period P0 (spatial frequency
ν0 = 1/P0) as shown in Figure 8.33. If P0 is large (ν0 is small) the pattern will be
imaged accurately. If P0 is small (ν0 is large) the pattern will be washed out by the
image blurring. If we define the contrast as

C = Imax − Imin

Imax + Imin
, (8.142)

the MTF describes the change in contrast:

MTF(ν) = Cimage(ν)

Cobject(ν)
. (8.143)

Properties of the MTF include:

0 ≤ MTF(ν) ≤ 1, (8.144)

lim
ν→0

MTF(ν) = 1, (8.145)

and that there exists some cutoff frequency νc such that

MTF(ν ≥ νc) = 0. (8.146)
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Consider an alternate approach to the MTF. As discussed above, the PSF and the
MTF are a Fourier transform pair. But in the case of diffraction, we also saw that
the Airy pattern was related to the Fourier transform of what is generally called the
pupil function,

PF(ρ ′, θ ′) =
{

1 ρ ′ ≤ a
0 ρ ′ > a

(8.147)

for a circular aperture. How are these related? The Fraunhofer diffraction inte-
gral says the electric field distribution ψ(P) is the Fourier transform of the pupil
function,

PF � ψ(P). (8.148)

But the absolute square of ψ(P) is the intensity distribution, the Airy pattern (the
PSF). By the Wiener–Khinchin (autocorrelation) theorem,

PF � PF � PSF. (8.149)

Since we also have the fact that

MTF � PSF, (8.150)

this implies that6

MTF = PF � PF = AC(PF), (8.151)

or to be precise,

MTF(u, v) = λ2C2 PF

(
x′

λ
,

y′

λ

)
� PF

(
x′

λ
,

y′

λ

)
. (8.152)

This works for aberrations as well as diffraction if we use a complex pupil function,
in which the phase of the pupil function is the wavefront phase error introduced.

Consider the MTF of a single-pixel detector. For a rectangular detector of
dimensions a × b, as in Figure 8.34, the PSF of the detector aperture is given by

PSF(x, y) =
{

1 |x| ≤ a/2, |y| ≤ b/2
0 otherwise

(8.153)

= 2�
(x

a
,

y

b

)
= �
(x

a

)
�
(y

b

)
. (8.154)

The MTF then, normalized to unity at s = 0, is

MTF(sx, sy) = sinc(a sx) sinc(b sy) . (8.155)

6 This discussion has been rather informal, since it was meant to convey the general functional relationships
between the PSF, MTF, and PF. See the next section for a more careful derivation.
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Figure 8.34 A rectangular pixel.

The total MTF is the product of the detector (pixel) MTF and the MTF of the optics.
To avoid significant degradation of the MTF of the optics, choose

a ≈ b ≈ λ

2

f

D
. (8.156)

Note this size in relation to the radius of the Airy disk, 1.22 λf/D.
What about the MTF of multiple-pixel detectors, such as CCD arrays? Assume

some image plane intensity distribution I(x,y), produced by an optical system with
some spatial frequency cutoff νc,

νc = D

λ

1

f
(8.157)

for the Airy pattern. The pixel response modifies the MTF but leaves νc unchanged.
According to Shannon’s sampling theorem, we can fully reconstruct I(x, y) if we
sample at an interval

p = 1

2νc
= λf

2D
. (8.158)

Therefore pick p to fully sample, as in Figure 8.35. The pixel dimensions a and b
can be somewhat smaller than p without loss of spatial information, but one loses
signal intensity if the pixels are too small.

8.5 Addendum

The following is a more careful and complete derivation of the relationships
between the PF, MTF, and PSF. We saw that under the Fraunhofer approximation

ψ(P) = C

λ

∫ ∫
PF(x′, y′) e−i2π(xx′+yy′)/λz dx′ dy′. (8.159)

Rewrite this formula by describing the location of the point P in terms of its angle
from the optical axis and by redefining the PF in units of wavelength:
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Figure 8.35 Nyquist sampling with a grid of pixels.

ψ
(x

z
,

y

z

)
= C

λ

∫ ∫
PF

(
x′

λ
,

y′

λ

)
e−i2π(xx′+yy′)/λz dx′ dy′ (8.160)

= Cλ
∫ ∫

PF

(
x′

λ
,

y′

λ

)
e−i2π(xx′+yy′)/λz d

x′

λ
d

y′

λ
. (8.161)

So we can see that the Fourier transform pair is really

f = Cλ PF

(
x′

λ
,

y′

λ

)
, (8.162)

F f = ψ
(x

z
,

y

z

)
. (8.163)

Applying the Wiener–Khinchin (autocorrelation) theorem,

PSF
(x

z
,

y

z

)
=
∣∣∣ψ (x

z
,

y

z

)∣∣∣2 (8.164)

= C2λ2
∫ ∫

PF

(
x′

λ
,

y′

λ

)
� PF

(
x′

λ
,

y′

λ

)
e−i2π(xx′+yy′)/λz d

x′

λ
d

y′

λ
. (8.165)

By definition the PSF and MTF form a Fourier transform pair,

PSF
(x

z
,

y

z

)
=
∫ ∫

MTF(u, v) e−i2π(ux+vy)/z du dv. (8.166)

Therefore, taking u = x′/λ and v = y′/λ, we have

MTF(u, v) = λ2C2 PF

(
x′

λ
,

y′

λ

)
� PF

(
x′

λ
,

y′

λ

)
. (8.167)
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Exercises

8.1 An f /0.5 beam comes to a focus at some point O (the origin of our coordinate
system). A glass plate (n = 1.51 at λ = 589.29 nm, the wavelength of the Na
D lines) is now introduced into the beam, as shown in Figure 8.36. The plate
is 10 mm thick and it is placed with its back surface 10 mm from the origin.

a. What is the displacement of the paraxial focal plane (at λ = 589.29 nm)?
Calculate to the nearest 0.01 mm.

b. What is the position of the marginal focal plane?
c. Illustrate the ray paths with a diagram (make it large enough to shown the

requisite detail). What aberration does the plate introduce?

8.2 For a spherical mirror with radius of curvature R and an object at infinity,
calculate the amount of field curvature (the radius of curvature of the paraxial
focal surface).

8.3 We derived formulae for dispersion based on the Lorentz local field


Em = 
E + 
P
3ε0

. (8.168)

Assume the applicability of those formulae for the following.7

a. Diamond has a static dielectric constant of 5.50 (K = n2 = 5.50 at ν = 0)
and an index of refraction of 2.417 at λ = 589 nm. Assuming that these
properties can be described in terms of a single narrow (γ = 0) resonance
in the ultraviolet, what is the wavelength λ0 of that resonance?

b. The borosilicate crown glass known as BK1 has an index of refraction
of 1.507 63 at 656.2816 nm and 1.515 66 at 486.1327 nm. Using a similar
single-resonance model, calculate the index of refraction at 587.5618 nm.

8.4 Calculate and plot the Fresnel coefficients rs, ts, rp, and tp for the following
cases. Comment on any nodes you find and comment on the signs of the
coefficients.

Figure 8.36 Marginal and paraxial rays of an f /0.5
beam being intercepted by a glass plate 10 mm
thick.

7 Adapted from Reitz et al. (1979).
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a. n1 = 1, n2 = 2.
b. n1 = 2, n2 = 1.
c. For both of these cases, verify that

n1|r|2 cos θi + n2|t|2 cos θt = n1 cos θi, (8.169)

and explain the significance of this formula in terms of the Poynting flux.

8.5 A plane wave is incident on a circular aperture in an opaque screen. A lens
just after the screen focuses the diffracted light onto a second screen placed at
the focal plane of the lens. Show that the Fraunhofer diffraction pattern is pro-
duced on the screen even though the Fraunhofer approximation has not been
applied. That is, show the lens cancels the Fresnel terms in the diffraction
integral.

8.6 Starting from the pupil function for a uniform circular aperture of radius a,
calculate a trigonometric expression for the MTF. Make sure your result has
the proper normalization and that you have treated the spatial frequency scale
correctly. Plot your result (it should be somewhat triangular in shape).

8.7 Show that any Fraunhofer diffraction pattern will have a center of symmetry
as long as the aperture is illuminated with uniform phase. That is, show that
I(x, y) = I(−x, −y).

8.8 The 4 meter Mayall telescope at Kitt Peak has its aperture limited to 3.8
meters diameter since the mirror surface is poor near the edge. When the f/8
Cassegrain secondary mirror is used, it blocks a 1.65 meter diameter region
at the center of the aperture. The remaining aperture is annular in shape.

We have seen that for Fraunhofer diffraction by a circular aperture of radius
a, as in Figure 8.27, the Kirchhoff diffraction integral gives a field distribution

ψ(ρ, z) = Cπa2 2J1(kρa/z)

kρa/z
, (8.170)

where C is a constant and J1 is the first order Bessel function. The intensity
distribution is the Airy pattern which, normalized at the center, is given by

I(ρ, z)

I(0, z)
=
(

2J1(kρa/z)

kρa/z

)2

. (8.171)

a. Remembering the principle of superposition, calculate the electric field
distribution for the annular aperture of the Mayall telescope in the
Fraunhofer limit as a function of kρa/z. Provide a formula and a graph.

b. Graph the intensity distribution. Label with approximate values the posi-
tions of the nodes and the size of the secondary maximum.
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c. The spatial resolution is given by the width of the central maximum of
the diffraction pattern. Is the resolution of the annular aperture better
(narrower) or worse (broader) than that of the circular aperture?

d. The contrast is the ratio of the principal and secondary maxima. Is the
contrast better or worse for the annular aperture?
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Interference

9.1 Mutual coherence function and complex degree of coherence

The mutual coherence function describes the relationship between electric fields
measured at two points separated in both space and time. For now we will ignore
questions of polarization. Let’s call the points 1 and 2 as shown in Figure 9.1.
Assuming a stationary radiation field,

�̃12(τ ) = 〈Ẽ1(t) Ẽ∗
2(t + τ)〉, (9.1)

which is in the form of a cross correlation.
The complex degree of coherence is defined to be the mutual coherence function

normalized by its values for zero spatial separation and zero time delay,

γ̃12(τ ) = �12(τ )√
�11(0)�22(0)

. (9.2)

We tend to think of lasers as sources of coherent radiation and blackbodies as
incoherent sources. Taking the above definition, we have the idealized limiting
cases of |γ̃12| = 1 for perfectly coherent radiation, and |γ̃12| = 0 for perfectly
incoherent radiation. Everything in the real world lies between these limits and can
be said to be partially coherent:

0 < |γ̃12| < 1. (9.3)

Our treatment here combines the concepts of spatial and temporal coherence.

9.2 Quasi-monochromatic radiation

Consider a narrow-band light source, such as a mercury lamp. It will have a
finite bandwidth associated with either Doppler or pressure broadening. Its wave-
form will be approximately as shown in Figure 9.2; at different times the various
frequency components will combine in and out of phase. The Wiener–Khinchin

158
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Figure 9.1 Electric field strength measured at points separated in both time and
space.

Figure 9.2 Quasi-monochromatic radiation.

Figure 9.3 Gaussian power spectral density and autocorrelation functions.

theorem says that the power spectral density is the Fourier transform of the auto-
correlation function. And we know that the Fourier transform of a Gaussian is a
Gaussian. So if the power spectral density of the line is Gaussian, which we write
in our conventional form

S(ν) ∝ e−(ν−ν0)
2/2(	ν)2 (9.4)

and show in Figure 9.3, then so is its autocorrelation function,

R(τ ) ∝ e−τ 2/2(	τc)
2
, (9.5)
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Figure 9.4 Coherence length of quasi-monochromatic radiation.

where the coherence time is 	τc = 1/(2π	ν).1 Only the envelope of the auto-
correlation function is given above; there can also be a phase factor. Since the
waveform propagates at the speed of light, this coherence time is readily translated
into a (longitudinal) coherence length, lc = c	τc. For typical low pressure gas
lamps, lc � 50 cm, as shown in Figure 9.4. For broadband sources the coherence
length is very small.

9.3 Young’s two-slit experiment

Consider an idealized point source of radiation illuminating two slits in an opaque
screen (in phase) as shown in Figure 9.5. The Huygens–Fresnel principle says that
the slits then act as secondary radiators. The phase difference at x is

φ = k	 ≈ kd sin θ ≈ kdx

L
≈ 2πxd

λL
, (9.6)

where d is the slit spacing. The electric fields add, giving an intensity

I = ε0c 〈E2〉 (9.7)

= ε0c
[〈E2

1〉 + 〈E2
2〉 + 2〈
E1 · 
E2〉

]
(9.8)

= I1 + I2 + 2
√

I1I2 cosφ. (9.9)

If I1 = I2, then the fringes are fully modulated (I goes from zero to 4I1), as shown
in Figure 9.6. Define the “visibility” V:

V = Imax − Imin

Imax + Imin
, (9.10)

1 Other conventions for the definitions of bandwidth and coherence length give 	τc = 1/(	ν).
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Figure 9.5 Young’s two-slit experiment. Quasi-monochromatic radiation from
source S illuminates slits 1 and 2, separated by a distance d. Radiation from the
slits interferes a distance x from the optical axis.

Figure 9.6 Fully modulated fringes.

which is unity for the case shown. There are situations under which the fringes will
“wash out.” For example, if 	 � lc, as it may be for large x, we get V < 1. Simi-
larly, if a plate of glass is placed over slit 1 and the source has a coherence length
short compared to the optical delay of the plate, the fringes disappear, as shown
in Figure 9.7. A finite size of the source S will also make the fringes disappear.
In general, the interference pattern can be written as

I = I1 + I2 + 2
√

I1I2 Re γ̃12(τ ), (9.11)

where Re γ̃12(τ ) = |γ̃12(τ )| cos (α12(τ )− φ) and α12(τ ) is the phase offset of slits
1 and 2 with respect to the source.
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Figure 9.7 Fringes disappear if the light through one slit is delayed by more than
its coherence length.

Figure 9.8 Michelson interferometer consisting of a beam splitter (BS), a mov-
able mirror (M1), a fixed mirror (M2), and a detector (D).

V = 2
√

I1I2

I1 + I2
|γ̃12(τ )| , (9.12)

which just equals |γ̃12(τ )| if I1 = I2.

9.4 Michelson interferometer

Instead of interfering two portions of a wavefront, as in Young’s experiment,
consider a single wavefront which is split in amplitude (using a partially reflec-
tive mirror) as in Figure 9.8. Assume equal intensity division. If M1 and M2 are
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equidistant, the beams will be in phase at the detector. As M1 is moved, the rela-
tive phase will change, modulating the intensity. Fringes will occur only so long as
the difference in distances is smaller than the coherence length. Again, the fringe
visibility measures the coherence,

V = |γ̃11(τ )| . (9.13)

9.5 Michelson stellar interferometer

Consider stellar radiation which is incident on two small, spatially separate apert-
ures, as shown in Figure 9.9. Assume quasi-monochromatic light (some sort
of narrow-band filter). For a single point source, fringes will be formed as in
Young’s experiment (with unit visibility). If there is a second compact source of
equal intensity, separated by an angle θ , it also will produce fringes. But because
of the extra path length difference from the source to the two apertures (and the
resulting phase shift), this second set of fringes will be spatially displaced from the
first set. If hθ = λ/2, the phase shift will be 180◦ and the fringe pattern will wash
out (V = 0), as shown in Figure 9.10. There will be a similar loss of visibility for
a single extended source. If we have a circular source of diameter θ with uniform
brightness,

Figure 9.9 (Left) Schematic of Michelson’s stellar interferometer showing the
rigid support beam B, four small pickoff mirrors, the effective aperture mask M,
the telescope T (represented here by a lens), and the focal plane FP. Two sources
separated by an angle θ are being observed using a baseline length h. (Right)
Photograph of the interferometer attached to the upper end of the Mt. Wilson
Hooker telescope.
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Figure 9.10 Fringes from two point sources being washed out.

V = |γ̃12(0)| =
∣∣∣∣2J1(πhθ/λ)

πhθ/λ

∣∣∣∣ . (9.14)

Compare this result with the Airy pattern. There is clearly a close relationship
between coherence and diffraction theory.

9.6 Van Cittert–Zernike theorem

Consider a screen illuminated by quasi-monochromatic radiation from a source of
finite extent as in Figure 9.11. Decompose the source into small elements of area,
dσm. Each dσm contributes to the fields at points 1 and 2,

Em1(t) = Ãm

(
t − Rm1

c

)
e−i2πν(t−Rm1/c)

Rm1
, (9.15)

Em2(t) = Ãm

(
t − Rm2

c

)
e−i2πν(t−Rm2/c)

Rm2
. (9.16)

Each contribution has a phase term in the numerator and a R−2 intensity falloff
(R−1 in amplitude). The complex amplitude of the emission from σm, evaluated at
the correct retarded time, is given by Ãm(t − Rm1/c). The total fields at points 1
and 2 are given by superposition of the contributions from all the σm,

E1(t) =
∑

m

Em1(t), (9.17)

E2(t) =
∑

m

Em2(t). (9.18)



9.6 Van Cittert–Zernike theorem 165

Figure 9.11 A source of radiation (red in electronic version) in the (x, y) plane
is decomposed into differential elements of area (blue). These illuminate points
1 and 2 in the (X, Y) plane. Adapted from Born & Wolf (1999).

Evaluate the correlation of the fields at points 1 and 2,

�12(0) = 〈E1(t)E∗
2(t)〉 (9.19)

=
∑

m

〈Em1(t)E∗
m2(t)〉 +

∑∑
m�=n

〈Em1(t)E∗
n2(t)〉 (9.20)

=
∑

m

〈Em1(t)E∗
m2(t)〉, (9.21)

since m and n are independent radiators. Plugging in the expressions for Em1(t) and
Em2(t),

�12(0) =
∑

m

〈
Am

(
t − Rm1

c

)
A∗

m

(
t − Rm2

c

)〉
ei2πν(Rm1−Rm2)/c

Rm1 Rm2
. (9.22)

Assuming temporal coherence (quasi-monochromatic radiation), we can neglect
the difference in the arguments of Am, that is, lc � Rm1 − Rm2. Assuming further
that the process is stationary,

�12(0) =
∑

m

〈
Am(t)A∗

m(t)
〉 ei2πν(Rm1−Rm2)/c

Rm1 Rm2
(9.23)

=
∫
σ

I(
r ) eik(R1−R2)

R1R2
dσ. (9.24)

Expressed as the complex degree of coherence,

γ12(0) = 1√
I1I2

∫
σ

I(
r ) eik(R1−R2)

R1R2
dσ, (9.25)
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where I1 = ∫
σ

dσ I(
r )/R2
1, and I2 = ∫

σ
dσ I(
r )/R2

2. Note the similarity with
the Kirchhoff diffraction integral. Now let R1 ≈ R2 ≈ R in the denomina-
tor. If the screen–source distance is large compared with the source size and the
displacements on the screen,

R1 − R2 ≈ (X2
1 + Y2

1)− (X2
2 + Y2

2)

2R
− (X1 − X2)x + (Y1 − Y2)y

R
. (9.26)

Terms of order x2 and y2 appear in the expansions of R1 and R2 but cancel in
the subtraction. The first part of the above expression may be taken outside of the
integral as a phase factor,

γ12(0) ≈ eiφ

∫
σ

I(x, y) e−ik(px+qy) dx dy∫
σ

I(x, y) dx dy
, (9.27)

where p = (X1 − X2)/R and q = (Y1 − Y2)/R. The modulus of the degree of
coherence is equal to the Fourier transform of the source intensity distribution,
normalized by the total intensity.

9.7 Étendue of coherence

9.7.1 One approach

Consider a uniformly bright circular source of radius r0. We know that

|γ12(0)| =
∣∣∣∣2J1(u)

u

∣∣∣∣ , (9.28)

where

u = 2π
r0

Rλ

√
(X1 − X2)2 + (Y1 − Y2)2. (9.29)

This source subtends a solid angle at the screen of

� = π r2
0

R2
. (9.30)

Let point 1 on the screen be fixed (e.g. X1 = Y1 = 0), and let point 2 extend out
to a radius ρ from point 1. Over how large a region on the screen will the radiation
at these two points remain coherent? They will be more coherent if closer together
and less coherent if farther apart. Let us adopt a criterion of |γ12(0)| � 0.577 as a
reasonable dividing line between coherent and incoherent. If |γ12(0)| � 0.577, then
the Bessel function argument u � 2. Therefore the largest value of u is umax = 2,
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in which case

ρ =
√

X2
2 + Y2

2 = Rλ

2πr0
umax = Rλ

π r0
, (9.31)

A = πρ2 = R2λ2

π r2
0

. (9.32)

The étendue is then equal to

A� = R2λ2

π r2
0

π r2
0

R2
= λ2. (9.33)

9.7.2 An alternate approach

The preceding was a bit unsatisfactory due to the lack of a precise boundary to the
coherence area and due to the seemingly arbitrary choice of |γ12| � 0.577. Since
A and � are related by Fourier transforms, they cannot both have sharp edges,
but we can make the derivation seem a bit less arbitrary if we consider a circular
aperture with an Airy pattern beam.

Consider a radio telescope of radius a (A = πa2) with a single-mode detector
at the focus as in Figure 9.12. Assume the aperture is uniformly illuminated with
uniform phase and intensity. The sensitivity pattern will be

P(θ, φ) = P0

[
2J1(kaθ)

kaθ

]2

. (9.34)

Define the solid angle of this beam by

�A =
∫

P(θ, φ)

P0
d� (9.35)

Figure 9.12 In general the radiation pattern of a radio telescope will be a function
of the distance θ from the optical axis and an azimuthal angle φ.
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=
∫ π

0

[
2J1(kaθ)

kaθ

]2

2π sin θ dθ (9.36)

≈ 4
∫ ∞

0

J2
1(x)

x2

(
λ

2πa

)2

2π x dx, (9.37)

where k = 2π/λ and x = kaθ .

�A = 2

π

λ2

a2

∫ ∞

0

J2
1(x)

x
dx (9.38)

= λ2

πa2
. (9.39)

This gives an étendue of precisely λ2,

A�A = πa2 λ
2

πa2
= λ2. (9.40)

This may seem to lack the arbitrary step necessary in the first approach, but it
actually does have one. That step is the definition of the solid angle of the beam.
Since the beam lacks sharp edges, there is no unique definition, although the one
used is certainly reasonable.

9.8 Aperture synthesis

The van Cittert–Zernike theorem gives us a procedure for determining the intensity
distribution of a source: measure the complex degree of coherence for points at var-
ious separations and perform a Fourier transform. This is exactly what is done with
a Michelson stellar interferometer and with radio interferometers. Using various
pairs of apertures (baselines) one samples various spatial frequency components of
the source. If enough components are measured, one can reconstruct the appear-
ance of the source as if it were imaged by a single large aperture (hence the name
aperture synthesis).

At radio frequencies it is easy to measure the degree of coherence; signals from
two telescopes are brought together, multiplied, and then integrated to get 〈E1 E2〉
as in Figure 9.13. Note the need for linear (phase-preserving) amplifiers. For finite
bandwidth there is also a need for a system, known as a delay line, to equalize the
time delays (	τ 	 τc = 1/	ν).

9.8.1 Arrays of antennas

Another way to view aperture synthesis is by considering an array of transmit-
ting antennas, as in Figure 9.14. There exists a reciprocal relationship between the
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Figure 9.13 In a radio interferometer the electric fields at two points are ampli-
fied and then brought together and multiplied. The result is integrated (low pass
filtered) to give the visibility.

Figure 9.14 A linear array of dipole antennas (red) broadcasting in phase.

power pattern for transmitting and the sensitivity pattern for reception. For simplic-
ity, consider a linear array of N pure dipoles. A single dipole is not very directional.
What happens when you have an array of them? Add the electric fields at large
distances, where 	 is the spacing of the dipoles:

α = k	 sin θ cosφ, (9.41)


E = θ̂ A0
sin θ

r
ei(kr−ωt)

{
1 + eiα + ei2α + · · · + ei(N−1)α

}
. (9.42)
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Figure 9.15 Antenna pattern of a linear array relative to that of a single dipole.

Since 1 + x + x2 + · · · + xN−1 = (xN − 1)/(x − 1),


E = θ̂ A0
sin θ

r
ei(kr−ωt) eiNα − 1

eiα − 1
(9.43)

= θ̂ A0
sin θ

r
ei(kr−ωt) ei(N−1)α/2 sin(Nα/2)

sinα/2
. (9.44)

The radiation pattern of a single dipole is modulated by sin2(Nα/2)/sin2(α/2).
This gives a narrow beam, strongly peaked in the α = 0 direction, as shown in
Figure 9.15. The beam is stronger and narrower for large N.

9.9 Caveat

Second order coherence theory is, in fact, far richer than the treatment in this
chapter may suggest. For further details on the interrelationships between spa-
tial and spectral coherence for partially coherent radiation, one may refer to Wolf
(2007) or other references on the topic.

9.10 Fourth order coherence

Some phenomena require consideration of higher order coherence functions such
as the fourth order quantity

�̃(2,2)(
r1, t1;
r2, t2;
r3, t3;
r4, t4) = 〈Ẽ1(t1) Ẽ∗
2(t2) Ẽ3(t3) Ẽ∗

4(t4)〉, (9.45)

where, as in the beginning of this chapter, the subscripts refer to separate spatial
points. The choice of which fields are complex conjugated is arbitrary, as long as
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two are conjugated and two are not. Our argument follows that of Wolf (2007),
although in a different order and with somewhat different notation. Multivariate
Gaussian random processes are completely determined by their mean and their
second moments. For fields with zero means, the fourth order moment given above
is determined by second order moments in the sense

�̃(2,2)(
r1, t1;
r2, t2;
r3, t3;
r4, t4) = �̃(1,1)(
r1, t1;
r2, t2)�̃
(1,1)(
r3, t3;
r4, t4)

+ �̃(1,1)(r̃1, t1; r̃4, t4)�̃
(1,1)(
r2, t2;
r3, t3) (9.46)

= �̃12(t1, t2)�̃34(t3, t4)+ �̃14(t1, t4)�̃23(t2, t3).
(9.47)

The second version corresponds to the notation used at the beginning of this
chapter.

9.10.1 Intensity interferometry

One of the first things we are taught in electromagnetic theory is the principle of
superposition, by which two electric field components are added and then squared
to give the intensity. The squaring operation gives a term proportional to the prod-
uct of the two fields. The magnitude of this term depends on the phase difference,
leading to interference phenomena as in Young’s experiment. This is not the whole
story. Take the expression for fourth order coherence and let 
r1 = 
r2 and 
r3 = 
r4.
Assume further that we are looking at a stationary Gaussian random field so that
we can write t = t1 = t2 and t + τ = t3 = t4. Therefore we can write

〈Ẽ1(t) Ẽ∗
1(t) Ẽ3(t + τ) Ẽ∗

3(t + τ)〉 = �̃11(0)�̃33(0)+ �̃13(τ )�̃31(−τ) (9.48)

= �̃11(0)�̃33(0)+ �̃13(τ )�̃
∗
13(τ ). (9.49)

Hanbury Brown realized that this implied there would be correlations between
intensity fluctuations in two separate antennas and that these would be related to
the complex degree of coherence (Hanbury Brown et al., 1952). Many did not
initially believe this claim. Hanbury Brown’s reasoning goes as follows. For sim-
plicity we will rename point 3 as 2 so that points 1 and 2 correspond to the two
separate antennas. Consider intensity fluctuations 	I1 and 	I2. If one correlates
these signals,

〈	I1(t)	I2(t + τ)〉 = 〈[I1(t)− 〈I1(t)〉] [I2(t + τ)− 〈I2(t + τ)〉]〉 (9.50)

= 〈I1(t)I2(t + τ)〉 − 〈I1(t)〉〈I2(t + τ)〉 (9.51)

= 〈E1(t)E
∗
1(t)E2(t + τ)E∗

2(t + τ)〉
− 〈E1(t)E

∗
1(t)〉 〈E2(t)E

∗
2(t)〉. (9.52)
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Substituting our result for the fourth order correlation function,

〈	I1(t)	I2(t + τ)〉 = �̃11(0)�̃22(0)+ �̃12(τ )�̃
∗
12(τ )− �̃11(0)�̃22(0) (9.53)

= |�12(τ )|2 , (9.54)

〈	I1(t)	I2(t + τ)〉
〈I1(t)〉〈I2(t)〉 = |γ12(τ )|2 . (9.55)

This technique produced important early results in the visible (using photomultipli-
ers) and at radio wavelengths, although it is significantly less sensitive than modern
techniques.

Exercises

9.1 Consider the antenna array in Section 9.8.1. What is the antenna pattern if
	 = λ/2 and if the antennas are driven with phases alternating by π (relative
to the antenna at the origin, the remaining antennas have phase shifts of π , 0,
π , . . .)?

9.2 In Young’s double slit experiment, approximately how large can the source
size get before the interference fringes are lost? Consider a slit spacing of
1 mm, a wavelength of 600 nm, and a distance between the source and the
slits of 1 meter. What is the maximum transverse extent of the source?
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Spectroscopy

Spectroscopic techniques vary from one wavelength band to another. Methods
for performing spectroscopic analysis at radio wavelengths will be covered in
Chapter 12. Here we will concentrate on a variety of techniques, focussed on the
visible and infrared bands, which also have some applicability at shorter wave-
lengths. Greater detail on these and other spectroscopic devices may be found in
Schroeder (2000), Kitchin (2009), Born & Wolf (1999), and elsewhere.

10.1 Multiple beam interference

Consider a pair of planar parallel dielectric interfaces, as shown in Figure 10.1.
The reflected and transmitted waves consist of numerous interfering components.
The Fresnel coefficients for the individual surfaces r12, t12, r23, and t23 are already
known. But what are the overall reflection and transmission coefficients for the pair
of interfaces together? Consider the first two contributors to the reflected beam. The
difference in optical path length is given by

	 = 2n2d

cos θ2
− h n1 sin θ1 (10.1)

= 2n2d

cos θ2
− (2d tan θ2)(n2 sin θ2) (10.2)

= 2n2d

cos θ2
(1 − sin2 θ2) (10.3)

= 2n2d cos θ2. (10.4)

The resulting phase difference is

φ = 2n2d
ω

c
cos θ2. (10.5)

173
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Figure 10.1 Interference between plane-parallel dielectric interfaces. The electric
fields of the reflected beams (blue in electronic version) are superimposed, as
are the fields of the transmitted beams (green). The brace (orange) shows the
optical path length hn1 sin θ1, a contribution to the path length difference between
successive reflected beams.

The reflected beam is a superposition of all the individual components

r = r12 + t12r23t21eiφ + t12r23r21r23t21ei2φ + · · · (10.6)

= r12 + t12r23t21eiφ
[
1 + q + q2 + · · ·] , (10.7)

where q = r21r23eiφ . Using a well-known series expansion we can write this as

r = r12 + t12r23t21eiφ
[
1 − q

]−1
(10.8)

= r12 + r23eiφ

1 + r12r23eiφ
, (10.9)

where we have used the Stokes relations r12 = −r21 and t12t21 = 1 − r2
12. Similarly

for the transmitted wave amplitude, t,

t = t12t23eiφ/2

1 + r12r23eiφ
. (10.10)

There is a variety of alternate approaches to this problem. Treating it as a boundary
value problem is cumbersome (see Born & Wolf, 1999). But it can be reduced to an
easy and powerful matrix method covered in the exercises at the end of the chapter.

10.1.1 Airy function

In the previous section we found amplitudes of reflected and transmitted waves.
We must square these to get intensities. Do not forget that the intensity also depends
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on the index of refraction. But here, for simplicity, let media 1 and 3 be identical,
in which case r12 = −r23.

r = r12 + r23eiφ

1 + r12r23eiφ
(10.11)

= r12(1 − eiφ)

1 − r2
12eiφ

, (10.12)

R = 4r2
12 sin2(φ/2)

(1 − r2
12)

2 + 4r2
12 sin2(φ/2)

. (10.13)

And for the transmitted intensity,

T = (1 − r2
12)

2

(1 − r2
12)

2 + 4r2
12 sin2(φ/2)

. (10.14)

This is known as the Airy function, which is illustrated in Figure 10.2. Note that
R + T = 1. For large values of r2

12, this gives a good, narrow, well-defined passband.

10.1.2 Anti-reflection coating

An interface between air and a dielectric of index n, at normal incidence, has an
intensity reflection coefficient

R =
(

1 − n

1 + n

)2

. (10.15)

Figure 10.2 The Airy function for a finesse of 5 (upper curve, blue in elec-
tronic version), 10 (middle, red), and 20 (lower, black), corresponding to values of
r2
12 = r2

23 = 0.54, 0.73, and 0.85, respectively. See Section 10.2 for the definition
of finesse.
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For typical glasses, n ≈ 1.6, which implies that R ≈ 0.05. For a typical optical
system with multiple surfaces (e.g. several lenses), this can amount to a substantial
loss of intensity. It is possible to greatly reduce the reflectivity of such a surface
with a thin coating with an intermediate index of refraction. For the general case of
n1 �= n2 �= n3,

R = r2
12 + r2

23 + 2r12r23 cosφ

1 + r2
12r2

23 + 2r12r23 cosφ
, (10.16)

φ = 2n2d
ω

c
. (10.17)

If we are able to find a material with n2 = √
n1n3, then r12 = r23. If, in addition,

d = λ0/(4n2), then cos φ = −1 and R = 0, giving a perfect anti-reflection coating at
λ0, as in Figure 10.3. One can construct a broadband low reflectivity coating using
multiple layers, which is also useful if we can’t find a material with n2 = √

n1n3.

10.1.3 Enhanced reflection coating

It is possible to make coatings which enhance reflectivity in a similar way, but
to do so it is necessary to enhance the discontinuities in the refractive index. For
example, pick n2 � n1, n3. Going from low index to high index gives

r12 = n1 − n2

n1 + n2
< 0, (10.18)

|r12| ≈ 1. (10.19)

Figure 10.3 (Left) Anti-reflection coat a piece of optics by applying a thin dielec-
tric layer of appropriate index and thickness. (Right) Reflectivity of a material
with constant index n = 1.6 before (black) and after (red in electronic version)
anti-reflection coating.
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Figure 10.4 Enhanced reflectivity coating.

Going from high to low gives

r23 = n2 − n3

n2 + n3
> 0, (10.20)

|r23| ≈ 1. (10.21)

For a resonant thickness d = λ0/(4n2), as in Figure 10.4, this implies that
cosφ = −1,

R = r2
12 + r2

23 + 2r12r23 cosφ

1 + r2
12r2

23 + 2r12r23 cosφ
. (10.22)

If we let r ≈ |r12| ≈ |r23|,
R ≈ 4r2

(1 + r2)2
≈ 1 (10.23)

since r2 ≈ 1.
Mirrors made of glass substrates coated with thin layers of metals such as alu-

minum, silver, or gold have high – but far from perfect – reflectivity. Aluminum
coated mirrors are most common in astronomical telescopes, but such mirrors have
reflectivities of 85–92% across the visible band, with even poorer efficiency in the
ultraviolet. Metallic surfaced mirrors are often overcoated with dielectrics such as
SiO2 or MgF primarily for protection of the soft underlying metal. But it is possible
to make multilayer dielectric coatings which enhance mirror reflectivities up to as
high as 99.999% at a specific wavelength. Such mirrors are quite important to the
laser industry, but it is not generally possible to make such coatings for the large
mirrors used in most astronomical telescopes.

10.1.4 Interference filters

With multiple-layer thin films it is possible to tailor regions of high and low reflec-
tivity to fit your particular application. For example, you might want to make a
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filter which selectively passes Hα emission. The number of layers can be of order
20, giving some 40 variables (20 thicknesses and 20 indices of refraction), all of
which may be adjusted to optimize performance.

10.2 Fabry–Perot interferometer (etalon)

Construct an interferometer using a pair of high reflectivity surfaces, as shown in
Figure 10.5. The transmission is given by the Airy function,

T =
[

1 + 4r2

(1 − r2)2
sin2(φ/2)

]−1

. (10.24)

The transmission peaks are narrow if r2 is large. At normal incidence, peaks occur
when

φ = 2nd
ω

c
cos θ = 2d

ω

c
= m 2π. (10.25)

A particular transmission peak is designated by the order m. What is the full-width
at half-maximum (γ ) of the Airy function peaks?

T = 1

2
, (10.26)

4r2

(1 − r2)2
sin2(φ/2) = 1, (10.27)

	φ2 ≈ (1 − r2)2

r2
, (10.28)

where φ = m 2π +	φ and 	φ 	 2π . The FWHM along the φ axis is

γ = 2
1 − r2

r
. (10.29)

Figure 10.5 Construction of a Fabry–Perot interferometer using
two glass plates, one side of each coated for high reflectivity (red
in electronic version) and the other for low reflectivity (blue).
The high reflectivity surfaces are flat and parallel with a small,
uniform air gap between them.
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Define the finesse,1 F , as the ratio of the peak spacing to the width. Under the
approximation used above, corresponding to high surface reflectivities and narrow
peaks,

F = 2π

γ
= π r

1 − r2
. (10.30)

The resolving power, R, increases with the order, m.

R = λ

	λ
= ν

	ν
= φ

	φ
= m2π

γ
= m F . (10.31)

The transmission pattern shown was for normal incidence. At oblique incidence
the resonant peak is shifted,

	φ = 2nd
ω

c
(1 − cos θ) ≈ 2nd

ω

c

θ2

2
, (10.32)

for small θ . The angle at which this shift is equal to the peak width is

θ2

2
2d
ω

c
= γ

2
, (10.33)

θ2 = γ

mπ
= 2π/F
πR/F . (10.34)

Therefore the maximum solid angle which can be used without significant loss of
resolution is

� = 2π

R
. (10.35)

Figure 10.6 A lower order Fabry–Perot interferometer (1) and a high order
Fabry–Perot (2) in series, shown along with their transmission patterns.

1 Not to be confused with the coefficient of finesse, usually written as F. The exact relationships are F =
4r2/(1 − r2)2 and F = π/[2 arcsin(1/

√
F)].
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One problem of Fabry–Perots is the transmission of multiple orders.2 It is possible
to use several Fabry–Perots in series, as shown in Figure 10.6, to select the desired
order. One can tune to a selected wavelength by varying the spacing(s).

10.3 Fourier transform spectrometer

Consider a Michelson interferometer with a moving mirror, as shown in
Figure 10.7. Assume 50/50 division at the beam splitter. For a quasi-monochro-
matic wave of wavenumber k, the intensity at Q is

ĨQ(	) = 1

2
I0[1 + cos k	]. (10.36)

For multiple frequency components,

ĨQ(	) = 1

2

∫ ∞

0
I0(k) [1 + cos k	] dk (10.37)

= 1

2

∫ ∞

0
I0(k) dk + 1

2

∫ ∞

0
I0(k) cos k	 dk, (10.38)

ĨQ(0) =
∫ ∞

0
I0(k) dk, (10.39)

ĨQ(	) = 1

2
ĨQ(0)+ 1

2

∫ ∞

0
I0(k) cos k	 dk. (10.40)

Figure 10.7 In a Fourier transform spectrometer a beam is split into two parts
which travel different length paths before recombining. The path difference is
varied, and the spectrum is obtained by a Fourier transform of the data.

2 This can be considered as a limitation on the free spectral range of the Fabry–Perot. A similar situation arises
with diffraction gratings, discussed in Section 10.5.
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We can recover the spectrum I0(k) by an inverse Fourier transform,

I0(k) = 1

2π

∫ ∞

0
[2ĨQ(	)− ĨQ(0)] cos k	 d	. (10.41)

The factor of 1/2π is present since we have deviated from our convention of having
2π present in the kernel of Fourier transforms. Since in practice we can scan only
up to some maximum value of 	, we end up with limited spectral resolution R,

R ≈ 2	max

λ
, (10.42)

but this resolution can be of order 106. As with the Fabry–Perot, this is valid for
limited solid angle

� = 2π

R
. (10.43)

10.4 Prism spectrograph

A light ray entering a prism of index of refraction n and apex angle α, as shown in
Figure 10.8, is deflected as shown. After two applications of Snell’s law, one finds
the total deflection to be

δ = (θi1 − θt1)+ (θt2 − θi2) (10.44)

= θi1 − α + sin−1

[
sinα
√

n2 − sin2 θi1 − cosα sin θi1

]
. (10.45)

Since δ increases with n, and for normal dispersion n is larger at blue wavelengths,
blue light is deflected more than red light.

Figure 10.8 A light ray passing through a prism as shown undergoes a total angu-
lar deflection of δ. Dashed lines (red in electronic version) show perpendiculars
to the surfaces. Notation follows that of Hecht (2002).
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Figure 10.9 A prism spectrograph with slit, collimator lens (left), and camera lens
(right).

With prism and grating spectrographs, we distinguish between dispersion, the
physical separation of different wavelengths, and resolution, the ability to distin-
guish between nearby wavelengths. For a prism, the angular dispersion,3 for the
case of symmetrical illumination (illustrated in Figure 10.9; θi1 = θt2, θi2 = θt1), is
given by

dδ

dλ
= sinα

cos θt2 cos θt1

dn

dλ
(10.46)

= b

h

dn

dλ
. (10.47)

The ray bundle has finite width, h. The resulting diffraction leads to a spread in
angle of the deflected beam which limits the resolution. The first minimum of the
sinc function gives

	δ = λ

h
, (10.48)

R = λ

	λ
= b

∣∣∣∣dn

dλ

∣∣∣∣ . (10.49)

For dense flint glass, dn/dλ ≈ 10−4 nm−1. Taking as a practical limit a prism base
thickness of 10 cm, this implies R � 104. Prism spectrographs are inherently low
resolution.

10.4.1 Prism applications

One important application of prisms is obtaining low resolution spectra of large
numbers of stars in objective prism surveys. An objective prism is placed at the

3 The linear dispersion is obtained by multiplying the angular dispersion by the focal length of the camera.
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Figure 10.10 (Left) Schematic illustration of an objective prism. (Right)
An objective prism image of the Hyades (courtesy of Dean Ketelsen). The Balmer
absorption lines can be easily seen. This technique can also be used to find emis-
sion lines such as [O III] 495.9, 500.7 nm. For color version of figure, see plate
section.

entrance pupil of a telescope, where the light is collimated (near the objective lens).
In the focal plane each stellar image is replaced by a small image of its spectrum,
as shown in Figure 10.10. Note that there is no slit, as would be present in a normal
prism spectrograph. This is a type of slitless spectrograph. This is useful for spec-
tral classification work and detection of emission-line objects. Typical resolution
in such applications is of order R ≈ 1000. Prisms are also used as pre-dispersers
(order-sorting devices) for higher resolution spectrometers such as Fabry–Perots,
and in conjunction with gratings (grism) for non-objective slitless spectroscopy.

10.5 Diffraction gratings

In astronomy one typically encounters diffraction gratings used in reflection,
although transmission gratings are also possible. A diffraction grating is an object
with a spatially periodic reflection or transmission function (a complex quantity,
affecting the wave amplitude and/or phase). Conceptually, the simplest reflection
grating is an array of line scattering centers, as in Figure 10.11. Each line, indi-
vidually, scatters energy over a wide range of angles. Constructive interference
occurs when the net path length difference corresponds to an integral number of
wavelengths. The grating equation says that

m λ = a (sin θm − sin θi). (10.50)

The integer m gives the spectral order of the various maxima. Specular reflection
(m = 0), which is non-dispersive, occurs when θm = θi. The various orders are
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Figure 10.11 (Left) Incident and diffracted light off an array of line scattering
centers. Dashed lines (red in electronic version) denote perpendiculars to the
plane of the grating. (Right) Arrangement of different orders of diffraction around
specular reflection (m = 0).

arrayed on either side of m = 0. Within each order, red light is diffracted more
than blue light; it falls farther from m = 0.

10.5.1 Grating properties

The dispersion of a grating is obtained by differentiating the grating equation. For
fixed θi,

m dλ = a cos θm dθm, (10.51)

dθm

dλ
= m

a cos θm
. (10.52)

The dispersion is larger for higher orders. As with a prism, the size of the grating
limits the available resolution. If there are N grooves, the length of the grating is
Na. At oblique illumination the ray bundle has a width Na cos θm. Therefore,

	θm = λ

Na cos θm
(10.53)

at the first minimum of the sinc function.

R = λ

	λ
= m N (10.54)

= Na
sin θm − sin θi

λ
. (10.55)
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A typical large astronomical grating might have of order 105 grooves (100 mm at
1000 lines per mm), giving a resolving power of 105 in first order.

A disadvantage of grating spectrographs is that the various orders will overlap,

a (sin θm − sin θi) = (m + 1) λ = m (λ+	λ), (10.56)

	λFSR = λ

m
. (10.57)

The free spectral range 	λFSR is small for large m. Grating spectrographs will
also have limited solid angle acceptance. For typical applications, � ≈ 10−2/R or
10−1/R, much smaller than for Fabry–Perot interferometers or Fourier transform
spectrometers.

10.5.2 Grating profiles

In practice, one wants a diffraction grating which intercepts a large fraction of the
incident light and directs it into the desired order. This is done by making triangular
blazed gratings, as shown in Figure 10.12. The maximum efficiency for order m
occurs when

θm − θi = 2 γ, (10.58)

which corresponds to specular reflection off each facet of the grating. In essence
the grating is acting as an ideal phase transformer, transforming the incident planar
wavefront into an outgoing planar wavefront (for some wavelength λ).

10.5.3 Czerny–Turner spectrograph

The Czerny–Turner spectrograph is a widely used configuration. Note in
Figure 10.13 the presence of both input (collimating) and output (camera) mirrors.

Figure 10.12 Grating blazed at the
angle γ . Dashed lines (red in electronic
version) show the plane of the grating
and its normal. Blue dashed line shows
the normal to the facets.
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Figure 10.13 A Czerny–Turner spectrograph. Incoming light (red in electronic
version) is collimated, diffracted by the grating and then refocussed (blue) onto
the focal plane.

Figure 10.14 An echelle grating, details as in Figure 10.12.

It is possible to design a spectrograph where a single mirror is used for both func-
tions. The input and output beams may use different portions of the mirror. This is
called an Ebert–Fastie mounting and is considered a special case of the Czerny–
Turner design. When the light reflected off of the grating follows nearly the same
path as the incoming beam, this is referred to as the Littrow configuration.

10.5.4 Echelle spectrograph

An echelle grating is a grating of relatively large period, blazed for use in high order
(m ≈ 50) at a large angle of incidence, as shown in Figure 10.14. This is useful
for obtaining high resolution and high dispersion. At high resolution, the echelle
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has the largest solid angle acceptance and luminosity of all grating spectrome-
ters. There is a disadvantage in that the orders are strongly overlapping. However,
these orders may be separated using a dispersing element whose dispersion is in
the orthogonal direction (a cross disperser). The resulting spectrum appears in a
2-dimensional format, suitable for use with a CCD camera.

10.5.5 Grism spectroscopy

A grism, also known as a Carpenter prism, is a combination of a grating and a prism
used for slitless, multi-object spectroscopy in much the same way as an objective
prism. The grating used is a transmission grating, usually used in first order, and
the prism is used to cancel the deflection of the dispersed images at some central
wavelength, as shown in Figure 10.15. Since the net result is no deflection, a grism
may be inserted into a collimated beam in much the same way as a bandpass filter.
With nothing in the beam, a broadband image of the field is obtained. With filters
present, narrow-band images are obtained. And with a grism present, each object
in the field is dispersed into a spectrum.

10.5.6 Fiber optic spectroscopy

Many modern spectroscopy designs take advantage of the fact that classical long-
slit spectrographs can accommodate numerous objects at different heights on the
slit. Nature does not put the objects in a line. So a set of optical fibers are placed

Figure 10.15 A grism consists of a
transmission grating in contact with one
face of a prism. It may be used for zero
deflection at some central wavelength in
first order (m = −1).
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to collect light from different regions of the focal plane and bring them to different
positions on the entrance slit of the spectrograph. An example is the spectrograph
of the Sloan Digital Sky Survey.

Exercises

10.1 Consider a set of dielectric layers separated by planar parallel interfaces. The
index m designates the various layers, counting from left to right (m = 1,
2, . . .). Let Em denote the electric field amplitude of the wave traveling left
to right in layer m and E′

m the amplitude of the wave traveling right to left.
It is claimed that the fields in layers m and m + 1 are related by the matrix
equation (

Em

E′
m

)
= (Cm)

(
Em+1

E′
m+1

)
, (10.59)

where

(Cm) = 1

tm,m+1

(
e−iβm/2 rm,m+1e−iβm/2

rm,m+1eiβm/2 eiβm/2

)
(10.60)

and rm,m+1 and tm,m+1 are Fresnel coefficients.4

a. Show that the results for reflected and transmitted wave amplitudes at a
single interface between two dielectrics are given by(

E1

E′
1

)
= (C1)

(
E2

0

)
, (10.61)

with β1 = 0.
b. Show that the results for two interfaces are given by(

E1

E′
1

)
= (C1) (C2)

(
E3

0

)
, (10.62)

with β2 = 2d2n2ωc−1 cos θ2, where d2 is the thickness of the middle layer
and θ2 is the angle of propagation in that layer.

This approach may be generalized to a system of multiple layers separated by
planar dielectric boundaries.

10.2 Consider a Fourier transform spectrometer which is scanned symmetrically
about zero path length difference, with a total excursion 	m:

−	m/2 ≤ 	 ≤ 	m/2. (10.63)

4 Adapted from Reitz et al. (1979).
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a. Describe the observed interferogram as the product of the full interfero-
gram (if one scanned from −∞ to ∞) and a boxcar. Calculate the spectral
profile of the instrument.

b. By multiplying the observed interferogram by various functions it is possi-
ble to modify the instrumental profile (for example, to decrease the wings
of the profile). Consider the apodization function

1 − 2|	|
	m

,

where |	| < 	m/2. Compare the width of the apodized profile to that of
the unapodized profile. Compare the heights of the sidelobes.5

10.3 The 4 meter Mayall telescope at Kitt Peak has an echelle spectrograph con-
taining a grating with 58 grooves mm−1, blazed at 63◦. The length of the
grating is 254 mm. The spectrum is viewed by a CCD camera with a focal
length of 590 mm.

a. What is the dispersion of the spectrograph at Hα (λ = 656.3 nm)?
b. In what order of the grating will Hα fall?
c. What is the free spectral range (FSR) near Hα?
d. What is the limiting (diffraction limited) spectral resolution at this wave-

length?
e. In practice, the resolving power is limited by atmospheric turbulence (see-

ing) to values more like R = 2 × 104. Describe the size of the CCD chip
(physical size and number of pixels) needed to measure the full FSR of
the order containing Hα and to make full use of this resolving power.

10.4 Consider a grism with the geometry shown in Figure 10.15.

a. What is the apex angle, γ , of the prism needed to produce no net deflection
at a wavelength λc in first order (m = ±1, depending on the convention
used)? Assume the prism is made of glass of index n and the grating has a
line spacing of a. Ignore the variation in n with wavelength. (Note that it
is necessary to use a modified form of the grating equation.)

b. What is the angular dispersion dθm/dλ in first order?
c. Assuming the beam is diffraction limited (ignoring aberrations), what is

the spectral resolving power in first order?
d. If placed in a slowly converging beam, what aberrations is this system

likely to produce?

5 Adapted from Lèna et al. (1998).
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Ultraviolet, x-ray, and gamma ray astronomy

11.1 Telescopes and imaging

As photon energies increase beyond those of visible and near-ultraviolet light,
conventional telescope designs fail. We will look at some variations on conven-
tional optical designs which are effective for x-ray telescopes and then at other
approaches to imaging for gamma ray observations. Earth’s atmosphere is opaque
to radiation beyond the near-ultraviolet, so observations at these energies require
space missions.

11.1.1 X-ray telescopes

From our earlier discussion of the complex index of refraction, we can see that for
soft x-rays, generally ω � ω0i, and

n2 − 1

n2 + 2
≈ −1

3

ω2
p

ω2
. (11.1)

When, in addition, ω � ωp,

n2 ≈ 1 − ε. (11.2)

The index of refraction is real and slightly less than 1. Materials become transparent
– all materials. How then can one hope to build a focussing system, i.e. a telescope?
Since materials are transparent, one might first consider making lenses, but the fact
that the index of refraction is near unity leads to impractically long focal lengths.
Instead, it is better to use mirrors.

Snell’s law for refraction is

n sin θ = n′ sin θ ′. (11.3)

If n = 1 and n′ < 1, then for some angles θ there is no allowed value of θ ′,
since sin θ ′ would need to be greater than 1. Thus there can be no refracted ray;

190
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Figure 11.1 Examples of total internal reflection. On the left, visible light is
totally internally reflected inside a piece of glass. On the right, an x-ray at grazing
incidence is totally “internally” reflected by a metallic surface.

Figure 11.2 Cross section of a Wolter type-I telescope with nested optics such
as in ROSAT and Chandra. Paraboloidal shells are shown as solid extensions of
dashed lines (red in electronic version). Hyperboloidal shells are extensions of
dotted (blue) lines. Not to scale.

there must be total reflection. This is usually called total internal reflection and
is illustrated in Figure 11.1. The reflected ray carries 100% of the energy and is
internal to the higher index material, which for visible optics might be, for example,
glass. For x-rays the reflection is still internal to the higher index medium, which in
this case is vacuum, but external to the material causing the reflection. To allow the
largest possible range of grazing incidence angles, it is desirable to have the index
of refraction of the mirror surfaces as much below unity as possible. This requires
the largest possible plasma frequency, produced by using high-Z materials.

So to make an x-ray telescope it is necessary for all reflections to occur at graz-
ing incidence, θ ≈ 89◦. The most common design is known as Wolter type-I, a
paraboloid followed by a hyperboloid, as shown in Figure 11.2.1 In designing such
a telescope one has the normal optical considerations such as focal length, aberra-
tions, etc., plus the additional complication that all reflections must be at grazing

1 The Wolter type-II design is a paraboloid followed by a hyperboloid placed inside the paraboloid. Wolter
type-III consists of a paraboloid followed by an ellipsoid on the outside.
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incidence, which means that each reflection can only change the direction of prop-
agation by a small amount. X-ray telescopes are generally not diffraction limited
since the diffraction limit is small at such high frequencies and it is very difficult
to make and align sufficiently smooth and precise mirrors. Because the grazing-
incidence design yields only a small annular collecting area, it is common to use a
nested confocal mirror configuration to increase the effective area.

11.1.2 Collimators

A much cruder approach to imaging is the use of collimators to limit the field of
view of a detector to a particular region on the sky. Such an approach is suitable
when one is interested in resolutions of the order of degrees, but not for higher
resolution. Essentially the approach is to shield the detector from radiation com-
ing in from the sides or significantly off-axis, thus acting effectively as mechanical
“blinders.” An example is shown later in the chapter. Collimators, though, are inef-
ficient since a large fraction of potentially interesting photons are absorbed and do
not reach the detector.

11.1.3 Tracking designs

High energy photons undergo Compton scattering or pair production events within
a detector. Information on the energy of the photon and the direction from which
it has arrived must then be derived geometrically from information on the tracks
of the resulting energetic electrons and positrons and, if possible, on the charac-
teristics of any scattered photon. We will refer to these very broadly as tracking
designs, of which there are various implementations. Since these are very detector
and mission specific, details are deferred to later in the chapter.

Astronomical sources of x-rays and gamma rays are likely to be highly polar-
ized, but polarimetry is inherently difficult at these energies. One of the more
promising approaches is to use the polarization dependence of Compton scatter-
ing. A Compton-based detector requires accurate positional detection of both the
original Compton scattering event and the direction of the scattered photon (Soffitta
et al., 2003).

11.1.4 Coded apertures

Another approach to imaging is one in which directional information is encoded
by having an aperture with a variable transmission function located some distance
in front of a position-sensitive detector. For best efficiency, the transmission should
be either 0 (blocked) or 1 (open) at all positions in the aperture. The transmission



11.1 Telescopes and imaging 193

Figure 11.3 Illustration of a pinhole camera and a coded aperture mask.

function must not be patterned in any regular fashion, such as alternating stripes,
since that would leave ambiguities in the source position. Instead, the transmission
function should be, in some sense, irregular or random.

The technique is analogous to that of a pinhole camera, as illustrated in
Figure 11.3. Consider the geometrical optics limit, appropriate for small wave-
lengths. The only open portion of the aperture plane is the pinhole, which will
form a sharp image but with low sensitivity since the aperture is small. How can
we increase the sensitivity? Only by opening up more of the aperture plane. So con-
sider adding a second pinhole. In geometrical optics, there will now be a second
displaced image whose intensity will be added to that of the first image. The inten-
sity distribution of the object being viewed is now encoded, or multiplexed, into
the pattern being seen by the detector. Imagine continuing to add pinholes until a
significant fraction of the aperture plane is open. It turns out that it is best to have
about 50% of the aperture open. A variety of mask patterns are possible, but the
principal requirement is that the autocorrelation function of the mask approximate
a δ-function. Examples are shown later in the chapter. For further details see In’t
Zand (1992).

Once the intensity distribution on the detector has been measured, it is necessary
to decode it to obtain the original intensity distribution on the sky. A variety of
reconstruction algorithms are possible, some of them analogous to those used in
radio interferometry. The principal disadvantage of multiplexing systems is that
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noise associated with a single detector element or Poisson noise due to a single
bright source in the sky can appear in multiple locations in the reconstructed image.

11.2 Detectors

11.2.1 Proportional counters

A proportional counter is an x-ray detector based on the principle of electron cas-
cade. It is broadly similar to a Geiger counter, but non-saturating. An incoming
x-ray induces a gas phase photoionization, as illustrated in Figure 11.4. Filling
gases are typically neon or argon, with trace amounts of other gases. The energetic
photoelectron then ionizes a number of atoms creating some number of primary
electrons, requiring on average about 25 eV per electron–ion pair. Energy left in
the original photoionized atom is released in some combination of Auger electrons
or fluorescent x-rays. Most of that energy is ultimately used to create additional pri-
mary electron–ion pairs. We want to count these primary electrons. These electrons
are accelerated towards a thin wire anode which is held at a moderate potential, of
order a few kV. As long as the potential is moderate, the incident photon energy is
ultimately converted into a pulse of secondary electrons, where the number of sec-
ondary electrons is proportional to the number of primary electrons and hence the
initial photon energy. For a 4 keV photon, approximately 4000/25 = 160 primary
electons will be generated. If the generation of primary electrons were governed by
Poisson statistics,2 the uncertainty in this number would be about

√
160, yielding

a moderate energy resolution, 	E/E � 0.1.
This type of detector has good efficiency (η → 1), somewhat limited by losses

in the thin window material. The window is typically 0.1 mm beryllium or 10 µm
mylar, as illustrated in Figure 11.5. An array of wires may be used to make an
imaging proportional counter (IPC), as with ROSAT and RXTE, illustrated in
Section 11.3.

Figure 11.4 Photoionization within a gas proportional counter.

2 The fluctuation statistics are non-Poissonian, as described by something known as the Fano factor. The actual
fluctuations are smaller than Poisson statistics would suggest, resulting in higher energy resolution.
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Figure 11.5 Single-pixel gas proportional counter, illustrating photoelectron (red
in electronic version) and primary electrons (blue). An Auger electron (green)
may also be released and generate primary electrons. As the primary electrons are
accelerated towards the anode, they ionize additional atoms, creating a cloud of
secondary electrons (not shown).

11.2.2 Solid state detectors

Semiconductor detectors can be operated in a similar mode, as in the ACIS instru-
ment on Chandra. The energy resolution is improved due to the lower threshold for
generating pairs, which is a few eV in a semiconductor. Arrays of semiconductors
can be used to record the locations of charged particle tracks in tracking detectors.

Superconductors may also be used as detectors. A common application is the
transition edge sensor (TES) in which superconducting materials are used as
microcalorimeters. The absorption of an x-ray photon causes an increase in device
temperature, much as in a bolometer. If this temperature change is sufficient to
raise the superconductor above its superconducting transition temperature, a large
signal can be produced. The energy resolution in this case depends on the heat
capacitance of the absorber and the sharpness of the superconducting transition.
Resolving powers of order 103 have been demonstrated at 10 keV. X-ray detectors
based on superconducting tunnel junctions have also been explored.

11.2.3 Scintillators

Scintillators are most commonly used for hard x-rays and gamma rays. The incom-
ing photon interacts within the detector via Compton scattering or pair production,
in either case producing energetic electrons. Cross sections are largest for high-Z
materials. The energetic electrons then lose energy via bremsstrahlung and ioniza-
tion. Their energy is transferred to excitons (excited electron states). In inorganic
scintillators such as NaI or CsI, these excitons are trapped at activator sites,
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typically thallium (Tl) atoms.3 The activators fluoresce, emitting a light pulse
which is measured by a photomultiplier. The amount of light collected is a measure
of the energy deposited in the scintillator. There are also organic scintillators such
as crystalline anthracene or a variety of plastics. Organic scintillators consist pre-
dominantly of low-Z atoms and so have reduced cross sections. Both the BATSE
and OSSE instruments on CGRO use NaI scintillators. In using scintillators as
photon detectors, one must discriminate against incident charged particles (cosmic
rays) using an anti-coincidence shield.

11.2.4 Spark chambers

Spark chambers are an alternative to scintillators for high energy photons. The
initial photon interaction occurs in a high-Z material, such as a sheet of lead or
tungsten, producing an e+e− pair. This pair, in turn, produce ionization tracks in
gas (neon) located between a pair of electrodes. A high voltage pulse, triggered
by a scintillator, is applied to the electrodes, producing a visible track of the ion-
ization trail. The EGRET instrument on CGRO uses spark chambers. Since the
direction and range of the e+e− pair are recorded, one can get the initial energy of
the gamma ray. Here also one must use a scintillator as an anti-coincidence shield
to discriminate against incident charged particles.

11.3 Recent missions

Although x-ray astronomy dates back to the early 1960s, we begin our discussion
with instruments launched in the early 1990s. These are included, not as histor-
ical curiosities, but as examples of the wide variety of techniques available to
instrumentalists. Of greatest interest, though, will be x-ray and gamma ray instru-
ments launched since the late 1990s and still in operation, such as RXTE, Chandra,
XMM-Newton, and Fermi.

11.3.1 ROSAT

ROSAT (ROentgen SATellite) was a German, US, and UK x-ray satellite operating
from 1990 to 1999. Originally designed for deployment from the space shuttle,
it was reconfigured and launched by a Delta II rocket. The telescope itself was
a Wolter type-I design with four nested gold-coated mirror sets. It covered the
energy range 0.1–2 keV with approximately 4′′ resolution. The peak effective area
was 1100 cm2 at about 120 eV, reduced to about 400 cm2 at 1 keV. There were two

3 Or sodium activated cesium iodide, CsI(Na).
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principal experiments: PSPC, a multiwire Position Sensitive Proportional Counter,
and HRI, a High Resolution Imager which utilized microchannel plates.4

The two redundant PSPC detectors were filled with a mix of about 65% argon,
20% xenon, and 15% methane. Photons entered through a window made of Lexan
and polypropylene, which was mechanically supported by two grades of wire mesh
and by support ribs. Crossed grids of about 180 cathode wires each were used to
determine the event location. Quantum efficiency approached 80% at high energies.
Spectral (energy) resolving power was a function of photon energy and was of
order R ≈ 4.

After the gas supply for the PSPC detectors was nearly exhausted, the HRI was
essentially the only operational detector left on ROSAT. The HRI was a microchan-
nel plate detector, similar to that flown on the earlier Einstein satellite but with a
CsI photocathode. The spatial resolution of the HRI was 1.7′′, which oversam-
ples the telescope PSF. However, the spatial precision of the HRI was somewhat
compromised by various problems with the spacecraft pointing control system.

In addition, the main ROSAT telescope carried piggyback a Wide Field Cam-
era (WFC) for the extreme ultraviolet (0.05–0.2 keV). The WFC was also a
Wolter type-I design with three nested mirror sets, and was also equipped with
a microchannel plate detector with a CsI photocathode.

11.3.2 Compton Gamma Ray Observatory

The Compton Gamma Ray Observatory (CGRO) covered the energy range from
30 keV to 30 GeV and operated from 1991 to 2000. It contained four separate
experiments: BATSE, OSSE, COMPTEL, and EGRET.

BATSE

The Burst and Transient Source Experiment (BATSE) was an all-sky monitor to
detect gamma rays with energies between 30 keV and 1.9 MeV from a variety of
transient sources. It consisted of detector modules located at the eight corners of
the satellite. Each detector module contained a NaI scintillator plate 20 inches in
diameter and ½ inch thick. The detectors were uncollimated and were oriented like
the faces of a regular octahedron. Directional information was based on the varia-
tion in projected collecting area and, at high energies, on the incomplete capture of
the photon energy. Timing resolution was of order 0.1 seconds, allowing BATSE
to rapidly signal detection of gamma ray bursts. The detectors could determine
the location of a strong burst to within about 3◦. A secondary set of scintilla-
tion detectors provided modest spectroscopic capability. One of BATSE’s most

4 The properties of microchannel plate detectors were discussed in Chapter 5.
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important science results was the measurement of a nearly isotropic distribution
for gamma ray bursters.

OSSE

The Oriented Scintillation Spectrometer Experiment (OSSE) consisted of four
NaI(Tl) scintillators which could be individually pointed and had spectroscopic
capabilities from 50 keV to 10 MeV. Each was surrounded by a variety of other
scintillators in anti-coincidence mode to reject cosmic rays, high energy gamma
rays, and gamma rays incident from the sides. A passive tungsten collimator in
front of the detector defined the 3.8◦ × 11.4◦ field of view. One of the princi-
pal scientific goals of OSSE was the detection of radioactive nuclei in supernova
remnants.

COMPTEL

The Imaging Compton Telescope (COMPTEL) worked from 1 to 30 MeV (Schön-
felder et al., 1993). It consisted of two layers of scintillators: an upper layer of
liquid scintillators and, 1.5 m below it, a lower layer of NaI scintillators, as illus-
trated in Figure 11.6. A gamma ray underwent Compton scattering in the upper
layer. The scattered photon was then absorbed in the lower layer. Both layers
were surrounded by anti-coincidence shields so that only photon interactions were
recorded. From the locations and the energies deposited in the two layers it was
possible to reconstruct the energy and, to some degree, the direction of the orig-
inal gamma ray. However, there was an unavoidable positional uncertainty. For a
single photon, the source direction could only be said to be confined to somewhere
on a circle on the celestial sphere. Multiple photons allowed one to overcome this
ambiguity. The required delayed coincidence between the two layers strongly sup-
pressed any background. One might consider this to be a type of tracking detector.

EGRET

The Energetic Gamma Ray Experiment Telescope (EGRET) was designed to
observe gamma rays from 20 MeV to 30 GeV. The main part of the instrument
was a pair of spark chambers, shown in Figure 11.7. The first of these contained
27 thin tantalum plates. An incoming gamma ray interacted with a tantalum atom
and underwent pair production. The electron and positron could be tracked by
their ionization trails. These trails had to be seen, in coincidence, in both spark
chambers. Typically the electron and positron exited the second spark chamber
and deposited the remainder of their energy in a final NaI scintillator acting as a
calorimeter. It was possible to reconstruct the direction and approximate energy for
each gamma ray.
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Figure 11.6 COMPTEL detector on CGRO (Schönfelder et al., 1993).

11.3.3 Extreme Ultraviolet Explorer

The Extreme Ultraviolet Explorer (EUVE) was in operation from 1992 to 2001.
Generally, the ISM is fairly opaque in the ultraviolet beyond the Lyman limit of
91.2 nm. However, the ISM is inhomogeneous, and numerous extreme ultraviolet
sources are detectable. The satellite carried four telescopes, two of which were con-
ventional Wolter type-I designs for the 4 to 36 nm range with microchannel plate
detectors. A third telescope was designed for longer wavelengths, 40 to 75 nm, and
used a Wolter type-II design with larger grazing angles specifically chosen to block
shorter wavelength radiation. The fourth telescope was also Wolter type-II and fed
both a microchannel plate imager and three spectrometers (with microchannel plate
detectors). The spectrometer gratings provided a third grazing-incidence reflection,
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Figure 11.7 EGRET detector on CGRO (Esposito et al., 1999).

leading to the choice of the Wolter type-II design in this instance.5 The anodes of
all these microchannel plates were of a “wedge, strip, and zigzag” design (Vallerga
et al., 1989).

11.3.4 ASCA

The Advanced Satellite for Cosmology and Astrophysics (ASCA; formerly Astro-
D), was a Japanese-US collaboration operating from 1993 to 2000. It was designed
for x-ray observations with four Wolter type-I telescopes. Two telescopes fed Gas
Imaging Spectrometers (GIS) based on proportional counters. In this case scintilla-
tion light from the xenon gas was used for positional determination. The remaining
two telescopes fed Solid-state Imaging Spectrometers (SIS). Each spectrometer
detector had four front-illuminated, frame buffered, 420 × 420 pixel CCDs (Burke
et al., 1991), precursors to those in the ACIS instrument on Chandra (below).

11.3.5 Rossi X-ray Timing Explorer

NASA’s RXTE satellite, in operation from 1995 to the present, was designed
to study time variability of x-ray sources. It did not contain a telescope per se;

5 As with the case of XMM-Newton, below, the actual grating design and geometry is complicated since the
gratings are placed in the converging telescope beam.
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Figure 11.8 Proportional counter unit from RXTE PCA (Jahoda et al., 2006) con-
sisting of a 1◦ FWHM hexagonal collimator and a three-layer proportional counter
array with additional veto layers on top, bottom, and sides. Tin and tantalum
shielding not shown.

instead, individual instruments were collimated to provide angular resolution. The
PCA (Proportional Counter Array) contained five xenon gas proportional coun-
ters covering energies from 2 to 60 keV with a collecting area of 6500 cm2. The
hexagonal BeCu collimators, illustrated in Figure 11.8, provided a field of view
of about 1◦. Most important to the mission goals was the PCA time resolution of
1 µs. The HEXTE (High Energy X-ray Timing Experiment) contained two sets of
four “phoswich” NaI scintillators with CsI anti-coincidence scintillators (as in the
CGRO OSSE detectors). These also contained hexagonal collimators but made of
Pb0.94Sb0.06. HEXTE was sensitive from 20 to 200 keV. There was also an ASM
(All Sky Monitor) containing scanning shadow cameras with proportional counter
detectors. A shadow camera is a type of coded aperture camera.

11.3.6 BeppoSAX

BeppoSAX was an Italian–Dutch x-ray satellite in operation from 1996 to 2003.
Three Wolter type-I telescopes were dedicated for use with medium energy
(1.3–10 keV) xenon gas scintillation proportional counter spectrometers and one
telescope for use with a low energy (0.1–10 keV) xenon gas scintillation pro-
portional counter spectrometer. A fifth gas scintillation proportional counter was
operated at high pressure (5 atm Xe/He) to extend the energy coverage up to
120 keV, although this instrument only had a collimator-defined field of view.
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The above instruments shared the same pointing direction as a four-section
NaI phoswich scintillation detector sensitive up to 300 keV. This was surrounded
by anti-coincidence scintillation detectors. Finally there were two coded mask wide
field cameras on an axis orthogonal to that of the other instruments.

11.3.7 FUSE

The Far Ultraviolet Spectroscopic Explorer (FUSE) was operational from 1999 to
2007. It covered a rather narrow wavelength range from 90.5 to 119.5 nm.6 One
of its principal science goals was measuring the abundance ratio of deuterium to
hydrogen in a number of sources in order to understand the cosmic evolution of
deuterium. A resolving power of 10 000 or greater was necessary to adequately
separate their Lyman series lines. The FUSE satellite carried four nearly identical
optical systems, each with a normal-incidence off-axis parabolic mirror, a curved
grating, and a microchannel plate detector. Two systems were optimized for 90 to
110 nm and two for 100 to 120 nm.

11.3.8 Chandra

The Chandra X-ray Observatory (formerly known as AXAF) was launched in 1999
and is still in operation. The x-ray telescope itself, the High Resolution Mirror
Assembly (HRMA), is a Wolter type-I design with four nested cylinders, the largest
being 1.2 meters in diameter. The result is a large effective collecting area (400 cm2

at 1 keV).7 The mirrors are iridium coated. Iridium is a high density material with
a correspondingly large plasma frequency, which allows somewhat larger grazing
angles at fixed energy and somewhat higher energies at fixed angle of incidence.
The accuracy of the HRMA is such that Chandra has an unprecedented angular
resolution for high energy detectors of 0.5 arcsec (cf. ROSAT). The focal length
of the telescope is 10 meters, and it has two objective transmission gratings which
can be used, optionally, for spectroscopy at low or high energy.

Chandra has two focal plane instruments. ACIS, an Advanced CCD Imaging
Spectrometer for 0.2–10 keV, is shown in Figure 11.9. It consists of ten CCD chips,
each with 1024 × 1024 pixels and an image scale of 0.5′′ per pixel. All of the
CCDs can be used for imaging, but six are aligned in a row for use in spectroscopy
(ACIS-S) with either of the gratings. Two of these six chips are back-illuminated.
The back-illuminated chips have better response at low energy and poorer response

6 Traditional nomenclature for the ultraviolet portion of the spectrum can be confusing, with overlapping
terminology including UVA, UVB, UVC, and near-, middle-, far-, vacuum- and extreme-ultraviolet. On a
logarithmic scale, FUSE is actually closer to visible wavelengths (400 nm) than to the extreme end of the
ultraviolet (10 nm).

7 For the ACIS-I detector front-illuminated CCDs.
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Figure 11.9 Chandra ACIS showing the imaging array ACIS-I and the spec-
troscopy array ACIS-S. Credit: Lockheed Martin. For color version of figure, see
plate section.

at high energy, compared with the front-illuminated chips. The four remaining
chips, forming the imaging array (ACIS-I), are tilted to approximate the focal plane
curvature. All the CCDs operate in a frame storage mode whereby the accumulated
data are rapidly shifted to a frame buffer which can be read out while a new integra-
tion is underway. During the Chandra mission the ACIS front-illuminated CCDs
experienced significant radiation damage from exposure to low energy protons.

The HRC is a microchannel plate High Resolution Camera for 0.1–10 keV, as
shown in Figure 11.10. The imaging part of the instrument, HRC-I, has a 31′′ × 31′′

field of view. The photocathode material is CsI, covered by an aluminized poly-
imide shield to block visible and ultraviolet radiation as well as electrons and ions.
The two microchannel plates have a chevron design with 10 µm pores and a cant
of 6◦. The readout is done via a pair of crossed wire grids backed by a reflector
plate. The readout time resolution is 16 µs. The spectroscopic detector, HRC-S, is
similar but is rectangular with a 30:1 effective aspect ratio. It is designed for use
with the low energy transmission grating.

11.3.9 XMM-Newton

The XMM-Newton satellite (Jansen et al., 2001) was launched by the ESA shortly
after Chandra. A major design goal was to maximize the effective area, especially
at high energy. This was achieved by making three separate co-aligned telescopes,
each of which is a Wolter type-I design with 58 [sic] nested thin coaxial mirrors.
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Figure 11.10 Chandra HRC. Credit: NASA/CXC/SAO.

The largest mirror of each set is 70 cm in diameter. The total effective area is of
order 3 × 1550 cm2 at 1.5 keV. The paraboloidal and hyperboloidal segments were
replicated as single units made of gold-plated nickel.8 The width of the PSF varies
with energy, across the field of view, and between telescopes, but is of order 4–6′′

FWHM. XMM achieves higher collecting area than Chandra, at the cost of poorer
spatial resolution.

The main detectors are the European Photon Imaging Cameras (EPIC), of which
there are two types. Two are metal-oxide-semiconductor (MOS) CCD cameras
(Turner et al., 2001), each with seven front-illuminated 600×600 pixel CCDs opti-
mized for soft x-rays. Their focal-plane layouts cleverly minimize gaps between
CCDs and approximately match the curved focal planes. They are frame-buffered,
much like the Chandra ACIS CCDs. The third detector (Strüder et al., 2001) is a
set of 12 back-illuminated PN CCDs, optimized for hard x-rays, fabricated on a
single piece of silicon with a total of 400 × 384 pixels, with some gaps. These are
not frame-buffered, but have rapid readout.

Two of the Wolter type-I telescopes, those with the EPIC-MOS cameras, are
equipped with permanently placed reflection grating arrays (RGA), which decrease

8 Replication is a technique whereby one first makes a precise master which is the complement of the desired
structure. This is then coated with a release material and then covered with one or more materials by some
combination of evaporation, sputtering, electroplating, or electroforming. The replica is then separated from
the master at the release layer. The master then may be reused to make multiple replicas, at considerable cost
savings since the grinding and polishing need be performed only once. This technique is often used also to
make diffraction gratings.
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the sensitivity of their main imaging systems but create simultaneous first order
spectra with resolving power of 150–800 (den Herder et al., 2001). The grat-
ing arrays are sets of 182 grazing-incidence reflection gratings,9 each with
about 650 lines mm−1 blazed at 0.7◦.10 The spectrometer cameras contain
nine back-illuminated frame-buffered CCDs with a total of 9216 pixels along
the direction of dispersion, oversampling the line spread function. The intrin-
sic energy resolution of the CCDs is used to separate first and second orders.
The satellite is also equipped with a smaller telescope for optical and ultravi-
olet detection with a detector consisting of a microchannel plate followed by
a CCD.

11.3.10 INTEGRAL

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) was
launched in 2002 and is still operating. It is in an orbit with a perigee of 10 000 km,
which keeps it outside the inner (proton) Van Allen belt, giving stable detector
backgrounds and minimizing detector damage. The Spectrometer on INTEGRAL
(SPI), has a coded aperture mask with 127 hexagonal cells, shown in Figure 11.11,
providing an angular resolution of 2.5◦. The 63 opaque cells are fabricated of 3 cm
thick tungsten! The SPI detector system is an array of 19 germanium detectors
cooled to 85 K, heavily surrounded by anti-coincidence detectors. The germanium
detectors are primarily sensitive to Compton scattering events, where in some cases
the scattered photon may be seen in an adjacent detector. SPI covers energies from

Figure 11.11 Coded aperture masks for two of the instruments on INTEGRAL:
(left) SPI mask (Credit: CAB (INTA-CSIC)) and (right) IBIS mask (Credit: ESA).
For color version of figure, see plate section.

9 Also replicated.
10 The actual grating design and geometry are complicated since the gratings are placed in the converging

telescope beam.
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20 keV up to 8 MeV, with spectral resolution of order 450 at 1.33 MeV. The Imager
on Board the INTEGRAL Satellite (IBIS) also has a tungsten coded aperture mask,
also shown in Figure 11.11. Together with a two-layer detector consisting of a
plane of 128 × 128 pixel CdTe detectors followed by a plane of 64 × 64 CsI(Tl)
scintillators, this gives an angular resolution of 12′. Its energy coverage is similar
to that of SPI. At the higher energies, the Compton scattering geometry aids in
the reconstruction of the photon energy and in background rejection. INTEGRAL
also carries two monitor detectors: the Joint European X-Ray Monitor (JEM-X),
which is a 3–35 keV imaging proportional counter with a coded aperture mask,
and a refracting telescope silicon CCD Optical Monitor Camera (OMC) for V band.

11.3.11 GALEX

The Galaxy Evolution Explorer (GALEX), launched in 2003, is an ultraviolet
telescope operating simultaneously in both far-ultraviolet (134–179 nm) and near-
ultraviolet (177–283 nm) using a dichroic beamsplitter. The telescope itself is a
50 cm Ritchey–Chrétien design, equipped for both imaging and slitless (grism)
spectroscopy. Each detector contains a photocathode (CsI for far-ultraviolet and
Cs2Te for near-ultraviolet) followed by a series of three microchannel plates and
orthogonal anode delay lines for measuring the position of the charge cloud leaving
the microchannel plates.

11.3.12 Swift

Swift is a mission launched in 2004 and expected to last until 2011. It is designed
primarily for the purpose of detecting and multi-wavelength monitoring of gamma-
ray burst sources. The Burst Alert Telescope (BAT) has a coded aperture mask and
covers the energy range 15–150 keV over a solid angle of 1.4 sr. Its detector is
a 256 × 128 pixel CdZnTe detector array operating in a photon counting mode.
Its resolution is of order 17′ and it provides burst timing information down to 200
µs. The satellite is designed to rapidly respond to a burst detected in BAT and
then to rapidly slew so that the main X-Ray Telescope (XRT) is pointing at the
burst position. The XRT is a Wolter type-I design operating from 0.3 to 10 keV
with about 18′′ resolution, using a copy of the 600 × 600 pixel EPIC CCD camera
on XMM. The satellite also has an Ultraviolet and Optical Telescope (UVOT), a
close copy of the optical/ultraviolet monitor instrument from XMM. The UVOT
contains a 2048 × 2048 pixel intensified CCD array sensitive to the wavelength
range 170–650 nm with an angular resolution of order 2′′.
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11.3.13 Fermi gamma ray space telescope

The Fermi satellite, formerly known as GLAST, was launched in 2008 to cover the
photon energy range from 8 keV to 300 GeV. The Large Area Telescope (LAT)
instrument is sensitive over 2 sr. Like a spark chamber, it contains a set of 16
plane-parallel tungsten sheets within which the gamma ray produces e+e− pairs.
But instead of spark detection, particle tracks are followed using interleaved sil-
icon tracking detectors. Any charged particles leaving the stack are stopped in a
CsI tracking calorimeter, allowing a determination of the initial gamma ray energy.
The CsI scintillator crystals are long rectangular bars arranged in eight crossed lay-
ers of 12 bars each, allowing 3-dimensional positional information on the energy
deposition of the showers. There is also an instrument known as the GLAST Burst
Monitor (GBM), which covers the 8 keV−1 MeV range using 12 NaI scintillator
plates with a 10:1 aspect ratio11 and covers the range 150 keV–30 MeV using an
additional two BiGeO (BGO) scintillation detectors. The BGO detectors provide
important spectroscopic information but virtually no positional information.

11.4 Possible future missions

11.4.1 IXO

A new mission under consideration is the International X-ray Observatory (IXO).
It is a joint effort of NASA, ESA, and JAXA (Japanese Aerospace Exploration
Agency), resulting from a merger of their previously separate concepts named
XEUS and Constellation X. Although instrument details are in flux at the present
time, it appears that one of the main requirements will be a very large collecting
area, of order 30 000 cm2 at 1.25 keV, from a 3 meter diameter grazing inci-
dence telescope with nested optics. Plans are to place it in an orbit around the
L2 Lagrangian point to provide a stable, low-background environment. IXO was
ranked fourth in priority among future, large-scale space projects in the 2010 US
National Research Council decadal report on astronomy and astrophysics.

11.4.2 MAXIM or BHI

For some time now NASA has considered the possibility of an x-ray interferometry
mission under the name of Micro-Arcsecond X-ray Imaging Mission (MAXIM).
Some laboratory work towards this design has been accomplished. Concepts along
this line were presented for the 2010 decadal review using the name Black Hole
Imager (BHI) to emphasize the main science goal. It is too early to predict

11 Like BATSE, these provide directional information by the dependence on projected collecting area.
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the prospects for this concept. But the current emphasis seems to be on further
technology development for a mission target date of around 2030.

Exercises

11.1 Calculate the angular response of an ideal collimator. Consider only one
dimension and assume that the collimator width is 1 cm and its length is
1 m.

11.2 For nickel, gold, and iridium coatings for x-ray mirrors:

a. Calculate the plasma frequencies, based on bulk densities of 8.91, 19.32,
and 22.56 g cm−3 and mean atomic weights of 58.69, 196.97, and 192.22
daltons for nickel, gold, and iridium, respectively.

b. What two factors, unrelated to the plasma frequency, might influence the
use of these materials for x-ray mirror coatings?

c. What third factor, related to the atomic number, might be an additional
consideration? (Hint: One assumption used in the beginning of the chapter
is only approximately correct.)

d. What other techniques may be employed in making materials with high
x-ray reflectivity?

11.3 Explain why the autocorrelation function of a coded aperture mask should
approximate a delta function. For example, what happens if the autocorrela-
tion function is double peaked?

11.4 An energetic photoelectron with kinetic energy E0 traveling through matter
loses energy through atomic interactions which may ionize the atom or induce
a non-ionizing excitation. Let W be the average energy loss (by both mecha-
nisms) divided by the average number of ionizations. The average number of
ionizations is N̄ = E/W. Calculate the mean square fluctuations in the num-
ber of ionizations N, namely 〈(N − N̄)2〉 = 〈(N − E/ε)2〉. (Hint: Consider
each atomic interaction to be statistically independent so that the fluctuations
per interaction may be added in quadrature. Your answer should depend
only on N̄ and on properties of the material; the number of ionizations per
atom encountered and the energy loss per atom.) The fluctuations can be
sub-Poissonian because in all cases the total energy loss is fixed. The only
variability is related to whether particular events are ionizing or not.
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Radio receivers, spectrometers, and interferometers

12.1 Astrophysical radio sources

Most astronomical radio sources are fundamentally different than the most com-
mon optical sources, stars. Some radio continuum sources exhibit thermal emis-
sion, in which flux increases with frequency (remember that Sν ∝ ν2 at low
frequencies for a blackbody). This type of spectrum is characteristic of thermal
bremsstrahlung, also known as free–free emission, from a hot electron plasma such
as an H II region, as shown in Figure 12.1. At low frequencies such a source is opti-
cally thick and the spectrum rises as ν2. At high frequencies such a source becomes
optically thin, and the spectrum is nearly flat. The cosmic microwave background
(CMB) is another example of a thermal source. Other continuum sources are non-
thermal, with flux increasing at longer wavelengths. A typical spectrum from
synchrotron radiation varies as Sν ∝ ν−0.8. The spatial structure of the emitting
region is often quite complex and of great importance astrophysically. Spectral
line emission at radio wavelengths comes from the 21 cm hyperfine structure line
of H I (a tracer of neutral hydrogen), from recombination lines primarily of H and
He (useful as probes of ionization conditions), and from molecular rotational lines
(probes of dense gas and star forming regions). Some radio sources show rapid
temporal variations (pulsars).

12.2 Fundamentals of radio receivers

At radio frequencies (λ � 300 µm; ν � 1012 Hz) generally the wave picture of
electromagnetic radiation is more appropriate than the photon picture. The power
contained in radio waves propagating in free space can, at best, be localized on
size scales of order λ (A� = λ2), which is much larger than typical solid state
devices. Therefore the wave needs to be collected out of free space using some
combination of conductors and dielectrics and directed into some confined region

209
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Figure 12.1 Radio emission by thermal bremsstrahlung (left) and synchrotron
emission (right).

Figure 12.2 Examples of linear systems: an amplifier (left) and a mixer (right).

for further processing. Such a system is called an antenna; we will discuss more
about antennas later. The signal may then be: (1) amplified, (2) translated in fre-
quency, (3) filtered, or (4) detected, that is, have its power measured. For best noise
performance, and for a variety of other reasons, one generally chooses to do (1) or
(2) before doing (3) or (4).

12.2.1 Linear systems

Both amplifiers and mixers (frequency translators), shown in Figure 12.2, are
examples of what we call linear systems. An amplifier takes some incoming volt-
age and amplifies it, possibly adding a phase shift. In terms of amplitude and phase
we can relate input and output voltages by

Voei(ωt+φo) = GVei	φ Vie
i(ωt+φi). (12.1)

In operator notation we can write

Ṽo = G̃V Ṽi, (12.2)

which shows that amplification is a linear operation.
A mixer takes an input signal at angular frequency ωS, combines it with a local

oscillator at ωLO, and produces an output at the “intermediate frequency” ωIF. The
frequencies are related by

± ωIF = ωLO − ωS. (12.3)
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In a mixer the signal typically suffers some loss (gain less than unity), hopefully a
small loss. In operator notation we can relate the amplitude and phase shift of this
operation by

ṼIF = G̃V ṼS. (12.4)

So mixers also are linear systems. Both amplifiers and mixers will also add noise.
Don’t be confused by the fact that linear systems may incorporate non-linear
devices such as diodes.

12.2.2 Quantum noise limit

Quantum mechanics sets a fundamental lower limit on the noise of any linear sys-
tem. There exists a number–phase uncertainty principle for the electromagnetic
field, 	N	φ � 1, somewhat analogous to the Heisenberg uncertainty principle,
	x	px � h. Therefore for a phase preserving system, one with 	φ � 1, there is
an uncertainty in photon number of unity or greater. This corresponds to one pho-
ton in a time t = 1/	ν, where 	ν is the bandwidth. This noise may also be viewed
as being due to zero-point fluctuations in the electromagnetic field. Each mode of
the radiation field can be thought of as a simple harmonic oscillator with minimum
energy E = 1

2 hν. This minimum noise corresponds to a power per unit bandwidth
of hν, equivalent to a thermal noise source at a Rayleigh–Jeans temperature of

TN = hν

k
. (12.5)

12.2.3 Components in series

If linear systems are combined in series, the net gain is the product of the individual
gains, and the individual noise temperatures all contribute to the system noise, as
illustrated in Figure 12.3.

P1 = G1(PS + kTN1 	ν), (12.6)

P2 = G2(P1 + kTN2 	ν) (12.7)

= G1G2PS + G1G2

(
kTN1 	ν + 1

G1
kTN2 	ν

)
. (12.8)

The net signal gain is

G = G1G2, (12.9)
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Figure 12.3 Amplifiers connected in series (top) and the equivalent circuit
(bottom).

and the effective noise temperature is

Teff = TN1 + 1

G1
TN2. (12.10)

If the gain of the first stage G1 is large, then the first stage noise dominates. One
generally divides a radio receiver into front end components, those for which low
noise performance is critical, and back end components whose noise performance
is less critical.

12.2.4 Low noise GaAs FET amplifiers

For frequencies in the range 1–100 GHz, the best noise performance currently
is achieved by using field-effect transistor (FET) amplifiers cooled to cryo-
genic temperatures, Tphys ≈ 10 K. The types of FET are the JFET (junction
FET), the MOSFET (metal-oxide-semiconductor FET), and the MESFET (metal-
semiconductor FET). Thorough discussions of the physics of these devices may
be found in Streetman & Banerjee (2005) and especially Sze & Ng (2006). Some
details are also given in Rieke (2002).

For low-noise, high-frequency FET amplifiers, the material of choice is the com-
pound1 semiconductor gallium arsenide (GaAs), partly because of that material’s
high electron mobility. The mobility of holes is more than an order of magnitude
lower. In a generic FET, as shown in Figure 12.4, the voltage applied to the gate

1 The word compound refers to the fact that GaAs is a compound of two chemical elements. Silicon would be
called an elemental semiconductor.



12.2 Fundamentals of radio receivers 213

Figure 12.4 (Top) Generic drawing of an FET showing source (S), gate (G),
and drain (D) electrodes and depletion region (d.r.). In this case an n-channel
depletion-mode MESFET is illustrated. (Bottom left) Schematic circuit of an FET
amplifier. (Bottom right) Current–voltage characteristics of an FET.

controls the size of the depletion region, thereby controlling the size (and therefore
the resistance) of the channel in which current flows from the drain to the source.

There is a type of FET known as a high electron mobility transistor (HEMT),2

incorporating a thin layer of n-AlxGa1−xAs on top of undoped GaAs. This forms
a quantum well, just below the interface, within which electrons (in the undoped
GaAs) have a higher than normal mobility in two dimensions. This is often referred
to as a 2-dimensional electron gas (2-DEG). These devices are small, inexpensive,
and have very low noise, making them good first stage amplifiers. Typical noise
performance is

2 A brief note on some of the jargon in this field: MMIC stands for Monolithic Microwave Integrated Circuit.
Such devices might include multiple amplification stages, combine amplification and mixing, or even more
complicated systems. They are the key elements in cellular phones. Some employ silicon rather than GaAs.
Pseudomorphic (as in the term pHEMT) refers to the use of a thin layer of a different compound
semiconductor within, say, GaAs. The materials have a lattice mismatch and the thin layer is forced to adopt
the lattice constants of the underlying material. Metamorphic (mHEMT) refers to a gradual transition between
mismatched lattice structures, allowing for less strain in the material. InP is another compound III-V
semiconductor (built from elements in columns III and V of the periodic table). InP may be used as a base
material with good lattice matching to InGaAs, which has advantageous materials properties for HEMTs.
However, the mHEMT technology may allow use of InGaAs and obviate the need to use the more expensive
and difficult InP technology.
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TN(ν � 8 GHz) ≈ 3 K, (12.11)

TN(ν = 40 GHz) ≈ 20 K, (12.12)

TN(ν = 100 GHz) ≈ 45 K, (12.13)

which is approaching limits set at lower frequencies by the 2.7 K CMB and at
higher frequencies by the quantum noise limit (0.048 K/GHz).

12.2.5 Radio frequency mixers

At frequencies above 100 GHz it is difficult to construct low noise amplifiers. It is
more convenient to make low noise mixers to shift signals to lower frequencies.
One combines the incoming signal at ωS (or a band of signal frequencies) with a
monochromatic local oscillator at ωLO. The conceptually simplest type of mixer is
a simple multiplier, which acts as a single-sideband mixer. Treating both signal and
local oscillator as real valued, we get

Vout = VS cos(ωSt) VLO cos(ωLOt). (12.14)

By simple trigonometric identities

Vout = VSVLO

2
{cos(ωS − ωLO)t + cos(ωS + ωLO)t} , (12.15)

indicating output is present at the sum and difference frequencies. In many cases it
is more practical to add the signal and local oscillator

Vin = VLO cos(ωLOt)+ VS cos(ωSt), (12.16)

and then impose this voltage on a non-linear device. If the device has a square-law
response, which it generally will for small voltage swings, the mixer output will
have components at the difference frequency ωIF,

Vout ∝ VLOVS cos(ωIFt), (12.17)

plus components at DC, the sum frequency, and the second harmonics of both
ωLO and ωS. If the response departs from a pure square law, there will be higher
harmonics and other sum and difference frequencies as well. In practice, these
usually can be kept small. Reverting to complex notation, we can see that

Ṽout ∝ ṼLOṼ∗
S ei[(ωLO−ωS)t−φ], (12.18)

indicating that this is a linear phase-preserving system. The mixer may add an
instrumental phase shift φ, but the phase information present in the original
signal is preserved. The signal frequency can be either above (upper sideband,
USB) or below (lower sideband, LSB) the local oscillator frequency, as shown in
Figure 12.5.
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Figure 12.5 Relationship between the USB and LSB signal frequencies and the
LO and IF frequencies in a mixer.

Figure 12.6 A Schottky diode formed between epitaxial n-type GaAs and a PtAu
alloy dot. Contact to the metal side of the barrier is made with a NiAu alloy wire.
Equivalent circuit is shown on the right.

Schottky diode mixers

A simple device that can perform this mixing function is a Schottky barrier
diode, an example of which is shown in Figure 12.6. A Schottky diode is a
metal–semiconductor junction with a non-linear conductance:

I ≈ IS eV/V0 . (12.19)

Its high frequency performance is limited by the capacitance Cj and the series resis-
tance RS. One keeps Cj small by using a small device (∼2 µm diameter). RS is then
determined by properties of the materials. There will be a high frequency cutoff at

νc = (2π RS Cj)
−1 ≈ 2 × 1012 Hz. (12.20)

There is shot noise due to current flow through the dynamic resistance

Rj =
(

dI

dV

)−1

= V0

I
, (12.21)
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PN = 1

4

V0

I
2e I 	ν = V0

2
e	ν = kTN 	ν, (12.22)

where TN = eV0/2k. The exponential I–V curve may be expanded in a power
series, with the V2 term producing the desired mixing. Alternatively, one can view
a Schottky diode under DC bias as having a time-dependent conductance produced
by the local oscillator:

g(t) = IS

V0
eVDC/V0 eVLO(cosωLOt)/V0 (12.23)

= g0 + 2g1 cosωLOt + 2g2 cos 2ωLOt + · · ·. (12.24)

The signal voltage VS(t) = VS cosωSt is applied to this conductance, giving output
at frequencies ± n νLO ± νS. Classical mixer theory says there must be a power
conversion loss of at least 3 dB (Lmin

M = 2).

Superconducting tunnel junction mixers

Mixers with non-classical, quantum mechanical properties can be made from
superconducting tunnel junctions. These are commonly known as SIS junc-
tions based on their superconductor–insulator–superconductor sandwich structure.
We will describe the properties of superconductors using the semiconductor rep-
resentation, which does not fully describe the nature of superconductivity but is
adequate for our purposes (see Figure 12.7). In superconductors there is a super-
conducting energy gap, a region of no allowed states, which prevents current flow
at bias voltages less than the gap (V < 2	/e). At bias voltages greater than the gap

Figure 12.7 (Left) Energy level diagram of an SIS tri-layer. The horizontal width
is indicative of the density of states increasing near the energy gap. Filled states
are shown in black (green in electronic version). Photon-assisted tunneling allows
a quasi-particle to make the transition shown (red). (Right) An idealized current–
voltage curve.
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(V > 2	/e), current is able to flow by tunneling through the insulator. Since the
density of states is singular at the edges of the gap, this onset of current flow is
sudden. In the idealized T = 0 case the current jumps from zero to a finite value at
V = 2	/e. This extreme non-linearity, faster than exponential, gives efficient mix-
ing. If the behavior is sufficiently close to ideal (sufficiently sharp), one needs to
view this as photon-assisted tunneling. With the junction biassed at V < 2	/e, the
photon provides the remaining energy needed for the electron to tunnel across the
barrier. One electron flows for each photon detected. This is nearly an ideal situa-
tion (and reminiscent of many optical photon detectors). In practice, these devices
are not used to count photons but as mixers (for which their performance is also
nearly ideal). With SIS mixers one can achieve TN ≈ hν/k, that is, approaching
the quantum limit. In principle, one can also achieve conversion gain, which is a
quantum effect not allowed for classical mixers.

12.2.6 Detectors and the radiometer equation

Non-linear devices such as Schottky diodes also may be used for detectors, as
shown in Figure 12.8. As we have seen, after a square-law device one sees a DC
current

I ∝ |VS|2 ∝ Ptot ∝ k(Tsys + Tsig)	ν. (12.25)

Typically one measures the power with and without the signal present. The differ-
ence is proportional to Tsig. There are also noise fluctuations associated with Tsys.
For an integration time t, the uncertainty in the signal is given by

	Tsig = Tsys√
	ν t

. (12.26)

A relatively new type of detector is the Transition Edge Sensor (TES). A TES
is a type of bolometer, a class of detector discussed in Chapter 5. Germanium
bolometers, a standard for infrared detection, may also be used at millimeter wave-
lengths. All bolometers work by sensing small temperature changes caused by

Figure 12.8 A simple radiometer system.
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the absorption of radiant energy. In a TES this temperature change is sensed by
observing the rapid change in resistance of a superconductor near its supercon-
ducting transition (Irwin & Hilton, 2005). TESs can be made from a wide variety
of superconducting materials. Typically feedback is required to maintain their tem-
perature near the superconducting transition, and low noise SQUID3 amplifiers are
required to read out the TESs. Other applications of TES technology range from
x-ray detectors to searches for dark matter.

12.3 Precision radiometry of the CMB

12.3.1 COBE

The COsmic Background Explorer (COBE) spacecraft, launched in 1989, had
two instruments devoted to the study of the CMB. The Differential Microwave
Radiometer (DMR) mapped the spatial fluctuations in the CMB with Schottky
diode mixers at 31.5, 53, and 90 GHz, which formed differential radiometers
pointing at directions separated in the sky by 60◦. The results showed a dipole
anisotropy of the CMB of 3 mK and residual fluctuations on a 5◦ spatial scale of
order 30 µK. The Far-InfraRed Absolute Spectrophotometer (FIRAS) was a polar-
izing Michelson interferometer using composite bolometer radiometric detectors.
Its scientific results included a determination that the CMB spectrum matches that
of a blackbody to better than 0.03%. Both DMR and FIRAS used horn antennas,
which limited the spatial resolution.

12.3.2 WMAP

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in 2001
(Bennett et al., 2003). WMAP repeated the general COBE DMR idea of differen-
tial radiometry. A larger variety of frequencies (23, 33, 41, 61, and 93 GHz) were
used in order to facilitate the separation of the anisotropy signal from that of galac-
tic foregrounds. The telescope design is discussed below in Section 12.5.3. The
receivers employed HEMT amplifier front ends. The fields of view being differ-
enced were set 141◦ apart, a much larger angle than COBE. The angular resolution
of WMAP was improved by more than an order of magnitude over COBE, allowing
measurement of CMB multipole moments out to l ≈ 1000. The required sensitivity
was 	T/T ≈ 10−5 (30 µK). Scientific results so far include strong support for the
�-CDM cosmological model with numerous parameters determined to the level of
a few percent and some to much better than 1%, as shown in Figure 12.9. WMAP
is considered to have brought about the era of precision cosmology.

3 SQUID stands for Superconducting QUantum Interference Device.
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Figure 12.10 Polarization-sensitive bolometers in circular waveguide using resis-
tive wires and Ge bolometers (red in electronic version).

12.3.3 Planck

The Planck observatory, launched in 2009, has a goal of measuring CMB inten-
sity and polarization to a sensitivity of 	T/T ≈ 10−6 out to spherical harmonics
of l ≈ 2500. The telescope design is discussed in Section 12.5.3. Planck contains
two instruments, a low frequency instrument (LFI) for 30, 44, and 70 GHz and a
high frequency instrument (HFI) for 100, 143, 217, 353, 545, and 857 GHz. The
LFI (Cuttaia et al., 2004) is again a system based on low noise HEMT amplifiers,
with a total of 11 dual-polarization receivers. For the HFI an incoherent detec-
tion system based on germanium bolometers is used (Lamarre et al., 2003). The
sensitivity of the HFI is determined primarily by photon noise. Information on the
polarization of the CMB is important. Some of the bolometers are polarization sen-
sitive. These were fabricated on Si3N4 by using parallel resistive wires to absorb a
single linear polarization component, followed by an identical system with crossed
wires to absorb the orthogonal polarization, as shown in Figure 12.10. In all, the
HFI has 52 bolometric detectors.

12.3.4 Atacama Cosmology Telescope

For higher angular resolution observations of the CMB, the Atacama Cosmology
Telescope (ACT) employs a 6 m diameter telescope operating at 145, 215, and
280 GHz. The telescope itself is discussed in Section 12.5.3. The high altitude site
in the Atacama desert has the lowest atmospheric water vapor of all easily acces-
sible ground-based observatories. Each of the three bands has a 32 × 32 element
(1024 pixel) bolometer array using transition-edge sensor (TES) devices. For the
ACT cameras Mo/Au bilayers are used as the sensing elements. Measurements
with ACT have focussed on CMB multipole moments with 600 < l < 8000.

South Pole Telescope

The South Pole Telescope (SPT) is a 10 m diameter telescope constructed at the
Amundsen–Scott South Pole station. Details of the telescope are contained in
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Section 12.5.3. One of the primary missions of the SPT is the study of galaxy
clusters via the Sunyaev–Zel’dovich (SZ) effect. The SZ effect causes fluctuations
in the CMB due to inverse Compton scattering by electrons in hot gas contained in
galaxy clusters along the line of sight. These fluctuations will be seen primarily at
multipole moments of l = 2000 and greater, requiring high angular resolution. A
thorough study of the SZ effect is expected to provide information about the nature
of dark energy by studying the growth of clusters with time. The polarization of the
CMB will also be studied, with the potential of uncovering information about the
inflationary epoch in the early universe and other new physics. The SPT employs
arrays of TES bolometer detectors.

12.4 Radio spectrometers

12.4.1 Autocorrelation spectrometers

The Wiener–Khinchin theorem says that the power spectrum of a signal is given by
the Fourier transform of its autocorrelation function. For IF signals with frequen-
cies of order 100 MHz, it is possible to make use of this relationship by sampling
the signal rapidly, at the Nyquist rate, digitally forming the autocorrelation for vari-
ous time delays, τ , as shown in Figure 12.11. The power spectrum is then recovered
by taking the Fourier transform. It is advantageous to weight the autocorrelation
function before transforming, to minimize “ringing” in the spectral response. Spec-
tral resolution is determined by the range of the utilized delays. A digitized signal

Figure 12.11 Autocorrelation spectrometer. Signals are correlated with time-
delayed versions of themselves. The sampled outputs are weighted and then
Fourier transformed. Although this diagram suggests an analog system, in prac-
tice the original signal is usually first sampled and the delay products formed
digitally.
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is necessarily quantized, and sometimes this is done rather coarsely, with as few
as two quantization levels (1 bit). Quantization always results in a loss of sensitiv-
ity (efficiency) but by modest factors that are easily calculable (Thompson et al.,
2001). Some of the lost sensitivity may be recovered by oversampling, sampling
faster than the Nyquist rate of the unquantized signal.

This technique is also useful in spectral line interferometry, where one forms
the cross correlation between signals from two different antennas (the cross power
spectrum).

12.4.2 Filter banks

A method which is even easier, conceptually, is to split the amplified signal into
a number of identical copies and then pass the copies through different individual
filters before square-law detection. This can be done, without loss of sensitivity,
with linear amplifiers and power splitters, once the signal has been amplified suf-
ficiently in the front end. This is currently less practical than digital techniques
due to the need to design and fabricate multiple filters. A filter bank may need to
contain thousands of channels.

12.4.3 Acousto-optical spectrometers

A novel approach to obtaining spectral information at radio frequencies is the
acousto-optical spectrometer (AOS). This is based on a 3-dimensional diffrac-
tion grating for visible wavelengths, used in transmission mode, and governed
by Bragg’s law. The RF signal to be analyzed, at frequencies of order 1 GHz, is
amplified and used to drive a transducer, which sets up an acoustic wave pattern in
a crystal. This pattern consists of regions of higher and lower than average density,
corresponding to regions of higher and lower index of refraction. A laser beam is
sent into the cell, where it sees this transmission grating. The light is diffracted by
an angle which depends on the acoustic wavelength � as shown in Figures 12.12
and 12.13.

� (sin θ − sinφ) = n λ. (12.27)

Figure 12.12 Bragg reflection.



12.5 Radio antennas 223

Figure 12.13 Acousto-optical spectrometer deflects laser light onto different
pixels of a position-sensitive detector depending on the radio frequency.

In practice θ and the optical wavelength λ are fixed. A 1-dimensional detector
array is used to examine the amount of light diffracted into various angles φ. This
corresponds to the RF power spectrum.

12.5 Radio antennas

Most modern radio antennas are steerable Cassegrain reflectors. A large size (large
collecting area) gives good point source sensitivity but, for a given wavelength,
there are practical limits on the size imposed by the need for high surface accuracy
and mechanical stability. Surface irregularities produce an irregular (non-planar)
wavefront.

According to Ruze theory (Figure 12.14), for random irregularities the efficiency
(the gain) is reduced by the factor e−(4πε/λ)2 , where ε is the RMS surface irregu-
larity.4 This is due to the fact that waves from different portions of the aperture
no longer add coherently (in phase) at the receiver. Clearly, telescopes for shorter
wavelengths need more accurate surfaces. Steerable antennas are also subject to
a varying gravitational load. Beyond a certain size it is not possible to make a
rigid structure. Adding structural elements increases the stiffness but also adds
weight. A homologous design accepts the existence of gravitational deformations,
but insures that the parabolic surface deforms into another parabola.

12.5.1 Antenna patterns

Describe an antenna by the power it would radiate in different directions, if it were
used as a transmitter. Let the antenna be pointed in the nominal direction (θ0, φ0).

4 In optics the corresponding quantity is the Strehl ratio, usually written S = e−(2πσ/λ)2 . The apparent
difference is due to the convention in optics of referring to the RMS wavefront error σ and in Ruze theory
of using the RMS surface error ε.
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Figure 12.14 Ruze theory describes the loss in
antenna gain on reflection off a surface with random
irregularities.

Figure 12.15 The antenna pattern describes the
sensitivity in the direction (θ, φ),where the nom-
inal pointing direction is (θ0, φ0).

The beam is described by the function P(θ−θ0, φ−φ0), as shown in Figure 12.15.
By reciprocity, this is proportional to its sensitivity for receiving power from a
source in those various directions. If the aperture were illuminated with uniform
amplitude and phase, this pattern would be the Airy pattern. But in practice the feed
systems for radio telescopes are designed to provide non-uniform illumination,
known as taper. The illumination of the edges of the telescope is less than that
nearer the center, in order to minimize sidelobes.

Define the beam solid angle to be

�A =
∫

P(θ − θ0, φ − φ0)

P0
d�. (12.28)

This can be related to an effective area, the effective collecting area for an on-axis
point source, by the van Cittert–Zernike theorem,

Ae�A = λ2. (12.29)

For uniform illumination and no surface errors, Ae is just the geometrical area of
the telescope. It is smaller than the geometrical area if the illumination is tapered,
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in which case the outer portions of the dish are largely unused. We can define an
aperture efficiency as the ratio of effective area to geometrical area:

ηA = Ae

Ag
. (12.30)

We can also define a main beam solid angle and main beam efficiency by

�MB =
∫

MB

P(θ − θ0, φ − φ0)

P0
d�, (12.31)

ηMB = �MB

�A
. (12.32)

12.5.2 Antenna temperature

Consider an astronomical source with a brightness distribution Iν(θ, φ). Remem-
bering that blackbody radiation is described by

Iν = 2hν3

c2

1

ehν/kT − 1
, (12.33)

we can consider the low frequency (Rayleigh–Jeans) limit of this equation and use
it to define a Rayleigh–Jeans brightness temperature,

TB(θ, φ) = λ2

2k
Iν(θ, φ). (12.34)

This Rayleigh–Jeans brightness temperature is the same as the physical temper-
ature for a blackbody in the Rayleigh–Jeans limit. Since the specific intensity is
power per unit area per unit solid angle, we get the power by taking the specific
intensity times the power pattern and integrating over area and solid angle. Includ-
ing a factor of ½ to consider a single polarization, the power collected per unit
bandwidth is

W = 1

2
Ae

∫
Iν(θ, φ)

P(θ − θ0, φ − φ0)

P0
d�. (12.35)

Equating this to an equivalent thermal source, W = kTA,

TA(θ0, φ0) = 1

2k
Ae

∫
Iν(θ, φ)

P(θ − θ0, φ − φ0)

P0
d� (12.36)

= Ae

λ2

∫
TB(θ, φ)

P(θ − θ0, φ − φ0)

P0
d� (12.37)

= 1

�A

∫
TB(θ, φ)

P(θ − θ0, φ − φ0)

P0
d�. (12.38)
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In single-dish observing we actually measure TA(θ0, φ0). From our knowledge of
the beam pattern we can attempt to reconstruct TB(θ, φ).

12.5.3 Special antenna designs

As mentioned above, a large number of ground-based radio telescopes have been
blocked Cassegrain designs. Examples include the 25 m telescopes of the VLA,
the 100 m Effelsburg telescope, and many others. In contrast, the Byrd Green
Bank Telescope (GBT) was designed with a primary mirror consisting of an off-
axis paraboloid with a 100 m diameter clear aperture. The clear aperture provides
exceptionally low sidelobes for precision mapping. The GBT is equipped with both
prime and Gregorian foci. Off-axis designs are becoming increasingly common,
both in orbit and for ground-based radio telescopes, as the remaining examples
from this section show.

WMAP utilized off-axis Gregorian telescopes5 with an unblocked 1.4 m diame-
ter aperture. This and a 20 dB taper were important in limiting sidelobe response.
Additional shields were added to further limit sidelobe response, and the telescope
mirrors were specially shaped to minimize aberrations and optimize polarization
characteristics. All of the receivers were dual polarization designs with corrugated
feed horns and used orthomode transducers to separate the polarizations.

The Planck satellite also has an off-axis Gregorian telescope with an unblocked
aperture of 1.5 m, only slightly larger than WMAP. However, there is only a single
telescope. Planck radiometry is direct, not differential. The Gregorian design had
to be modified to be aplanatic due to the large focal plane (large field of view).

The ACT is a 6 m off-axis Gregorian optimized to be nearly aplanatic. One
essential feature is a ground screen, necessary to prevent thermal emission from
the nearby landscape from entering the sidelobes of the antenna pattern. The SPT
is a 10 m off-axis classical Gregorian (parabolic primary). Like the ACT it is
surrounded by an extensive ground screen.

12.6 Radio interferometry

12.6.1 Basic two-element interferometer

Consider two antennas separated by a baseline 
B and consider emission from a
small quasi-monochromatic source, as shown in Figure 12.16. The receivers pro-
duce output voltages whose phase difference is proportional to the path-length
difference B sin θ ,

5 A standard Gregorian telescope has a parabolic primary and an elliptical secondary. This type of Gregorian is
not aplanatic. An aplanatic Gregorian would have an elliptical primary and hyperbolic secondary.
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Figure 12.16 In a radio interferometer each antenna pair measure time-delayed
versions of the astronomical signal. These are brought together, correlated, and
averaged to produce the complex visibility for the baseline 
B.

V2 ∝ E cosωt, (12.39)

V1 ∝ E cosω(t − τ), (12.40)

τ = B sin θ

c
. (12.41)

In a correlation interferometer these voltages are multiplied and averaged,

〈Vm〉 ∝ 1

2
E2 cosωτ. (12.42)

For a source in a direction normal to the baseline (θ = 0), the fringes are sep-
arated by 	θ = λ/B. This applies, for example, to a source on the meridian
when the baseline runs east–west. The sinusoidal pattern measures a single Fourier
component of the source intensity distribution.

The complex value of 〈Vm〉 is referred to as the complex fringe visibility6 for
some particular baseline 
B. Its 2-dimensional Fourier transform is the source inten-
sity distribution. One can measure additional Fourier components via (1) using
multiple pairs of telescopes, (2) movable baselines, (3) variation of the projected
baseline via the Earth’s rotation. The last is illustrated in Figure 12.17.

6 Sometimes visibility refers to a dimensionless quantity normalized to unity at zero spacing. Sometimes it
remains unnormalized and has units of flux density. It is necessary to look at the context to determine which
convention is being used.
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Figure 12.17 Variation in baseline projected length and orientation due to Earth’s
rotation.

12.6.2 Interferometer arrays

The earliest arrays were linear arrays (often with equally spaced antennas), pro-
viding a 1-dimensional view of the source structure. However, the Earth’s rotation
provides some variation in projected baseline length and orientation (Earth-rotation
synthesis). The Very Large Array (VLA) has 27 elements in an inverted-Y configu-
ration. The design provides enough different instantaneous baselines (27×26/2 =
351) to give good coverage of the spatial frequency plane without needing to wait
for Earth’s rotation (snapshot mode). As Earth rotates, a fixed baseline 
B traces out
an ellipse in Fourier space, as discussed in Section 12.6.4. At long wavelengths one
needs continental or intercontinental baselines for good angular resolution. The
general term for this is Very Long Baseline Interferometry (VLBI). A dedicated
VLBI instrument is the 10-element Very Long Baseline Array (VLBA).

EVLA

The Expanded Very Large Array (EVLA) project consists mostly of upgrades
in receivers, IF electronics, correlator, and software to provide continuous fre-
quency coverage from 1 to 50 GHz with improved sensitivity, bandwidth, and
spectral resolution. Additional proposed changes included eight new antennas up
to 250 km away from the center of the array, two converted VLBA antennas, and
a new “super-compact” configuration. However, these additional changes have not
been funded. Central to the improvements which were funded is the new WIDAR
correlator, discussed below.

CARMA

The Combined Array for Research in Millimeter-wave Astronomy (CARMA)7

is a consolidation of the previous BIMA (Hat Creek) instrument with its OVRO
(Owens Valley) counterpart at a new higher site at Cedar Flat (7200 feet
(2200 m) elevation) in the Inyo mountains, with additional telescopes supplied by

7 The participating institutions are the California Institute of Technology, University of California (Berkeley),
University of Illinois, University of Maryland, and University of Chicago with additional funding from the
National Science Foundation.
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the SZ-array (University of Chicago). In all CARMA has six 10.4-meter telescopes,
nine 6.1-meter telescopes, and eight 3.5-meter telescopes. This is an example of a
heterogeneous array, in which one must make allowance for the different primary
beam patterns of the different sized antennas. The receivers cover the 7 mm, 3 mm,
and 1.3 mm wavelength bands. Baselines range up to 2 km.

ALMA

The Atacama Large Millimeter/submillimeter Array (AMLA) was conceived of as
an array of 64 12-meter telescopes capable of operating from 30 to 900 GHz in ten
frequency bands. The Altiplano de Chajnantor in northern Chile near the borders of
Bolivia and Argentina, at 5000 meters elevation, is one of the driest sites on Earth,
a feature essential for optimal operation at submillimeter wavelengths. ALMA was
initially a US/European collaboration with cost constraints limiting the number
of antennas to 50. A Japanese collaboration has added four 12-meter antennas
and twelve 7-meter antennas and the capability of having short baselines, essen-
tial for discerning large-scale structure. This is often called the Atacama Compact
Array (ACA) .

12.6.3 Correlators

The first consideration in designing a spectral correlator is whether one will corre-
late antennas before Fourier transforming (an XF correlator) or Fourier transform
before correlating (an FX correlator). The X part of the correlator is essen-
tially performing the operation illustrated in Figure 12.16. The F part of the
correlator is essentially performing the operation illustrated in Figure 12.11. For
design considerations, see Thompson et al. (2001). The general trend is away
from designs incorporating ASICs (Application Specific Integrated Circuits), and
towards designs incorporating FPGAs (Field Programmable Gate Arrays).

The WIDAR correlator (Wideband Interferometric Digital ARchitecture) in use
at the EVLA is, at its heart, an XF correlator, although frequency separation into
sub-bands occurs before the XF correlation.

The initial CARMA correlator is known as the Caltech Owens-Valley Broadband
Reconfigurable Array (COBRA). Receiver signals are first digitized at a 1 GHz
sampling rate. The correlator is an XF design. Future improvements will increase
the number of bits per sample to be correlated, improving the efficiency.

The design for the initial ALMA correlator is for an XF correlator capable of
handling 64 antennas with up to 4096 spectral channels. Work is being done on a
“European Future Correlator,” which will have some similarities with the WIDAR
design. The Japanese are working on an FX correlator design which will be needed
when there are more than 64 antennas. Although the current funding seems to
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support only 66 antennas (50+4+12), there is still a possibility that an 80 antenna
correlator will be needed (64 + 4 + 12).

The correlator for the future Square Kilometer Array (SKA) will be an FX design
since that architecture is advantageous for large numbers of antennas.

12.6.4 Fourier inversion

For a particular observation, the coordinates u and v are the components of the
interferometer baseline vector, projected onto the plane of the sky in the directions
of right ascension and declination, respectively, measured in units of wavelength,


B
λ

=
⎛
⎝ u

v
w

⎞
⎠ , (12.43)

where w is the component of the baseline along the line of sight towards the
source. The values of u and v refer to the 2-dimensional Fourier component
being measured, and the complex visibility gives the amplitude and phase of that
component.

The brightness distribution I(x, y) may be recovered from the visibilities V(u, v)
only if we have complete visibility data (densely spaced measurements with u and
v extending to infinity). Ignoring the beam patterns of the individual telescopes,

V(u, v) =
∫ ∫ ∞

−∞
I(x, y) ei2π(ux+vy) dx dy, (12.44)

I(x, y) =
∫ ∫ ∞

−∞
V(u, v) e−i2π(ux+vy) du dv. (12.45)

However, we only know V(u, v) at a finite number of points. Any attempt to recover
I(x, y) implicitly requires some assumptions about V(u, v) in regions where it was
not measured.

One aspect of this incompleteness is known as the zero-spacing problem. Any
set of purely interferometric data inevitably has a hole in the center of the uv-plane
whose radius corresponds to the minimum projected spacing between antennas.
In an inhomogeneous array this will be determined by the average of the diameters
of the two smallest telescopes in the array. This information may be obtained by
single-dish mapping with a telescope of sufficient diameter (typically at least twice
the diameter of the telescopes in the array) or by interferometric mosaic mapping.

The simplest inversion, a direct sum over the available data, is equivalent to
assuming V(u, v) = 0 where it was not measured. This is the logical equivalent of
the myth of an ostrich hiding its head in the sand, thinking “What I cannot see does
not exist.”
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I′′(x, y) =
∑

k

V(uk, vk) e−i2π(ukx+vky) 	u 	v (12.46)

=
∫ ∫ ∞

−∞
V(u, v)

∑
k

δ(u − uk, v − vk) e−i2π(ukx+vky) du dv. (12.47)

Since the Fourier transform of a product is a convolution of Fourier transforms,

I′′(x, y) = I(x, y) ∗ PD(x, y), (12.48)

where

PD(x, y) =
∫ ∫ ∞

−∞

∑
k

δ(u − uk, v − vk) e−i2π(ukx+vky) du dv (12.49)

=
∑

k

e−i2π(ukx+vky). (12.50)

This function PD(x, y) is referred to as the dirty or synthesized beam. It is essentially
a point spread function. The map we get by direct Fourier inversion is a convolution
of the true intensity distribution with this “dirty beam.”

Clean algorithm

There is no unique way to deconvolve I(x, y),

I′′(x, y) = I(x, y) ∗ PD(x, y). (12.51)

However, our dirty map will contain sidelobes which are artifacts of where V(u, v)
was sampled. These are clearly unrelated to the true source structure, and we want
to eliminate them. Consider, for example, a dirty map which is identical to the
dirty beam. It is appealing to say that the intensity distribution is just a single point
source. Similarly one might “recognize” the dirty map as appearing to be the sum
of two (displaced) copies of the dirty beam, suggesting I(x, y) consists of two point
sources. Cleaning is an iterative procedure of this sort which attempts to recover
I(x, y) by identifying and fitting the strongest features in the map. It is non-linear
and will not necessarily converge to a unique result, but it is often quite successful.
Its strong non-linearity makes the effects of Clean difficult to analyze.

Maximum entropy method (MEM)

Any method of image reconstruction is essentially filling in some assumptions
about the unmeasured Fourier components. Ideally, we would like to have a map
reflecting the true source structure with as few artifacts as possible relating to the
measurement process. We want to minimize false features. If we can quantify the
concept of structure, we can try various solutions and pick the one with the least
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structure. Since our map will always reflect the true source structure, this mini-
mum structure map will be the map least contaminated by artifacts. In practice we
maximize the opposite of structure, the entropy of an image. There can be various
definitions of entropy, such as

E = −
∫ ∫

I(x, y)

ITOT
ln

(
I(x, y)

ITOT

)
dx dy, (12.52)

where ITOT = ∫ ∫
I(x, y) dx dy. This quantity is then maximized within the

constraints imposed by the available data.
In Chapter 13 we discuss a better, statistical approach to this topic. Fourier inver-

sion is what is known as an inverse problem, of which there are many examples in
statistics.



Plate 10.10 (Left) Schematic illustration of an objective prism. (Right) An objec-
tive prism image of the Hyades (courtesy of Dean Ketelsen). The Balmer
absorption lines can be easily seen. This technique can also be used to find
emission lines such as [O III] 495.9, 500.7 nm.

Plate 11.9 Chandra ACIS showing the imaging array ACIS-I and the spec-
troscopy array ACIS-S. Credit: Lockheed Martin.

Plate 11.11 Coded aperture masks for two of the instruments on INTEGRAL:
(left) SPI mask (Credit: CAB (INTA-CSIC)) and (right) IBIS mask (Credit: ESA).
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Plate 14.9 The inner portion of the Super-K detector on April 23, 2006, as it
begins to be filled with water. Note the boat at the far side.

Plate 14.10 The outer portion of the Super-K detector with outward-looking
PMTs.



Plate 14.11 Event topology at Super-K. In this event a simulated 481 MeV muon
neutrino produces a relativistic muon which emits Čerenkov light, coded red. The
muon decays into an electron with its own Čerenkov light, coded yellow/green.
Color coding of arrival times is shown at right, along with a histogram of
photomultiplier hits. Credit: The Super-Kamiokande Collaboration.



Plate 14.16 SNO detector during construction, showing the inner acrylic vessel
and the outer cage partially populated at the top with photomultipliers. Courtesy
of SNO.

Plate 14.17 Measured solar electron neutrino flux versus neutrino flux for other
flavors (Aharmim et al., 2005).



Plate 14.18 Photomultiplier being
lowered down into a 2 km hole
in the antarctic ice. Courtesy of
IceCube/NSF. Plate 14.20 Simulation of an

upward travelling 6 PeV muon in
IceCube (Ahrens et al., 2001).
Photomultiplier timing is color
coded with red indicating the
earliest signals.

Plate 14.19 Layout of photomultiplier strings in IceCube. Shaded cylinder shows
location of prototype system named AMANDA. Courtesy of IceCube/NSF.



Plate 15.14 Map of the Pierre Auger Observatory in Argentina. Dots (red) rep-
resent surface array detectors. Lines (green) delimit the fields of view of the
fluorescence detectors. Courtesy of Auger Observatory.

Plate 16.4 Satellite images of (a) LIGO Hanford, WA, (b) LIGO Livingston,
LA (Credit: USDA Farm Service Agency); (c) Virgo, (d) GEO 600 (Credit:
Google Earth).
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Plate 16.8 Quadruple pendulum prototype at Rutherford Appleton Laboratory
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Modern statistical methods

It is ironic that a chapter entitled “Modern statistical methods” begins with Bayes’
theorem, since the work of the Reverend Thomas Bayes was published posthu-
mously in 1763. But the acceptance of this approach was largely delayed until the
latter half of the twentieth century. This is despite an imposing pedigree contain-
ing major contributions from Pierre-Simon Laplace, who in 1814 independently
and much more thoroughly developed the field we now call Bayesian statistics.
The modern revival of these ideas is largely attributable to Harold Jeffreys, with
additional creative contributions from Richard Cox, Claude Shannon (the father of
information theory), George Pólya, Edwin Jaynes, and others.

In this chapter we begin with Bayes’ theorem, followed by a sampling of some
of the statistical issues that should be of concern to astronomical observers. We also
cover a few of the powerful statistical tools available to modern astronomers.

13.1 Bayes’ theorem

In probability theory one often deals with what are known as conditional probabil-
ities. That is, in addition to the normal probability that something will occur, p(A),
one also needs to express the probability of A given B, denoted p(A|B). Now con-
sider the joint probability of both A and B, which we will write as p(AB). Clearly
this is equal to the probability of B times the conditional probability of A given B:

p(AB) = p(B) p(A|B). (13.1)

But that joint probability is also equal to the probability of A times the conditional
probability of B given A:

p(AB) = p(A) p(B|A). (13.2)

233
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Combining these results and rearranging terms we get Bayes’ theorem:

p(A|B) = p(A)
p(B|A)

p(B)
. (13.3)

Taking a somewhat broader view, we can use the above formula to describe the
plausibility of hypotheses. To do so, we need to make all of the probabilities condi-
tional on some set of background assumptions. Letting Hi stand for one hypothesis
out of the set {Hi} and letting D denote some data,

p(Hi|DI) = p(Hi|I)
p(D|HiI)

p(D|I) . (13.4)

The symbol I represents the information which was known a priori, before the data
were collected, and we call p(Hi|I) the prior. Thus p(Hi|DI) is the probability that
the hypothesis is supported by both the prior information and the data. This we
call the posterior probability. The numerator p(D|HiI) is known as the likelihood
function. The denominator is simply a normalization factor known as the prior
predictive probability or the evidence,

p(D|I) =
∑

i

p(Hi|I) p(D|HiI). (13.5)

One might paraphrase Bayes’ theorem by saying

The probability that some hypothesis is true depends on what we know a priori and the
likelihood that that hypothesis would produce the data we observe.

We can also say that Bayes’ theorem describes how newly acquired data change
our knowledge of the various hypotheses. It is interesting to note that the order in
which the data are arranged does not matter. Bayes’ theorem may be applied to all
of the data at once or successively to various subsets of the data. What is important
is that each measurement be included in the analysis once and only once. As long
as the data are independent,

p({D}|HiI) =
∏

j

p(Dj|HiI), (13.6)

and multiplication is a commutative (and associative) operation.
In the previous paragraph we took a rather large step from the language of

probability theory to that of inductive reasoning or inference. That we are enti-
tled to do so was shown by Cox (1946), who proved that the only procedure for
what he called reasonable expectation that was logically consistent was one which,
mathematically, was identical to the rules of probability theory.
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13.2 Maximum likelihood

Next we take a diversion to the classical concept of maximum likelihood, a tech-
nique with origins dating back to Gauss and Lagrange, contemporaries of Laplace.
What happens when p(Hi|I) is a constant, that is, when the models are equally
likely a priori? In that case the most plausible hypothesis is the one for which the
likelihood function p(D|HiI) is maximum. We just need to find the theory with the
highest probability of predicting the actual data,

Hargmax
i

(p(Hi|DI)) = Hargmax
i

(p(D|HiI)) , (13.7)

since p(Hi|I) and p(D|I) are both constants.
Suppose we have a set of data containing N values {yj} with known uncertainties

{σj}. We wish to compare these data with models which predict values {ξj}. These
models contain free parameters {ai}. In effect, the various values of the {ai} corre-
spond to various hypotheses (alternative theories). We want to find the best theory.
If we further assume that the probability distributions of the experimental results
are Gaussian,

p(D|HiI) = L({ai}) = (2π)−N/2

⎡
⎣ N∏

j=1

σ−1
j

⎤
⎦ exp

⎡
⎣−

N∑
j=1

(yj − ξj)
2

2σ 2
j

⎤
⎦ . (13.8)

Maximizing the likelihood L (or log L), is then equivalent to minimizing

χ2({ai}) =
N∑

j=1

(yj − ξj)
2

σ 2
j

. (13.9)

This is the justification for the familiar least-squares fitting process: adjusting
parameters to give a minimum value for χ2. The optimum parameters {ai} may
be found either numerically or by solving a system of N linear equations. Note that
whereas one might always try to seek a least-squares solution, that solution will
in general be a maximum likelihood solution only under the conditions outlined
above. In other words, the technique of least squares is justified in cases where
different values of the parameters {ai} are equally likely a priori and the data {yj}
are corrupted by uncorrelated Gaussian noise.

The technique of least squares is also frequently used to fit a function f(x) to a
set of data pairs {xj, yj}. The same justification applies here as long as the indepen-
dent variables {xj} are noiseless and the dependent variables {yj} are corrupted by
uncorrelated Gaussian noise.

Earlier we introduced the concepts of biassed and unbiassed estimators. Maxi-
mum likelihood estimators are in some cases biassed and in some cases unbiassed.
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13.3 So what is Bayesian inference?

At the beginning of this chapter we introduced an important distinction between
two approaches to statistics. The traditional frequentist school of thought, repre-
sented by the material in Chapter 6, focusses on the data and provides descriptors
which are characteristics of the observed data, such as the mean and the variance.
Probability is viewed as the frequency of occurrence of various outcomes if an
experiment is repeated (e.g. rolling dice). In practice, the frequentist considers the
existence of alternative data sets and considers various operations (e.g. averages)
over the ensemble of possible data sets. The Bayesian school, in contrast, compares
alternative hypotheses in the light of a single observational data set. Probability
takes on the meaning of “plausibility of some proposition.” In practice, a Bayesian
does “arithmetic” on hypotheses.

These approaches often agree, but they do not always agree. The fact that they
frequently agree has led to confusion and to the supposition that they are different
ways of looking at the same thing. However, they are fundamentally different in
concept. Certainly it is true that two valid approaches to a problem should give the
same answer. But it can be difficult to pose some problems in language that means
the same thing to a frequentist and to a Bayesian, particularly if that language uses
the word “probability.”

It is interesting to note that Bayesian inference provides an automatic application
of Occam’s razor. As we will see, hypotheses with additional (unnecessary) free
parameters are necessarily less plausible.

In support of the Bayesian approach, one frequently encounters assertions
such as:

1. A Bayesian approach yields a unique solution; a frequentist approach does not.
2. A frequentist approach cannot incorporate a priori information; a Bayesian

approach can.

Such statements are controversial. In my view (1) is true; the lack of a unique
solution in the frequentist approach is related to the well-known problem of choos-
ing an appropriate “statistic.” In my view (2) is false, although the use of a priori
information is more difficult and often less transparent in a frequentist approach.

13.3.1 Example 1

Consider the following question: was there a galactic supernova in 2008? There are
only two possible hypotheses, T (True) and F (False).

Now consider some a-priori information. Hypothetically, let us assume, based
on our understanding of galactic structure and stellar evolution, that p(T|I) = 0.05
and p(F|I) = 0.95. That is, we assume that we live in a galaxy where SN occur
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on average once every 20 years. Let us also assume that we know enough about
galactic extinction and other observational constraints to say that if a supernova
occurred, we would have a 50% chance of seeing it visually.

Now consider observational data for the year 2008. If a supernova was observed,
the probabilities must jump to 100%/0%. On the other hand, if a supernova was not
observed, the probability of T should drop somewhat below 5%, but not to zero,
since a supernova might have occurred without being seen. Let’s work through the
math:

p(T|DI) = p(T|I) p(D|TI)

p(D|I) = 0.05
p(D|TI)

p(D|I) , (13.10)

p(F|DI) = p(F|I) p(D|FI)

p(D|I) = 0.95
p(D|FI)

p(D|I) , (13.11)

p(D|I) = p(T|I)p(D|TI)+ p(F|I)p(D|FI). (13.12)

Now if D = OBS,

p(D|I) = 0.05 × 0.5 + 0.95 × 0 = 0.025, (13.13)

p(T|OBS, I) = 0.05
0.5

0.025
= 1, (13.14)

p(F|OBS, I) = 0.95
0

0.025
= 0, (13.15)

which is the trivial result we expected. For the somewhat less trivial case of D =
NOTOBS,

p(D|I) = 0.05 × 0.5 + 0.95 × 1 = 0.975, (13.16)

p(T|NOTOBS, I) = 0.05
0.5

0.975
≈ 0.025, (13.17)

p(F|NOTOBS, I) = 0.95
1

0.975
≈ 0.975. (13.18)

This should give some idea how one could use Bayes’ theorem in practice.
Obviously things would be more complex in a situation with multiple hypotheses.

13.3.2 Example 2

This example has been adapted from Loredo (1992). Let us assume that we have
sufficient (a priori) knowledge of supernova explosions to say that the probability
of a neutrino detection decays exponentially after the starting time t0, as shown in
Figure 13.1,

p(t) =
{

0 t < t0,
τ−1 e−(t−t0)/τ t ≥ t0.

(13.19)
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Figure 13.1 In example 2, the probability of a neutrino detection.

Let us also assume that we know the decay constant τ . For simplicity, set τ = 1.
For some data set (e.g. for SN 1987A) what is our best estimate of t0?

A frequentist would correctly say that for a data set {ti} with N neutrinos
detected, the unbiassed, maximum-likelihood estimator of t0 is

t̂ = 〈ti〉 − τ = 1

N

N∑
i=1

(ti − τ). (13.20)

For a data set consisting of three events at t = 12, 14, 16 (a possible, but unlikely,
data set), this would give t̂ = 13. The 90% confidence interval says 12.15 < t0 <
13.83. But the first event occurs at t = 12, and t0 cannot be later than the first
event! So we have missed some critical information available in the data. This is
a somewhat contrived example. A frequentist actually could have done better with
a better choice of statistic (better than t̂). But it illustrates some of the difficulties
that can emerge in analyzing a data set which may be somewhat improbable.

A Bayesian, on the other hand, would say that, given the above model, the
likelihood of some time-ordered data set {t1, t2, . . .}, is given by

p({ti}|t0I) =
N∏

i=1

[
e−(ti−t0) H(ti − t0)

]
. (13.21)

Since t1 is the earliest detection, the Heaviside function H(t1 − t0) dominates, and
the likelihood is

p({ti}|t0I) =
{

eNt0 e−∑N
i=1 ti t0 ≤ t1,

0 t0 > t1.
(13.22)

The term e−∑N
i=1 ti is just a constant (independent of t0). The posterior distribution

of probabilities for various t0, properly normalized, is given by
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Figure 13.2 The Bayesian posterior for t0 in example 2.

p(t0|{ti}I) =
{

N eN(t0−t1) t0 < t1,
0 t0 > t1,

(13.23)

as shown in Figure 13.2. Thus the most probable value for t0 is just the earliest
data point (t1 = 12 in the example above). No information about the times t2 and
t3 is included. Only start times before t1 are allowed (i.e. t0 ≤ t1). Start times
which precede t1 become increasing unlikely as the interval between t0 and t1 is
increased. The width of the posterior is narrower if more neutrinos are detected.
In this case the difference between the frequentist and Bayesian results arises from
the non-Gaussian shape of the probability distribution.

This is an example of Bayesian parameter estimation. We have used Bayes’
theorem to discriminate between hypotheses which differ only through the value
of a free parameter, in this case t0. In general, Bayes’ theorem may be used in this
way for multiple free parameters.

13.4 Maximum entropy

Having so far largely ignored the a-priori probability p(Hi|I) in Bayes’ theorem,
let us now look at that in more detail. Suppose that our set of hypotheses {Hi} con-
sists of 100 possibilities, each of them in equally good agreement with the data:
p(D|HiI) is constant. Suppose they are also equally likely a priori. And further
suppose that 99 of these are indistinguishable. What should we adopt as the most
likely hypothesis? In fact, according to Bayes’ theorem, all are equally likely. But
if we ask whether the single distinguishable hypothesis is most likely, the answer
is clearly not. In essence, we have collapsed the 99 indistinguishable hypotheses
into a single hypothesis (call it A) and are comparing that with the remaining dis-
tinguishable hypotheses (call it B). The hypothesis A is 99 times more probable
than B, by a counting argument.
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This line of reasoning is similar to that encountered in statistical mechanics.
A disordered physical state is more probable than a highly ordered physical state
simply because there are many more ways of constructing a disordered state.
In physics we describe this using the concept of entropy, the degree of disorder.

Similar reasoning may be employed in the statistics of image analysis. We would
like to maximize p(Hi|DI), or equivalently the natural logarithm of p(Hi|DI). If each
hypothesis is described by some number Ni, the number of ways that state can be
constructed (Ni taking the place of p(Hi|I)), then

Max (ln p(Hi|DI)) ∝ Max(ln(Ni × p(D|HiI))) (13.24)

∝ Max(ln Ni + ln p(D|HiI)) (13.25)

∝ Max(ln Ni − χ2/2) (13.26)

∝ Max(λS − χ2/2), (13.27)

where we have once again assumed Gaussian noise. Essentially Ni represents the
number of “microscopic” states per “macroscopic” state. We have ignored here
the normalization of the prior and assert only that the entropy, S, is proportional
to ln Ni. For a more careful and complete statement of the imaging problem see
Sutton & Wandelt (2006).

In the previous equation, S takes on the meaning of entropy, and our task
becomes one of maximizing S while jointly minimizing χ2. This is a very power-
ful technique often applied to image analysis in radio astronomy and increasingly
in other wavelength regions as well. It is also applicable to a wide range of sit-
uations in which information is to be extracted from experimental data (medical
tomography, crystallography, NMR spectroscopy, etc.).

There has been much discussion of the appropriate form of the entropy function
S. For image analysis, strong arguments have led to the conclusion that

S = −
∑

i

fi ln fi (13.28)

is the appropriate choice, where fi is the intensity of the image at pixel i. This is
usually referred to as the Shannon or Shannon–Jaynes entropy,1 and is equivalent to
the Gibbs entropy, apart from the absence of Boltzmann’s constant.2 Note that this
formulation appropriately ensures non-negativity to the image intensity. Additional
details are contained, below, in Section 13.5.3.

1 As written, the units of entropy are called nits or nats. Changing ln to log2 makes the units bits.
2 Again, this is a question of units. The quantum extension of this in density matrix theory is known as the von

Neumann entropy.
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13.5 Uninformative priors

Bayesian analysis requires us to specify our prior information about a problem in a
suitable mathematical form. Failure to include all relevant prior information means
that we will not be able to take full advantage of Bayes’ theorem. This may result
in a broader (less certain) posterior distribution than one might obtain with full
use of prior information. Incorporation of incorrect prior information, on the other
hand, is a much more serious error. In the worst cases it may entirely exclude the
true answer from the region of finite posterior density. For this reason, it is often
useful to consider uninformative priors, those which incorporate the least possible
amount of information.

13.5.1 Location priors

The symmetries of a problem may lead to the appropriate choice of prior. For
example, if there is translational symmetry, then the answer should not depend
on location. In one dimension (let us say x), this would be expressed by a uniform
prior in x. But a uniform prior in x from −∞ to ∞ is an improper prior since
it cannot be normalized. A uniform prior may be made proper by applying some
lower and upper bounds. In real life our full information usually allows us to set
some bounds to the allowed region, enabling us to use a prior which is uniform
(uninformative) over some finite region of space.

13.5.2 Scale priors

Under other circumstances the appropriate symmetry may be one of scale. Com-
plete ignorance about the scale of a positive continuous variable, r, is expressed by
a Jeffreys’ prior,3 a prior which is proportional to 1/r. The Jeffreys’ prior is equiv-
alent to a uniform probability density for log(r). In other words, scales of watts,
mW, and kW are all equally likely. This is necessary to ensure that the numerical
result of any Bayesian posterior calculation be independent of the units chosen to
perform the calculation.

This prior in r is also an improper prior since the integral of 1/r is logarithmically
divergent at both zero and infinity. As above, one may construct from this a proper
prior by prescribing upper and lower cutoffs in r, and the normalization will be only
weakly sensitive to the choice of cutoffs.

13.5.3 Positive, additive distributions

An uninformative prior to a positive, additive distribution is often said to be the
entropy prior. As motivation, consider an image to be made up of n pixels into

3 The term Jeffreys’ prior has a broader meaning in statistics, beyond the scope of this text.
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which a team of monkeys randomly drops λ elements of luminance. If {Ni}
describe the number of elements which end up in each of the pixels (λ = ∑Ni),
then combinatorial arguments give the multiplicity of a particular distribution to be

W = λ!
N1! N2! . . . Nn! . (13.29)

Ignoring the normalization of the prior, taking the limit λ → ∞, and expanding
all of the factorials using Stirling’s formula, the leading order term in the natural
logarithm of the prior is given by the entropy

S = −
∑

i

Ii

It
ln

Ii

It
, (13.30)

where Ii is the intensity of pixel i and It =∑ Ii. This is essentially the development
of the principle of maximum entropy, discussed above. As a practical matter this
entropy prior has had much success, although some objections to the method have
been noted by Sutton & Wandelt (2006).

13.6 Inverse problems

There is a large class of what are known as inverse problems in which one tries to
infer, from noisy data, some original state. Let us call this original state the object of
observation, O, which for astronomers might be an unknown intensity distribution,
an unknown spectrum, or something else entirely. We observe the object via some
measurement process M. In matrix notation we could write

D = MO + N, (13.31)

where N represents noise and D represents our data. We would like to get from
D back to O. Of course, we cannot “subtract” the noise N since we do not know
the actual realization of the noise, only perhaps its statistical properties. Nor could
we then “divide” by M since M will usually contain zeros, meaning that some
information is irretrievably lost in the measurement process.

In mathematics when a matrix is not invertable, either because it is not square or
it is square but singular, a pseudoinverse may be defined. Leaving aside the issue
of noise, the Moore–Penrose pseudoinverse may be viewed as a method of solving
the set of linear equations given by

D = MO (13.32)

in such a way as to minimize the Euclidian norm of MO − D in the case of an
over-determined set of equations and minimizing the Euclidean norm of O in the
under-determined case.
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The real world is not this simple. For a measurement process such as that rep-
resented by Equation 13.31, one can develop a variety of inversion procedures.
As we saw for radio astronomy in Chapter 12, each of those procedures may have
its own merits. But there is no single, correct inversion procedure because inver-
sion in this case is an ill-formulated problem. The forward problem, however, is
well formulated; it is simply Equation 13.31.

The solution is never to try to perform an inverse procedure; it is a lost cause.
Instead we should always solve the forward problem, repeatedly if necessary. If the
measurement matrix M is known and the noise N is statistically known, then we
can try varying the object O until we achieve statistical agreement with the data.
And we can characterize the uncertainties by continuing to vary O in such a way
as to obtain a statistical representation of our knowledge about O. Stated this way,
this is clearly a Bayesian approach, as discussed by Sutton & Wandelt (2006) for
radio interferometric imaging.

There are other advantages as well. If M is only partially known, we can param-
eterize the unknown aspects of M and solve jointly for those parameters and O.
We then marginalize over the measurement parameters to obtain information about
O. Marginalization is a procedure in statistics in which the dimensionality of a
posterior distribution is reduced by integrating over one or more undesired or nui-
sance parameters. For example, if the posterior is a function of parameters x1 and
x2, marginalizing over x2 means integrating

p(x1) =
∫

p(x1, x2) dx2. (13.33)

In radio interferometry the nuisance parameters might include the antenna-based
complex gains which vary, among other things, due to atmospheric effects.

13.7 Sampling the posterior

The Bayesian posterior probability density function (PDF) hardly ever will be a
simple analytic function. Sometimes it may be sufficiently well approximated by
a Gaussian, in which case what is needed are estimates of the mean and the vari-
ance and some tests of Gaussianity. But most commonly, the shape of the PDF
is unknown and possibly multimodal. In such cases, rather than seeking a few
parameters (such as a mean and a variance) to describe the PDF, a more com-
plete characterization is necessary. This may be provided by obtaining a sampling
of the PDF using Monte Carlo techniques. The sample size may be made as large
as necessary to provide an accurate description. Assuming that the posterior can
be calculated, via Bayes’ theorem, there is a variety of ways of sampling the PDF.
Samplings may be done for parameter spaces of any dimensionality, although here
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for simplicity we will mostly illustrate with 1-dimensional distributions. From such
samplings one may obtain marginal distributions, moments, credible intervals, etc.

13.7.1 Rejection sampling

Assume p(x) is an unknown PDF, which we will call the target density, and g(x) is
a function which, for some constant c, provides an upper bound to p(x) in the sense

p(x) ≤ c g(x). (13.34)

The function g(x) is known as the proposal density and is chosen to be a distribu-
tion from which it is easy to make random samples. The procedure for rejection
sampling4 is to draw a random value of x from the distribution g(x). Another ran-
dom number is then drawn from the uniform distribution U(0, cg(x)). The sample
is accepted if the second random number is less than p(x) and rejected otherwise.
In other words, the sample is accepted with probability p(x)/[cg(x)]. This pro-
cess is then repeated. An advantage of this method is that it produces independent
(uncorrelated) samples. A disadvantage is that it can be inefficient.

As an illustration of the potential inefficiency of importance sampling, consider
a narrow PDF defined on [0, 1), as shown in Figure 13.3. If little is known about
p(x), one might choose the proposal density to be U(0, 1). Let us assume we know
the peak value of p(x) well enough so that an efficient choice may be made for
c. As the figure shows, most samples of x drawn from U(0, 1) will fall in regions

Figure 13.3 An example of rejection sampling, in which eight of the first ten
draws from U(0,1) are rejected with certainty, and the remaining two have greater
than 95% probability of rejection. The solid line is p(x), and the dashed line is
g(x). A better proposal density, in this case, would be a Gaussian such as that
shown by the dotted line.

4 Another procedure, known as importance sampling, does not actually provide a sampling from p(x) but does
allow one to calculate expectation values over the distribution p(x).
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of low probability and be rejected. If a more favorable choice of g(x) is possi-
ble, the efficiency will improve. But rejection sampling is generally impractical in
problems of high dimensionality due to its inefficiency (MacKay, 2003).

13.7.2 Metropolis–Hastings algorithm

A Markov chain is a sequence of samples in which each subsequent sample,
xi+1 is determined by the current sample xi and by the probability density ratio
p(xi+1)/p(xi) but is not explicitly dependent on the values of previous samples
(x1, . . . , xi−1). Since the progress of the chain is determined probabilistically, meth-
ods such as these are known as Markov Chain Monte Carlo (MCMC) techniques.

An important example of MCMC techniques is the Metropolis algorithm. First,
a random starting point is chosen. Then a symmetric proposal density is chosen in
a neighborhood around that point. Typically this might be a Gaussian distribution,
whose width can be chosen based on the curvature of the PDF at the current point
(if known). A proposed move is selected. If the PDF at the proposed point x′ is
greater than the current PDF, p(x′) > p(xi), the proposed point is accepted. If not,
it is accepted with probability p(x′)/p(xi). Equivalently, one can say that the move
is accepted with acceptance probability

a = min

(
1,

p(x′)
p(xi)

)
. (13.35)

Note that if a move is rejected, this implies that the current point is repeated,
xi+1 = xi.

The Metropolis algorithm generates a type of random walk. It will converge
asymptotically to the distribution p(x), although the rate of convergence is diffi-
cult to estimate. Disadvantages of this approach include the fact that it produces
correlated samples. The initial part of the chain depends on the starting point. So,
during an initial burn-in period, the samples are not honest draws from the PDF
and must be discarded. Since the rate of convergence is unknown, it is difficult to
know how long a burn-in period is necessary. Finally, it is possible for the sampler
to get trapped for some time in local maxima of the PDF. Many of these features
are evident in the example shown in Figure 13.4.

The efficiency of the sampler depends on the width of the proposal density. Too
wide a proposal density leads to a low rate of acceptance. Too narrow a proposal
density leads to a high rate of acceptance but slow exploration of parameter space.
For the case of an approximately Gaussian posterior of width σ , a natural scale for
the proposal density would be a width of order σ . Under certain circumstances,
in 1-dimension the optimal5 proposal width is 2.38σ with an acceptance rate of

5 Optimal in the sense of minimizing the autocorrelation of the samples.
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Figure 13.4 An example of the Metropolis algorithm exploring p(x), starting near
the lower edge of the distribution, using the Gaussian proposal density shown by
the dotted line. The numbers of times points are repeated, due to rejected moves,
are shown by the numerals. In this case, the most probable part of the distribution
has not been reached in 30 samples.

0.44, and in higher dimensions (N > 6) the optimal acceptance rate approaches
0.234 with an optimal proposal width of less than σ (Gelman et al., 1996; Roberts
et al., 1997). In practice, having acceptance rates near these values is sufficient
to ensure near optimal performance. For an unknown and potentially multimodal
distribution, a non-Gaussian proposal density is a better choice since the tails of a
Gaussian fall off too rapidly. Some large trial steps may be necessary to explore
parameter space efficiently.

The Metropolis–Hastings algorithm allows use of a proposal density q(x′; xi) for
moving to x′ from xi which is non-symmetrical:

q(x′; xi) �= q(xi; x′). (13.36)

In this case detailed balance requires that the acceptance probability be changed to

a = min

(
1,

p(x′) q(xi; x′)
p(xi) q(x′; xi)

)
. (13.37)

The general term Metropolis–Hastings is sometimes employed whether or not the
proposal density is symmetric.

13.7.3 Gibbs sampling

In two or more dimensions, the Gibbs sampler is an MCMC method which relies
on conditional probabilities. Let a point in n-dimensional space be written as


x = (x1, x2, x3, . . . xn). (13.38)
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The Gibbs sampler is obtained by updating each component successively, condi-
tioned on the values of all the other components. In other words, starting from
an initial 
x0, the first step 
x1 is obtained by making successive draws from the
conditional posteriors

p(x1
1 | x0

2, x0
3, . . . , x0

n)

p(x1
2 | x1

1, x0
3, . . . , x0

n)
...

p(x1
n | x1

1, x1
2, . . . , x1

n−1).

(13.39)

The Gibbs sampler exhibits many of the characteristics of the Metropolis–Hastings
method. It undergoes a random walk, generates correlated samples, and requires
some burn-in time. However, unlike the Metropolis–Hastings method, no moves
are rejected (for continuous variables).

13.7.4 Mixing behavior

A Markov chain is said to be well mixed if it rapidly explores parameter space.
Frequently Markov chains are not very well mixed, so a variety of techniques
have been developed to enhance mixing. One of the simplest is to employ multiple
Markov chains started from different regions in parameter space. This is frequently
employed for practical reasons, but it is difficult to evaluate how well this technique
works. One method is to compare inter-chain and intra-chain variances.

Another technique is based on an analogy with Hamiltonian dynamics. Slow
MCMC mixing is due to the diffusive nature of a random walk. If one makes suc-
cessive steps in the same direction more likely to be chosen, the resulting set of
samples is no longer a Markov chain. But such an algorithm may still be used to
explore the posterior PDF in a probabilistic (Monte Carlo) fashion. A third method
is based on an analogy with thermodynamic systems. By raising the “temperature”
of a system it is possible to overcome the barriers between peaks in a multimodal
posterior. A fourth method known as “overrelaxation” enhances the mobility of a
sampler in multidimensional spaces with highly correlated parameters. These and
other techniques are discussed in texts such as MacKay (2003) and Gelman et al.
(2004).

13.8 Model comparison

Above we discussed the use of Bayes’ theorem for parameter estimation. The
hypotheses differed by varying one or more parameters common to all of the
hypotheses being considered. But Bayes’ theorem may also be used for model
comparison; for example, determining whether a more complex model with more
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free parameters is justified by the data. For models labelled A and B, the posterior
odds ratio is given by

p(MA|D)
p(MB|D) = p(D|MA)

p(D|MB)

p(MA)

p(MB)
. (13.40)

Let us assume the prior odds ratio p(MA)/p(MB) is unity. If model A has no free
parameters, the meaning of p(D|MA) is clear. If model B has one free parameter,
then p(D|MB) is obtained by marginalizing over that free parameter, e.g.

p(D|MB) =
∫

p(D|λMB) p(λ|MB) dλ. (13.41)

Consider the situations illustrated in Figure 13.5. For simplicity consider a uniform
prior probability density of the free parameter λ over the range 	λ. Normalization
requires then that the probability density be small if the allowed range of λ is
large, so

p(λ|MB) = 1

	λ
(13.42)

within the allowed range. The peak likelihood pmax(D|λMB) usually will be at
least as large as p(D|MA). For simplicity, assume that maximum likelihood of
model B is uniform over the range δλ with a maximum, relative to model A, of
pmax(D|λMB)/p(D|MA). The posterior odds ratio is then

p(MA|D)
p(MB|D) = p(D|MA)

pmax(D|λMB)

	λ

δλ
. (13.43)

Therefore model B, the model with the free parameter, is favored if the likelihood
of model B (conditional on λ) exceeds the likelihood of model A by a sufficiently
large amount. Otherwise the factor 	λ/δλ penalizes model B, and the simpler

Figure 13.5 Two examples of model comparison. The dashed lines represent the
prior probability density of the free parameter λ. The solid lines represent the
conditional likelihood of model B.
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Figure 13.6 Evidence comparison for two models. The simpler theory, A, gives a
narrower distribution, and so is favored in the region where it fits the data.

model, model A, is favored. This is the automatic application of Occam’s razor in
Bayesian analysis.

Model comparison may also be considered using the evidence term we encoun-
tered in our introduction to Bayes’ theorem. Continuing the previous example, if
we were to write Bayes equation just for model B, incorporating the model as part
of the background information, we would get

p(λ|DMB) = p(λ|MB)
p(D|λMB)

p(D|MB)
. (13.44)

In this equation the evidence term may be described as the evidence for model B,
alternatively written as the marginalized likelihood,

p(D|MB) =
∫

p(D|λMB) p(λ|MB) dλ. (13.45)

The evidence for model A is p(D|MA). The model comparison is then given by the
posterior odds ratio

p(MA|D)
p(MB|D) = p(D|MA)

p(D|MB)

p(MA)

p(MB)
. (13.46)

Assuming no prior preference for either A or B, the posterior odds ratio is just the
ratio of the evidences. Since the evidence terms are functions of the data, we end
up with a situation like that in Figure 13.6. Where the data are consistent with both
theories, the simpler theory is favored. Where the data are more consistent with the
more complex theory, the complex theory is favored.

We have given only a few examples of Bayesian model comparison. For further
examples, see Sivia (1996) and MacKay (2003).
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13.9 Malmquist (truncation) bias

Many astronomical problems involve analyzing data from objects in incomplete
samples. Incompleteness can take many forms, but we will concern ourselves with
that due to the limited sensitivity of astronomical detection systems. Suppose one
can detect objects down to a certain flux limit. If one makes a survey for all objects
down to that flux limit, one obtains what is called a flux-limited sample. This may
seem like a benign selection criterion, but it is not. Subsequent analysis is biased
by this flux limit, and such bias is known as Malmquist or truncation bias. In some
cases the biases introduced can be quite severe. In studying the most distant galax-
ies one sees only the most luminous objects, providing a very biassed view of the
constituents in the early universe.

Consider the general truncation problem. One obtains a flux-limited sample of
some objects, let’s say galaxies. At each redshift there will be a range of luminosi-
ties. For low z, one sees the high and low luminosity objects. At high z, only high
luminosity objects will be above the flux limit and be seen. Therefore, in a com-
parison of any property of the galaxies (luminosity, color, metallicity, etc.) one will
get misleading results. Essentially one is comparing apples (at high z) with apples
+ oranges (low z).

Let’s look at this in the context of the Tully–Fisher method for estimating galac-
tic distances. The Tully–Fisher method is based on the assumption that there is
an intrinsic relationship between velocity dispersion and luminosity. Galaxies with
larger dispersions are more massive, contain more stars, and are therefore more
luminous. But obviously this will not be an exact relationship – there will be some
scatter. For simplicity let’s assume this relation is of the form

L = c σ + ξ. (13.47)

That is, for a given velocity dispersion σ , on average the luminosity will be cσ ,
but there will be some galaxies with more or less luminosity, as represented by the
random variable ξ . The relationship between σ and L for a complete set of galaxies
would look something like that shown in Figure 13.7.

Now consider a flux-limited sample of galaxies at a fixed velocity dispersion
σ0. Those galaxies which are intrinsically more luminous than average (L > cσ0)
can be seen at larger distances than the less luminous galaxies (at fixed σ0). Since
the number of galaxies seen is proportional to the volume of space surveyed, the
sample will contain a greater than usual number of overluminous galaxies.

But we have no way of knowing these are intrinsically overluminous. Instead
we naively apply the standard relationship L = cσ , which assigns them sim-
ply the average luminosity. We then use their apparent magnitudes and these
assumed luminosities to derive distances, and these distances will be systematically
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Figure 13.7 A hypothetical plot of
luminosity versus velocity dispersion
for a set of galaxies. Considering galax-
ies inside some interval around a dis-
persion of σ0, those in group A will be
overrepresented in a flux-limited sam-
ple, while some of those in group B will
fall below the flux limit (dashed line).

underestimated. If we then use these incorrect distances together with the measured
redshifts to determine the Hubble constant, the value of H0 will be overestimated.
The issue of Malmquist bias played an important role in earlier debates over the
correct value for the Hubble constant. All is not lost. If one knows enough about
the astrophysics of the situation (the spread in luminosities) and the exact nature
of the sample truncation (the flux limit), one can try to correct for the biases which
have been introduced.

More literature is becoming available on the subject of statistical methods for
astronomy, but much of it is unknown to a large portion of the astronomical com-
munity. As Press (1997) has put it, “. . . make the choice to live your professional
life at a high level of statistical sophistication, and not at the level . . . that is the
unfortunate common currency of most astronomers.”

13.10 Censoring

A related problem is censoring. In this case one starts with a known sample of
objects and then fails to detect some of them, for example in observations in a
different wavelength band. One therefore obtains upper limits on the flux of such
objects. Upper limits contain real information, often vital information. There are
well-developed statistical techniques for dealing with them. The most powerful of
these techniques is known as survival analysis.

The basic idea of survival analysis can be easily introduced by an intuitive argu-
ment. Suppose one starts with a known sample of galaxies (perhaps known from
an optical survey) and then obtains the x-ray luminosities of some and x-ray upper
limits for others. The question is: what is the distribution function of x-ray lumi-
nosities? Note that even if all objects are observed in the same fashion, down to
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Figure 13.8 Example of a distribution function for x-ray luminosities ignoring
(dashed line) and including (solid line) upper limits.

some limit in x-ray flux, this will not correspond to a sharp cutoff in x-ray lumi-
nosity (since the galaxies are at different distances). So one obtains various values
for luminosity and various upper limits. Let the data be

Lx = {1.3−, 1.7, 1.9−, 2.2, 2.7−, 3.3−, 3.9, 4.5, 5.0−, 7.2}. (13.48)

Each number represents a luminosity, in arbitrary units, and those followed by “−”
are upper limits.

If we plotted a distribution function (akin to a “cumulative” probability function)
based on just the five real detections we would get the dashed line in Figure 13.8.
But what about the upper limits? Each upper limit represents 1/10 of the data we
obtained, so each should somehow be given a “weight” of 1/10 in the final result.
But where should that weight be placed? Not at the upper limit value. Perhaps
spread out evenly over the interval below it. But why that way?

In fact one should use the remaining data to determine how to spread out the
weight. Consider the point 5.0−. Redistribute its weight of 0.1 evenly over the eight
data points below it. Proceeding down in luminosity, one would then redistribute
the weight of 3.3− (now with a weight of 0.1125) over the remaining five points,
etc. The result is the solid line, clearly significantly different than the result using
only the five true detections.

Statisticians are familiar with this procedure and would call it “redistribution
to the left” (although they are more accustomed to using lower limits and there-
fore usually redistribute to the right). This procedure has theoretical justification,
although in practice one must be careful about the pattern of censoring present.
The most useful formulation of this method is not the redistribution procedure just
described, but what is known as the Kaplan–Meier (product-limit) estimator.
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As a final note I will mention the powerful statistical technique known as
bootstrap resampling (Efron, 1981; Diaconis & Efron, 1983). That and related
techniques allow one to set uncertainties on parameters derived from limited
data sets.

13.11 Confidence limits

In one dimension, assuming a Gaussian distribution, we have the readily deter-
mined results shown in Table 13.1. For non-Gaussian likelihoods, one should
choose a certain value of 	χ2 and determine the likelihood contained between
upper and lower values as shown. This will produce the shortest confidence inter-
val containing the specified probability. The same applies to posterior probabilities,
although in that case the correct terminology would be credible interval.

In two dimensions, we can imagine attempts, for example, to jointly determine
effective temperature and stellar luminosity (Teff, L), Hubble parameters (H0, q0),
or cosmological density parameters (��,�M). In general, such confidence inter-
vals may not have simple shapes, and may not even be simply connected.

But for simplicity, assume a bivariate Gaussian probability distribution, centered
at the origin, which can be written

p(x, y) = 1

2πab
exp
{−r2

[
b2 cos2(θ − θ0)+ a2 sin2(θ − θ0)

]
/2a2b2

}
(13.49)

= 1

2πab
exp
[−x2(b2 cos2 θ0 + a2 sin2 θ0)/2a2b2

]
× exp

[−y2(b2 sin2 θ0 + a2 cos2 θ0)/2a2b2
]

× exp
[−xy(2b2 − 2a2) sin θ0 cos θ0/2a2b2

]
, (13.50)

which is an elliptical distribution with a semi-major axis a (to an e−1/2 drop in
probability density), semi-minor axis b, and with the major axis at an angle θ0

measured counterclockwise from the x-axis. Since a line of constant probability
density is an ellipse, it is natural to use an ellipse as a confidence limit boundary.
For a desired confidence limit CL (e.g. CL = 0.9),

Table 13.1. One-dimensional
confidence limits

Confidence limit Uncertainty 	χ2

68.3% 1.00 σ 1.00
90.0% 1.64 σ 2.71
95.4% 2.00 σ 4.00
99.0% 2.57 σ 6.63
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Table 13.2. Two-dimensional
confidence limits

Confidence limits 	χ2

68.3% 2.30
90.0% 4.61
95.4% 6.17
99.0% 9.21

− ln(1 − CL) = 1

2
r2

[
1

a2
cos2(θ − θ0)+ 1

b2
sin2(θ − θ0)

]
. (13.51)

How do we know this? Do the integral! The required value of 	χ2 for different
confidence limits is shown in Table 13.2.

What if we have the 2-dimensional distribution, but only want information about
one of the parameters, let us say x? To get a particular confidence limit for x by
itself, we first need to marginalize (integrate over) y. For a confidence limit CL,

x = x0 ± √
2 erf−1(CL)

√
b2 sin2 θ0 + a2 cos2 θ0. (13.52)

How is this related to χ2? Well χ2 is a natural starting point since that is the infor-
mation we have from the observations. At its minimum, χ2 is a constant χ2

0 , plus
quadratic terms, plus higher order terms. There are no linear terms since this repre-
sents a minimum. Neglecting higher order terms, the χ2 surface can be described
by a curvature matrix α, also known as the Hessian matrix,

	χ2 = δa · α · δa (13.53)

= δaT α δa, (13.54)

where δa is the vector displacement from the minimum. The matrix α in this case is
a 2 × 2 symmetric matrix with at most three independent terms (related to the a, b,
and θ0 used above). The inverse of the curvature matrix is known as the covariance
matrix,

C = α−1. (13.55)

The diagonal elements of the covariance matrix are the true variances in x and
y, after marginalizing over the other variable. This curvature matrix treatment is
easily generalized to multiple dimensions.6

6 It is easy to make mistakes regarding confidence limits in multiple dimensions. One treatment may be found in
§15.6 of Numerical Recipes, 3rd edn. (Press et al., 2007). For users of earlier editions, see §14.5 of the 1st
edn. (1986) and §15.6 of the 2nd edn. (1995).
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Exercises

13.1 Consider a random variable x with a Gaussian probability distribution,

p(x) = 1√
2πσ

exp

[
−(x − a)2

2σ 2

]
,

where the parameters a and σ are unknown. Suppose we make n independent
measurements of x and obtain the values {xi}, i = 1 → n.

a. From the data {xi} calculate â and σ̂ , maximum likelihood estimates of
the quantities a and σ .

b. What are the expectation values of â and σ̂ ? If the expectation value of
an estimator equals the underlying parameter, the estimator is said to be
unbiassed. Are â and σ̂ unbiassed?

c. If either estimator in part b is biassed, calculate an unbiassed estimator.

13.2 Prove that Bayesian inference automatically includes Occam’s razor. For sim-
plicity, start with one parameter belonging to a finite discrete set. Then try to
add a second parameter, also from a finite discrete set.

13.3 Consider the 2-dimensional joint probability density written below in both
Cartesian and polar coordinates,

p1(x, y) = 1

4π
e−x2/8 e−y2/2, (13.56)

p1(r, θ) = 1

4π
e−r2(cos2 θ+4 sin2 θ)/8 = 1

4π
e−r2(1+3 sin2 θ)/8. (13.57)

As the Cartesian form shows, this is a bivariate Gaussian distribution centered
on the origin (for simplicity) with width σ = 2 in the x-direction and width
σ = 1 in the y-direction.

Consider also a probability density equivalent in shape to p1 but rotated
by 45◦.

p2(x, y) = 1

4π
e−5x2/16 e3xy/8 e−5y2/16, (13.58)

p2(r, θ) = 1

4π
e−r2(5 cos2 θ−6 sin θ cos θ+5 sin2 θ)/16 = 1

4π
e−r2(1+3 sin2(θ−π/4))/8.

(13.59)

a. Verify that both p1 and p2 are normalized (that their integrals over the
xy-plane are unity).

b. For both p1 and p2 find the equation for the curve where the probability
drops to 1/e of its peak value.

c. For both cases, give a curve that corresponds to the 90% confidence limit
(that encloses 90% of the probability density).
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d. For both cases, give 90% confidence limits for x. In other words, inte-
grating the probability density over y, what is the 90% confidence limit
in x?

e. Graph your answers to b and c, and mark your answers to d on the x-axis.

Hints:

a. Remember that the differential of area in polar coordinates is r dθ dr.
b. You will need the obscure integral∫ ∞

−∞
e−p2x2±qx dx = eq2/4p2

√
π

p
, (13.60)

which is Equation 3.323.2 in Gradshteyn & Ryzhik (1980).
c. You will also need a table of the fractional area in the tail of a Gaussian

distribution.

This illustrates an important point in statistics which can easily lead to
confusion if one is not careful: projected confidence limits of multivariate
distributions do not have a simple relationship with distributions where the
other variable(s) take on their mean values.

13.4 Derive Equation 13.51 from Equation 13.50.
13.5 Derive Equation 13.52 from Equation 13.50.
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Neutrino detectors

14.1 Neutrinos

Leptons are elementary particles which are subject to the weak interaction but not
the strong interaction. There are 12 known leptons: the electron (e−), the muon
(μ−), and the tau lepton (τ−), their charge conjugates (e+, μ+, τ+), and neutrinos
(νe, ν̄e, νμ, ν̄μ, ντ , ν̄τ ) associated with each of the three lepton flavors. Neutrinos
have small masses. They were once thought to be massless, but neutrino oscillation
experiments have now shown that at least two neutrinos must have finite mass.
Neutrinos interact with matter via only the weak and gravitational interactions,
enabling them to easily penetrate matter. The weakness of their interaction is, in
fact, the primary obstacle to their detection.

As a starting point we adopt the Standard Model of particle physics, in which the
weak interaction is mediated by the exchange of W ± bosons, in what are known as
charged current (CC) interactions, or by Z bosons, in neutral current (NC) interac-
tions. The weak interaction is observed to be maximally parity violating. Neutrinos
are observed to have negative helicity and antineutrinos to have positive helic-
ity. The vector minus axial vector (V−A) theory of weak interactions requires the
helicities described above and is inherently maximally parity violating. We assume
that neutrinos are Dirac particles,1 that there are no “sterile” neutrinos, and that
there are only three neutrino flavors.

For the most part we will pass by a number of interesting aspects of neutrino
theory and experimental questions being addressed primarily in the field of high
energy (reactor and accelerator) particle physics, concentrating instead on issues
most directly related to observational astrophysics. We will not discuss grand
unified theories or supersymmetry. Thorough coverage of all aspects of neutrino
physics is given by Zuber (2004) and Giunti & Kim (2007).

1 The distinction between Dirac and Majorana neutrinos is that in the Majorana case neutrinos and antineutrinos
are identical. For most of this chapter we will simply be ignoring the Majorana case and assume that Dirac
neutrinos have left-handed chirality.
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A key question being addressed by astronomical detectors is that of neutrino
mass. The existence of finite neutrino mass requires physics beyond the Standard
Model. The nature of any extension beyond the Standard Model is a longstanding,
open, and central question in particle physics.

14.2 Solar neutrino production

In the core of the Sun, the thermonuclear synthesis of each 4He nucleus is accom-
panied by the production of two electron neutrinos and the release of 26.731 MeV
of energy, with an effective net reaction of

4p + 2e− → 4He + 2νe. (14.1)

This energy is released as a combination of kinetic energy and gamma rays, and
during subsequent positron annihilation. Some energy is carried away by the neu-
trinos themselves, although that amount is small for the most common reaction
pathways (0.53 MeV on average). The remaining energy is rapidly thermalized.

The proton–proton chain dominates the energy production in the solar interior.
Proton–proton fusion proceeds predominantly through the reaction

p + p → d + e+ + νe, (14.2)

where the neutrinos, dubbed pp neutrinos, have a continuous energy distribution
up to a maximum of 420 keV. A minor contribution to the synthesis of deuterium
is made by the reaction

p + e− + p → d + νe, (14.3)

with mono-energetic neutrinos at 1.442 MeV, dubbed pep neutrinos. The main
branch of the reaction network through 3He and the reaction of two 3He to pro-
duce 4He generates no further neutrinos. Since two 3He nuclei are required and a
neutrino was released in the generation of each, two νe are produced for each 4He.
A rare reaction takes a single 3He nucleus directly to 4He,

3He + p → 4He + e+ + νe, (14.4)

with a continuous neutrino spectrum up to a maximum energy of 18.773 MeV
(so called hep neutrinos). The remainder of the network proceeds from 3He to 7Be
and then either

7Be + e− → 7Li + νe, (14.5)

with mono-energetic neutrinos at either 862 or 384 keV (the 7Be neutrinos), or
from 7Be to 8B and then

8B → 8Be
∗ + e+ + νe, (14.6)
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with a continuous spectrum of neutrinos up to a maximum energy of about 15 MeV.
No further neutrinos are produced as 8Be

∗
spontaneously decays into two alpha

particles or as 7Li reacts with a proton to produce two alpha particles.
The CNO cycle plays a minor role in solar energy production, with neutrino-

producing reactions

13N → 13C + e+ + νe (Eν ≤ 1.199 MeV), (14.7)
15O → 15N + e+ + νe (Eν ≤ 1.732 MeV), (14.8)
17F → 17O + e+ + νe (Eν ≤ 1.739 MeV). (14.9)

The rates of these reactions are sensitive to temperature and density, which vary
through the solar core. So an understanding of solar structure and composition is
necessary to predict the emergent neutrino fluxes. According to the well-confirmed
Standard Solar Model or SSM (e.g. Bahcall et al., 2001), the predicted solar neu-
trino spectrum is as shown in Figure 14.1. This level of detail is necessary in

Figure 14.1 Neutrino flux predictions at 1 AU for the Standard Solar Model
(Bahcall et al., 2005). For continuum radiation the correct units for the verti-
cal scale are cm−2 s−1 MeV−1. Contributions from the CNO cycle are shown in
blue (in electronic version). Energy thresholds for radiochemical detectors are 233
keV for gallium and 814 keV for chlorine. Čerenkov detectors have thresholds of
around 5 MeV.
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understanding the spectrum because the efficiencies of neutrino detectors can be
very energy dependent. Initial results indicated a detection rate well below that
set by the SSM. The nature of these observations and the resolution of their
discrepancy will be discussed in later sections.

14.3 Supernova production

Unlike solar nucleosynthesis, core-collapse supernovae are capable of producing
all three flavors of neutrinos, although not in equal numbers. We will use the nota-
tion νx to indicate the possibility of any neutrino flavor (x = e, μ, or τ ). It had been
thought that the beginning of core collapse was accompanied by the prompt release
of electron neutrinos originating from inverse beta decay reactions such as

e− + p → n + νe. (14.10)

This was followed by thermal production of all flavors of neutrinos and antineutri-
nos which diffuse out of the hot, dense proto-neutron star over a period of about 10
seconds. Reactions producing the neutrinos include

e+ + e− → νx + ν̄x, (14.11)

N + N → N + N + νx + ν̄x, (14.12)

where N stands for nucleon. Particle kinetic energies are of order 20 MeV during
this phase, so neutrino energies are of this order as well. Electron neutrino opacities
are somewhat higher than those of electron antineutrinos and of muon and tau neu-
trinos and antineutrinos, meaning that they are released at a cooler, later stage with
somewhat lower average energies. However, since core-collapse simulations have
had difficulty producing supernova explosions, details concerning timing, energies,
and numbers of the various neutrino flavors emitted must be regarded as uncertain.

Supernova 1987A produced about 1058 neutrinos, which carried away the
bulk of the energy released during the supernova explosion. Even though SN
1987A occurred in the Large Magellanic Cloud, about 50 kpc from Earth, 12
antineutrinos were detected by the Kamiokande detector and an additional 8 by the
IMB detector. This can be considered the birth of neutrino astronomy (beyond the
solar system). Among other things it confirmed that our basic view of core-collapse
supernovae was correct and that neutrinos carry away most of the luminosity of
supernovae.

14.4 Atmospheric neutrinos

A substantial neutrino flux is produced in Earth’s atmosphere by energetic cosmic
rays. These can rightly be considered as a problematic foreground for observing
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extraterrestrial neutrinos. Or, more constructively, they can be viewed as one of
several tools for observing cosmic rays. The methodologies of cosmic ray obser-
vations are discussed in Chapter 15. It turns out that observations of atmospheric
neutrinos are important in understanding the properties of neutrinos themselves.

When energetic cosmic rays hit nuclei in Earth’s atmosphere, they produce
hadron showers containing pions and some kaons and baryons.2 Charged pions
decay into positive or negative muons plus muon neutrinos (or antineutrinos). Rel-
ativistic muons are penetrating particles which eventually decay into electrons or
positrons plus muon neutrinos and electron antineutrinos (or vice versa), as shown
in Figure 14.2. Typically, therefore, cosmic ray showers at GeV energies may
contain about twice as many muon neutrinos as electron neutrinos.

Figure 14.2 A cosmic ray of a few GeV (left) interacts with a nucleus in Earth’s
atmosphere. Such cosmic ray showers typically produce twice as many νμ (and
ν̄μ) as νe (and ν̄e). Above 100 GeV (right) kaon decays dominate and the muons
are more energetic and longer lived, producing a different mixture of neutrino
flavors.

2 Gamma rays in the TeV range may also produce extensive air showers and cannot be ruled out as a source of
energetic muons. However, this is of secondary importance.
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Results from Super-Kamiokande revealed a deficit of νμ (relative to νe) primarily
for upward traveling muons. The interpretation is flavor oscillations with a portion
of the upward νμ having converted to ντ during their passage through Earth. The
nature of flavor oscillations is discussed in the following section.

14.5 Neutrino oscillations

The first instrument designed to detect solar neutrinos was the chlorine radio-
chemical detector built by Ray Davis in the 1960s at the Homestake gold mine
in South Dakota. It quickly became clear that the Homestake detector saw only
about one-third of the solar electron neutrino flux expected from the SSM. Later
the Kamiokande Čerenkov detector and the GNO gallium detector both recorded
about half of the expected electron neutrino flux. Ultimately the Sudbury Neutrino
Observatory (SNO) resolved these discrepancies by measuring separately the flux
in νe and that due jointly to νμ and ντ , and attributed the presence of νμ and ντ to
neutrino flavor oscillations. Observations of atmospheric neutrinos also suggested
the need for flavor oscillations and were sensitive to a different region of param-
eter space (fluctuations on an Earth diameter scale, as opposed to a scale of an
astronomical unit).

14.5.1 Vacuum oscillations

To understand the phenomenon of neutrino oscillations, let us begin with a simple
mechanical system of two pendulums of mass m and length L coupled by a weak
spring of spring constant k, as shown in Figure 14.3. Assume the displacements are
small enough so that the pendulums behave like simple harmonic oscillators. Each
pendulum will have a resonant frequency ω0 = √

g/L, where g is the acceleration
of gravity. The equations of motion are

mẍ2
1 = −mω2

0x1 + k(x2 − x1), (14.13)

mẍ2
2 = −mω2

0x2 − k(x2 − x1). (14.14)

Solving simultaneously we find that the eigenmodes of the system occur at fre-

quencies ω = ω0 and ω =
√
ω2

0 + 2k/m and correspond to the two pendulums
moving together (x1 = x2) and in opposite directions (x1 = −x2) with equal
amplitudes. An initial state with just one pendulum moving is a superposition of
these eigenstates and will evolve through states with both oscillating, then just the
other pendulum oscillating, then both, and then back to the original state, with the
whole sequence repeating.
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Figure 14.3 System of two coupled pendulums.

An analogous evolution occurs in the neutral kaon system K0 and K̄0 whose
eigenstates K0

S and K0
L have a small mass difference. Ignoring decays, an initially

pure K0 beam will evolve into a mixture of K0 and K̄0. The particle is said to
oscillate between the states K0 and K̄0.

The neutrino system is essentially different only in that there are three flavors
of neutrinos. But the mass hierarchy is not known, and it is not known a priori
whether 1, 2, or all 3 of these neutrinos have finite mass. The masses are known to
be small enough that, at the energies of interest, neutrinos are ultrarelativistic.

Neutrinos are produced in flavor states (νe, νμ, ντ ). For simplicity, let us assume
that there are only two neutrino flavors, νe and νμ, and that these have eigenstates
ν1 and ν2 such that

νe = ν1 cos θ + ν2 sin θ, (14.15)

νμ = −ν1 sin θ + ν2 cos θ. (14.16)

In this way, a beam which was originally pure νe will, over time, develop a νμ com-
ponent, depending on θ and the mass difference 	m2. The transition probability
from νe to νμ is

P(νe → νμ) = sin22θ sin2	m2 L c3

4 h̄ E
, (14.17)

where L is the path length.3 So the oscillations occur most rapidly for low energy
neutrinos.

Notation conventions vary. We adopt the convention that all mass differences are
positive:

	m2
12 = 	m2

21 = |m2
1 − m2

2|, (14.18)

3 This equation is most often written in a system of natural units where c = h̄ = 1.
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	m2
23 = 	m2

32 = |m2
2 − m2

3|, (14.19)

	m2
13 = 	m2

31 = |m2
1 − m2

3|, (14.20)

that 	m2
12 is the mass term acting in solar neutrino studies, and that 	m2

23 is the
mass term acting in atmospheric neutrino studies. The mixing angles θ12, θ23, and
θ13 are, in principle, independent. The mass differences are coupled, in a fashion
determined by the mass hierarchy,

	m2
13 = |	m2

23 ±	m2
12|, (14.21)

in the notation used here.

14.5.2 Matter oscillations

When neutrinos pass through matter, the natural vacuum oscillation can be
enhanced by the Mikheyev–Smirnov–Wolfenstein (MSW) effect. The matter in
question might be the solar interior, in the case of solar neutrinos, or Earth’s
interior, for upward traveling neutrinos. In passing through normal matter, all neu-
trino flavors undergo NC interactions, whereas only electron neutrinos undergo CC
interactions. This can be thought of as producing a different effective mass for the
electron neutrino, which under the right conditions can enhance any vacuum oscil-
lations. The MSW effect depends in detail on the electron density in the matter, the
gradient in electron density, and the neutrino energies. As with vacuum oscillations,
the conversion of νe to νμ and ντ is more effective at low energy.

14.5.3 Conclusions

Solar neutrinos are of rather low energy, of order 1 MeV. To explain the solar νe

deficit in terms of vacuum oscillations would require 	m2
12 ≈ 10−10 eV2. If this

were the case, one might hope to observe an annual variation due to the ellipticity
of Earth’s orbit. No such effect has been seen, other than the expected 1/r2 variation
in flux. An explanation using the MSW effect within the solar interior, on the other
hand, yields 	m2

12 ≈ 10−4 eV2. The details of the conversion are dependent on
solar properties such as the variations in electron density along the propagation
path, and on neutrino energies. There would also be the possibility of day/night
variations due to the MSW effect as the neutrinos pass through Earth’s interior (νe

regeneration). No such effect has been seen, further limiting available parameter
space.

The bulk of the evidence, primarily from Super-Kamiokande and SNO, is that
for solar neutrinos the so-called large mixing angle (LMA) model is correct, with
	m2

12 ≈ 8 × 10−5 eV2 and a “large” mixing angle θ12. Further information
from the nuclear reactor experiment KamLAND pins down θ12 ≈ 32◦, as shown



14.6 Radiochemical (transmutational) detectors 265

Figure 14.4 (Left) Allowed solar neutrino mixing parameters 	m2
12 and tan2 θ12

(Aharmim et al., 2005). (Right) Allowed atmospheric neutrino mixing parameters
	m2

23 and sin2 2θ23 (Ashie et al., 2005).

in Figure 14.4. These measurements demonstrate the existence of some physics
beyond the Standard Model of particle physics, giving rise to finite neutrino masses
and MSW oscillations of the electron neutrinos generated in the solar core. There
is no longer a solar neutrino “problem,” and the SSM is shown to be basically cor-
rect. For atmospheric neutrinos with typical energies of 1 GeV, the evidence favors
	m2

23 ≈ 2.4 × 10−3 eV2 and θ23 ≈ 45◦. Little is known yet about the 1–3 channel;
the mixing angle θ13 appears to be small but may be non-zero.

14.6 Radiochemical (transmutational) detectors

Radiochemical detectors record neutrino interactions with atomic nuclei which
transmute the nuclei to a different atomic number, i.e. a different chemical ele-
ment. One limitation of such detectors is that they are sensitive only to νe. On the
other hand, solar neutrinos are expected to be produced purely as νe, so this seems
like a good match. Other limitations are that no information is obtained about neu-
trino energies (other than being above some threshold), about neutrino directions
(presumably known for solar neutrinos), or about timing on any scales shorter
than a few months. These make radiochemical detectors generally poor choices
for studying supernova neutrinos.

14.6.1 Chlorine

The experiment designed by Ray Davis and set up in the Homestake gold
mine in South Dakota was the pioneering instrument for solar neutrino detection
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Figure 14.5 Ray Davis during construction of his historic neutrino detector.
Courtesy of Brookhaven National Laboratory.

(Figure 14.5). Neutrino detectors need to be deep underground so they are shielded
from atmospheric muons. The target nuclide was 37Cl in a tank containing 615 met-
ric tons4 of C2Cl4 (perchloroethylene). The most abundant isotope of chlorine is
35Cl with about three times the abundance of 37Cl, so only about one out of four
chlorine atoms was 37Cl. The reaction

νe + 37Cl → 37Ar + e− (14.22)

produces a radioactive isotope of argon. The energy threshold of this reaction is
814 keV, precluding detection of any pp neutrinos. But chlorine detectors are sen-
sitive to 8B neutrinos. A smaller contribution to the detectable neutrino flux comes
from the higher energy (862 keV) 7Be neutrinos with small contributions from the
pep neutrinos and those from the CNO cycle. The hep neutrinos can be neglected.

After typically two months of operation a near steady state concentration of
argon atoms was achieved. During this time some 1023 solar neutrinos passed

4 A metric ton = 103 kg.



14.6 Radiochemical (transmutational) detectors 267

through the detector, generating on average only 29 atoms of 37Ar. In those two
months some of these decayed, leaving 16 ± 4 argon atoms in the tank. The prob-
lem of detecting these extremely weakly interacting particles had been transformed
into the proverbial problem of finding the needle in the haystack (16 atoms among
more than 2×1030 molecules)! With difficulty the 37Ar was extracted, concentrated,
and placed in gas proportional counters, which eventually recorded the Auger elec-
trons released in the decay of the argon back to 37Cl. This experiment operated
nearly continuously over about 25 years to achieve good statistics (Cleveland et al.,
1998). The rate of solar neutrino detection was only 34% of that predicted by the
Standard Solar Model, a discrepancy eventually explained as being due to neutrino
flavor oscillations.

14.6.2 Gallium

The GALLEX detector, located in the Gran Sasso underground laboratory in Italy,
was in operation from 1991 to 1997 (Hampel et al., 1999). The detector contained
30 metric tons of gallium, a significant fraction of the world’s supply.5 The gallium
was used as a target for the inverse beta decay reaction

νe + 71Ga → 71Ge + e−. (14.23)

The neutrino energy threshold for this reaction is low (233 keV), making the detec-
tor sensitive to the numerous pp neutrinos released from the solar core. The gallium
was present in the form of a highly purified solution of GaCl3 in water. The task
was to detect the individual atoms of 71Ge. The isotope 71Ge is radioactive, with a
half life of 11.4 days.6 The decay was by electron capture, which produced x-rays
of energy 1.2 keV (L shell capture) or 10.4 keV (K shell capture).

There were formidable obstacles to this technique. The Ge atoms were allowed
to accumulate over a period equal to several half lives of 71Ge until a steady state
concentration of 71Ge was reached. Then the 71Ge had to be extracted from the mas-
sive target in a time short compared to the radioactive half life (within a few days)
and with high efficiency. This was achieved by a chemical desorption of GeCl4. All
of this had to take place in an environment well shielded from cosmic ray muons
(i.e. deep underground). And all of the equipment was made of high purity materi-
als to minimize background from naturally occurring radioactive isotopes such as
40K, 238U, 232Th, 222Rn, 85Kr, and 39Ar.

The germanium in the detector was ultimately converted to gaseous GeH4 (ger-
mane). The low energy x-rays from its decay were then detected with highly

5 Current worldwide production of gallium is of order 100 metric tons per year, and demand is exceeding the
rate of production.

6 Equivalent to a 1/e decay time of 16 days.
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specialized gas proportional counters with pulse-shape discrimination against
background beta particles or Compton scattered electrons. Solar electron neutri-
nos were detected at a rate of about 60% of that expected from the SSM. Neutrino
oscillations accounted for the apparent discrepancy.

GALLEX was upgraded and renamed GNO (Gallium Neutrino Observatory).
It also used 30 metric tons of gallium. Results for the period 1998 to 2002 included
improvements in both the statistical and systematic uncertainties in the GALLEX
result. There was interest in attempting to monitor both seasonal variations and
variations with the solar activity cycle. Plans to increase the gallium mass to 60 or
100 metric tons did not materialize. GNO was terminated in 2004 after a safety
incident at the Gran Sasso laboratory involving another experiment. The GNO
result for solar neutrinos was about 50% of that predicted by the SSM.

SAGE was another radiochemical Ga → Ge detector, located in the Caucasus as
a joint effort between the USA and Russia operating from 1990 through 2001. Its
target contained, on average, about 50 metric tons of liquid metallic gallium. The
target mass varied, in part, due to theft of about 2 tons of gallium.7 The technology
of extracting germanium from metallic gallium was different from the extraction
technology of GALLEX. SAGE detected about 55% of the flux expected from
the SSM, also pointing to neutrino flavor oscillations (Abdurashitov et al., 1994).
The discrepancy between the SSM and the gallium results is different than that
for the chlorine experiment due to the different neutrino energies probed by the
two techniques.

14.6.3 Other targets

Other radiochemical targets have been proposed. Foremost among these appears
to be 127I, which has an energy cutoff somewhat below that of 37Cl. It would
detect the same types of neutrinos as a chlorine detector, but with greater sen-
sitivity. A prototype 127I detector was constructed in the Homestake mine. After
2001 the future useability of the Homestake mine was in some doubt. In 2003
the dewatering pumps were shut off, and the mine was allowed to flood. But the
US National Science Foundation and others are funding continuing use of that site
under the names Sanford Underground Laboratory and Deep Underground Science
and Engineering Laboratory (DUSEL, Figure 14.6). Construction at the level 4850
feet (1478 m) below surface, the level of the original Davis experiment, was pro-
ceeding during 2008–2010. Plans are to have an additional facility at the 7400 foot
(2255 m) level, which would be the deepest neutrino detector site. A prototype
liquid 40Ar tracking/scintillation detector called ICARUS has been built at Gran

7 Worth about US $1M at current prices.
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Figure 14.6 DUSEL laboratory. Credit: Zina Deretsky, National Science Founda-
tion.

Sasso. The tracking nature of the ICARUS detector makes it rather different than
other radiochemical detectors and not subject to many of their limitations. The
nuclide 7Li is another possible radiochemical target, along with a long list of other
proposed nuclides.

14.7 Čerenkov detectors

Čerenkov detectors are sensitive to neutrinos scattering off of electrons in water
via either charged current (CC) elastic scattering,

νe + e− → νe + e−, (14.24)

or neutral current (NC) elastic scattering,

νx + e− → νx + e−, (14.25)

as shown in Figure 14.7. The scattered electrons are traveling at nearly c, whereas
the speed of light in water is reduced by the index of refraction n ≈ 1.33. The elec-
trons will therefore emit Čerenkov radiation in a cone with geometry determined
by the equation

cos θ = 1

βn
, (14.26)
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Figure 14.7 Feynman diagrams of neutrino–electron elastic scattering. (Left)
NC scattering of all neutrino and antineutrino flavors. (Center) CC scattering of
electron antineutrinos. (Right) CC scattering of electron neutrinos.

Figure 14.8 Geometry of Čerenkov radiation.

giving an opening angle of about 42◦ as shown in Figure 14.8. The visible and
ultraviolet light is detected by an array of photomultiplier tubes surrounding the
target. The center of the circle of photomultipliers which see a signal gives infor-
mation on the direction of arrival for the neutrino, and the precise geometry of the
event helps discriminate against certain types of background events. The angular
resolution of this scheme can be of order a few degrees, with energy resolution
of order 20%, and timing down to about 1 ns. Čerenkov detectors are sensitive to
neutrinos of energy greater than about 5 MeV, since the neutrino energy is trans-
ferred to the scattered electron and must be sufficient to make it relativistic. Unlike
radiochemical detectors, Čerenkov detectors are also capable of seeing νμ and ντ ,
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but only by neutral current scattering. To determine the neutrino flavor, one must
look carefully at the event geometry. An electron neutrino event will produce an
energetic electron which will rapidly lose energy in an electromagnetic shower.
The energy will be distributed in a shower of scattered electrons moving in dif-
ferent directions, producing a diffuse directionality to the Čerenkov light. Muons,
on the other hand, are penetrating particles losing energy slowly and producing a
sharp, well-defined Čerenkov cone. If a tau neutrino interacts inside the detector,
there will be an initial shower from the scattered electron, and then a short time
and distance later a second shower when the tauon decays. Čerenkov detectors can
also see hadronic interactions, which will be discussed in the following sections.

Čerenkov detectors have the significant advantages of operating in real time and
in retaining information about the energies and directions of the incoming neu-
trinos. Also they are sensitive to all neutrino flavors. A disadvantage is that they
have energy thresholds higher than those of radiochemical detectors. Čerenkov
detectors require many expensive photomultiplier tubes, but the signal process-
ing is relatively straightforward compared to the elaborate chemical processing of
radiochemical detectors.

14.7.1 Kamiokande and Super-Kamiokande

IMB was the first water Čerenkov detector, but we begin our discussion with the
detector located in one of the Kamioke Mining Company’s mines on the island
of Honshu in Japan. Kamiokande was a pioneering Čerenkov neutrino detector8

containing 3000 metric tons of purified water surrounded by about 1000 photo-
multiplier tubes. As a solar neutrino detector, it was able to provide directional
information from electron scattering events, proving that the neutrinos that it
detected were coming from the Sun. It was also online in 1987 and provided crucial
timing, directional, and flux information on the neutrinos from SN 1987A (as did
the IMB detector).

Its successor, Super-Kamiokande, is a Čerenkov detector containing 50 000
metric tons (5 × 107 kg) of highly purified water viewed by over 11 000 photomul-
tiplier tubes. The water is divided between an inner portion (inner detector) which
is the primary target, and an outer portion which serves as an anti-coincidence
shield to discriminate against atmospheric muons. The inner portion of Super-
Kamiokande is shown in Figure 14.9 and part of the outer portion is shown in
Figure 14.10. A simulated event is shown in Figure 14.11. For solar neutrinos,
the flux measured by Super-Kamiokande is about 45% of that predicted by the
Standard Solar Model (Fukuda et al., 2001).

8 The original purpose of the Kamiokande detector was the search for proton decay.
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Figure 14.9 The inner portion of the Super-K detector on April 23, 2006, as it
begins to be filled with water. Note the boat at the far side. For color version of
figure, see plate section.

Figure 14.10 The outer portion of the Super-K detector with outward-looking
PMTs. For color version of figure, see plate section.
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Figure 14.11 Event topology at Super-K. In this event a simulated 481 MeV
muon neutrino produces a relativistic muon which emits Čerenkov light, coded
red. The muon decays into an electron with its own Čerenkov light, coded yel-
low/green. Color coding of arrival times is shown at right, along with a histogram
of photomultiplier hits. Credit: The Super-Kamiokande Collaboration. For color
version of figure, see plate section.

Super-Kamiokande provided dramatic evidence of oscillation for atmospheric
neutrinos as shown in Figure 14.12. Atmospheric electron neutrinos were seen in
the expected quantity, for all directions. Atmospheric muon neutrinos, however,
displayed a clear deficit for those coming from below the horizon. The interpreta-
tion is that there were matter-enhanced (MSW) oscillations turning about half of
the νμ into ντ during passage through Earth (Fukuda et al., 1998).

Hadronic cross sections in water become large above a few MeV, the dominant
interaction being

ν̄e + p → n + e+, (14.27)
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Figure 14.12 Number of electron-like and muon-like events seen at Super-
Kamiokande as a function of the cosine of the zenith angle; cos θ = −1
corresponds to the nadir. For muons the data points do not fit a Monte Carlo
simulation in the absence of mixing, but do fit a model with large mixing angle.
Adapted from Ashie et al. (2005).

which is very important at typical supernova neutrino energies. Other
hadronic reactions of importance include charged and neutral current cross sections
on oxygen nuclei. The elastic CC and NC electron scattering cross sections
continue to rise with increasing neutrino energy, but hadronic cross sections are
dominant above 30 MeV, as shown in Figure 14.13.

In 2001 over half of the photomultiplier tubes were destroyed in a chain reaction
by shock waves, the first of which appears to have been created by an implosion of
one of the PMTs near the bottom of the tank. Full operation was restored in 2006
under the name Super-Kamiokande-III. Neutrons are readily captured by gadolin-
ium. A proposed modification of Super-Kamiokande adding GdCl3 or Gd2(SO4)3

would greatly improve the sensitivity to ν̄e by allowing detection of the neutrons
generated in Equation 14.27.
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Figure 14.14 The Creighton mine near Sudbury, Ontario, is located at a seam
between norite rock and granite gabbro. The SNO site is located well away from
other mine activities. Courtesy of SNO.

14.7.2 Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory (SNO) in Canada is located 2073 m below
ground in an active nickel mine, as shown in Figure 14.14. At this location the
atmospheric muon flux is reduced by an order of magnitude or more compared
to previously used sites, other than the Kolar gold mines in India. At the center
of the detector is a sphere containing 1000 metric tons (106 kg) of heavy water
(D2O), surrounded by about 10 000 photomultipliers, as shown in Figures 14.15
and 14.16. This in turn is surrounded by a 7000 ton light water (H2O) shield.
SNO can see all of the electron scattering reactions seen by Super-Kamiokande,
and shares Super-K’s greater sensitivity to νe scattering. In addition, the presence
of deuterium allows the hadronic reactions shown in Figure 14.13 (right), including
the charged current reaction

νe + d → p + p + e− (14.28)

(Ahmad et al., 2001), with the relativistic electron producing Čerenkov light. There
is also the hadronic neutral current reaction

νx + d → p + n + νx, (14.29)



14.7 Čerenkov detectors 277

Figure 14.15 Artist’s conception of the SNO detec-
tor. Courtesy of SNO.

Figure 14.16 SNO detector during construction, showing the inner acrylic vessel
and the outer cage partially populated at the top with photomultipliers. Courtesy
of SNO. For color version of figure, see plate section.

where x can stand for either e, μ, or τ (see Figure 14.13). Because of the latter
reaction, the heavy water in SNO has significantly larger cross sections for muon
and tau neutrinos than light water. The detection of the neutron requires an addi-
tional step. Neutron capture on deuterium is possible, but inefficient. During the
second phase of SNO operation (Ahmed et al., 2004; Aharmim et al., 2005), the
more efficient neutron capture on 35Cl (from added NaCl) was used,
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Figure 14.17 Measured solar electron neutrino flux versus neutrino flux for other
flavors (Aharmim et al., 2005). For color version of figure, see plate section.

n + 35Cl → 36Cl + γ. (14.30)

In both cases the resulting gamma ray Compton scatters off of electrons produc-
ing isotropic Čerenkov radiation. In the third phase of SNO operation the salt
was removed and thermalized neutrons were captured on 3He inside one of many
proportional counters suspended on a grid in the D2O (Prior, 2009). The total,
flavor-independent flux of solar neutrinos detected by SNO is in good agreement
with the SSM (Figure 14.17), indicating that the shortfalls in the chlorine and
gallium experiments were due to neutrino flavor oscillations.

For supernova detection, the hadronic CC and NC reactions given above have
cross sections larger than electron elastic scattering cross sections at the energies
expected for supernova neutrinos. In addition, supernova bursts are expected to
contain antineutrinos, in which case the hadronic CC reaction

ν̄e + d → n + n + e+ (14.31)

and the hadronic NC reaction

ν̄x + d → p + n + ν̄x (14.32)

would also become important. There were no nearby supernovae between 1999,
when SNO started taking data, and 2006, when it was shut down. SNO was thought
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to be sensitive to supernovae out to a distance of 30 kpc in real time and much
further a posteriori. In the future, experiments such as SNO+ or HALO may exist
at the SNO site, which will operate under the umbrella name of SNOLAB.

14.7.3 IceCube

The extreme smallness of neutrino scattering cross sections suggest using the
largest possible target mass. If Čerenkov light is to be detected, the target must
be transparent. The largest naturally occurring transparent masses on Earth, other
than the atmosphere, are in the form of water or ice.

IceCube uses as a target one cubic kilometer of antarctic ice (Achterberg et al.,
2006). Surface ice tends to have air bubbles which create a short light scattering
length. But the antarctic ice sheet is several kilometers thick, and at sufficient depth
the ice has a sufficiently long scattering length. A prototype detector was made,
named AMANDA, by drilling vertical holes into the ice using hot water jets. Before
the ice could refreeze, long strings of photomultiplier tubes were lowered into the
holes, as shown in Figure 14.18.

The IceCube collaborators are primarily interested in exploring the highest
energy neutrinos, those above 100 GeV. Such neutrinos would be produced by the

Figure 14.18 Photomultiplier being lowered down into a 2 km hole in the
antarctic ice. Courtesy of IceCube/NSF. For color version of figure, see plate
section.
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same sorts of processes that produce high energy cosmic rays and TeV gamma
rays. These include supernova shocks, active galactic nuclei (AGN), and gamma
ray bursts (GRB). But energetic cosmic rays and gamma rays have limited propa-
gation lengths, unlike neutrinos which may provide the least biassed views of such
events. Both electron neutrinos and muon neutrinos are likely to be produced, but
not tau neutrinos. However, ντ can be produced by flavor oscillations.

There are 80 strings of photomultipliers in IceCube, each with 60 downward
facing photomultipliers, laid out as shown in Figure 14.19. The desired events are
upward traveling neutrinos, which may be νe, νμ, or ντ . The pattern of energy dis-
tribution in the ice is sufficient to differentiate the different neutrino flavors and
in some cases allows good measurement of the direction the neutrino was travel-
ing. Event characterization and background discrimination require precise timing
(∼5 ns). Use of timing information is shown in Figure 14.20.

Detection of an upward traveling ντ would require that the neutrino undergo a
deep inelastic scattering with a nucleus within the detector volume, producing a
τ lepton and a hadronic shower. The hadronic shower would be detected through
Čerenkov radiation. The lifetime of a τ lepton, even relativistically enhanced, is

Figure 14.19 Layout of photomultiplier strings in IceCube. Shaded cylinder
shows location of prototype system named AMANDA. Courtesy of IceCube/NSF.
For color version of figure, see plate section.
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Figure 14.20 Simulation of an upward travelling 6 PeV muon in IceCube (Ahrens
et al., 2001). Photomultiplier timing is color coded with red indicating the earliest
signals. For color version of figure, see plate section.

rather short so the τ lepton would travel a short distance before decaying, most
likely, in another hadronic shower. But if the original ντ were energetic enough,
it may be possible to spatially separate the two showers. The event topology and
timing would be unmistakable, although the rate of such events is not likely to be
large.

Neutrinos from galactic supernovae have lower energy, ∼10 MeV, than those of
primary interest, ∼100 GeV, so the event signature would be different. However,
they would be observable by IceCube through

ν̄e + p → e+ + n. (14.33)

The positron would travel a relatively short length and produce Čerenkov light in a
localized burst.

For muon neutrinos, the characteristic signature will be upward traveling muons.
Muons are more highly penetrating than electrons, and will emit Čerenkov light
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along kilometer-length tracks. It should be possible to get very good directional
information from these muon tracks. The dominant background is caused by
cosmic ray air showers above the detector, which produce downward traveling
muons. However, there is also a background produced by cosmic ray showers in
the northern hemisphere, which produce neutrinos that travel through Earth and
then appear as upward traveling neutrinos in IceCube. Such events have been seen
by Ice Cube (Achterberg et al., 2007) at TeV to PeV energies and demonstrate that
the instrument is well calibrated and that the event rate is understood.

Variations of this technique have been tried in both seawater and fresh water.
An instrument in Lake Baikal (Russia) pioneered underwater neutrino detec-
tion. Projects ANTARES and NESTOR are prototyping deep sea detectors in the
Mediterranean. They face backgrounds produced by bioluminescence and 40K, but
seem to be viable technologies. A future cubic kilometer version of a deep sea
detector has been dubbed KM3NeT.

14.8 Scintillation detectors: Borexino

Borexino looks superficially like a Čerenkov detector, but is quite different. Its
target is a liquid scintillator made of 300 metric tons of the aromatic solvent
pseudocumene (an isomer of trimethyl benzene), into which small amounts of
fluorescent material have been dissolved. This is surrounded by a non-fluorescing
900 metric ton buffer of pseudocumene. All of that is contained in a spherical
stainless steel tank, which in turn is surrounded by a 2100 metric ton water shield.
Photomultiplier tubes are affixed to both sides of the stainless steel sphere (look-
ing both inwards and outwards). The outward looking photomultipliers are used
to discriminate against Čerenkov radiation from any cosmic ray muons surviv-
ing passage through the rock overburden at Gran Sasso. Extremely low levels of
background radioactivity are required for all the materials used in this experiment.

The main goal of the experiment is to detect neutrino elastic scattering off of
electrons, particularly for the mono-energetic 7Be solar neutrinos, made possi-
ble by the low energy threshold of 250 keV. The inward looking photomultiplier
tubes record the amount of scintillation light, which is proportional to the energy
transferred in the scattering event. Directional information is lost.

Since the Borexino target is pseudocumene, there will be hadronic interac-
tions on protons (hydrogen) as in light-water detectors like Super-Kamiokande.
But the other hadronic target will be carbon instead of oxygen, with the potential
interaction

νe + 12C → 12N + e−. (14.34)
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14.9 Cosmological implications

A consequence of the standard Big Bang cosmology, in addition to the 2.73 K Cos-
mic Microwave Background (CMB) radiation, is the existence of numerous relic9

or primordial neutrinos at a temperature of 1.95 K. The current number density of
neutrinos plus antineutrinos is expected to be 111.9 cm−3 per generation (Giunti
& Kim, 2007). Purely from an observational point of view, detecting such neutri-
nos is extremely challenging. As we have seen, neutrino cross sections are small
enough at energies of order 1 MeV. But they drop off dramatically at lower energies
(∼10−4 eV), as indicated in Figure 14.13.

Since we now know that at least two neutrinos have mass, the question arises
as to whether neutrinos may be responsible for much of the missing mass or dark
matter in the universe. Relic neutrinos would have been relativistic at decoupling,
so they would contribute a hot dark matter component. Our present understanding
of large-scale structure formation requires substantial cold dark matter (CDM) and
can be made consistent only with a limited amount of hot dark matter. Hot dark
matter suppresses the growth of small-scale structure, contrary to evidence which
indicates a bottom-up scenario with small-scale structures forming before large-
scale structures. From these considerations we can set�ν � 0.02 corresponding to∑

j

mj � 1 eV. (14.35)

Fortunately this is consistent with the values of 	m2
12 and 	m2

23 determined for
solar and atmospheric neutrino measurements. Since those data were only sensitive
to differences in the squares of the masses, this provides an additional constraint
on the absolute mass scale.

14.10 Background of supernova neutrinos

There is also a relic background of supernova neutrinos and antineutrinos, often
called the diffuse supernova neutrino background (DSNB). These presumably were
emitted at energies typical of current supernova neutrinos (∼20 MeV), but may
appear significantly redshifted in current detectors. The difficult task is to iden-
tify a particular event as emanating from a supernova without the key signal of
multiple, nearly concurrent events. The Sun produces neutrinos, not antineutri-
nos, and flavor oscillations do not convert any to antineutrinos. Supernovae, on the
other hand, produce neutrinos and antineutrinos in equal numbers. The detection
of antineutrinos of an appropriate energy therefore is a signature of core-collapse

9 The term relic unfortunately is also used for neutrinos due to supernovae throughout the universe back to the
earliest stars.
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supernovae. Hopkins & Beacom (2006) and Horiuchi et al. (2009) have used lim-
its set by Super-Kamiokande as a constraint on global star-formation history. The
proposed addition of gadolinium to Super-Kamiokande would likely allow direct
measurement of the DSNB.

Exercises

14.1 Calculate the distance that a 1 GeV muon will travel before decay. (Look up
the lifetime of a muon and calculate its Lorentz factor.)

14.2 Calculate the solar neutrino flux at 1 AU, (a) from the solar luminosity,
(b) from Figure 14.1.

14.3 Estimate the present day number density of relic Big Bang neutrinos.
14.4 Kamiokande-II and IMB detected, respectively, 12 and 8 antineutrinos from

SN 1987A. How consistent are these results, assuming a fiducial mass of 2140
metric tons for Kamiokande-II and 5000 metric tons for IMB?

14.5 Derive Equation 14.17. Note that the neutrinos are ultrarelativistic. This is
important in determining the time evolution of the states.

14.6 Calculate the neutrino luminosity of SN 1987A from the event rates observed
with Kamiokande and IMB.
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Cosmic ray detectors

The detection on Earth of ionizing radiation whose strength increased with altitude
was the first evidence for the existence of what, today, are known as cosmic rays.
In the discussion which follows we will, for the most part, bypass the early history
of controversies in this field over whether the radiation consisted of particles or
gamma rays and over whether or not the radiation was of extraterrestrial origin.
Instead, we will begin with our modern understanding that cosmic rays are indeed
of cosmic origin and consist of energetic particles, most of which are charged.1 The
focus thus will be on the measurable properties of such particles and the best ways
to make such measurements.

15.1 Properties of cosmic rays

The most readily measurable properties of energetic particles are charge, mass,
and energy. Charged particle trajectories can also be well determined locally. Such
trajectories can be used within a detector to measure a particle charge to mass ratio
from the curvature of a track in a magnetic field or to relate multiple secondary
particle tracks back to a common point of interaction. However, except possibly
for the very highest energy cosmic rays, a primary cosmic ray trajectory does not
lead back to the location of the astrophysical source of the cosmic ray.

Observationally, cosmic rays at GeV energies are found to consist mostly of pro-
tons, with about a 10% contribution of helium nuclei, 1% of heavier nuclei, and an
approximately 1% contribution of electrons and positrons. The proton differential
energy spectrum follows an approximate power law

dN

dE
∝ E−γ , (15.1)

1 Although the term cosmic rays is sometimes used to include gamma rays and neutrinos, these are not included
in this chapter but are discussed separately in Chapters 11 and 14, respectively.

285
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Figure 15.1 Cosmic rays are observed over 12 orders of magnitude in energy
and nearly 32 orders of magnitude in flux (Beatty & Westerhoff, 2009). Note the
“knee” around 3 × 1015 eV and the “ankle” around 3 × 1018 eV.

with γ ≈ 2.7 over many decades in energy, as shown in Figure 15.1. Small appar-
ent deviations from power law behavior include a “knee” at about 3 × 1015 eV and
an “ankle” around 3 × 1018 eV. The “ankle” is usually interpreted as a cross-over
from galactic to extragalactic cosmic rays. A chief problem in cosmic ray physics
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is providing a plausible explanation for the origin of these ultrahigh energy cosmic
rays (UHECRs) above 3 × 1018 eV.

15.2 Intervening regions

In Chapter 1 we looked at various ways in which regions between a source and an
observer affect the flow of electromagnetic radiation. Intervening regions are also
significant for the flow of energetic particles, but the physical processes involved
are quite different. As with electromagnetic radiation, we can either consider the
intervening regions as obstacles blocking the flow of information from distant
astrophysical sources, or we can consider the intervening regions as targets of
interest being probed by cosmic rays.

15.2.1 Magnetic fields

The Larmor radius (gyroradius) for a charged particle of mass m and charge q
moving in a uniform magnetic field B is given by

rL = m v⊥
q B

, (15.2)

where v⊥ is the velocity component perpendicular to the field. For ultrarelativistic
nuclei of atomic number Z and energy E moving perpendicular to the magnetic
field this is

rL ≈ E/c

Z e B
. (15.3)

It is customary to define the magnetic rigidity, R, as the relativistic momentum
divided by the charge,

R = p⊥
q

= rL B. (15.4)

Table 15.1 gives characteristic magnetic fields and corresponding characteristic
gyroradii for 10 GeV protons in various regions that cosmic rays traverse. Clearly
the geomagnetic field will have a strong influence on the direction of propagation
of low energy cosmic rays, with gyroradii of the same order as Earth’s radius.
Since the majority of cosmic rays are positively charged, this results in an excess
of particles moving from west to east, as shown in Figure 15.2. The presence of this
effect can be taken as proof that the majority of cosmic rays have positive charge.
There is also a latitude effect, with the flux of lower energy cosmic rays being
larger at higher geomagnetic latitudes. Just as solar wind particles are concentrated
in the polar regions, producing the aurora, cosmic rays are similarly funneled into
the polar regions.
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Table 15.1. Characteristic magnetic fields and gyroradii

Region B (gauss) rL (meters)

Earth magnetosphere 0.3 1.1 × 106 ≈ 0.17 R⊕
Interplanetary medium 50 × 10−6 6.7 × 109 ≈ 0.045 AU
Interstellar medium 3 × 10−6 1.1 × 1011 ≈ 3.6 × 10−6 pc
Intergalactic medium 10−9 3.3 × 1014 ≈ 1.1 × 10−2 pc

Figure 15.2 A positively charged cosmic ray incident from the zenith near the
geomagnetic equator is deflected from west to east.

The interplanetary magnetic field is neither dipolar nor static. The lowest energy
cosmic rays are deflected on scales of order an astronomical unit. They reach
Earth’s orbit only to the extent that they are able to diffuse against the outward
advection of the solar wind, which in turn is dependent on the solar cycle. The inter-
stellar medium causes cosmic rays of low and medium energy to gyrate with radii
which are fractions of a parsec. Consequently, cosmic rays from galactic sources
such as supernova remnants, which may be of order kiloparsecs distant, reach the
solar system only by circuitous routes. Galactic cosmic rays have an observed
isotropic distribution, which is why determining observationally the direction of
propagation of individual cosmic rays is relatively unimportant. The propagation
direction retains little information about the cosmic ray point of origin. The galac-
tic field determines whether or not cosmic rays of different rigidities are able to
escape from the galactic plane (Cesarsky, 1980). The very highest energy cosmic
rays are thought to be extragalactic and may have notable anisotropy. The strength
of the intergalactic magnetic field is not well known and may, in places, be much
higher than the value of 10−9 gauss given in Table 15.1.

Energetic neutrons are not produced directly in plausible cosmic ray acceleration
scenarios, but energetic protons may be converted into neutrons as discussed below
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in Section 15.2.8. Neutron trajectories are not affected by interstellar magnetic
fields. Free neutrons at rest have mean lifetimes of 887 seconds and beta decay as

n → p + e− + ν̄e. (15.5)

But at Lorentz factors of γ ≈ 106–109 (1015–1018 eV) neutron lifetimes are of
order hundreds or thousands of years, allowing them to travel significant galactic
distances.

15.2.2 Spallation reactions

Cosmic rays consist mostly of protons, but contain atomic nuclei out through U.
The light nuclei Li, Be, and B are not abundant products of either Big Bang nucle-
osynthesis or stellar nucleosynthesis, yet they are present in cosmic rays, enhanced
by of order 106 over cosmic abundances. The rare light elements seen in cosmic
rays are presumed to have been created from cosmic ray protons or alpha parti-
cles in spallation reactions. Some typical spallation reactions and their shorthand
notations are

p + 12C → 11B + p + p 12C(p, 2p)11B, (15.6)

p + 12C → 9Be + p + p + p + n 12C(p, 3p n)9Be, (15.7)

p + 16O → 6Li + α + α + p + p + n 16O(p, 2α 2p n)6Li, (15.8)

p + 16O → 10B + α + p + p + n 16O(p, α 2p n)10B, (15.9)

α + 16O → 6Li + α + α + α + p + n 16O(α, 3α p n)6Li. (15.10)

The transition elements Sc through Mn (Z = 21–25), which are spallation products
of Fe, are enhanced in abundance in cosmic rays by factors of 10 to 1000. The odd-
Z elements F, P, Cl, and K (and to a lesser extent Na and Al), whose nuclei are less
tightly bound and which are produced in lower abundance in stellar nucleosynthesis
than adjacent even-Z nuclei, are also enhanced in cosmic rays.

In a similar vein, cosmic ray spallation is a source of replenishment of short-
lived isotopes such as 14C. Cosmic rays produce secondary neutrons in Earth’s
atmosphere, which then react with nitrogen to produce 14C,

n + 14N → 14C + p. (15.11)

Other radioactive isotopes thought to be cosmic ray secondaries, produced in
the interstellar medium and in Earth’s atmosphere, are listed in Table 15.2.
An overview of the differential energy spectra of some of the most abundant
components of cosmic rays is shown in Figure 15.3.
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Table 15.2. Radioactive isotopes
replenished from cosmic rays

Isotopea Half-life (years)

10Be 1.51 ± 0.06 × 106

14C 5700 ± 30
26Al 7.17 ± 0.24 × 105

36Cl 3.01 ± 0.03 × 105

41Ca 1.02 ± 0.07 × 105

129I 1.61 ± 0.07 × 107

a IAEA, The Live Chart of Nuclides,
ENSDF 2009; www-nds.iaea.org.

15.2.3 Interstellar ionization losses

For galactic sources a direct line from a source to the Earth might be of order 1 kpc
long (∼3 × 1021 cm). However, the paths of cosmic rays will not be direct, due
to interstellar magnetic fields, and the actual path lengths may be of order 100
or 1000 times as long. For an average interstellar density of 3 × 10−24 g cm−3

(about 1–2 hydrogen atoms per cubic centimeter), this corresponds to a column
density of order 1–10 g cm−2. The theory of ionization losses is discussed, below,
in Section 15.3.1. But for now, we will note that this will result in significant loss
of particle flux for protons of energy 100 MeV and below and for electrons below
10 MeV. In other words, the lower end of the cosmic ray energy spectrum will
be significantly modified by interstellar ionization losses. These are also energies
where cosmic ray fluxes are heavily modified by the solar wind.

The low energy end of the electron spectrum will be replenished, in part, by
what are known as knock-on electrons (sometimes called delta rays). These are
cosmic ray secondaries, produced by the collisions of higher energy protons with
the interstellar medium.

15.2.4 Bremsstrahlung

Cosmic ray electrons also lose energy through bremsstrahlung (braking radiation).
When an electron encounters the Coulomb field of an atomic nucleus of charge Ze,
its path will be deflected, and it will emit radiation whose instantaneous power is
given by the relativistic generalization of the Larmor formula,

P = 1

4πε0

2 e2

3 c3

(
γ 4a2

⊥ + γ 6a2
‖
)
. (15.12)

We will assume that the component of acceleration a⊥(t) perpendicular to the veloc-
ity is relevant and that a‖ = 0. A low mass particle, such as an electron, will
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Figure 15.3 Differential fluxes of different nuclear components of cosmic rays
(Gaisser & Stanev, 2008). Credit: P. J. Boyle & D. Muller.

experience a large acceleration and radiate. A classical picture of a typical interac-
tion is shown in Figure 15.4. The ultrarelativistic expression for the power radiated
at low frequencies (h̄ω 	 γmec2) by a steady flux of electrons is

dP

dω
∝ Z2

m2
e

ln

(
γ 2c

ωbmin

)
(15.13)

= Z2

m2
e

ln

(
γ 2mec2

h̄ω

)
, (15.14)
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Figure 15.4 An electron incident on a nucleus of charge Ze at an impact
parameter b.

where we have taken bmin ≈ h̄/mec, an effective minimum value of the impact
parameter determined by quantum mechanics. We have also ignored a factor of
order unity in the argument of the logarithm (Jackson, 1998). Electron screening
needs to be taken into account when the collisions are with neutral atoms instead of
ions. Converting to an energy loss per unit distance and integrating over frequency,

dE

dx
∝ Z2

me
γ ln (γ ) , (15.15)

for minimal screening. The bremsstrahlung energy loss rate is negligible for non-
relativistic electrons and rises approximately linearly with energy in the relativistic
regime. Full screening makes the relativistic energy loss rate linear with energy.
In this limit an electron loses energy exponentially with distance,

E(x) = E0 e−xρ/X0, (15.16)

with a characteristic “radiation length” X0 (actually a column density) of order
10 g cm−2, depending on the properties of the material being traversed. For the
neutral interstellar medium, X0 ≈ 65 g cm−2.

For more massive cosmic ray particles, the most common type of interstellar
collision is proton on proton, which produces no dipole radiation since there is no
changing dipole moment. Other nuclear collisions such as protons on 4He nuclei
radiate small amounts of power due to unfavorable kinematic factors, which result
in much smaller accelerations than for electrons.

Generally speaking both ionization and bremsstrahlung losses are small in
the low density interstellar medium. Bremsstrahlung losses become relevant for
relativistic electrons. However, at the highest energies, synchrotron and inverse
Compton losses are the largest sources of energy loss.

15.2.5 Synchrotron losses

A relativistic electron moving with velocity v perpendicular to a magnetic field B
radiates energy at a rate
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P = 2σT c umag β
2γ 2 = σT c

B2

μ0
β2γ 2, (15.17)

where umag is the magnetic field energy density, β = v/c, and the Lorentz factor
γ = E/mec2. This power must be reduced by a factor of 2/3 if one wishes to
average over an isotropic distribution of possible orientations of the velocity with
respect to the magnetic field. The Thomson cross section is

σT = 8π

3

(
e2

4πε0mec2

)2

= 8π

3

(
αh̄

mec

)2

= 6.65 × 10−25 cm2. (15.18)

This rate of energy loss is significant for an electron above a few GeV. The time
scale for radiating most of an electron’s energy is

t ≈ 1

σT

mec2

E
mec

1

β2

μ0

B2
. (15.19)

For a 10 GeV electron in a 3 µG = 3 × 10−10 T magnetic field, this corresponds to
about 108 years.

For protons the synchrotron power radiated is reduced by the square of the ratio
of the electron mass to the proton mass, a factor of order 3 × 10−7. For heavy
nuclei the rate of energy loss is further multiplied by the ratio (Z/A)4 where Z is
the atomic number and A is the atomic mass number. Synchrotron radiation from
protons and heavy nuclei is generally small, except for particles of very high energy
in strong magnetic fields.

15.2.6 Inverse Compton losses

The inverse Compton effect can be written as

e− + photon → e− + higher energy photon. (15.20)

Inverse Compton losses follow the same loss formula as for synchrotron radia-
tion but with the magnetic energy density umag = B2/2μ0 replaced by the photon
energy density. If the energy density of photons (starlight, CMB, etc.) is compara-
ble to the energy density in magnetic fields, then inverse Compton losses will be
comparable to synchrotron losses. Since these energy densities are indeed compa-
rable in the interstellar medium, so will be the inverse Compton and synchrotron
losses. Together they may be referred to as radiative losses, following the relation

Prad = 4

3
σT c
(
umag + uphoton

)
β2γ 2. (15.21)

Both mechanisms will be significant for electrons above a few GeV.
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15.2.7 Pair production

Pair production by energetic protons interacting with photons from the CMB can
be represented by

γCMB + p → p + e+ + e− (15.22)

above a proton energy threshold of about 5 × 1017 eV. Each interaction produces
only a small amount of energy loss since the bulk of the momentum and energy in
the rest frame of the CMB remains with the cosmic ray proton. Nevertheless, this
effect may be important since it is the main source of energy loss before the onset
of the GZK effect, discussed in the next section. Energetic electrons and positrons
are also produced by high energy photons in the field of the CMB,

γCMB + γ → e+ + e−. (15.23)

15.2.8 GZK effect

The space through which cosmic rays propagate is filled abundantly with photons
from the CMB. For highly relativistic cosmic ray particles, these photons appear
as gamma rays in the rest frames of the particles. Protons above a threshold of
5 × 1019 eV have sufficient energy to produce pions, in what is known as the
Greisen–Zatsepin–Kuzmin (GZK) effect,

γCMB + p → p + π0, (15.24)

γCMB + p → n + π+, (15.25)

γCMB + n → p + π−, (15.26)

γCMB + n → n + π0. (15.27)

Multiple pion production dominates at higher energies. Heavy nuclei usually
photodisintegrate rather than produce pions. For example, an Fe nucleus near the
GZK cutoff can undergo photodisintegration reactions with either CMB or infrared
photons.

For protons of energy 1020 eV, the GZK mean free path is about 10 Mpc. For
iron nuclei, the photodisintegration mean free path is of similar magnitude. After
traversing several mean free paths, essentially no cosmic rays should remain
above the GZK cutoff. Observations of such high energy cosmic rays, therefore,
imply a source of production which, although extragalactic, is relatively nearby on
cosmological scales.
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15.2.9 Decays

Electrons, protons, and most atomic nuclei are stable components of cosmic
rays. But the GZK mechanism produces neutrons and neutral and charged pions.
Neutrons decay according to Equation 15.5, and pions decay primarily as

π± → μ± + νμ(ν̄μ), (15.28)

π0 → γ + γ. (15.29)

Muons decay into electrons (positrons) and muon and electron neutrinos (antineu-
trinos). Decays therefore must be considered as possible sources of cosmic ray
protons and electrons.

15.2.10 Atmospheric interactions

Earth’s atmosphere is opaque to primary cosmic rays. By the time vertically inci-
dent cosmic ray particles reach a residual pressure of 7 millibar (35 km altitude),
they will have traversed a column density of order 7 g cm−2. This is of order 1/10
of the mean free path of an energetic proton, so a fraction of the energetic primary
cosmic rays will have undergone an interaction and created secondary particles.
Primary cosmic rays may be studied at this altitude if sufficient attention is paid
to corrections for secondary particle fluxes. The production of secondaries peaks
around a column density of 55 g cm−2 (20 km altitude).

At a cosmic ray particle energy above a few GeV, a hadronic interaction with an
atmospheric nucleus leads to an extensive air shower containing both a hadronic
component (mesons and baryons) and an electromagnetic component (leptons and
photons). The concept of an air shower was introduced in the previous chapter
(Figure 14.2). The topic of extensive air showers is covered, below, in Section 15.5.

A penetrating component of secondary cosmic rays exists in the form of muons.
The mean muon lifetime at rest is 2.2 × 10−6 s, so relativistic muons can easily
survive to reach Earth’s surface. Muons do not participate in the strong inter-
action, so they also survive passage through substantial amounts of matter and
are detectable kilometers underground. The other penetrating component of sec-
ondary cosmic rays is neutrinos, discussed in Chapter 14 (where they are called
atmospheric neutrinos).

15.3 Detectors

Cosmic ray detectors are based on one of severals means by which energetic
charged particles interact with matter, as will be discussed in the following sections.
Many of these interactions produce either high energy photons (ultraviolet, x-ray,
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or gamma ray) or byproducts such as ionization trails, which have been discussed
in Chapter 10. Some of the technologies of charged particle detection, therefore,
are similar to technologies employed in the detection of high energy photons.

In the discussion that follows we assume that cosmic ray nuclei remain fully
stripped of their electrons. We also ignore nuclear reactions that may lead to neu-
tron stripping. However, fragmentation of heavy nuclei is an important process
when considering the development of extensive air showers.

15.3.1 Ionization detectors

One type of particle interaction is ionization. A charged particle of charge Z and
mass M (M � me) passing through neutral material will experience Coulomb
interactions with the electrons it encounters. Some of these interactions will lead to
ionizations while others will lead to electronic excitations. Let I be the logarithmic
mean excitation potential (ionization potential) of the electrons (Ahlen, 1980). The
rate of energy loss by ionization is well approximated by the relativistic Bethe
formula,

dE

dx
= − 4π

mec2

N Z2

β2

(
e2

4πε0

)2 [
ln

2 mec2 β2

(1 − β2) I
− β2

]
, (15.30)

where β = v/c and N is the number density of electrons in the material.
The rate of energy loss is high at low energies, decreasing to a minimum around

a few times Mc2, as shown for protons in Figure 15.5. More slowly moving parti-
cles remain near the electrons longer and are able to deliver larger kicks. The rate
of energy loss then increases again for highly relativistic energies. For relativistic
particles near the minimum in energy loss, the rate of energy loss is a sensitive
function of the particle charge, Z. The ionizations are relatively easy to detect, and
a trail of ionizations is visible in a variety of types of detectors. The direction of the
trail indicates the propagation direction of the particle. Detectors sensitive to the
rate of ionization are often called “dE/dx detectors.” Ionization loss for electrons
follows a somewhat different relationship due to, among other things, the different
reduced mass of the collision. Broadly speaking, minimum ionization for elec-
trons occurs around 1 MeV with a generally 1/E behavior at low energies. At high
energies electrons lose energy primarily by bremsstrahlung.

Ionization may be detected by any of the classical methods such as cloud cham-
bers, bubble chambers, and spark chambers, but most frequently scintillators and
solid state detectors are used (see Chapter 11). Although scintillators are dE/dx
detectors, their energy response is non-linear and may be different for particles
of different mass and charge. Careful calibration is needed, for example, with an
accelerator producing beams of known energy. Solid state detectors, in contrast,
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Figure 15.5 Ionization energy loss rates in air for protons (solid line) and elec-
trons (dashed line) and bremsstrahlung energy loss rate in air for electrons (dotted
line). Based on the NIST ESTAR and PSTAR databases.

have good linearity. As can be seen from Figure 15.6, accurate measurement of the
rate of energy loss at minimum ionization is sufficient to determine atomic number
(charge), and monitoring ionization over some distance as the particle loses energy
is sufficient to determine the isotope and the energy. Mass resolution can be a small
fraction of an a.m.u., as illustrated in Figure 15.7.

Ionizing particles leave permanent damage tracks in various solids, and the dam-
age tracks can be revealed by chemical etching. Exploration of fossil tracks in
meteorite grains has been used to study the history of cosmic rays throughout the
life of the solar system. Modern detectors specifically designed for exploring cos-
mic ray irradiance are typically stacks of transparent dielectrics such as sheets of
Lexan polycarbonate (Price & Fleisher, 1971). Polymers of this sort are partic-
ularly sensitive to radiation damage. Figure 15.8 schematically shows a detector
stack and the nature of the etched regions. Empirically, the damage rate is found to
be dependent on the ratio Z/β.

15.3.2 Bremsstrahlung

As we have seen, bremsstrahlung (braking radiation) is the result of interactions of
an energetic charged particle with the Coulomb fields of nuclei it encounters. For
an acceleration (deceleration) a, along the direction of particle motion, the power
radiated by a particle of charge q is given by
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Figure 15.6 Relative rates of energy loss as a function of particle energy for 1H,
2H, 3He, 4He, 6Li, and 7Li nuclei estimated from the Bethe formula.

P = q2a2γ 6

6πε0c3
. (15.31)

At fixed energy, electrons have higher Lorentz factors than protons by the ratio
mp/me. Since the dependence on the Lorentz factor is γ 6, it is clear that electrons
will produce much greater losses due to bremsstrahlung than protons (for accelera-
tion perpendicular to the direction of motion, the loss goes as γ 4). Bremsstrahlung
is a relatively important process for electrons, as was shown in Figure 15.5. Heav-
ier charged particle such as protons exhibit significant bremsstrahlung only at high
energies.2

2 Relativistic heavy charged particles lose energy to e+e− pair production at roughly the same rate as to
bremsstrahlung.
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Figure 15.7 (Left) dE/dx versus E calibration data for the Solar Isotope Spec-
trometer (Stone et al., 1998). (Right) Isotopic mass resolution for CRIS (Ogliore,
2007).

Figure 15.8 Ionization tracks in transparent polymer sheets are evident through
the roughly conical cavities produced by etching.

To use bremsstrahlung as a cosmic ray diagnostic, one must detect the broad-
band radiation which is produced. For electrons of energies where bremsstrahlung
is the dominant source of energy loss, the radiation is composed primarily of x-rays
and gamma rays. Since x-rays and gamma rays passing through matter generally
initiate electromagnetic cascades, the principal use of bremsstrahlung is in calori-
metric detectors measuring the total rate of energy deposition. Bremsstrahlung is
important in the development of the electromagnetic component of extensive air
showers, described below in Section 15.5.
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15.3.3 Čerenkov radiation

Čerenkov radiation, which was discussed in Chapter 14 (see Figure 14.7), will
occur when the velocity of a particle exceeds the propagation velocity of light, in
other words, when

βn > 1. (15.32)

The classical result for the number of photons generated per unit distance per unit
wavelength is given by

d2N

dλ dx
= 2παZ2

λ2

(
1 − 1

n2β2

)
, (15.33)

where α is the fine structure constant. The index of refraction is frequency depen-
dent, and radiation is emitted only at frequencies for which the condition n > β−1

is satisfied. Typically this will be a region somewhat below the plasma fre-
quency for the material, and the light emitted will be blue and near-ultraviolet.
Čerenkov light may be detected by photomultiplier tubes. The amount of radiation
is proportional to Z2. Energy loss to Čerenkov radiation is small.

15.3.4 Transition radiation

Transition radiation is generated when relativistic charged particles encounter a
dielectric inhomogeneity. For the simplest case, that of a single dielectric interface
between materials 1 and 2, the dielectric constants for x-rays are given by

ε1 = 1 − ω2
1

ω2
, (15.34)

ε2 = 1 − ω2
2

ω2
, (15.35)

where ω1 and ω2 are the plasma frequencies of the two materials. The total x-ray
power radiated by a particle of charge Ze is given by

S = αh̄

3
Z2 (ω1 − ω2)

2

ω1 + ω2
γ, (15.36)

and is strongly peaked in the forward direction (Cherry et al., 1974). If material 2
is vacuum, this simplifies to

S = αh̄

3
Z2ω1γ = Z2e2

3c
ω1γ. (15.37)

An intuitive picture of the origin of transition radiation is that of the moving charge
and its image charge on the other side of the dielectric boundary (Ginzburg &
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Tsytovich, 1979). Transition radiation is very weak. For a particle of unit electric
charge and γ ≈ 104, this corresponds to a fraction of an x-ray photon. So multi-
ple dielectric interfaces are required to give a significant signal. The usefulness of
transition radiation devices is enhanced by the Z2 dependence of their response to
atomic nuclei of charge Ze (Wakely, 2002). The energy loss for charged particles
with large Lorentz factors is negligible.

15.4 Balloon-borne and spacecraft missions

Cosmic ray experiments may be either balloon-borne or satellite based. Those
carried by balloons suffer from the effects of the residual atmosphere, such as ion-
ization loss. Satellites, however, tend to be in near-equatorial orbits and therefore
experience stronger geomagnetic shielding than balloons at high geomagnetic lat-
itudes. Both balloon and satellite missions are appropriate primarily for low to
moderate energy cosmic rays, where fluxes are sufficient for detector areas of, at
most, a few square meters.

15.4.1 1990s and early 2000s

The Advanced Composition Explorer satellite (ACE) was launched in 1997.
Among other things, it carried the Cosmic Ray Isotope Spectrometer (CRIS),
which contained silicon energy loss detectors followed by scintillating tracking
detectors3 and measured isotopic composition out to Z = 30 at energies of around
100 MeV/nucleon with an étendue of 0.25 m2 sr.

Other missions from this period included the Balloon-borne Experiment with
a Superconducting Spectrometer (BESS) and the Advanced Thin Ionization
Calorimeter (ATIC). BESS used a superconducting solenoid with a magnetic field
of 0.8 T and drift chambers to unambiguously measure the sign of particle charges.
One focus of BESS was the study of low energy antiprotons. ATIC had sili-
con energy loss detectors, scintillating tracking detectors, and a BGO (BiGeO)
calorimeter. It was used at energies of 1010–1014 eV/nucleon.

15.4.2 TRACER and CREAM

The Transition Radiation Array for Cosmic Energetic Radiation (TRACER) and
Cosmic Ray Energetics And Mass (CREAM) projects are long duration balloon-
borne experiments designed to study charges and energies of cosmic ray nuclei
around 1012–1015 eV. The low flux of heavy nuclei at these energies requires large
detector cross sections and long integration times. Long duration balloon flights are

3 In cosmic ray work, particle tracking devices of this type are often called hodoscopes.
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typically made at altitudes of 110 000 to 125 000 feet (about 35 km) and can last
from weeks up to a few months. The residual atmosphere at such altitudes corre-
sponds to mass column densities of order 4 g cm−2. Such flights are typically made
in the arctic or antarctic to take advantage of the low geomagnetic cutoffs and the
mild circumpolar winds. Environmental factors can be severe for these latitudes,
altitudes, and flight durations. Geopolitical factors make long antarctic flights more
practical than long arctic flights, although the expense associated with working in
the antarctic is greater. The US Columbia Scientific Balloon Facility (formerly the
National Scientific Balloon Facility) supports flights from several locations world-
wide, including McMurdo Station (Antarctica, 77.5◦ S), Esrange (Sweden, 68◦ N),
and previously Fairbanks (Alaska, 65◦ N) and Lynn Lake (Manitoba, Canada,
57◦ N).

The TRACER instrument layout is shown in Figure 15.9. The rate of ionization
loss in scintillators at the top and bottom of the instrument is proportional to Z2,
providing good determination of Z as well as providing a trigger for the instrument
and a coincidence check. Proportional tube arrays consist of crossed grids of single
wire proportional tubes over an area of 2 m × 2 m, with the overall instrument
having an étendue of 5 m2 sr. In all there are 16 layers of proportional tubes. The
first four pairs measure the track position, the ionization loss rates, and give an
approximate measure of the particle energy. The remaining four pairs are used to

Figure 15.9 The TRACER instrument (Gahbauer et al., 2004). The sections
labelled “radiator” are battings of 2–5 µm polyolefin or 17 µm olefin fibers.
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detect x-ray transition radiation. Transition radiation provides a determination of
the Lorentz factor in the range 500 < γ < 104. Transition radiation intensity scales
as Z2. A Čerenkov counter is used to reject non-relativistic particles.

CREAM (Ahn et al., 2007) combines a transition radiation detector similar to
that of TRACER with a calorimeter to allow observations of particles down to
Z = 1 (that is, to include protons and helium nuclei). A disadvantage of the
calorimeter is that it employs high-Z elements whose large cross sections create
significant backscatter into the transition radiation detector. In part, the effects
of this are minimized by providing a precise timing cutoff to exclude backscat-
ter events. CREAM has a smaller étendue than TRACER. In addition to measuring
nuclei down to hydrogen, it provides highly redundant measurements of the particle
charge Z.

15.4.3 PAMELA

The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics
(PAMELA) was launched in 2006 and is still in orbit aboard the Russian Resurs-
DK1 satellite. Like BESS, one of the main aims of PAMELA is the study of
antimatter. The instrument contains a magnetic spectrometer with silicon tracker, a
tungsten/silicon imaging calorimeter, and a set of time of flight scintillators, with
an étendue of 0.002 m2 sr. It has a sensitivity of order 3 × 10−8 for the anti-
helium/helium ratio and detects an antiproton/proton ratio of order 10−4 (energy
dependent). For studying cosmic ray spectra, it is sensitive out to energies of about
3 × 1011 eV.

15.4.4 Alpha Magnetic Spectrometer

In May 2011 the Alpha Magnetic Spectrometer (AMS-02) was carried into orbit
by the space shuttle Endeavour and installed on the International Space Station,
where it will collect data for at least three years. Like BESS, AMS-02 has a magnet
for antiparticle identification, but it has additional capabilities such as a transition
radiation detector. AMS-02 is designed to measure the antihelium/helium flux ratio
to a sensitivity of one part in 109. It also has capability of detecting certain types
of exotic matter such as strangelets.

15.5 Extensive air showers

At high energies the flux of primary cosmic rays is low, of order 10−21 m−2 s−1

sr−1GeV−1 at 1018 eV. This implies that a detector with an area of 1 m2, a solid
angle of 1 sr, and a bandwidth of 1018 eV will see a flux of much less than one
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event per year. This is clearly impractical for the types of detectors discussed so far.
Detectors with areas of order kilometers squared are needed to get appreciable flux,
necessitating use of the atmosphere as the primary detector medium. Fortunately,
interactions of high energy primary cosmic rays with Earth’s atmosphere leave
several observable signatures.

When an energetic cosmic ray interacts in the atmosphere, it initiates a shower
containing a baryonic component and pions. Neutral pions decay by emitting
gamma rays, initiating an electromagnetic cascade of photons, electrons, and
positrons. Gamma rays interact with the atmosphere (with a mean free path of
order 50 g cm−2) and produce e+e− pairs. The electrons and positrons (with radi-
ation lengths X0 ≈ 37 g cm−2 in air) emit photons via bremsstrahlung to continue
the cascade. Charged pions interact with the atmosphere producing more pions,
muons, and electrons. The baryonic component has further collisions, creating
more pions. The baryonic components and the charged pions are often called the
hadronic shower. Eventually a large fraction of the initial energy is deposited in the
electromagnetic cascade.

One signature of an energetic cosmic ray is the existence of a hadronic shower.
If the energy came entirely from an initial high energy gamma ray, the shower
produced would be almost entirely electromagnetic. Muons are major products of
a hadronic shower. The ratio of muons to electrons is one measure of the strength
of the hadronic shower and an indication of the composition of the cosmic ray
primary. At fixed energy, heavier nuclei produce more muons, and protons produce
fewer muons.

The slant depth of maximum charged particle density in a cosmic ray induced
shower, illustrated in Figure 15.10, is referred to as Xmax, a column density mea-
sured in units of g cm−2. A shower reaches its Xmax when the initial particle energy
has been subdivided sufficiently by the cascade that the remaining particles lack
the energy to continue the cascade process. The depth into the atmosphere of the
shower maximum is a measure of the primary particle energy. For a particular
chemical species (e.g. protons) the rate of change of Xmax with particle energy is
known as the elongation rate,

ER = dXmax

d(logE)
. (15.38)

Lighter elements penetrate deeper than heavier elements of the same energy.
Lighter elements also exhibit larger fluctuations in Xmax from event to event, at
fixed energy, since heavier element showers are the result of averaging over the
nucleonic components.

Arrival times at various stations of a ground array can be used to determine
the curvature of the shower front, thereby indicating the altitude at which the
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Figure 15.10 Xmax is the slant depth into the atmosphere at which an extensive air
shower has the maximum number of charged particles. The width shown indicates
the number of particles, not the lateral spread of the shower. Protons penetrate
deeper into the atmosphere and show a wider variation of Xmax than iron nuclei.

Figure 15.11 The arrival time of air shower particles at ground array stations can
be used to determine direction and curvature (and therefore height and Xmax).

shower originated, as shown in Figure 15.11. Direction of propagation can also be
determined. The lateral spread of the shower is a measure of the primary particle
energy.

The signature of a heavy nucleus (instead of a proton of the same energy) is a
cascade beginning higher in the atmosphere and developing more rapidly. For a
surface array these characteristics can be seen as a shower front with a large radius
of curvature and a relatively small thickness. The number density of electrons some
distance from the shower core gives an indication of the energy of the primary since
the more distant shower particles were generated early in the shower development.
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Energy deposited in the atmosphere will excite nitrogen molecules, giving rise
to fluorescence. On average about five photons are emitted in the strong 2P(0, 0)
band at 337 nm for every MeV of energy deposition. Since most of the energy of
the primary will ultimately be deposited in this form, measurement of fluorescence
is essentially a calorimetric measurement. The fluorescent light is primarily in the
300–400 nm wavelength range, and detectors are filtered accordingly. The fluores-
cence yield over this range is about 18 photons per MeV at sea level, increasing
rapidly with altitude (Arqueros et al., 2008). Scattered Čerenkov radiation provides
a small competing signal at these wavelengths, for which the fluorescent light sig-
nal must be corrected. Fluorescence detectors consist of wide field telescopes with
cameras containing arrays of photomultiplier tubes. With these, one can recon-
struct the shower geometry and the longitudinal development of the shower from
the light distribution on the plane of the sky and from timing information on the
shower development. Stereoscopic viewing from separate ground stations allows
even tighter measures of the characteristics of the shower.

Secondary particles produced by the interaction of an energetic primary will
be relativistic, producing Čerenkov radiation even at low atmospheric densities.4

Showers of secondary particles will contain many particles which will survive and
reach the ground. The lateral spread of secondary particles is an important shower
diagnostic. On average the number of charged particles in the shower is related to
the energy of the primary cosmic ray by

E ≈ 4 × 1015 eV

(
N

106

)0.9

(15.39)

for vertical showers with E ≈ 1015 eV. There is a complicated dependence on
particle energy and altitude.

Water Čerenkov tanks are useful components of a ground array to measure the
distribution and flux of muons. Muons are penetrating particles which will not be
significantly attenuated by the residual atmosphere above the detectors. Muons are
broadly distributed in air showers and will form the dominant particle flux away
from the shower core. Shielding is necessary to block the electrons and positrons
in the electromagnetic cascade without blocking the penetrating muon component.
Unshielded plastic scintillators are sensitive to electrons and positrons; they also
detect photons, with lower sensitivity.

Ground-based calorimeters are used to detect energetic hadrons. Absorption
lengths of order 1000 g cm−2 are required to reliably absorb the particle energy.
The simplest method of doing this is with large area scintillators, although any

4 A distinction must be made between air Čerenkov detection (discussed here) and water Čerenkov detectors
(which may form part of a ground array).
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dE/dx ionization detector can be used. Shielding must be used to block the
electromagnetic part of the air shower.

To be an effective particle detector, an air shower experiment must be able to
discriminate against showers initiated by high energy gamma rays. Such show-
ers are almost entirely electromagnetic, and the shower energy is divided fairly
evenly between the multiple electrons and positrons produced. These relativistic
particles produce Čerenkov light, and the smooth distribution of Čerenkov light is
a signature of a gamma ray event. Hadronic showers, in contrast, maintain a large
amount of energy in individual hadrons, giving a Čerenkov image dominated by
distinct sub-showers. Methods for discriminating between hadronic and gamma
ray showers are discussed by Hillas (1996). Above 1019 eV photon interactions are
suppressed by the Landau–Pomeranchuk–Migdal (LPM) effect, and photons may
penetrate deeply into the atmosphere before developing showers.

Gamma rays above 1019 eV also have the possibility of pair production through
interaction with Earth’s magnetic field. In that case an e+e− pair is created well
above the atmosphere, where the particles then emit synchrotron radiation. The ini-
tial energy is subdivided between a multitude of photons, electrons, and positrons
even before the shower reaches the atmosphere. Such events would appear with a
highly anisotropic distribution.

In principle, ultrahigh energy neutrinos are capable of initiating extensive air
showers. Limits on the rate of neutrino-induced events can be set by searching for
shallow, upward-going tracks originating from electron neutrino interactions, as
described by Abbasi et al. (2008b).

All extensive air shower detectors are complicated instruments requiring exten-
sive calibration and Monte Carlo simulations of shower development and detector
characteristics. This is particularly true of ground array detectors.

15.5.1 High Resolution Fly’s Eye

The High Resolution Fly’s Eye array (HiRes) is an air fluorescence detector in
Utah, which operated from 1999 through 2006 as a successor to the original Fly’s
Eye. There were 64 light collecting elements divided between two sites 12.6 km
apart, allowing for stereoscopic (binocular) views of air shower events. One site
had 22 telescopes in a single ring, observing 320◦ in azimuth at low elevation
(3–17◦) in order to optimize sensitivity for the highest energy events. The other site
had 42 telescopes in two rings, one for low elevation and one for elevations 17–31◦.
The telescopes had effective collecting areas of 3.75 m2 and hexagonally packed
focal planes each with 256 photomultipliers.5 Each photomultiplier covered about

5 The assemblies of photomultipliers have an appearance like that of the compound eyes found in insects, hence
the name Fly’s Eye.
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Figure 15.12 The fluorescence light from a nearby high
energy HiRes air shower event extending over the focal
planes of two adjacent telescopes (Boyer et al., 2002).
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Figure 15.13 Confirmation of the GZK cutoff by HiRes (Abbasi et al., 2008a).

1 square degree of sky. An example of an event with an estimated energy above
1020 eV is shown in Figure 15.12.

The HiRes results confirmed the existence of the GZK cutoff at an energy of
about 6 × 1019 eV (Abbasi et al., 2008a), as shown in Figure 15.13, contrary
to results from the AGASA experiment (Akeno Giant Air Shower Array). Ear-
lier indications of possible cosmic ray anisotropy associated with active galactic
nuclei (AGNs) are not confirmed by the HiRes data (Matthews, 2010). The most
recent analysis by Abbasi et al. (2010b) indicates that the distribution of UHECRs
with HiRes is consistent with isotropy, unlike the claimed correlation with BL Lac
objects by Gorbunov et al. (2004). A statistical analysis of HiRes results appears to
show that the highest energy cosmic ray events result from protons (Abbasi et al.,
2005, 2010a; Matthews, 2010), contrary to the Pierre Auger Observatory results
discussed below.
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Figure 15.14 Map of the Pierre Auger Observatory in Argentina. Dots (red)
represent surface array detectors. Lines (green) delimit the fields of view of
the fluorescence detectors. Courtesy of Auger Observatory. For color version of
figure, see plate section.

15.5.2 Pierre Auger Observatory

The surface detector of the Pierre Auger Observatory in Argentina consists of 1640
water Čerenkov tanks spread out over 3000 km2. A map is shown in Figure 15.14.
The fluorescence detector consists of six inward-looking Schmidt telescopes at
each of four sites around the perimeter of the Čerenkov field. The telescopes cover
1.5−30◦ of elevation. By itself the surface detector can estimate the primary parti-
cle trajectory and Xmax from the arrival times at different detectors. The distribution
of shower particles can be used to estimate the composition and energy of the
primary cosmic ray. Whereas the surface array operates nearly full time, the fluo-
rescence detectors are limited to use under ideal lighting conditions (nighttime, not
near full moon, clear skies). The best information is obtained in “hybrid” mode,
when both the surface array and the fluorescence detectors are triggered. Abraham
et al. (2010) discuss data based on 3754 events above 1018 eV which are detected
in hybrid mode and survive a variety of cuts relating to data quality and event
geometry.
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The Auger Observatory, like HiRes, has confirmed the existence of the GZK
cutoff, and their team of researchers report a cutoff energy of about 4 × 1019 eV
(Abraham et al., 2008a). The Auger collaboration has also claimed anisotropy in
the highest energy cosmic rays at a confidence level of 99% and reports a corre-
lation with nearby AGNs (Abraham et al., 2008b). As discussed above, the HiRes
data do not appear to be consistent with the Auger claim.

The most recent Auger results suggest that the highest energy cosmic rays, above
the “ankle” in the cosmic ray spectrum, may be from heavy nuclei such as Fe
instead of protons. In other words, the composition of cosmic rays may vary from
a dominance by protons at lower energies to a dominance by heavy nuclei at the
highest energies (Abraham et al., 2010). This is directly opposite the conclusion
reached by the HiRes collaboration. The Auger Observatory is still producing data,
so further information on this issue may be forthcoming.

The ankle is considered to be the transition from galactic to extragalactic cos-
mic rays. Iron nuclei have lower rigidities than protons of the same energy. Rather
than proceeding more or less directly from source to observer as UHECR protons
do, the paths of fully ionized iron nuclei would be considerably distorted by the
galactic and intergalactic fields. So it makes a considerable difference for ques-
tions of anisotropy whether the UHECRs are protons or iron-group nuclei. The
situation regarding survivability would also change. Rather than being limited by
the GZK effect, the range of iron UHECRs would be limited by photofragmenta-
tion. It is possible that an upper energy cutoff of UHECRs is due to a limitation on
the acceleration mechanism instead of limits on propagation. It is unclear whether a
mechanism for accelerating Fe nuclei to the highest energies would be able to do so
while leaving the nuclei intact. As discussed above, the HiRes data are interpreted
as favoring protons for the highest energy events.

The Auger Observatory has two low energy enhancement projects to allow bet-
ter exploration of the ankle region. The HEAT (High Elevation Auger Telescopes)
project adds high elevation capability (30−60◦) to what was essentially a low eleva-
tion fluorescence system. The AMIGA (Auger Muons and Infill for Ground Array)
project, as the name suggests, would fill in a part of the ground array with 66 water
Čerenkov tanks and buried muon scintillation counters at a combination of 750 m
and 433 m separations. The construction of a larger, northern hemisphere version
of the Auger Observatory will be a path toward improved high energy performance
as well as full sky coverage. The proposed Auger North would have a coverage of
20 000 km2, nearly an order of magnitude increase over Auger South.

15.5.3 Telescope Array (TA) project

The Telescope Array is an air shower detector near Hinckley, Utah. It consists
of a ground array of 576 scintillation detectors with 1.2 km spacing and three
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fluorescence sites set in a triangle around the ground array. The fluorescence sites
have on average about 12 telescopes each, covering 3−33◦ in elevation and about
108◦ in azimuth.

The TALE (Telescope Array Low Energy) extension of the Telescope Array con-
tains additional “infill” scintillator stations for the ground array since lower energy
cosmic rays produce narrower showers. The spacing of these stations is 500 m.
There are also towers with fluorescence telescopes covering nearly the entire range
from zenith to horizon.

15.5.4 Atmospheric Čerenkov Telescope Array

A priority of the 2010 Astronomy Decadal Survey report is ACTA (Atmospheric
Čerenkov Telescope Array). It is anticipated that this would involve US scien-
tists joining the European CTA (Čerenkov Telescope Array) project. ACTA is
viewed primarily as a TeV (1015 eV) gamma ray telescope in place of the proposed
US Advanced Gamma-ray Imaging System (AGIS). Current instruments of this
sort include the High Energy Stereoscopic System (HESS), Major Atmospheric
Gamma Imaging Čerenkov telescope (MAGIC), the Very Energetic Radiation
Imaging Telescope Array System (VERITAS), and the Collaboration of Australia
and Nippon for a GAmma-Ray Observatory in the Outback (CANGAROO).

A key requirement to use a Čerenkov array for detecting gamma rays is the
ability to reject cosmic ray showers based on the existence of hadronic fragments
and sub-showers generated away from the shower core (Hillas, 1996). If the cos-
mic ray primary is a heavy nucleus, one may also hope to detect the Z2-enhanced
Čerenkov light from the primary cosmic ray before its first hadronic interaction
in the atmosphere. Atmospheric Čerenkov arrays are not directly useful for study-
ing showers induced by rare energetic cosmic rays since the shower cores would
need to arrive close to the positions of the Čerenkov telescopes. Although the sci-
ence goals are different, both the gamma ray and cosmic ray efforts will benefit
from similar technologies and improved understanding of the development of air
showers.

15.5.5 JEM-EUSO

The Japanese Experiment Module–Extreme Universe Space Observatory (JEM-
EUSO) is a project to monitor the isotropic fluorescence light from cosmic rays
from above, on the International Space Station. From this vantage point it will be
possible to monitor extensive air showers over a larger atmospheric volume than
existing and proposed ground-based systems. This would improve statistical accu-
racy for the rarest, highest energy cosmic ray events. S-EUSO (Super-Extreme
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Universe Space Observatory) is a proposed, enlarged, free-flying version of
EUSO.

15.6 Particle acceleration

Since the method of producing UHECRs is a central question in cosmic ray
physics, it is worth examining the theoretical possibilities for accelerating charged
particles to ultrahigh energies. One possibility is the first order Fermi mechanism,
in which particles gain energy by repeatedly crossing a shock front. This mecha-
nism is not rapid, except in highly relativistic shocks, since it is diffusive in nature
and requires multiple shock crossings. Millions of years are required for shocks
traveling at velocities of 0.3c to accelerate protons to 1020 eV in magnetic fields
of order 10 µG. Not only must the shocks persist for this time scale, but the shock
regions must be large enough so that the particles do not diffuse away before they
are sufficiently accelerated. This requires regions of size

L >
2 E

B β Z

pc µG

1015 eV
(15.40)

(Hillas, 1984). The requirement is somewhat milder for heavy nuclei than for pro-
tons, due to the dependence on the nuclear charge Z, but it is still difficult to find
galactic sources satisfying this requirement for E = 1020 eV. The “knee” feature
in the cosmic ray spectrum is interpreted as an indication that this limit is being
reached at energies of only 3 × 1015 eV.

Shocks are present in galactic supernova remnants, but they fail to meet the
above size requirement by two or three orders of magnitude. Other possibilities
exist such as unipolar induction by the rotating magnetic dipole fields of pulsars,
which have strong magnetic fields but are much smaller. Any energy imparting
mechanism must also compete with energy loss mechanisms, which for pulsars
would include synchrotron radiation. Neutron stars may be able to accelerate pro-
tons to energies of about 1013 eV, but not much higher. Somewhat more plausible
are AGNs, gamma ray bursts (GRBs), and radio galaxies. This is consistent with
the interpretation of the “ankle” in the spectrum as representing a transition to
extragalactic origins for cosmic rays.

It is also possible that there are some yet unknown ultramassive particles whose
decays produce energetic cosmic rays. This is usually known as the “top-down”
scenario (as opposed to “bottom-up” scenarios involving successive stages of
acceleration). It has been hypothesized that Grand Unification will be associated
with particles at masses around 1024 eV, whose decay would lead to UHECRs.
Another possibility would be generating UHECRs from ultrahigh energy neutrinos,
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although it is unclear how such neutrinos could be generated. Chang et al. (2009)
have recently proposed a novel “bottom-up” acceleration scenario.

Exercises

15.1 For a cosmic ray incident at 60◦ from the zenith, what is X0 for an air
shower which reaches maximum at an elevation of 10 km? Assume an isother-
mal atmosphere with a scale height of 7 km and a sea level pressure of
1033 g cm−2. What changes if the atmosphere has a lapse rate of 10 K km−1?

15.2 Give a simple, classical, non-relativistic explanation for the isotope shift of
the dE/dx vs. E ionization energy loss curves of Figure 15.6. Concentrate
on comparing 1H and 2H and make your explanation both qualitative and
quantitative.

15.3 Approximate Earth’s magnetic field by a pure dipole at Earth’s center. Con-
sider charged particles orbiting Earth in the geomagnetic equatorial plane.
Positive particles can circulate clockwise (east to west) in circular orbits
slightly larger than Earth if they have rigidities slightly greater than R⊕B⊕.
Such orbits are closed, therefore they cannot correspond to trajectories of
cosmic rays (they do not connect to infinity). Show that particles arriving
horizontally from the east can correspond to cosmic rays if they have rigidi-
ties larger than the above value but not if they have lower rigidities. Regions
of disallowed cosmic ray trajectories are known as Störmer cones.
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Gravitational waves

Few physicists today doubt the reality of gravitational radiation. The existence of
gravitational waves is a firm prediction of the theory of general relativity, and grav-
itational radiation is observed indirectly through the energy loss and decreasing
orbital period of the Hulse–Taylor binary pulsar system PSR J1915+1606 (Hulse
& Taylor, 1975). Observing gravitational radiation directly would certainly be a
further confirmation of general relativity. But more importantly, observations of
gravitational radiation will enable us to determine properties of regions and of
times for which we otherwise have little information.

The pioneering work of Joseph Weber using resonant bar detectors (Weber,
1966) is of great importance in this field and has inspired much of the observa-
tional work that followed. Most books and reviews on gravitational wave detection
begin with a discussion of Weber bars. In this chapter we concentrate on interfero-
metric detectors, which seem at this time to hold the greatest promise for detecting
gravitational waves.

16.1 Characteristics of gravitational radiation

Gravitation is described in the field equations of general relativity as curvature of
space-time.1 In quantum field theory the mediator of the gravitational interaction
is thought to be the massless, spin-2 graviton. In the classical limit these formula-
tions are equivalent. Both predict the existence of gravitational radiation which is
quadrupolar in nature.

In a linearized theory, gravitational waves in free space are described as small
perturbations hμν on the Minkowski flat space-time metric.2 The perturbation

1 Space limitations force us to gloss over many of the subtleties of general relativity.
2 In constructing 4-vectors we let x0 = ct and employ the Einstein summation convention. Greek indices run

from 0 to 3 and Latin indices from 1 to 3. Most intermediate or advanced books on electrodynamics or
relativity contain a description of 4-vector notation.
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tensor is symmetric, and in the transverse traceless (TT) gauge,3 may be
expressed as

h =

⎛
⎜⎜⎝

0 0 0 0
0 hxx hxy hxz

0 hyx hyy hyz

0 hzx hzy hzz

⎞
⎟⎟⎠ , (16.1)

where the trace

hii = hxx + hyy + hzz = 0, (16.2)

and

hji = hij. (16.3)

Such perturbations satisfy the wave equation

�2 hμν = 0, (16.4)

where the d’Alembertian4 is defined as

�2 = − 1

c2

∂2

∂t2
+ ∇2 = ∂

∂xν

∂

∂xν
. (16.5)

For propagation in the z-direction, there are two transverse, linearly polarized,
plane wave solutions to the wave equation, corresponding to the “+” and “×” polar-
ization states shown in Figure 16.1. These waves propagate at the speed of light and
are of the form

hxx = −hyy = h+ = A+ ei(kz−ωt), (16.6)

hxy = hyx = h× = A× ei(kz−ωt), (16.7)

where A+ and A× are complex amplitudes of the two polarization states (Misner
et al., 1973; Blair, 1991). The quantity h is dimensionless and is interpreted as a
mechanical strain, a change in distance divided by distance. Indeed, a pair of free
masses separated by a distance x along the x-axis will experience a variation in
separation δx in response to a gravitational wave traveling along the z-axis, where

δx

x
= 1

2
h+ (16.8)

or more generally

δx = 1

2
h+x + 1

2
h×y, (16.9)

3 In electromagnetism the choice of the Lorentz gauge simplifies certain equations involving the 4-vector
potential Aμ. Similarly in gravitational theory the choice of the TT gauge simplifies certain equations
involving hμν .

4 In general relativity the d’Alembertian is most often written as � instead of �2.
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Figure 16.1 The “+” and “×” linear polarization states of gravitational waves
traveling along the z-axis are illustrated by their effects on a ring of low mass test
particles in the linearized weak field limit. Displacements have been exaggerated.

δy = −1

2
h+y + 1

2
h×x. (16.10)

The energy density in gravitational waves is

UG = 1

32π

c2

G
ω2
(
h2

+ + h2
×
)
, (16.11)

where G is the gravitational constant and ω is the angular frequency of the
radiation.

16.2 Sources of gravitational waves

Including the source term, the wave equation for the gravitational wave ampli-
tude is

�2 hμν = −16πG

c4
Tμν, (16.12)

where Tμν is the stress–energy tensor. This is difficult to solve for the most general
case, so initially we will consider only compact sources in the weak field limit.

Gravitational waves are emitted by systems with changing mass quadrupole
moment tensors. Dipole gravitational radiation is prohibited by the conservation
of linear and angular momentum. The quadrupole moment5 of a mass density
distribution ρ is

Qij =
∫
ρ

(
xixj − r2

3
δij

)
d3x. (16.13)

5 This definition of a quadrupole moment is 1/3 of the definition normally used in electromagnetism.
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In the weak field, low velocity limit, a system radiates gravitational waves with a
luminosity

LG = 1

5

G

c5

∑
ij

〈(...
Qij

)2〉
, (16.14)

where a dot implies a time derivative. Many sources of interest, those generating
strong gravitational waves, will not be in this weak field limit, and fully relativistic
luminosity calculations are needed.

Let us consider as an example a binary star system with masses m1 = m2 = m
and separation a. Taking circular orbits and assuming the Keplerian value for the
angular frequency

ω0 = 2π

P
=
√

G(m1 + m2)

a3
, (16.15)

the mass quadrupole moment would be

Qij =
⎛
⎝ cos2 ω0t − 1/3 sinω0t cosω0t − 1/3 0

sinω0t cosω0t − 1/3 sin2 ω0t − 1/3 0
0 0 −1/3

⎞
⎠ m

2
a2. (16.16)

Differentiating the mass quadrupole moment thrice with respect to time gives

...
Qij =

⎛
⎝ 4 sin 2ω0t −4 cos 2ω0t 0

−4 cos 2ω0t −4 sin 2ω0t 0
0 0 0

⎞
⎠(2Gm

a3

)3/2 m

2
a2. (16.17)

The frequency of the radiation will be at 2ω0, twice the orbital frequency. This
system’s luminosity in gravitational waves is

LG = 64

5

G4m5

c5a5
. (16.18)

A more complete derivation of this result including polarization and angular depen-
dences requires the use of tensor spherical harmonics (Mathews, 1962; Peters &
Mathews, 1963). For two 1 M� stars at a separation of 1 AU this corresponds to
a luminosity of about 4.3 × 1013 W.6 That may sound like a lot, but consider that
it is only a small fraction of a solar luminosity, indeed even a small fraction of the
luminosity of the faintest known white dwarfs. It is comparable to the internal heat
loss from Earth (which is mostly from radioactive decay). So gravitational radia-
tion is weak. The radiation pattern in the above example is different for the two

6 In contrast, the binary pulsar PSR J1915+1606 radiates about 7 × 1024 W. At a distance of 6400 pc, this
implies a total strain of h ≈ 10−22 at a frequency of 7 × 10−5 Hz and higher harmonics.
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Figure 16.2 Estimated frequencies and instantaneous strains for possible sources
of gravitational radiation. Sources shown include the binary neutron star systems
J1915+1606 and J0737–3039, the white dwarf binaries RX J0806+1527 and RX
J1914+2456, and the neutron star–white dwarf system 4U 1820–30. The dashed
line shows the evolution of binary systems due to energy loss by gravitational
radiation. Sco X-1 is a low mass x-ray binary with a deformed spinning neutron
star (data from Bildsten (1998) and implied sensitivity gain for 20 days integration
by Cutler & Thorne (2002)). The supernova estimate is for an energy conversion
efficiency of 10−6 and a distance of 10 Mpc (Thorne, 1987). Authors of dia-
grams of this sort often plot an “effective detectable strain,” making allowance for
such things as integration times and geometrical effects. Such diagrams are easily
misinterpreted.

polarizations, but in both cases is greatest along the axis of rotation.7 The strain
from such a source at a distance of 1 kpc would be of order h ≈ 10−24.

Some likely astrophysical sources of gravitational radiation are shown in
Figure 16.2. Sources can be characterized by the nature of the expected wave-
form into four categories: chirp,8 periodic, burst, and stochastic. Observationally it
is necessary to understand the characteristic frequencies of gravitational waves, the
expected strains produced at Earth, and the rates at which typical events occur.

An example of a chirp waveform is shown in Figure 16.3. Such a waveform
would be expected from a coalescing binary system of two compact objects, such
as a neutron star–neutron star binary. The waveform would initially be nearly peri-
odic. As energy is lost from the system through gravitational radiation, the orbit
becomes tighter and the frequency increases. The amplitude also increases. Typical

7 Sometimes it is more convenient to calculate the strain using the formula hij(t) = 2GQ̈ij(t − r/c)/rc4, where r
is the distance to the source and the quadrupole moment has been projected onto the transverse traceless gauge
of the outgoing radiation.

8 Chirp waveforms are quasi-periodic but with frequencies which evolve with time. Such signals arise in
non-linear optics, in radio frequency signal processing, and in bird calls.
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Figure 16.3 Temporal evolution of the observable strain from a neutron star–
neutron star coalescence.

frequencies are of order 100 Hz and durations of order 10 s. Eventually the neutron
stars would coalesce, possibly into a black hole. The details of the final coales-
cence and ringdown may be complicated. The final stages also will take place under
conditions of strong gravitational fields and high velocities, requiring calculations
beyond the linearized theory presented above. Events producing strains at Earth of
order 10−22–10−21 may occur at a rate of a few per year from sources as distant as
200 Mpc. The inspiral of compact objects onto massive black holes can produce
rich waveforms due to frame dragging (Hughes, 2001).

Supernovae, the prototype of burst sources, certainly have enough energy to cre-
ate strong gravitational waves. But any resulting gravitational waves will depend
on the amount of asymmetry present. Absent any initial rotation, isolated type
II core-collapse supernovae may have a high degree of spherical symmetry. On the
other hand, evidence from double neutron star systems and isolated neutron
stars indicates that kick velocities of several hundred kilometers per second were
imparted during some supernova explosions, implying high asymmetry (Fryer &
Kalogera, 1997). Convective instability or other instabilities in proto-neutron stars
may provide significant asymmetry. Type Ia supernovae, in contrast, are likely
candidates for gravitational wave generation since they start from a stage with
significant quadrupole asymmetry (Falta et al., 2010). The scenarios for gener-
ating gravitational waves are varied, as are the predicted waveforms. In all cases
the gravitational signal lasts only a fraction of a second. If type II supernovae are
sufficiently asymmetric, events producing strains at Earth of order 10−22 may be
observable once per year out to the Virgo cluster. Supernova signals are likely to
be in the kilohertz range.

Nearly periodic signals could be produced by non-axisymmetric neutron stars.
Neutron stars rotate. Since pulsars radiate due to non-axisymmetric magnetic
fields, some degree of departure from axial symmetry is certainly present. Rapidly
spinning (millisecond) pulsars with ellipticities of order ε > 10−7 could be
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detectable throughout much of our Galaxy. The persistence and nearly periodic
nature of these signals should make them relatively easy to recognize. Frequencies
may be of order 10 Hz – 1 kHz and strains as large as 10−25. Binary star sys-
tems with white dwarfs or neutron stars could produce strains as large as 10−21 at
frequencies in the range 10−4 − 10−1 Hz. Since these are persistent signals, the
concept of event rates does not apply. Instead, the question is how many of these
sources exist at the present time at various distances. Estimates can be made, but
the population of such sources is not known precisely. However, it seems likely that
below about 10−3 Hz, galactic binary systems are sufficiently numerous to produce
a confusion-limited background of gravitational waves.

The Big Bang is one probable source of stochastic gravitational radiation. It is
very hard to predict the characteristics of such radiation since much of it may have
been produced in the very early states, about which little is known. An energy
density in gravitational waves of order 10−8 of closure density or greater would
probably be necessary for detectability. The multitude of galactic binary star
systems will also produce a stochastic background of weak, overlapping, low fre-
quency signals. Estimates are that signals will be present in the 10−6–10−3 Hz
range at strains of order 10−20.

16.3 Ground-based interferometric detectors

The conceptual design of most current ground-based gravitational wave detectors
begins with the Michelson interferometer, introduced in Chapter 9. A list of inter-
ferometers and their locations is given in Table 16.1. Aerial views of some of

Table 16.1. Gravitational wave interferometers

Name
Arm lengtha

(meters) Latitudeb Longitudeb
Az1c

(deg)
Az2c

(deg)

LIGO (Hanford) 4000 46◦27′19′′ N 119◦24′27′′ W 234.00 324.00
2000

LIGO (Livingston) 4000 30◦33′46′′ N 90◦46′27′′ W 162.28 252.28
Virgo 3000 43◦37′53′′ N 10◦30′17′′ E 19.4 289.4
GEO 600 600 52◦14′42′′ N 9◦48′26′′ E 68.388d 334.057d

TAMA 300 300 35◦40′36′′ N 139◦32′10′′ E 180 270
CLIO 100 36◦25′28′′ N 137◦18′30′′ E 180 270
AIGO ? 4000 31◦21′28′′ S 115◦42′50′′ E 90 180

a Nominal.
b Coordinates of apex (beamsplitter).
c Azimuth angle of vector from apex to end mirror, measured east of north.
d Unique in not being a nominal 90◦ apart.
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these interferometers are shown in Figure 16.4. At the current stage of develop-
ment there is a high degree of cooperation between these various projects, with
ideas and designs being shared worldwide. We will concentrate on instruments
with kilometer or longer arms (LIGO and Virgo). The LIGO (Laser Interferome-
ter Gravitational-wave Observatory) experiment consists of three interferometers.
Interferometers with 4 km arms are located in Livingston parish, Louisiana, and
at the Hanford Nuclear Reservation in Washington. The vertices of the Hanford
and Livingston sites are separated by 3002 km (on a straight line path through
the Earth). The southwest arms at the two LIGO sites are roughly parallel and the
northwest arm at Hanford and the southeast arm at Livingston are roughly antipar-
allel, making these interferometers sensitive, more or less, to the same regions in
the sky and the same polarizations. The Hanford site also houses a 2 km inter-
ferometer oriented parallel to the 4 km instrument. Virgo is a French, Italian, and
Dutch instrument with 3 km long arms located near Cascina, Italy. Geo 600 is
an interferometer with 600 meter arms built by Germany and the UK and located
near Sarstedt, Germany. TAMA 300 is an interferometer with 300 meter long arms
located in Tokyo. CLIO (Cryogenic Laser Interferometer Observatory), which is
located 1 km underground in the Kamioka mine, is a prototype for a future Large-
scale Cryogenic Gravitational Telescope (LCGT) with 3 km arms. If built, LCGT
will also be located in the Kamioka mine with a proposed apex about 1.5 km SSW
of CLIO at an elevation of 400 m with a minimum overburden of 200 m (Kuroda
et al., 2010). The arms will be oriented at azimuths of approximately 60◦ and 330◦.

In all designs the interferometer beamsplitter and mirrors act as free masses
(in the horizontal plane). For strains of order 10−23 and arms 1 km in length, the
required positional precision is of order 10−20 m or 10−5 fm. Measuring the posi-
tion of a macroscopic object with sub-nuclear precision is a challenging activity!
Yet several instruments currently are approaching the required sensitivity.

The existence of several gravitational wave detectors at different locations
on Earth’s surface is necessary to fully recover the propagation direction and
polarization of any detected wave (Abbott et al., 2005; Abadie et al., 2010a,b).
Coincidence detections from widely separated instruments are also good insur-
ance against spurious signals. The worldwide distribution of interferometers is
shown in Figure 16.5. For all of these interferometers, maximum sensitivity occurs
perpendicular to the plane of the interferometer, at the zenith and at the nadir.
Omnidirectional coverage with good sensitivity requires instruments widely dis-
tributed across Earth’s surface, as shown in the figure. Determining the direction of
propagation, however, requires measuring precise timing differences as the wave
passes the Earth. To obtain good timing and positional information it is critical to
have actual instruments in the southern hemisphere (the nadir points of northern
hemisphere instruments do not enter into consideration). The Australians hope to
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Figure 16.5 Hammer–Aitoff (equal area) projection of Earth’s surface showing
locations of existing and planned interferometric gravitational wave detectors
and orientations of their arms. Nadir directions for the instruments shown are
marked “N”.

build a major interferometer at the Australian International Gravitational Observa-
tory (AIGO) located near Gingin in Western Australia, as shown. It appears that
this may be done in collaboration with LIGO, creating LIGO-South. If so, one of
the Advanced LIGO detectors planned for the Hanford site would be installed in
Australia instead, leaving only one Advanced LIGO interferometer at Hanford.

16.3.1 Fabry–Perot

For a Michelson interferometer with arms of length L, light of wavelength λ

experiences a relative phase shift of

δφ = 4πL

λ
h, (16.19)

when illuminated by a gravitational wave of strain h at optimal orientation (for
example, arms oriented in the x- and y-directions for “+” polarization and propa-
gation in the z-direction). For L = 1 km, λ = 1.064 µm, and h = 10−23, the phase
difference between the arms is of order 10−13 radians, which is impractically small
to be measured directly.

A way to increase the phase shift is to make each arm a Fabry–Perot9 cavity as
shown in Figure 16.6. Such a cavity can be made using a highly reflective concave

9 Fabry–Perot interferometers were introduced in Chapter 9.
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Figure 16.6 Simplified optical layout of LIGO (Abadie et al., 2010c). Note the x
and y Fabry–Perot cavities and the power recycling mirror.

mirror at the far end of the arm and a high reflectivity mirror with a small transmit-
tance at the near end of the arm. One way of looking at a Fabry–Perot cavity is that
it forces the light to make several round trips through the cavity before returning to
the beamsplitter, effectively making the cavity longer by a factor 2F/π , where F
is the finesse of the Fabry–Perot. Then

δφ = 8FL

λ
h. (16.20)

For a finesse of 100 the phase shift in an arm is increased by a factor of 2F/π ≈ 64.
The power stored in the optical cavity at resonance is increased by a factor of
2F/π ≈ 64 also, the relevance of which we will see in a moment. In LIGO the
Fabry–Perot arm finesse has been of order 220. Plans for Advanced LIGO have
called for a finesse as high as 1250, although 450 is a more recently proposed
value. During its initial science run, Virgo had a Fabry–Perot finesse of 50 (Accadia
et al., 2010). Some plans for Advanced Virgo called for the finesse to increase to
as much as 600. An increased effective length of the arms is useful only up to the
point where the multi-pass light transit time in an arm equals half the period of the
gravitational wave. Beyond that, some of the light will be subject to an out of phase
signal, decreasing the sensitivity.
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16.3.2 Recycling interferometers

The LIGO and Virgo interferometers are designed to operate around nulls in the
recombined beams. For small displacements the observed signal at the detector is
linear in the strain and linear in the stored laser power. So if the system is limited
by signal to noise at the detector, the sensitivity can be increased by increasing
the stored power. The Fabry–Perots already increase the stored power. A further
increase can be achieved by taking the light off the other beamsplitter path, which
otherwise would propagate backwards towards the laser, and “recycling” it with a
high reflectivity mirror placed so that the light adds coherently. An implementation
of this technique is shown in Figure 16.6. This configuration puts strict limits on
allowable light loss throughout the optical system (typically much less than 10−4

per surface). A variety of recycling schemes are possible, including “signal recy-
cling,” which improves performance at certain resonant frequencies but decreases
the bandwidth. A detailed discussion of each of these is beyond the scope of this
book. Interested readers can consult Meers (1988) or Blair (1991).

16.3.3 Lasers

The lasers employed in these systems are Nd:YAG lasers with output powers of
order 10 W at an infrared wavelength of 1.064 µm. This choice was determined in
part by the power available from various laser systems. The infrared wavelength
also permitted very small scattering losses, much smaller than is possible at optical
wavelengths, a requirement for recycling. Higher power lasers would help to keep
shot noise low without the need for as much recycling.

Ideally the laser output should be entirely in the fundamental TEM00 Gaussian
mode at fixed frequency, fixed power, and fixed polarization. For example, fre-
quency stability is necessary for the light to remain in resonance with the Fabry–
Perot cavities, requiring feedback to adjust the cavity lengths, the laser frequency,
or both. And although sensitivity to power fluctuations is reduced by using null
detection, power stability is also important.

This ideal stability will not generally be the case, so we would like to stabi-
lize these various laser characteristics (Blair, 1991). One way to do this is with a
ring cavity mode cleaner (Goßler et al., 2003). A ring cavity is a resonant cavity
like a Fabry–Perot except that the laser circulates around a triangular path set by
three mirrors. At least one of the mirrors should be weakly concave to compensate
for diffraction. Preferably this mirror should be at near normal incidence to avoid
introducing excessive astigmatism. A typical geometry is shown in Figure 16.7.
With mirror reflectivities exceeding 99.8% it is possible to achieve a cavity finesse
of order F ≈ 2000. For a cavity of path length L = 5 m, frequency and power
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Figure 16.7 Mode cleaner with input port a and possible output ports b and c.

stability are improved by averaging on time scales of 2FL/πc ≈ 21 µs, a charac-
teristic dwell time for light in the cavity. The phase shift upon reflection is different
for S- and P-polarizations, so only one linear polarization can be resonant at a
given time.

The power density is high within the Fabry–Perot cavities and the mode clean-
ers, so even small losses can produce significant heating. Care must be taken to
minimize the effects of distortion due to surface heating of reflective optics and
internal heating of transmitting optics.

16.3.4 Seismic noise

A gravitational wave interferometer must be well isolated from the local envir-
onment, and one of the greatest challenges is seismic noise. We use this term
to include the effects of distant seismic events, microseismic events, vibration
from local human activity (automobiles, trains, logging, etc.), ocean waves, wind
loading, earth tides, etc. Seismic noise is omnipresent and broadband, with an
approximate ν−2 displacement power spectrum at frequencies above 1 Hz.

Vibration isolation is achieved through multiple systems acting as mechanical
filters. Take, for example, a simple pendulum of length L consisting of a rigid mass
suspended by wires. Neglecting the mass of the wires, the pendulum mode will
have a resonant frequency of

ν0 = 1

2π

√
g

L
, (16.21)

where g is the acceleration of gravity. For 1-meter long wires, this corresponds to
a 0.5 Hz resonance. The frequency response of such a system is

(	x)out

(	x)in
= 1 + iν/ν0Q

1 − ν2/ν2
0 + iν/ν0Q

, (16.22)
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where Q is the “quality factor,” which is mostly determined by the wires. For high
Q, the response at frequencies well above resonance goes as ν−2, reducing vibra-
tion at high frequencies. Additional seismic isolation may be achieved by using
several isolation stages in series. GEO 600 uses a three stage compound pendulum.
The Virgo “superattenuator” is a five stage compound pendulum providing seismic
isolation of over 108 at 4 Hz in both horizontal and vertical directions (Ballardin
et al., 2001; Braccini et al., 2009). Advanced LIGO will use a quadruple pendu-
lum, such as that shown in Figure 16.8, which theoretically provides a ν−8 rolloff
well above the resonant frequencies.

Additional modes of oscillation are present, including the “violin” modes of
the support wires. Neglecting stiffness, a wire of length L under tension T has a
fundamental frequency of

ν0 = 1

2L

√
T

μ
, (16.23)

where μ is the mass per unit length of the wire. For example, when a mass of 10 kg
is supported by two steel wires of length L = 1 m, cross section 0.1 mm2, and mass
per unit length of 1 g/m, the lowest violin mode will be 110 Hz. For LIGO the
fundamental violin mode falls at 345 Hz. This mode and its harmonics fall within
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Figure 16.8 Quadruple pendulum prototype at Rutherford Appleton Laboratory
in the UK as planned for Advanced LIGO (Copyright Science and Technology
Facilities Council and Brett Shapiro/LIGO). For color version of figure, see plate
section.
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LIGO’s target frequency range, but as long as Q is large they will be relatively
narrow resonances which can be ignored.

The positioning control systems for the beamsplitter and cavity end mirrors are
quite complex since they not only have to provide seismic isolation but also cavity
alignment, including angular alignments at the level of 10−8 radians (10−9 radians
for Advanced LIGO) and a cavity length fixed to an accuracy of 10−11 m (10−14 m
for Advanced LIGO).

16.3.5 Quantum limit, shot noise, and radiation pressure fluctuations

The Heisenberg uncertainty principle states that in simultaneously determin-
ing conjugate variables such as position and momentum, there is a minimum
uncertainty

	x 	px ≥ h̄

2
. (16.24)

In measuring x, one introduces an uncertainty in momentum which, in a measure-
ment time τ , leads to a further uncertainty in x,

	x′ = 	px

m
τ. (16.25)

These uncertainties 	x and 	x′ add in quadrature. The combination is smallest
when the two terms are equal, leading to an uncertainty in the position of a single
mirror of mass m:

	x′′ ≥
√

h̄ τ

m
. (16.26)

The above argument appears, for example, in Caves et al. (1980b). For a mirror
mass of 10 kg and a measurement time of 0.01 s this corresponds to a posi-
tional uncertainty of 3 × 10−19 m, which means that strain measurements of order
h ≈ 10−21 or better are practical with kilometer-scale baselines. This is the “stan-
dard quantum limit” described by Caves (1980a, 1981). The way in which this
quantum uncertainty is enforced depends on the technique used to measure the
mirror position.

Ignore for the moment the Fabry–Perot cavities and the power recycling mirror,
and consider just the Michelson interferometer. For a laser power P, the average
number of photons entering and leaving the interferometer in a time τ is

N = Pτ

h̄ω
. (16.27)

Counting statistics says that there will be shot noise, fluctuations in this number
equal to

√
N or fractional fluctuations of 1/

√
N. For a perfect detector looking at
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the interference signal from the beamsplitter, greatest sensitivity is achieved near a
“dark fringe,” and the resulting uncertainty in differential arm length is

	xshot = c

2ω

1√
N
. (16.28)

For a power of 10 W, a measurement time of 0.01 s, and a laser wavelength of
1.064 µm, this corresponds to an uncertainty in length of 1.2 × 10−16 m. Photon
counting error can be a major limitation, although it can be reduced by increasing
the laser input power or using power recycling. The laser power at the beamsplitter
is the relevant quantity in this calculation. One effect of the Fabry–Perot cavities
is to increase the storage time of the light and hence the value of τ which should
be chosen. Another is to increase the effective arm lengths against which this path
difference is to be compared. The power recycling increases the number of photons
N, also decreasing the shot noise.

The laser light built up inside the Fabry–Perot cavities exerts pressure which
pushes the mirrors apart. If the light intensity is constant this presents no problem.
But maintaining a steady pressure requires intensity stabilized lasers and Fabry–
Perot cavities with stable finesse (hence stable alignment). The averaging effects
of mode cleaners and of the Fabry–Perot cavities themselves help improve short
term stability.

Beyond this there are more fundamental fluctuations related to radiation pres-
sure. The same shot noise described above contributes a fluctuating force on the end
mirrors. The random photon arrivals constitute impulsive events, each imparting a
momentum of 2h̄ω/c, where the factor of 2 corresponds to the fact that the photons
are reflected. This fluctuating momentum leads to an uncertainty in differential arm
length

	xrad.press. = h̄ωτ

mc

√
N. (16.29)

The relevant power in this case is that built up inside each Fabry–Perot cavity.
In this case the fluctuations increase with increased power. So minimum uncer-
tainty in the quadrature combination of shot noise and radiation pressure effects is
achieved at an optimal laser power

P = mc2

ωτ 2
. (16.30)

And at this optimal power the uncertainty reduces to the standard quantum limit of√
τ h̄/m. Too little power corresponds to excess shot noise. Too much power leads

to large radiation pressure fluctuations.
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16.3.6 Thermal noise

At finite temperature all components of the system introduce thermal noise. Con-
sider damped mechanical systems, which can be represented by mass m, resonant
frequency ν0, and damping factor Q. According to the fluctuation–dissipation the-
orem (Callen & Welton, 1951), the presence of dissipation means there will be
thermal fluctuations in position

〈	x〉2 = kT

2π3 Q ν3
0 m

⎡
⎣(1 −

(
ν

ν0

)2
)2

+ 1

Q2

ν2

ν2
0

⎤
⎦

−1

. (16.31)

Now the mass of one of the Fabry–Perot cavity mirrors may be 10 kg. Its normal
modes of vibration are at frequencies of order 30 kHz, but the resonant wings
extend down into the passband of the interferometer. A high Q value for the mirror
substrates is necessary to minimize the impact of this noise. The mirror coatings
are made of lower-Q materials and the thermal noise of the present coatings can be
a dominant limiting effect on interferometer performance (Agresti, 2008).

The violin modes of the pendulum wire suspensions are also thermally excited.
The origin of the noise is primarily due to friction at the attachment points. As we
have seen, these modes lie within the desired sensitivity range of the interferometer,
and their effects must be minimized. Steel suspension wires generally give Q of
order 104–105 (Gillespie & Raab, 1993). Most interferometer teams plan to use
higher-Q materials such as fused silica wires in their ultimate designs.

Most gravitational wave interferometer groups have given some thought to the
possibility of future cryogenic systems to reduce thermal noise. As mentioned
above, the CLIO interferometer is a prototype for a Large Cryogenic Gravitational-
wave Telescope (LCGT). Factors making cryogenic cooling difficult include the
laser heating of the mirrors and the need to maintain seismic and acoustic isolation.

16.3.7 Other factors

There are a number of reasons why the interferometer beams require high vacuum
environments in which to propagate. For one, evacuation of the beam paths pre-
vents acoustic waves from perturbing the optics. Residual gas would also cause
scattering of light and result in multipath interference. In addition, residual gas
would produce fluctuations in the refractive index, causing optical path length vari-
ations. The last two effects would result in excess phase noise. The vacuum quality
also affects the cleanliness and useful life of the mirror coatings. Most facilities
have adopted vacuum requirements of order 10−9 torr or better (much less for some
gases).
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Figure 16.9 Displacement sensitivity of LIGO interferometers as of 2007. Divide
vertical scale by 4000 m to obtain strain sensitivity. Credit: LIGO Labora-
tory/NSF. For color version of figure, see plate section.

16.3.8 Performance

The performance of LIGO as of 2007 is illustrated in Figure 16.9. At frequencies
below 40 Hz the performance is limited by seismic noise. Between 40 and 150 Hz
the limiting factor is thermal noise. And above 150 Hz, shot noise is the main lim-
itation. To broaden and improve the sensitivity, improvements in all three factors
are needed. Several other factors remain important just below the current sensitiv-
ity limit, including radiation pressure fluctuations at low frequencies and residual
gas effects at all frequencies.

Plans for an improved, Advanced LIGO call for it to begin operation in about
2014. The test masses will be increased from 11 kg to 40 kg, which will decrease
radiation pressure fluctuations (and the quantum noise limit) while also lowering
the thermal noise of the mirrors. The laser power will be increased to 100–200 W,
leading to about 6 kW within the power recycling cavity and nearly 1 MW within
the Fabry–Perot cavities. The mirror suspension wires will be made of fused silica,
which has much higher Q than steel, reducing the thermal noise contributions. The
seismic cutoff frequency will be reduced from 40 Hz to about 10 Hz. The electronic
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Figure 16.10 Design sensitivity goals for the Einstein Telescope (Hild et al.,
2010).

and mechanical control and detection systems will be extensively modified. In all
there will be about a factor of 10 improvement in strain sensitivity.

The Einstein Telescope (ET) is a proposed large-scale improvement over the
Advanced LIGO generation instruments, by which researchers hope to improve
sensitivity by another order of magnitude over the 1–104 Hz band, as shown in
Fig 16.10. Details are very much in flux at present. It appears that the ET will
be built underground to take advantage of the better seismic and environmen-
tal conditions and that it will utilize cryogenic cooling. Both of these ideas are
already incorporated in the Japanese LCGT concept. The arm lengths for ET may
be increased to of order 10 km. The current plan is to use a triangular configuration
(three overlapping 60◦ interferometers).

16.3.9 Squeezed states

The standard quantum limit may be bypassed by the technique of squeezed states
(Caves, 1981). This allows the uncertainty in one conjugate variable to be reduced
at the expense of increased uncertainty in the other conjugate variable. This does
not violate the principles of quantum mechanics since the uncertainty principle
limits only the product of two uncertainties. A demonstration of the plausibility
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of this technique at audio frequencies for gravitational wave interferometers was
given by McKenzie et al. (2004). The implementation of such a scheme for the
GEO 600 interferometer is discussed by Vahlbruch et al. (2010). See also Corbitt
et al. (2006) and Goda et al. (2008).

16.4 Space-based interferometric detectors

The Laser Interferometer Space Antenna (LISA) is a joint project of the ESA and
NASA.10 In the 2010 US National Research Council decadal report on astronomy
and astrophysics, LISA was given third priority among large-scale space missions.
The project concept is of three spacecraft in heliocentric orbits in a triangular con-
figuration, as shown in Figure 16.11, with nominal separations of 5 × 106 km.
The corresponding light crossing time for each arm of the triangle is 16.7 seconds.
Orbital eccentricities are likely to be somewhat less than that of Earth. The sep-
arations are not static; the orbital dynamics give the spacecraft relative velocities
of up to 15 m/s. Arm lengths of this order make LISA primarily sensitive to low
frequency gravitational waves, in the range 10−4–10−1 Hz, at a strain sensitivity of
h ≈ 10−23 after one year of observation, as shown in Figure 16.12. Ground-based
gravitational interferometers cannot operate at these frequencies due to seismic dis-
turbances. Compared to ground-based, two-arm, right-angle interferometers, the

Figure 16.11 LISA configuration viewed from 60◦ above the ecliptic. The filled
circles represent the three satellites in heliocentric orbits, trailing Earth by about
20◦ and separated by 5 × 106 km. The separation of the satellites has been
exaggerated in the drawing.

10 The description here is of the mission concept circa 2009 (ESA/NASA, 2009a). Some aspects may change.
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Figure 16.12 Estimated sensitivity of LISA (ESA/NASA, 2009b). Sensitivity is
limited at low frequencies by residual acceleration noise on the test masses, at
mid-range by shot noise, and at high frequencies by the responsivity drop at
wavelengths shorter than the satellite separations.

LISA triangular configuration gives added redundancy and additional polarization
information.

Many galactic binary systems generate gravitational radiation in LISA’s fre-
quency range, as was seen in Figure 16.2. In addition, LISA is uniquely suited
to detecting merging binary systems containing massive black holes in the range
104–107 M� out to cosmological distances. These events will probe the behav-
ior of matter in the strong gravitational field limit. LISA also has the potential for
detecting background fluctuations dating back to the epoch of inflation.

Each spacecraft will carry two 40 cm telescopes, one pointing at each of the
other spacecraft, and two 1.064 µm Nd:YAG lasers. A possible schematic view
of a LISA spacecraft is given in Figure 16.13. Central to each spacecraft are
two 46 mm cubic AuPt alloy test masses (1.96 kg each) which define the ends
of each leg of the interferometer. In order for the test masses to follow geodesic
variations, they must be protected against external forces. The spacecraft do this,
shielding them from drag, interplanetary dust, the solar wind, solar radiation pres-
sure, Poynting–Robertson drag, etc. The spacecraft themselves must not affect the
test masses by touching them. So the spacecraft are servo-controlled to maintain
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Figure 16.13 Schematic view of a possible optical configuration of one of the
LISA spacecraft. The telescope optics are off-axis. Laser light paths are shown (in
red in electronic version). All diagonal elements shown are beamsplitters; steering
mirrors are not shown. The proof masses are shown in yellow.

precise orientation and location with respect to the masses. Thrusters capable
of force precision at the micronewton level keep the spacecraft centered on the
test masses (for a 400 kg spacecraft, 1 µN of thrust imparts an acceleration of
2.5 nm s−2).

Each of the six telescopes (two on each of three spacecraft) sends a laser sig-
nal to a different spacecraft. Each telescope also receives and interferometrically
measures the approximately 100 pW signal from a distant spacecraft and also inter-
ferometrically determines the position of the associated local test mass. And at each
telescope the phases of the onboard lasers are compared. In this potential configu-
ration there are 18 interferometric measurements which can be used to stabilize and
control the lasers and to decipher the gravitational wave signal. It will be possible
to remove the effects of laser noise in the analysis process (Tinto & Armstrong,
1999; Armstrong et al., 1999; Estabrook et al., 2000; Tinto & Dhurandhar, 2005).

While the interferometric measurements are ongoing, it is necessary to control
to high precision the five remaining degrees of freedom of the test masses: two
positions and three orientations. Error signals are derived from capacitance sensors,
which can also be used to position the test masses with respect to these remaining
degrees of freedom.

LISA Pathfinder is a pilot mission to test some of the technologies required
for LISA. It consists of a single spacecraft containing two free-flying test masses
separated by 35 cm. The current schedule, based on the Critical Design Review,
points towards a launch of LISA Pathfinder in 2012–2013. LISA itself is unlikely
to launch before 2020–2025.
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16.5 Other systems

Despite the emphasis here on interferometric detectors, it should be emphasized
that solid resonant detectors are still in use. For example, there is MiniGRAIL, a
spherical 1400 kg mass with a diameter of 68 cm and a resonant frequency of order
3 kHz. With cryogenic cooling to 20 mK, it should have a strain sensitivity of order
h ≈ 4 × 10−21 Hz−1/2. It will have an isotropic response. MiniGRAIL should be
very sensitive for any astrophysical sources which emit gravitational waves in this
frequency range.

At very low frequencies, gravitational waves can be searched for via Doppler
tracking of spacecraft. Essentially the technique probes gravitational waves of fre-
quencies 10−6–0.1 Hz on scales of order 1–10 AU, typical spacings to various
spacecraft, such as Cassini (Estabrook & Wahlquist, 1975). Similarly, precise pul-
sar timing probes gravitational waves from 10−9 to 10−6 Hz on scales of around 200
pc, a characteristic distance to known pulsars. Such work is being undertaken by the
North American Nanohertz Observatory for Gravitational Waves (NANOGrav).

There is also a plan for a DECi-hertz Interferometer Gravitational-wave Obser-
vatory (DECIGO), a space-based mission to cover the frequency gap 10−2–102 Hz
between LISA and the ground-based interferometers and overlapping parts of the
frequency range of both, at better sensitivity. Like LISA it would be composed
of three spacecraft in a triangular configuration, but with separation reduced to
1000 km. At that separation it would be possible to operate the arms as Fabry–Perot
cavities, as with ground-based interferometers, although with only modest finesse.

Another proposed successor to LISA is the Big Bang Observer (BBO), which
requires 12 spacecraft. Individual triads would be more compact than LISA, but the
separation between triads would in some cases be much larger. The BBO currently
faces many technical challenges and unknown costs.

16.6 Data analysis

The variety of waveforms expected presents some special problems in data analy-
sis. Consider, for example, the inspiral problem. What one would like are a variety
of templates, representing different masses and spins for the compact objects. Such
templates would show the evolution of expected signal amplitudes and frequencies
as functions of time. These templates could then be cross correlated with an inter-
ferometer waveform to find the physical event most consistent with the received
signal. In the time domain, the cross correlation of a signal s(t) with a template k(t)
is written as

g(τ ) = s � k =
∫ ∞

−∞
s∗(t) k(t + τ) dt, (16.32)
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or in the Fourier domain as

G(f) = S∗(f) K(f). (16.33)

This would be sufficient for the case of uniform responsivity and white noise of
spectral density N. For interferometers of the type discussed here, the dominant
noise over much of the frequency band will be shot noise, which is white. But the
signal responsivity will fall off roughly as f−2 in power (f−1 in amplitude) for grav-
itational wavelengths longer than the effective length of the interferometer arms.
In such a case, the approach which optimizes the signal to noise ratio is a “matched
filtering,” where the template is weighted by the responsivity:

G′(f) = S∗(f)
K(f)

f2
. (16.34)

A thorough analysis would need to take into account the various noise sources and
their spectral properties and variations in the signal responsivity across the entire
frequency band. Ideally the template should include all the stages from inspiral
to merger to ringdown, and must keep accurate phasing throughout the encounter.
The inspiral phase can begin with a post-Newtonian calculation. The later stages
of inspiral through merger to ringdown must be handled by numerical calculations
of general relativity.

Exercises

16.1 Consider the Hulse–Taylor binary system which consists of stars with masses
1.4414 M� (pulsar) and 1.3867 M� (companion) with an orbital semi-
major axis of 1 949 100 km and an orbital period of 0.322 997 448 930 days
(Weisberg & Taylor, 2005). The orbital eccentricity is 0.617 133 8 and it is at
a distance of 6400 pc. Note the precision in some of these parameters made
possible by high precision pulsar timing. Treat the orbits as Keplerian. The
Hulse–Taylor binary radiates much more strongly than the equal mass binary
discussed in the text.

a. How much of the difference is due to the greater mass of the Hulse–Taylor
binary?

b. How much is due to the smaller separation?
c. How much is due to the eccentricity of the orbit? See Figure 2 of Peters &

Mathews (1963) or calculate directly from the formula

f(e) = 1 + 73e2/24 + 37e4/96

(1 − e2)7/2
. (16.35)

d. Estimate the eccentricity effect by considering what happens at closest
approach.
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e. What will be an effect of the higher energy loss at minimum separation?
f. (optional) It may be illuminating to calculate the mass quadrupole and its

third derivative for various points along the orbit.

16.2 In polar coordinates the angular distribution of quadrupole gravitational radi-
ation from an equal mass binary system with e = 0 in orthogonal linear
polarizations is

dP1

d�
∝ 1 + 2 cos2 θ + cos4 θ, (16.36)

dP2

d�
∝ 4 cos2 θ, (16.37)

for a combined distribution of

dP

d�
∝ 1 + 6 cos2 θ + cos4 θ, (16.38)

where θ is measured from the rotational axis.

a. Calculate the solid angles of the radiation patterns P1, P2, and P (using the
methods of Chapter 11).

b. What fraction of the total power is radiated in each polarization? (Note:
The constant of proportionality is the same in the above three equations.)

16.3 An interferometer with 90◦ arm separation has a sensitivity to signals
coming from the direction θ, φ (in spherical coordinates with the polar
axis perpendicular to the plane of the interferometer) in orthogonal linear
polarizations of

F+ = 1

2

(
1 + cos2 θ

)
cos 2φ, (16.39)

F× = cos θ sin 2φ (16.40)

(Forward, 1978). Note that these are amplitude responses in the sense

	L

L
= F+ h+ + F× h×. (16.41)

Define an antenna pattern solid angle in a way analogous to the power
patterns of the previous problem,

� =
∫ |F(θ, φ)|

Fmax
d�. (16.42)

a. What are the solid angles of the + and × polarization patterns?
b. What is the solid angle for unpolarized radiation?
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16.4 What is the reception pattern for an interferometer with 60◦ arm separation
like LISA or the proposed Einstein telescope? Consider only two arms. (Hint:
Pick a geometry which optimizes the response to one particular polarization.)

16.5 For a binary system consisting of stars of masses m1 and m2, there is a
parameter known as the “chirp mass”

M = μ3/5 M2/5, (16.43)

which characterizes the inspiral pattern, where μ = m1m2/(m1 + m2) is the
reduced mass and M = m1 + m2 is the total mass of the system.

a. What is the chirp mass for an equal mass binary system with m1 = m2 =
1 M�?

b. What is the chirp mass for the Hulse–Taylor binary with m1 = 1.4414 M�
and m2 = 1.3867 M�?
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Polarimetry

17.1 Sources of polarized radiation

17.1.1 Synchrotron radiation

Polarization of electromagnetic radiation may occur in a variety of astrophysical
circumstances. In some cases the polarization may be considered to be intrinsic to
the source (arising simultaneously with the radiation). One example is synchrotron
radiation, in which the radiation arises from energetic electrons spiraling along
magnetic field lines. The polarization of synchrotron radiation will be in general
elliptical and will depend on the angle between the line of sight and the magnetic
field. See Figure 17.1 for geometries giving rise to linear, elliptical, and circular
polarization. For relativistic electrons, radiation is beamed in the forward direc-
tion, making linear polarization more likely to be seen than circular polarization.
Linear polarizations approaching 50% are common at centimeter wavelengths in
extragalactic radio jets. For a synchrotron spectral index of −1 ( I(ν) ∝ ν−1 ),
linear polarization up to 75% is possible (Saikia & Salter, 1988).

17.1.2 Zeeman effect

The Zeeman effect also produces polarized radiation. For a magnetic quantum
number M, magnetic fields split energy levels into 2M+1 magnetic sublevels. Radi-
ation will then be linearly or circularly polarized depending on the direction of
radiation with respect to the magnetic field and the change in the projected mag-
netic quantum number, as indicated in Figure 17.2. Relevant magnetic fields vary
from 10−6 gauss for the interstellar medium, to 10 000 gauss for magnetic stars.
Compact objects such as white dwarfs can have even higher fields. The Zeeman
effect may be observed from radio wavelengths out to the ultraviolet and from both
atoms and molecules. At radio wavelengths one sees the Zeeman effect in neutral
hydrogen and in OH in low density regions and in CN in higher density regions.

340
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Figure 17.1 Synchrotron radiation is
circularly polarized along the mag-
netic field direction, linearly polarized
in the orthogonal direction, and ellip-
tically polarized in between.

Figure 17.2 The longitudinal Zeeman effect
(circularly polarized radiation along the mag-
netic field direction) and the transverse
Zeeman effect (linearly polarized radiation
orthogonal to the magnetic field direction).

The neutral atomic hydrogen hyperfine line at 21 cm is split by the Zeeman
effect, allowing for determination of magnetic fields in the general interstellar
medium. The energy splitting is ±μB/h where μB is the Bohr magneton (9.27 ×
10−21 erg/gauss) and h is Planck’s constant. The resulting frequency splitting
equals ±1.4 Hz/µG for a total of 2.8 Hz/µG. For typical fields of order microgauss
this splitting is much less than the linewidth, requiring careful spectropolarimetry
to disentangle the two circularly polarized components.

The OH radical is a sensitive probe of magnetic fields. It has a 2� ground state
with �-doubling1 of the J states for both 2�1/2 and 2�3/2. The four �-doubling
transitions in the lowest energy 2�3/2 J = 3/2 state fall at 1612, 1665, 1667, and
1721 MHz, as shown in Figure 17.3. All four are strong maser transitions. The
Zeeman energy splittings are given by

	E = ±gF mF μB B, (17.1)

1 OH in its lower energy states is intermediate between Hund’s coupling cases a and b. �-doubling arises from
an interaction between the orbital momentum of the unpaired electron and the end over end rotation of the
molecule.
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Figure 17.3 The J = 3/2 level of OH in the 2�3/2 electronic state is split succes-
sively by �-doubling, hyperfine structure, and Zeeman splitting. The hyperfine
lines are, from left to right, 1612, 1665, 1667, and 1721 MHz. The 1665 MHz
line is divided into σ−, π , and σ+ components. Splittings are not to scale.

where gF is the Landé g-factor and B is the magnetic field. The g-factor is of order
1.17 for the F = 1 levels and 0.70 for the F = 2 levels. For the 1665 MHz line,
a 1 milligauss magnetic field corresponds to a splitting of 	E/h ≈ ±1640 Hz or
±0.29 km/s and for the 1667 MHz line, 	E/h ≈ ±980 Hz or ±0.18 km/s. These
can be greater than the maser line widths. For 10 milligauss or more the splitting
would exceed even typical thermal line widths. In the geometry corresponding to
the transverse Zeeman effect (Figure 17.2), a triplet would be seen in which each
component is linearly polarized, with the central component along the direction of
the transverse field and the other two components perpendicular to the transverse
field. The size of the splitting measures the strength of the field in the plane of the
sky. In the longitudinal Zeeman effect only two components are visible and they
have opposite senses of circular polarization. The amount of splitting is a measure
of the line of sight magnetic field (magnitude and sign).

Considering just the 1665 MHz line, in emission one would see the pattern
shown in Figure 17.4. The doublet lines would be circularly polarized in opposite
senses. The triplet lines would be linearly polarized, with the π component per-
pendicular to the magnetic field and the σ components parallel to the field for the
pure geometries shown in Figure 17.2. Otherwise, for the σ components, elliptical
polarization would be present.

In dense regions of the interstellar medium, H I and OH are not abundant and
are not available for measuring magnetic field strengths. CN has proven to be a
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Figure 17.4 Zeeman doublet and triplet showing π and σ± components.

useful Zeeman probe of molecular clouds, among other things due to the presence
of multiple hyperfine components with different Zeeman splittings (Crutcher et al.,
1999). Other abundant molecules with unpaired electrons which may prove useful
include SO, C2H, CH, and C2S.

Line emission from non-magnetic species may be polarized when molecules are
subject to anisotropic radiation fields (Goldreich & Kylafis, 1981). The anisotropic
radiation unevenly populates the magnetic sublevels (basically the reverse of the
process shown in Figure 17.2), leading to emission which is linearly polarized.

17.1.3 Thermal emission

Dust grains are important sources of emission from the infrared out to the submil-
limeter. In general, dust grains are non-spherical. If their spatial orientations were
random, this would not be particularly noteworthy. But if they are aligned they will
emit and scatter preferentially in one polarization and absorb preferentially in the
same linear polarization.

The Davis and Greenstein (1951) mechanism proposes that paramagnetic relax-
ation results in prolate grains (for example) preferentially oriented with their major
axes perpendicular to the magnetic field direction. Lazarian et al. (1997) and
Lazarian & Cho (2005) discuss a variety of alternate alignment mechanisms.

17.1.4 Scattering

There are many other astrophysical circumstances in which the polarization pro-
cess is extrinsic to the emission process, that is, the polarization is imposed or
modified in some region external to that which generated the radiation. Processes
such as Thomson, Rayleigh, or Mie scattering can create polarized light from ini-
tially unpolarized light. This is a purely geometrical effect; single scattering at 90◦
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Figure 17.5 Unpolarized light incident from
the left polarizes an object in two orthogonal
directions. For scattering at an angle of 90◦,
only one of those has a component orthogo-
nal to the line of sight, so the observer will
see linear polarization.

is 100% linearly polarized. For scattering at an angle θ the fractional polarization
is given by

π = sin2 θ

1 + cos2 θ
, (17.2)

as shown in Figure 17.5. An example is the existence of reflection nebulae whose
radiation is highly polarized. In the interstellar medium there is also extinction by
non-spherical dust grains. If these grains are aligned by interstellar magnetic fields,
light passing through the region will acquire a small degree of linear polarization.
Light from supernovae is typically partially polarized (Wang & Wheeler, 2008),
indicating that supernovae are not spherically symmetric. Polarimetric studies
played a critical role in the development of a unified model of AGNs (Antonucci,
1993). Oppenheimer & Hinkley (2009) discuss the role polarimetry can play in
detecting extrasolar planets.

17.1.5 Primordial polarization

Polarization of the cosmic microwave background (CMB) radiation contains poten-
tially important information. As discussed briefly in Chapter 12, current efforts at
studying the CMB include the WMAP and Planck satellites, both of which have
polarimetric capabilities. E-mode polarization of the CMB has been seen (Chiang
et al., 2010; Larson et al., 2011). It can arise from Thomson scattering. B-mode
polarization is potentially more interesting as primordial B modes are a result of
vector and tensor perturbations. Tensor perturbations are associated with primor-
dial gravitational waves and are diagnostics of the epoch of inflation (Amblard
et al., 2007). B-mode polarization on large spatial scales can only be produced
by tensor perturbations. Detecting B modes will be very challenging; they are
expected to be considerably weaker than the E modes at moderate spatial scales
(l ≈ 100).
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17.2 Propagation effects

Faraday rotation can change the direction of linear polarization of radio waves, as
mentioned in Chapter 1. This effect is due to the difference in propagation veloc-
ity for left- and right-hand circular polarizations in a plasma with a component of
magnetic field along the line of sight. The original linear polarization state may
be decomposed into left- and right-hand circular components. In passing through
the magnetized plasma these components acquire a relative phase shift. When reex-
pressed in a linear polarization basis, this phase shift leads to a rotation of the angle
of linear polarization. At long wavelengths Faraday rotation in Earth’s ionosphere,
as well as the interstellar medium, must be taken into account.

Faraday rotation can also be a mechanism for depolarization. The fact that the
degree of rotation is a function of wavelength,

	θ = e3

2πm2
ec2

1

ν2
RM, (17.3)

means that over a finite bandwidth the degree of rotation can vary significantly,
resulting in a loss of linear polarization, especially at long wavelengths. If the mag-
netized plasma is inhomogeneous and the rotation measure is large, different parts
of the beam will sample unresolved regions with different rotation measures, also
leading to depolarization. Wave propagation through an ionized medium perme-
ated by a magnetic field can also lead to conversion of linearly polarized flux to
circularly polarized.

17.3 Polarization-sensitive devices

The key optical elements in polarimetry systems are polarizers, polarization beam
splitters, quarter-wave plates, half-wave plates, and modulators. A quarter-wave
plate, suitably oriented, may be used to convert linear polarization into circular
polarization, and vice versa. A half-wave plate will invert the sense of circular
polarization. Depending on orientation, it will also rotate the direction of lin-
ear polarization. True quarter-wave and half-wave plates impart the correct phase
shift only at a specific wavelength. It is possible, however, to make broadband
(achromatic) designs in ways similar to those described in Chapter 8 for making
broadband anti-reflection coatings. Tinbergen (1996) discusses design approaches
to achromatic polarizers and retarders. Rotating half-wave plates may be used as
modulators, both for linear and circular polarimeters. Pockels cells may be used as
fast retardation modulators, for example as electronically switched quarter-wave
plates.

An example of a polarization beam splitter is the Wollaston prism, shown in
Figure 17.6. A Wollaston prism is made of two pieces of birefringent crystal,
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Figure 17.6 A Wollaston prism. Striations indicate the orientation of the optical
axis.

oriented so that their optical axes are perpendicular to each other and perpen-
dicular to the direction of the incident beam. At the interface between the two
halves, one polarization sees a decrease in index of refraction and the orthogonal
polarization sees an increase. Therefore they refract differently and emerge as sep-
arate beams. The effect of a Rochon prism is similar to that of a Wollaston prism.
A Glan–Thompson prism, however, uses total internal reflection to separate the
ordinary and extraordinary rays. At optical wavelengths many detectors, such as
CCDs, do not discriminate between polarizations, so polarimeters consist of one or
more polarizing elements inserted into the optical path before the detector.

At infrared and radio wavelengths wire grids may be used as polarizers or polar-
izing beam splitters. The polarization-sensitive bolometers discussed in Chapter 12
are examples in which detectors which are inherently insensitive to polariza-
tion may be coupled to specific polarization states. At radio wavelengths the
use of linear devices means that detection systems tend to be polarized, often
linearly polarized. To measure total intensity one needs to measure orthogonal
polarizations, either simultaneously with separate receivers or in alternation. Lin-
early polarized feeds are frequently converted to circular polarization by placing
quarter-wave plates in front of them. Retarders of this sort may be constructed
by cutting parallel linear grooves much narrower than a wavelength into dielectric
plates.

17.4 Analysis of polarization states

17.4.1 Stokes parameters

The character of polarized radiation may be described by the four Stokes param-
eters. For a wave propagating in the z-direction (towards the observer), adopt a
right-handed coordinate system in which the x-direction is north and the y-direction
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is east in the plane of the sky. The x and y components of the electric field are
given by

Ex(t) = ax(t) ei(kz−ωt+δx(t)), (17.4)

Ey(t) = ay(t) ei(kz−ωt+δy(t)). (17.5)

Here we follow the conventions and more-or-less the notation of Wolf (2007). The
true electric field is, of course, given by the real part of these expressions. The
Stokes parameters are then defined by

I = S0 = 〈ax(t)
2〉 + 〈ay(t)

2〉, (17.6)

Q = S1 = 〈ax(t)
2〉 − 〈ay(t)

2〉, (17.7)

U = S2 = 2〈ax(t)ay(t) cos[δx(t)− δy(t)]〉, (17.8)

V = S3 = 2〈ax(t)ay(t) sin[δx(t)− δy(t)]〉. (17.9)

The total intensity is I. Note that only Stokes I is necessarily non-negative. The
parameters Q and U describe the degree and direction of linear polarization. The
parameter V describes the degree and sense of circular polarization. Conventions
on the sign of V vary. The convention used above is that positive V is called right-
hand circular polarization and corresponds to the electric vector rotating clockwise
as viewed looking back towards the place from which the light is coming (that is,
looking in the negative 
k direction).

Although the above convention for V is widely used in optics, here we must part
company with the optical community in order to adhere to the conventions adopted
by the IEEE and Commission 40 of the International Astronomical Union (IEEE,
1969; IAU, 1974). So we will redefine Stokes V to be

V = S3 = −2〈ax(t)ay(t) sin[δx(t)− δy(t)]〉. (17.10)

Our convention now is that right-hand circular polarization (positive V) corre-
sponds to the electric vector rotating counterclockwise as viewed on the celestial
sphere. This convention is illustrated in Figure 17.7.

For polarized light, ignoring the time averaging (assuming coherence), simple
algebra gives

I2 = Q2 + U2 + V2. (17.11)

For partially polarized light the phases δx and δy are not definite and

I2 > Q2 + U2 + V2. (17.12)
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Figure 17.7 Right circular polarization according to
the conventions adopted by the IEEE and Commis-
sion 40 of the IAU.

We can define the total degree of polarization

π =
√

Q2 + U2 + V2

I
, (17.13)

or degrees of linear and circular polarization,

πL =
√

Q2 + U2

I
, (17.14)

πC = V

I
, (17.15)

and position angle of the linear component,

θ = 1

2
arctan

U

Q
. (17.16)

The Stokes parameters, therefore, are able to describe states of partial polariza-
tion. However, absolute phase information is lost. Relative phase information is
maintained, as can be seen from the definitions of U and V. But the Stokes param-
eters are measures of intensities, not electric fields. Therefore there is some loss of
information in dealing just with Stokes parameters. We will describe an alternate
approach, but first we will treat what can be done with the Stokes representation.

17.4.2 Mueller matrices

Mueller matrices are used to manipulate polarization states represented by Stokes
vectors. Each element in an optical system is represented by a Mueller matrix and
these matrices are multiplied together and then multiplied by the input Stokes vec-
tor to give an output Stokes vector. For example, the Mueller matrix for an ideal
linear polarizer oriented in the vertical (x) direction (+Q) is given by
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MVert = 1

2

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (17.17)

The matrix for rotation by an angle θ is

Mθ =

⎛
⎜⎜⎝

1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1

⎞
⎟⎟⎠ . (17.18)

So the action of a linear polarizer set at an angle θ is given by

M−θ MVert Mθ = 1

2

⎛
⎜⎜⎝

1 cos 2θ sin 2θ 0
cos 2θ cos2 2θ sin 2θ cos 2θ 0
sin 2θ sin 2θ cos 2θ sin2 2θ 0

0 0 0 0

⎞
⎟⎟⎠ . (17.19)

17.4.3 Jones vectors and matrices

In some cases it is necessary to treat the phase of the radiation correctly, and as we
have seen the Stokes parameters and Mueller matrices do not do this. In such cases
one can express the complex electric field vector as

E =
(

Ex

Ey

)
. (17.20)

The operation of optical elements can be represented by 2 × 2 Jones matrices.
Repeating the example used in discussing Mueller matrices, the Jones representa-
tion for a linear polarizer is

JVert =
(

1 0
0 0

)
. (17.21)

The matrix for rotation by an angle θ is

Jθ =
(

cos θ sin θ
− sin θ cos θ

)
. (17.22)

So the action of a linear polarizer set at an angle θ is given by

J−θ JVert Jθ =
(

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

)
. (17.23)



350 Polarimetry

Jones vectors cannot be used to describe unpolarized or partially polarized light.
Instead, the radiation is treated as an incoherent sum of orthogonal fully polarized
components. The effects of optical elements on each component may be followed
using Jones matrices, with the components being added incoherently at the end.

17.5 Polarization measurement

Operationally, determination of all Stokes parameters may be achieved from inten-
sity measurements from four orientations of linear polarization plus right and left
circular polarization:

I = I0 + I90, (17.24)

Q = I0 − I90, (17.25)

U = I45 − I135, (17.26)

V = IR − IL. (17.27)

In astronomy a position angle θ = 0 generally corresponds to north with pos-
itive angles increasing to the east. Positive, right-handed polarization (V > 0)
is defined as the electric field vector rotating counterclockwise, as viewed by the
observer looking back towards the source. In other words, the y-component lags the
x-component by 90◦. See Hamaker & Bregman (1996) for the conventions under-
lying the definitions of the Stokes parameters and inconsistencies in previous use
in radio astronomy. For elliptical polarization, the major axis of the ellipse is at a
position angle

χ = 1

2
tan−1 U

Q
. (17.28)

This is also the position angle of the electric field vector for linear polarization,
which is a limiting case of elliptical polarization.

Alternatively, Stokes parameters can be determined from correlation character-
istics of the electric fields, as in radio interferometry. The appropriate terminology
here is to speak of Stokes visibilities. Stokes visibilities, like all visibilities in radio
interferometry, are in general complex. For linearly polarized feeds on antennas
i and j,

VI = 〈E∗
jxEix〉 + 〈E∗

jyEiy〉, (17.29)

VQ = 〈E∗
jxEix〉 − 〈E∗

jyEiy〉, (17.30)

VU = 〈E∗
jyEix〉 + 〈E∗

jxEiy〉, (17.31)

VV = i
[
〈E∗

jyEix〉 − 〈E∗
jxEiy〉

]
. (17.32)
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For right and left circularly polarized feeds,

VI = 〈E∗
jREiR〉 + 〈E∗

jLEiL〉, (17.33)

VQ = 〈E∗
jLEiR〉 + 〈E∗

jREiL〉, (17.34)

VU = i
[
〈E∗

jLEiR〉 − 〈E∗
jREiL〉

]
, (17.35)

VV = 〈E∗
jREiR〉 − 〈E∗

jLEiL〉. (17.36)

17.5.1 Analysis of weak field splittings

When Zeeman splitting is less than the linewidth of the spectral feature, the
Zeeman signal is closely related to the shape of the Stokes I spectrum. Consider
the longitudinal Zeeman effect where the split components have opposite circular
polarizations. For mF = 1, the splitting of Equation 17.1 may be rewritten as

δν = ± μB

h
gF B, (17.37)

δλ = ± μB

hc
λ2 gF B, (17.38)

where μB/hc = 4.67 × 10−3 m−1G−1. Assuming the magnetic field fills the beam,
Stokes V is the difference between signals of opposite circular polarizations,

V(λ) = 1

2
[I(λ+	λ)− I(λ−	λ)] . (17.39)

This is a finite difference expression, so for weak fields

V(λ) = 	λ
∂ I

∂λ
+ · · · . (17.40)

So Stokes V is proportional to the derivative of Stokes I, and the ratio of Stokes V to
Stokes I gives the splitting and thereby a measure of the strength of the line-of-sight
component of the magnetic field (Crutcher et al., 1993).

17.6 Optical polarimetry

All elements of an optical system can lead to some degree of depolarization and/or
interconversion between polarization states. These will take the form of couplings
between Stokes I and V and between Q and U. The polarization characteristics of
the telescope itself are important. Generally, one would like to avoid any reflections
or transmissions at other than normal incidence. So telescopes should be as close
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to azimuthally symmetric as possible. Off the optical axis the symmetry is broken
and significant polarization of the radiation can occur.

One important application of optical polarimetry is the study of solar mag-
netic fields on sub-arcsecond scales. Most commonly this is done by observing
the Zeeman effect using a pair of Fe I lines at 630.2 nm, for example to measure
strong magnetic fields in sunspots. A variety of other low excitation metal lines
of, for example, Mg I, Ni I, Sr I, Ti I, Sc I, Ca I, or Ca II, can also be used for this
purpose. Some simple molecules such as TiO which can be found in stellar photo-
spheres are also useful. Non-magnetic scattering is a significant contributor to the
observed polarization signals. In interpreting the data, it is necessary to take into
account the Hanle effect, a magnetic phenomenon which can depolarize linearly
polarized signals and rotate the plane of linear polarization. Studies of the coronal
magnetic field are done using high ionization states such as Fe XIII or Fe XIV.

17.7 Radio polarimetry and calibration

In a series of papers Hamaker, Bregman, and Sault (1996) lay out the basic
procedures underlying radio polarimetry and polarimetric calibration. For an inter-
ferometer consisting of telescopes i and j, they define a coherency vector which is
the outer product of the Jones vectors at the two telescopes,

E = 〈Ei ⊗ E∗
j 〉. (17.41)

They show that the operation of Jones matrices Ji and Jj on Ei and Ej can be
represented by

Eout = (Ji ⊗ J∗
j )〈Ei,in ⊗ E∗

j,in〉. (17.42)

The entire interferometer can be represented by a succession of such operations.
Polarimetric errors can arise from non-ideal behavior of optical elements. For

example, a pair of radio feeds on antenna i, instead of being sensitive to individual
components may include leakage terms(

gix 0
0 giy

)(
1 Dix

Diy 1

)
. (17.43)

Ideally the gains of the two feeds should be nearly the same (gix ≈ giy) and the
leakage terms should be small (Dix,Diy 	 gix, giy). Calibration is necessary to
determine the values of the gains and leakages.

Radio telescope receivers are often placed off axis in order to accommodate
feeds for multiple wavelength bands. With off-axis feed systems, azimuthal sym-
metry is broken, and right-hand and left-hand circular feeds will have different
radiation patterns on the sky. This is known as beam squint. In addition, the
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sidelobes of any radio telescope can be polarized differently than the center of
the main lobe, so polarimetric calibration can vary across the field of view.

Sault et al. (1996) show that when three or more antennas are present, self cal-
ibration of gains and phases (closure) is important, but seven degrees of freedom
remain after self calibration. Observing a point source of known polarization allows
the number of unknowns to be reduced to three. Typically one would used an unpo-
larized calibration source. The remaining three degrees of freedom, in the case of
parallel linear feeds, correspond to an uncertainty in the angle of linear polariza-
tion (an interconversion of Stokes Q and U), a phase error between the two feeds
(interconverting U and V), and imaginary values of the leakage terms (intercon-
verting Q and V). Sault et al. (1996) gives the corresponding result for circularly
polarized feeds. Fortunately none of these contaminate Q, U, or V with I, which
could overwhelm a weakly polarized signal. However, incorrect assumptions about
the calibrator polarization are able to produce calibration errors that contaminate
Q, U, or V with I. A single long observation of a linearly polarized source with
altitude/azimuth antennas (so that there is significant parallactic angle rotation) is
sufficient to determine these remaining three degrees of freedom as long as the
leakage terms remain constant during the integration.

Exercises

17.1 What polarization pattern should be produced by Čerenkov radiation?
17.2 Calculate the Mueller matrices for a horizontal polarizer and for polarizers at

±45◦.
17.3 Calculate the Jones and Mueller matrices for a quarter-wave plate at arbitrary

orientation.
17.4 Try to reconcile the definitions of right-circular polarization in Kliger et al.

(1990), Tinbergen (1996), Hamaker & Bregman (1996), Born & Wolf (1999),
and Wolf (2007). Look carefully for ambiguous sentences. Who is (or is not)
internally consistent in words, pictures, and complex notation?
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Physical constants and units

Table A.1. Physical constants

Quantity mks cgs

α 7.297 352 538 × 10−3 7.297 352 538 × 10−3

c 2.997 924 58 × 108 m s−1 2.997 924 58 × 1010 cm s−1

e 1.602 176 487 × 10−19 C 4.803 204 27 × 10−10 esu
ε0 8.854 187 817 × 10−12 F m−1 —
gn 9.806 65 m s−2 9.806 65 × 102 cm s−2

G 6.674 28 × 10−11 N m2 kg−2 6.674 28 × 10−8 dyne cm2 g−2

h 6.626 068 96 × 10−34 J s 6.626 068 96 × 10−27 erg s
k 1.380 650 4 × 10−23 J K−1 1.380 650 4 × 10−16 erg K−1

me 9.109 382 15 × 10−31 kg 9.109 382 15 × 10−28 g
mp 1.672 621 637 × 10−27 kg 1.672 621 637 × 10−24 g
μB 9.274 009 15 × 10−24 J T−1 9.274 009 15 × 10−21 erg G−1

μN 5.050 783 24 × 10−27 J T−1 5.050 783 24 × 10−24 erg G−1

σ 5.670 400 × 10−8 J m−2 s−1 K−4 5.670 400 × 10−5 erg cm−2 s−1 K−4

σT 6.652 458 558 × 10−29 m2 6.652 458 558 × 10−25 cm2

Table A.2. Other units

Name mks cgs

atm 1.013 25 × 105 Pa 1.013 25 × 106 dyne cm−2

AU 1.495 978 707 × 1011 m 1.495 978 707 × 1013 cm
eV 1.602 176 487 × 10−19 J 1.602 176 487 × 10−12 erg
Jy 10−26 W m−2 Hz−1 10−23 erg s−1 m−2 Hz−1

M� 1.981 8 × 1030 kg 1.981 8 × 1033 g
pc 3.085 677 581 × 1016 m 3.085 677 581 × 1018 cm
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Acronyms

2-DEG 2-Dimensional Electron Gas
AC AutoCorrelation
ACA Atacama Compact Array
ACE Advanced Composition Explorer
ACF AutoCorrelation Function
ACIS Advanced CCD Imaging Spectrometer (on Chandra)
ACS Advanced Camera for Surveys (on HST)
ACT Atacama Cosmology Telescope
ACTA Atmospheric Čerenkov Telescope Array
AGASA Akeno Giant Air Shower Array
AGIS Advanced Gamma-ray Imaging System
AGN Active Galactic Nuclei
AIGO Australian International Gravitational Observatory
ALMA Atacama Large Millimeter/submillimeter Array
AMANDA Antarctic Muon And Neutrino Detector Array
AMIGA Auger Muons and Infill for Ground Array
AMS Alpha Magnetic Spectrometer
ANTARES Astronomy with a Neutrino Telescope and Abyss Environmental

RESearch
AOS Acousto-Optical Spectrometer
APEX Atacama Pathfinder EXperiment
ASCA Advanced Satellite for Cosmology and Astrophysics
ASIC Application Specific Integrated Circuit
ASM All Sky Monitor (on RXTE)
ATIC Advanced Thin Ionization Calorimeter
AXAF Advanced X-ray Astrophysics Facility (original name of Chandra)
BAT Burst Alert Telescope (on SWIFT)
BATSE Burst And Transient Source Experiment (on CGRO)
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BBO Big Bang Observer
BESS Balloon-borne Experiment with a Superconducting Spectrometer
BGO BiGeO
BHI Black Hole Imager
BIB Blocked Impurity Band
BIMA Berkeley–Illinois–Maryland Association (array)
BLIP Background Limited Infrared Photodetector
CANGAROO Collaboration of Australia and Nippon for a GAmma-Ray Obser-

vatory in the Outback
CARMA Combined Array for Research in Millimeter-wave Astronomy
CC Charged Current
CCD Charge Coupled Device
CDM Cold Dark Matter
CDMA Code Division Multiple Access
CGRO Compton Gamma Ray Observatory
CL Confidence Limit
CLIO Cryogenic Laser Interferometer Observatory
CMB Cosmic Microwave Background
COBE COsmic Background Explorer
COBRA Caltech Owens-valley Broadband Reconfigurable Architecture
COMPTEL imaging COMPton TELescope (on CGRO)
COS Cosmic Origins Spectrometer
CREAM Cosmic Ray Energetics And Mass
CRIS Cosmic Ray Isotope Spectrometer
DC Direct Current
DECIGO DECi-hertz Interferometer Gravitational wave Observatory
DM Dispersion Measure
DMR Differential Microwave Radiometer (on COBE)
DSNB Diffuse Supernova Neutrino Background
DUSEL Deep Underground Science and Engineering Laboratory
EGRET Energetic Gamma Ray Experiment Telescope (on CGRO)
EPIC European Photon Imaging Camera
ER Elongation Rate
ESA European Space Agency
ET (1) Ephemeris Time
ET (2) Einstein Telescope
EUV Extreme UltraViolet
EUVE Extreme UltraViolet Explorer
EVLA Expanded Very Long baseline Array
FET Field Effect Transistor
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FIRAS Far InfraRed Absolute Spectrophotometer
FIRST Far InfraRed and Submillimetre Telescope (previous name for

Herschel)
FK5 5th Fundamental Catalog
FP Focal Plane
FPGA Field Programmable Gate Array
FSR Free Spectral Range
FUSE Far Ultraviolet Spectroscopic Explorer
FWHM Full-Width at Half-Maximum
GAIA Global Astrometric Interferometer for Astrophysics
GALEX GALaxy Evolution Explorer
GALLEX GALLium EXperiment
GAST Greenwich Apparent Sidereal Time
GBT Green Bank Telescope
GBM GLAST Burst Monitor
GIS Gas Imaging Spectrometer (on ASCA)
GLAST Gamma-ray Large Area Space Telescope (original name of

Fermi)
GMST Greenwich Mean Sidereal Time
GMT Greenwich Mean Time
GNO Gallium Neutrino Observatory
GPS Global Positioning System
GRB Gamma Ray Burst
GRP Gaussian Random Process
GZK Greisen–Zatsepin–Kuzmin (effect)
HEAT High Elevation Auger Telescopes
HEMT High Electron Mobility Transistor
HESS High Energy Stereoscopic System
HEXTE High Energy X-ray Timing Experiment (on RXTE)
HFI High Frequency Instrument (Planck)
HIFI Heterodyne Instrument for the Far Infrared (Herschel)
HiRes High Resolution Fly’s Eye
HRC High Resolution Camera (on Chandra)
HRI High Resolution Imager (on ROSAT)
HRMA High Resolution Mirror Assembly (on Chandra)
HST Hubble Space Telescope
HWHM Half-Width at Half-Maximum
IAU International Astronomical Union
IBIS Imager on Board the INTEGRAL Satellite
ICARUS Imaging Cosmic And Rare Underground Signal
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ICRS International Celestial Reference System
IF Intermediate Frequency
IGM InterGalactic Medium
IMB Irvine–Michigan–Brookhaven (neutrino detector)
INTEGRAL INTErnational Gamma-Ray Astrophysics Laboratory
IPC Imaging Proportional Counter
IR InfraRed
IRAC InfraRed Array Camera (on Spitzer)
IRAS InfraRed Astronomical Satellite
IRS InfraRed Spectrograph (on Spitzer)
ISM InterStellar Medium
ISO Infrared Space Observatory
IXO International X-ray Observatory
JAXA Japanese Aerospace eXploration Agency
JD Julian Date
JEM-EUSO Japanese Experiment Module–Extreme Universe Space

Observatory
JEM-X Joint European X-ray Monitor
JFET Junction Field Effect Transistor
LAST Local Apparent Sidereal Time
LAT Large Area Telescope (on Fermi)
LCGT Large-scale Cryogenic Gravitational Telescope
LFI Low Frequency Instrument (on Planck)
LIGO Laser Interferometer Gravitational-wave Observatory
LISA Laser Interferometer Space Antenna
LMA Large Mixing Angle
LMST Local Mean Sidereal Time
LO Local Oscillator
LPM Landau–Pomeranchuk–Migdal (effect)
LSB Lower SideBand
LSR Local Standard of Rest
LSST Large Synoptic Survey Telescope
MAMA Multi-Anode Microchannel Array
MAXIM Micro-Arcsecond X-ray Imaging Mission
MCMC Markov Chain Monte Carlo
MEM Maximum Entropy Method
MESFET MEtal Semiconductor Field Effect Transistor
MIPS Multiband Imaging Photometer (on Spitzer)
MOS Metal-Oxide-Semiconductor
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
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MSW Mikheyev–Smirnov–Wolfenstein (effect)
MTF Modulation Transfer Function
NANOGrav North American Nanohertz Observatory for Gravitational waves
NASA National Aeronautics and Space Administration
NC Neutral Current
NCP North Celestial Pole
NEP (1) North Ecliptic Pole
NEP (2) Noise-Equivalent-Power
NESTOR NEutrinos, from Supernovae and TeV sources, Ocean Range
NGP North Galactic Pole
NICMOS Near Infrared Camera and Multi-Object Spectrometer (on HST)
NIR Near-InfraRed channel (WFC3)
NMR Nuclear Magnetic Resonance
NTP Network Time Protocol
OMC Optical Monitor Camera (on INTEGRAL)
OTF Optical Transfer Function
OSSE Oriented Scintillation Spectrometer Experiment (on CGRO)
OVRO Owens Valley Radio Observatory
PACS Photodetector Array Camera and Spectrometer (Herschel)
PAMELA Payload for Antimatter Matter Exploration and Light-nuclei

Astrophysics
PCA Proportional Counter Array (on RXTE)
PDF Probability Distribution Function
PF Pupil Function
PPM Positions and Proper Motions (catalog)
PSD Power Spectral Density
PSF Point Spread Function
PSPC Position Sensitive Proportional Counter (on ROSAT)
PZT Photographic Zenith Tube
RF Radio Frequency
RGA Reflection Grating Array
RM Rotation Measure
RMS Root Mean Square
ROSAT ROentgen SATellite
RXTE Rossi X-ray Timing Explorer
SAGE Soviet–American Gallium Experiment
SBC Solar Blind Channel (ACS)
SC Sagittal Coma
SCP South Celestial Pole
SDSS Sloan Digital Sky Survey
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SEP South Ecliptic Pole
S-EUSO Super-Extreme Universe Space Observatory
SGP South Galactic Pole
SI le Système International (d’Unités)
SIS (1) Superconductor–Insulator–Superconductor (superconducting

tunnel junction)
SIS (2) Solid-state Imaging Spectrometer (on ASCA)
SIRTF Space InfraRed Telescope Facility (previous name of Spitzer)
SKA Square Kilometer Array
SM3B Servicing Mission 3B (HST)
SM4 Servicing Mission 4 (HST)
SN SuperNova
SNO Sudbury Neutrino Observatory
SOFIA Stratospheric Observatory For Infrared Astronomy
SPI SPectrometer on INTEGRAL
SPIRE Spectral and Photometric Imaging REceiver (on Herschel)
SPT South Pole Telescope
SQUID Superconducting QUantum Interference Device
SSM Standard Solar Model
STIS Space Telescope Imaging Spectrograph
Swift not an acronym
SZ Sunyaev–Zel’dovich (effect)
TA Telescope Array (air shower detector)
TAI Temps Atomique International
TALE Telescope Array Low Energy
TAS Transverse AStigmatism
TC Transverse Coma
TCB Barycentric Coordinate Time
TCG Geocentric Coordinate Time
TDB Barycentric Dynamical Time (deprecated)
TDT Terrestrial Dynamical Time (deprecated)
TEM Transverse ElectroMagnetic (mode)
TES Transition Edge Sensor
TRACER Transition Radiation Array for Cosmic Energetic Radiation
TSA Transverse Spherical Aberration
TT (1) Terrestrial Time
TT (2) Transverse Traceless (gauge)
UHECR UltraHigh Energy Cosmic Ray
ULE Ultra-Low-Expansion (glass)
USB Upper SideBand
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UT Universal Time
UTC Temps Universel Coordonné
UV UltraViolet
UVOT UltraViolet and Optical Telescope (on Swift)
VERITAS Very Energetic Radiation Imaging Telescope Array System
Virgo a gravitational-wave interferometer; not an acronym
VLA Very Large Array (New Mexico)
VLBA Very Long Baseline Array
VLBI Very Long Baseline Interferometry
WFC Wide Field Camera (on ROSAT)
WFC3 Wide Field Camera 3 (on HST)
WFIRST Wide Field InfraRed Survey Telescope
WIDAR Wideband Interferometer Digital ARchitecture
WMAP Wilkinson Microwave Anisotropy Probe
XMM-Newton X-ray Multimirror Mission-Newton
XRT X-Ray Telescope (on Swift)
YAG Yttrium Aluminum Garnet
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2-DEG, 213
4-vector, 314

a posteriori, 279
a priori, 234–237, 239
aberration, 16, 28, 46, 117, 149, 150, 152, 155, 189,

192, 226
chromatic, 132
higher order, 129
of starlight, 42–44
primary, 124–130
Seidel, 124–131
spherical, 124–126, 130–131

absorption, 3–5, 8, 16, 69, 74, 76, 192, 195, 343
atmospheric, 6–8, 13, 23
Balmer line, 183
cross section, 67
edge, 23
infrared, 79, 82, 218
length, 77, 306

ACA, 229
acceptance rate, 245
acceptor, 74
ACE, 301
achromatic, 345
ACIS, 195, 200, 202, 204
acoustic isolation, 330
acoustic wavelength, 222
acousto-optical spectrometer (AOS), 85, 222
acrylic vessel, 277
ACS, 73, 78
ACT, 220, 226
ACTA, 311
activator, 195
aerosol, 20
AGASA, 308
AGIS, 311
AGN, 280, 308, 310, 312, 344
AIGO, 320
air circulation, 133

air mass, 20, 21, 23
air shower, 3, 261, 282, 295, 303–312

core, 305, 306, 311
depth, 304, 305
electromagnetic, 295, 304, 307
front curvature, 304

airglow, 5, 9
Airy

function, 174, 178
pattern, 63, 117, 145–146, 150, 152–153, 156, 164,

167, 224
AlGaAs, 213
aliasing, 60–62, 65
alignment, 328, 329, 343
ALMA, 229
alpha particle, see nucleus, helium
altitude, 34, 35, 46, 47, 49
aluminum (Al), 177, 289, 290
AMANDA, 279, 280
AMIGA, 310
amplifier, 70, 168, 210–214, 218, 220
AMS, 303
a.m.u., 297
analema, 32
angle

incidence, 45, 118, 119
parallactic, 46, 353
reflection, 118
transmission (refraction), 119
zenith, see zenith, angle

anisotropy, see distribution, anisotropic
ankle, 286, 310, 312
anode, 71–73, 86, 194, 195, 206

wedge, strip, and zigzag, 200
antarctic, 279, 302
ANTARES, 282
antenna, 70, 210, 222–226, 229

pattern, 22, 167–170, 172, 223–226, 338
temperature, 225

anthracene, 196

378
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anti-coincidence, 196, 198–271
antihelium, 303
antimatter, 303
antineutrino, see neutrino
antiproton, 301, 303
aperture, 16, 26, 125, 132, 143, 156, 163, 168, 223,

226
annular, 156
efficiency, 225
function, 145, 192
illumination, 224
mask, see coded aperture mask
stop, 79, 131
synthesis, 168, 228

APEX, 6, 7
aplanatic, 131, 226
apodization, 188, 189
apparent sidereal time, see LAST, GAST
arctic, 302
argon (Ar), 194, 197, 266, 267

liquid, 268
array (of telescopes), 228–229
arrival time, 2, 304, 309
arsenic (As), 74
ASCA, 200
ASIC, 229
ASM, 201
associativity, 234
astigmatism, 127–131, 325
astrolabe, 47
astrometry, 46–48, 129
Astronomical Almanac, The, 28, 31
asymptotic convergence, 245
Atacama, 220
ATIC, 301
atmosphere, Earth, 3, 5–12, 45, 260, 261

curvature, 45
atmospheric

emissivity, 80
neutrino, see neutrino, atmospheric
transmission, 79, 190

atomic
hydrogen, see H I

number, 69
time, 28–30

Auger Observatory, 309–310
AuPt, 334
aurora, 287
autocorrelation, 52, 58, 105–106, 110, 115, 152, 154,

245
function, 106, 108, 110, 112, 113, 116, 159, 160,

193, 208, 221
spectrometer, 85, 221

autocovariance, 106
average, 94–95, 106, 107, 115
AXAF, see Chandra
axial symmetry, 319
axis, 338

azimuth, 32, 34, 35, 46, 49, 167, 320

back end, 212
background, 270

assumption, 234
rejection, 206

Baikal, 282
balloon, 3, 301–303
bandgap, 80
bandwidth, 115, 158, 168, 211, 228, 325
barycenter, 30
baryon, 261, 295, 304
baseline, 168, 226, 228–230
BAT, 206
BATSE, 196
Bayes’ theorem, 233–239, 241, 243, 247, 249
Bayes, Reverend Thomas, 233
Bayesian inference, 234, 236–239, 255
BBO, 336
beam efficiency, 225
beam splitter, 162, 180, 320, 321, 324, 328, 335

dichroic, 84, 206
polarization, 345

BeCu, 201
BeppoSAX, 201–202
beryllium (Be), 84, 194, 259, 266, 282, 289, 290
BESS, 301
Bessel function, 62, 63, 145, 156, 166
Bethe formula, 296, 298
BHI, 207
bias, 217
bias (statistical), 235, 250–255
bias voltage, 76, 83, 216
BiGeO (BGO), 207, 301
BIMA, 228
binomial

coefficient, 88–89
distribution, 88–89, 91
series, 89

bioluminescence, 282
birefringence, 345
bismuth (Bi), 84
bit, 222, 229, 240
BL LAC object, 308
black hole, 207, 319, 334
blackbody, 8, 20, 22, 26, 113, 209

radiation, 18, 22, 112, 158, 225
blaze, 185, 186, 189, 205
blinder, 192
BLIP, 82
blocked impurity band, 82
Bohr magneton, 341
bolometer, 83–86, 195, 217, 220, 221, 346

composite, 83, 84, 218
polarization-sensitive, 220
spiderweb, 85

Boltzmann’s constant, 240
bootstrap resampling, 252
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Borexino, 282
boron (B), 74, 266, 289
boson, 112, 257
bottom-up, 283, 312
Bouguer’s method, 21
boundary

condition, 135, 137, 139
periodic, 18

value problem, 135, 174
boxcar function, 59, 61, 64, 110, 188
Bragg’s law, 222
bremsstrahlung, 26, 290–292, 296–299, 304

thermal, 209
brightness, see also specific intensity

conservation, 16
temperature, 21

broadcast, 29, 30
bubble chamber, 296
bucket brigade, 77
burn in, 245, 247

C2H, 343
C2S, 343
calcium (Ca), 290
calibration

absolute, 22
energy loss, 296
photometric, 20
polarization, 352–353
source, 22, 23

calorimetry, 195, 198, 207, 299, 301, 303, 306
camera lens, 182
camera mirror, 186
CANGAROO, 311
capacitance, 75, 215

stray, 76
carbon (C), 259, 289, 290
CARMA, 228, 229
Cartesian coordinates, 255
cascade, 71, 72

electromagnetic, 299, 304, 306
electron, 194

Cassegrain
focus, 131
telescope, see telescope, Cassegrain

cathode, 197
causality, 110
CCD, 46, 48, 73, 76–78, 129, 132, 153, 187, 189, 200,

202, 205, 206, 346
back illuminated, 77, 202, 204
front illuminated, 77, 202, 204
thick, 77
thinned, 77

CDMA, 30
CdTe, 206
CdZnTe, 206
celestial

coordinates, 43, 46

equator, 33–36
sphere, 33, 50, 198

censoring, 251–253
central limit theorem, 94–95, 108
Čerenkov radiation, 269–282, 300, 306, 307, 353
cesium clock, 28
CGRO, 196–198, 201
CH, 343
CH4, 197
Chajnantor, 229
Chandra, 191, 195, 200, 202–204
channel, 222, 229
characteristic function, 92–93, 104
charge to mass ratio, 285
charge transfer efficiency, 77
charged current, 257, 264, 269, 270, 274, 276, 278
chevron, 203
chi-squared, 104, 235, 240, 254

distribution, 97–98
reduced, 97

chirp, 318
mass, 339

chlorine (Cl), 2, 259, 262, 265–268, 278, 289, 290
chromatic aberration, 117
circle of least confusion, 125
circular aperture, 145, 146, 152, 156
clean algorithm, 231
CLIO, 320, 330
cloud chamber, 296
CMB, 5, 209, 218–221, 283, 294, 344
CN, 340, 342
CNO cycle, 259, 266
CO2, 8, 79
coalescing binary, 318
coating

anti-reflection, 175, 345
enhanced reflection, 176–177

COBE, 218
COBRA, 229
coded aperture mask, 192–194, 201–202, 205–206,

208
coefficient of finesse, 178
coherence, 12, 158, 163, 164, 167, 347, 352

fourth order, 170–172
length, 160, 162
partial, 170
temporal, 165
time, 160

coin flip, 87, 89
coincidence, 198, 200, 302
cold dark matter (CDM), 218, 283
collecting area, 223
collimating lens, 182
collimating mirror, 186
collimator, 192, 198, 201–208
column density, 295
coma, 126–127, 130–131
comb function, 59
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combinations, 88
combinatorial, 241
commutativity, 234
complex degree of coherence, 158
composite bolometer, see bolometer, composite
COMPTEL, 198
Compton

cross section, 68–69
scattering, 66–69, 192, 195, 198, 205, 267

conductance, non-linear, 215
conduction, 80
conduction band, 74
conductivity, 82
confidence interval, 238
confidence limit, 253–256
conic section, 130
conjugate, 328, 332
conjugate points, 120
contrast, 151, 157
convergence, 95
convergence rate, 245
conversion loss (gain), 216, 217
convex function, 101
convolution, 52, 58, 61, 64, 110, 115, 150, 231

theorem, 110
coordinate conversion, 35
coordinates

ecliptic, see ecliptic, coordinates
equatorial, see equatorial, coordinates, etc.
geocentric, 42, 44
topocentric, 44

Cornu spiral, 148
corrector plate, 131, 132
correlation, 103, 165, 172, 247, 350
correlator, 227–229
COS, 73, 78
cosmic abundance, 289
cosmic microwave background, see CMB
cosmic ray, 2, 196, 198, 260, 261, 285–313

acceleration, 288, 310, 312
background, 23
composition, 289
electron, 2, 285, 290, 295
extragalactic, 286, 288, 294, 310, 312
flux, 286, 287, 290, 291, 295, 301, 303
galactic, 286, 288, 290, 310, 312
hit, 78
penetrating component, 295, 306
primary, 285, 295, 303–306, 309, 311
secondary, 285, 289, 295, 306
spectrum, 3, 285, 289–291, 310, 312
ultrahigh energy, see UHECR

cosmological parameter, 253
cosmology, 283

precision, 218
Coulomb interaction, 296, 297
counting statistics, 90
covariance, 103

matrix, 254
Cox, Richard, 233, 234
CREAM, 301–303
credible interval, 253
Creighton mine, 276
CRIS, 301
cross correlation, 58, 158, 222, 336
cross power spectrum, 222
cross-disperser, 186
cryogenics, 79, 83, 84, 212, 330, 332, 336
crystal lattice, 67
Cs2Te, 206
CsI, 195, 197, 201, 203, 206, 207
CTA, 311
curvature

center of, 119, 131
of field, 129, 155
radius of, 125, 155

curvature matrix, 254
cutoff frequency, 215
Czerny–Turner spectrograph, 185–186

d’Alembertian, 315
damping, 7, 9, 134, 330
dark

current, 72
energy, 86, 219, 221
frame, 78
fringe, 328
matter, 2, 218, 219, 283

data, 92, 95–96, 234–240, 242, 250, 252, 255
Davis, Ray, 262, 265, 266, 268
Davis–Greenstein mechanism, 343
decadal review, 85, 131, 207, 333
decay, 90, 263, 267, 288, 295, 304, 312, 317

rate, 238
time, 267

DECIGO, 336
declination, 33, 35, 41, 47–50, 230
deconvolution, 231
decoupling, 283
degree of coherence, 165, 168, 171
degrees of freedom, 97, 98, 100, 335
delay line, 168, 206
	AT, 30
	UT1, 30
delta ray, see electron, knock-on
demodulation, 115
density matrix, 240
density of states, 216, 217
depletion region, 75, 76, 213
depolarization, 345, 351
desorption, 267
detailed balance, 246
detector, 66–86

BIB, 82
calorimetric, 195, 299
Čerenkov, 259, 262, 269–282, 303, 306, 309–311



382 Index

detector, cont.
cosmic ray, 295
dE/dx, 296, 299, 307, 313
electromagnetic wave, 66, 70
fluorescence, 306, 307, 309–311
heterodyne, 85
ionization, 67, 296
neutrino, 2, see also neutrino, detector
optical, 70–78
silicon, 74–78, 204, 206, 207, 301, 303
solid state, 23, 74–78, 195, 209, 296
stressed, 85
thermal, 66, 83
ultraviolet, 70–78
x-ray and gamma ray, 194–196, 218

deuterium, 202, 258, 276, 298, 313
dice, 236
dielectric, 72

constant, 155
interface, 118, 135, 174, 177, 188, 300, 301

diffraction, 22, 117, 139–150, 164, 182, 325
far-field, 22, 144, 145
Fraunhofer, see Fraunhofer, diffraction
Fresnel, see Fresnel, diffraction
grating, 180, 183–187, 202, 222
limit, 12, 85, 189, 192
near-field, 144
scalar, 139
vector, 139

diffusion, 75, 77
dihedral angle, 37
dipole antenna, 168, 170
Dirac delta function, 55, 62, 87, 107, 193, 208
Dirac particle, 257
directional cosines, 32
dirty beam (map), 231
dispersion, 4, 134–135, 138–205

anomalous, 136
measure, 4
relation, 136

dissipation, 330
distortion, 128–129
distribution

anisotropic, 218, 288, 307, 308, 310
isotropic, 11, 16, 17, 19, 198, 288, 293, 308

DMR, 218
donor, 74
doping, 74, 80, 82, 213
Doppler broadening, 158
Doppler tracking, 336
drag, 334
drain, 213
drift scan, 77
Drude–Lorentz model, 134–135
DSNB, 283
DUSEL, 268–269
dust, 79

atmospheric, 5

grains, 2, 3, 343, 344
interstellar, 79
zodiacal, 5, 35, 79

dynamic range, 78, 98
dynamic resistance, 215
dynode, 71

Ebert–Fastie mounting, 186
eccentricity, 333, 337
echelle, 85, 186, 189
ecliptic, 35, 38, 41

coordinates, 35, 51
effective area, 224
Effelsburg, 226
efficiency, 86, 194, 223, 229, 267
EGRET, 196–198
eigenstate, 262
Einstein, 197

summation convention, 314
Telescope (ET), 332, 339

electrical conductivity, 9
electrode, semi-transparent, 77
electron, 67, 74

Auger, 194, 195, 267
capture, 267
cosmic ray, see cosmic ray, electron
energetic, 192, 195, 294, 340
knock-on, 290
multiplication, 72–73
number density, 296, 305
relativistic, 270, 292–293, 298, 304, 307, 340
screening, 292
shielding, 306
trajectory, 71
ultrarelativistic, 291

elevation, see altitude
ellipse, 253
ellipticity, 264, 319
elongation rate, 304
emission line, 183
emissivity, 79
energy density, 16, 17, 19, 112, 293, 316, 320
energy gap, 216
ensemble, 105, 106, 236
entropy, 231, 240–242

Gibbs, 240
von Neumann, 240

ephemeris time (ET), 28
EPIC, 204, 206
epoch, 39, 43, 48–50

reference, 28, 39
equation of the equinoxes, 31
equation of time, 32
equator, 33, 39, 41
equatorial

bulge, 41
coordinates, 33–38, 40–46, 51

equinox, 39, 41, 43
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ergodic hypothesis, 106
error, 47, 48
error function, 91–92
ESA, 8, 48, 85, 203, 207, 333
estimate, 99, 100, 235, 239, 255
etalon, see Fabry–Perot, interferometer
etching, 297, 299
étendue, 25, 83, 112, 117, 131, 301–303

coherence, 166–168
conservation, 14–16, 123

Euclidian norm, 242
EUVE, 199–200
even function, 53, 106
even impulse pair, 59
evidence, 234, 249
EVLA, 228
excitation, 67, 74, 296
exciton, 195
exit pupil, 79
exoplanet, 86
expectation value, 244
extensive air shower, see air shower
extinction, 4, 20, 78

interstellar, see interstellar, extinction
extragalactic radio jets, 340
extrasolar planet, 344

Fabry–Perot
interferometer, 178, 181, 185, 323–326, 328–331,

336
spectrometer, 183

Fano factor, 194
Faraday rotation, 4, 345
feed, 224, 226, 346, 350–352
feedback, 218, 325
Fermat’s principle, 124, 130
Fermi mechanism, 312
Fermi space telescope, 207
Fermi–Dirac statistics, 113
FET, 212–214
Feynman diagram, 270
fiber optics, 187
field of view, 131, 132, 192, 198, 201–204, 218, 226
field programmable gate array (FPGA), 229
filter, 108, 110, 115, 116, 210

bandpass, 115, 187
interference, 177
low pass, 110–111, 169
matched, 337
mechanical, 326

filter bank, 222
fine structure constant, 69, 300, 355
finesse, 175, 178, 324, 325, 329, 336
FIRAS, 218
FIRST, see Herschel
FK5, 48
flat field, 78
fluctuation–dissipation theorem, 330

fluorescence, 3, 9, 194, 196, 282, 306–311
fluorine (F), 259, 289
flux, 2, 251

density, 16, 17, 20, 24, 26, 227
limit, 250

Fly’s Eye, 307–308
focal

length, 122–125, 130, 182, 189, 190, 192, 202
plane, 48, 126, 183, 186, 203, 204
ratio, 125

Fourier
coefficient, 52–54
component, 227, 230, 231
domain, 337
inversion, 230–232
kernel, 52, 54, 92
series, 52–54, 63
space, 228
transform, 7, 52–65, 92, 107, 108, 116, 151–152,

159, 166–168, 180, 221, 227, 229, 231
2-dimensional, 62, 144, 230
3-dimensional, 63
convolution, 58
pair, 59, 152, 154
properties, 57
spectrometer, 85, 180–181, 185, 188
symmetry, 55

Fourier–Bessel transform, 62
fractional error, 104
frame dragging, 319
Fraunhofer

approximation, 144, 146, 153
diffraction, 145, 152, 156

free spectral range, 180, 185, 189
free–free emission, 209
frequentist, 236, 238
Fresnel, 143

approximation, 144, 146
coefficient, 117, 134–138, 155, 173, 188
diffraction, 146, 156
integral, 148

friction, 330
Fried parameter, 12
fringe, 160, 162–164, 172, 227, 328
front end, 212, 222
full-width at half-maximum (FWHM), 13, 178, 204
FUSE, 202
fused silica, 330, 331

g-factor, 342
G-R noise, 82
GaAs, 75, 212–215
gadolinium (Gd), 274, 284
GAIA, 48
gain, 71, 72, 211, 223, 243, 352
galactic

center, 36, 79
coordinates, 36–38
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galactic, cont.
foreground, 218
longitude, 38
plane, 36–38, 79, 288
rotation, 40
structure, 46, 236

galaxy, 206, 250, 251
Galaxy (Milky Way), 4, 319
galaxy cluster, 134, 221
GALEX, 206
GALLEX, 267, 268
gallium (Ga), 2, 259, 262, 267, 278

liquid, 268
Gallium Neutrino Observatory (GNO), 268
gamma function, 90
gamma ray, 68, 69, 190–208, 258, 261, 280, 285, 294,

299, 304, 307, 311
burst, see GRB

GAST, 31, 33, 43
gate, 213
Gauss, 235
Gaussian, 62

distribution, 91–94, 96–100, 104, 108–109, 112,
159, 235, 245, 246, 253, 255, 256

noise, 235, 240
probability, 255

2-dimensional, 253
random field, 171
random process, 108, 110, 116, 171

Gaussianity, 243
GBM, 207
GBT, 226
Ge:Ga, 80, 85
Geiger counter, 194
generation, 82
GEO600, 320, 322, 333
geocenter, 30
geodesic, 334
geomagnetic cutoff, 302
germane, 267
germanium (Ge), 84, 205, 217, 220, 267
Gibbs sampling, 246
Gibbs’ phenomenon, 64
Gingin, 323
GIS, 200
glass, 133, 155, 176

Cervit, 133
flint, 182
ULE, 133
Zerodur, 133

GLAST, see Fermi space telescope
GMST, 31, 43
GMT, 28
GNO, 262
gold (Au), 177, 196, 208
Goldreich–Kylafis effect, 343
GPS, 29, 30
Gran Sasso, 267, 268, 282

Grand Unification, 312
grating, 181, 189, 199

equation, 183, 184, 189
transmission, 187, 202, 203, 222

gravitational
constant, 316
deflection of light, 44
deformation, 133, 223
interaction, 257
lensing, 133
wave, 2, 3, 314–339, 344

amplitude, 316
background, 320, 334
detector, 314
interferometer, 320–335, 338
luminosity, 317
polarization, 315–317, 321, 323, 334, 338
source, 316–320

graviton, 314
grazing incidence, 191–192, 199, 202, 207
GRB, 197, 206, 280, 312
great circle, 37
Green’s theorem, 139–140
Greenwich

meridian, 33, 34, 50
sidereal time, see GAST, GMST

Gregorian focus, 226
Gregorian telescope, 226
grism, 83, 183, 187, 189, 206
ground screen, 226
gyroradius, see Larmor, radius
GZK effect, 294, 308, 310

H I, 3, 4, 209, 340
H II region, 26
H2, 79
hadron, 261, 304, 306, 311
hadronic

cross section, 273–275, 278
interaction, 271, 282, 295
reaction, 276
shower, 280

HALO, 279
Hα, 178, 189
Hamiltonian dynamics, 247
Hammer–Aitoff projection, 323
Hanford, 320–323
Hankel transform, 52, 62, 65
Hanle effect, 352
harmonic, 214, 317, 327
HEAT, 310
heat capacity, 83, 86, 195
Heaviside step function, 64, 238
heavy water, 275–277
heliocentric, 44
helium (He), 209, see also nucleus, helium
HEMT, 213, 218, 220
Herschel, 8, 80, 85
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HESS, 311
Hessian matrix, 254
heterogeneous array, 229
HEXTE, 201
HFI, 85, 220
HgCdTe, 75, 82, 83, 86
HIFI, 85
Hipparcos, 28, 48
HiRes, 307–308
hole, 74–76, 212
Homestake detector, 262, 265
homology, 223
honeycomb, 133
horizon, 273
horizon coordinate system, 34, 35, 37
hour angle, 33, 35, 43, 49
HRC, 203
HRI, 196
HRMA, 202
HST, 73, 78, 80, 82, 131, 133
Hubble constant, 251
Hulse–Taylor binary, 314, 318, 337, 339
Hund’s coupling, 341
Huygens–Fresnel principle, 142, 160
HWHM, 8
Hyades, 183
hydrostatic equilibrium, 6
hyperfine structure, 29, 340, 342, 343
hyperfine transition, 209
hypothesis, 234–237, 239, 247

IAU, 28, 347, 348
IBIS, 206
ICARUS, 268
IceCube, 279–282
ICRS, 48
IEEE, 347, 348
image-dissector, 48
imaging, 1, 72, 150–153
imaging proportional counter (IPC), 194, 206
IMB (muon detector), 260, 271, 284
impact parameter, 292
impedance, 114, 137
importance sampling, 244
impulse, 329
impulse function, see Dirac delta function
impurity, 74, 80
incoherence, 158
incompleteness, 230, 250
independence, 234, 244
inductive reasoning, 234
inertial

coordinates, 33, 48
reference frame, 47

inflation, 221, 334, 344
information, 1, 3, 94, 234, 236, 238, 240, 241, 249,

287
infrared window, 8

InGaAs, 213
InP, 213
InSb, 75, 80, 84
inspiral, 319, 336, 337, 339
instability, convective, 319
INTEGRAL, 205–206
integration, 116, 169
intensity, 1

mean, 16, 17
intensity interferometry, 171–172
interference, 160, 162, 171–174, 183, 330
interferometer, Fabry–Perot, see Fabry–Perot,

interferometer
interferometry, 42, 44, 47, 222, 226–232, 335, 336,

350, 352
intermediate frequency, 210–211, 214, 221
interpolation, 62
interstellar

density, 290
extinction, 4, 36, 78, 237
medium, 3, 199, 288, 290–293, 340, 342, 344, 345

ionized, 4
inverse beta decay, 260, 267
inverse Compton, 221, 293
inverse problem, 134, 242–243
inversion, 242
iodine (I), 268, 290
ionization, 209

damage track, 297
K-shell, 66
loss, see loss, ionization
trail, 196, 198, 296

ionosphere, 5, 9, 345
IRAC, 84
IRAS, 8
IRC+10216, 79
iridium (Ir), 202, 208
IRS, 84
ISO, 8
isoplanatic, 150
isotope

mass resolution, 299
radioactive, 289
shift, 313

isotopic composition, 301
isotropy, see distribution, isotropic
IXO, 207

Jacquinot, 14
jansky (Jy), 16
JAXA, 207
Jaynes, Edwin, 233
Jeffreys’ prior, 241
Jeffreys, Harold, 233
JEM-EUSO, 311
JEM-X, 206
JFET, see FET
Johnson noise, 81, 82, 114
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Jones
matrix, 349–350, 352, 353
vector, 349–350, 352

Joule heating, 86
Julian date, 39
Julian year, 48, 50

Kamiokande, 260, 262, 271–274, 284
KamLAND, 264
kaon, 261, 262
Kaplan–Meier estimator, 252
Kepler mission, 131, 132
Keplerian orbit, 317, 337
kick velocity, 319
Kirchhoff

diffraction, 139–143, 165
integral, 139–141, 156

Klein–Nishina formula, 68, 86
KM3NeT, 282
knee, 286, 312
Kolar gold mine, 276
Kolmogorov spectrum, 11–12
Kronecker delta function, 53
krypton (Kr), 267
kTC noise, 76
kurtosis, 92

Lagrange invariant, 123
Lagrange, Joseph-Louis, 235
Lagrangian point, 48, 85, 207
�-doubling, 341, 342
�CDM, 218
Laplace, Pierre-Simon, 94, 233, 235
lapse rate, 313
large mixing angle (LMA), 264
large-scale structure, 283
Larmor

formula, 7, 10, 290
radius, 287, 288

laser, 158, 177, 222, 328, 329, 335
Nd:YAG, 325–326, 334
power, 325, 329, 330
stability, 325

LAST, 33, 43
LAT, 207
latitude, 33, 35, 47, 50, 320

geomagnetic, 287, 301, 313
LCGT, 330, 332
lead (Pb), 2, 70, 196
leakage, 352
least squares, 101, 235
lens, 119

thin (thick), 123, 124
lepton, 257, 295
leptonic cross section, 275
Lexan, 197, 297
LFI, 220
LIGO, 3, 320, 322–324, 331

advanced, 323, 324, 328, 331, 332
likelihood, 234, 235, 238, 248, 253

conditional, 248
marginalized, 249

line spread function, 205
linear

amplifier, 222
combination, 103
device, 168, 346
equation, 235, 242
system, 210–211, 214

linearity, 77
linearized theory, 316, 319
LISA, 333–336, 339
lithium (Li), 259, 269, 289, 298
Littrow, 186
Livingston, 320–322
LMST, 43, 50
load resistance, 84
local field theory, 135, 155
local oscillator, 210–211, 214, 216
local sidereal time (LST), 35
local standard of rest, 40
longitude, 33, 43, 50, 320
Lorentz factor, 284, 289, 293, 298, 301, 303
Lorentz gauge, 315
Lorentzian line shape, 6, 7, 13, 57
loss

bremsstrahlung, 195, 292, 297
inverse Compton, 292, 293
ionization, 195, 208, 290, 292, 296–299, 301–302,

313
radiative, 293
synchrotron, 292, 293, 312

low pass filter, 113
lower limit, 252
lower sideband, 214
LPM effect, 307
LSST, 131, 133
luminance, 241
luminosity, 250, 253
lunar occultation, 148
Lyman

alpha (Ly α), 3
limit, 4, 66, 199
series, 202

magnetic dipole, 6, 312
magnetic field, 285, 287–289, 301, 312, 340–345, 351

coronal, 352
galactic, 4, 288, 310
geomagnetic, 287, 307, 313

cutoff, 302
intergalactic, 288, 310
interplanetary, 287
interstellar, 287, 290
solar, 352

magnification, 122, 123, 128
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magnitude, 23, 24
main lobe, 22
Majorana particle, 257
Malmquist bias, 250–251
MAMA, 73
marginal

focal plane, 125, 155
focus, 126
ray, 124, 155

marginalization, 243, 248, 254
Markov Chain Monte Carlo (MCMC), 245, 246
maser, 341, 342
MAXIM, 207
maximum entropy, 231, 239–240, 242
maximum likelihood, 96, 100, 235, 238, 248, 255
mean, 91–94, 97, 99, 100, 102, 107, 109, 110, 112,

171, 236, 243
mean free path, 294
mean sun, 39
mean value, 256
measurement matrix, 242, 243
median, 97
medium

intergalactic (IGM), 3, 288
interplanetary (IPM), 3, 5, 287, 288
interstellar, see interstellar, medium

mercury (Hg), 47, 158
merger, 337
meridian, 31, 34, 50, 227

circle, 47
MESFET, see FET
meteorite, 297
method of moments, 16
metric, 314
Metropolis–Hastings algorithm, 245–246
Michelson

interferometer, 162–163, 180, 218, 320, 323, 328
stellar interferometer, 163–164, 168

microchannel plate, 72–73, 196, 199, 202, 203, 205,
206

microscopic field, 134
MiniGRAIL, 336
minimum ionization, 296, 297
MIPS, 85
mirror, 177

coating, 23, 330
concave, 323, 325
confocal, 192
ellipsoidal, 130, 191, 226
hyperboloidal, 130, 131, 191, 203, 226
paraboloidal, 124, 126, 130, 191, 202, 203, 223,

226
primary, 79
secondary, 79
spherical, 124, 125, 131, 155
x-ray, 208

mixer, 70, 210–211, 213–218
mixing behavior, 247

mixing ratio, 12
MMIC, 213
Mo/Au bilayer, 220
mobility, 74, 81, 212, 213
mode, 19, 97, 112, 114, 211, 330

cleaner, 326, 329
occupation number, 19, 66

model comparison, 247–249
modulation, 48, 80, 115, 345

transfer function, 117, 151–154, 156
moment, 16, 92–94, 96, 97, 102, 104, 106, 110, 112
moment-generating function, see characteristic

function
momentum flux, 16
Monte Carlo, 243, 245, 246, 274, 307
MOS, 76, 204
mosaic mapping, 230
MOSFET, see FET
MSW effect, 264, 270
Mueller matrix, 348–349, 353
multimodal, 243, 246, 247
multiplexing, 193–194
multiplicity, 241
multiplier, 214, 227
multipole moment, 218–221
multivariate distribution, 108
muon, 261, 281, 282, 284, 295, 304, 306, 310

atmospheric, 266, 271, 276
cosmic ray, 267

mutual coherence function, 158
mylar, 194

nadir, 34, 274, 321, 323
NaI, 195, 197, 199, 201, 202, 207
NANOGrav, 336
NASA, 132, 200, 204, 207, 333
nat, 240
National Science Foundation (NSF), 228, 268, 269,

331
NCP, 41, 49, 50
negative frequency, 53, 57, 65
neon (Ne), 194, 196
NESTOR, 282
neutral current, 257, 264, 269, 270, 274, 276, 278
neutrino, 2, 219, 285, 295, 312

atmospheric, 260, 261, 264, 265, 271, 273, 283, 295
detector, 257–284

radiochemical, 265–271
electron, 257, 261–263, 265, 268, 270, 271, 274,

278, 280, 307
energy, 2
flux, 259, 262, 264, 271, 278
helicity, 257
hep, 258, 266
luminosity, 284
mass, 257, 258

difference, 263–265, 283
hierarchy, 263
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neutrino, cont.
mixing angle, 264, 265, 274
muon, 257, 261, 263, 270, 273, 274, 277, 280, 281
opacity, 260
oscillation, 257, 261–265, 267, 268, 271, 278, 280

matter, 264, 273
vacuum, 262–264

pep, 258
pp, 258, 266, 267
solar, 2, 258–260, 264–266, 268, 271, 278,

282–284
spectrum, 259, 265
sterile, 257
supernova, 2, 237, 260, 265, 274, 278, 283

prompt, 260
tau, 257, 263, 270, 271, 277, 280, 281
thermal, 260

neutron
beta decay, 288
decay, 295
energetic, 288
lifetime, 288
secondary, 289
star, 260, 312, 318, 319
stripping, 296

Newtonian potential, 134
NGP, 36–38
NiAu, 215
nickel (Ni), 204, 208, 276
NICMOS, 80, 82–83
NIR, 83
NIST, 67, 70
nit, 240
nitrogen (N), 259, 289
noise, 1, 105–116, 217, 242
noise equivalent power (NEP), 81, 82
noise temperature, 211
non-Gaussianity, 239
non-linear device, 70
non-linearity, 217, 231
non-negativity, 240
normal distribution, see Gaussian, distribution
north ecliptic pole (NEP), 41
Norton equivalent circuit, 114
NSF, 228
NTP, 29
nuclear magnetic resonance (NMR), 240
nucleosynthesis, 258, 260

Big Bang, 289
stellar, 289

nucleus
atmospheric, 295
atomic, 289, 290, 301
fragmentation, 296
heavy, 2, 285, 292–294, 296, 298, 301, 305, 310,

312
helium, 258, 259, 285, 292, 298, 303
iron, 289, 294, 310

light, 289, 303, 304
radioactive, 198
ultrarelativistic, 287

nuisance parameter, 243
nutation, 41, 44
Nyquist

frequency, 60
rate, 60, 221, 222
sampling, 153

objective prism, 182, 187
Occam’s razor, 236, 249, 255
odd function, 53
odd impulse pair, 59
off axis, 126, 127, 132, 192, 226, 335, 352
OH, 341, 342
on axis, 224
optical

axis, 124, 126, 167, 346
depth, 20, 21, 209
path length, 173
power, 121, 124
transfer function (OTF), 151

optical monitor camera (OMC), 206
optics, 117–157

geometrical, 117–138, 193
paraxial, 119–124
physical, 117, 138–150

optimization, 235
order, 179, 180, 183–187, 189, 205
orthomode transducer, 226
oscillator

decaying, 56
simple harmonic, 7, 135, 211, 262

OSSE, 196, 198, 201
outlier, 100
overburden, 282, 321
overrelaxation, 247
oversampling, 222
OVRO, 228
oxygen (O), 9, 259, 274, 289
oxygen (O2), 6
ozone (O3), 6, 7, 13, 79

PACS, 85
pair production, 66, 69, 192, 195, 196, 198, 207, 294,

298, 304, 307
PAMELA, 303
parallactic angle, 51, 353
parallax, 42, 44, 46, 48, 104
paramagnetic relaxation, 343
parameter, 235, 236, 239, 243, 245, 247, 248, 255
paraxial

focal plane, 125–127, 155
optics, 119–124
ray, 119, 120, 124, 155

parity violation, 257
Parseval’s theorem, see Rayleigh’s theorem
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passband, 110, 175, 330
path length, 226
PbSe, 201
penalty function, 100
pendulum, 262, 326, 330

compound, 327
quadruple, 327

perigee, 205
period, 314
periodicity, 183
Petzval

field curvature, 129–131
surface, 129

phase velocity, 118
phosphorescence, 72
phosphorus (P), 289
phoswich, 201, 202
photocathode, 70, 72, 73, 203, 206
photochemistry, 67
photoconductive gain, 81
photoconductor, 80, 82, 85
photodisintegration, 294, 310
photoelectric effect, 66–67
photoelectron, 71, 72, 194, 195, 208
photography, 46, 129
photoionization, 194
photometric redshift, 24
photometry, 1, 14, 48, 78, 85

band, 4, 24
high speed, 1
infrared, 23
system, 23–25
visible, 23

photomultiplier, 70–72, 86, 108, 172, 196, 300, 306,
307

tube, 270–272, 274, 276, 279, 280, 282
photon, 1, 2, 5, 19, 26, 66–68, 70, 71, 209, 211, 219,

293–295, 300, 301, 304, 306
assisted tunneling, 216, 217
counting, 73, 206, 329
flux, 86
high energy, 192
noise, 72, 112, 220
occupation number, 112
scattered, 67, 192, 198

photon statistics, 328
Pierre Auger Observatory, see Auger Observatory
pinhole camera, 193
pion, 261, 294, 304
pixel, 76, 84–86, 132, 152, 153, 189, 200, 202, 204,

206, 240–242
Planck, 85, 220, 226, 344

function, 20, 22
plasma, 4, 5, 8, 209

frequency, 9, 191, 202, 208, 300
plate

half-wave, 345
quarter-wave, 345

plate scale, 124
plausibility, 234, 236
PN junction, 75–76
Pockels cell, 345
point spread function, 117, 150, 152–154, 204, 231
Poisson

distribution, 89–90, 92
impulse, 108
noise, 194
random process, 106–108
spot, 142–143
statistics, 72, 82, 86, 113, 194, 208

polar coordinates, 32, 255, 338
polarimetry, 2, 83, 192, 340–353

optical, 351
radio, 352–353

polarization, 1, 19, 46, 112, 139, 142, 158, 218, 225,
226, 325

angle, 348, 350
circular, 340–342, 345–348, 350, 351
CMB, 221
degree, 347
dielectric, 135
E-mode (B-mode), 344
linear, 4, 340, 342–350
partial, 344, 347, 350
primordial, 344
right-hand, 347, 348, 350, 353
S- (P-), 137, 138, 326
TT (TE), 219

Pólya, George, 233
polyimide, 203
polypropylene, 197
positional astronomy, 28–51
Positions and Proper Motions (PPM) Catalogue, 49
positive additive distribution, 241–242
positron, 258, 281, 294, 295, 298, 304, 306, 307

cosmic ray, 285
posterior, 234, 238, 241, 243, 245, 247

odds ratio, 248, 249
potassium (K), 267, 282, 289
potential

excitation, 296
ionization, 66, 67, 296

power, 324, 325
density, 326
law, 285–286
recycling, 324, 331
spectrum, 56–58, 106–108, 116, 158, 221, 223,

326, 337
splitter, 222

Poynting flux, 10, 156
pre-disperser, 183
precession, 41, 44, 50, 51
precipitable water vapor, 12
Press, William H., 251
pressure broadening, 6, 158
primary beam, 229
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prime focus, 131, 226
primordial, 283
principal plane, 124
prior, 234, 240

improper, 241
Jeffreys’, 241
location, 241
scale, 241
uniform, 241, 248
uninformative, 241–242

prism, 181–183
Carpenter, 187
Glan–Thompson, 346
Rochon, 346
Wollaston, 345, 346

probability, 236, 237
conditional, 233–234, 246
cumulative, 87, 90, 91, 97, 98, 252
density, 87, 92, 94, 96, 97, 101, 105, 108, 241,

243–245, 247, 248, 253, 255
distribution, 87–92, 95, 97, 239
joint, 233–234
prior predictive, 234

proof mass, 335
propagation, 345

delay, 29
direction, 5, 14, 45, 68, 117–119, 133, 192, 198,

264–265, 271, 280–282, 288, 296, 321
velocity, 117–119, 134

propagation of errors, 102–104
proper motion, 40, 44, 46, 48, 49
proportional

counter, 194, 196, 200–267
array (PCA), 201
imaging, 194, 208

tube, 67, 302
proposal density, 244–246
proton, 258, 313

cosmic ray, 2, 285, 289, 290, 292, 294, 295, 303,
305, 308, 310, 312

decay, 271
energy loss, 297, 298
gyroradius, 287

proton–proton chain, 258
pseudocumene, 282
pseudoinverse, 242
PSPC, 196
PtAu, 215
pulsar, 3, 4, 209, 312, 319, 337

binary, 314
timing, 336, 337

pulse counting, 72, 86
pulse width, 72
pupil, 182
pupil function, 152–154, 156
PZT, 47

quadrature, 328

quadrupole, 338
moment, 316–319

quality factor, 327, 330
quantum

efficiency, 71, 72, 77, 80, 197
field theory, 314
limit, 211, 214, 217, 328, 329, 331, 332
well, 213

quartz oscillators, 29
quasar, 3, 47
quasi-monochromatic radiation, see radiation,

quasi-monochromatic
quasi-particle, 216

radial velocity, 48
radiation

anisotropic, 343
blackbody, see blackbody, radiation
Čerenkov, see Čerenkov radiation
damage, 203, 205, 297
dipole, 292
length, 292, 304
pressure, 16, 329, 331
quadrupole, 314
quasi-monochromatic, 158–161, 163–165, 226
synchrotron, 209, 292, 293, 307, 312, 340
thermal, 343
transition, 300–303

radio galaxy, 312
radio interferometer, 168, 169
radiometry, 217–221, 226
radon (Rn), 267
rainfall, 95
random

number, 244
process, 11
variable, 87, 93, 109
walk, 245, 247

rare light elements, 289
ray

marginal, paraxial, sagittal, or tangential, see
marginal ray, etc.

tracing, 117, 129
Rayleigh (unit), 9
Rayleigh scattering, 9–11, 14, 353
Rayleigh’s theorem, 8, 52, 56–57
Rayleigh–Jeans

limit, 26, 225
temperature, 211

RC filter, 86, 113, 116
readout, 77, 84
reasonable expectation, 234
reciprocity, 224
recombination, 82

line, 209
rectangle function, 64
recycling, 325, 328, 329
reddening, 4
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redistribution, 252
redshift, 250, 251, 283
reflection, 47, 326

coefficient, 137, 138, 173, 175, 183
law of, 117–118
nebula, 344
specular, 183–185
total internal, 191, 346

reflection grating, 205
reflectivity, 177, 325
refraction, 45–47

index of, 10, 16, 117–119, 124, 125, 133, 155, 175,
176, 181, 190, 222, 269, 300, 330, 346

origin of, see dispersion
law of, see Snell’s law

region
intervening, 1, 3, 287
polar, 287

rejection sampling, 244
relativity

general, 44, 46, 314, 337
special, 42

relic, 283, 284
replication, 61, 65, 203
residual pressure, 295
resolution, 2, 8, 146, 149, 156, 181–184, 186, 189,

192
angular, 12, 201, 202, 205, 206, 218, 220, 221, 228,

270
energy, 194, 195, 197
spatial, 204, 218
spectral, 179, 181, 205, 221, 228
time, 197, 201, 203, 270

resonance, 10, 29, 135, 155, 262, 324–327, 330,
336

response time, 70, 71
responsivity, 81, 86, 337
retarded time, 164
retarder, 345
reverse bias, 75, 76
RGA, 204
right ascension, 33, 41, 47, 51, 230
rigidity, 287, 288, 310, 313

mechanical, 223
ring cavity, 325
ringdown, 319, 337
ringing, 221
Ritchey–Chrétien, 84, 131, 206
robust estimation, 92, 100–102
root mean square (RMS), 77, 149, 223
ROSAT, 191, 194, 196
rotation, 318–319

matrix, 37, 49, 51
of Earth, 228

rotation measure, 4, 345
running mean, 115
Ruze theory, 223
RXTE, 194, 200–201

S-EUSO, 312
SAGE, 268
sagittal plane, 127
sagittal ray, 128
sample mean, 96
sample variance, 96
sampling, 65, 221, 229, 243–247

efficiency, 245
SBC, 73
scale factor, 95
scale height, 6, 12
scattering, 3, 5, 279, 343–344, 352

Compton, see Compton, scattering
Mie, 343
Rayleigh, 9–10, 20, 343
Thomson, 343

Schottky diode, 215, 217, 218
Schwarzschild theorem, 131
scintillation, 5, 11, 200, 282

radio, 4
scintillator, 195, 197, 198, 202, 206, 207, 268, 296,

302, 303, 306, 307, 311
inorganic, 195
liquid, 198, 282
organic, 196

SDSS, 24, 25, 48, 77, 131, 187
second, 29

leap, 29, 30
seeing, 5, 11, 47, 189
Seidel aberration, see aberration, Seidel
seismic isolation, 326, 328, 330
seismic noise, 326–328, 331–333
self calibration, 353
semiconductor, 70, 213, 215

binary, 75
intrinsic (extrinsic), 67, 74, 80
N-type (P-type), 74–77, 215
representation, 216
stressed, 80
ternary, 75

sensitivity, 2
servo-control, 334
SGP, 36–38
shadow camera, 201
shah function, 59, 60
Shannon entropy, 240
Shannon’s sampling theorem, 52, 60–62, 153
Shannon, Claude, 233
Shannon–Jaynes entropy, 240
shielding, 307
shift register, 77
shock, 312
shot noise, 106–108, 325, 328, 329, 331, 333
SI (Le Système International d’Unités), 28
Si3N4, 220
Si:As, 80, 82, 84, 85
Si:Sb, 84
sidelobe, 22, 188, 224, 226, 231, 352
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sidereal time, 31
signal recycling, 325
silicon (Si), 74–78, 204, 206, 207, 212
silver (Ag), 177
sinc function, 59, 61, 62, 182, 184
single sideband, 214
singularity, 217
SiO2, 76
SIRTF, see Spitzer
SIS junction, see superconducting, tunnel junction
SKA, 230
skew, 92
sky dip, 22
slit, 182, 187
slitless spectroscopy, 83, 183, 187, 206
SM3B, 83
SM4, 73, 78
small angle approximation, 104
SN 1987A, 2, 238, 260, 271, 284
snapshot, 228
Snell’s law, 45, 117–120, 138, 181, 190
SO, 343
sodium (Na), 289
SOFIA, 8
solar

activity cycle, 5, 9, 268, 288
core, 259
corona, 5
interior, 264
limb, 44
neutrino, see neutrino, solar
time, 31
wind, 5, 287, 288, 290

solid angle, 14, 15, 17, 18, 73, 179, 181, 185, 186,
206, 224, 225, 304, 338

Solid-state Imaging Spectrometer (SIS), 200
source electrode, 213
space-time, 44, 314
spallation, 289
spark chamber, 196, 198, 207, 296
spatial frequency, 168, 228
specific heat, 133
specific intensity, 14, 17, 19, 26, 112, 225

moment, 16, 17
spectral density, see power, spectrum
spectral resolution, see resolution, spectral
spectrograph, 181–183
spectrometer, 85, 199–203, 205, 221–223

autocorrelation, see autocorrelation, spectrometer
Fabry–Perot, see Fabry–Perot, spectrometer
radio, 209–232

spectroscopy, 1, 48, 117, 173, 189, 206
spherical

aberration, see aberration, spherical
astronomy, 32–37
coordinates, 32–33, 35, 338
harmonics, 317
mirror, see mirror, spherical

symmetry, 319
triangle, 37
trigonometry, 37

SPI, 205
SPIRE, 85
Spitzer, 8, 80, 84
SPT, 220, 226
square law device, 70, 210, 214, 217, 222
square wave, 53–63, 116
squaring operation, 95
squeezed states, 332–333
SQUID, 218
squint, 352
standard deviation, 91, 92, 94, 97, 107
Standard Model, 257, 258, 265
Standard Solar Model (SSM), 259, 262, 265, 267,

268, 271
star

binary, 46, 317, 320, 334, 338, 339
magnetic, 340
neutron, see neutron, star

star formation, 284
star forming region, 79
stationary, 158, 171
stationary process, 106, 108, 116, 165
statistic, 236, 238
statistical mechanics, 240
statistics, 233–256

Bayesian, 233–244
frequentist, 87–104

Stefan–Boltzmann
constant, 20
law, 20

stellar evolution, 236
stereoscopic, 306, 307, 311
Stirling’s formula, 91, 242
STIS, 73, 78
stochastic background, 320
stochastic process, 105–116
Stokes

parameter, 346–350
relations, 174
visibility, 350

Störmer cone, 313
straight edge, 146–148
strain, 3, 315, 317–321, 323, 325, 328, 331–333, 336
strangelet, 303
Strehl ratio, 150, 223
stress–energy tensor, 316
strong interaction, 295
structure, 231
structure function, 11–12
Student’s t-distribution, 99–100
Sudbury Neutrino Observatory (SNO), 262, 264,

276–279
sunspot, 352
Sunyaev–Zel’dovich effect, 3, 221, 228
Super-Kamiokande, 261, 264, 271–274, 276
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superattenuator, 327
superconducting

solenoid, 301
transition, 195, 218
tunnel junction, 195, 216–217

superconductor, 70, 195, 218
supernova, 236, 237, 280, 281, 318, 344

core collapse, 2, 260, 284, 319
neutrino, see neutrino, supernova
remnant, 198, 288, 312
type Ia, 319

superposition, 156, 171, 174
supersymmetry, 257
surface

aspherical, 131
concave (convex), 121
infinite, 17
irregularity, 223
spherical, 119

surface array, 305, 309
survival analysis, 251
susceptibility, 135
Swift, 206
synchronous detection, 80, 115
synchrotron radiation, see radiation, synchrotron
systematic error, 95

TAI, see atomic, time
TALE, 311
TAMA 300, 320
tangential plane, 126, 127
tangential ray, 128
tantalum (Ta), 198, 201, 203
taper, 224, 226
target density, 244
tauon, 280
team of monkeys, 241
telescope, 334, 335

Cassegrain, 79, 146, 156, 223, 226
classical Cassegrain, 130–131
cooled, 80
fluorescence, 307–311
Hooker, 163
infrared, 80
Keck, 26
LSST, 26
Mayall, 156
radio, 167, see also antenna
refracting, 206
Ritchey–Chrétien, 131, 185, 257
Schmidt, 26, 131–132, 309
ultraviolet, 199, 206
Wolter, 23, 191
x-ray, 23, 191, 196, 197, 200–203

Telescope Array, 310
TEM00, 325
template, 336
tensor, 314

TES, 220, 221
Thévenin equivalent circuit, 114
thermal

background, 8, 82
conductance, 83, 84, 86, 133
emission, 79, 209, 226
noise, 112–114, 330–331

thermionic emission, 72
thermodynamic fluctuations, 76
thermodynamics, 112, 247
Thomson cross section, 10, 68, 86, 293
thorium (Th), 267
time, 28–32, 43–44, 206

constant, 84, 86
delay, 221, 227
TCB, TCG, TDB, TDT, 30

timing, 280, 281
tin (Sn), 201
titanium (Ti), 203
top hat function, 59, 64
top-down, 312
torque, 41
TRACER, 301–303
track

damage, 297
fossil, 297

tracking design, 192, 198, 207, 268
trajectory

charged particle, 195, 309
curvature, 285

transducer, 222
transfer function, 110, 115, 116
transient, 197
transit, 34, 47
transition edge sensor, 195, 217
transition radiation, 285–287
translational symmetry, 241
transmission, 326

atmospheric, 6, 7, 13
coefficient, 137, 138, 173, 183

transmission line, 114
transverse traceless (TT) gauge, 314, 318
triangle function, 59, 64
troposphere, 6
truncation bias, see Malmquist bias
TT, 30
Tully–Fisher method, 250
tungsten (W), 69, 196, 198, 205, 207
turbulence, 5, 10–12

UHECR, 3, 280, 287, 294, 308–313
ultraviolet, 190–208
unbiassed, 96, 235, 238, 255
uncertainty, 243
uncertainty principle, 211, 328, 332
uncorrelated, 235
unipolar induction, 312
uniqueness, 236
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upper limit, 251
upper sideband, 214
uranium (U), 267
UT, 31
UT1, 30
UTC, 29, 30, 43, 50
UVOT, 206

vacuum, 330
vacuum window, 70
Van Allen belt, 23, 205
van Cittert–Zernike theorem, 164–166, 168, 224
variance, 92, 99, 102, 109, 110, 113, 116, 171, 236,

243, 247, 254
vector minus axial theory, 257
velocity dispersion, 40, 250
VERITAS, 311
vernal equinox, 33, 35, 41, 51
vibration, 330
vibration isolation, 326
violin mode, 327, 330
Virgo, 3, 320, 322, 324

advanced, 324
visibility, 160, 163, 169, 227, 230, 231
VLA, 226, 228
VLBA, 228
VLBI, 47, 228

water, 276, 279, 282
water vapor, 6–8, 13, 20, 21, 46, 79, 220

precipitable, 12
wave, 209
wave equation, 9, 139, 140, 315
wavefront, 118, 119
waveguide, 70
weak interaction, 257
Weber, Joseph, 314

weight, 252
weighting, 221
WFC, 197
WFC3, 78, 83
WFIRST, 85
white dwarf, 23, 317, 318, 320, 340
WIDAR, 228, 229
Wiener–Khinchin theorem, 52, 58, 107, 152, 154,

158, 221
wire grid, 346
wire mesh, 197
WMAP, 218, 219, 226, 344
work function, 67, 70, 72
W±, 257

x-ray, 67, 190–208, 251, 267, 299, 300, 303
telescope, see telescope, x-ray

xenon (Xe), 67, 197, 200, 201
XMM-Newton, 200, 203–206
XRT, 206

year, 39, 50
Young’s modulus, 133
Young’s two-slit experiment, 160–163, 171, 172

Z-stack, 72
Zeeman

doublet, 342, 343
effect, 340–343, 351, 352

longitudinal, 341–343, 351
transverse, 341–343

triplet, 342, 343
zenith, 34, 49, 321

angle, 20, 34, 45, 274
tube, 42

zero spacing, 230
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