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DIVERGENCE THEOREM 

F • n dS = • F dV 

STOKES’ THEOREM 

F • t ds V X F dS 

IDENTITIES INVOLVING THE OPERATOR V* 

V(/g)=/Vg + gV/ 

V(F • G) = (G • V)F + (F • V)G + FX(VxG) + Gx(VxF) 

V • (/F) =/V • + F • V/ 

V • (F X G) = G • (V X F) - F • (V X G) 

V* V X F = 0 

V X (/F) =/V x F + (V/) X F 

V x (F x G) = (G • V)F - (F • V)G + F(V • G) - G(V • F) 
V X (V x F) = V(V • F) - V2F 

V X V/ = 0 

/and g are scalar functions of position, and F and G are vector functions of position. 
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Preface to the Fourth Edition 

Can we ever have too much of a good thing? 

Miguel de Cervantes 

This new edition differs from the Third in two major respects. 

First, a number of new worked examples have been added. This 

has been done in response to the comments of many students that 

such examples would be an aid in understanding the material and 

useful in preparing them to do the problem sets. My task was to 

add enough examples to be helpful, without at the same time 

lengthening the text significantly. (Two reviewers urged me not to 

lengthen the book at all, inadvertently providing an answer to 

Sr. de Cervantes’ question.) 

The second major difference between this edition and its prede¬ 

cessor involves switching the roles of the two spherical angles 0 

and c|>. Years ago, when the book was written it was common to 

use 0 as the polar angle and <j> as the azimuthal. Nowadays, the 

more common convention reverses this, making 0 the azimuthal 

angle and 4> the polar, the convention we adopt in this edition. 

I wish to thank the many readers who, over the years, have 

written me with suggestions for improvements in the text. These 

suggestions have often been adopted and have been an important 

reason for the book’s very long lifetime. 



Chapter I 

Introduction, 
Vector Functions, 
and Electrostatics 

One lesson, Nature, let me learn of thee. 

Matthew Arnold 

Introduction 

In this text the subject of vector calculus is presented in the con¬ 

text of simple electrostatics. We follow this procedure for two 

reasons. First, much of vector calculus was invented for use in 

electromagnetic theory and is ideally suited to it. This presenta¬ 

tion will therefore show what vector calculus is and at the same 

time give you an idea of what it’s for. Second, we have a deep- 

seated conviction that mathematics—-in any case some mathe¬ 

matics—is best discussed in a context that is not exclusively 

mathematical. Thus, we will soft-pedal mathematical rigor. 1 



Introduction, which we think is an obstacle to learning this subject on a first 

Vector Functions, exposure to it, and appeal as much as possible to physical and 

and Electrostatics geometric intuition. 

Now, if you want to learn vector calculus but know little or 

nothing about electrostatics, you needn’t be put off by our ap¬ 

proach; no very great knowledge of physics is required to read 

and understand this text. Only the simplest features of electrostat¬ 

ics are involved, and these are presented in a few pages near the 

beginning. It should not be an impediment to anyone. In fact, the 

entire discussion is based on a search for a convenient method of 

finding the electrostatic field given the distribution of electric 

charges which produce it. This is the thread that runs through, and 

unifies, our presentation, so that as a bare minimum all you really 

need do is take our word for the fact that the electric field is an 

important enough quantity to warrant spending some time and ef¬ 

fort in setting up a general method for calculating it. In the 

process, we hope you will learn the elements of vector calculus. 

Having said what you do not need to know, we must now say 

what you do need to know. To begin with, you should, of course, 

be fluent in elementary calculus. Beyond that you should know 

how to work with functions of several variables, partial deriva¬ 

tives, and multiple (double and triple) integrals.1 Finally, you 

must know something about vectors. This, however, is a subject 

of which too many writers and teachers have made heavy 

weather. What you should know about it can be listed quickly: 

definition of vector, addition and subtraction of vectors, multipli¬ 

cation of vectors by scalars, dot and cross products, and finally, 

resolution of vectors into components. An hour’s time with any 

reasonable text on the subject should provide you with all you 

need to know of it to follow this text. 

Vector Functions 

One of the most important quantities we deal with in the study of 

electricity is the electric field, and much of our presentation will 

make use of this quantity. Since the electric field is an example of 

what we call a vector function, we begin our discussion with a 

brief resume of the function concept. 

A function of one variable, generally written y = f(x), is a rule 

2 
1 Differential equations are used in one section of this text. The section is not es¬ 

sential and may be omitted if the mathematics is too frightening. 



Vector Functions which tells us how to associate two numbers x and y; given x, the 

function tells us how to determine the associated value of y. Thus, 

for example, if y = f(x) = x2 — 2, then we calculate y by squaring 

x and then subtracting 2. So, if x = 3, 

y = 32 - 2 = 7. 

Functions of more than one variable are also rules for associat¬ 

ing sets of numbers. For example, a function of three variables 

designated w = F(x, y, z) tells how to assign a value to w given x, 

y, and z. It is helpful to view this concept geometrically; taking (x, 

y, z) to be the Cartesian coordinates of a point in space, the func¬ 

tion F(x, y, z) tells us how to associate a number with each point. 

As an illustration, a function T(x, y, z) might give the temperature 

at any point (x, y, z) in a room. 

The functions so far discussed are scalar functions; the result 

of “plugging” x in/(x) is the scalar y = /(x). The result of “plug¬ 

ging” the three numbers x, y, and z in T(x, y, z) is the temperature, 

a scalar. The generalization to vector functions is straightforward. 

A vector function (in three dimensions) is a rule which tells us 

how to associate a vector with each point (x, y, z). An example is 

the velocity of a fluid. Designating this function v(x, y, z), it spec¬ 

ifies the speed of the fluid as well as the direction of flow at the 

point (x, y, z). In general, a vector function F(x, y, z) specifies a 

magnitude and a direction at every point (x, y, z) in some region 

of space. We can picture a vector function as a collection of ar¬ 

rows (Figure 1-1), one for each point (x, y, z). The direction of the 

arrow at any point is the direction specified by the vector func¬ 

tion, and its length is proportional to the magnitude of the 

function. 

Figure 1-1 

3 A vector function, like any vector, can be resolved into compo- 
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Figure 1-2 

nents, as in Figure 1-2. Letting i, j, and k be unit vectors along the 

x-, y-, and z-axes, respectively, we write 

F(-r, y, z) = iFx(x, y, z) + j Fy(x, y, z) + kF.(x, y, z). 

The three quantities Fx, Fy, and F,, which are themselves scalar 

functions of x, y, and z, are the three Cartesian components of the 

vector function F(x, y, z) in some coordinate system.2 

An example of a vector function (in two dimensions for sim¬ 

plicity) is provided by 

F(x, y) = ix + jy, 

which is illustrated in Figure 1-3. You probably recognize this 

Figure 1-3 

2 Some writers use subscripts to indicate the partial derivative; for example, Fx = 

dF/dx. We shall not adopt such notation here; our subscripts will always denote 

the vector component. 



Electrostatics function as the position vector r. Each arrow in the figure is in the 

radial direction (that is, directed along a line emanating from the 

origin) and has a length equal to its distance from the origin.3 A 

second example. 

G(x, y) = 
-iy + j* 

vTT 

is shown in Figure 1-4. You should verify for yourself that for 

this vector function all the arrows are in the tangential direction 

Figure 1-4 

(that is, each is tangent to a circle centered at the origin) and all 

have the same length. 

Electrostatics 

We shall base our discussion of electrostatics on three experimen¬ 

tal facts. The first of these facts is the existence of electric charge 

itself. There are two kinds of charge, positive and negative, and 

every material body contains electric charge,4 although often the 

positive and negative charges are present in equal amounts so that 

there is zero net charge. 

The second fact is called Coulomb’s law, after the French 

physicist who discovered it. This law states that the electrostatic 

3 Note that by convention an arrow is drawn with its tail, not its head, at the point 

where the vector function is evaluated. 

4 Purists will point out that neutrons, neutral pi mesons, neutrinos, and the like, do 

not contain charge. 

5 
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9o< 

Figure 1-5 

force between two charged particles (a) is proportional to the 

product of their charges, (b) is inversely proportional to the 

square of the distance between them, and (c) acts along the line 

joining them. Thus, if q0 and q are the charges of two particles a 

distance r apart (Figure 1-5), then the force on q0 due to q is 

r 

where u is a unit vector (that is, a vector of length 1) pointing from 

q to q0, and AT is a constant of proportionality. In this text we’ll 

use rationalized MKS units. In that system length, mass, and time 

are measured in meters, kilograms, and seconds, respectively, and 

electric charge in coulombs. With this choice of units K = 

l/(4rre0), where the constant e0, called the permittivity of free 

space, has the value 8.854 X 10-12 coulombs2 per newton- 

meters2, and Coulomb’s law reads 

F = 
i qqo ^ 

4Tte0 r2 U 
(I-D 

You should convince yourself that the familiar rule “like charges 

repel, unlike charges attract” is built into this formula. 

The third and last fact is called the principle of superposition. If 

Fj is the force exerted on q0 by <y, when there are no other charges 

nearby, and F2 is the force exerted on q0 by q2 when there are no 

other charges nearby, then the principle of superposition says that 

the net force exerted on q0 by qt and q2 when they are both pres¬ 

ent is the vector sum F, + F2. This is a deeper statement than it 

appears at first glance. It says not merely that electrostatic forces 

add vectorially (all forces add vectorially), but that the force be¬ 

tween two charged particles is not modified by the presence of 

other charged particles. 

We now introduce a vector function of position, which will 

play a leading role in our discussion. It is the electrostatic field, 6 



Electrostatics denoted E(r) and defined by the equation E(r) = FCr )/<y0, or 

F(r) = ^0E(r). That is, the electrostatic field is the force per unit 

charge. From Equation (I—1) we have 

E(r) = 
F(r) 

<7o 
i g /s 

4tt€0 r1 U 
(1-2) 

This is the electrostatic field at r due to the charge q. 

A natural extension of these ideas is the following. Suppose we 

have a group of N charges with qx situated at r,, q2 at r2,..., qN 

at rN. Then the electrostatic force these charges exert on a charge 

q0 situated at r is 

F(r) = 
<7o “7/ 

4-TTe,, ft oh r-r. 
(1-3) 

where u; is the unit vector pointing from r, to r. From Equation 

(1-3) we have 

7 

E(r) = 
4tt€0 ifl 

(1-4) 

This is the electrostatic field at r = ix + jy + kz produced by the 

charges q, at r, (/ = 1,2,..., N). Equation (1^1) says that the 

field due to a group of charges is the vector sum of the fields each 

produces alone. That is, superposition holds for fields as well as 

forces. You may think of the region of space in the vicinity of a 

charge or group of charges as “pervaded” by an electrostatic field; 

the net electrostatic force exerted by those charges on a charge q 

at a point r is then q'E(r). 

You may be a bit mystified about our bothering to introduce a 

new vector function, the electrostatic field, which differs in an ap¬ 

parently trivial way from the electrostatic force. There are two 

major reasons for doing this. First, in electrostatics we are inter¬ 

ested in the effect that a given set of charges produces on another 

set. This problem can be conveniently divided into two parts by 

introducing the electrostatic field, for then we can (a) calculate the 

field due to a given distribution of charges without worrying 

about the effect these charges have on other charges in the vicin¬ 

ity and (b) calculate the effect a given field has on charges placed 

in it without worrying about the distribution of charges that pro¬ 

duced the field. In this book we will be concerned with the first of 

these. 
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PROBLEMS 

The second reason for introducing the electrostatic field is 

more basic. It turns out that all classical electromagnetic theory 

can be codified in terms of four equations, called Maxwell’s equa¬ 

tions, which relate fields (electric and magnetic) to each other and 

to the charges and currents which produce them. Thus, electro¬ 

magnetism is a field theory and the electric field ultimately plays a 

role and assumes an importance which far transcends its simple 

elementary definition as “force per unit charge.” 

Very often it is convenient to treat a distribution of electric 

charge as if it were continuous. To do this, we proceed as follows. 

Suppose in some region of space of volume AV the total electric 

charge is A Q. We define the average charge density in AV as 

~ =AQ n Pav-av-- d-5) 

Using this, we can define the charge density at the point (x, y, z.), 

denoted p(x, y, z), by taking the limit of piv as AV shrinks down 

about the point (x, y, z): 

P(*> y, z) lim 
AV->0 

AQ 
AV 

lim pAv. 
AV—>0 

about (x,y,z) about (*,>»,z) 

d-6) 

The electric charge in some region of volume V can then be ex¬ 

pressed as the triple integral of p(x, y, z) over the volume V; that is. 

p(x, y, z) dV. 

In much the same way it follows that for a continuous distribution 

of charges. Equation (1-4) is replaced by 

m.^(f (1-7) 
4Tre0 J J Jv r - r 2 

1-1 Using arrows of the proper magnitude and direction, sketch each of 

the following vector functions: 

(a) iy + jx (e) jx 

(b) (i + j)/V2. (f) (iy + jxyVx2 + y2, (x y) + (0, 0). 

(c) ix - jy. (g) iy + jxy. 

(d) iy. (h) i + jy. 8 



Problems 1-2 Using arrows, sketch the electric field of a unit positive charge situ¬ 

ated at the origin. [Note: You may simplify the problem by confining 

your sketch to one of the coordinate planes. Does it matter which plane 

you choose?] 

1-3 (a) Write a formula for a vector function in two dimensions 

which is in the positive radial direction and whose magnitude 

is 1. 

(b) Write a formula for a vector function in two dimensions 

whose direction makes an angle of 45° with the .(-axis and whose 

magnitude at any point (x, y) is (x + y)2. 

(c) Write a formula for a vector function in two dimensions 

whose direction is tangential (in the sense of the example on page 

5) and whose magnitude at any point (x, y) is equal to its distance 

from the origin. 

(d) Write a formula for a vector function in three dimensions 

which is in the positive radial direction and whose magnitude 

is 1. 

1-4 An object moves in the xy-plane in such a way that its position vec¬ 

tor r is given as a function of time t by 

r = ia cos iat + jb sin oot, 

where a, b, and to are constants. 

(a) How far is the object from the origin at any time f? 

(b) Find the object’s velocity and acceleration as functions of 

time. 

(c) Show that the object moves on the elliptical path 

1-5 A charge + 1 is situated at the point (1, 0, 0) and a charge —1 is sit¬ 

uated at the point (—1, 0, 0). Find the electric field of these two 

charges at an arbitrary point (0, y, 0) on the y-axis. 

1-6 Instead of using arrows to represent vector functions (as in Prob¬ 

lems 1-1 and 1-2), we sometimes use families of curves called field 

lines. A curve y = y(x) is a field line of the vector function F(x, y) if 

at each point (jc0, y0) on the curve, F(x0, y0) is tangent to the curve (see 

the figure). 

9 
(*o. y0) 

X 
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(a) Show that the field lines y = y(x) of a vector function 

F(Jt, y) = iFr(x, y) + jFy(x, y) 

are solutions of the differential equation 

dy _ F?(x, y) 

dx Fx(x, y)' 

(b) Determine the field lines of each of the functions of Problem 

1-1. Draw the field lines and compare with the arrow diagrams of 

Problem 1-1. 

10 



Chapter II 

Surface Integrals 
and the Divergence 

Oh, could I flow tike thee, and make 

thy stream 

My great example.... 

Sir John Denham 

Gauss' Law 

Since the electrostatic field is so important a quantity in electro¬ 

statics, it follows that we need some convenient way to find it, 

given a set of charges. At first glance it might appear that we 

solved this problem before we even stated it, for, after all, do not 

Equations (1-4) and (1-7) provide us with a means of finding E? 

The answer is, in general, no. Unless there are very few charges 

in the system and/or they are arranged simply or very symmetri¬ 

cally, the sum in Equation (1-4) and the integral in Equation 

(1-7) are usually prohibitively difficult—and frequently impos¬ 

sible—to perform. Thus, these two equations provide what is 11 
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and the 

Divergence 

usually only a “formal” solution1 to the problem, not a practical 

one, and we must cast about for some other way to calculate the 

field E. 

In the course of this casting about, we come inevitably to that 

remarkable relation known as Gauss’ law. We say “inevitably” 

because it is hard to think of any other expression in elementary 

electricity and magnetism containing the electric field [apart, of 

course, from Equations (I^f) and (1-7), which we have already 

rejected]. Gauss’ law is 

jjE-*ds = f <n-D 

If you don’t understand this equation, don’t panic. The left-hand 

side of this equation is an example of what is called a surface 

integral, an important concept in vector calculus and one that is 

probably new to you. The integrand of this integral is the dot 

product of the electric field and the quantity n, which is called a 

“unit normal vector” and is probably also unfamiliar. We are 

about to discuss both surface integrals and unit normal vectors 

in excruciating detail, and one of our main reasons for quoting 

Gauss’ law at this point in our narrative is to motivate this 

discussion. 

We won’t stop here to derive Gauss’ law, since the derivation 

wouldn’t mean much to you until you have read the next few sec¬ 

tions. Then you can consult almost any text on electricity and 

magnetism for the gory details. And if you can contain yourself, 

wait until we’ve discussed the divergence theorem (pages 45-52), 

after which you will be able to derive Gauss’ law easily (see 

Problem 11-27). 

The Unit Normal Vector 

One of the factors in the integrand in Gauss’ law [Equation 

(II—1)] is a quantity designated n and called the unit normal vec¬ 

tor. This quantity is part of the integrand in most if not all of the 

surface integrals we’ll encounter; furthermore, as we’ll see, it 

plays an important role in the evaluation of surface integrals even 

12 The word “formal” in this context is a euphemism for “useless.” 



The Unit Normal 

Vector 

when it does not appear explicitly. Thus, before discussing sur¬ 

face integrals themselves, we’ll dispose of the questions of how 

this vector function is defined and calculated. 

The word “normal” in the present context means, loosely 

speaking, “perpendicular.” Thus, a vector N normal to the xy- 

plane is clearly one parallel to the z-axis (Figure II—1), while a 

Figure II-1 

vector normal to a spherical surface must be in the radial direction 

(Figure II—2). To give a precise definition of a vector normal to a 

Figure II—2 

surface, consider an arbitrary surface S, as shown in Figure II—3. 

Construct two noncollinear vectors u and v tangent to S at some 

point P. A vector N which is perpendicular to both u and v at P is, 

by definition, normal to S at P. Now, as we know, the vector 13 
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N 
A 

Figure II—3 

product of u and v has precisely this property; it is perpendicular 

to both u and v. Thus, we may write N = u X v. To make this a 

unit vector (that is, one whose length is 1) is simple: we just di¬ 

vide N by its magnitude N. Thus, 

/s N u X v 
n = = i-r 

N | u X v | 

is a unit vector normal to S at P. 

To find an expression for n, we consider some surface S given 

by the equation z = f(x, y); see Figure II-4. Following the proce- 

Figure II-4 

dure suggested by the preceding discussion, we’ll find two vec¬ 

tors u and v whose cross product will yield the required normal 

vector n. For this purpose let’s construct a plane through a point 

P on S and parallel to the xz-plane, as shown in Figure II-4. This 

plane intersects the surface S in a curve C. We construct the vec- 14 
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tor u tangent to C at P and having an x-component of arbitrary 

length ux. The z-component of u is (df/dx)ux; in this expression 

we use the fact that the slope of u is, by construction, the same as 

X 

Figure II—5 

that of the surface S in the x-direction (see Figure II-5). Thus, 

, df 
U = 1M' + kl to 

u. - + k (H-2) 

To find v, the second of our two vectors, we pass another plane 

through the point P on S, but in this case parallel to the yz-plane 

(Figure II—6). It intersects S in a curve C', and the vector v can 

Figure H-6 

now be constructed tangent to C' at P with a y-component of arbi¬ 

trary length vy. Arguing as above, we have 

v=jyr + k U;b = J + k^ 15 
(H-3) 
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Using the two vectors u and v as given in Equations (II—2) and 

(II—3), we now construct their cross product. The result. 

U X V = + k UYV 

is a vector, which as we stated above, is normal to S at P. To 

make a unit vector of this, we divide it by its magnitude to get 

n(x, y, z) 
u X v 

u X v 
(II—4) 

This, then, is the unit vector normal to the surface z = f(x, y) at 

the point (x, y, z) on the surface.2 Note that it is independent of the 

two arbitrary quantities ux and vy. 

A couple of examples may be in order here. First a trivial one: 

What is the unit vector normal to the xy-plane? The answer, of 

course, is k (see Figure II—1). Let’s see how Equation (II-4) pro¬ 

vides us with this answer. The equation of the xy-plane is 

z =f(*,y) = 0, 

whence we have the profound observations 

dfldx = 0 and d//dy = 0. 

Substituting these in Equation (II-4), we get n = k/VT = k, as 

advertised. 

As a second example, consider the sphere of radius 1 centered 

at the origin (Figure II—2). Its upper hemisphere is given by 

z =f(x,y) = (1 - x2 - y2)m, 

2 The uniqueness of our result [Equation (II-4)] may be questioned on two counts. 

The first of these is a sign ambiguity: If n is a unit normal vector, so is — n. The 

matter of which sign to use is discussed below. The second question arises from 

the fact that the two tangent vectors u and v used in determining n are rather spe¬ 

cial, since each is parallel to one of the coordinate planes. Would we get the same 

result using two arbitrary tangent vectors? This issue is considered in Problem 

IV-26, where it is shown that n as given by Equation (II-4) is, apart from sign, 

indeed unique. 
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whence 

V 
dx 

x 
z and 

d/ 
dy 

y 
z■ 

Using these in Equation (II-4) leads to 

n = 

ix 
z k ix + jy + kz 

Vx2 + y2 + z2 
ix + jy + kz. 

where we have used the equation of the unit sphere x2 + y2 + 

z2 = 1. This is, as expected, a vector in the radial direction (see 

Figure II—2). To show that its length is 1, we observe that n • 

n = x2 + y2 + z2 = 1 • 

With the matter of the unit normal vector now disposed of, we 

turn to our next task, a discussion of surface integrals. 

Definition of Surface Integrals 

We now define the surface integral of the normal component of a 

vector function F(x, y, z). This quantity is denoted by 

F • n dS, (II—5) 

and as you can see, Gauss’ law [Equation (II—1)] is expressed in 

terms of just such an integral. Let z = f(x, y) be the equation of 

some surface. We’ll consider a limited portion of this surface, 

which we designate S (see Figure II—7). Our first step in formulat- 

17 Figure II—7 
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ing the definition of the surface integral (II—5) is to approximate S 

by a polyhedron consisting of N plane faces each of which is tan¬ 

gent to S at some point. Figure II—8 shows how this approximat- 

Figure II—8 

ing polyhedron might look for an octant of a spherical shell. We 

concentrate our attention on one of these plane faces, say the Zth 

one (Figure II—9). Let its area be denoted AS, and let (xh yh zi) be 

Figure II—9 

the coordinates of the point at which the face is tangent to the sur¬ 

face S. We evaluate the function F at this point and then form its 

dot product with n,, the unit vector normal to the Zth face. The re¬ 

sulting quantity, F(x,, yh zi) • n,, is then multiplied by the area A.S', 

of the face to give 

Flx,, y„ zi) • n, AS,. 

We carry out this same process for each of the N faces of the ap¬ 

proximating polyhedron and then form the sum over all N faces: 

^ F(x;, yh zi) • n, AS,. 
1=1 18 
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The surface integral (II—5) is defined as the limit of this sum as 

the number of faces, N, approaches infinity and the area of each 

face approaches zero.3 Thus, 

F*n dS 
N 

lim 2 F(*/> yi< Zi) * »/ A5;. 
(V—1= J 

each AS,—»0 

(II—6) 

If we want to cross all the f s and dot all the V s, this integral, 

strictly speaking, should be written 

y, z) • n(x, y, z) dS 

since both F and n are, in general, functions of position. We pre¬ 

fer, and where possible will use, the less cluttered notation 

F-n dS 

with the arguments of the functions understood. 

The surface S over which we integrate a surface integral can be 

one of two kinds: closed or open. A closed surface, such as a 

spherical shell, divides space into two parts, an inside and an out¬ 

side, and to get from inside to outside, you must go through the 

surface. An open surface, such as a flat piece of paper, does not 

have this property; it is possible to get from one side of the sheet 

to the other without going through it. The definition of surface in¬ 

tegrals given in Equation (II—6) applies equally well to both 

closed and open surfaces. However, the surface integral is not 

well defined until we specify which of the two possible directions 

of the normal we are to use (see Figure II—10). In the case of an 

Figure II-10 

3 The statement “each AS/ 0” is not quite precise. The area of a rectangular 

patch, for example, might tend to zero because its width decreases while its length 

remains fixed. This would not be acceptable. Here and elsewhere we must inter¬ 

pret “each AS, —* 0” to mean that all linear dimensions of the /th patch tend to 

19 zero. 
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open surface, the direction must be given as part of the statement 

of the problem. In the case of a closed surface, there is a gentle¬ 

men’s agreement which specifies the direction once and for all: 

the normal is chosen so that it points outward from the volume 

enclosed by the surface. 

The integral in Gauss’ law [Equation (II—1)] is taken over a 

closed surface. Gauss’ law, in fact, says that the surface integral 

of the normal component of the electric field over a closed surface 

is equal to the total (net) charge enclosed by the surface, divided 

by e0. Below (pages 33-37 and Problems II—11,11-12, and 11-13) 

we’ll see how, when the charges are arranged neatly and symmet¬ 

rically, Gauss’ law can be used to determine the electric field. But 

the thrust of our whole discussion will be to subject Gauss’ law to 

a series of harrowing adventures which eventually transform it 

into an expression useful for finding E even when we don’t have 

symmetry to help us. 

Sometimes we encounter surface integrals which are a little 

simpler than the kind we’ve just defined, although basically they 

are almost the same. These are surface integrals of the form 

y, z) dS, (H-7) 

where the integrand G(x, y, z) is a given scalar function rather 

than the dot product of two vector functions as in (II—5) and 

(II—6). We go about defining this kind of surface integral much 

as we did above: we approximate S by a polyhedron, form the 

product G(xh yh Zi) ASh sum over all faces, and then take the 

limit: 

, y, z) dS 
N 

lim 2 G(*/> 37- */) ASh 
/= 1 

each AS,—>0 

(ii—8) 

As an example of this kind of surface integral, suppose we have a 

surface of negligible thickness with surface density (that is, mass 

per unit area) a(x, y, z), and we wish to determine its total mass. 

Approximating this surface by a polyhedron as above, we recog¬ 

nize that a(xh yh zi) AS, is approximately the mass of the /th face 

of the polyhedron and that 

N 

S ct(.x„ yh zi) AS, 
1= 1 20 



Evaluating is approximately the mass of the entire surface. Taking the limit 

Surface Integrals 

lim 2 a(xb yi> Z;) AS, = [l a(x’ z) ^S, /=1 J 

each AS,—>0 

we get the total mass of the surface. 

An example of an even simpler surface integral of this kind is 

//,* 
This integral is taken as the definition of the surface area of S. 

Evaluating Surface Integrals 

Now that we have defined surface integrals, we must develop 

methods to evaluate them, and that will be our task here. For sim¬ 

plicity we’ll deal with surface integrals of the form (II—7), where 

the integrand is a given scalar function, rather than the slightly 

more complicated form (II—5). There will be no loss of generality 

in doing this for all our results can be made to apply to integrals 

of the form (II—5) just by replacing G(x, y, z) everywhere by 

F(x, y, z) • n. 

To evaluate the integral 

J J G(x, y, z) dS 

over a portion S of the surface z = /(x, y) (see Figure II—11), we 

go back to the definition of the surface integral [Equation (II—8)]. 

21 Figure II-11 
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Figure 11-12 

Our strategy will be to relate AS) to the area AR, of its projection 

on the xy-plane, as shown in Figure 11-12. Doing so, as we’ll see, 

will enable us to express the surface integral over S in terms of an 

ordinary double integral over R, which is the projection of S on 

the xy-plane, as shown in Figure II—11. 

Relating AS, to AR: is not difficult if we recall that AS, (like the 

area of any plane surface) can be approximated to any desired de¬ 

gree of accuracy by a set of rectangles as shown in Figure 11-13. 

Figure 11-13 

For this reason we need only find the relation between the area of 

a rectangle and its projection on the xy-plane. Thus, consider a 

rectangle so oriented that one pair of its sides is parallel to the 

xy-plane (Figure 11-14). If we call the lengths of these sides a, it’s 

clear that their projections on the xy-plane also have length a. But 

the other pair of sides, of length b, have projections of length b', 

and in general, b and b' are not equal. Thus, to relate the area of 

the rectangle ab to the area of its projection ab', we must express 22 
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Figure 11-14 

b in terms of b'. This is easy to do, for if 0 is the angle shown in 

Figure 11-14, we have b = b'!cos 0, and so 

cos 0 ' 

If we let n denote the unit vector normal to our rectangle, then we 

can readily convince ourselves that cos 0 = n • k where k, as al¬ 

ways, is the unit vector in the positive z-direction. Thus, 

Since the area AS, can be approximated with arbitrary accuracy 

by such rectangles, it follows that 

A S,= 
A R, 

n, 

where, of course, n, is the unit vector normal to the /th plane 

surface. 

We can now rewrite the definition of the surface integral 

[Equation (II—8)] as 

n AR 

lim (II—9) 
w->co /=1 ii/*k 

each AR,—*0 

where the statement “each AS, —» 0” has been replaced by the 

equivalent but now more appropriate “each AR, —» 0.” We are 23 
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now obviously well on the road to rewriting the surface integral 

over S as a double integral over R. In fact, 

N 

lim 
N-* co l= i 

each A/?,—>0 

G(x„ yh zj) 

n, • k 
AR,= G(x, y, z) 

n(*, y, z) • k 
dx dy. (11-10) 

where n(x, y, z) is the unit vector normal to the surface S at the 

point (x, y, z). This is a double integral over R even though it 

does not quite look like one. What appears to spoil it is that 

nasty z in G and n; a double integral over a region in the 

Ay-plane clearly has no business containing any z’s. But the 

z-dependence is spurious because (x, y, z) are the coordinates of 

a point on 5, and so z = /(x, y). Hence, at the expense of making 

the integral look even fiercer than it already does in Equation 

(II—10), we can eliminate the apparent z-dependence of the inte¬ 

grand and write 

G[x,y,f(x,y)] J J 
-r-dx dy 
n[x,y,/(x,y)]-k 

(H-ll) 

The faint of heart can take courage; in most cases this integrand 

reduces quickly to something much simpler and pleasanter look¬ 

ing—a fact we will demonstrate by example below. At this point 

we introduce the expression for the unit normal vector [Equation 

(II—4)]. We find 

Vl + (df/dx)2 + (df/dy f ’ 

and so Equation (II-11) becomes 

G[x, y,f(x, y)] 

(H-12) 

Thus, the surface integral of G(x, y, z) over the surface S has been 

expressed as a double integral of a messy-looking function over 

the region R, the projection of S in the xy-plane. As we remarked 

above, in practice the integral is usually much less ghastly than it 24 
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appears written out in Equations (II—11) or (11-12). You will see 

this in the examples we now give. 

Let’s first compute the surface integral 

+ z) dS 

where S is the portion of the plane x + y + z — 1 in the first oc¬ 

tant shown in Figure II-15(a). The projection of S on the ry-plane 

Figure II—15(a) 

is the triangle R shown in the figure. The equation of S can be 

written 

z — fix, y) = 1 - x-y 

from which we get 

dx dy 

so that 

= V3. 

Hence 

ff (x + z)dS = V3 //, (x + z) dx dy = 

(x + 1 — x — y) dx (1 - y) dx dy. 
25 
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where we have used z = \ — x — y. This is a simple double inte¬ 

gral with value 1/V3, as you should be able to verify. 

As a second example let’s compute the surface integral 

where S is the octant of the sphere of radius 1 centered at the ori¬ 

gin as shown in Figure II—15(b). The projection of S on the 

Figure II—15(b) 

xy-plane (that is, R) is the area enclosed by the quarter circle. The 

equation of S is x1 + y2 + z2 = 1, or 

Z =f(x,y) = +Vl - x2 - y2. 

It follows then that 

V 
dx -f and ¥ = _y 

dy Z' 

so that 

|Vx2 + y2 + z2 = 
1 
z ’ 

where we have used x2 + y2 + z2 = 1. Hence, 

z dx dy. 26 
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Substituting for z in terms of x and y, we get 

J J z2 dS = J J V1 — x1 — y1 dx dy. 

This is an ordinary double integral, and you should verify that its 

value is ir/6. [Suggestion: Convert to polar coordinates: x = r cos 

0, and y = r sin 0. The integration is then trivial.] 

It should be emphasized that the foregoing discussion was 

based on the assumption that the surface S is described by an 

equation of the form z = fix, y); in such a situation a surface inte¬ 

gral is converted into a double integral over a region in the 

jcy-plane. But it may happen that a given surface is more conve¬ 

niently described by an equation of the form y = g(x, z) as in Fig¬ 

ure II—16(a). If this is so, then 

Figure U-16(a) 

where R is a region in the vz-plane. Similarly, if we have a surface 

described by x = h(y, z), as in Figure II—16(b), then we use 

G[h(y, z), y, z] dydz, 27 
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Figure H-16(b) 

where R in this case is a region in the yz-plane. Finally, a surface 

may have several parts, and it may then be convenient to project 

different parts on different coordinate planes. 

To evaluate surface integrals of the form (II—5), that is. 

F • n dS, 

we merely replace G by F • n in Equation (11-12) to get 

F • n dS = 

If we now use Equation (II-4) to write this out in detail, we find 

that the square root factor cancels and we get 

ffsF'SdS = fl{-Fx[x,y,f(x,y)]^ 
- Fv[x, y,f(x, y)] + F.[x, y,f(x, y)]| dx dy. (11-13) 

We leave it to the reader to write down the analogous formulas 

when the surface S is given by y = g(x, z) or x = h(y, z), which must 

be projected onto regions in the xz- and yz-planes, respectively. 

This last equation [Equation (11-13)] is enough to make strong 

men weep, but, as before, in most calculations it quickly reduces 

to something quite tame. For example, suppose we wish to calcu¬ 

late ffs F • n dS, where F(x, y, z) = iz ~ jy + kx and S is the por¬ 

tion of the plane 

28 x + 2y + 2z = 2 
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Figure II-17(a) 

bounded by the coordinate planes, that is, the triangle reclining 

gracefully in Figure II-17(a). The normal vector n is chosen so 

that it points away from the origin as shown in Figure II—17(a), 

and we’ll project S onto the xy-plane. We have 

z =f(x,y) = 1 - | ~y. 

and so 

Of _ _i = 

dx 2' dy 

We also have 

Fx = z = 1 - 2 - y> Fy= -y, Fz = x. 

Hence 

Jfr.n dS 

1 x 

l~i~y -ill- 
'//if-T-'-iW 

(-|)+y(-l)+x dxdy 

29 

The region R over which the integral must be taken is shown in 

Figure U-17(b). The problem has thus been reduced to the compu- 
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Figure II-17(b) 

tation of a rather simple double integral, and you should carry out 

the integration yourself (the answer is |). 

As a second example, suppose 

F(x, y, z) -ixz + kz2 

For S let’s take the octant of the spherical surface shown in Figure 

11-15. Then z - f(x,y) = Vl — x2 — y2; and we have already 

shown (see page 25) that 

dl 
dx 

-f and 
tf_= _y_ 
dy z 

Thus 

fl*A 
dS 

-xz\ -'jl + zr Z2j dx dy = J J (x2 + 1 — x2 — y2)dx dy 

~ J J (1 — y2)dx dy = J J dxdy — J J y2 dx dy 

where R, we recall, is the quarter-circle shown in Figure 11-15. 

The first integral in the last equality above is just the area of the 

quarter-circle of radius 1, and is therefore equal to tt/4. The sec¬ 

ond integral can be done by introducing polar coordinates. We get 

f f y2 dxdy = [ f r2 sin2 0r dr 
J Jr Jo Jo 

r ti/2 r l 

= I sin2 0 d6 r3 dr 
J o J o 

dd 

30 



Flux Both the r and 0 integrals here are elementary, and you should 

have no trouble showing that this expression is equal to tt/16. 

Thus ffs F • n dS — tt/4 — tt/16 = 3tt/16. 

Flux 

An integral of the type 

(11-14) 

is sometimes called the “flux of F.” Thus Gauss’ law [Equation 

(II—1)] states that the flux of the electrostatic field over some 

closed surface is the enclosed charge divided by e0. 

It is useful in obtaining a geometrical feeling for some aspects 

of vector calculus to understand the significance of the word flux 

(Latin for “flow”) used in this context. For this purpose let us con¬ 

sider a fluid of density p moving with velocity v. We ask for the 

total mass of fluid that crosses an area AS perpendicular to the di¬ 

rection of flow in a time At. Clearly, all the fluid in the cylinder of 

length v At with the patch AS as base will cross AS in the interval 

At (Figure 11-18). The volume of this cylinder is v At AS, and it 

Figure 11-18 

contains a total mass pv At AS. Dividing out the At will give the 

rate of flow. Thus, 

Rate of flow) . „ 

through AS j'p045- 

Now let us consider a somewhat more complicated case in 

which the area AS is not perpendicular to the direction of flow 

(Figure 11-19). The volume containing the material that will flow 31 
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<■ vAt ■> 

Figure 11-19 

through AS in time At is now just the volume of the little skewed 

cylinder shown in the diagram. The volume is v At AS cos 0, where 

0 is the angle between the velocity vector v and n, the unit vector 

normal to AS and pointing outward from the skewed cylinder. But 

v cos 0 = v • n. So, multiplying by p and dividing by At, we get 

/ Rate of flow 

\ through AS 
= pv • n AS. 

Finally, consider a surface S in some region of space containing 

flowing matter (Figure 11-20). Approximate the surface by a poly¬ 

s' 
^ y 

Figure 11-20 

hedron. By the above argument, the rate at which matter flows 

through the Zth face of this polyhedron is approximately 

PC*/, yi, z,)v(x„ y„ z,) • n, AS,. 

Here, of course, (xh yh z,) are the coordinates of the point on the Zth 

face at which it is tangent to S, and n, is the unit vector normal to 

the Zth face. Summing over all the faces and taking the limit, we get 

[ Rate of flow 

\ through S 
, y, z)\(x, y,z)'n dS. 

32 
If S happens to be a closed surface and there is a net rate of flow 

out of the volume it encloses, then you can convince yourself that 
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this integral will be positive, and if there is a net rate of flow in, 

the integral will be negative. 

If in this last equation we put 

F(x, y, z) = pU, y, z)v(x, y, z), 

the integral is seen to be formally identical with that in Equation 

(11-14). For this reason any integral of the form (11-14) is called 

“the flux of F over the surface S,” even when the function F is not 

the product of a density and a velocity! The reason for stressing 

this point about flux is that, misnomer though it may be, it 

nonetheless gives a good geometric or physical picture of Gauss’ 

law: The electric field “flows” out of a surface enclosing charge, 

and the “amount” of this “flow” is proportional to the net charge 

enclosed. Warning: This is not to be taken literally; the electric 

field is not flowing in the sense in which fluid flows. It is merely 

picturesque language intended to aid us in understanding the 

physics in Gauss’ law. 

Law to Find the Field 

Having rejected the two expressions for E [Equations (1-4) and 

(1-7)], we find that the only candidate left for providing us with a 

good general method for calculating the field is Gauss’ law. At 

first glance it does not appear to be a very likely candidate be¬ 

cause, unlike Equations (1-4) and (1-7), it is not an explicit ex¬ 

pression for E. That is, it does not say “E equals something.” 

Rather, it says “The flux of E (the surface integral of the normal 

component of E) equals something.” Thus, to use Gauss’ law, we 

must “disentangle” E from its surroundings. Despite this, there 

are situations in which Gauss’ law can be used to find the field, as 

an example will now show. 

Consider a point charge q placed at the origin of a coordinate 

system. Symmetry considerations tell us two things about its elec¬ 

tric field: (1) It must be in the radial direction (that is, it must 

point directly toward, or directly away from, the origin), and (2) it 

must have the same magnitude at all points on the surface of a 

sphere centered at the origin. Stating this in symbols, we have 

E = erE(r), where er = rIr is a unit vector in the radial direction. 

Thus, Gauss’ law becomes 

n dS = q/e0. 
33 



Surface Integrals If, for the surface S, we now choose a spherical shell of radius 

and the r centered at the origin, a little thought will convince you that 

Divergence n = gr, so that n • er = 1 and we get 

E(r) dS = q/e0. 

This integral is trivial to perform if we recognize that r is a con¬ 

stant over the spherical surface S. This means that E(r) is also a 

constant on S and we get4 

dS = 4tt r2E(r) = q/e0, 

whence 

E(r) = 
l q 

4-Tre0 r2 

and 

E(r) = erE(r) = 
q 

4rre0 r2 ’ 

in agreement with Equation (1-2). 

We can see from this example how heavily we depend on sym¬ 

metry when using Gauss’ law to obtain the field. In fact, to use 

Gauss’ law in the form given in Equation (II—1) requires even 

more symmetry and simplicity than Equations (1-4) and (1-7). 

The blunt truth is that this form of the law yields the electric field 

in a grand total of three situations (and combinations thereof): 

(1) a spherically symmetric distribution of charge (of which the 

point charge considered above is a special case), (2) an infinitely 

long cylindrically symmetric distribution (including the case of an 

infinitely long uniformly distributed line of charge), and (3) an in¬ 

finite slab of charge (including as a special case an infinite uni¬ 

formly charged plane).5 The real value of Equation (II—1) is that it 

can be twisted and beaten into a more useful form. 

4 Shortcuts like this often make it possible to evaluate surface integrals without 

using all the paraphernalia we discussed above. Further examples are given in 

Problem II—10. 

5 Examples of these are given in Problems H-l 1,11-12, and 11-13. 
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What is it about Equation (II—1) that makes it difficult to find 

E? To answer this question, suppose we are doing a numerical 

calculation on a computer and wish to evaluate //5 E • n dS. The 

standard procedure for dealing with integrals numerically is to ap¬ 

proximate them as sums, a rather obvious thing to do since an in¬ 

tegral, after all, is the limit of a sum. Thus, suppose we divide the 

surface S into, say, 10 patches. We then have as an approximation 

to Equation (II—1) 

10 

2 E, • n, AS, — q/e0, 
i= 1 

where E, is the value of E, and n, is the unit normal, somewhere 

on the /th patch. There is little or no hope of finding E from this: 

it is one equation in the 10 unknowns E1; E2,. . ., E10. Further¬ 

more, it is probably not very accurate. To improve the accuracy, 

we might make 100 subdivisions rather than just 10 to get 

100 

2 E, • n, AS, = q/e0. 
i=i 

Much more accurate! And much more hopeless too, because this 

is one equation in 100 unknowns. Even more accurate (and more 

hopeless) is 

II E • n dS = q/e0, 

which is one equation in infinitely many unknowns. These un¬ 

knowns are, of course, the values of E • n at every one of the infi¬ 

nitely many points of the surface S.6 

We have now isolated the trouble with Equation (II—1): it in¬ 

volves an entire surface and therefore the value of E • n at infi¬ 

nitely many points. If, somehow, we could deal with the “flux at a 

single point” (whatever that may mean!) rather than the flux 

through a surface, perhaps then Gauss’ law might yield something 

tractable. How might we arrange this? For simplicity let us sur¬ 

round some point P by a set of concentric spherical shells 5,, S2, 

S3, and so on (Figure 11-21), and calculate the flux <&,, $2, *£3. 

35 

6 The reason Gauss’ law yields the expression for the field of a point charge exam¬ 

ined above is that symmetry in that case shows that the infinitely many unknowns 

are all equal. This turns Gauss’ law into one equation in one unknown. 
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Figure 11-21 

and so on, through each shell. We might then attempt to define the 

“flux at the point P” as the limiting value approached by the se¬ 

quence of fluxes calculated this way over smaller and smaller 

shells centered at P. 

This sounds good; it has a heartening “mathematical” ring to it. 

Unfortunately, it does not work because (assuming the charge 

density is finite everywhere) the sequence of fluxes, calculated as 

described above, approaches zero for any point P. This is fairly 

obvious since it is merely the statement that the flux through a 

surface tends to zero as the surface shrinks to a point. Since our 

objective was to find a way to determine the flux at a point, and 

thereby learn something about the field at that point, and since we 

get zero at any point no matter what the field there may be, we 

have obviously not obtained what we want. 

It is useful to give a physicist’s rough-and-ready proof of the 

fact that the flux goes to zero as the surface shrinks down to a 

point, for even though this fact may be obvious, the proof will 

suggest how to pull this chestnut out of the fire. For this purpose 

we note that if pAV, denotes the average density of electric charge 

[Equation 1-5] in some region of volume AV, then the total 

charge in AV is pAl, AV. Thus Gauss’ law [Equation (II-l)] may 

be written 

36 

E • n dS = pAV, AV/e0, (H-15) 

where, as indicated in Figure 11-22, the surface integral is taken 

over the surface S that encloses the volume AV. From this expres¬ 

sion [Equation (11-15)] we can see the validity of our assertion; 

As S —* 0, the enclosed volume A V must, of course, also approach 
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Figure 11-22 

zero. Thus, the flux also tends to zero and the assertion is proved.7 

Not only have we given a proof, but (and this is the point) we can 

now isolate a quantity that does not vanish as S —» 0. Dividing 

Equation (11-15) by AV, we get 

^ J J^E • n dS = Pav/€q. 

This expression, awkward and unappealing though it may be, is 

nonetheless close to what we are after, even though it still involves 

an integral of E over an entire surface. For if we now take the limit 

as S shrinks to zero about some point in AV whose coordinates are 

(x, y, z), then, as we see from Equation (1-6), the average density 

Pav approaches p(x, y, z), the density at (x, y, z), and we get 

lim a!7 [ f E * n dS = p(*, y, z)/e0. (11-16) 
AV—>0 /XV J J5 

about (x,yj) 

This expression is admittedly downright hideous, and whether it 

will be of any practical use whatever depends on our being able to 

pound the left-hand side into a form that looks and acts at least 

half-civilized. We turn to this task now. 

The Divergence 

Let us consider the surface integral of some arbitrary vector func¬ 

tion F(x, y, z): 

F • n dS. 

37 
7 This line of reasoning and the conclusion must be altered if the system contains 

point charges. 



Surface Integrals 

and the 

Divergence 

We shall be interested in the ratio of this integral to the volume 

enclosed by the surface S as the volume shrinks to zero about 

some point, for that is exactly the type of quantity that appears in 

Equation (11-16). This limit is important enough to warrant a spe¬ 

cial name and notation. It is called the divergence of F and is des¬ 

ignated div F. Thus, 

div F = lim f [ F • n dS. (11-17) 
av->o A V J Js 

about (x,y,z) 

This quantity is clearly a scalar. Furthermore, it will, in general, 

have different values at different points (x, y, z). Thus the diver¬ 

gence of a vector function is a scalar function of position. 

Equation (11-16) can now be written 

div E = p/e0. (11-18) 

At this stage, however, our fancy new notation has only a cos¬ 

metic value, helping to beautify an ugly equation. Whether it has 

any practical value as well is the matter taken up in the following 

discussion in which we actually calculate the limit of the ratio of 

flux to enclosed volume and find that it can be expressed reason¬ 

ably simply in terms of certain partial derivatives. Before turning 

to this calculation, however, it’s worth mentioning that if we take 

our new terminology literally, we can interpret Equation (11-18) 

to mean that the field “diverges” from a point, and how much it 

diverges, so to speak, depends on how much charge there is at 

that point as represented by the density there. 

Our next order of business is to find the reasonably simple ex¬ 

pression for the divergence of a vector function promised above. 

Thus, consider a small rectangular parallelepiped8 with edges of 

length Ax, Ay, and Az parallel to the coordinate axes (Figure 

11-23). Let the point at the center of the little cuboid have coordi¬ 

nates (x, y,z)- We calculate the surface integral of F over the sur¬ 

face of the cuboid by regarding the integral as a sum of six terms, 

one for each cuboid face. We begin by considering the face 

marked 5] in the figure. We want 

38 
8 Henceforth we’ll refer to this as a “cuboid,” a made-up term that takes less time 

and space than the sesquipedalian “rectangular parallelepiped.” 



Figure 11-23 

Now it is clear the unit vector normal to this face and pointing 

outward from the enclosed volume is i. Thus, since F • i = Fx, the 

preceding integral is 

y, z) dS. 

By assumption the cuboid is small (eventually we shall take the 

limit as it shrinks to zero). We can therefore calculate this integral 

approximately as Fx evaluated at the center of the face S, multi¬ 

plied by the area of the face.9 The coordinates of the center of 5, 

are (x 4- Ax/2, y, z). Thus, 

II, Fx(x, y, z) dS — Fx 
, Ax 

* + T,y,z Ay Az. (11-19) 

9 The rationale behind this is as follows: There is a mean value theorem, which 

tells us that the integral of Fx over S, is equal to the area of S, multiplied by the 

function evaluated somewhere on S,. Since 5, is small, the point where we should 

evaluate Fx and the point where we do evaluate it (that is, the center) must be close 

together, and Fx must have nearly the same value at the two points. Hence what 

our procedure gives us is a good approximation to the value of the integral. Fur¬ 

thermore, as the cuboid shrinks to zero, the two points get closer and closer so that 

in the limit our result [Equation (11-22)] will be exact. 39 



Surface Integrals The same kind of reasoning applied to the opposite face S2 

and the [whose outward normal is — i and whose center is at (x - Ax/2, y. 

Divergence z)] leads to 

F'hdS FxdS 

Ax 
2 ' 

y,z) Ay Az. (11-20) 

Adding together the contributions of these two faces [Equations 

(11-19) and (11-20)], we get 

Ax 

2 
Ay A z 

, Ax x + ~Y,y,z - FA x-=- 
Ax 

2 y.z 

Ax 
Ax Ay Az. 

Recognizing that Ax Ay Az = AV, the volume of the cuboid, we have 

AVJJSi+S2 
F*n dS 

Fx (x + ^ > y> z J ~ Fx ^x — ^, y, z 

Ax 
(11-21) 

We now must take the limit of this as AV approaches zero.10 But, 

of course, as AV goes to zero, so do each of the sides of the 

cuboid. Thus, on the right-hand side of Equation (11-21) we can 

write lim4,._0 in place of limiv_^0, and we find 

lim At/ av—*o AV 
Lff 
tV J Js,+s2 

F*n dS 

= lim ■ 
Ax-*0 

FAx + 
Ax 

>y,z x — 
Ax 
2 : 

Ax 

dF\ 
dx 

40 
10 Note that we have postponed calculating the contributions from the other four 

faces of the cuboid. 



The Divergence evaluated at (x, y, z). This last equality follows from the definition 

of the partial derivative. It should come as no surprise that the 

other two pairs of faces of the cuboid contribute dFy/dy and 

dFJdz. Thus, 

lim — 
av-^o AV II F • n dS = 

dFx dF SF. 
—- q-- h-- 

dx dy dz ' 

The limit on the left-hand side of this last equation, as we have al¬ 

ready remarked, is the divergence of F [Equation (11-17)]. Thus 

we have just demonstrated that 

div F = 
dF, BF, dF, 

dx + dy dz' 
(11-22) 

It can be shown that this result is independent of the shape of the 

volume used to obtain it (see Problem 11-17). 

Using Equation (11-22) to find the divergence of a vector func¬ 

tion is a straightforward matter, but we’ll give an example just for 

the record. Consider the function 

F(jc, y, z) = ix2 + jxy + kvz. 

We have 

dF- 
and —t — = y. 

dz 

Thus, 

div F = 2x + x + y = 3x + y. 

Returning now to the electrostatic field, we combine Equations 

(11-18) and (11-22) to get 

BE. dE dE- 
—- q-- -I-5 
dx dy dz 

p/e0. (11-23) 

This equation, which is much more general than our derivation of 

it suggests, is one of Maxwell’s equations and is completely 

equivalent to Gauss’ law [Equation (II—1)]. It is sometimes called 

the “differential form” of Gauss’ law. 

We have now arrived at our goal (almost!), for we have related a 

property of the electrostatic field at a point (that is, its divergence) to 

a known quantity (the charge density) at that point. In all fairness it 41 



Surface Integrals should be said that Equation (11-23) can in a sense be regarded as a 

and the single (differential) equation in three unknowns (Ex, Ey, E7) and for 

Divergence this reason is not often used in this form to find the field. It turns out, 

however, that the three components of E can be related to each other 

very elegantly; when we develop that relationship, we shall return to 

this question of finding a convenient means of calculating E. 

The Divergence in Cylindrical and Spherical Coordinates 

One often sees Equation (11-22) given as the definition of the di¬ 

vergence of the vector function F. While this is certainly accept¬ 

able, we much prefer to define the divergence as the limit of flux 

to volume as stated in Equation (11-16). Equation (11-22) is then 

merely the form the divergence takes in Cartesian coordinates. In 

other coordinate systems it looks quite different. For example, in 

cylindrical coordinates the function F has three components, 

which you will not be shocked to learn are designated Fr, Fe, and 

Fz [see Figure II-24(a)]. To obtain the divergence of F in cylin- 

42 

Figure II-24(a) 

drical coordinates, we consider the “cylindrical cuboid” shown in 

Figure II-24(b) with volume AV = r Ar A9 Az and center at the 

point (r, 0, z).n The flux of F through the face marked 1 is 

Jlr'tdS-fl,F'dS 
(r + ^,e,z)(r + A0 Az, 

11 Note that in the Cartesian case (Figure 11-23) each face of the cuboid is given by 

an equation of the form x = constant, y = constant, or z = constant. In the same 

way each face of the surface in Figure II-24(b) is given by an equation of the form 

r = constant, 0 = constant, or z = constant. 
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Coordinates 

Figure II-24(b) 

while through the face marked 2 it is 

dS 

Adding these two results and dividing by the volume AV of the 

cuboid, we find 

Ivl 

1 

rAr 

, Ar r , Ar „ 
r + ^r Fr r + — ,0, z 

2 \ 2 

— I r - ^ j F'r (r - , 0, z 

which in the limit as Ar (and therefore A V) approaches zero becomes 

1 3 , r, 
jyr(rFr)- 

Arguing in an analogous way for the other four faces (see Prob¬ 

lem 11-18), we arrive finally at the expression for the divergence 

in cylindrical coordinates: 

div F = Ii_ 
r dr 

1 dFn dF 

<rF-)+hi+ii- 43 (11-24) 
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Figure 11-25 

In spherical coordinates where the components of F are Fr, Fe, 

and F,k (see Figure 11-25), similar reasoning (see Problem 11-21) 

leads to the expression 

div F = \ f (r2Fr) + —r (sin c^F*) + 
r2 dr r sin <p d<p v 

1 dFe 
r sin <j> 90 ' 

(11-25) 

The Del Notation 

There is a special notation in terms of which the divergence may 

be written. There would be little or no reason for introducing it if 

it served only to provide another way of writing “div,” but as we 

shall soon see, it has considerable usefulness in vector calculus. 

Let us define a quantity designated V (read “del”) by the fol¬ 

lowing rather peculiar-looking equation: 

V = i_ + jA + 
dx J dy 

k 
d_ 

dz ' 

If we take the dot product of V and some vector function F = 

iFx + jFv + kF„ we get 

V • F 
‘I:+4 + klk(lf‘+jF' + kfJ 

= —F 
dx x 

+ A p + A p 
dy dz Pr 

44 

Now we interpret the “product” of d/dx and Fx as a partial deriva¬ 

tive; that is. 



The Divergence There are similar equations for the two other “products” (d/dy)Fy 

Theorem and (d/dz)Fz. With this convention we recognize V • F (“del dot 

F”) as the same as div F, and henceforth, to conform with modem 

notational practice, we shall always use V • F to indicate the di¬ 

vergence. Thus, Equations (11-18) and (11-23) will be written 

V • E = p/e0. 

Mathematicians call a symbol like V an operator. When we 

“operate” with V by dotting it into a vector function, we get the 

divergence of that function, as we have just seen. In subsequent 

discussions we shall introduce three other quantities (gradient, 

curl, and Laplacian), all of which are operators and all of which 

can be written in terms of V. 

The Divergence Theorem 

For the remainder of this chapter we digress from the mainstream 

of our narrative to discuss a famous theorem that asserts a re¬ 

markable connection between surface integrals and volume inte¬ 

grals. Although this relation may be suggested by the work we 

have done in electrostatics, the theorem is a mathematical state¬ 

ment holding under quite general circumstances. It is independent 

of any physics and is applicable in many different places. It is 

called the divergence theorem and sometimes Gauss’ theorem 

(not to be confused with Gauss’ law). 

We shall not give a mathematically rigorous proof of the diver¬ 

gence theorem; such a proof is given in many texts in advanced 

calculus. Instead we present here another physicist’s rough-and- 

ready proof. Thus, consider a closed surface S. Subdivide the vol¬ 

ume V enclosed by S arbitrarily into N subvolumes, one of which 

is shown in Figure 11-26 (drawn as a cube for convenience). We 

45 Figure 11-26 
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begin our proof by asserting that the flux of an arbitrary vector 

function F(x, y, z) through the surface S equals the sum of the 

fluxes through the surfaces of each of the sub volumes: 

F*n dS £ f f F • n dS. 
i= 1 J Js, 

(11-26) 

Here 5, is the surface that encloses the subvolume AV,. To estab¬ 

lish Equation (11-26), consider two adjacent sub volumes (Figure 

11-27). Let their common face be denoted S0. The flux through the 

Figure 11-27 

subvolume marked 1 in Figure 11-27 includes, of course, a contri¬ 

bution from S0, which is 

F*n {dS. 

Here n, is a unit vector normal to the face S0, and by our usual 

convention, it points outward from subvolume 1. The flux through 

the subvolume marked 2 also includes a contribution from S0: 

F • n2 dS. 

The vector n2 is a unit normal that points outward from subvol¬ 

ume 2. Clearly n, = — n2. Thus, in forming the sum in Equation 

(11-26), we shall include, among other things, the pair of terms 

JJ F*n, dS+ JJ F*n2dS 

F • n, dS - F • n, dS = 0. 
46 
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We see that these terms cancel each other and there is no net con¬ 

tribution to the sum in Equation (11-26) due to the face S0. In fact, 

this sort of cancellation will obviously occur for any subvolume 

surface that is common to two adjacent sub volumes. But all sub¬ 

volume surfaces are common to two adjacent sub volumes except 

those that are part of the original (“outer”) surface S. Hence the 

only terms in the sum in Equation (11-26) that survive come from 

those subvolume surfaces that, taken together, constitute the sur¬ 

face S. This establishes the validity of Equation (11-26). 

We now rewrite Equation (11-26) in the following curious 

fashion: 

F*n dS AV, (11-27) 

This clearly alters nothing since we have just multiplied and di¬ 

vided each term of the sum by AV), the subvolume enclosed by the 

surface S, We can now imagine partitioning the original volume V 

into an ever larger number of smaller and smaller subvolumes. In 

other words, we take the limit of the sum in Equation (11-27) as 

the number of subdivisions tends to infinity and each AV, tends to 

zero. We recognize that the limit of the quantity in square brackets 

in Equation (11-27) is, by definition, (V • F);, that is, the divergence 

of F evaluated at the point about which A V, is shrinking. Thus, for 

each AV, very small. Equation (11-27) becomes 

N 

F • n dS - 2 (v *F),AV,. 
/=i 

(11-28) 

Further, in the limit, this sum is, again by definition, the triple in¬ 

tegral of V • F over the volume enclosed by S: 

lim 2 (V * F), AV, - f f [ V • F dV. (11-29) 
N-*oo /= i J J Jy 

each AV,—>0 

Putting together Equations (11-26) through (11-29), we arrive at 

our result: 

F • n dS = V • F dV. (11-30) 

47 
This is the divergence theorem. In words, it says that the flux of a 

vector function through some closed surface equals the triple inte- 
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X s(x„ yi, zi) AV;, 
i 

where the function g is well defined. In Equation (11-27), how¬ 

ever, the quantity multiplying the volume element AV) in each 

term of the sum is not a well-defined function in this sense. That 

is, as AV, tends to zero the quantity in the square brackets 

changes; it can be identified as the divergence of F only in the 

limit. A careful, rigorous treatment would show that Equation 

(11-30) is valid if F (that is, F„ Fy, and Fz) is continuous and dif¬ 

ferentiable, and its first derivatives are continuous in V and on S. 

Now let’s illustrate the divergence theorem. Since endless 

pages of hideous integrals will not serve our purpose, we’ll use a 

simple example. Let 

gral of the divergence of that function over the volume enclosed 

by the surface. 

The major reason the proof given above is not rigorous is that a 

triple integral is defined as the limit of a sum of the form 

F(x, y, z) = \x + jy + kz 

and choose for S the surface shown in Figure 11-28, consisting 

of the hemispherical shell of radius 1 and the region R of the 

Figure 11-28 

xy-plane enclosed by the unit circle. On the hemisphere we have 

n = ix + jy + kz, so that n • F = x2+y2 + z2 = 1. Thus, on the 

hemisphere, 

48 J J F • n dS = J J dS=2Tr, 
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where the last equality follows from the fact that the integral is 

merely the surface area of the unit hemisphere. On the region R 

we have n = —k so that n • F = — z. Hence, on R, 

J J F*n dS= -JJ zdxdy = 0 

because z = 0 everywhere on R. Thus, there is no contribution to 

the surface integral from the circular region R and 

F • n dS = 2ir. 

Next we find by a trivial calculation that V • F = 3. It follows 

then that 

where we use the fact that the volume of the unit hemisphere is 

2tt/3. Since the surface and volume integrals are equal, this illus¬ 

trates Equation (11-30). 

Two Simple Applications of the Divergence Theorem 

As one example of the use of the divergence theorem we give an 

alternative derivation of Equation (11-18), the analysis of which 

led us to the divergence theorem itself. In other words, this is how 

easy it would have been if we had known the divergence theorem 

to begin with! 

We start with Gauss’ law in the form 

jjE-AdS-ljiPdV. (11-31) 

Next we apply the divergence theorem to the surface integral in 

the above equation to get 

ju-ijs-jj'/v- E dV. (11-32) 

Thus, combining Equations (11-31) and (11-32), we find 

!iirv'EdV=iiilvpdV' 49 
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In general, if two volume integrals are equal, it is not necessarily 

true that their integrands are equal. It might be that the integrals 

are equal only over the particular volume of integration V, and by 

integrating over a different volume, we would wreck the equality. 

In the present case, however, this is not true because Gauss’ law 

holds for any arbitrary volume V, and we cannot upset the equal¬ 

ity by changing the volume. But this can be so only if the inte¬ 

grands are equal. Hence, 

V • E = p/e0, 

which should look familiar! 

Another example of the use of the divergence theorem is the 

following. Suppose that in some region of space “stuff’ (matter, 

electric charge, anything) is moving (Figure 11-29). Let the den- 

Figure 11-29 

sity of this stuff at any point (x, y, z) and any time t be p(x, y, z, t) 

and let its velocity be v(x, y, z, t). Further, suppose this stuff is 

conserved; that is, it is neither created nor destroyed. Concentrat¬ 

ing on some arbitrary volume V in space, we ask: What is the rate 

at which the amount of stuff in this volume is changing? At any 

time t the amount of stuff in V is 

, y, z, t) dV 

and the rate at which it is changing is 

d_ 

dt 
t) dV = dV. 

50 
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(To be able to move the derivative under the integral sign this 

way requires that dp/dr be continuous.) 

Next we recall from an earlier discussion that the rate at which 

stuff flows through a surface S is 

We then assert that the rate at which the amount of stuff in V is 

changing is equal to the rate at which it is flowing through the en¬ 

closing surface 5; in equation form this statement reads 

SSSItdv--SSs9"Ads- 

There are two features about this equation that require discussion: 

1. The negative sign must be included because the surface inte¬ 

gral as defined is positive for a net flow out of the volume, but 

a net flow out means the amount of stuff in the volume is de¬ 

creasing. 

2. This equation states that the amount of stuff in V can change 

only as a result of stuff flowing across the boundary S. If stuff 

were being created or destroyed in V, terms would have to be 

included in the equation to reflect that fact. The absence of any 

such terms is thus an expression of the conservation of the 

stuff. 

Now, finally, let us apply the divergence theorem. We find 

• (pv) dV. 

Hence, 

SiSvtdv’SSIf^>dv- 
Arguing as we did above that V is an arbitrary volume, we can 

then say 

51 
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Usually we define the current density J = pv and write Equation 

(11-31) as 

3p 

dt 
+ V • J = 0. 

An equation of this type is referred to as a continuity equation and 

is, as we have seen, an expression of a conservation law (see 

Problems III—20, III—21, and IV-21). Besides playing an impor¬ 

tant role in electromagnetic theory, it is a basic equation both in 

hydrodynamics and diffusion theory. Finally, considerations simi¬ 

lar to those that led to the continuity equation are involved in the 

analysis of heat flow. 

PROBLEMS 

52 

II-l Find a unit vector n normal to each of the following surfaces. 

(a) z = 2 - x - y. (c) z = (1 - x2)m. 

(b) z = (x2 + y2)m. (d) z = x2 + y2. 

(e) z = (1 - x2/a2 - y2/a2)wl. 

11-2 (a) Show that the unit vector normal to the plane 

ax + by + cz = d 

is given by 

n = ±(i a + j b + k c)/(a2 + b2 + c2)m. 

(b) Explain in geometric terms why this expression for n is inde¬ 

pendent of the constant d. 

11-3 Derive expressions for the unit normal vector for surfaces given by 

y = g(x, z) and by x = h(y, z). Use each to rederive the expression for 

the normal to the plane given in Problem II—2. 

IIM In each of the following use Equation 11-12 to evaluate the surface 

integral ffs G(x, y, z) dS. 

(a) G(x, y, z) = z, 

where S is the portion of the plane x + y + z = 1 in the first 

octant. 

1 + 4(rf + yf 
where S is the portion of the paraboloid ; 

z = 0 and z = 1. 

- x2 + y2 betwei 

(c) G(x, y, z) = (1 — x2 - y2)312, 

where S is the hemisphere z = (1 — x2 — y2)'12. 



Problems 11-5 In each of the following use Equation 11-13 to evaluate the surface 

integral ffs F • n dS. 

(a) F(x, y, z) = ix — kz, 

where S is the portion of the plane x + y + 2z = 2 in the first 

octant. 

(b) F(x, y, z) = ix + jy + kz, 

where S is the hemisphere z = Va2 — x2 — y2. 

(c) F(x, y, z) = jy + k, 

where S is the portion of the paraboloid z — 1 — x2 — y2 

above the xy-plane. 

11-6 The distribution of mass on the hemispherical shell 

z = (fl2 - x2 - y2)1'2 

is given by 

cr(x, y, z) = (ct0/R2)(x2 + y2) 

where cr0 is a constant. Find an expression in terms of <x0 and R for the 

total mass of the shell. 

II-7 Find the moment of inertia about the z-axis of the hemispherical 

shell of Problem II—6. 

11-8 An electrostatic field is given by 

E = X(iyz + j*z + kxy), 

where X is a constant. Use Gauss’ law to find the total charge enclosed 

by the surface shown in the figure consisting of Su the hemisphere 

z = (R2 — x2 — y2)'12, 

and S2, its circular base in the xy-plane. 

11-9 An electrostatic field is given by E = X(ix + jy), where X is a con¬ 

stant. Use Gauss’ law to find the total charge enclosed by the surface 

shown in the figure consisting of Slt the curved portion of the half¬ 

cylinder z = (r2 — y2)l/2 of length h\ S2 and S3, the two semicircular 

plane end pieces; and S4, the rectangular portion of the xy-plane. Ex¬ 

press your results in terms of X, r, and h. 53 
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11-10 It sometimes happens that surface integrals can be evaluated with¬ 

out using the long-winded procedures outlined in the text. Try evaluat¬ 

ing ffs F • n dS for each of the following; think a bit and avoid a lot 

of work! 

(a) F = ix + jy + kz. 

S, the three squares each of side b as shown in the figure. 

(b) F = (ix + jy) ln(x2 + y2). 

S, the cylinder (including the top and bottom) of radius R and 

height h shown in the figure. 

z 

54 x 



Problems (c) F = (ix + jy + kz)e^+y!+^). 

S, the surface of the sphere of radius R centered at the origin 

as shown in the figure. 

z 

y 

(d) F = \E(x), where E(x) is an arbitrary scalar function of x. 

S, the surface of the cube of side b shown in the figure. 

11-11 (a) Use Gauss’ law and symmetry to find the electrostatic field as 

a function of position for an infinite uniform plane of charge. Let 

the charge lie in the yz-plane and denote the charge per unit area 

by cr. 

(b) Repeat part (a) for an infinite slab of charge parallel to the 

yz-plane, whose density is given by 

—b < x < b, 
\x\ > b. 

where p0 and b are constants. 

(c) Repeat part (b) with p(x) = p0e 

11-12 (a) Use Gauss’ law and symmetry to find the electrostatic field as 

a function of position for an infinite uniform line of charge. Let 

the charge lie along the z-axis and denote the charge per unit 

length by \. 55 



(b) Repeat part (a) for an infinite cylinder of charge whose axis 

coincides with the z-axis and whose density is given in cylindrical 

coordinates by 

p(r) = K r<b’ 
’ jO, r > b, 

where p0 and b are constants. 

(c) Repeat part (b) with p(r) = p„e rlh. 

11-13 (a) Use Gauss’ law and symmetry to find the electrostatic field as 

a function of position for the spherically symmetric charge distri¬ 

bution whose density is given in spherical coordinates by 

P (r) = 
jpo> 

IV
 

A
 

?3
- 

where p0 and b are constants. 

(b) Repeat part (a) for p(r) = Po« 
—rib 

(c) Repeat part (a) for 

[po. r < b. 

P (r) = ■ Pi. b<r<2b. 

0, r s 2b. 

How must p0 and p, be related so that the field will be zero for 

r > 2b? What is the total charge of this distribution under these 

circumstances? 

11-14 Calculate the divergence of each of the following functions using 

Equation (11-22): 

(a) ix2 + jy2 + kz2. 

(b) iyz + jxz + kxy. 

(c) \e~x + \e~y + ke z. 

(d) i - 3j + kz2. 

(e) (~ixy + j.r)/(x2 + y2), (x, y) * (0, 0). 

(f) kVx2 + y2 . 

(g) ix + jy + kz._ 

(h) (-iy + jxl/Vx2 + y2, (x, y) * (0, 0). 

11-15 (a) Calculate //5 F • n dS for the function in Problem II-14(a) 

over the surface of a cube of side s whose center is at (x0, y0, Zg) 

and whose faces are parallel to the coordinate planes. 

(b) Divide the above result by the volume of the cube and calcu¬ 

late the limit of the quotient as s —> 0. Compare your result with 

the divergence found in Problem II—14(a). 

(c) Repeat parts (a) and (b) for the function of Problem II—14(b) 

and (c). 

11-16 (a) Calculate the divergence of the function 

F(x, y, z) = if(x) + j/(y) + k/(-2z) 

56 and show that it is zero at the point (c, c, —cl2). 
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Problems (b) Calculate the divergence of 

G(r, y, z) = i/Cy, z) + jg(x, z) + kh(x, y). 

11-1 7 In the text we obtained the result 

V • F = 
dFx dFy 

dx ay 
dJl 
dz 

by integrating over the surface of a small rectangular parallelepiped. 

As an example of the fact that this result is independent of the surface, 

rederive it using the wedge-shaped surface shown in the figure. 

11-18 (a) Let i, j, and k be unit vectors in Cartesian coordinates and er, 

e0, and e, be unit vectors in cylindrical coordinates. Show that 

i - er cos 0 — e0 sin 0, 

j = er sin 0 + ee cos 0 , 

k = e,. 

(b) Rewrite the function in Problem II-14(e) in cylindrical coor¬ 

dinates and compute its divergence, using Equation (11-24). Con¬ 

vert your result back to Cartesian coordinates and compare with 

the answer obtained in Problem II—14(e). 

(c) Repeat part (b) for the function of Problem II-14(f). 

11-19 (a) Let i, j, and k be unit vectors in Cartesian coordinates and er, 

e0, and e* be unit vectors in spherical coordinates. Show that 

i = er sin 4> cos 0 + e4 cos 4> cos 0 — ee sin 0 

j = er sin <j> sin 0 + cos 4> sin 0 + e0 cos 0 

k = er cos <(> - sin 4> 

[Hint: It’s easier to express er, e0, and e* in terms of i, j, and k 

and then solve algebraically for i, j, and k. To do this, first use the 

fact that er = rlr = (vc + jy + kz)/r. Next, reasoning geometri¬ 

cally, show that e0 = — i sin 0 + j cos 0. Finally, calculate e4, = 

e0 X er.] 

(b) Rewrite the function of Problem II—14(g) in spherical coordi¬ 

nates and compute its divergence using Equation (11-25). Convert 57 
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your result back to Cartesian coordinates and compare with the 

answer obtained in Problem II—14(g). 

(c) Repeat part (b) for the function of Problem II—14(h). 

11-20 In cylindrical coordinates the divergence of F is given by 

. F = - — (rF ) + - — 
r dr y r> r 30 

dF, 
dz 

In the text (pages 42-43) we derived the first term of this expression. 

Proceeding the same way, obtain the other two terms. 

11-21 Repeat Problem 11-20 to obtain the divergence in spherical coordi¬ 

nates by carrying out the surface integral over the surface of the vol¬ 

ume shown in the figure and thereby obtaining the expression 

V • F = -y (r2Fr) + —(sin (J> FA + 
r2 dr r sin 4> d<t> ^ 

1 dFfi 

r sin 4> 50 

11-22 Consider a vector function of the form 

F(r) = er/(r), 

where er = (ix + jy + kz)/r is the unit vector in the radial direction, 

r = (x2 + y2 + z2)u2, and f(r) is a differentiable scalar function. Using 

the results of Problem 11-21, determine/(r) so that V • F = 0. A vector 

function whose divergence is zero is said to be solenoidal. 

11-23 Verify the divergence theorem 

/£F-fias = //J V-FdV 

in each of the following cases: 

(a) F = ix + jy + kz. 

S, the surface of the cube of side b shown in the figure. 58 
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(b) F = V + ezz, 

r = ix + jy. 
S, the surface of the quarter cylinder (radius R, height h) 

shown in the figure. 

(c) F = er r2, 

r = ix + jy + kz. 

S, the surface of the sphere of radius R centered at the origin 

as shown in the figure. 

59 
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for any closed surface S. 

(b) Determine the flux of a uniform magnetic field B through the 

curved surface of a right circular cone (radius R, height h) ori¬ 

ented so that B is normal to the base of the cone as shown in the 

figure. (A uniform field is one that has the same magnitude and 

direction everywhere.) 

11-24 (a) One of Maxwell’s equations states that V • B = 0, where B is 

any magnetic field. Show that 

II, B • n dS = 0 

11-25 Use the divergence theorem to show that 

JJ ndS = 0, 

where S is a closed surface and n is the unit vector normal to the 

surface S. 

11-26 (a) Use the divergence theorem to show that 

Ws^rds=v’ 

where S' is a closed surface enclosing a region of volume V, n is a 

unit vector normal to the surface S, and r = ix + jy + kz. 

(b) Use the expression given in (a) to find the volume of 

(i) a rectangular parallelepiped with sides a, b, c. 

(ii) a right circular cone with height h and base radius R. 

[Hint: The calculation is very simple with the cone ori¬ 

ented as shown in the figure.] 

(iii) a sphere of radius R. 60 
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11-27 (a) Consider a vector function with the property V • F = 0 

everywhere on two closed surfaces S, and S2 and in the volume V 

enclosed by them (see the figure). Show that the flux of F 

through S, equals the flux of F through S2- In calculating the 

fluxes, choose the direction of the normals as indicated by the ar¬ 

rows in the figure. 

(b) Given the electrostatic field of a point charge q situated at 

r = 0, 

where r2 = x2 + y2 + z2, show by direct calculation that 

V • E = 0, for all r + 0. 

(c) Prove Gauss’ law for the field of a single point charge given 

in (b). [Hint: It is easy to calculate the flux of E over a sphere 

centered at r = 0.] 

(d) How would you extend this proof to cover the case of an ar¬ 

bitrary charge distribution? 61 
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11-28 (a) Show by direct calculation that the divergence theorem does 

not hold for 
/\. 

F(r,e. 4>) = -^, 
rl 

with S the surface of a sphere of radius R centered at the origin, 

and V the enclosed volume. Why does the theorem fail? 

(b) Verify by direct calculation that the divergence theorem does 

hold for the function F of part (a) when S is the surface S, of a 

sphere of radius Rt plus the surface ,S'2 of a sphere of radius R2, 

both centered at the origin, and V is the volume enclosed by S{ 

and S2. 

(c) In general, what restriction must be placed on a surface S' so 

that the divergence theorem will hold for the function of part (a)? 
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Chapter III 

Line Integrals 
and the Curl 

To err from the right path is common to Mankind. 

Sophocles 

Work and Line Integrals 

We remarked above that the differential form of Gauss’ law, 

Equations (11-18) and (11-23), although it fulfills our goal of relat¬ 

ing a property of the electric field (its divergence) at a point to a 

known quantity (the charge density) at the same point, nonethe¬ 

less falls short of providing a convenient way to find E. The rea¬ 

son is that V • E = p/e0 is (or seems to be) a single differential 

equation in three unknowns (E„ Ey, £..). But there is another fea¬ 

ture of electrostatic fields that has not yet played an explicit role 

in our discussion and that will yield a relationship among the 

components of E. It will thus provide us with the crucial last step 

in obtaining a useful way to calculate fields. In the process of ex- 63 
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amining this question, we shall encounter some of the most im¬ 

portant topics in vector calculus. 

The property of electrostatic fields that we shall now begin to 

discuss is intimately bound up with the question of work and en¬ 

ergy. You no doubt recall the elementary definition of work as 

force times distance. Thus, in one dimension, if a force F(x) acts 

from x = a to x = b, the work done is, by definition, 

[ F(x) dx. 

To be able to handle more general situations, we must now intro¬ 

duce the concept of the line integral. 

Figure III—1 

Suppose we have a curve C in three dimensions (Figure III—1) 

and suppose the curve is directed. By this we mean that we put an 

arrow on the curve and say “This is the positive direction.” Let s 

be the arc length measured along the curve from some arbitrary 

point on it with s = s, at a point P] and s = .5, at P2. Suppose fur¬ 

ther that we have a function f(x, y, z) defined everywhere on C. 

Now let us subdivide the portion of C between P, and P2 arbitrar¬ 

ily into N sections. Figure III—1 shows an example of such a sub¬ 

division for N = 4. Next, join successive subdivision points by 

chords, a typical one of which, say the Zth, has length As,. Now 

evaluate/(x, y, z) at (xh yb z.t), which is any point on the Zth subdi¬ 

vision of the curve, and form the product/(jc,, y,, z,) As,. Doing 

this for each of the N segments of C, we form the sum 

N 

E /(*/> ybZi)As,. 
1= 1 
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By definition, the line integral of fix, y, z) along the curve C is the 

limit of this sum as the number of subdivisions N approaches in¬ 

finity and the length of each chord approaches zero: 

L fix, y, z) ds = lim % fix,, y„ z,) A s,. 
N—> 00 /= 1 

each As —*0 

To evaluate the line integral, we need to know the path C. Usu¬ 

ally the most convenient way to specify this path is parametrically 

in terms of the arc length parameter s. Thus, we write x = x(s), 

y — y(s), and z = z(s). In such a situation the line integral can be 

reduced to an ordinary definite integral: 

J f(x, y, z)ds = J f[x(s), y(s), z(s)] ds. 

An example of a line integral will be helpful here. For simplic¬ 

ity let us work in two dimensions and evaluate 

J (x + y) ds, 

where C is the straight line from the origin to the point whose co¬ 

ordinates are (1, 1) (Figure III—2). If (x, y) are the coordinates of 

Figure III—2 

any point P on C and if s is the arc length measured from the ori¬ 

gin, then x = 5/V2 and y = .s/V2. Hence, x + y = 2s/V2 = 

V2s. Thus, 

65 
s ds = V2. 
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(l, l) 

A c2 

c, x 

Figure III—3 

Let us integrate this same function (x + y) from (0, 0) to (1, 1) 

along another path as shown in Figure III—3. Here we break the 

integration into two parts, one along C, and the second along C2. 

On C] we have x = s and y = 0. Thus, on C1( x + y = s, and so 

J (x + y) ds — J sds = 5. 

Along C2, x = 1 and y = s [note that the arc length on this seg¬ 

ment of the path is measured from the point (1, 0)]. It follows 

then that 

Adding the results for the two segments, we find 

[ (x + y)ds = [ (x + y)ds + f (x + y) ds = { + | = 2. 
Jc Jcl Jc2 

The lesson to be learned is this: the value of a line integral can 

(indeed, usually does) depend on the path of integration. 

Line Integrals Involving Vector Functions 

Although the preceding discussion tells us what a line integral is, 

the kind of line integral we must deal with here has a feature not 

yet mentioned. You will recall that we introduced our discussion 

of line integrals with the concept of work. Work, in the most ele- 
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mentary sense, is force times displacement. That this needs elabo¬ 

ration becomes clear when we recognize that both force and dis¬ 

placement are vectors. 

Thus, consider some path C in three dimensions (Figure III—4). 

Let us suppose that under the action of a force an object moves on 

this path from 5, to s2. At any point P on the curve let the force 

Figure III—4 

acting be designated f(x, y, z). The component of f that does work 

is, by definition, only that one which acts along the curve, that is, 

the tangential component. Let t denote a unit vector that is tan¬ 

gent to the curve at P} Then the work done by the force in mov¬ 

ing the object from s, to s2 along the curve C is 

where it is understood, of course, that the integration begins at 

s = 5, and ends at s = s2. The new feature of this integral is that 

the integrand is the dot product of two vector functions. To be 
A 

able to handle such a line integral, we must know how to find t, 

and it is to this problem that we now turn. 

Consider an arbitrary curve C (Figure III—5) parametrized by 

its arc length. At some point s on the curve we have x = x(s), y = 

y(s), and z = z(s). At another point s' + As we have x + Ax = 

x(s + As), y + Ay = y(s + As), and z + Az = z(s + As). Thus, 

1 t is a function of x, y, and z and should really be written t (x, y, z). We write sim¬ 

ply t to avoid complicating the notation. 
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Figure III—5 

the chord joining the two points on the curve directed from the 

first to the second is the vector Ar = iAx + jAy + kAz, where 

Ax = x(s + As) — x(s), 

Ay = y(s + As) - y(s), 

A z = z(s + As) — z(s). 

If we now divide this vector by As, we get 

Ar 

As 
+ k 

Az 

As' 

Taking the limit of this as As approaches zero yields 

idx , .dy dz 

ds J ds ds’ 

/v 

and we assert that this is t. To begin with, it’s clear that as As —» 0, 

the vector Ar becomes tangent to the curve at s. Further, in the limit 

As —» 0, we see that |Ar| —> As. Hence, in the limit the magnitude of 

this quantity is 1. It follows then that we can make the identification 

/>, . . dx , .dy dz 
t(s) = i— + i — + k —. 

ds J ds ds 

If we return now to the expression for work W and use this for- 
A 

mula for t, we find 

W 
. dx , -^y + kdz 

1 ds ^ ds ds 
= [ f(x, y, z) 

J c 

= J (fxdx +fydy +fzdz). 

ds 
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This is a formal expression; often, to carry out the integration, it 

is useful to restore the ds as the following example illustrates. 

Consider 

f(x, y, z) = iy - jx 

and the path shown in Figure III-6(a). To calculate fc(f • t) ds in 

Figure III—6(a) 

this case, we break the path C into three parts, Ch C2, and C3 as 

shown. Since fz = 0, we have 

j" f • *ds = Ic ^dx+^>dy 

— I y dx — xdy. 
J c 

Now, on C,, y — 0 and dy = 0, so there is no contribution to the 

integral. Similarly, on C3 we have x = 0 and dx = 0, and again 

the result is zero. Thus, the only contribution to the integral over 

C can come from C2. Restoring the ds, we have 
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Figure III-6(b) 

But (1 — x)/s = cos 45° = 1/V2 and y/s = sin 45° = 1/V2 

[Figure III—6(b)]. Thus, 

_ , _ s dx   1_ 

X V2 ds V2 

5 dy _ 1 

y V2 ds y/2 

0 < s < V2. 

Hence, the integral is 

1 

V2 
ds — — 1. 

As a second example of a line integral involving a vector func¬ 

tion, let 

f(x, y, z) = ix2 - jxy, 

and take C to be the quarter circle of radius R oriented as shown 

in Figure III-6(c). We then have 

f'tds= x2 dx — xy dy. 
J c J c 
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Figure III-6(c) 

Letting x = R cos 0, y = R sin 0, we find this integral becomes 

r-ir/2 

j 0 

[/?2 cos2 Q(-R sin 0) - R2 sin 0 cos 0(7? cos 0)] <70 

= -2R? 
rn/2 

j 0 
cos2 0 sin 0 dO = — 2f?3/3. 

Path Independence 

In a line integral the path of integration is one of the ingredients 

which determines the very function we integrate. It isn’t remark¬ 

able, then, that the value of the integral can depend on the path of 

integration. What is remarkable is that, under some conditions, 

the value of the integral does not depend on the path! 

We show how this path independence comes about in the case 

of the Coulomb force. Let a charge q0 be fixed at the origin and 

let another charge q be situated at (x, y, z) (Figure III—7). The 

Coulomb force on q is 

F = 
l qqo 

4tt€0 r2 

/V 

U, (in—i) 

71 

where r = (x2 + y2 + z2)172 is the distance between the two 

charges and u is a unit vector pointing from q0 to q. With this 

arrangement u is clearly in the radial direction. Even more 
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Figure III—7 

clearly, the radial vector r is in the radial direction. Thus, we have 

u = r/r = (ix + jy + kz)/r, and so 

F _ Wo i^ + jy + kz 

4-ireo r3 

Thus, 

F• t ds = Fx dx + Fy dy + Fz dz = 
qq0 xdx + y dy + zdz 

4'rre0 r3 

The trick now is to use the relationship 

r2 = jc2 + y2 + z2. 

Taking differentials in this equation and dividing by a factor of 2 

yields 

xdx + y dy + zdz = r dr. 

so that 

c, £ j _ Wo r dr Wo dr 
b • t ds = --r— = ---. 

4tt€0 r3 4-ireo r2 

Suppose now that the charge q moves from a point P, at a dis¬ 

tance r, from the origin to a point P2 at a distance r2, over some 

path C connecting the two points (Figure III—8). Then 

/, F 
A 

t ds = 
Wo fr* dr 

4Tre0Jr| r2 
Wo /1 

4lTe0 \ri 72 
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Figure III—8 

Notice that to get this result, we haven’t had to specify C in any 

way whatever; we’d get the same answer for any path connecting 

P, and P2. This, of course, proves that the line integral 

f F*t ds 
J c 

with F given by Equation (III—1) is path-independent, but the re¬ 

sult, so far, has been established only for the Coulomb force on q 

due to a single charge q{) [Equation (III—1)]. If there are many 

charges qu q2,, qN, then the total force on is F, + F2 + 

■ ■ • + ¥n, where F; is the Coulomb force on q due to the /th 

charge q,. Hence, 

J F • t ds = J F, • t ds 4-K J Fn • t ds. 

Now the discussion given above shows that each term of this sum 

is path independent; hence, so is the sum itself. (All this, of 

course, is merely an application of the superposition principle.) 

To phrase this result in terms of the field requires one last trivial 

step: Since F = qE, it follows that q Jc E • t ds is path indepen¬ 

dent, whence /CE • t ds is also. Strange to say, it is this fact that 

will enable us eventually to convert V • E = p/e0 into a more use¬ 

ful equation. 

If you examine the foregoing discussion carefully, you’ll see 

that the fact that the Coulomb force varies inversely as the square 

of r has nothing whatever to do with the path independence of the 

line integral. The path independence rests solely on two proper¬ 

ties of the Coulomb force: (1) It depends only on the distance be¬ 

tween the two particles, and (2) it acts along the line joining them. 73 
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Any force F with these two properties is called a central force, 

and fc F • t ds is independent of path for any central force.2 

One further step pertaining to path independence can be taken 

here. If 

L F • t ds 

is independent of path, then 

I F • t ds= F • t ds, 
Jc, Jc1 

where, as indicated in Figure III—9, C, and C2 are two different ar¬ 

bitrary paths connecting the two points P, and P2 and directed as 

shown in the figure. Now if instead of integrating along from 

P, to P2, we go the other way, we simply change the sign of the 

line integral; that is, 

F • t ds F • t ds. 

Figure HI-9 

where -C, merely indicates that the integration is to be carried 

out along C, from P2 to P,. Thus, 

F • t ds = F • t ds 

2 Our having illustrated path independence with a central force may give the erro¬ 

neous impression that only central forces have path-independent line integrals. 

That is certainly not true; many functions which are not central forces have path- 

independent line integrals. Later we’ll develop a simple criterion for identifying 

such functions. 74 
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t ds = 0. 

But — C, + C2 is just the closed loop from P] to P2 and back, as 

shown in Figure III—10. Thus, if / F • t ds is independent of path, 

then 

F • t ds = 0, 

Figure III-10 

where $ is the standard notation for a line integral around a closed 

path. It follows that if E is an electrostatic field, we can write 

f E • t ds = 0. (Ill—2) 

The term “circulation” is often given to the path integral around a 

closed curve of the tangential component of a vector function. 

Thus we have demonstrated that the circulation of the electrosta¬ 

tic field is zero. In what follows we’ll call this the circulation law. 

The Curl 

75 

If we are given some vector function F(x, y, z) and asked, “Could 

this be an electrostatic field?” we can, in principle, provide an an¬ 

swer. If 
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over even one path, then F cannot be an electrostatic field. If 

F • t ds = 0 

over every closed path, then F can (but does not have to) be an 

electrostatic field. 

Clearly, this criterion is not easy to apply since we must be sure 

the circulation of F is zero over all possible paths. To develop a 

more useful criterion, we proceed much as we did in dealing with 

Gauss’ law, which, like the circulation law, is an expression involv¬ 

ing an integral over the electric field. Gauss’ law is more useful in 

the differential form [Equations (11-18) and (11-23)] obtained by 

considering the ratio of flux to volume for ever-decreasing sur¬ 

faces. We now treat the circulation law in the same spirit and at¬ 

tempt to find the differential form of Equation (III—2). To stress 

the generality of our analysis and results, we deal with an arbi¬ 

trary function F(x, y, z) and specialize to E(x, y, z) at a later stage 

in the development. 

Let us consider the circulation of F over a small rectangle par¬ 

allel to the xy-plane, with sides Ax and Ay and with the point 

(x, y, z) at the center [Figure III-11(a)]. As shown in Figure 

III-11(b), we carry out the path integration in a counterclockwise 

direction looking down at the xy-plane. The line integral is broken 

up into four parts: CB (bottom), CK (right), CT (top), and CL (left). 

Since the rectangle is small (eventually we shall take the limit as 

it shrinks down to zero), we’ll approximate the integral over each 
A 

segment by F • t evaluated at the center of the segment, multi¬ 

plied by the length of the segment.3 

Figure H[-l 1(a) 

76 
3 Reread footnote 9 of Chapter n and then give an argument in support of this 
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cT 

cB 

Figure m-l 1(b) 

Taking CB first, we have 

J F • t ds = J Fxdx — Fx(^c,y —^, z j Ax. (III-3a) 

Over CT we find 

J F-t ds = J Fxdx — ~Fx^x, y + zj Ax. (Ill—3b) 

The negative sign here is required by the fact that 

and dx/ds = -1 over CT. Adding Equation (III—3a) and (III—3b), 

we find 
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The factor Ax Ay is clearly the area AS of the rectangle. Thus, 

X 
A S 

(F • t) ds (HI—4) 

— Fr 
Ay 

2 

Ay 

Exactly the same sort of analysis applied to the left and right sides 

of the rectangle (CL and CR) results in 

x 
AS 

(F • t) ds 

Fv x + 
Ax 

,y,z Fv * ~ - y. z 
Ay 
2 

Ax 
(HI—5) 

Adding Equations (III^l) and (III—5) and taking the limit as AS 

shrinks down about a point (x, y, z) (in which case Ax and Ay —» 0 

as well), we get 

lim -L [£ 
AS—>0 J 

about (x,_y,2) 

/v dF 
F • t ds = 

uX 

dFx 
dy ’ 

(HI—6) 

where $ is our semicomical notation meaning the circulation 

around the little rectangle. 

You may wonder about the generality and uniqueness of this 

result since it is obtained using a path of integration that is spe¬ 

cial in two ways: first, it is a rectangle, and second, it is parallel 

to the xy-plane. If the path were not a rectangle, but a plane 

curve of arbitrary shape, it would not affect our result (see 

Problems III—2 and III—30). But our result definitely does de¬ 

pend on the special orientation of the path of integration. The 

choice of orientation made above clearly suggests two others, 

and they are shown in Figure III-12(a) and (b) along with the 

result of calculating 

lim ~ [D F • t ds 
AS-^O A S T 

about (x,y,z) 

78 for each. 
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Figure III-12(a) 

Figure III-12(b) 

Each of these three paths is named in honor of the vector nor¬ 

mal to the enclosed area. The convention we use is this: Trace the 

curve C so that the enclosed area is always to the left [Figure 

III—13(a)]. Then choose the normal so that it points “up” in the di- 

79 Figure III—13(a) 



Line Integrals 

and the Curl 

n 

Figure III—13(b) 

rection shown in the picture. This convention is sometimes called 

the right-hand rule, for if the right hand is oriented so that the fin¬ 

gers curl in the direction in which the curve is traced, the thumb, 

extended, points in the direction of the normal [Figure III—13(b)]. 

Using the right-hand rule, we have the following: 

Calculating limM^0 § F • t ds/AS 

for a path whose normal is i, we get 

for a path whose normal is j, we get 

for a path whose normal is k, we get 

dIi 
dy 

dF* 

dz 

dFy 

dx 

dFy ' 

dz ’ 

dh ■ 
dx ’ 

dl± 
dy '. 

(Ill—7 a) 

It turns out that these three quantities are the Cartesian compo¬ 

nents of a vector. To this vector we give the name “curl of F,” 

which we write curl F. Thus, we have 

curl F = i 
dz J J\dz dx) 

+ k (III—7b) 

80 

This expression is often (indeed, usually) given as the definition 

of the curl, but we prefer to regard it as merely the form of the 

curl in Cartesian coordinates. We shall define the curl as the limit 
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Figure III-14 

of circulation to area as the area tends to zero. To be precise, let 

<fcF • t ds be the circulation of F about some path whose normal 

is n as shown in Figure III—14. Then by definition 

n • curl F = lim F • t ds. (III-8) 
AS—»o Ao J cn 

about (x,y,z) 

By taking n successively equal to i, j, and k, we get back the results 

given in Equation (III—7b). Since this limit will, in general, have dif¬ 

ferent values for different points (x, y, z), the curl of F is a vector 

function of position.4 Note incidentally that although in our work we 

always assumed that the area enclosed by the path of integration was 

a plane, this need not be the case. Since the curl is defined in terms 

of a limit in which the enclosed surface shrinks to zero about some 

point, in the final stages of this limiting process the enclosed surface 

is infinitesimally close to a plane, and all our considerations apply. 

Since it is undoubtedly beyond the powers of a mere mortal to 

remember the expression given above for curl F in Cartesian coor¬ 

dinates [Equation (III—7b)], it is fortunate that there is a mnemonic 

device to fall back on. If the three-by-three determinant 

i j k 

d/dx d/dy d/dz 

Fx Fy F- 

is expanded (most conveniently in minors of the first row) and if 

certain “products” are interpreted as partial derivatives [for example, 

81 

4 The word rotation (abbreviated “rot,” amusingly enough) was once used for 

what we now call the curl. Though the term has long since dropped out of use, a 

related one survives: If curl F = 0, the function F is said to be irrotational. 
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(d/dx)Fy = dFy/dx], the result will be identical with the one given in 

Equation (III—7b).5 Thus, the anguish of remembering the form of 

curl F in Cartesian coordinates can be replaced by the pain of re¬ 

membering how to expand a three-by-three determinant. Chacun a 

son gout. 

As an example of calculating the curl, consider the vector 

function 

F(x, y, z) = ixz + jyz ~ ky2. 

We have 

curl F = 

i J k 

d/dx d/dy d/dz 

xz yz ~y 

= i(—2y -y)+ j(x - 0) + k(0 - 0) 

= -3iy + jx. 

You may have noticed that the curl operator can be written in 

terms of the del notation we introduced earlier. You can verify for 

yourself that 

curl F = V X F, 

which is read “del cross F.” Henceforth, we shall always use 

V X F to indicate the curl. 

The Curl in Cylindrical and Spherical Coordinates 

To obtain the form of V X F in other coordinate systems, we pro¬ 

ceed as we did above in finding the Cartesian form, merely modi¬ 

fying the paths of integration appropriately. As an example, using 

the path shown in Figure III—15(a) will yield the ^-component of 

V X F in cylindrical coordinates.6 Note that we trace the curve in 

82 

5 A mathematician would object to this since, strictly speaking, a determinant can¬ 

not contain either vectors or operators. We aren’t doing any serious damage, how¬ 

ever, because our “determinant” is merely a memory aid. 

6 In deriving the Cartesian form of V X F, each segment of each path of integra¬ 

tion (see Figures HI-11 and IH-12) was of the form x = constant, y = constant, or 

Z = constant. Similarly, in deriving the cylindrical form, each segment of each 

path is of the form r = constant, 0 = constant, or z = constant. 
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x 

Figure III-15(b) 

accordance with the right-hand rule given in the previous section. 

Viewing the path from above [as we do in Figure III—15(b)], the 

line integral of F(r, 0, z) • t along the segment of path marked 1 is 

J F* t ds^Fr(r,Q — ^r>z) Ar, 

while along segment 3 it is 

f F • t ds = -Fr ^r, 6 + y-, zj Ar. 

The area enclosed by the path is r Ar A0, so 
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In the limit as Ar and A0 tend to zero, this becomes 

_\dFr 

r 50 

evaluated at the point (r, 0, z). 

Along segment 2 we find 

F.(r + f,e,z)(r + f)48. 

and along segment 4 

Thus, 

_L 
AS I J C,+C4 

F• t ds — 
A0 

r Ar A0 

In the limit this becomes (l/r)(5/5r)(rFe) evaluated at (r, 0, z). 

Hence, 

(V X F), lim — 
as—>o AS 

F • t ds = ~ ~ (rFe) - 
r 50 ' 

Paths for finding the r- and 0-components of V X F are shown in 

Figures III—15(c) and (d), respectively. You are asked to obtain 

these two components yourself in Problem III—8. For com¬ 

pleteness we give all three components of V X F in cylindrical 

coordinates: 

„ 1 5F. 
(VXF) = - —- 
( ,r r ae 

(VXF),»f- 

5Fe 

5z ’ 

BF. 

dr ’ 

(VxF); = ^frFfl)- 
1 9Fr 

r 50 ‘ 84 
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Figure III-15(c) 

Figure III-15(d) 

As an example of calculating the curl in cylindrical coordinates 

consider the function 

F(r, 0, z) = err2z + eerz2 cos 0 + ezr3 

Then 

(VXF)r=p^ (r3) - (rz2 cos 0) = -2rz cos 0 

(VXF)s = ^(r2z)-|(r3)= -2r2 

(VXF); = }|; (r2z2 cos 0) - j ^ (r2z) = 2z2 cos 0 

Hence 

85 V X F = -2errz cos 0 - 2ee r2 + 2ez z2 cos 0 



Line Integrals The three components of curl F in spherical coordinates (see 

and the Curl Problem III—9) are as follows: 

(V X F)r 
1 

r sin <}> 3<j> 
d (sin <f> Fe) - 1 

3F* 

r sin 4> 30 

(VxF)* = 7^^-i£(rFe) 
r sin <J) 30 r dr 

As an example of calculating the curl in spherical coordinates, 

consider the function 

TJY A i \ _ ^ r j 
F(r, 0, 4>) ~ + ~T + 

r 0 r r cos cj> 

Then 

(V X F)r = sin 4> 
sec2 <|> 

r sin 4> 34> \ r cos 4>/ r sin <j) r2 sin 4> 

(V X F)* = 
1 3/1 1 3 

-77=(C0S <!>) = 
1 

r sin <)) 30 \r0/ r dr 

(V X F)e = ~ ~~ (1) “ 9 1 1 
3<() \r 0 

r202 sin 4> 

= 0 

Hence 

V X F = 
sec2 <j> ^ 
—r-e 
r sin ()> 

1 

r202 sin c() 

A 

The Meaning of the Curl 

The preceding discussion may leave you with the feeling that 

knowing how to define and calculate the curl of some vector func¬ 

tion is a far cry from knowing what it is. The fact that the curl has 

something to do with a line integral around a closed path (indeed, 

the word “curl” itself) may suggest to you that it somehow has to 

do with things rotating, swirling, or curling around. By means of 

a few examples taken from fluid motion, we’ll try to make these 

vague impressions a little clearer. 86 
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Figure III-16 

Suppose water is flowing in circular paths, something like the 

water draining from a bathtub. A small volume of the water at a 

point (x, y) at time t has coordinates x = r cos lot, y = r sin cot, 

where co is the constant angular velocity of the water (Figure 

III-16).7 Thus, its velocity at (x, y) is 

v = i(dx/dt) + j(dy/dt) = rco[—i sin cot + j cos cot] 

= co(-iy + j*). 

This expression gives what is called the velocity field of the 

water; it tells us the velocity of the water at any point (x, y). Your 

intuition probably tells you that, because the motion is circular, 

this velocity must have a nonzero curl. In fact, as you can show 

very easily. 

V X v = 2kco. 

This result should seem quite reasonable because it says that curl of 

the velocity is proportional to the angular velocity of the swirling 

water. We see that V X v is a vector perpendicular to the plane of 

motion and in the positive z-direction [Figure III—17(a)]. If the 

water were rotating around in the other direction, the curl of v 

would then be in the negative z-direction [Figure ni-17(b)]. Note 

that this is consistent with the right-hand rule (see page 79-80). If 

7 This is not a realistic description of water draining from a tub since rotating 

water shears tangentially and its angular velocity will therefore vary with r. The 

crude description we use here is adequate for our purposes and has the virtue of 

being simple. 
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Figure III—17(a) 

Figure III-17(b) 

we were to put a small paddle wheel in the water, it would com¬ 

mence spinning because the impinging water would exert a net 

torque on the paddles (Figure III—18). Furthermore, the paddle 

wheel would rotate with its axis pointing in the direction of the curl. 

Figure III-18 

Now consider a different velocity field, namely, 

v = jv0e~y2/^, 88 
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Figure III-19 

where v0 and X are constants. Water with such a velocity field 

would have a flow pattern as indicated in Figure III—19. The ve¬ 

locity at all points is in the positive y-direction, and its magnitude 

(indicated by the length of the arrows) varies with y. Since you 

see only straight line flow here without any rotational motion, you 

would probably guess that V X v = 0 in this case, and you would 

be right, as a simple calculation shows. There would be no net 

torque on a paddle wheel placed anywhere in this flow pattern, 

and as a consequence, it would not spin.8 

Our last example is trickier than the two given previously and 

shows that intuition can lead you astray if you’re not careful. Let 

a velocity field be given by 

v = jv0e x,k\ 

As in the previous example, the velocity in this case is every¬ 

where in the y-direction, but now it varies with x, not y (Figure 

III—20). Here, as in the preceding example, you see no evidence 

of rotational motion and you might guess that V X v = 0 once 

again. But as you should show for yourself, 

V X v = -ku0 H e~xW. 
X2 

A small paddle wheel placed in this flow pattern would spin, even 

though the water is everywhere moving in the same direction. The 

89 If V X v = 0, the flow is said to be irrotational. Compare with footnote 4. 
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Figure III—20 

reason this happens is that the velocity of the water varies with x, 

so that it strikes one of the paddles (P in Figure III—21) with 

greater velocity than the other (P'). Thus, there will be a net 

torque. In more mathematical terms, the line integral of v • t 

around a small rectangle (Figure III—22) will be different from 

zero, for while 

vtds = v • t ds = 0, 
^ bottom J top 

the contributions from the other two sides are 

/ ■ 
J right 

v • t ds — vy(x + Ax) Ay 

90 Figure III-21 



Differential 
Form of the 
Circulation Law 

y 

Figure III—22 

and 

v • t ds — —vy (x) Ay. 

These do not cancel because vy(x) # vy(x + Ax). Incidentally, 

you should try to explain to your own satisfaction why in this ex¬ 

ample V X v is in the negative (positive) z-direction when x is 

positive (negative) and why VXv = 0atJC = 0. 

Differential Form of the Circulation Law 

The curl is defined to be the limit of circulation to area. Thus, 

n • V X E = lim <f> E • t ds, 
as-*o AS J c 

where n is a unit vector normal to the surface enclosed by C at the 

point about which the curve shrinks to zero. But if E is an electro¬ 

static field, then 

E • t ds 0 

for any path C. It follows that 

91 n • V X E = 0. 
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Since the curve C is arbitrary, we can arrange matters so that n is 

a unit vector pointing in any direction we choose. Thus, 

taking n = i, we have (V X E)* = 0; 

taking n = j, we have (V X E)y = 0; 

taking n = k, we have (V X E)z = 0. 

Thus, all three Cartesian components of V X E vanish, and we 

can conclude that for an electrostatic field, 

V X E = 0. 

This is the long-sought-after differential form of the circulation 

law. We are now in a position to give an alternative and much 

more tractable answer to the question “Can a given vector func¬ 

tion F(x, y, z) be an electrostatic field?” The answer is 

IfV X F = 0, then F can be an electrostatic field, and 

if V X F # 0, then F cannot be an electrostatic field. 

This is clearly a much more convenient criterion to apply than our 

earlier one (page 77), which required us to determine the line in¬ 

tegral of F over all closed paths! To see how it works, let us do 

several examples. 

Example 1. Could F = K(iy + jx) be an electrostatic field? (K 

is a constant.) Here we have 

±VXF 

9y\ 
dyj 

= 0=>VXF = 0. 

Answer: Yes. 

Example 2. Could F = K(iy — jx) be an electrostatic field? In 

this case 

ivxF = 
dy\ 

By) 
—2k => V X F = -2kK. 

92 Answer: No. 



Stokes’ Theorem From these examples we can see how easy this criterion is to 

apply. 

Stokes' Theorem 

For the remainder of this chapter we digress from our presenta¬ 

tion to discuss another famous theorem, one strongly reminiscent 

of the divergence theorem and yet, as we’ll see, quite different 

from it. This theorem, named for the mathematician Stokes, re¬ 

lates a line integral around a closed path to a surface integral over 

what is called a capping surface of the path, so the first item on 

our agenda is to define this term. Suppose we have a closed curve 

C, as shown in Figure III—23(a), and imagine that it is made of 

Figure III—23(a) 

wire. Now let us suppose we attach an elastic membrane to the 

wire as indicated in Figure III—23(b). This membrane is a capping 

Figure III-23(b) 

surface of the curve C. Any other surface which can be formed by 

stretching the membrane is also a capping surface; an example is 

shown in Figure III—23(c). Figure III—24 shows four different 

capping surfaces of a plane circular path: (a) the region of the 

93 Figure III—23(c) 



Line Integrals 

and the Curl 

Figure HI-24 

plane enclosed by the circle, (b) a hemisphere with the circle as 

its rim, (c) the curved surface of a dunce cap (a right circular 

cone), and (d) the upper and lateral surfaces of a tuna fish can. 

With these preliminary remarks in mind, you won’t be sur¬ 

prised to see us begin this discussion of Stokes’ theorem by con¬ 

sidering some closed curve C and a capping surface S [Figure 

III-25(a)]. As we have done before, we approximate this capping 

Figure III-25(a) 

surface by a polyhedron of N faces, each of which is tangent to S 

at some point [Figure III—25(b)]. Note that this will automatically 

create a polygon [marked P in Figure III—25(b)] that is an approx- 

94 Figure III-25(b) 



Stokes’ Theorem iraation to the curve C. Let F(jc, y, z) be a well-behaved vector 

function defined throughout the region of space occupied by the 

curve C and its capping surface S. Let us form the circulation of F 

around Ch the boundary of the Zth face of the polyhedron: 

<p F • t ds. 
Jc, 

If we do this for each of the faces of the polyhedron and then add 

together all the circulations, we assert that this sum will be equal 

to the circulation of F around the polygon P: 

2 <£ F • t ds = (f F • t ds. (Ill—9) 
;=i ■> c, J p 

This is easy to prove. Consider two adjacent faces as shown in Fig¬ 

ure III-26. The circulation about the face on the left [Figure 

III-26(a)] includes a term from the segment AB, which is F • t ds. 

But the segment AB is common to both faces, and its contribution to 

the circulation around the right-hand face [Figure m—26(b)] is 

r - rB * 
F • t ds = — I F • t ds. 

J B -M 

Figure HI-26(a) 

95 Figure III—26(b) 
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We see that we traverse the common segment AB one way as part 

of the boundary of the left-hand face, and the other way as part of 

the boundary of the right-hand face. Thus, when we add the circu¬ 

lations of F over the two faces, the segment AB contributes 

rs A ca A 
F • t ds + F • t ds = 0. 

J a J B 

It is clear that any segment common to two adjacent faces con¬ 

tributes nothing to the sum in Equation (IH—9) because such seg¬ 

ments always give rise to pairs of canceling terms. But all segments 

are common to pairs of adjacent faces except those that, taken to¬ 

gether, constitute the polygon P. This establishes Equation (ILL—9). 

Now we go through an analysis very similar to that which 

yielded the divergence theorem. We write 

F’t ds = ^(f F • t ds 
Jp t=i J c, 

N 

-2 -V <p F • t ds 
AS, JCl 

AS,, (III-10) 

where AS, is the area of the /th face. The quantity in the square 

brackets is, approximately, equal to n, • (V X F), where n, is the unit 

positive normal on the /th face and (V X F), is the curl of the vector 

function F evaluated at the point on the /th face at which it is tangent 

to S. We say “approximately” because it is actually the limit as AS, 

tends to zero of the bracketed quantity in Equation (III—10), which is 

to be identified as n, • (V X F),. Ignoring this lack of rigor, we write 

lim 2 
A/-»oo /- j 

each AS/—>0 

AS, 

= lim 2“/*(VXF),A S, 
N-+ 00 /= 1 

each AS;—>0 

=ii« 
V X F dS. (III-ll) 

Since the curve C is the limiting shape of the polygon P, we also 

have 

F • t ds = 9 F • t ds. 

96 
lim 

N—>oo 
each AS,—»0 

P 
(III—12) 



Stokes’ Theorem Combining Equations (III—10), (III—11), and (III—12), we arrive, 

finally, at Stokes’ theorem: 

<j> F • t ds = JJ n • V X F dS, (ffl-13) 

where S is any surface capping the curve C. Thus, in words, 

Stokes’ theorem says that the line integral of the tangential com¬ 

ponent of a vector function over some closed path equals the sur¬ 

face integral of the normal component of the curl of that function 

integrated over any capping surface of the path. Stokes’ theorem 

holds for any vector function F that is continuous and differen¬ 

tiable and has continuous derivatives on C and S. 

Let’s work an example. Take F(x, y, z) — iz + jx — kx, with 

C the circle of radius 1 centered at the origin and lying in the 

xy-plane, and S the part of the xy-plane enclosed by the circle [see 

Figure III—27(a)]. Now 

A 

F • t ds = zdx + xdy — xdz. 

Figure III—27(a) 

Thus, §c F • t ds = $ x dy. Heretofore we have always parame¬ 

trized curves with the arc length 5. In this situation, however, the 

path C is most easily parametrized in terms of the angle 0 shown 

in Figure III—27(b). Thus, we write 

o xdy = cos2 0 dQ = TT, (m-14) 

97 where we use x = cos 0 and y = sin 0. 
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Figure III-27(b) 

Next we calculate 

V X F = 

i 

d/dx 

j 

d/dy 

k 

d/dz = 2j + k 

z x — x 

The capping surface here is a portion of the xy-plane, so that the 

unit normal in the positive direction is n = k. Thus, 

n • V X F = k • (2j + k) = 1 

and 

• V X F dS = (III—15) 

where this last equality follows from the fact that the surface inte¬ 

gral in this case is merely the area of the unit circle. Since this re¬ 

sult [Equation (III—15)] is identical with the one obtained above 

[Equation (III—14)], we have illustrated Stokes’ theorem [Equa¬ 

tion (HI-13)]. 

Let’s redo this calculation, this time choosing the hemisphere 

shown in Figure III-27(c) as our capping surface S. Using Equa¬ 

tion (11-13) with F replaced by V X F, we get 

JJ> • V X F dS dx dy -JiH- 
= 2 J J jdxdy + j J dxdy 98 
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Figure III—27 (c) 

where R is the unit circle in the xy-plane shown in Figure 

III-27(a). The second integral in the right-most equality above is 

just the area of that circle, and so its value is tt. The first integral 

can be handled by introducing polar coordinates. We find 

y dx dy 

Vl-x2-/ 

C2lT f1 r sin 8 r dr dQ 

Jo Jo Vl — r2 
sin 0 <70 f 

Jo 

r2 dr 

Vl - r2' 

It’s easy to show that the integral over 0 is zero. Hence 

//sn*VXFd5 = ir, consistent with our earlier result. 

An Application of Stokes' Theorem 

An important application of Stokes’ theorem is provided by Am¬ 

pere’s circuital law. Consider any closed loop C enclosing a cur¬ 

rent I as in Figure III—28. Note that the direction of C and that of I 

correspond to the same right-hand rule that relates the directions 

of C and the positive normal to a surface capping C. Ampere’s 

99 Figure III—28 
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circuital law says that the line integral of the magnetic field B is 

related to the current thus: 

B • t ds = (Xq/ 

where the constant |x0, called the permeability of free space, has 

the value 1.257 X 10 6 newtons per ampere2. This law, like 

Gauss’ law and the circulation law, says something about the inte¬ 

gral of a field (the magnetic field in this case), and just as in the 

two previous cases, it is convenient to re-express it so that it will 

tell us something about the field at a point. To this end, we first 

introduce the current density J (see page 52). Thus, if current is 

flowing through an area AS with normal n (Figure III—29), the 

current density J is such that 

A/ = J • n AS, 

Figure III—29 

where A/ is the total current. That is, current density is a vector 

function whose magnitude is the current per unit area and whose 

direction is that of the current flow. If ,J(x, y, z) is the current den¬ 

sity, then the total current flowing through a surface S is 

J • n dS. 

Thus, Ampere’s law can be written 

B • t ds = p,0 J • n dS. II 

100 

S can be any surface capping the curve C. If, as is usually the 

case, the current flows through a wire the cross section of which 
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Figure III—30 

does not include the entire capping surface, it does not matter; we 

can integrate over more than the wire cross section if we remem¬ 

ber that J ^ 0 for that part of the surface S cut by the wire and 

J = 0 for the rest (Figure III—30). Thus, 

IJ J • n dS = J J J • n dS. 

cross section entire capping 
of wire surface S 

Now using Stokes’ theorem [Equation (III—13)], we have 

B* t dS= Jf n • V X BdS= |x0 JJ n>J dS. 

Since C and S are arbitrary, we conclude that 

V X B = (jl0J. 

This is the differential form of Ampere’s law. It is also a special 

case of one of Maxwell’s equations, valid when the fields do not 

vary with time. 

Stokes' Theorem and Simply Connected Regions 

For many purposes, including some important applications, we 

must be able to assert that Stokes’ theorem holds throughout 

some region D in three-dimensional space. By this we mean that 

we want the theorem to hold for any closed curve C lying entirely 

in D and any capping surface of C also lying entirely in D. This, 

of course, means the function F must be continuous and differen¬ 

tiable and have continuous first derivatives in D. But in addition 

we must impose a restriction on the region D itself. To understand 

101 
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how this comes about, suppose first that D is the interior of a 

sphere. If F is smooth9 everywhere in D, then Stokes’ theorem 

holds for any closed curve C lying entirely in D, and any capping 

surface of C also lying entirely in D. In other words, Stokes’ theo¬ 

rem holds everywhere in D. A little thought should convince you 

that the same line of reasoning applies to the region between two 

concentric spheres, provided F is smooth in that region. But for 

certain kinds of regions, troubles can arise. As an example, sup¬ 

pose D is the interior of a torus (roughly like a bagel or an inflated 

inner tube; see Figure III—31). The problem in this case is that it’s 

Figure III—31 

possible to construct a closed curve in D like the one shown in the 

figure with the property that none of its capping surfaces lies en¬ 

tirely in D. Although we insist that F be smooth in D, no condi¬ 

tions are imposed upon it elsewhere, so that outside the region it 

may not fulfill the requirements of smoothness that ensure the va¬ 

lidity of Stokes’ theorem. The relation between the line integral 

over C and the surface integral over S asserted by the theorem 

can, and in many cases does, break down if F is not smooth on S. 

Mathematicians refer to regions such as the interior of a 

sphere or the space between two concentric spheres as simply 

connected, whereas the interior of a torus is not simply con¬ 

nected. By definition, a region D is simply connected if any 

closed curve lying entirely in D can shrink down to a point with¬ 

out leaving D. Using this definition, you should be able to verify 

that the interior of a sphere and the region between two concen¬ 

tric spheres are both simply connected, but that the interior of a 

torus is not. With the concept of simple connectedness available 

to us, we can easily specify the conditions under which Stokes’ 

theorem holds throughout a region; The vector function F must 

102 
9 Hereafter when we say that a function is “smooth,” we’ll mean that it is continu¬ 

ous, differentiable, and has continuous first derivatives. 



Path be smooth everywhere in a simply connected region D. Then 

Independence Stokes’ theorem [Equation (III—13)] is valid for any closed 

and the Curl curve C and any capping surface S of C, both of which lie en¬ 

tirely in D. 

Most of the time we’ll assume that the functions we work with 

are smooth and that the regions of interest are simply connected. 

There are situations, however, like the one discussed in the next 

section, where simple connectedness plays an essential role, and 

we’ll point them out as we come to them. 

Path Independence and the Curl 

In our discussion of the differential form of the circulation law, 

we showed that because the line integral of an electrostatic field E 

is zero over any closed path, the curl of E is zero. The same is 

true of any vector function F; that is, if 

F • t ds 0 

for all closed paths C, then 

V X F = 0. 

The proof of this fact is precisely the same as the one given on 

pages 91-92 with E replaced everywhere by F. 

Is the converse of this statement also true? That is, if V X F = 

0, does this imply that the circulation of F is zero over all closed 

paths? At first glance it might appear that the answer to this ques¬ 

tion is yes. All we have to do is use Stokes’ theorem and observe 

that since by assumption V X F = 0, 

£ F• t ds = J J n • V X F dS = 0. 

However, there is a flaw in this line of reasoning. Recall that the 

validity of Stokes’ theorem requires that F be smooth in a simply 

connected region. If the region is not simply connected, Stokes’ 

theorem may not hold, at least for some closed paths lying in the 

region, and the fact that V X F = 0 does not guarantee that the 

circulation of F is zero over all closed paths. The closest we can 

come to a converse is to say that if V X F = 0 everywhere in a 103 
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simply connected region, then the circulation of F is zero for all 

closed paths in that region. The two statements “circulation 

equals zero” and “curl equals zero” are equivalent only in a sim¬ 

ply connected region. 

There is a slightly different, but often useful, way to state this 

connection between circulation and curl; namely, if fc F • t ds is 

independent of path, then V X F = 0, and if V X F = 0 in a sim- 

ply connected region, then Jc F • t ds is independent of path. You 

should have no difficulty in establishing this for yourself. 

7/7-7 Use an argument like the one given in the text for the Coulomb 

force (pages 71-73) to show that fc F • t ds is independent of path for 

any central force F. 

777-2 In the text we obtained the result 

(V x F)z = 
dFy 

dx 

dF, 
dy 

by integrating over a small rectangular path. As an example of the fact 

that this result is independent of the path, rederive it, using the triangu¬ 

lar path shown in the figure. 

x 

III-3 Calculate the curl of each of the following functions using Equa¬ 

tion (III—7b): 

(a) iz2 + jx2 - ky2. 

(b) 3ixz - kx2. 

(c) ie~y + j<Tz + ke x. 

(d) iyz + jxz + kry. 

(e) —iyz + jxz. 

(f) ix + jy + k(x2 + y2). 

(g) ixy + jy2 + kyz. 

(h) (ix + jy 4- kz)/(x2 + y2 + z2)372, (x, y, z) + (0, 0, 0). 104 



Problems 111-4 (a) Calculate </> F • t ds for the function in Problem III—3(a) 

over a square path of side s centered at (x0, y0, 0), lying in the 

xy-plane. and oriented so that each side is parallel to the x- or y-axis. 

(b) Divide the result of part (a) by the area of the square and take 

the limit of the quotient as s —» 0. Compare your result with the 

z-component of the curl found in Problem III-3(a). 

(c) Repeat parts (a) and (b) for the functions in Problem III—3(b), 

(c), and (d). (You may find it interesting to try paths of different 

orientations and/or shapes.) 

7/7-5 (a) Calculate $ F • t ds where 

F = k(y + y2) 

over the perimeter of the triangle shown in the figure (integrate in 

the direction indicated by the arrows). 

(b) Divide the result of part (a) by the area of the triangle and 

take the limit as a —* 0. 

(c) Show that the result of part (b) is n • V X F evaluated at 

(0, 0, 0) where n is the unit vector normal to the triangle and 

directed away from the origin. 

111-6 Show that 

V X = A, 

where r = ix + jy + kz and A is a constant vector. 

777-7 Show that V • (V x F) = 0. (Assume that mixed second partial de¬ 

rivatives are independent of the order of differentiation. For example, 

d2F.ldx 9z = d2F./dz dx.) 

III-8 In the text (pages 82-86) we obtained the z-component of V X F in 

cylindrical coordinates. Proceeding the same way, obtain the 0- and 

r-components given on page 86. 

111-9 Following the procedure suggested in the text (pages 82-86), ob¬ 

tain the expression for V X F in spherical coordinates given on page 

86. The figures given on page 106 will be helpful. 105 
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111-10 (a) Rewrite the function in Problem HI-3(e) in cylindrical coordi¬ 

nates and compute its curl using the expression given on page 86. 

Convert your result back to Cartesian coordinates and compare 

with the answer obtained in Problem IH-3(e) (see Problem 11-16). 

(b) Repeat the above calculation for the function of Problem 

m-3(f). 

III-ll (a) Rewrite the function in Problem III—3(g) in spherical coordi¬ 

nates and compute its curl using the expression given on page 86. 

Convert your result back to Cartesian coordinates and compare 

with the answer obtained in Problem ID-3(g) (see Problem 11-17). 

(b) Repeat the above calculation for the function of Problem 

III—3(h). 

I 11-12 Any central force can be written in the form 

F(r) - %rf(f), 

where er is a unit vector in the radial direction and/is a scalar func¬ 

tion. Show by direct calculation of the curl that this function is irrota- 

tional (that is, V X F = 0). 

106 



Problems 111-13 Which of the functions in Problem III—3 could be electrostatic 

fields? 

111-14 Use Stokes’ theorem to show that 

t ds = 0, 

where C is a closed curve and t is a unit vector tangent to the curve C. 

111-15 Verify Stokes’ theorem 

cf F• t ds= [fn-VxFdS 
Jr J Js 

in each of the following cases: 

(a) F = iz2-jy2. 

C, the square of side 1 lying in the xz-plane and directed as 

shown. 

S, the five squares Su S2, S3, S4, and S5 as shown in the figure. 

(b) F = iy + jz + k.t. 
C, the three quarter circle arcs C1; C2, and C3 directed as 

shown in the figure. 

S, the octant of the sphere x2 + y2 + z2 = 1 enclosed by the 

three arcs. 

z 

107 
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(c) F = \y - jx + kz. 

C, the circle of radius R lying in the xy-plane, centered at 

(0, 0, 0) and directed as shown in the figure. 

iz 

mi 

S, the curved and upper surfaces of the cylinder of radius R 

and height h. 

Ill-16 (a) Consider a vector function with the property V X F = 0 

everywhere on two closed curves C, and C2 and on any capping 

surface S of the region enclosed by them (see the figure). Show 

that the circulation of F around C, equals the circulation of F 

around C2. In calculating the circulations direct the curves as indi¬ 

cated by the arrows in the figure. 

(b) The magnetic field due to an infinitely long straight wire car¬ 

rying a uniform current I is B = (p.(//2'rr/')e„. Show that V X B = 

0 everywhere except at r — 0. 

(c) Prove Ampere’s circuital law for the field of the wire given in 

part (b). [Hint: Use the result of (b) to find the circulation of B 



Problems around a circle with the wire passing through its center and normal 

to its plane. Then use the result of part (a) to relate this circulation 

to the circulation around an arbitrary curve enclosing the current.] 

7/7-77 (a) Consider the function given in cylindrical coordinates by 

A 
ee 

F(r, 0, z) = -y. 

Show that Stokes’ theorem does not hold for this function if C is 

the circle of radius R in the xy-plane centered at the origin, and S 

is the portion of the xy-plane enclosed by C. Why does the theo¬ 

rem fail in this case? 

(b) Consider the region D that consists of all of three-dimensional 

space with the z-axis removed. Is the function F defined in 

(a) smooth in 7)? Does Stokes’ theorem hold in D? Is D a simply 

connected region? 

111-18 The electromotive force % in a circuit C is equal to the circulation 

of the electric field E around the circuit: 

% = E • t ds. 

Faraday discovered that in a stationary circuit an electromotive force is 

induced by a changing magnetic flux. That is, 

where 

$ = B • n dS, 

t is time (don’t confuse it with the tangent vector t), and S is any cap¬ 

ping surface of C. Use this information and Stokes’ theorem to derive 

the equation 

V X E = 
0B 
dt ’ 

which is one of Maxwell’s equations. 

777-79 Determine the value of the line integral Jc F • t ds, where 

F = (e~y - ze x)\ + {e~z - xe v)j + (e~x - ye_z)k 

and C is the path 

X = ^ln(1+/», 

0<p< 1 

109 
from (0, 0, 0) to (1, 1, 1). [Suggestion: Think before you write!] 
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111-20 Maxwell’s equations are 

V • E = p/e0, 

V x E = ~~, and V X B = e0p.0 ^ + p<J. 

where E is the electric field, B the magnetic field, p the charge density, 

and J the current density. Use Maxwell’s equations to derive the conti¬ 

nuity equation 

V = 0. 

Interpret this equation. 

111-21 The electromagnetic field stores energy, and it is possible to show 

that in a volume V the amount of electromagnetic energy is 

JJJ>« 
where the energy density 

Pr: = l(e„E • E + B • B/p,0) = 5(e0£2 + B2/p,0). 

Use Maxwell’s equations (see Problem III—20) to show that 

^EXfi' dp E — 
T + v' M-o 

= — J • E. 

Interpret this equation. 

111-22 (a) Apply the divergence theorem to the function 

G(x, y) = iGv(x, y) + jGv(x, y), 

using for V and S the volume and surface shown in the diagram; 

its bottom is a region R of the .ry-plane, its top has the same shape 

as, and is parallel to, the bottom, and its side is parallel to the 

z-axis. In this way obtain the relation 

<j> G, dy - G, dx - dxdy, 

which is the divergence theorem in two dimensions. 

110 C 



Problems (b) Apply Stokes’ theorem to the function 

111 

F(x, y) = iFx(x, y) + jFy(x, y) 

using for C a closed curve lying entirely in the xy-plane and for S 

the region R of the xy-plane enclosed by C. In this way obtain the 

relation 

fcF*dx + Fydy = {J* - ^)dxdy, 

which is Stokes’ theorem in two dimensions. 

(c) Show that in two dimensions the divergence theorem and 

Stokes’ theorem are identical. 

111-23 (a) Let C be a closed curve lying in the xy-plane. What condition 

must the function F satisfy in order that 

F • t ds = A, 

where A is the area enclosed by C? [Hint: See Problem III—22.] 

(b) Give some examples of functions F having the property de¬ 

scribed in (a). 

(c) Use line integrals to find formulas for the area of 

(i) a rectangle. 

(ii) a right triangle. 

(iii) a circle. 

(d) Show that the area enclosed by the plane curve C is the mag¬ 

nitude of 

i£rX Xds' 

where r = ix + jy. 

III-24 (a) There is an important theorem in vector calculus that says V • G 
= 0 (where G is some differentiable vector function) implies and is 

implied by G = V X H (where H is another differentiable func¬ 

tion). To prove this we note first of all that G = V X H implies that 

V • G = 0 (see Problem HI-7). To show that V • G = 0 implies that 

we can write G = V X H, the simplest procedure is to give H: 

Hx = 0, 

Hy = f G.(x', y, z) dx , 

H: — — f Gy(x\ y, z) dx' + f Gx(x0, y', z) dy', 
J *0 -'.Vo 

where x0 and y0 are arbitrary constants. Show by direct calcula¬ 

tion that if V • G = 0, then G = V X H. 
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(b) Is the vector function H specified in (a) unique? That is, can we 

alter it in any way without invalidating the relation G = V X H? 

112 

111-25 Determine in which of the following cases it is possible to write 

G = V X H. In the cases where it is possible, find H (see Problem 

m-24). 

(a) G = iy + jz + k*. 

(b) G = B,k, B0 a constant. 

(c) G = Lc2 — ky2. 

(d) G = 2\x - jy - kz. 

(e) G = 2\x - jy + kz. 

111-26 Since the divergence of any magnetic field B is zero, we can write 

B = V X A (see Problem III-24). Prove that the circulation of A 

around an arbitrary closed path C is equal to the flux of B through any 

surface 5 capping C. 

III-27 Prove the statement made in Problem III-24(a) by applying Stokes’ 

theorem and the divergence theorem. [Hint: See the diagram below.] 

S 

C 

C' 

111-28 (a) What is the integral form of the equation G = V X H? [Hint: 

Compare the differential and integral forms of Ampere’s circuital 

law.] 

(b) Verify your result in part (a) using for G and H functions se¬ 

lected from Problem III-25, and paths and surfaces of integration 

of your own choice. 

111-29 In the text we defined the curl as the limit of a certain ratio. An al¬ 

ternative definition is provided by the equation 

V X F = lim 4- [ [ n X F dS, 
AV—M) AV J Js 

where F is a vector function of position, the integration is carried out 

over a closed surface S which encloses the volume AV, and n is the unit 

vector normal to S pointing outward from the enclosed volume. (This 

definition does not display the geometric significance of the curl as well 

as the one given in the text. Nonetheless, in one respect at least it may be 

preferable: it gives the V X F rather than just a component of it.) 

(a) Following a procedure similar to the one used in the text in 

treating the divergence, integrate over a “cuboid” and show that 

the definition given above yields Equation (III-7b). 



Problems (b) Arguing as we did in the text in establishing the divergence 

theorem, use the above expression for the curl to derive the 

equation 

IftxTdS-fjlvx F.V, 

where V is the volume enclosed by S. 

(c) Derive the equation of part (b) directly from the divergence 

theorem. [Hint: In the divergence theorem [Equation (11-30)] re¬ 

place F by e x F, where e is an arbitrary constant vector.] 

(d) Verify the equation of part (b) for F = iy — jz + kx and V the 

unit cube shown in the figure. 

111-30 The result 

dFy 
(VXF): = - 

dPx 

dy 

has been established by calculating the circulation of F around a rec¬ 

tangle (see the text, pages 75 ff.) and around a right triangle (see Prob¬ 

lem HI-2). In this problem you will show that the result holds when 

the circulation is calculated around any closed curve lying in the 

xy-plane. 

(a) Approximate an arbitrary closed curve C in the xy-plane by a 

polygon P as shown in the figure. Subdivide the area enclosed by 

P into N patches of which the /th has area AS,. Convince yourself 

by means of a sketch that this subdivision can be made with only 

two kinds of patches: rectangles and right triangles. 
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(b) Letting C(x, y) = dFy/dx — dFJdy, use Taylor series to show 

that for N large and each AS, small, 

F’t ds=]?<f F • t ds 
Jp /=i Jc, 

= C(xo, y0) AA + (g) 2 (x, - x0) AS, 
\ / xtFyo i 

+ (f) i(y,-yo)A s, + -, 
\ OX /xa.y, 1=1 

where C, is the perimeter of the /th patch, (x(), y0) is some point in 

the region enclosed by P, and AA is the area enclosed by P. 

(c) Show that 

lim <P F‘ t ds = f F• t ds 
N~> * J p J Q 

each AS,—>0 

C(xo, y0) + (* ~ x0) 

+ (y- y0)' 
3c\ 

dy/xo.* 
AS, 

where AS is the area of the region R enclosed by C and (x, y) are 

the coordinates of the centroid of the region R; that is, 

*=isJLxdxdy and ~y=i~sSLydxdy- 

(d) Finally, calculate 

(V X F). = lim F • t ds. 
AS-.0 AS J c 

about XQ,y0 
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Chapter IV 

The Gradient 

For mostly they goes up and down . . . 

P. R. Chalmers 

Line Integrals and the Gradient 

We have now investigated the relationship between the following 

two statements: 

A 

1. $-F • t ds = 0 for any closed curve C. 

2. V X F = 0. 

We saw in the last chapter that the first of these statements im¬ 

plies the second and is equivalent to the assertion that the line 

integral of F • t is independent of the path. We also saw that 

the second statement implies the first if F is smooth in a simply 

connected region. You might think that two ways of saying 

something would be enough, but there is a third way, as we 

shall now see. 

115 



The Gradient Let us suppose that a given vector function F(x, y, z) has asso¬ 

ciated with it a scalar function i\j(x, y, z) and that the two functions 

are related as follows: 

Fr = 
3»Jj 

dx ' 
F 

y dy ’ 
and (IV-1) 

If the preceding relations hold, then the line integral of F • t is in¬ 

dependent of path. To show this, we use the three relations given in 

Equation (IV-1) and the formula for the unit tangent vector to get 

= = # 
dx ds dy ds dz ds ds 

where the second equality follows from a familiar chain rule of 

multivariate calculus. Suppose now that the path C joins the two 

points (xQ, y0, z0) and (x,, yu z,). Then 

= »K^i,3;i.zi) - »K*o. zo)- 

You can see that this result depends only on the points at which 

the path C begins and ends. We’d get the same result for any path 

joining these two points. This proves our assertion: with F and v|i 

related as in Equations (IV-1), the line integral of F • t is inde¬ 

pendent of path. We shall now show that the converse of this 

statement is also true; that is, if the line integral of F • t is inde¬ 

pendent of path, there is a scalar function v|/(zc, y, z) related to F as 

specified in Equations (IV-1). 

We begin with the observation that, because the line integral 

JCF • t ds is independent of path, if we integrate from some fixed 

point P0(x0, Fo» Zo) to a second point P(x, y, z), the result is a scalar 

function of the coordinates (x, y, z): 

f(w) 

i)j(x, y, z) = I F • t ds. (IV-2) 
^ (■roJo.Za) 

It is important to understand that this would not be true if the inte¬ 

gral depended on path, for then its value would depend not only 

on the coordinates (x, y, z) of the point P but also on the path join¬ 

ing PQ and P, and the integral would not then be a function within 

the standard definition of the term. 116 



Line Integrals 

and the Gradient 

Since the integral we’re examining is path independent, we are 

free to select any curve as the path of integration. We choose the 

one shown in Figure IV-1. It consists of two parts. The first, C0, 

Figure IV-1 

connects P0 to an intermediate point P, whose coordinates are 

(a, y, z), where a is some constant. Beyond fixing its two end points 

and requiring it to be reasonably smooth, we do not need to specify 

anything more about C0. The second part of the curve, Cj, is the 

straight-line segment from Px to P. Thus, Equation (IV-2) becomes 

v|)(x,y,z)=[ F'tds+f Fx(x', y, z) dx'. 
Jp0 Jp, 

The first term on the right-hand side of this equation is indepen¬ 

dent of the variable x. The second term is, effectively, nothing 

more than an ordinary one-dimensional integral, since y and z are 

constant on C, and just come along for the ride. That is, 

[ Fx(x', y, z) dx' = f Fx(x', y = const., z = const.) dx', 
J p, -'a 

and so 

3i|/ 

dx 
= const., z = const.) dx' 

= FJx, y, z). 

117 
where we use the fact that the derivative of an integral with re¬ 

spect to its upper limit is merely the integrand evaluated at that 



The Gradient limit. This establishes one of the three relations we sought. The 

other two, Fy = di|i/dy and Fz = di|i/dz, can be obtained by the 

same sort of reasoning, and you should carry out the derivations 

yourself. Figure IV-2(a) and (b) will be helpful. 

Figure IV-2(a) 

Figure IV-2(b) 
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which is read “del psi.” This operator is called the gradient and is 

sometimes written gradvj/. However, we shall always write Vili in, 

keeping with modem usage. The gradient of i|i is a vector function of 

position. Its geometric significance will be discussed in detail later. 

We have now established the relationship between path inde¬ 

pendence and the existence of a scalar function r|r(jc, y, z) such that 

F = Vv|r. Since there is also a relationship between path indepen¬ 

dence and the fact that V X F = 0, you may suspect that V X F = 0 

and F = Vvjr are also related. Indeed, if F = Vvfi, then under suit¬ 

able conditions, V X F = 0. This is easily established. Consider, 

for example, the x-component of V X F: 

(V X F)v = dl±- 
dFy _ Q (dty 

dy dz dy \dz 

32v)/ d2i)f 
0. 

dy dz dz dy 

dz\dy j 

This last equality follows if vji and its first and second derivatives 

are continuous, for then d2i|>/dy dz = 32i\i/dz dy. Obviously, the 

other two components of V X F can be shown to vanish in ex¬ 

actly the same way. Thus, 

3ilf 
Fq = 'dq Cq=x,y,Z) => V X F = 0. 

The converse of what we have just shown would assert that if 

V X F = 0, then there exists a scalar function vjr such that F = Vd), 

a statement that is true, provided the region of interest is simply 

connected. To understand this, we can consult Figure IV-3, 

which shows how path independence of the line integral of F • t, 

V X F = 0, and F = VvJ/ are related. The solid arrows in the dia¬ 

gram represent implications that hold in general, provided F is 

smooth. The dashed arrows represent implications requiring not 

only that F be smooth, but that the region of interest be simply 

connected. We have already shown that (1) implies both (2) and 

(3) and that (3) implies (1) in a simply connected region. Combin¬ 

ing these two statements, we see that (3) implies (2) in a simply 

connected region. 

In practice, just as the functions we deal with usually have con¬ 

tinuous first derivatives (and are therefore smooth), the regions 

we work with are simply connected. In such circumstances we 

can relax a bit and regard the three statements summarized in Fig- 119 
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l. 2. 

Figure IV-3 

ure IV-3 as equivalent: each implies and is implied by each of the 

others. However, you should be aware of simple connectedness 

and its implications for the relations among the three statements. 

To give a simple example of the ideas we have been dis¬ 

cussing, consider the vector function 

F(x, y, z) = iy + jx. 

This function is smooth everywhere, and we have already noted 

that its curl is zero (page 92). According to what we have just 

said, this means there must be a scalar function i|j(x, y, z) such that 

F is its gradient. Thus, i|i must satisfy 

= 0 = 

dijj 

dz ' 

Clearly, i|i(x, y, z) = xy + C, where C is an arbitrary constant, sat¬ 

isfies these relations. This should be contrasted with the case of 

the function F = iy — jx, the curl of which does not vanish (page 

92). If this function were the gradient of a scalar function i|j, we 

should have 
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Electrostatic 

Field 

but, as you should be able to convince yourself, there is no func¬ 

tion vji that satisfies these three equations. 

The expression we have written for the gradient of a scalar 

function i|j(x, y, z), namely, 

. dil/ . di[< 54* 
V'J’ = 1^ + J^+k^' 

is really just the form of this operator in Cartesian coordinates. To 

find the form of the gradient in other coordinate systems, if you 

go about it straightforwardly, is a tedious job. For example, to 

find the gradient in cylindrical coordinates, we would first have to 

express the Cartesian unit vectors i, j, and k in terms of the analo¬ 

gous quantities e,., e9, and e. in cylindrical coordinates. Then, 

using x = r cos 0, y = r sin 0, and the chain rule for differentia¬ 

tion, we would have to express derivatives with respect to x, y, 

and z in terms of those with respect to r, 0, and z. We shall not 

pursue this matter here because later (see pages 141 ff.) an easier 

and faster method will be available to us. For the present we 

merely quote the form of the gradient in cylindrical and in spheri¬ 

cal coordinates. 

Cylindrical: 

rj i J#, J 1 dl|t » dtjl 
V^=e,.-^+ee7^+e;^. 

Spherical: 

„ , A 4 , A 1 # , A l # 
V 4* = e,.-r-+ e67—-+ e„—:—r — 

or ^ ' dq> r sin cp 50 

(IV-3) 

(IV-4) 

A coordinate-free definition of the gradient analogous to the ones 

given for the divergence [Equation (11-17)] and the curl [Equa¬ 

tion (III—8)] is discussed in Problem IV-25. 

Finding the Electrostatic Field 

We began our discussion of vector calculus with a search for 

some convenient method for finding the electrostatic field. Our in¬ 

vestigations led us to the differential form of Gauss’ law, 

121 V • E = p/e0. 



The Gradient Even this expression is not often useful for finding E because it is 

one equation in three unknowns (Ex, Ey, and E, in Cartesian coor¬ 

dinates). Now, at last, we are able to complete our discussion and 

write down the equations that are often the most useful of all 

known methods for finding the field. 

This final step rests on the observation that since 

E • t ds = 0 

for any closed path C, the field E can be written as the gradient of 

a scalar function. Conventionally, this function, called the electro¬ 

static potential, is designated d>(x, y, z), and we write1 

E = -vo>. 

Combining this equation with the differential form of Gauss’ law 

[Equation (11-17)], we get 

V • (-Vd>) = p/e0, 

or 

V*(Vd>) = — p/e0. 

When we write out the left-hand side of this equation in detail, we 

find 

V • (Vd>) 
Jl 
dx 

a<t> . a<t> 

dx J dy 

d23> d2d> d2<£ 

dx2 dy2 dz2 

and so 

a2d> , d2<t> , a2d> , 
TT + TT + TJ = ~P/eo- 
dx dy dz 

(IV-5) 

Equation (IV-5) can be written more compactly by introducing 

a new operator, called the Laplacian, which is denoted, for 

122 
1 The negative sign in this equation is not put there just to make life more difficult; 

there is a good reason for it. See the discussion on page 139. 
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fairly obvious reasons, by the symbol V2 (read “del squared”). 

That is. 

V2 = V • V 
d_ 

dx + j 

_ V | U | u 

dx2 dy2 dz2 

In this new notation Equation (IV-5) becomes 

V25> = — p/e0. 

(IV-6) 

(IV-7) 

Equation (IV-fi) provides the form of the Laplacian in Carte¬ 

sian coordinates; its forms in cylindrical and spherical coordinates 

will be given in the next section. The best definition of the Lapla¬ 

cian is probably 

v2/= V.(V/), 

where / is some suitably continuous scalar function of position. 

This definition has the important advantage of being independent 

of the coordinate system. 

Equation (IV-7) is called Poisson’s equation. It is a linear, 

second-order partial differential equation in one unknown, the 

scalar function <fi(x, y, z), and is the culmination of our long 

search for a method of determining the electrostatic field. A great 

body of work exists describing the many elegant mathematical 

schemes that have been devised to solve it, and a few simple ex¬ 

amples are given in the next section. In any problem, once we 

have <£, the field is trivial to find using E = — Vfi). 

At any point in space where there is no electric charge, the den¬ 

sity p is zero and Poisson’s equation reduces to 

V23> = 0. 

This is called Laplace’s equation and is more often used than 

Poisson’s equation. The reason for this is that usually charges are 

distributed over various objects; this gives rise to a field, and we 

are interested in finding the potential (and from it, the field) in the 

charge-free space between the objects. In the simplest of situa¬ 

tions it is possible to specify “boundary conditions,” that is, the 

123 value of the potential on the surfaces of these objects (Figure 
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Figure IV-4 

IV—4). We then find that solution of Laplace’s equation which 

takes on the given values on the surfaces. This is illustrated in the 

next section. 

Using Laplace's Equation2 

Whether solving Laplace’s equation is or is not a topic in vector 

calculus is a moot point, but the basis of our entire discussion has 

been a search for a method to calculate electric fields. Since 

Laplace’s equation is the end product of that search, we can 

scarcely omit a few examples to show how it works. 

We begin with an especially simple problem. Imagine we have 

two very large (“infinite”) parallel plates separated by a distance s 

(Figure IV-5). Choosing a coordinate system as shown in the fig¬ 

ure, let the plate at x = 0 be held at zero potential and that at x = s 

at V0. Our object is to find the potential and the electric field in the 

space between the two plates. Because the plates are infinitely 

large, there is nothing to distinguish a point (x, y, z) from any 

other point (x, >■', z’) having the same x-coordinate. It follows that 

the potential $ depends on x but not on y or z. Thus, V2<b reduces 

in this case simply to d2(l>/dx2, and so Laplace’s equation and the 

associated boundary conditions are 

124 2 This section is not essential to what follows and may be omitted. 
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Figure IV-5 

and 

<t> = 

0 at x = 0 

V0 at x = s. 

This is a trivial problem and the solution is 

^ Vox 
= — 

The electric field is found using E = — V<I>, which yields 

Ex = —^ and Ey = Ez = 0. 

Thus, the field is a constant vector normal to the plates. This is an 

excellent approximation to the potential and field between, but far 

from the edges of, two plates whose linear dimensions are large 

compared with their separation. You may recognize this arrange¬ 

ment as a parallel plate capacitor. 

Our second example is a spherical capacitor, that is, two con¬ 

centric spheres having radii /?, and R2 with the inner one main¬ 

tained at a potential V0 and the outer at zero (Figure IV-6). We 

are required to find the potential and field everywhere between 

the spheres. In this situation we would obviously do well to work 125 
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Figure IV-6 

in spherical coordinates r, 0, and 4>, in which Laplace’s equation 

between the spheres has the imposing form 

V2<f> = 1A 
r2dr 

, i a / . 

r2 sin (() 3<t> \ in d4> 

(See Problem IV-23.) Fortunately, we need not work with this equa¬ 

tion as it stands; a little thought will convince you that can only be 

a function of r, since there is no way to distinguish a point (r, 0, 4>) 

from another (r, 0', 4>') with the same r but different 0 and 4>- Thus, 

1 323> 

r2 sin2 cf> 30‘ 
= 0. 

3$ _ 3d> = n 

30 3c() ' 

and Laplace’s equation reduces to 

<iv-8) 

We are interested in the solution of this equation that is valid for 

f?, < r < R2 and satisfies the boundary conditions 

D(r) = 
Vo at r — R, 

126 o at r = R2. 
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Multiplying Equation (IV-8) by r2 and putting i|i = (IQ/dr, we get 

d_ 

dr 
(r2i|/) = 0, 

and so 

r2v|i = c,, 

where ct is a constant. Hence, 

C\ 

r 2 ’ 

and it follows that 

Q = ~ + c* (IV-9) 

where c2 is another constant. Imposing the boundary conditions, 

we find 

R 
r + c2=Vo and 

~i+c2=0’ 

whence 

VoRlR 2 

Rt- R 

VqRi 

Cl Ri-Ri' 

Substituting these in the expression for the potential [Equation 

(IV-9)], we get 

To get the electric field, we must take the gradient of Q, and this 

is clearly most conveniently done in spherical coordinates [see 

Equation (IV-4)]. However, since in this case T* depends only on 

r, we get only a radial component: 

P _ _dQ _ Vq/?i/?2 1 
r dr - R2 ’ 

127 £„ = £,!, = 0, (/?, < r < R2). 



The Gradient 

Figure IV-7 

Our third and last example is more complicated (and more in¬ 

teresting) than the foregoing. If a potential difference is main¬ 

tained between two “infinite” parallel plates P and P' (Figure 

IV-7), then we know from our first example that the field be¬ 

tween them is a constant vector normal to the plates. Choosing a 

coordinate system as shown in the figure (with the z-axis out of 

the plane of the paper), we have E = E0i, where E0 is a constant. 

Let an “infinitely” long cylinder held at zero potential be situated 

between the plates with its axis along the z-axis. Let its radius 

R be small compared with the plate separation. What are the 

potential and the electric field outside the cylinder and between 

the plates? Here, clearly, we should use cylindrical coordinates 

(r, 0, z), in which case Laplace’s equation reads 

V2<D = IA 
r dr 2002 0Z2 

(See Problem IV-21.) You should convince yourself that <I> in 

this case must be independent of z, so this equation simplifies 

somewhat to 

li. 
r dr 

d2<l> 

■2 002 
(IV-10) 

There are two boundary conditions, of which the first is 

d>(r, 0) = 0 at r = R. 

128 

The second condition has to do with the fact that at large values 

of r, the influence of the cylinder is negligible and the field must 
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be, to a good approximation, what it would be if the cylinder were 

not present at all, that is, jE'0i. To put this in terms of the potential, 

we note that 

= -Enx 

will provide just such a field. Since x = r cos 0, we can write the 

second boundary condition 

<l>(r, 0) = — E0r cos 0, r»R. (IV—11) 

Let’s try to solve Laplace’s equation for this problem [Equa¬ 

tion (IV-10)] by assuming we can write 

<t>(r, 0)=/(r)cos0, (IV-12) 

where/(r) is an as yet unknown function. What prompts us to do 

this is the fact that the second boundary condition [Equation 

(IV—11)] has precisely this form—a function of r multiplied by 

cos 0. If we substitute Equation (IV-12) into Equation (IV-10), 

the result is a differential equation for the function/(r): 

dj. \ V 
dr2 r dr 

1 /= o. 

Putting/(r) = rk where \ is a constant leads to 

MX. - 1)^“2 + \rx~2 - rx~2 = 0, 

or 

k2= 1, 

and X. = ±1. Hence we get 

/(r)=Ar + |, 

where A and B are constants. Thus, our solution is 

129 

$(r, 0) = ( Ar + j: j cos 0. 
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AR + | = 0, 

or 

B = —AR2. 

Hence, 

* AR2 
0) = Ar cos 0-— cos 0. 

To impose the second condition, we note that for r large, the second 

term in this last equation is negligible compared with the first. Thus, 

<I>(r, 0) — Ar cos 0, r large. 

We satisfy the second boundary condition by choosing A = — E0. 

The complete solution is thus 

<J>(r, 0) = -E0r cos 0. 

To find the electric field, we proceed as usual with E = —V<f>. 

Using Equation (IV-3), we get 

E0 1 + cos 0, 

sin 0, 

E. = 

You should verify that for large r, this field reduces to E0i as 

required. 

You may find this last example disquieting, since a certain 

amount of clever guesswork is used in finding the potential. Actu¬ 

ally, there are standard procedures that, in problems of this kind, lead 

more or less straightforwardly to the solution. A discussion of these 130 



Directional procedures, however, would be veiy lengthy and (in the well-worn 

Derivatives and phrase) beyond the scope of this text. Before moving on, however, 

the Gradient one further point is worth making: A solution of Laplace’s equation 

that satisfies appropriate boundary conditions is unique. That is to 

say, there is one and only one such solution, so that if we solve a 

problem by guesswork and skullduggery, and someone else solves it 

with refined and elegant mathematical techniques, the two solutions, 

in spite of their disparate pedigrees, must be the same. In Problem 

IV-24 you will be led through a proof of this remarkable fact. 

Directional Derivatives and the Gradient 

We have introduced the gradient as a sort of mathematical artifice 

useful in discussing path-independent line integrals. We now turn 

to a more detailed examination of the gradient in order to describe 

its geometrical significance. 

Before beginning our discussion, we make a few comments on 

Taylor series, since these are needed in what follows. For a scalar 

function of one variable that is suitably continuous and differen¬ 

tiable, we have 

f(x + Ax) = f(x) + Axf'{x) + |(Ax)2/"(x) + ■ ■ •. 

This says that the value of the function at some point x + Ax can be 

written as the sum of (usually) infinitely many terms that involve the 

function and its derivatives at some other point x. Among other 

things, this Taylor series is useful for calculation, for if the two 

points are close together (that is, if Ax is small), then we can truncate 

the series after a certain number of terms (which we hope is small), 

since the neglected terms, each proportional to some large power of 

the small number Ax, will sum to a value that is negligible. 

Taylor series can also be formed for functions of several vari¬ 

ables. Thus, for a function of two variables we have 

fix + Ax, y + Ay) 

= /(x,y) + AxJ£+ Ay^ + ---. (IV-13) 

This says that the value of the function at some point (x + Ax, 

y + Ay) can be written as a sum of (usually) infinitely many terms 

131 that involve the function and its derivatives at some other point 
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terms of this series [represented by the dots in Equation (IV—13)]. 

We should know, however, that these terms involve higher pow¬ 

ers of the “small” numbers Ax and Ay (for example, Ax2, Ay2, 

AxAy, Ax3, Ay3, Ax2 Ay, and so on). With these simple ideas in 

mind we turn now to our main task. 

Consider some function z = f(x, y). Geometrically, this repre¬ 

sents a surface as shown in Figure IV-8(a). Let (x, y) be the coor¬ 

dinates of a point P in the xy-plane. The height of the surface 

above this point is represented by the length of the dotted line PQ\ 

that is, PQ = z = fix, y). Suppose now we take a short step in the 

xy-plane to a new point P' with coordinates (x -I- Ax, y + Ay). 

The height of the surface above this point is P'Q' = /(x + Ax, 

y + Ay). Let As be the length of the step (Ax = PP'). 

Figure IV-8(a) 

We next ask how much the function/has changed as a result of 

taking this step. Clearly, this change is the difference in the two 

heights PQ and P'Q', and 

P'Q' ~ PQ - A/ = /(x + Ax, y + Ay) -fix, y). 

Applying the Taylor series formula stated above [Equation 

(IV-13)], we get 

A/ = /(x, y) + Ax ^ + Ay ^ + • • • - fix, y) 

-zufGi, 132 
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We now recast this expression by what at first may seem an un¬ 

necessary elaboration of the notation. Let As be a vector that has 

magnitude As and points from P to P'. Clearly, 

As = i Ax + j Ay. 

But the gradient of/is 

V/ = 
.df 

1 dx 

(an obvious specialization of the gradient notation to a function of 

two, rather than three, variables). It follows at once that 

A/ = (As) • (V/) + • • •. 

Complicating matters slightly more, let u be a unit vector in the 

direction of As. Then 

As = u As 

and 

so that 

A/= (u • V/) As + • ■ ■, 

A/ 
— = u • V/ + 
As 

We now take the limit of this equation to get 

4f_ .. Af „ 
~r = lim -r— = u • vf. 
ds 4s->o As 

(IV—14) 

There is no longer any need for “+ • • since the dots repre¬ 

sented terms that go to zero as As goes to zero. 

This new expression [Equation (IV-14)] has a simple interpreta¬ 

tion: it is the rate of change of the function/(x, y) in the direction of 

As (that is, of u). Redrawing Figure IV-8(a) and passing a plane 

through P and P' parallel to the z-axis [Figure IV-8(b)], we see that 

it cuts the surface z = fix, y) in a curve C. The quantity df/ds de¬ 

fined in Equation (IV-14) is the slope of this curve at the point O. 133 
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Figure IV-8(b) 

The quantity df/ds is called the directional derivative of /. Al¬ 

though the analysis given earlier that led to this derivative was for 

functions of two variables, the results all apply to functions of 

three (or more) variables. Thus, 

Jr F(x, y, z) = u • VF 

is the rate of change of the function F(x, y, z) in the direction 

specified by the unit vector u. 
An example of the directional derivative may be amusing here. 

We’ll work with a function of two variables so that we can draw 

pictures. Thus, let’s consider 

z =f(x,y) = (x2 + y2),/2. 

which is an inverted right circular cone whose axis coincides with 

the z-axis [see Figure IV-9(a)]. We ask for the directional deriva¬ 

tive of this function at some point x = a and y = h and in the di¬ 

rection specified by u = i cos 0 + j sin 0 [see Figure IV-9(b)]. 

First we need the gradient of f(x, y). But 

dl 
dx 

x 
z and 

= y 
dy Z’ 

as you can easily verify. Thus, 

V/ = 
ix + jy 

134 z 
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Figure IV-9(a) 

Figure IV-9(b) 

and 

df A _ x cos 0 + y sin 0 a cos 0 + b sin 0 
— = u • Vr —->- --. 
ds 2 Va2 + b2 

Suppose 0 is chosen so that u is in the radial direction as indi¬ 

cated in Figure IV-9(c). This means 

cos 0 = 
a 

{a2 + b2)112' 

sin 0 
h 

{a2 + b2)112' 

and so 

df_ _ a _ a_b . b 

ds Va2 + b2 Va2 + b2 Va2 + b2 Va2 + b2 

135 The significance of this result is brought out in Figure IV-9(d). 
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Figure IV-9(c) 

Figure IV-9(d) 

A second interesting case is that in which u is chosen perpen¬ 

dicular to the direction of the previous example [see Figure 

IV-9(e)]. We then have 

cos 0 = 
—b 

(a2 + bY2’ 

sin 0 
a 

0a2 + b2)m’ 

and so 

df_ a ( b \ 

ds Va2 + b2 V Va2 + b2) 

+ -- b f—g- 
Va2 + b2 Wa2 + b1 

136 The meaning of this result is illustrated in Figure IV-9(f). 
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Figure IV-9(e) 

Figure IV-9(f) 

Geometric Significance of the Gradient 

With the concept of the directional derivative at our disposal, we 

are now in a position to give a geometric interpretation of the gra¬ 

dient. At some point P0 with coordinates (x0, y0, z0) we have 

where the subscript 0 means the quantity is to be evaluated at the 

point (x0, y0, z0). Now (VF)0, the gradient of F evaluated at P0, 

may be represented by an arrow emanating from that point as 

shown in Figure IV-lO(a). If we ask in what direction we must 

move to make (dF/ds)0 as large as possible, it is clear that u 

should be in the same direction as (VF)0. This is because if we let 

a be the angle between u and (VF)0, then (dF/ds)0 = |VF|0 cos a, 

and this is as large as it can be when a = 0. Thus, the gradient of 137 
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Figure IV-lO(a) 

a scalar function F(x, y, z) is a vector that is in the direction in 

which F undergoes the greatest rate of increase and that has 

magnitude equal to the rate of increase in that direction. 

To illustrate this interpretation of the gradient, let us go back to 

the inverted cone z = f(x, y) = (x2 + y2)m we discussed earlier. 

We learned that 

V/ = 
>-* + j y 

z 

and 

£ 
ds 

a cos 0 + sin 0 
0(6). 

To find the direction in which /(x, y) undergoes the greatest rate 

of change, we set 

dD _ —a sin 8 + b cos 8 

M VcfHf 

This gives tan 0 = b/a, whence cos 0 = al{a2 + b2)1'2 and sin 0 = 

b/(a2 + b2)m. So (df!ds)mm = 1. On the other hand. 

|V/| = 
^+y2 

= 1, 

since z2 = x2 + y2. Furthermore, tan 0 = b/a corresponds to the 

direction a\ + bj, while at the point (a, b), 

V/ = 
ai + bj 

(a2 + b2)m’ 

138 



Geometric which is a vector in the same direction. Thus both properties of 

Significance of the gradient are illustrated; it’s in the direction of maximum rate 

the Gradient of increase, and its magnitude is equal to the rate of increase in 

that direction. 

As a second example of the interpretation of the gradient, we con¬ 

sider the plane z = f(x, y) = \ — x — y shown in Figure IV-10(b). 

It’s easy to see that V/= —i — j. Using u = i cos 0 + j sin 0 as be¬ 

fore, we find df/ds = u • V/ = -cos 0 - sin 0 = Z)(0). Thus 

dD 

d% 
sin 0 — cos 0 = 0, 

Figure IV-10(b) 

which yields 0 = tt/4 or 5tt/4. The second derivative test shows 

that tt/4 corresponds to a minimum and 5tt/4, to a maximum. It 

can be seen from Figure IV-10(b) that the greatest rate of in¬ 

crease is indeed at an angle of 5n/4. Moreover, the greatest rate of 

increase is 

139 

= D(5ir/4) = V2, 

whereas |V/| = |—i — j| = V2. Again, both properties of the gra¬ 

dient are illustrated by this example. 

With this geometric interpretation of the gradient at our disposal, 

we can now see the reason for the negative sign in the equation 

E = — V<F: Since V<F is a vector in the direction of increasing <f>, the 

force on a positive charge q is F = qE = —<?V<F, which is in the di¬ 

rection of decreasing <J>. Thus, the negative sign ensures that a pos¬ 

itive charge moves “downhill” from a higher to a lower potential. 

There is another property of the gradient useful in understand¬ 

ing its geometric significance. To make this discussion concrete, 

let T(x, y, z) be a scalar function that gives the temperature at 
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Figure IV-11 

any point (x, y, z). The locus of all points having the same temper¬ 

ature T0 is (in the simplest case) a surface whose equation is 

T(x, y, z) = T0 (Figure IV-11). This is called an isothermal sur¬ 

face. We now show that VT is a vector normal to the isothermal 

surface. Let C be any curve lying in the isothermal surface and let 

P be any point on C. Let u be the unit vector tangent to C at P (it 

doesn’t matter which direction along C we take). The directional 

derivative in the direction u is 

because T does not change as we move along the isothermal sur¬ 

face. If the scalar product of two vectors, neither of them zero, 

vanishes, the two vectors are perpendicular. Thus VT is perpen¬ 

dicular to C at P. By the same argument it is perpendicular to any 

curve on the surface through P (such as C' in Figure IV-11). But 

this can be true only if VT is normal to the isothermal surface at 

P. In general then, V/(;c, y, z), where f(x, y, z) is a scalar function, 

is normal to the surface f(x, y, z) = constant? 

A simple example of this property of the gradient is provided 

by the function F(x, y, z) = x2 + y1 + z2. The surface F{x,y,z) = 

constant is, of course, a sphere (assuming the constant is posi¬ 

tive). As you should verify for yourself, VF = 2(ix + jy + kz) = 

2r. Thus, we have a familiar result: A vector normal to a spherical 

surface is in the radial direction. We’ll leave it to you to ponder 

the geometric relation between the electrostatic field E and its 

equipotential surfaces <I>(x, y, z) = constant. 

3 The connection between this property of the gradient and our earlier expression 

for the unit vector normal to a surface [Equation (II-4)] is the subject of Problem 

140 rv-2o. 
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We can make a simple connection between the property of the 

gradient just discussed and the fact that it is in the direction of 

the greatest rate of increase. Any displacement from the surface 

f{x, y, z) = constant, regarded as a vector s, can be resolved into a 

component along the surface (s||) and one normal to it (sj, as 

shown in Figure IV-12. That part of the displacement along the 

surface is “wasted motion” if our aim in moving is to cause a 

change in the value of f{x, y, z). Only the normal component car¬ 

ries us away from the surface and causes a change in/. From this 

it is clear that the greatest increase possible for a given magnitude 

of displacement should occur when we move away from the sur¬ 

face in the normal direction. But we have already established that 

the greatest rate of increase occurs in the direction of the gradient. 

Thus the gradient is normal to the surface. 

A 

Figure IV-12 

The Gradient in Cylindrical and Spherical Coordinates 

A by-product of our discussion of the directional derivative is the 

“easier and faster” method for calculating the gradient in spherical 

and cylindrical coordinates mentioned earlier (see page 120). To de¬ 

termine this method, we begin by outlining our derivation of dflds:4 

1. Our first step is to consider a scalar function of three Carte¬ 

sian coordinates/(x, y, z) and use Taylor series to determine 

the change in / caused by a displacement from the point 

(x, y, z) to a second point (x + Ax, y + Ay, z + Az). We find 

for this change 

A/= y Ax + y Ay + y Az + • • • - 
J dx dy dz 

4 The calculation outlined here pertains to a function of three variables and is a 

simple generalization of the calculation on pages 130-133, which deals with a 

141 function of two variables. 



The Gradient 2. We next write A/in terms of As, the vector displacement from 

(x, y, z) to (x + Ax, y + by, z + A z). Clearly (see Figure 

IV—13), 

so that 

As = i Ax + j Ay + k Az. 

Af = • As H-. 

Figure IV-13 

3. Finally, we write As = u As, divide by As, and take the limit: 

Af_df . df df df\ A 
limT- = T=1r + J3“ + ,!F'u- 

a.v—>o As ds \dx ay dz / 

The quantity that is dotted into u in this last expression is 

then recognized as the gradient of/in Cartesian coordinates. 

To obtain the gradient of a scalar function in cylindrical coordi¬ 

nates we proceed in much the same way: 

1. We consider a scalar function of three cylindrical coordi¬ 

nates,/(r, 0, z). Using Taylor series, we find the change in/ 

due to a displacement from the point (r, 0, z) to a second 

point (r + Ar, 0 + A0, z + Az): 

Af=yAr + ^Ad + ^Az + 
dr 50 dz 

2. Next, we write A/in terms of As. This is the heart of the cal¬ 

culation. From Figure IV-14 we have 

142 
As = e,. Ar + e„r A0 + e, Az. 
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Figure IV-14 

Two features of this expression require some discussion. First, 

the displacement in the direction of increasing 0 (of magnitude 

r A0) is an arc of a circle rather than a straight line segment. 

However, since we will eventually pass to the limit as A.v —» 0, 

we may regard A0 (as well as Ar and A") as arbitrarily small, 

in which case the arc is arbitrarily close to its subtending 

chord. Thus, as indicated in Figure IV-15, Ar, r A0, and Az 

Figure IV-15 

approximate to any desired degree of accuracy three mutually 

perpendicular displacements, the analogs of the three Carte¬ 

sian displacements Ax, Ay, and Az (see Figure IV-13). 

The second feature of our expression for As that requires 

comment also has to do with the displacement in the direction 

of increasing 0. It is this: Since the arc is part of a circle of ra¬ 

dius r + Ar, we should, strictly speaking, write the displace¬ 

ment as (r + Ar) A0, not r A0. But the additional term Ar A0 

is “second order”; that is, it is the product of two small quan¬ 

tities and therefore negligible compared with r A0. 

If we now write our expression for A/in terms of As, we get 



The Gradient Note the factor 1/r in the second term to compensate for the 

factor r in eer A0 in As. 

3. Finally, putting As = u As, we find 

r Af_df 
lim T- = -T- 

As—»o As ds 

A 

• u. 

The quantity in the preceding expression dotted into u is the 

gradient of/in cylindrical coordinates. 

An analogous procedure can be used to find the gradient in 

spherical coordinates; this has been left as an exercise (see Prob¬ 

lem IV-22). 

PROBLEMS 

IV-1 (a) Calculate F = V/for each of the following scalar functions: 

(i) /= xyz. 

(ii) /= x2 + y2 + z2. 

(iii) f=xy + yz + xz. 

(iv) /= 3a2 - 4Z2. 

(v) /= e~x sin y. 

(b) Verify that 

F • t ds = 0 

for one or more of the functions F determined in part (a) choosing 

for the curve C: 

(i) the square in the Ay-plane with vertices at (0, 0), (1, 0), 

(1, 1), and (0, 1). 

(ii) the triangle in the yz-plane with vertices at (0, 0), (1, 0), 

and (0, 1). 

(iii) the circle of unit radius centered at the origin and lying 

in the xz-plane. 

(c) Verify by direct calculation that V X F = 0 for one or more 

of the functions F determined in part (a). 

lV-2 Verify the following identities in which/and g are arbitrary differ¬ 

entiable scalar functions of position, and F and G are arbitrary differ¬ 

entiable vector functions of position. 

(a) V(/g) =/Vg + gVf 

(b) V(F • G) = (G • V)F + (F • V)G + F X (V X G) + G X 

(V X F). 

(c) V • (/F) = / V • F + F • V/. 

(d) V • (F X G) = G • (V X F) - F • (V X G). 

(e) V x (fF) =/V x F + (V/) x F. 

(f) V X (F X G) = (G • V)F - (F • V)G + F(V • G) -G(V • F). 

(g) V X (V X F) = V(V • F) - V2F. 

144 



Problems IV-3 Show that V X V/ = 0 where f(x, y, z) is an arbitrary differentiable 

scalar function. Assume that mixed second-order partial derivatives 

are independent of the order of differentiation. For example, d2f/dx dz, 

= d2f/dz dx. 

TV-4 (a) Each of the following functions is smooth in a simply con¬ 

nected region. Determine which of them may be written as the 

gradient of a scalar function, and for those that can, use Equation 

(IV-2) to find that scalar function. 

(i) F = iy. 

(ii) F = Ck, C a constant. 

(iii) F = iyz + jxz + kxy. 

(iv) F = ix + jy -1- kz. 

(v) F = ie~z sin y + je ' sin z + ke~r sin y. 

(b) Neither of the following functions is smooth everywhere. 

Nonetheless each can be written as the gradient of a scalar func¬ 

tion. Use Equation (IV-2) to find that scalar function. 

(i) F = r/r2, r = u + jy. 

(ii) F = r/r112, r = ix + jy + kz. 

IV-5 The function F(r, 0, z) defined in Problem III—17 is smooth and has 

zero curl in a nonsimply connected region consisting of all of three- 

dimensional space with the z-axis removed. Show that there is no 

scalar function vjr such that F = Vi|j by evaluating the line integral of 

F • t from the point P,(0, —1, 0) to the point P2(0, 1, 0) over two dif¬ 

ferent paths: CR, the right-hand side of the circle of radius 1 lying in 

the xy-plane and centered at the origin (see figure), and CL, the left- 

hand side of the same circle. Orient the paths as shown. Why does the 

fact that the two paths give different results imply that there is no 

scalar function i|< such that F = Viji? 

1V-6 (a) An electric dipole of strength p situated at the origin and ori¬ 

ented in the positive z-direction gives rise to an electrostatic field 

—^ (2er cos 4> + e* sin <)>) 
4ire0 r 
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Use Equation (IV-2) to show that the dipole potential is given by 

1 p cos d> 
<h(r, 0, 4>) = ---— 

4tt€0 r2 

Useful information: In spherical coordinates, 

* /v dr . * d§ ^ . , d6 

t = e^+e*r^+e“''Sln<l>^ 

(b) Calculate the flux of the dipole field through a sphere of ra¬ 

dius R centered at the origin. 

(c) What is the flux of the dipole field over any closed surface 

that does not pass through the origin? 

lV-7 Here is a “proof” that there is no such thing as magnetism. One of 

Maxwell’s equations tells us that 

V • B = 0, 

where B is any magnetic field. Then using the divergence theorem, we 

find 

JJ B’fidS = J j J v • B dV = 0. 

Because B has zero divergence, we know (see Problem III—24) there 

exists a vector function, call it A, such that 

B = V X A. 

Combining these last two equations, we get 

JJ n • VX At/S = 0. 

Next we apply Stokes’ theorem and the preceding result to find 

A’t ds = J J n • V X A dS = 0. 
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Thus we have shown that the circulation of A is path independent. It 

follows that we can write A = Vi|), where i|) is some scalar function. 



Problems Since the curl of the gradient of a function is zero, we arrive at the re¬ 

markable fact that 

B = V X V4» = 0; 

that is, all magnetic fields are zero! Where did we go wrong? [Taken 

from G. Arfken, Amer. J. Phys., 27, 526 (1959).] 

IV-8 Fick’s law states that in certain diffusion processes the current den¬ 

sity J is proportional to the negative of the gradient of the density p; 

that is, J = —kVp, where A: is a positive constant. If a substance of 

density p(jc, y, z, t) and velocity v(x, y, z, t) diffuses according to Fick’s 

law, show that the flow is irrotational (that is, V X v = 0). 

TV-9 (a) A substance diffuses according to Fick’s law (see Problem 

IV-8). Assuming the diffusing matter is conserved, derive the 

diffusion equation 

(b) Bacteria of density p diffuse in a medium according to Fick’s 

law and reproduce at a rate Xp per unit volume (X is a positive 

constant). Show that 

^ = k V2p + Xp. 

1V-10 (a) A fluid is said to be incompressible if its density p is a con¬ 

stant (that is, is independent of x, y, z, and t). Use the continuity 

equation to show that the velocity v of an incompressible fluid 

satisfies the equation V • v = 0. 

(b) If V X v = 0, the fluid flow is said to be irrotational. Show 

that for an incompressible fluid undergoing irrotational flow, 

v24> = o, 

where <J>, a scalar function called the velocity potential, is so de¬ 

fined that v = V<t>- 

IV-11 The heat Q in a body of volume V is given by 

e-'lffw 
where c is a constant called the specific heat of the body, and T(x, y, z, t) 

and p(x, y, z) are, respectively, the temperature and density of the 

body. (Note that we are assuming the density to be independent of 

time.) The rate at which heat flows through S, the bounding surface of 

the body, is given by 

dQ 

dt 
n • VTdS, 147 



The Gradient where k (assumed constant) is the thermal conductivity of the body, 

and the integral is taken over the surface S bounding the body. Use 

these facts to derive the heat flow equation 

where a = cp/k. 

IV-12 In nonrelativistic quantum mechanics a particle of mass m mov¬ 

ing in a potential V(x, y, z) is described by the Schrodinger equation 

—V2»|; + WJr = ih^~, 
2m T v dt 

where h is Planck’s constant divided by 2tt and \\i(x, y, z, t), which is 

complex, is called the wave function. The quantity p = is inter¬ 

preted as the probability density. 

(a) Use the Schrodinger equation to derive an equation of the form 

and obtain thereby an expression for J in terms of 4<> 4**’ m- 

and h. 

(b) Give an interpretation of J and of the equation derived in (a). 

IV-13 (a) Find the charge density p(x, y, z) that produces the electric 

field 

E = g(ix + jy + kz), 

where g is a constant. 

(b) Find an electrostatic potential <J> such that — Vd> is the field E 

given in (a). 

(c) Verify that V2d> = — p/e0. 

IV-14 (a) Starting with the divergence theorem, derive the equation 

(u Vv) dS = V2v + (Vu) • (Vu)] dV, 

where u and v are scalar functions of position and S is a closed 

surface enclosing the volume V. This is sometimes called the first 

form of Green’s theorem. 

(b) If V2u = 0 use the first form of Green’s theorem to show that 

J J n • (u Vu) dS = J J | Vu p dV, 

where |V«p = (Vu) • (Vu). 

(c) Use the first form of Green’s theorem to show that 

JJL* (u Vv — v Vu) dS = III ^~ V 
148 This is the second form of Green’s theorem. 



Problems IV-15 An equation of the form 

where / is a twice-differentiable function of position and time, is 

called a wave equation. It describes a wave propagating in space 

with velocity v. Use Maxwell’s equations (Problem III—20) to show 

that in the absence of charges and currents (that is, p and J both 

zero), all three Cartesian components of both E and B satisfy a wave 

equation with v = c, where c = 1/Ve0p,0 is the velocity of light. For 

example. 

V2£, 1 d% 
c2 di2 ' 

Thus, the existence of electromagnetic waves traveling in empty space 

with the velocity of light is a consequence of Maxwell’s equations. 

TV-16 (a) In the text we found the potential and field for the case of an 

infinite cylinder between parallel plates with the cylinder held at 

zero potential. How must the solution be modified if the cylinder 

is held at a potential V0 + 0? 

(b) Show that there is no net charge on the cylinder. 

1V-17 (a) A sphere of radius R is situated between two very large paral¬ 

lel plates that are separated by a distance s. A potential difference 

is maintained between the plates and the sphere is held at zero po¬ 

tential. Find the potential and field everywhere outside the sphere 

and between the plates. Assume that R « s. 

(b) Show that there is no net charge on the sphere. 

(c) Repeat part (a) assuming the sphere is held at a potential 

v0*o. 

IV-18 Let f(x, y) be a differentiable scalar function of x and y, and let 

u = i cos 0 + j sin 0. Transform to a rotated coordinate system x', y' 

such that x' is parallel to u (see the figure). Show that the directional 

derivative in the direction of u is given by. 

ds 
fi -V/ = 

df_ 

dx'' 

149 0 x 



The Gradient TV-19 You are at a point (a, b, c) on the surface 

Z = (r2 ~ x2 - y2)m (z > 0). 

Assuming both a and b are positive, in what direction must you move 

(a) so that the rate of change of z will be zero? 

(b) so that the rate of increase of z will be greatest? 

(c) so that the rate of decrease of z will be greatest? 

Draw a sketch to show the geometric significance of your answers. 

TV-20 The unit vector normal to the surface z = f(x, y) is given by 

[see Equation (II—4)]. We have also established that VF is a vector 

normal to the surface F(x, y, z) = const, (page 140) so that VF/|VF| is 

a unit vector normal to the surface F(x, y, z) = const. Show that these 

two expressions for the unit normal vector are identical if F(x,y,z) = 

const, and z = f(x, y) describe the same surface. 

TV-21 Use the results of Problem 11-18 and the expression for the gradi¬ 

ent in cylindrical coordinates (see page 144) to obtain the form of the 

Laplacian in cylindrical coordinates given on page 129. 

IV-22 Using the procedure outlined in the text (pages 141-144) obtain 

the expression for the gradient of t|i in spherical coordinates: 

di|r 1 # r-r , 1 t . /v 
V4< = e,.—+ e*77X+ e 4> r dc|) 

i # 

1 r sin 4> 50 

IV-23 Use the results of Problem 11-19 and the expression for the gradi¬ 

ent in spherical coordinates derived in Problem IV-22 to obtain the 

form of the Laplacian in spherical coordinates given on page 126. 

IV-24 Suppose you find a solution of Laplace’s equation that satisfies 

certain boundary conditions. Is this solution unique or are there oth¬ 

ers? This problem will answer that question in certain simple cases. 

Consider the region of space completely enclosed by a surface S0 and 

containing in its interior objects 1, 2, 3,. .. (two of which are pictured 

in the diagram). Suppose that S0 is maintained at a constant potential 

<I>0, object no. 1 at <t>h object no. 2 at <J>2, and so on. Then in the 

charge-free region R enclosed by S0 and between the objects, the po¬ 

tential must satisfy Laplace’s equation 

V2<E> = 0 

and the boundary conditions 

<J> = 

$0 on so 
4), on S, 

dL on S2 

150 



Problems 

The following steps will guide you through a proof that <t> is unique. 

(a) Assume that there are two potentials u and v, both of which 

satisfy Laplace’s equation and the boundary conditions listed ear¬ 

lier. Form their difference w = u — v. Show that V2w = 0 in R. 

(b) What are the boundary conditions satisfied by w? 

(c) Apply the divergence theorem to 

(l n • (w Vw) dS, 

where the integration is carried out over the surface S0 + 5, + S2 

H-, and show thereby that 

/// lVw,l2dV=0, 

where V is the volume of the region R. 

(d) From the result of (c) argue that Vw = 0 and that this, in turn, 

means w is a constant. 

(e) If w is a constant, what is its value? (Use the boundary condi¬ 

tions on w to answer this.) What does this say about u and u? 

(f) The uniqueness proof outlined in (a) to (e) involves specify¬ 

ing the value of the potential on various surfaces. Might we have 

specified a different kind of boundary condition and still proved 

uniqueness? If so, in what way or ways would the proof and the 

result differ from those given above? 

IV-25 In the text we defined the gradient in terms of certain partial de¬ 

rivatives. It is possible to give an alternative definition similar in form 

to our definitions of the divergence and the curl. Thus, 

1 
//,"fis- V/= lim 

av-.o AV j js 

Here/is a scalar function of position, S a closed surface, and AV the 

volume it encloses. As usual, n is a unit vector normal to S and point¬ 

ing out from the enclosed volume. 

(a) Following a procedure similar to the one used in the text in 

treating the divergence, integrate over a “cuboid” and show that 

the preceding definition yields the expression 

df df 3/ v/= i/ + jr- + k^-. 
dx dy dz 151 



The Gradient (b) Use the alternative definition of the gradient given above to 

show that the directional derivative of/in the direction specified 

by the unit vector u is given by 

ds 
= u • V/. 

[Hint: Evaluate 

S-fl nfds = J J u • nfdS 

over a small cylinder (length As, cross-sectional area A4; see fig¬ 

ure) whose axis is in the direction of the constant unit vector u. 

Then divide by the volume of the cylinder (As AA) and take the 

limit as the volume approaches zero.] 

(c) Arguing as we did in the text in establishing the divergence 

theorem, use the alternative definition of the gradient to show that 

If,**-Iff w 
where S is a closed surface enclosing the volume V. 

(d) Obtain the relation stated in (c) directly from the divergence 

theorem. [Hint: In ffsF• n dS = fffvV'FdVputF = ef where 

e is a constant unit vector.] 
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Problems (e) Verify the relation stated in (c) for the scalar function 

/=*2 + y2 + z2 

integrating over the unit cylinder shown in the figure. 

IV-26 (a) Consider a surface z = fix, y). Let u be a vector of arbitrary 

length tangent to the surface at a point P(x, y, z) in the direction of 

the unit vector p = ipx + jpy as indicated in the figure. Use the 

directional derivative to show that 

u = p + k(p • V/), 

where V/ is evaluated at (x, y). [Note: Since the length of u is ar¬ 

bitrary, your result may differ from the preceding by some posi¬ 

tive multiplicative constant.] 

(b) Let v be a second vector of arbitrary length tangent to the 

surface at P but in the direction of the unit vector q = iqx + ky 

(p + q). Then from (a) we have 

v = q + k(q • V/). 

Show that 

u X v = [k • (p X q)](k - V/) 

and use this to rederive Equation (II—4) for the unit vector n nor¬ 

mal to the surface z — fix, y) at (x, y, z). This shows that the result 

derived in the text for n is unique (apart from sign) even though it 

was obtained with the special choices p = i and q = j. 

TV-27 (a) Using Maxwell’s equations (see Problem III—20), show that 

we can write 

B = V X A, 

E = -V<t> 
ot 
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where A (called the vector potential) is some vector function of 

position and time, and (the scalar potential) is some scalar 



The Gradient function of position and time, provided A and d> satisfy the 

equations 

+ -.)t (V • A) = — p/e0, 

n 2 a 

V2A - p.0eQ ~ = -|XoJ + V V • A + p,0e0 
dt 

(b) Show that if we define two new potentials 

A' = A + Vx, 

cp' = <p - ^ 
at’ 

where x is an arbitrary scalar function of position and time, then 

B = V X A', 

E = -V4>' - 
dt 

That is, the fields E and B are not modified by the change in the 

potentials A and d>. The change from (A, d>) to (A', fl>') is called 

a gauge transformation. 

(c) Show that if we require \ to satisfy the equation 

V’ d2X 
V X - eoM-o = V • A + e0p,0 

dt 

then 

V ' A +e0p,0—= 0. 

(d) If x satisfies the equation given in (c), show that A' and <t>' 

satisfy the equations 

V2<D' 
a2<!>' _ 

eo(Xo ^ - 
e0 

and 

V2A' a2A' _ _ T 
60P-0 n ~ M-oJ- 

oV 

The point to all of this is that we can make a gauge transformation [as 

in (b)], impose the condition given in (c), and thereby obtain a scalar 

and a vector potential that satisfy the equations in part (d), which are 

wave equations with source terms proportional to p and J. 

IV-28 The equation of motion of an ideal fluid can be written 

§ + (v-V)v dV 
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where V is the volume of the fluid and 5 is its surface. Here fext(x, y, z) 

is the external force per unit mass acting on the fluid, p(x, y, z) is the 



Problems pressure of the fluid, and p(x, y, z) is its density, all at a point (x, y, z) in 

the fluid, and v(x, y, z, t) is the velocity of the fluid at the point (x, y, z) 

and at time t. 

(a) Use the form of the divergence theorem given in Problem 

IV-25(c) to rewrite the equation of motion of an ideal fluid in the 

form 

fext “ £ VP = + (v * V>v- 

(b) Show that in the static case (v = 0), the equation of motion 

becomes 

fext = (1/p) Vp. 

(c) Consider a column of incompressible fluid oriented vertically 

parallel to the z-axis as shown in the figure. Assuming that the 

only external force acting on the fluid is the downward uniform 

gravitational attraction of the earth, apply the equation for the 

static case given in (b) to show that 

P=Pn~ P8Z 

where g is the acceleration due to gravity and p0 is a constant. 
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Solutions 
to Problems 

One must learn by doing the thing; for 

though you think you know it, you have no 

certainty until you try. 

Sophocles 

Chapter I 

3. (a) (k + jyyVx2 + y2. 

(b) (i + JXx + y)W2. 

(c) -iy+jx. 

(d) (k + jy + kz)/Vx2 + y2 + z2. 
4. (a) (a2 cos2 wt + b2 sin2 ml)'11. 

(b) —icoa sin mt + jo>b cos wt (velocity). 

—ico2a cos wt — jofb sin to? (acceleration). 

i 1 

2tT60 (y2 + 1)3/2 ' 
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Solutions to 

Problems 

Chapter II 

6. In the following, c is an arbitrary constant. 

y2 = c. (a) x2 

(b) y = x + c. 

(c) xy = c. 

(d) v = c. 

/ = 

(e) x = c. 

(f) x2 

(g) y = W + 

(h) y = ce?. 

c. 

c. 

1. (a) (i+j + k)/V3. 

(b) -(ix + jy - kz)/V2z. 

(c) ix + kz. 

(d) (—2ix — 2jy + k)Vl + 4z. 

(e) (ix + jy + ka2z)/aV 1 + (a2 — l)z2. 

3. [-i(dg/dx) - k(dg/dz) + j]/Vl + (dg/dx)2 + (dg/dz)2 

fory = g(x, z). 

[-j (dh/dy) 

4. (a) V3/6. 

k(dh/dz) + i]/V 1 + (dh/dy)2 + (dh/dz)2 

for x = h(y, z). 

(b) |(V5- 1). 

(c) ir/2. 

5. (a) 0. 

(b) 2ira3. 

(c) 3Tt/2. 

6. 4h/?2(t0/3. 

7. 

8. 0. 

9. ttr2X./ie0. 

10. (a) 0. (c) 4’nR7'e~R\ 

(b) 4-rrR2h In /?. (d) [E(b) - E(0)]b2. 

11. (a) E = cri/2e0, x > 0, and ~CTi/2e0, x < 0. 

(b) E = p0fei/en, x> b\ poxi/e0, —b SiSi; 

and — p0hi/e0, x < —b. 

(c) E = ± (p0h/e0)(l — e 1''|/4)i (+ forx > 0, — forx < 0) 

12. (a) E = (X/ltieQ)er/r 

(b) E = (poh2/2e0)er/r, r>i>, and (p0r/2e0)er,r<b. 

(c) E = (pnh2e0)(l/r)[l - (1 + rlb)e~rlh]%r. 

13. (a) E = 
(Z?3p0/3€0)er/r2, r> b, 

(po/3e0)i-er, r < b. 

(b) E = i3p0/e0)(l/r2)[2 - (r2/*2 + 2rib + 2)e"r,6]er. 

(P</3€0)r®i-. f < fc, 
(c) E = (l/3e0)(l/r2)[fc3p0 + (r3 - fe3)Pi]er, b<r<2b, 

(f>3/3e0)(l/r2)(p0 + 7p,)er r > 2b. 

The field is zero for r > 2b if p, = — p0/7. The total charge is then zero. 

157 



Solutions to 

Problems 
14. (a) 2(x + y + z). 

(b) 0. 

(c) ~(e~x + e~y + e-*). 

(d) 2z. 

(e) -y/tf+y2). 

(f) 0. 
(g) 3. 

(h) 0. 

15. Surface integral equals 2s’’(x0 + y0 + z0) for the function of Problem 

II-14a. 

Surface integral equals 0 for function of Problem II-14b. 

Surface integral equals s2(e~s/2 — es'2)(e~x" + e~y° + e~z,:) for func¬ 

tion of (II—14c). 

16. (b) V • G = 0. 

22. /(r) = constant/r2. 

23. (a) 3b\ 

(b) 3ixR2h/4. 

(c) 4'tr/?4. 

24. (b) irR2B. 

Chapter III 

3. (a) 2(—iy + jz + kx). 

(b) 5jx. 

(c) ie~z + je~x + ke-v. 

(d) 0. 

(e) —ix — jy + 

(f) 2(iy — jx). 

(g) iz - kx. 

(h) 0. 

2kz. 

(b) 

(c) n 
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4. Line integral equals 2x0.v2 for function of Problem III-3a. 

Line integral equals 0 for function of Problem III—3b. 

Line integral equals s(e!l2 — e~sl2)e~y° for function of Problem III-3c. 

Line integral equals 0 for function of Problem III—3d. 

5. (a) a112 + a213 

2 /l , cA 1 „ 
V5 \2 + 3/ ^ as a ^ ° 

■ V x F = (1 + 2>>) = aty = 0 
V3 V3 

13. (d) and (h). 

15. (a) Line integral and surface integral equal 1. 

(b) Line integral and surface integral equal — 3ir/4. 

(c) Line integral and surface integral equal — 2-nR2. 

19. 3/e. 

25. If V • G = 0, then G = V X H 

(a) H = Ijx2 +k [\y2 - (x - x0)z]. 

(b) H = jBqX. 

(c) V • G * 0. 

(d) H = -j(x - x0)z 4- k(x -I- x0)y. 

(e) V • G + 0. 

[Note: Your results may differ from these by additive constants/ 



Solutions to 

Problems 

a A 

28. (a) 4>CH • t ds = ffsG • n dS where 5 is a capping surface of the 

closed curve C. 

29. (d) Surface and volume integral each equal i - j — k. 

Chapter IV 

1. (a) (i) F = tyz + jxz + kxy. 

(ii) F = 2(k + j>’ + kz). 

(iii) F = i(jy + z) + jU + z) + k(x + y). 

(iv) F = 6ix — 8kz. 

(v) F = — ie~x sin y + je~* cos y. 

4. (a) (i) Not path independent. 

(ii) i|; = cz + const. 

(iii) i|/ = xyz + const. 

(iv) v|» = {(x2 + y2 + z2) + const. 

(v) Not path independent. 

(b) (i) i|» = In r + const. 

(ii) vjr = \rm + const. 

13. (a) p = 3ge0. 

(b) <I> = ~{gC + y2 + z2). 

16. (a) Add V0 to the result obtained in the text. 

17. (a) 4>(r, 4>) = ~Ear(l — R:Vr3) cos cj> where the sphere is centered 

at the origin and the two plates are parallel to the xy-plane and 

situated at z = ±sl2. 

(c) Add Vo to the result given in part (a). 

19. (a) Move in the direction ±(ib — ja)/Va2 + b2. 

(b) Move in the direction of the gradient: 

—(ia + jbyVr2 — a2 — b2. 

(c) Move in the direction opposite to the gradient: 

(ia + jb)/Vr2 — a2 - b2. 

25. (e) Surface integral and volume integral each equal irk. 
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161 

Ampere’s circuital law, 99-101 

differential form of, 101 

Arfken, G., 147 

Arnold, Matthew, 1 

Azimuthal angle, ix 

Beethoven, Ludwig van, v 

Capping surface, 93-94 

and Stokes’ theorem, 97-98 

Central force, 74 

and irrotational function, 106 

Cervantes, Miguel de, quoted, ix 

Chalmers, P. R., 115 

Charge density, 8 

Circulation, 75 

and curl, 104 

Circulation law, differential 

form of, 91-93 

Conservation, 50-51 

Continuity equation, 52 

Coulomb force, 71, 73 

Coulomb’s law, 5-6 

and path independence, 71-74 

“Cuboid,” 38n 

cylindrical, 42-43 

Curl, 75-82, 91 

alternative definition of, 

112-113 

in Cartesian coordinates, 80 

and circulation, 104 

in cylindrical and spherical 

coordinates, 82-86 

meaning of, 86-91 

as operator, 45 

and path independence, 

103-104 

Current density, 52 

Cylindrical cuboid, 42—43 

Del notation. 44-45, 118-120 

curl operator in, 82 

divergence operation in, 44 

gradient operation in, 118 

and Laplacian, 122-123 

Denham, Sir John, quoted, 11 

Density, charge, 8 

current, 52 

Differential equations, 2n 

Diffusion equation, 147 

Directed curve, 64 

Directional derivative, 131-137 

Divergence, 37-42 

in Cartesian coordinates, 

38-41,57 

in cylindrical and spherical 

coordinates, 42—44, 58 

and operator, 45 

Divergence theorem, 45-52, 

110, 155 

applications of, 49-52 

derivation, 45—49 

illustration of, 48—49 

statement of, 48 

Stones’ theorem, reaction to, 

109-110 

in two dimensions, 109-110 

validity of, 48—49 

Electric charge, 5-6, 8 

Electric field, as vector 

function, 2 

Electromagnetic theory, and 

Maxwell’s equations, 8 
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162 

Electromotive force, 109 

Electrostatic field, 7-8 

determination of, 121-124 

and Gauss’s law, 11-12 

and line integral, 63-64 

and vector function, 92 

Electrostatic potential, 122 

Electrostatics, 5-8 

and vector calculus, 1-2 

Equation of motion, of ideal 

fluid, 154-155 

Faraday, Michael, 109 

Fick’s law, 147 

Field, electrostatic, 7-8 
Field lines, 9 

Field theory, electromagnetism 

as, 8 

Fluid, ideal, 154-155 

incompressible, 147 

Fluid ideal, equation of 
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